[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / CodeGen / MachineBasicBlock.cpp
blob4410fb7ecd23b64c5a5a55d0a65aff49e649f73b
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LivePhysRegs.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SlotIndexes.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCContext.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <algorithm>
40 #include <cmath>
41 using namespace llvm;
43 #define DEBUG_TYPE "codegen"
45 static cl::opt<bool> PrintSlotIndexes(
46 "print-slotindexes",
47 cl::desc("When printing machine IR, annotate instructions and blocks with "
48 "SlotIndexes when available"),
49 cl::init(true), cl::Hidden);
51 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
52 : BB(B), Number(-1), xParent(&MF) {
53 Insts.Parent = this;
54 if (B)
55 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
58 MachineBasicBlock::~MachineBasicBlock() = default;
60 /// Return the MCSymbol for this basic block.
61 MCSymbol *MachineBasicBlock::getSymbol() const {
62 if (!CachedMCSymbol) {
63 const MachineFunction *MF = getParent();
64 MCContext &Ctx = MF->getContext();
66 // We emit a non-temporary symbol -- with a descriptive name -- if it begins
67 // a section (with basic block sections). Otherwise we fall back to use temp
68 // label.
69 if (MF->hasBBSections() && isBeginSection()) {
70 SmallString<5> Suffix;
71 if (SectionID == MBBSectionID::ColdSectionID) {
72 Suffix += ".cold";
73 } else if (SectionID == MBBSectionID::ExceptionSectionID) {
74 Suffix += ".eh";
75 } else {
76 // For symbols that represent basic block sections, we add ".__part." to
77 // allow tools like symbolizers to know that this represents a part of
78 // the original function.
79 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
81 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
82 } else {
83 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
84 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
85 Twine(MF->getFunctionNumber()) +
86 "_" + Twine(getNumber()));
89 return CachedMCSymbol;
92 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
93 if (!CachedEHCatchretMCSymbol) {
94 const MachineFunction *MF = getParent();
95 SmallString<128> SymbolName;
96 raw_svector_ostream(SymbolName)
97 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
98 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
100 return CachedEHCatchretMCSymbol;
103 MCSymbol *MachineBasicBlock::getEndSymbol() const {
104 if (!CachedEndMCSymbol) {
105 const MachineFunction *MF = getParent();
106 MCContext &Ctx = MF->getContext();
107 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
108 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
109 Twine(MF->getFunctionNumber()) +
110 "_" + Twine(getNumber()));
112 return CachedEndMCSymbol;
115 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
116 MBB.print(OS);
117 return OS;
120 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
121 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
124 /// When an MBB is added to an MF, we need to update the parent pointer of the
125 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
126 /// operand list for registers.
128 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
129 /// gets the next available unique MBB number. If it is removed from a
130 /// MachineFunction, it goes back to being #-1.
131 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
132 MachineBasicBlock *N) {
133 MachineFunction &MF = *N->getParent();
134 N->Number = MF.addToMBBNumbering(N);
136 // Make sure the instructions have their operands in the reginfo lists.
137 MachineRegisterInfo &RegInfo = MF.getRegInfo();
138 for (MachineInstr &MI : N->instrs())
139 MI.addRegOperandsToUseLists(RegInfo);
142 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
143 MachineBasicBlock *N) {
144 N->getParent()->removeFromMBBNumbering(N->Number);
145 N->Number = -1;
148 /// When we add an instruction to a basic block list, we update its parent
149 /// pointer and add its operands from reg use/def lists if appropriate.
150 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
151 assert(!N->getParent() && "machine instruction already in a basic block");
152 N->setParent(Parent);
154 // Add the instruction's register operands to their corresponding
155 // use/def lists.
156 MachineFunction *MF = Parent->getParent();
157 N->addRegOperandsToUseLists(MF->getRegInfo());
158 MF->handleInsertion(*N);
161 /// When we remove an instruction from a basic block list, we update its parent
162 /// pointer and remove its operands from reg use/def lists if appropriate.
163 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
164 assert(N->getParent() && "machine instruction not in a basic block");
166 // Remove from the use/def lists.
167 if (MachineFunction *MF = N->getMF()) {
168 MF->handleRemoval(*N);
169 N->removeRegOperandsFromUseLists(MF->getRegInfo());
172 N->setParent(nullptr);
175 /// When moving a range of instructions from one MBB list to another, we need to
176 /// update the parent pointers and the use/def lists.
177 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
178 instr_iterator First,
179 instr_iterator Last) {
180 assert(Parent->getParent() == FromList.Parent->getParent() &&
181 "cannot transfer MachineInstrs between MachineFunctions");
183 // If it's within the same BB, there's nothing to do.
184 if (this == &FromList)
185 return;
187 assert(Parent != FromList.Parent && "Two lists have the same parent?");
189 // If splicing between two blocks within the same function, just update the
190 // parent pointers.
191 for (; First != Last; ++First)
192 First->setParent(Parent);
195 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
196 assert(!MI->getParent() && "MI is still in a block!");
197 Parent->getParent()->deleteMachineInstr(MI);
200 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
201 instr_iterator I = instr_begin(), E = instr_end();
202 while (I != E && I->isPHI())
203 ++I;
204 assert((I == E || !I->isInsideBundle()) &&
205 "First non-phi MI cannot be inside a bundle!");
206 return I;
209 MachineBasicBlock::iterator
210 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
211 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
213 iterator E = end();
214 while (I != E && (I->isPHI() || I->isPosition() ||
215 TII->isBasicBlockPrologue(*I)))
216 ++I;
217 // FIXME: This needs to change if we wish to bundle labels
218 // inside the bundle.
219 assert((I == E || !I->isInsideBundle()) &&
220 "First non-phi / non-label instruction is inside a bundle!");
221 return I;
224 MachineBasicBlock::iterator
225 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
226 Register Reg, bool SkipPseudoOp) {
227 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
229 iterator E = end();
230 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
231 (SkipPseudoOp && I->isPseudoProbe()) ||
232 TII->isBasicBlockPrologue(*I, Reg)))
233 ++I;
234 // FIXME: This needs to change if we wish to bundle labels / dbg_values
235 // inside the bundle.
236 assert((I == E || !I->isInsideBundle()) &&
237 "First non-phi / non-label / non-debug "
238 "instruction is inside a bundle!");
239 return I;
242 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
243 iterator B = begin(), E = end(), I = E;
244 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
245 ; /*noop */
246 while (I != E && !I->isTerminator())
247 ++I;
248 return I;
251 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
252 instr_iterator B = instr_begin(), E = instr_end(), I = E;
253 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
254 ; /*noop */
255 while (I != E && !I->isTerminator())
256 ++I;
257 return I;
260 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() {
261 return find_if(instrs(), [](auto &II) { return II.isTerminator(); });
264 MachineBasicBlock::iterator
265 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
266 // Skip over begin-of-block dbg_value instructions.
267 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
270 MachineBasicBlock::iterator
271 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
272 // Skip over end-of-block dbg_value instructions.
273 instr_iterator B = instr_begin(), I = instr_end();
274 while (I != B) {
275 --I;
276 // Return instruction that starts a bundle.
277 if (I->isDebugInstr() || I->isInsideBundle())
278 continue;
279 if (SkipPseudoOp && I->isPseudoProbe())
280 continue;
281 return I;
283 // The block is all debug values.
284 return end();
287 bool MachineBasicBlock::hasEHPadSuccessor() const {
288 for (const MachineBasicBlock *Succ : successors())
289 if (Succ->isEHPad())
290 return true;
291 return false;
294 bool MachineBasicBlock::isEntryBlock() const {
295 return getParent()->begin() == getIterator();
298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
299 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
300 print(dbgs());
302 #endif
304 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
305 for (const MachineBasicBlock *Succ : successors()) {
306 if (Succ->isInlineAsmBrIndirectTarget())
307 return true;
309 return false;
312 bool MachineBasicBlock::isLegalToHoistInto() const {
313 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
314 return false;
315 return true;
318 StringRef MachineBasicBlock::getName() const {
319 if (const BasicBlock *LBB = getBasicBlock())
320 return LBB->getName();
321 else
322 return StringRef("", 0);
325 /// Return a hopefully unique identifier for this block.
326 std::string MachineBasicBlock::getFullName() const {
327 std::string Name;
328 if (getParent())
329 Name = (getParent()->getName() + ":").str();
330 if (getBasicBlock())
331 Name += getBasicBlock()->getName();
332 else
333 Name += ("BB" + Twine(getNumber())).str();
334 return Name;
337 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
338 bool IsStandalone) const {
339 const MachineFunction *MF = getParent();
340 if (!MF) {
341 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
342 << " is null\n";
343 return;
345 const Function &F = MF->getFunction();
346 const Module *M = F.getParent();
347 ModuleSlotTracker MST(M);
348 MST.incorporateFunction(F);
349 print(OS, MST, Indexes, IsStandalone);
352 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
353 const SlotIndexes *Indexes,
354 bool IsStandalone) const {
355 const MachineFunction *MF = getParent();
356 if (!MF) {
357 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
358 << " is null\n";
359 return;
362 if (Indexes && PrintSlotIndexes)
363 OS << Indexes->getMBBStartIdx(this) << '\t';
365 printName(OS, PrintNameIr | PrintNameAttributes, &MST);
366 OS << ":\n";
368 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
369 const MachineRegisterInfo &MRI = MF->getRegInfo();
370 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
371 bool HasLineAttributes = false;
373 // Print the preds of this block according to the CFG.
374 if (!pred_empty() && IsStandalone) {
375 if (Indexes) OS << '\t';
376 // Don't indent(2), align with previous line attributes.
377 OS << "; predecessors: ";
378 ListSeparator LS;
379 for (auto *Pred : predecessors())
380 OS << LS << printMBBReference(*Pred);
381 OS << '\n';
382 HasLineAttributes = true;
385 if (!succ_empty()) {
386 if (Indexes) OS << '\t';
387 // Print the successors
388 OS.indent(2) << "successors: ";
389 ListSeparator LS;
390 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
391 OS << LS << printMBBReference(**I);
392 if (!Probs.empty())
393 OS << '('
394 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
395 << ')';
397 if (!Probs.empty() && IsStandalone) {
398 // Print human readable probabilities as comments.
399 OS << "; ";
400 ListSeparator LS;
401 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
402 const BranchProbability &BP = getSuccProbability(I);
403 OS << LS << printMBBReference(**I) << '('
404 << format("%.2f%%",
405 rint(((double)BP.getNumerator() / BP.getDenominator()) *
406 100.0 * 100.0) /
407 100.0)
408 << ')';
412 OS << '\n';
413 HasLineAttributes = true;
416 if (!livein_empty() && MRI.tracksLiveness()) {
417 if (Indexes) OS << '\t';
418 OS.indent(2) << "liveins: ";
420 ListSeparator LS;
421 for (const auto &LI : liveins()) {
422 OS << LS << printReg(LI.PhysReg, TRI);
423 if (!LI.LaneMask.all())
424 OS << ":0x" << PrintLaneMask(LI.LaneMask);
426 HasLineAttributes = true;
429 if (HasLineAttributes)
430 OS << '\n';
432 bool IsInBundle = false;
433 for (const MachineInstr &MI : instrs()) {
434 if (Indexes && PrintSlotIndexes) {
435 if (Indexes->hasIndex(MI))
436 OS << Indexes->getInstructionIndex(MI);
437 OS << '\t';
440 if (IsInBundle && !MI.isInsideBundle()) {
441 OS.indent(2) << "}\n";
442 IsInBundle = false;
445 OS.indent(IsInBundle ? 4 : 2);
446 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
447 /*AddNewLine=*/false, &TII);
449 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
450 OS << " {";
451 IsInBundle = true;
453 OS << '\n';
456 if (IsInBundle)
457 OS.indent(2) << "}\n";
459 if (IrrLoopHeaderWeight && IsStandalone) {
460 if (Indexes) OS << '\t';
461 OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight
462 << '\n';
466 /// Print the basic block's name as:
468 /// bb.{number}[.{ir-name}] [(attributes...)]
470 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
471 /// (which is the default). If the IR block has no name, it is identified
472 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
474 /// When the \ref PrintNameAttributes flag is passed, additional attributes
475 /// of the block are printed when set.
477 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
478 /// the parts to print.
479 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
480 /// incorporate its own tracker when necessary to
481 /// determine the block's IR name.
482 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
483 ModuleSlotTracker *moduleSlotTracker) const {
484 os << "bb." << getNumber();
485 bool hasAttributes = false;
487 auto PrintBBRef = [&](const BasicBlock *bb) {
488 os << "%ir-block.";
489 if (bb->hasName()) {
490 os << bb->getName();
491 } else {
492 int slot = -1;
494 if (moduleSlotTracker) {
495 slot = moduleSlotTracker->getLocalSlot(bb);
496 } else if (bb->getParent()) {
497 ModuleSlotTracker tmpTracker(bb->getModule(), false);
498 tmpTracker.incorporateFunction(*bb->getParent());
499 slot = tmpTracker.getLocalSlot(bb);
502 if (slot == -1)
503 os << "<ir-block badref>";
504 else
505 os << slot;
509 if (printNameFlags & PrintNameIr) {
510 if (const auto *bb = getBasicBlock()) {
511 if (bb->hasName()) {
512 os << '.' << bb->getName();
513 } else {
514 hasAttributes = true;
515 os << " (";
516 PrintBBRef(bb);
521 if (printNameFlags & PrintNameAttributes) {
522 if (isMachineBlockAddressTaken()) {
523 os << (hasAttributes ? ", " : " (");
524 os << "machine-block-address-taken";
525 hasAttributes = true;
527 if (isIRBlockAddressTaken()) {
528 os << (hasAttributes ? ", " : " (");
529 os << "ir-block-address-taken ";
530 PrintBBRef(getAddressTakenIRBlock());
531 hasAttributes = true;
533 if (isEHPad()) {
534 os << (hasAttributes ? ", " : " (");
535 os << "landing-pad";
536 hasAttributes = true;
538 if (isInlineAsmBrIndirectTarget()) {
539 os << (hasAttributes ? ", " : " (");
540 os << "inlineasm-br-indirect-target";
541 hasAttributes = true;
543 if (isEHFuncletEntry()) {
544 os << (hasAttributes ? ", " : " (");
545 os << "ehfunclet-entry";
546 hasAttributes = true;
548 if (getAlignment() != Align(1)) {
549 os << (hasAttributes ? ", " : " (");
550 os << "align " << getAlignment().value();
551 hasAttributes = true;
553 if (getSectionID() != MBBSectionID(0)) {
554 os << (hasAttributes ? ", " : " (");
555 os << "bbsections ";
556 switch (getSectionID().Type) {
557 case MBBSectionID::SectionType::Exception:
558 os << "Exception";
559 break;
560 case MBBSectionID::SectionType::Cold:
561 os << "Cold";
562 break;
563 default:
564 os << getSectionID().Number;
566 hasAttributes = true;
568 if (getBBID().has_value()) {
569 os << (hasAttributes ? ", " : " (");
570 os << "bb_id " << getBBID()->BaseID;
571 if (getBBID()->CloneID != 0)
572 os << " " << getBBID()->CloneID;
573 hasAttributes = true;
575 if (CallFrameSize != 0) {
576 os << (hasAttributes ? ", " : " (");
577 os << "call-frame-size " << CallFrameSize;
578 hasAttributes = true;
582 if (hasAttributes)
583 os << ')';
586 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
587 bool /*PrintType*/) const {
588 OS << '%';
589 printName(OS, 0);
592 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
593 LiveInVector::iterator I = find_if(
594 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
595 if (I == LiveIns.end())
596 return;
598 I->LaneMask &= ~LaneMask;
599 if (I->LaneMask.none())
600 LiveIns.erase(I);
603 MachineBasicBlock::livein_iterator
604 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
605 // Get non-const version of iterator.
606 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
607 return LiveIns.erase(LI);
610 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
611 livein_iterator I = find_if(
612 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
613 return I != livein_end() && (I->LaneMask & LaneMask).any();
616 void MachineBasicBlock::sortUniqueLiveIns() {
617 llvm::sort(LiveIns,
618 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
619 return LI0.PhysReg < LI1.PhysReg;
621 // Liveins are sorted by physreg now we can merge their lanemasks.
622 LiveInVector::const_iterator I = LiveIns.begin();
623 LiveInVector::const_iterator J;
624 LiveInVector::iterator Out = LiveIns.begin();
625 for (; I != LiveIns.end(); ++Out, I = J) {
626 MCRegister PhysReg = I->PhysReg;
627 LaneBitmask LaneMask = I->LaneMask;
628 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
629 LaneMask |= J->LaneMask;
630 Out->PhysReg = PhysReg;
631 Out->LaneMask = LaneMask;
633 LiveIns.erase(Out, LiveIns.end());
636 Register
637 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
638 assert(getParent() && "MBB must be inserted in function");
639 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
640 assert(RC && "Register class is required");
641 assert((isEHPad() || this == &getParent()->front()) &&
642 "Only the entry block and landing pads can have physreg live ins");
644 bool LiveIn = isLiveIn(PhysReg);
645 iterator I = SkipPHIsAndLabels(begin()), E = end();
646 MachineRegisterInfo &MRI = getParent()->getRegInfo();
647 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
649 // Look for an existing copy.
650 if (LiveIn)
651 for (;I != E && I->isCopy(); ++I)
652 if (I->getOperand(1).getReg() == PhysReg) {
653 Register VirtReg = I->getOperand(0).getReg();
654 if (!MRI.constrainRegClass(VirtReg, RC))
655 llvm_unreachable("Incompatible live-in register class.");
656 return VirtReg;
659 // No luck, create a virtual register.
660 Register VirtReg = MRI.createVirtualRegister(RC);
661 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
662 .addReg(PhysReg, RegState::Kill);
663 if (!LiveIn)
664 addLiveIn(PhysReg);
665 return VirtReg;
668 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
669 getParent()->splice(NewAfter->getIterator(), getIterator());
672 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
673 getParent()->splice(++NewBefore->getIterator(), getIterator());
676 static int findJumpTableIndex(const MachineBasicBlock &MBB) {
677 MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator();
678 if (TerminatorI == MBB.end())
679 return -1;
680 const MachineInstr &Terminator = *TerminatorI;
681 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
682 return TII->getJumpTableIndex(Terminator);
685 void MachineBasicBlock::updateTerminator(
686 MachineBasicBlock *PreviousLayoutSuccessor) {
687 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
688 << "\n");
690 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
691 // A block with no successors has no concerns with fall-through edges.
692 if (this->succ_empty())
693 return;
695 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
696 SmallVector<MachineOperand, 4> Cond;
697 DebugLoc DL = findBranchDebugLoc();
698 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
699 (void) B;
700 assert(!B && "UpdateTerminators requires analyzable predecessors!");
701 if (Cond.empty()) {
702 if (TBB) {
703 // The block has an unconditional branch. If its successor is now its
704 // layout successor, delete the branch.
705 if (isLayoutSuccessor(TBB))
706 TII->removeBranch(*this);
707 } else {
708 // The block has an unconditional fallthrough, or the end of the block is
709 // unreachable.
711 // Unfortunately, whether the end of the block is unreachable is not
712 // immediately obvious; we must fall back to checking the successor list,
713 // and assuming that if the passed in block is in the succesor list and
714 // not an EHPad, it must be the intended target.
715 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
716 PreviousLayoutSuccessor->isEHPad())
717 return;
719 // If the unconditional successor block is not the current layout
720 // successor, insert a branch to jump to it.
721 if (!isLayoutSuccessor(PreviousLayoutSuccessor))
722 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
724 return;
727 if (FBB) {
728 // The block has a non-fallthrough conditional branch. If one of its
729 // successors is its layout successor, rewrite it to a fallthrough
730 // conditional branch.
731 if (isLayoutSuccessor(TBB)) {
732 if (TII->reverseBranchCondition(Cond))
733 return;
734 TII->removeBranch(*this);
735 TII->insertBranch(*this, FBB, nullptr, Cond, DL);
736 } else if (isLayoutSuccessor(FBB)) {
737 TII->removeBranch(*this);
738 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
740 return;
743 // We now know we're going to fallthrough to PreviousLayoutSuccessor.
744 assert(PreviousLayoutSuccessor);
745 assert(!PreviousLayoutSuccessor->isEHPad());
746 assert(isSuccessor(PreviousLayoutSuccessor));
748 if (PreviousLayoutSuccessor == TBB) {
749 // We had a fallthrough to the same basic block as the conditional jump
750 // targets. Remove the conditional jump, leaving an unconditional
751 // fallthrough or an unconditional jump.
752 TII->removeBranch(*this);
753 if (!isLayoutSuccessor(TBB)) {
754 Cond.clear();
755 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
757 return;
760 // The block has a fallthrough conditional branch.
761 if (isLayoutSuccessor(TBB)) {
762 if (TII->reverseBranchCondition(Cond)) {
763 // We can't reverse the condition, add an unconditional branch.
764 Cond.clear();
765 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
766 return;
768 TII->removeBranch(*this);
769 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
770 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
771 TII->removeBranch(*this);
772 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
776 void MachineBasicBlock::validateSuccProbs() const {
777 #ifndef NDEBUG
778 int64_t Sum = 0;
779 for (auto Prob : Probs)
780 Sum += Prob.getNumerator();
781 // Due to precision issue, we assume that the sum of probabilities is one if
782 // the difference between the sum of their numerators and the denominator is
783 // no greater than the number of successors.
784 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
785 Probs.size() &&
786 "The sum of successors's probabilities exceeds one.");
787 #endif // NDEBUG
790 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
791 BranchProbability Prob) {
792 // Probability list is either empty (if successor list isn't empty, this means
793 // disabled optimization) or has the same size as successor list.
794 if (!(Probs.empty() && !Successors.empty()))
795 Probs.push_back(Prob);
796 Successors.push_back(Succ);
797 Succ->addPredecessor(this);
800 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
801 // We need to make sure probability list is either empty or has the same size
802 // of successor list. When this function is called, we can safely delete all
803 // probability in the list.
804 Probs.clear();
805 Successors.push_back(Succ);
806 Succ->addPredecessor(this);
809 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
810 MachineBasicBlock *New,
811 bool NormalizeSuccProbs) {
812 succ_iterator OldI = llvm::find(successors(), Old);
813 assert(OldI != succ_end() && "Old is not a successor of this block!");
814 assert(!llvm::is_contained(successors(), New) &&
815 "New is already a successor of this block!");
817 // Add a new successor with equal probability as the original one. Note
818 // that we directly copy the probability using the iterator rather than
819 // getting a potentially synthetic probability computed when unknown. This
820 // preserves the probabilities as-is and then we can renormalize them and
821 // query them effectively afterward.
822 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
823 : *getProbabilityIterator(OldI));
824 if (NormalizeSuccProbs)
825 normalizeSuccProbs();
828 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
829 bool NormalizeSuccProbs) {
830 succ_iterator I = find(Successors, Succ);
831 removeSuccessor(I, NormalizeSuccProbs);
834 MachineBasicBlock::succ_iterator
835 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
836 assert(I != Successors.end() && "Not a current successor!");
838 // If probability list is empty it means we don't use it (disabled
839 // optimization).
840 if (!Probs.empty()) {
841 probability_iterator WI = getProbabilityIterator(I);
842 Probs.erase(WI);
843 if (NormalizeSuccProbs)
844 normalizeSuccProbs();
847 (*I)->removePredecessor(this);
848 return Successors.erase(I);
851 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
852 MachineBasicBlock *New) {
853 if (Old == New)
854 return;
856 succ_iterator E = succ_end();
857 succ_iterator NewI = E;
858 succ_iterator OldI = E;
859 for (succ_iterator I = succ_begin(); I != E; ++I) {
860 if (*I == Old) {
861 OldI = I;
862 if (NewI != E)
863 break;
865 if (*I == New) {
866 NewI = I;
867 if (OldI != E)
868 break;
871 assert(OldI != E && "Old is not a successor of this block");
873 // If New isn't already a successor, let it take Old's place.
874 if (NewI == E) {
875 Old->removePredecessor(this);
876 New->addPredecessor(this);
877 *OldI = New;
878 return;
881 // New is already a successor.
882 // Update its probability instead of adding a duplicate edge.
883 if (!Probs.empty()) {
884 auto ProbIter = getProbabilityIterator(NewI);
885 if (!ProbIter->isUnknown())
886 *ProbIter += *getProbabilityIterator(OldI);
888 removeSuccessor(OldI);
891 void MachineBasicBlock::copySuccessor(const MachineBasicBlock *Orig,
892 succ_iterator I) {
893 if (!Orig->Probs.empty())
894 addSuccessor(*I, Orig->getSuccProbability(I));
895 else
896 addSuccessorWithoutProb(*I);
899 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
900 Predecessors.push_back(Pred);
903 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
904 pred_iterator I = find(Predecessors, Pred);
905 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
906 Predecessors.erase(I);
909 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
910 if (this == FromMBB)
911 return;
913 while (!FromMBB->succ_empty()) {
914 MachineBasicBlock *Succ = *FromMBB->succ_begin();
916 // If probability list is empty it means we don't use it (disabled
917 // optimization).
918 if (!FromMBB->Probs.empty()) {
919 auto Prob = *FromMBB->Probs.begin();
920 addSuccessor(Succ, Prob);
921 } else
922 addSuccessorWithoutProb(Succ);
924 FromMBB->removeSuccessor(Succ);
928 void
929 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
930 if (this == FromMBB)
931 return;
933 while (!FromMBB->succ_empty()) {
934 MachineBasicBlock *Succ = *FromMBB->succ_begin();
935 if (!FromMBB->Probs.empty()) {
936 auto Prob = *FromMBB->Probs.begin();
937 addSuccessor(Succ, Prob);
938 } else
939 addSuccessorWithoutProb(Succ);
940 FromMBB->removeSuccessor(Succ);
942 // Fix up any PHI nodes in the successor.
943 Succ->replacePhiUsesWith(FromMBB, this);
945 normalizeSuccProbs();
948 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
949 return is_contained(predecessors(), MBB);
952 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
953 return is_contained(successors(), MBB);
956 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
957 MachineFunction::const_iterator I(this);
958 return std::next(I) == MachineFunction::const_iterator(MBB);
961 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
962 return Successors.size() == 1 ? Successors[0] : nullptr;
965 const MachineBasicBlock *MachineBasicBlock::getSinglePredecessor() const {
966 return Predecessors.size() == 1 ? Predecessors[0] : nullptr;
969 MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) {
970 MachineFunction::iterator Fallthrough = getIterator();
971 ++Fallthrough;
972 // If FallthroughBlock is off the end of the function, it can't fall through.
973 if (Fallthrough == getParent()->end())
974 return nullptr;
976 // If FallthroughBlock isn't a successor, no fallthrough is possible.
977 if (!isSuccessor(&*Fallthrough))
978 return nullptr;
980 // Analyze the branches, if any, at the end of the block.
981 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
982 SmallVector<MachineOperand, 4> Cond;
983 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
984 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
985 // If we couldn't analyze the branch, examine the last instruction.
986 // If the block doesn't end in a known control barrier, assume fallthrough
987 // is possible. The isPredicated check is needed because this code can be
988 // called during IfConversion, where an instruction which is normally a
989 // Barrier is predicated and thus no longer an actual control barrier.
990 return (empty() || !back().isBarrier() || TII->isPredicated(back()))
991 ? &*Fallthrough
992 : nullptr;
995 // If there is no branch, control always falls through.
996 if (!TBB) return &*Fallthrough;
998 // If there is some explicit branch to the fallthrough block, it can obviously
999 // reach, even though the branch should get folded to fall through implicitly.
1000 if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough ||
1001 MachineFunction::iterator(FBB) == Fallthrough))
1002 return &*Fallthrough;
1004 // If it's an unconditional branch to some block not the fall through, it
1005 // doesn't fall through.
1006 if (Cond.empty()) return nullptr;
1008 // Otherwise, if it is conditional and has no explicit false block, it falls
1009 // through.
1010 return (FBB == nullptr) ? &*Fallthrough : nullptr;
1013 bool MachineBasicBlock::canFallThrough() {
1014 return getFallThrough() != nullptr;
1017 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
1018 bool UpdateLiveIns,
1019 LiveIntervals *LIS) {
1020 MachineBasicBlock::iterator SplitPoint(&MI);
1021 ++SplitPoint;
1023 if (SplitPoint == end()) {
1024 // Don't bother with a new block.
1025 return this;
1028 MachineFunction *MF = getParent();
1030 LivePhysRegs LiveRegs;
1031 if (UpdateLiveIns) {
1032 // Make sure we add any physregs we define in the block as liveins to the
1033 // new block.
1034 MachineBasicBlock::iterator Prev(&MI);
1035 LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1036 LiveRegs.addLiveOuts(*this);
1037 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1038 LiveRegs.stepBackward(*I);
1041 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1043 MF->insert(++MachineFunction::iterator(this), SplitBB);
1044 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1046 SplitBB->transferSuccessorsAndUpdatePHIs(this);
1047 addSuccessor(SplitBB);
1049 if (UpdateLiveIns)
1050 addLiveIns(*SplitBB, LiveRegs);
1052 if (LIS)
1053 LIS->insertMBBInMaps(SplitBB);
1055 return SplitBB;
1058 // Returns `true` if there are possibly other users of the jump table at
1059 // `JumpTableIndex` except for the ones in `IgnoreMBB`.
1060 static bool jumpTableHasOtherUses(const MachineFunction &MF,
1061 const MachineBasicBlock &IgnoreMBB,
1062 int JumpTableIndex) {
1063 assert(JumpTableIndex >= 0 && "need valid index");
1064 const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo();
1065 const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex];
1066 // Take any basic block from the table; every user of the jump table must
1067 // show up in the predecessor list.
1068 const MachineBasicBlock *MBB = nullptr;
1069 for (MachineBasicBlock *B : MJTE.MBBs) {
1070 if (B != nullptr) {
1071 MBB = B;
1072 break;
1075 if (MBB == nullptr)
1076 return true; // can't rule out other users if there isn't any block.
1077 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1078 SmallVector<MachineOperand, 4> Cond;
1079 for (MachineBasicBlock *Pred : MBB->predecessors()) {
1080 if (Pred == &IgnoreMBB)
1081 continue;
1082 MachineBasicBlock *DummyT = nullptr;
1083 MachineBasicBlock *DummyF = nullptr;
1084 Cond.clear();
1085 if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond,
1086 /*AllowModify=*/false)) {
1087 // analyzable direct jump
1088 continue;
1090 int PredJTI = findJumpTableIndex(*Pred);
1091 if (PredJTI >= 0) {
1092 if (PredJTI == JumpTableIndex)
1093 return true;
1094 continue;
1096 // Be conservative for unanalyzable jumps.
1097 return true;
1099 return false;
1102 class SlotIndexUpdateDelegate : public MachineFunction::Delegate {
1103 private:
1104 MachineFunction &MF;
1105 SlotIndexes *Indexes;
1106 SmallSetVector<MachineInstr *, 2> Insertions;
1108 public:
1109 SlotIndexUpdateDelegate(MachineFunction &MF, SlotIndexes *Indexes)
1110 : MF(MF), Indexes(Indexes) {
1111 MF.setDelegate(this);
1114 ~SlotIndexUpdateDelegate() {
1115 MF.resetDelegate(this);
1116 for (auto MI : Insertions)
1117 Indexes->insertMachineInstrInMaps(*MI);
1120 void MF_HandleInsertion(MachineInstr &MI) override {
1121 // This is called before MI is inserted into block so defer index update.
1122 if (Indexes)
1123 Insertions.insert(&MI);
1126 void MF_HandleRemoval(MachineInstr &MI) override {
1127 if (Indexes && !Insertions.remove(&MI))
1128 Indexes->removeMachineInstrFromMaps(MI);
1132 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1133 MachineBasicBlock *Succ, Pass &P,
1134 std::vector<SparseBitVector<>> *LiveInSets) {
1135 if (!canSplitCriticalEdge(Succ))
1136 return nullptr;
1138 MachineFunction *MF = getParent();
1139 MachineBasicBlock *PrevFallthrough = getNextNode();
1140 DebugLoc DL; // FIXME: this is nowhere
1142 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1143 NMBB->setCallFrameSize(Succ->getCallFrameSize());
1145 // Is there an indirect jump with jump table?
1146 bool ChangedIndirectJump = false;
1147 int JTI = findJumpTableIndex(*this);
1148 if (JTI >= 0) {
1149 MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo();
1150 MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB);
1151 ChangedIndirectJump = true;
1154 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1155 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1156 << " -- " << printMBBReference(*NMBB) << " -- "
1157 << printMBBReference(*Succ) << '\n');
1159 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1160 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1161 if (LIS)
1162 LIS->insertMBBInMaps(NMBB);
1163 else if (Indexes)
1164 Indexes->insertMBBInMaps(NMBB);
1166 // On some targets like Mips, branches may kill virtual registers. Make sure
1167 // that LiveVariables is properly updated after updateTerminator replaces the
1168 // terminators.
1169 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1171 // Collect a list of virtual registers killed by the terminators.
1172 SmallVector<Register, 4> KilledRegs;
1173 if (LV)
1174 for (MachineInstr &MI :
1175 llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1176 for (MachineOperand &MO : MI.all_uses()) {
1177 if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef())
1178 continue;
1179 Register Reg = MO.getReg();
1180 if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) {
1181 KilledRegs.push_back(Reg);
1182 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1183 MO.setIsKill(false);
1188 SmallVector<Register, 4> UsedRegs;
1189 if (LIS) {
1190 for (MachineInstr &MI :
1191 llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1192 for (const MachineOperand &MO : MI.operands()) {
1193 if (!MO.isReg() || MO.getReg() == 0)
1194 continue;
1196 Register Reg = MO.getReg();
1197 if (!is_contained(UsedRegs, Reg))
1198 UsedRegs.push_back(Reg);
1203 ReplaceUsesOfBlockWith(Succ, NMBB);
1205 // Since we replaced all uses of Succ with NMBB, that should also be treated
1206 // as the fallthrough successor
1207 if (Succ == PrevFallthrough)
1208 PrevFallthrough = NMBB;
1210 if (!ChangedIndirectJump) {
1211 SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes);
1212 updateTerminator(PrevFallthrough);
1215 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1216 NMBB->addSuccessor(Succ);
1217 if (!NMBB->isLayoutSuccessor(Succ)) {
1218 SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes);
1219 SmallVector<MachineOperand, 4> Cond;
1220 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1221 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1224 // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1225 Succ->replacePhiUsesWith(this, NMBB);
1227 // Inherit live-ins from the successor
1228 for (const auto &LI : Succ->liveins())
1229 NMBB->addLiveIn(LI);
1231 // Update LiveVariables.
1232 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1233 if (LV) {
1234 // Restore kills of virtual registers that were killed by the terminators.
1235 while (!KilledRegs.empty()) {
1236 Register Reg = KilledRegs.pop_back_val();
1237 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1238 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1239 continue;
1240 if (Reg.isVirtual())
1241 LV->getVarInfo(Reg).Kills.push_back(&*I);
1242 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1243 break;
1246 // Update relevant live-through information.
1247 if (LiveInSets != nullptr)
1248 LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1249 else
1250 LV->addNewBlock(NMBB, this, Succ);
1253 if (LIS) {
1254 // After splitting the edge and updating SlotIndexes, live intervals may be
1255 // in one of two situations, depending on whether this block was the last in
1256 // the function. If the original block was the last in the function, all
1257 // live intervals will end prior to the beginning of the new split block. If
1258 // the original block was not at the end of the function, all live intervals
1259 // will extend to the end of the new split block.
1261 bool isLastMBB =
1262 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1264 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1265 SlotIndex PrevIndex = StartIndex.getPrevSlot();
1266 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1268 // Find the registers used from NMBB in PHIs in Succ.
1269 SmallSet<Register, 8> PHISrcRegs;
1270 for (MachineBasicBlock::instr_iterator
1271 I = Succ->instr_begin(), E = Succ->instr_end();
1272 I != E && I->isPHI(); ++I) {
1273 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1274 if (I->getOperand(ni+1).getMBB() == NMBB) {
1275 MachineOperand &MO = I->getOperand(ni);
1276 Register Reg = MO.getReg();
1277 PHISrcRegs.insert(Reg);
1278 if (MO.isUndef())
1279 continue;
1281 LiveInterval &LI = LIS->getInterval(Reg);
1282 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1283 assert(VNI &&
1284 "PHI sources should be live out of their predecessors.");
1285 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1286 for (auto &SR : LI.subranges())
1287 SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1292 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1293 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1294 Register Reg = Register::index2VirtReg(i);
1295 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1296 continue;
1298 LiveInterval &LI = LIS->getInterval(Reg);
1299 if (!LI.liveAt(PrevIndex))
1300 continue;
1302 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1303 if (isLiveOut && isLastMBB) {
1304 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1305 assert(VNI && "LiveInterval should have VNInfo where it is live.");
1306 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1307 // Update subranges with live values
1308 for (auto &SR : LI.subranges()) {
1309 VNInfo *VNI = SR.getVNInfoAt(PrevIndex);
1310 if (VNI)
1311 SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1313 } else if (!isLiveOut && !isLastMBB) {
1314 LI.removeSegment(StartIndex, EndIndex);
1315 for (auto &SR : LI.subranges())
1316 SR.removeSegment(StartIndex, EndIndex);
1320 // Update all intervals for registers whose uses may have been modified by
1321 // updateTerminator().
1322 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1325 if (MachineDominatorTree *MDT =
1326 P.getAnalysisIfAvailable<MachineDominatorTree>())
1327 MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1329 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1330 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1331 // If one or the other blocks were not in a loop, the new block is not
1332 // either, and thus LI doesn't need to be updated.
1333 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1334 if (TIL == DestLoop) {
1335 // Both in the same loop, the NMBB joins loop.
1336 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1337 } else if (TIL->contains(DestLoop)) {
1338 // Edge from an outer loop to an inner loop. Add to the outer loop.
1339 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1340 } else if (DestLoop->contains(TIL)) {
1341 // Edge from an inner loop to an outer loop. Add to the outer loop.
1342 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1343 } else {
1344 // Edge from two loops with no containment relation. Because these
1345 // are natural loops, we know that the destination block must be the
1346 // header of its loop (adding a branch into a loop elsewhere would
1347 // create an irreducible loop).
1348 assert(DestLoop->getHeader() == Succ &&
1349 "Should not create irreducible loops!");
1350 if (MachineLoop *P = DestLoop->getParentLoop())
1351 P->addBasicBlockToLoop(NMBB, MLI->getBase());
1356 return NMBB;
1359 bool MachineBasicBlock::canSplitCriticalEdge(
1360 const MachineBasicBlock *Succ) const {
1361 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1362 // it in this generic function.
1363 if (Succ->isEHPad())
1364 return false;
1366 // Splitting the critical edge to a callbr's indirect block isn't advised.
1367 // Don't do it in this generic function.
1368 if (Succ->isInlineAsmBrIndirectTarget())
1369 return false;
1371 const MachineFunction *MF = getParent();
1372 // Performance might be harmed on HW that implements branching using exec mask
1373 // where both sides of the branches are always executed.
1374 if (MF->getTarget().requiresStructuredCFG())
1375 return false;
1377 // Do we have an Indirect jump with a jumptable that we can rewrite?
1378 int JTI = findJumpTableIndex(*this);
1379 if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI))
1380 return true;
1382 // We may need to update this's terminator, but we can't do that if
1383 // analyzeBranch fails.
1384 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1385 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1386 SmallVector<MachineOperand, 4> Cond;
1387 // AnalyzeBanch should modify this, since we did not allow modification.
1388 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1389 /*AllowModify*/ false))
1390 return false;
1392 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1393 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1394 // case that we can't handle. Since this never happens in properly optimized
1395 // code, just skip those edges.
1396 if (TBB && TBB == FBB) {
1397 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1398 << printMBBReference(*this) << '\n');
1399 return false;
1401 return true;
1404 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1405 /// neighboring instructions so the bundle won't be broken by removing MI.
1406 static void unbundleSingleMI(MachineInstr *MI) {
1407 // Removing the first instruction in a bundle.
1408 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1409 MI->unbundleFromSucc();
1410 // Removing the last instruction in a bundle.
1411 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1412 MI->unbundleFromPred();
1413 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1414 // are already fine.
1417 MachineBasicBlock::instr_iterator
1418 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1419 unbundleSingleMI(&*I);
1420 return Insts.erase(I);
1423 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1424 unbundleSingleMI(MI);
1425 MI->clearFlag(MachineInstr::BundledPred);
1426 MI->clearFlag(MachineInstr::BundledSucc);
1427 return Insts.remove(MI);
1430 MachineBasicBlock::instr_iterator
1431 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1432 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1433 "Cannot insert instruction with bundle flags");
1434 // Set the bundle flags when inserting inside a bundle.
1435 if (I != instr_end() && I->isBundledWithPred()) {
1436 MI->setFlag(MachineInstr::BundledPred);
1437 MI->setFlag(MachineInstr::BundledSucc);
1439 return Insts.insert(I, MI);
1442 /// This method unlinks 'this' from the containing function, and returns it, but
1443 /// does not delete it.
1444 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1445 assert(getParent() && "Not embedded in a function!");
1446 getParent()->remove(this);
1447 return this;
1450 /// This method unlinks 'this' from the containing function, and deletes it.
1451 void MachineBasicBlock::eraseFromParent() {
1452 assert(getParent() && "Not embedded in a function!");
1453 getParent()->erase(this);
1456 /// Given a machine basic block that branched to 'Old', change the code and CFG
1457 /// so that it branches to 'New' instead.
1458 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1459 MachineBasicBlock *New) {
1460 assert(Old != New && "Cannot replace self with self!");
1462 MachineBasicBlock::instr_iterator I = instr_end();
1463 while (I != instr_begin()) {
1464 --I;
1465 if (!I->isTerminator()) break;
1467 // Scan the operands of this machine instruction, replacing any uses of Old
1468 // with New.
1469 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1470 if (I->getOperand(i).isMBB() &&
1471 I->getOperand(i).getMBB() == Old)
1472 I->getOperand(i).setMBB(New);
1475 // Update the successor information.
1476 replaceSuccessor(Old, New);
1479 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1480 MachineBasicBlock *New) {
1481 for (MachineInstr &MI : phis())
1482 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1483 MachineOperand &MO = MI.getOperand(i);
1484 if (MO.getMBB() == Old)
1485 MO.setMBB(New);
1489 /// Find the next valid DebugLoc starting at MBBI, skipping any debug
1490 /// instructions. Return UnknownLoc if there is none.
1491 DebugLoc
1492 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1493 // Skip debug declarations, we don't want a DebugLoc from them.
1494 MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1495 if (MBBI != instr_end())
1496 return MBBI->getDebugLoc();
1497 return {};
1500 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1501 if (MBBI == instr_rend())
1502 return findDebugLoc(instr_begin());
1503 // Skip debug declarations, we don't want a DebugLoc from them.
1504 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1505 if (!MBBI->isDebugInstr())
1506 return MBBI->getDebugLoc();
1507 return {};
1510 /// Find the previous valid DebugLoc preceding MBBI, skipping any debug
1511 /// instructions. Return UnknownLoc if there is none.
1512 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1513 if (MBBI == instr_begin())
1514 return {};
1515 // Skip debug instructions, we don't want a DebugLoc from them.
1516 MBBI = prev_nodbg(MBBI, instr_begin());
1517 if (!MBBI->isDebugInstr())
1518 return MBBI->getDebugLoc();
1519 return {};
1522 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1523 if (MBBI == instr_rend())
1524 return {};
1525 // Skip debug declarations, we don't want a DebugLoc from them.
1526 MBBI = next_nodbg(MBBI, instr_rend());
1527 if (MBBI != instr_rend())
1528 return MBBI->getDebugLoc();
1529 return {};
1532 /// Find and return the merged DebugLoc of the branch instructions of the block.
1533 /// Return UnknownLoc if there is none.
1534 DebugLoc
1535 MachineBasicBlock::findBranchDebugLoc() {
1536 DebugLoc DL;
1537 auto TI = getFirstTerminator();
1538 while (TI != end() && !TI->isBranch())
1539 ++TI;
1541 if (TI != end()) {
1542 DL = TI->getDebugLoc();
1543 for (++TI ; TI != end() ; ++TI)
1544 if (TI->isBranch())
1545 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1547 return DL;
1550 /// Return probability of the edge from this block to MBB.
1551 BranchProbability
1552 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1553 if (Probs.empty())
1554 return BranchProbability(1, succ_size());
1556 const auto &Prob = *getProbabilityIterator(Succ);
1557 if (Prob.isUnknown()) {
1558 // For unknown probabilities, collect the sum of all known ones, and evenly
1559 // ditribute the complemental of the sum to each unknown probability.
1560 unsigned KnownProbNum = 0;
1561 auto Sum = BranchProbability::getZero();
1562 for (const auto &P : Probs) {
1563 if (!P.isUnknown()) {
1564 Sum += P;
1565 KnownProbNum++;
1568 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1569 } else
1570 return Prob;
1573 /// Set successor probability of a given iterator.
1574 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1575 BranchProbability Prob) {
1576 assert(!Prob.isUnknown());
1577 if (Probs.empty())
1578 return;
1579 *getProbabilityIterator(I) = Prob;
1582 /// Return probability iterator corresonding to the I successor iterator
1583 MachineBasicBlock::const_probability_iterator
1584 MachineBasicBlock::getProbabilityIterator(
1585 MachineBasicBlock::const_succ_iterator I) const {
1586 assert(Probs.size() == Successors.size() && "Async probability list!");
1587 const size_t index = std::distance(Successors.begin(), I);
1588 assert(index < Probs.size() && "Not a current successor!");
1589 return Probs.begin() + index;
1592 /// Return probability iterator corresonding to the I successor iterator.
1593 MachineBasicBlock::probability_iterator
1594 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1595 assert(Probs.size() == Successors.size() && "Async probability list!");
1596 const size_t index = std::distance(Successors.begin(), I);
1597 assert(index < Probs.size() && "Not a current successor!");
1598 return Probs.begin() + index;
1601 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1602 /// as of just before "MI".
1604 /// Search is localised to a neighborhood of
1605 /// Neighborhood instructions before (searching for defs or kills) and N
1606 /// instructions after (searching just for defs) MI.
1607 MachineBasicBlock::LivenessQueryResult
1608 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1609 MCRegister Reg, const_iterator Before,
1610 unsigned Neighborhood) const {
1611 unsigned N = Neighborhood;
1613 // Try searching forwards from Before, looking for reads or defs.
1614 const_iterator I(Before);
1615 for (; I != end() && N > 0; ++I) {
1616 if (I->isDebugOrPseudoInstr())
1617 continue;
1619 --N;
1621 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1623 // Register is live when we read it here.
1624 if (Info.Read)
1625 return LQR_Live;
1626 // Register is dead if we can fully overwrite or clobber it here.
1627 if (Info.FullyDefined || Info.Clobbered)
1628 return LQR_Dead;
1631 // If we reached the end, it is safe to clobber Reg at the end of a block of
1632 // no successor has it live in.
1633 if (I == end()) {
1634 for (MachineBasicBlock *S : successors()) {
1635 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1636 if (TRI->regsOverlap(LI.PhysReg, Reg))
1637 return LQR_Live;
1641 return LQR_Dead;
1645 N = Neighborhood;
1647 // Start by searching backwards from Before, looking for kills, reads or defs.
1648 I = const_iterator(Before);
1649 // If this is the first insn in the block, don't search backwards.
1650 if (I != begin()) {
1651 do {
1652 --I;
1654 if (I->isDebugOrPseudoInstr())
1655 continue;
1657 --N;
1659 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1661 // Defs happen after uses so they take precedence if both are present.
1663 // Register is dead after a dead def of the full register.
1664 if (Info.DeadDef)
1665 return LQR_Dead;
1666 // Register is (at least partially) live after a def.
1667 if (Info.Defined) {
1668 if (!Info.PartialDeadDef)
1669 return LQR_Live;
1670 // As soon as we saw a partial definition (dead or not),
1671 // we cannot tell if the value is partial live without
1672 // tracking the lanemasks. We are not going to do this,
1673 // so fall back on the remaining of the analysis.
1674 break;
1676 // Register is dead after a full kill or clobber and no def.
1677 if (Info.Killed || Info.Clobbered)
1678 return LQR_Dead;
1679 // Register must be live if we read it.
1680 if (Info.Read)
1681 return LQR_Live;
1683 } while (I != begin() && N > 0);
1686 // If all the instructions before this in the block are debug instructions,
1687 // skip over them.
1688 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1689 --I;
1691 // Did we get to the start of the block?
1692 if (I == begin()) {
1693 // If so, the register's state is definitely defined by the live-in state.
1694 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1695 if (TRI->regsOverlap(LI.PhysReg, Reg))
1696 return LQR_Live;
1698 return LQR_Dead;
1701 // At this point we have no idea of the liveness of the register.
1702 return LQR_Unknown;
1705 const uint32_t *
1706 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1707 // EH funclet entry does not preserve any registers.
1708 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1711 const uint32_t *
1712 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1713 // If we see a return block with successors, this must be a funclet return,
1714 // which does not preserve any registers. If there are no successors, we don't
1715 // care what kind of return it is, putting a mask after it is a no-op.
1716 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1719 void MachineBasicBlock::clearLiveIns() {
1720 LiveIns.clear();
1723 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1724 assert(getParent()->getProperties().hasProperty(
1725 MachineFunctionProperties::Property::TracksLiveness) &&
1726 "Liveness information is accurate");
1727 return LiveIns.begin();
1730 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1731 const MachineFunction &MF = *getParent();
1732 assert(MF.getProperties().hasProperty(
1733 MachineFunctionProperties::Property::TracksLiveness) &&
1734 "Liveness information is accurate");
1736 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1737 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1738 if (MF.getFunction().hasPersonalityFn()) {
1739 auto PersonalityFn = MF.getFunction().getPersonalityFn();
1740 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1741 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1744 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1747 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1748 unsigned Cntr = 0;
1749 auto R = instructionsWithoutDebug(begin(), end());
1750 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1751 if (++Cntr > Limit)
1752 return true;
1754 return false;
1757 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1758 const MBBSectionID
1759 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);