1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
25 //===----------------------------------------------------------------------===//
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MBFIWrapper.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
40 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/PrintPasses.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Allocator.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/BranchProbability.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Transforms/Utils/CodeLayout.h"
78 #define DEBUG_TYPE "block-placement"
80 STATISTIC(NumCondBranches
, "Number of conditional branches");
81 STATISTIC(NumUncondBranches
, "Number of unconditional branches");
82 STATISTIC(CondBranchTakenFreq
,
83 "Potential frequency of taking conditional branches");
84 STATISTIC(UncondBranchTakenFreq
,
85 "Potential frequency of taking unconditional branches");
87 static cl::opt
<unsigned> AlignAllBlock(
89 cl::desc("Force the alignment of all blocks in the function in log2 format "
90 "(e.g 4 means align on 16B boundaries)."),
91 cl::init(0), cl::Hidden
);
93 static cl::opt
<unsigned> AlignAllNonFallThruBlocks(
94 "align-all-nofallthru-blocks",
95 cl::desc("Force the alignment of all blocks that have no fall-through "
96 "predecessors (i.e. don't add nops that are executed). In log2 "
97 "format (e.g 4 means align on 16B boundaries)."),
98 cl::init(0), cl::Hidden
);
100 static cl::opt
<unsigned> MaxBytesForAlignmentOverride(
101 "max-bytes-for-alignment",
102 cl::desc("Forces the maximum bytes allowed to be emitted when padding for "
104 cl::init(0), cl::Hidden
);
106 // FIXME: Find a good default for this flag and remove the flag.
107 static cl::opt
<unsigned> ExitBlockBias(
108 "block-placement-exit-block-bias",
109 cl::desc("Block frequency percentage a loop exit block needs "
110 "over the original exit to be considered the new exit."),
111 cl::init(0), cl::Hidden
);
114 // - Outlining: placement of a basic block outside the chain or hot path.
116 static cl::opt
<unsigned> LoopToColdBlockRatio(
117 "loop-to-cold-block-ratio",
118 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
119 "(frequency of block) is greater than this ratio"),
120 cl::init(5), cl::Hidden
);
122 static cl::opt
<bool> ForceLoopColdBlock(
123 "force-loop-cold-block",
124 cl::desc("Force outlining cold blocks from loops."),
125 cl::init(false), cl::Hidden
);
128 PreciseRotationCost("precise-rotation-cost",
129 cl::desc("Model the cost of loop rotation more "
130 "precisely by using profile data."),
131 cl::init(false), cl::Hidden
);
134 ForcePreciseRotationCost("force-precise-rotation-cost",
135 cl::desc("Force the use of precise cost "
136 "loop rotation strategy."),
137 cl::init(false), cl::Hidden
);
139 static cl::opt
<unsigned> MisfetchCost(
141 cl::desc("Cost that models the probabilistic risk of an instruction "
142 "misfetch due to a jump comparing to falling through, whose cost "
144 cl::init(1), cl::Hidden
);
146 static cl::opt
<unsigned> JumpInstCost("jump-inst-cost",
147 cl::desc("Cost of jump instructions."),
148 cl::init(1), cl::Hidden
);
150 TailDupPlacement("tail-dup-placement",
151 cl::desc("Perform tail duplication during placement. "
152 "Creates more fallthrough opportunites in "
153 "outline branches."),
154 cl::init(true), cl::Hidden
);
157 BranchFoldPlacement("branch-fold-placement",
158 cl::desc("Perform branch folding during placement. "
159 "Reduces code size."),
160 cl::init(true), cl::Hidden
);
162 // Heuristic for tail duplication.
163 static cl::opt
<unsigned> TailDupPlacementThreshold(
164 "tail-dup-placement-threshold",
165 cl::desc("Instruction cutoff for tail duplication during layout. "
166 "Tail merging during layout is forced to have a threshold "
167 "that won't conflict."), cl::init(2),
170 // Heuristic for aggressive tail duplication.
171 static cl::opt
<unsigned> TailDupPlacementAggressiveThreshold(
172 "tail-dup-placement-aggressive-threshold",
173 cl::desc("Instruction cutoff for aggressive tail duplication during "
174 "layout. Used at -O3. Tail merging during layout is forced to "
175 "have a threshold that won't conflict."), cl::init(4),
178 // Heuristic for tail duplication.
179 static cl::opt
<unsigned> TailDupPlacementPenalty(
180 "tail-dup-placement-penalty",
181 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
182 "Copying can increase fallthrough, but it also increases icache "
183 "pressure. This parameter controls the penalty to account for that. "
184 "Percent as integer."),
188 // Heuristic for tail duplication if profile count is used in cost model.
189 static cl::opt
<unsigned> TailDupProfilePercentThreshold(
190 "tail-dup-profile-percent-threshold",
191 cl::desc("If profile count information is used in tail duplication cost "
192 "model, the gained fall through number from tail duplication "
193 "should be at least this percent of hot count."),
194 cl::init(50), cl::Hidden
);
196 // Heuristic for triangle chains.
197 static cl::opt
<unsigned> TriangleChainCount(
198 "triangle-chain-count",
199 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
200 "triangle tail duplication heuristic to kick in. 0 to disable."),
204 // Use case: When block layout is visualized after MBP pass, the basic blocks
205 // are labeled in layout order; meanwhile blocks could be numbered in a
206 // different order. It's hard to map between the graph and pass output.
207 // With this option on, the basic blocks are renumbered in function layout
208 // order. For debugging only.
209 static cl::opt
<bool> RenumberBlocksBeforeView(
210 "renumber-blocks-before-view",
212 "If true, basic blocks are re-numbered before MBP layout is printed "
213 "into a dot graph. Only used when a function is being printed."),
214 cl::init(false), cl::Hidden
);
217 extern cl::opt
<bool> EnableExtTspBlockPlacement
;
218 extern cl::opt
<bool> ApplyExtTspWithoutProfile
;
219 extern cl::opt
<unsigned> StaticLikelyProb
;
220 extern cl::opt
<unsigned> ProfileLikelyProb
;
222 // Internal option used to control BFI display only after MBP pass.
223 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
224 // -view-block-layout-with-bfi=
225 extern cl::opt
<GVDAGType
> ViewBlockLayoutWithBFI
;
227 // Command line option to specify the name of the function for CFG dump
228 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
229 extern cl::opt
<std::string
> ViewBlockFreqFuncName
;
236 /// Type for our function-wide basic block -> block chain mapping.
237 using BlockToChainMapType
= DenseMap
<const MachineBasicBlock
*, BlockChain
*>;
239 /// A chain of blocks which will be laid out contiguously.
241 /// This is the datastructure representing a chain of consecutive blocks that
242 /// are profitable to layout together in order to maximize fallthrough
243 /// probabilities and code locality. We also can use a block chain to represent
244 /// a sequence of basic blocks which have some external (correctness)
245 /// requirement for sequential layout.
247 /// Chains can be built around a single basic block and can be merged to grow
248 /// them. They participate in a block-to-chain mapping, which is updated
249 /// automatically as chains are merged together.
251 /// The sequence of blocks belonging to this chain.
253 /// This is the sequence of blocks for a particular chain. These will be laid
254 /// out in-order within the function.
255 SmallVector
<MachineBasicBlock
*, 4> Blocks
;
257 /// A handle to the function-wide basic block to block chain mapping.
259 /// This is retained in each block chain to simplify the computation of child
260 /// block chains for SCC-formation and iteration. We store the edges to child
261 /// basic blocks, and map them back to their associated chains using this
263 BlockToChainMapType
&BlockToChain
;
266 /// Construct a new BlockChain.
268 /// This builds a new block chain representing a single basic block in the
269 /// function. It also registers itself as the chain that block participates
270 /// in with the BlockToChain mapping.
271 BlockChain(BlockToChainMapType
&BlockToChain
, MachineBasicBlock
*BB
)
272 : Blocks(1, BB
), BlockToChain(BlockToChain
) {
273 assert(BB
&& "Cannot create a chain with a null basic block");
274 BlockToChain
[BB
] = this;
277 /// Iterator over blocks within the chain.
278 using iterator
= SmallVectorImpl
<MachineBasicBlock
*>::iterator
;
279 using const_iterator
= SmallVectorImpl
<MachineBasicBlock
*>::const_iterator
;
281 /// Beginning of blocks within the chain.
282 iterator
begin() { return Blocks
.begin(); }
283 const_iterator
begin() const { return Blocks
.begin(); }
285 /// End of blocks within the chain.
286 iterator
end() { return Blocks
.end(); }
287 const_iterator
end() const { return Blocks
.end(); }
289 bool remove(MachineBasicBlock
* BB
) {
290 for(iterator i
= begin(); i
!= end(); ++i
) {
299 /// Merge a block chain into this one.
301 /// This routine merges a block chain into this one. It takes care of forming
302 /// a contiguous sequence of basic blocks, updating the edge list, and
303 /// updating the block -> chain mapping. It does not free or tear down the
304 /// old chain, but the old chain's block list is no longer valid.
305 void merge(MachineBasicBlock
*BB
, BlockChain
*Chain
) {
306 assert(BB
&& "Can't merge a null block.");
307 assert(!Blocks
.empty() && "Can't merge into an empty chain.");
309 // Fast path in case we don't have a chain already.
311 assert(!BlockToChain
[BB
] &&
312 "Passed chain is null, but BB has entry in BlockToChain.");
313 Blocks
.push_back(BB
);
314 BlockToChain
[BB
] = this;
318 assert(BB
== *Chain
->begin() && "Passed BB is not head of Chain.");
319 assert(Chain
->begin() != Chain
->end());
321 // Update the incoming blocks to point to this chain, and add them to the
323 for (MachineBasicBlock
*ChainBB
: *Chain
) {
324 Blocks
.push_back(ChainBB
);
325 assert(BlockToChain
[ChainBB
] == Chain
&& "Incoming blocks not in chain.");
326 BlockToChain
[ChainBB
] = this;
331 /// Dump the blocks in this chain.
332 LLVM_DUMP_METHOD
void dump() {
333 for (MachineBasicBlock
*MBB
: *this)
338 /// Count of predecessors of any block within the chain which have not
339 /// yet been scheduled. In general, we will delay scheduling this chain
340 /// until those predecessors are scheduled (or we find a sufficiently good
341 /// reason to override this heuristic.) Note that when forming loop chains,
342 /// blocks outside the loop are ignored and treated as if they were already
345 /// Note: This field is reinitialized multiple times - once for each loop,
346 /// and then once for the function as a whole.
347 unsigned UnscheduledPredecessors
= 0;
350 class MachineBlockPlacement
: public MachineFunctionPass
{
351 /// A type for a block filter set.
352 using BlockFilterSet
= SmallSetVector
<const MachineBasicBlock
*, 16>;
354 /// Pair struct containing basic block and taildup profitability
355 struct BlockAndTailDupResult
{
356 MachineBasicBlock
*BB
= nullptr;
360 /// Triple struct containing edge weight and the edge.
361 struct WeightedEdge
{
362 BlockFrequency Weight
;
363 MachineBasicBlock
*Src
= nullptr;
364 MachineBasicBlock
*Dest
= nullptr;
367 /// work lists of blocks that are ready to be laid out
368 SmallVector
<MachineBasicBlock
*, 16> BlockWorkList
;
369 SmallVector
<MachineBasicBlock
*, 16> EHPadWorkList
;
371 /// Edges that have already been computed as optimal.
372 DenseMap
<const MachineBasicBlock
*, BlockAndTailDupResult
> ComputedEdges
;
375 MachineFunction
*F
= nullptr;
377 /// A handle to the branch probability pass.
378 const MachineBranchProbabilityInfo
*MBPI
= nullptr;
380 /// A handle to the function-wide block frequency pass.
381 std::unique_ptr
<MBFIWrapper
> MBFI
;
383 /// A handle to the loop info.
384 MachineLoopInfo
*MLI
= nullptr;
386 /// Preferred loop exit.
387 /// Member variable for convenience. It may be removed by duplication deep
388 /// in the call stack.
389 MachineBasicBlock
*PreferredLoopExit
= nullptr;
391 /// A handle to the target's instruction info.
392 const TargetInstrInfo
*TII
= nullptr;
394 /// A handle to the target's lowering info.
395 const TargetLoweringBase
*TLI
= nullptr;
397 /// A handle to the post dominator tree.
398 MachinePostDominatorTree
*MPDT
= nullptr;
400 ProfileSummaryInfo
*PSI
= nullptr;
402 /// Duplicator used to duplicate tails during placement.
404 /// Placement decisions can open up new tail duplication opportunities, but
405 /// since tail duplication affects placement decisions of later blocks, it
406 /// must be done inline.
407 TailDuplicator TailDup
;
409 /// Partial tail duplication threshold.
410 BlockFrequency DupThreshold
;
412 /// True: use block profile count to compute tail duplication cost.
413 /// False: use block frequency to compute tail duplication cost.
414 bool UseProfileCount
= false;
416 /// Allocator and owner of BlockChain structures.
418 /// We build BlockChains lazily while processing the loop structure of
419 /// a function. To reduce malloc traffic, we allocate them using this
420 /// slab-like allocator, and destroy them after the pass completes. An
421 /// important guarantee is that this allocator produces stable pointers to
423 SpecificBumpPtrAllocator
<BlockChain
> ChainAllocator
;
425 /// Function wide BasicBlock to BlockChain mapping.
427 /// This mapping allows efficiently moving from any given basic block to the
428 /// BlockChain it participates in, if any. We use it to, among other things,
429 /// allow implicitly defining edges between chains as the existing edges
430 /// between basic blocks.
431 DenseMap
<const MachineBasicBlock
*, BlockChain
*> BlockToChain
;
434 /// The set of basic blocks that have terminators that cannot be fully
435 /// analyzed. These basic blocks cannot be re-ordered safely by
436 /// MachineBlockPlacement, and we must preserve physical layout of these
437 /// blocks and their successors through the pass.
438 SmallPtrSet
<MachineBasicBlock
*, 4> BlocksWithUnanalyzableExits
;
441 /// Get block profile count or frequency according to UseProfileCount.
442 /// The return value is used to model tail duplication cost.
443 BlockFrequency
getBlockCountOrFrequency(const MachineBasicBlock
*BB
) {
444 if (UseProfileCount
) {
445 auto Count
= MBFI
->getBlockProfileCount(BB
);
447 return BlockFrequency(*Count
);
449 return BlockFrequency(0);
451 return MBFI
->getBlockFreq(BB
);
454 /// Scale the DupThreshold according to basic block size.
455 BlockFrequency
scaleThreshold(MachineBasicBlock
*BB
);
456 void initDupThreshold();
458 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
459 /// if the count goes to 0, add them to the appropriate work list.
460 void markChainSuccessors(
461 const BlockChain
&Chain
, const MachineBasicBlock
*LoopHeaderBB
,
462 const BlockFilterSet
*BlockFilter
= nullptr);
464 /// Decrease the UnscheduledPredecessors count for a single block, and
465 /// if the count goes to 0, add them to the appropriate work list.
466 void markBlockSuccessors(
467 const BlockChain
&Chain
, const MachineBasicBlock
*BB
,
468 const MachineBasicBlock
*LoopHeaderBB
,
469 const BlockFilterSet
*BlockFilter
= nullptr);
472 collectViableSuccessors(
473 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
474 const BlockFilterSet
*BlockFilter
,
475 SmallVector
<MachineBasicBlock
*, 4> &Successors
);
476 bool isBestSuccessor(MachineBasicBlock
*BB
, MachineBasicBlock
*Pred
,
477 BlockFilterSet
*BlockFilter
);
478 void findDuplicateCandidates(SmallVectorImpl
<MachineBasicBlock
*> &Candidates
,
479 MachineBasicBlock
*BB
,
480 BlockFilterSet
*BlockFilter
);
481 bool repeatedlyTailDuplicateBlock(
482 MachineBasicBlock
*BB
, MachineBasicBlock
*&LPred
,
483 const MachineBasicBlock
*LoopHeaderBB
,
484 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
485 MachineFunction::iterator
&PrevUnplacedBlockIt
);
486 bool maybeTailDuplicateBlock(
487 MachineBasicBlock
*BB
, MachineBasicBlock
*LPred
,
488 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
489 MachineFunction::iterator
&PrevUnplacedBlockIt
,
490 bool &DuplicatedToLPred
);
491 bool hasBetterLayoutPredecessor(
492 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
493 const BlockChain
&SuccChain
, BranchProbability SuccProb
,
494 BranchProbability RealSuccProb
, const BlockChain
&Chain
,
495 const BlockFilterSet
*BlockFilter
);
496 BlockAndTailDupResult
selectBestSuccessor(
497 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
498 const BlockFilterSet
*BlockFilter
);
499 MachineBasicBlock
*selectBestCandidateBlock(
500 const BlockChain
&Chain
, SmallVectorImpl
<MachineBasicBlock
*> &WorkList
);
501 MachineBasicBlock
*getFirstUnplacedBlock(
502 const BlockChain
&PlacedChain
,
503 MachineFunction::iterator
&PrevUnplacedBlockIt
,
504 const BlockFilterSet
*BlockFilter
);
506 /// Add a basic block to the work list if it is appropriate.
508 /// If the optional parameter BlockFilter is provided, only MBB
509 /// present in the set will be added to the worklist. If nullptr
510 /// is provided, no filtering occurs.
511 void fillWorkLists(const MachineBasicBlock
*MBB
,
512 SmallPtrSetImpl
<BlockChain
*> &UpdatedPreds
,
513 const BlockFilterSet
*BlockFilter
);
515 void buildChain(const MachineBasicBlock
*BB
, BlockChain
&Chain
,
516 BlockFilterSet
*BlockFilter
= nullptr);
517 bool canMoveBottomBlockToTop(const MachineBasicBlock
*BottomBlock
,
518 const MachineBasicBlock
*OldTop
);
519 bool hasViableTopFallthrough(const MachineBasicBlock
*Top
,
520 const BlockFilterSet
&LoopBlockSet
);
521 BlockFrequency
TopFallThroughFreq(const MachineBasicBlock
*Top
,
522 const BlockFilterSet
&LoopBlockSet
);
523 BlockFrequency
FallThroughGains(const MachineBasicBlock
*NewTop
,
524 const MachineBasicBlock
*OldTop
,
525 const MachineBasicBlock
*ExitBB
,
526 const BlockFilterSet
&LoopBlockSet
);
527 MachineBasicBlock
*findBestLoopTopHelper(MachineBasicBlock
*OldTop
,
528 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
);
529 MachineBasicBlock
*findBestLoopTop(
530 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
);
531 MachineBasicBlock
*findBestLoopExit(
532 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
,
533 BlockFrequency
&ExitFreq
);
534 BlockFilterSet
collectLoopBlockSet(const MachineLoop
&L
);
535 void buildLoopChains(const MachineLoop
&L
);
537 BlockChain
&LoopChain
, const MachineBasicBlock
*ExitingBB
,
538 BlockFrequency ExitFreq
, const BlockFilterSet
&LoopBlockSet
);
539 void rotateLoopWithProfile(
540 BlockChain
&LoopChain
, const MachineLoop
&L
,
541 const BlockFilterSet
&LoopBlockSet
);
542 void buildCFGChains();
543 void optimizeBranches();
545 /// Returns true if a block should be tail-duplicated to increase fallthrough
547 bool shouldTailDuplicate(MachineBasicBlock
*BB
);
548 /// Check the edge frequencies to see if tail duplication will increase
550 bool isProfitableToTailDup(
551 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
552 BranchProbability QProb
,
553 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
555 /// Check for a trellis layout.
556 bool isTrellis(const MachineBasicBlock
*BB
,
557 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
558 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
560 /// Get the best successor given a trellis layout.
561 BlockAndTailDupResult
getBestTrellisSuccessor(
562 const MachineBasicBlock
*BB
,
563 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
564 BranchProbability AdjustedSumProb
, const BlockChain
&Chain
,
565 const BlockFilterSet
*BlockFilter
);
567 /// Get the best pair of non-conflicting edges.
568 static std::pair
<WeightedEdge
, WeightedEdge
> getBestNonConflictingEdges(
569 const MachineBasicBlock
*BB
,
570 MutableArrayRef
<SmallVector
<WeightedEdge
, 8>> Edges
);
572 /// Returns true if a block can tail duplicate into all unplaced
573 /// predecessors. Filters based on loop.
574 bool canTailDuplicateUnplacedPreds(
575 const MachineBasicBlock
*BB
, MachineBasicBlock
*Succ
,
576 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
578 /// Find chains of triangles to tail-duplicate where a global analysis works,
579 /// but a local analysis would not find them.
580 void precomputeTriangleChains();
582 /// Apply a post-processing step optimizing block placement.
585 /// Modify the existing block placement in the function and adjust all jumps.
586 void assignBlockOrder(const std::vector
<const MachineBasicBlock
*> &NewOrder
);
588 /// Create a single CFG chain from the current block order.
589 void createCFGChainExtTsp();
592 static char ID
; // Pass identification, replacement for typeid
594 MachineBlockPlacement() : MachineFunctionPass(ID
) {
595 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
598 bool runOnMachineFunction(MachineFunction
&F
) override
;
600 bool allowTailDupPlacement() const {
602 return TailDupPlacement
&& !F
->getTarget().requiresStructuredCFG();
605 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
606 AU
.addRequired
<MachineBranchProbabilityInfo
>();
607 AU
.addRequired
<MachineBlockFrequencyInfo
>();
608 if (TailDupPlacement
)
609 AU
.addRequired
<MachinePostDominatorTree
>();
610 AU
.addRequired
<MachineLoopInfo
>();
611 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
612 AU
.addRequired
<TargetPassConfig
>();
613 MachineFunctionPass::getAnalysisUsage(AU
);
617 } // end anonymous namespace
619 char MachineBlockPlacement::ID
= 0;
621 char &llvm::MachineBlockPlacementID
= MachineBlockPlacement::ID
;
623 INITIALIZE_PASS_BEGIN(MachineBlockPlacement
, DEBUG_TYPE
,
624 "Branch Probability Basic Block Placement", false, false)
625 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
626 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
627 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree
)
628 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
629 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
630 INITIALIZE_PASS_END(MachineBlockPlacement
, DEBUG_TYPE
,
631 "Branch Probability Basic Block Placement", false, false)
634 /// Helper to print the name of a MBB.
636 /// Only used by debug logging.
637 static std::string
getBlockName(const MachineBasicBlock
*BB
) {
639 raw_string_ostream
OS(Result
);
640 OS
<< printMBBReference(*BB
);
641 OS
<< " ('" << BB
->getName() << "')";
647 /// Mark a chain's successors as having one fewer preds.
649 /// When a chain is being merged into the "placed" chain, this routine will
650 /// quickly walk the successors of each block in the chain and mark them as
651 /// having one fewer active predecessor. It also adds any successors of this
652 /// chain which reach the zero-predecessor state to the appropriate worklist.
653 void MachineBlockPlacement::markChainSuccessors(
654 const BlockChain
&Chain
, const MachineBasicBlock
*LoopHeaderBB
,
655 const BlockFilterSet
*BlockFilter
) {
656 // Walk all the blocks in this chain, marking their successors as having
657 // a predecessor placed.
658 for (MachineBasicBlock
*MBB
: Chain
) {
659 markBlockSuccessors(Chain
, MBB
, LoopHeaderBB
, BlockFilter
);
663 /// Mark a single block's successors as having one fewer preds.
665 /// Under normal circumstances, this is only called by markChainSuccessors,
666 /// but if a block that was to be placed is completely tail-duplicated away,
667 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
668 /// for just that block.
669 void MachineBlockPlacement::markBlockSuccessors(
670 const BlockChain
&Chain
, const MachineBasicBlock
*MBB
,
671 const MachineBasicBlock
*LoopHeaderBB
, const BlockFilterSet
*BlockFilter
) {
672 // Add any successors for which this is the only un-placed in-loop
673 // predecessor to the worklist as a viable candidate for CFG-neutral
674 // placement. No subsequent placement of this block will violate the CFG
675 // shape, so we get to use heuristics to choose a favorable placement.
676 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
677 if (BlockFilter
&& !BlockFilter
->count(Succ
))
679 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
680 // Disregard edges within a fixed chain, or edges to the loop header.
681 if (&Chain
== &SuccChain
|| Succ
== LoopHeaderBB
)
684 // This is a cross-chain edge that is within the loop, so decrement the
685 // loop predecessor count of the destination chain.
686 if (SuccChain
.UnscheduledPredecessors
== 0 ||
687 --SuccChain
.UnscheduledPredecessors
> 0)
690 auto *NewBB
= *SuccChain
.begin();
691 if (NewBB
->isEHPad())
692 EHPadWorkList
.push_back(NewBB
);
694 BlockWorkList
.push_back(NewBB
);
698 /// This helper function collects the set of successors of block
699 /// \p BB that are allowed to be its layout successors, and return
700 /// the total branch probability of edges from \p BB to those
702 BranchProbability
MachineBlockPlacement::collectViableSuccessors(
703 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
704 const BlockFilterSet
*BlockFilter
,
705 SmallVector
<MachineBasicBlock
*, 4> &Successors
) {
706 // Adjust edge probabilities by excluding edges pointing to blocks that is
707 // either not in BlockFilter or is already in the current chain. Consider the
716 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
717 // A->C is chosen as a fall-through, D won't be selected as a successor of C
718 // due to CFG constraint (the probability of C->D is not greater than
719 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
720 // when calculating the probability of C->D, D will be selected and we
721 // will get A C D B as the layout of this loop.
722 auto AdjustedSumProb
= BranchProbability::getOne();
723 for (MachineBasicBlock
*Succ
: BB
->successors()) {
724 bool SkipSucc
= false;
725 if (Succ
->isEHPad() || (BlockFilter
&& !BlockFilter
->count(Succ
))) {
728 BlockChain
*SuccChain
= BlockToChain
[Succ
];
729 if (SuccChain
== &Chain
) {
731 } else if (Succ
!= *SuccChain
->begin()) {
732 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ
)
733 << " -> Mid chain!\n");
738 AdjustedSumProb
-= MBPI
->getEdgeProbability(BB
, Succ
);
740 Successors
.push_back(Succ
);
743 return AdjustedSumProb
;
746 /// The helper function returns the branch probability that is adjusted
747 /// or normalized over the new total \p AdjustedSumProb.
748 static BranchProbability
749 getAdjustedProbability(BranchProbability OrigProb
,
750 BranchProbability AdjustedSumProb
) {
751 BranchProbability SuccProb
;
752 uint32_t SuccProbN
= OrigProb
.getNumerator();
753 uint32_t SuccProbD
= AdjustedSumProb
.getNumerator();
754 if (SuccProbN
>= SuccProbD
)
755 SuccProb
= BranchProbability::getOne();
757 SuccProb
= BranchProbability(SuccProbN
, SuccProbD
);
762 /// Check if \p BB has exactly the successors in \p Successors.
764 hasSameSuccessors(MachineBasicBlock
&BB
,
765 SmallPtrSetImpl
<const MachineBasicBlock
*> &Successors
) {
766 if (BB
.succ_size() != Successors
.size())
768 // We don't want to count self-loops
769 if (Successors
.count(&BB
))
771 for (MachineBasicBlock
*Succ
: BB
.successors())
772 if (!Successors
.count(Succ
))
777 /// Check if a block should be tail duplicated to increase fallthrough
779 /// \p BB Block to check.
780 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock
*BB
) {
781 // Blocks with single successors don't create additional fallthrough
782 // opportunities. Don't duplicate them. TODO: When conditional exits are
783 // analyzable, allow them to be duplicated.
784 bool IsSimple
= TailDup
.isSimpleBB(BB
);
786 if (BB
->succ_size() == 1)
788 return TailDup
.shouldTailDuplicate(IsSimple
, *BB
);
791 /// Compare 2 BlockFrequency's with a small penalty for \p A.
792 /// In order to be conservative, we apply a X% penalty to account for
793 /// increased icache pressure and static heuristics. For small frequencies
794 /// we use only the numerators to improve accuracy. For simplicity, we assume the
795 /// penalty is less than 100%
796 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
797 static bool greaterWithBias(BlockFrequency A
, BlockFrequency B
,
798 BlockFrequency EntryFreq
) {
799 BranchProbability
ThresholdProb(TailDupPlacementPenalty
, 100);
800 BlockFrequency Gain
= A
- B
;
801 return (Gain
/ ThresholdProb
) >= EntryFreq
;
804 /// Check the edge frequencies to see if tail duplication will increase
805 /// fallthroughs. It only makes sense to call this function when
806 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
807 /// always locally profitable if we would have picked \p Succ without
808 /// considering duplication.
809 bool MachineBlockPlacement::isProfitableToTailDup(
810 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
811 BranchProbability QProb
,
812 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
813 // We need to do a probability calculation to make sure this is profitable.
814 // First: does succ have a successor that post-dominates? This affects the
815 // calculation. The 2 relevant cases are:
830 // '=' : Branch taken for that CFG edge
831 // In the second case, Placing Succ while duplicating it into C prevents the
832 // fallthrough of Succ into either D or PDom, because they now have C as an
833 // unplaced predecessor
835 // Start by figuring out which case we fall into
836 MachineBasicBlock
*PDom
= nullptr;
837 SmallVector
<MachineBasicBlock
*, 4> SuccSuccs
;
838 // Only scan the relevant successors
839 auto AdjustedSuccSumProb
=
840 collectViableSuccessors(Succ
, Chain
, BlockFilter
, SuccSuccs
);
841 BranchProbability PProb
= MBPI
->getEdgeProbability(BB
, Succ
);
842 auto BBFreq
= MBFI
->getBlockFreq(BB
);
843 auto SuccFreq
= MBFI
->getBlockFreq(Succ
);
844 BlockFrequency P
= BBFreq
* PProb
;
845 BlockFrequency Qout
= BBFreq
* QProb
;
846 BlockFrequency EntryFreq
= MBFI
->getEntryFreq();
847 // If there are no more successors, it is profitable to copy, as it strictly
848 // increases fallthrough.
849 if (SuccSuccs
.size() == 0)
850 return greaterWithBias(P
, Qout
, EntryFreq
);
852 auto BestSuccSucc
= BranchProbability::getZero();
853 // Find the PDom or the best Succ if no PDom exists.
854 for (MachineBasicBlock
*SuccSucc
: SuccSuccs
) {
855 auto Prob
= MBPI
->getEdgeProbability(Succ
, SuccSucc
);
856 if (Prob
> BestSuccSucc
)
859 if (MPDT
->dominates(SuccSucc
, Succ
)) {
864 // For the comparisons, we need to know Succ's best incoming edge that isn't
866 auto SuccBestPred
= BlockFrequency(0);
867 for (MachineBasicBlock
*SuccPred
: Succ
->predecessors()) {
868 if (SuccPred
== Succ
|| SuccPred
== BB
869 || BlockToChain
[SuccPred
] == &Chain
870 || (BlockFilter
&& !BlockFilter
->count(SuccPred
)))
872 auto Freq
= MBFI
->getBlockFreq(SuccPred
)
873 * MBPI
->getEdgeProbability(SuccPred
, Succ
);
874 if (Freq
> SuccBestPred
)
877 // Qin is Succ's best unplaced incoming edge that isn't BB
878 BlockFrequency Qin
= SuccBestPred
;
879 // If it doesn't have a post-dominating successor, here is the calculation:
891 // '=' : Branch taken for that CFG edge
892 // Cost in the first case is: P + V
893 // For this calculation, we always assume P > Qout. If Qout > P
894 // The result of this function will be ignored at the caller.
895 // Let F = SuccFreq - Qin
896 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
898 if (PDom
== nullptr || !Succ
->isSuccessor(PDom
)) {
899 BranchProbability UProb
= BestSuccSucc
;
900 BranchProbability VProb
= AdjustedSuccSumProb
- UProb
;
901 BlockFrequency F
= SuccFreq
- Qin
;
902 BlockFrequency V
= SuccFreq
* VProb
;
903 BlockFrequency QinU
= std::min(Qin
, F
) * UProb
;
904 BlockFrequency BaseCost
= P
+ V
;
905 BlockFrequency DupCost
= Qout
+ QinU
+ std::max(Qin
, F
) * VProb
;
906 return greaterWithBias(BaseCost
, DupCost
, EntryFreq
);
908 BranchProbability UProb
= MBPI
->getEdgeProbability(Succ
, PDom
);
909 BranchProbability VProb
= AdjustedSuccSumProb
- UProb
;
910 BlockFrequency U
= SuccFreq
* UProb
;
911 BlockFrequency V
= SuccFreq
* VProb
;
912 BlockFrequency F
= SuccFreq
- Qin
;
913 // If there is a post-dominating successor, here is the calculation:
915 // | \Qout | \ | \Qout | \
917 // = C' |P C = C' |P C
918 // | /Qin | | | /Qin | |
919 // | / | C' (+Succ) | / | C' (+Succ)
920 // Succ Succ /| Succ Succ /|
921 // | \ V | \/ | | \ V | \/ |
922 // |U \ |U /\ =? |U = |U /\ |
923 // = D = = =?| | D | = =|
928 // '=' : Branch taken for that CFG edge
929 // The cost for taken branches in the first case is P + U
930 // Let F = SuccFreq - Qin
931 // The cost in the second case (assuming independence), given the layout:
932 // BB, Succ, (C+Succ), D, Dom or the layout:
933 // BB, Succ, D, Dom, (C+Succ)
934 // is Qout + max(F, Qin) * U + min(F, Qin)
935 // compare P + U vs Qout + P * U + Qin.
937 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
939 // For the 3rd case, the cost is P + 2 * V
940 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
941 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
942 if (UProb
> AdjustedSuccSumProb
/ 2 &&
943 !hasBetterLayoutPredecessor(Succ
, PDom
, *BlockToChain
[PDom
], UProb
, UProb
,
946 return greaterWithBias(
947 (P
+ V
), (Qout
+ std::max(Qin
, F
) * VProb
+ std::min(Qin
, F
) * UProb
),
950 return greaterWithBias((P
+ U
),
951 (Qout
+ std::min(Qin
, F
) * AdjustedSuccSumProb
+
952 std::max(Qin
, F
) * UProb
),
956 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
957 /// successors form the lower part of a trellis. A successor set S forms the
958 /// lower part of a trellis if all of the predecessors of S are either in S or
959 /// have all of S as successors. We ignore trellises where BB doesn't have 2
960 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
961 /// are very uncommon and complex to compute optimally. Allowing edges within S
962 /// is not strictly a trellis, but the same algorithm works, so we allow it.
963 bool MachineBlockPlacement::isTrellis(
964 const MachineBasicBlock
*BB
,
965 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
966 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
967 // Technically BB could form a trellis with branching factor higher than 2.
968 // But that's extremely uncommon.
969 if (BB
->succ_size() != 2 || ViableSuccs
.size() != 2)
972 SmallPtrSet
<const MachineBasicBlock
*, 2> Successors(BB
->succ_begin(),
974 // To avoid reviewing the same predecessors twice.
975 SmallPtrSet
<const MachineBasicBlock
*, 8> SeenPreds
;
977 for (MachineBasicBlock
*Succ
: ViableSuccs
) {
979 for (auto *SuccPred
: Succ
->predecessors()) {
980 // Allow triangle successors, but don't count them.
981 if (Successors
.count(SuccPred
)) {
982 // Make sure that it is actually a triangle.
983 for (MachineBasicBlock
*CheckSucc
: SuccPred
->successors())
984 if (!Successors
.count(CheckSucc
))
988 const BlockChain
*PredChain
= BlockToChain
[SuccPred
];
989 if (SuccPred
== BB
|| (BlockFilter
&& !BlockFilter
->count(SuccPred
)) ||
990 PredChain
== &Chain
|| PredChain
== BlockToChain
[Succ
])
993 // Perform the successor check only once.
994 if (!SeenPreds
.insert(SuccPred
).second
)
996 if (!hasSameSuccessors(*SuccPred
, Successors
))
999 // If one of the successors has only BB as a predecessor, it is not a
1007 /// Pick the highest total weight pair of edges that can both be laid out.
1008 /// The edges in \p Edges[0] are assumed to have a different destination than
1009 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
1010 /// the individual highest weight edges to the 2 different destinations, or in
1011 /// case of a conflict, one of them should be replaced with a 2nd best edge.
1012 std::pair
<MachineBlockPlacement::WeightedEdge
,
1013 MachineBlockPlacement::WeightedEdge
>
1014 MachineBlockPlacement::getBestNonConflictingEdges(
1015 const MachineBasicBlock
*BB
,
1016 MutableArrayRef
<SmallVector
<MachineBlockPlacement::WeightedEdge
, 8>>
1018 // Sort the edges, and then for each successor, find the best incoming
1019 // predecessor. If the best incoming predecessors aren't the same,
1020 // then that is clearly the best layout. If there is a conflict, one of the
1021 // successors will have to fallthrough from the second best predecessor. We
1022 // compare which combination is better overall.
1024 // Sort for highest frequency.
1025 auto Cmp
= [](WeightedEdge A
, WeightedEdge B
) { return A
.Weight
> B
.Weight
; };
1027 llvm::stable_sort(Edges
[0], Cmp
);
1028 llvm::stable_sort(Edges
[1], Cmp
);
1029 auto BestA
= Edges
[0].begin();
1030 auto BestB
= Edges
[1].begin();
1031 // Arrange for the correct answer to be in BestA and BestB
1032 // If the 2 best edges don't conflict, the answer is already there.
1033 if (BestA
->Src
== BestB
->Src
) {
1034 // Compare the total fallthrough of (Best + Second Best) for both pairs
1035 auto SecondBestA
= std::next(BestA
);
1036 auto SecondBestB
= std::next(BestB
);
1037 BlockFrequency BestAScore
= BestA
->Weight
+ SecondBestB
->Weight
;
1038 BlockFrequency BestBScore
= BestB
->Weight
+ SecondBestA
->Weight
;
1039 if (BestAScore
< BestBScore
)
1040 BestA
= SecondBestA
;
1042 BestB
= SecondBestB
;
1044 // Arrange for the BB edge to be in BestA if it exists.
1045 if (BestB
->Src
== BB
)
1046 std::swap(BestA
, BestB
);
1047 return std::make_pair(*BestA
, *BestB
);
1050 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1051 /// We only handle trellises with 2 successors, so the algorithm is
1052 /// straightforward: Find the best pair of edges that don't conflict. We find
1053 /// the best incoming edge for each successor in the trellis. If those conflict,
1054 /// we consider which of them should be replaced with the second best.
1055 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1056 /// comes from \p BB, it will be in \p BestEdges[0]
1057 MachineBlockPlacement::BlockAndTailDupResult
1058 MachineBlockPlacement::getBestTrellisSuccessor(
1059 const MachineBasicBlock
*BB
,
1060 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
1061 BranchProbability AdjustedSumProb
, const BlockChain
&Chain
,
1062 const BlockFilterSet
*BlockFilter
) {
1064 BlockAndTailDupResult Result
= {nullptr, false};
1065 SmallPtrSet
<const MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
1068 // We assume size 2 because it's common. For general n, we would have to do
1069 // the Hungarian algorithm, but it's not worth the complexity because more
1070 // than 2 successors is fairly uncommon, and a trellis even more so.
1071 if (Successors
.size() != 2 || ViableSuccs
.size() != 2)
1074 // Collect the edge frequencies of all edges that form the trellis.
1075 SmallVector
<WeightedEdge
, 8> Edges
[2];
1077 for (auto *Succ
: ViableSuccs
) {
1078 for (MachineBasicBlock
*SuccPred
: Succ
->predecessors()) {
1079 // Skip any placed predecessors that are not BB
1081 if ((BlockFilter
&& !BlockFilter
->count(SuccPred
)) ||
1082 BlockToChain
[SuccPred
] == &Chain
||
1083 BlockToChain
[SuccPred
] == BlockToChain
[Succ
])
1085 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(SuccPred
) *
1086 MBPI
->getEdgeProbability(SuccPred
, Succ
);
1087 Edges
[SuccIndex
].push_back({EdgeFreq
, SuccPred
, Succ
});
1092 // Pick the best combination of 2 edges from all the edges in the trellis.
1093 WeightedEdge BestA
, BestB
;
1094 std::tie(BestA
, BestB
) = getBestNonConflictingEdges(BB
, Edges
);
1096 if (BestA
.Src
!= BB
) {
1097 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1098 // we shouldn't choose any successor. We've already looked and there's a
1099 // better fallthrough edge for all the successors.
1100 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1104 // Did we pick the triangle edge? If tail-duplication is profitable, do
1105 // that instead. Otherwise merge the triangle edge now while we know it is
1107 if (BestA
.Dest
== BestB
.Src
) {
1108 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1110 MachineBasicBlock
*Succ1
= BestA
.Dest
;
1111 MachineBasicBlock
*Succ2
= BestB
.Dest
;
1112 // Check to see if tail-duplication would be profitable.
1113 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2
) &&
1114 canTailDuplicateUnplacedPreds(BB
, Succ2
, Chain
, BlockFilter
) &&
1115 isProfitableToTailDup(BB
, Succ2
, MBPI
->getEdgeProbability(BB
, Succ1
),
1116 Chain
, BlockFilter
)) {
1117 LLVM_DEBUG(BranchProbability Succ2Prob
= getAdjustedProbability(
1118 MBPI
->getEdgeProbability(BB
, Succ2
), AdjustedSumProb
);
1119 dbgs() << " Selected: " << getBlockName(Succ2
)
1120 << ", probability: " << Succ2Prob
1121 << " (Tail Duplicate)\n");
1123 Result
.ShouldTailDup
= true;
1127 // We have already computed the optimal edge for the other side of the
1129 ComputedEdges
[BestB
.Src
] = { BestB
.Dest
, false };
1131 auto TrellisSucc
= BestA
.Dest
;
1132 LLVM_DEBUG(BranchProbability SuccProb
= getAdjustedProbability(
1133 MBPI
->getEdgeProbability(BB
, TrellisSucc
), AdjustedSumProb
);
1134 dbgs() << " Selected: " << getBlockName(TrellisSucc
)
1135 << ", probability: " << SuccProb
<< " (Trellis)\n");
1136 Result
.BB
= TrellisSucc
;
1140 /// When the option allowTailDupPlacement() is on, this method checks if the
1141 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1142 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1143 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1144 const MachineBasicBlock
*BB
, MachineBasicBlock
*Succ
,
1145 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
1146 if (!shouldTailDuplicate(Succ
))
1149 // The result of canTailDuplicate.
1150 bool Duplicate
= true;
1151 // Number of possible duplication.
1152 unsigned int NumDup
= 0;
1154 // For CFG checking.
1155 SmallPtrSet
<const MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
1157 for (MachineBasicBlock
*Pred
: Succ
->predecessors()) {
1158 // Make sure all unplaced and unfiltered predecessors can be
1159 // tail-duplicated into.
1160 // Skip any blocks that are already placed or not in this loop.
1161 if (Pred
== BB
|| (BlockFilter
&& !BlockFilter
->count(Pred
))
1162 || (BlockToChain
[Pred
] == &Chain
&& !Succ
->succ_empty()))
1164 if (!TailDup
.canTailDuplicate(Succ
, Pred
)) {
1165 if (Successors
.size() > 1 && hasSameSuccessors(*Pred
, Successors
))
1166 // This will result in a trellis after tail duplication, so we don't
1167 // need to copy Succ into this predecessor. In the presence
1168 // of a trellis tail duplication can continue to be profitable.
1184 // After BB was duplicated into C, the layout looks like the one on the
1185 // right. BB and C now have the same successors. When considering
1186 // whether Succ can be duplicated into all its unplaced predecessors, we
1188 // We can do this because C already has a profitable fallthrough, namely
1189 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1190 // duplication and for this test.
1192 // This allows trellises to be laid out in 2 separate chains
1193 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1194 // because it allows the creation of 2 fallthrough paths with links
1195 // between them, and we correctly identify the best layout for these
1196 // CFGs. We want to extend trellises that the user created in addition
1197 // to trellises created by tail-duplication, so we just look for the
1206 // No possible duplication in current filter set.
1210 // If profile information is available, findDuplicateCandidates can do more
1211 // precise benefit analysis.
1212 if (F
->getFunction().hasProfileData())
1215 // This is mainly for function exit BB.
1216 // The integrated tail duplication is really designed for increasing
1217 // fallthrough from predecessors from Succ to its successors. We may need
1218 // other machanism to handle different cases.
1219 if (Succ
->succ_empty())
1222 // Plus the already placed predecessor.
1225 // If the duplication candidate has more unplaced predecessors than
1226 // successors, the extra duplication can't bring more fallthrough.
1228 // Pred1 Pred2 Pred3
1237 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1238 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1239 // but the duplication into Pred3 can't increase fallthrough.
1241 // A small number of extra duplication may not hurt too much. We need a better
1242 // heuristic to handle it.
1243 if ((NumDup
> Succ
->succ_size()) || !Duplicate
)
1249 /// Find chains of triangles where we believe it would be profitable to
1250 /// tail-duplicate them all, but a local analysis would not find them.
1251 /// There are 3 ways this can be profitable:
1252 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1254 /// 2) The chains are statically correlated. Branch probabilities have a very
1255 /// U-shaped distribution.
1256 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1257 /// If the branches in a chain are likely to be from the same side of the
1258 /// distribution as their predecessor, but are independent at runtime, this
1259 /// transformation is profitable. (Because the cost of being wrong is a small
1260 /// fixed cost, unlike the standard triangle layout where the cost of being
1261 /// wrong scales with the # of triangles.)
1262 /// 3) The chains are dynamically correlated. If the probability that a previous
1263 /// branch was taken positively influences whether the next branch will be
1265 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1266 void MachineBlockPlacement::precomputeTriangleChains() {
1267 struct TriangleChain
{
1268 std::vector
<MachineBasicBlock
*> Edges
;
1270 TriangleChain(MachineBasicBlock
*src
, MachineBasicBlock
*dst
)
1271 : Edges({src
, dst
}) {}
1273 void append(MachineBasicBlock
*dst
) {
1274 assert(getKey()->isSuccessor(dst
) &&
1275 "Attempting to append a block that is not a successor.");
1276 Edges
.push_back(dst
);
1279 unsigned count() const { return Edges
.size() - 1; }
1281 MachineBasicBlock
*getKey() const {
1282 return Edges
.back();
1286 if (TriangleChainCount
== 0)
1289 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1290 // Map from last block to the chain that contains it. This allows us to extend
1291 // chains as we find new triangles.
1292 DenseMap
<const MachineBasicBlock
*, TriangleChain
> TriangleChainMap
;
1293 for (MachineBasicBlock
&BB
: *F
) {
1294 // If BB doesn't have 2 successors, it doesn't start a triangle.
1295 if (BB
.succ_size() != 2)
1297 MachineBasicBlock
*PDom
= nullptr;
1298 for (MachineBasicBlock
*Succ
: BB
.successors()) {
1299 if (!MPDT
->dominates(Succ
, &BB
))
1304 // If BB doesn't have a post-dominating successor, it doesn't form a
1306 if (PDom
== nullptr)
1308 // If PDom has a hint that it is low probability, skip this triangle.
1309 if (MBPI
->getEdgeProbability(&BB
, PDom
) < BranchProbability(50, 100))
1311 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1312 // we're looking for.
1313 if (!shouldTailDuplicate(PDom
))
1315 bool CanTailDuplicate
= true;
1316 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1317 // isn't the kind of triangle we're looking for.
1318 for (MachineBasicBlock
* Pred
: PDom
->predecessors()) {
1321 if (!TailDup
.canTailDuplicate(PDom
, Pred
)) {
1322 CanTailDuplicate
= false;
1326 // If we can't tail-duplicate PDom to its predecessors, then skip this
1328 if (!CanTailDuplicate
)
1331 // Now we have an interesting triangle. Insert it if it's not part of an
1333 // Note: This cannot be replaced with a call insert() or emplace() because
1334 // the find key is BB, but the insert/emplace key is PDom.
1335 auto Found
= TriangleChainMap
.find(&BB
);
1336 // If it is, remove the chain from the map, grow it, and put it back in the
1337 // map with the end as the new key.
1338 if (Found
!= TriangleChainMap
.end()) {
1339 TriangleChain Chain
= std::move(Found
->second
);
1340 TriangleChainMap
.erase(Found
);
1342 TriangleChainMap
.insert(std::make_pair(Chain
.getKey(), std::move(Chain
)));
1344 auto InsertResult
= TriangleChainMap
.try_emplace(PDom
, &BB
, PDom
);
1345 assert(InsertResult
.second
&& "Block seen twice.");
1350 // Iterating over a DenseMap is safe here, because the only thing in the body
1351 // of the loop is inserting into another DenseMap (ComputedEdges).
1352 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1353 for (auto &ChainPair
: TriangleChainMap
) {
1354 TriangleChain
&Chain
= ChainPair
.second
;
1355 // Benchmarking has shown that due to branch correlation duplicating 2 or
1356 // more triangles is profitable, despite the calculations assuming
1358 if (Chain
.count() < TriangleChainCount
)
1360 MachineBasicBlock
*dst
= Chain
.Edges
.back();
1361 Chain
.Edges
.pop_back();
1362 for (MachineBasicBlock
*src
: reverse(Chain
.Edges
)) {
1363 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src
) << "->"
1364 << getBlockName(dst
)
1365 << " as pre-computed based on triangles.\n");
1367 auto InsertResult
= ComputedEdges
.insert({src
, {dst
, true}});
1368 assert(InsertResult
.second
&& "Block seen twice.");
1376 // When profile is not present, return the StaticLikelyProb.
1377 // When profile is available, we need to handle the triangle-shape CFG.
1378 static BranchProbability
getLayoutSuccessorProbThreshold(
1379 const MachineBasicBlock
*BB
) {
1380 if (!BB
->getParent()->getFunction().hasProfileData())
1381 return BranchProbability(StaticLikelyProb
, 100);
1382 if (BB
->succ_size() == 2) {
1383 const MachineBasicBlock
*Succ1
= *BB
->succ_begin();
1384 const MachineBasicBlock
*Succ2
= *(BB
->succ_begin() + 1);
1385 if (Succ1
->isSuccessor(Succ2
) || Succ2
->isSuccessor(Succ1
)) {
1386 /* See case 1 below for the cost analysis. For BB->Succ to
1387 * be taken with smaller cost, the following needs to hold:
1388 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1389 * So the threshold T in the calculation below
1390 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1391 * So T / (1 - T) = 2, Yielding T = 2/3
1392 * Also adding user specified branch bias, we have
1393 * T = (2/3)*(ProfileLikelyProb/50)
1394 * = (2*ProfileLikelyProb)/150)
1396 return BranchProbability(2 * ProfileLikelyProb
, 150);
1399 return BranchProbability(ProfileLikelyProb
, 100);
1402 /// Checks to see if the layout candidate block \p Succ has a better layout
1403 /// predecessor than \c BB. If yes, returns true.
1404 /// \p SuccProb: The probability adjusted for only remaining blocks.
1405 /// Only used for logging
1406 /// \p RealSuccProb: The un-adjusted probability.
1407 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1408 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1410 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1411 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
1412 const BlockChain
&SuccChain
, BranchProbability SuccProb
,
1413 BranchProbability RealSuccProb
, const BlockChain
&Chain
,
1414 const BlockFilterSet
*BlockFilter
) {
1416 // There isn't a better layout when there are no unscheduled predecessors.
1417 if (SuccChain
.UnscheduledPredecessors
== 0)
1420 // There are two basic scenarios here:
1421 // -------------------------------------
1422 // Case 1: triangular shape CFG (if-then):
1429 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1430 // set Succ as the layout successor of BB. Picking Succ as BB's
1431 // successor breaks the CFG constraints (FIXME: define these constraints).
1432 // With this layout, Pred BB
1433 // is forced to be outlined, so the overall cost will be cost of the
1434 // branch taken from BB to Pred, plus the cost of back taken branch
1435 // from Pred to Succ, as well as the additional cost associated
1436 // with the needed unconditional jump instruction from Pred To Succ.
1438 // The cost of the topological order layout is the taken branch cost
1439 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1441 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1442 // < freq(BB->Succ) * taken_branch_cost.
1443 // Ignoring unconditional jump cost, we get
1444 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1445 // prob(BB->Succ) > 2 * prob(BB->Pred)
1447 // When real profile data is available, we can precisely compute the
1448 // probability threshold that is needed for edge BB->Succ to be considered.
1449 // Without profile data, the heuristic requires the branch bias to be
1450 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1451 // -----------------------------------------------------------------
1452 // Case 2: diamond like CFG (if-then-else):
1461 // The current block is BB and edge BB->Succ is now being evaluated.
1462 // Note that edge S->BB was previously already selected because
1463 // prob(S->BB) > prob(S->Pred).
1464 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1465 // choose Pred, we will have a topological ordering as shown on the left
1466 // in the picture below. If we choose Succ, we have the solution as shown
1475 // | Pred-- | Succ--
1477 // ---Succ ---Pred--
1479 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1480 // = freq(S->Pred) + freq(S->BB)
1482 // If we have profile data (i.e, branch probabilities can be trusted), the
1483 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1484 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1485 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1486 // means the cost of topological order is greater.
1487 // When profile data is not available, however, we need to be more
1488 // conservative. If the branch prediction is wrong, breaking the topo-order
1489 // will actually yield a layout with large cost. For this reason, we need
1490 // strong biased branch at block S with Prob(S->BB) in order to select
1491 // BB->Succ. This is equivalent to looking the CFG backward with backward
1492 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1494 // --------------------------------------------------------------------------
1495 // Case 3: forked diamond
1507 // The current block is BB and edge BB->S1 is now being evaluated.
1508 // As above S->BB was already selected because
1509 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1517 // | Pred----| | S1----
1519 // --(S1 or S2) ---Pred--
1523 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1524 // + min(freq(Pred->S1), freq(Pred->S2))
1525 // Non-topo-order cost:
1526 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1527 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1528 // is 0. Then the non topo layout is better when
1529 // freq(S->Pred) < freq(BB->S1).
1530 // This is exactly what is checked below.
1531 // Note there are other shapes that apply (Pred may not be a single block,
1532 // but they all fit this general pattern.)
1533 BranchProbability HotProb
= getLayoutSuccessorProbThreshold(BB
);
1535 // Make sure that a hot successor doesn't have a globally more
1536 // important predecessor.
1537 BlockFrequency CandidateEdgeFreq
= MBFI
->getBlockFreq(BB
) * RealSuccProb
;
1538 bool BadCFGConflict
= false;
1540 for (MachineBasicBlock
*Pred
: Succ
->predecessors()) {
1541 BlockChain
*PredChain
= BlockToChain
[Pred
];
1542 if (Pred
== Succ
|| PredChain
== &SuccChain
||
1543 (BlockFilter
&& !BlockFilter
->count(Pred
)) ||
1544 PredChain
== &Chain
|| Pred
!= *std::prev(PredChain
->end()) ||
1545 // This check is redundant except for look ahead. This function is
1546 // called for lookahead by isProfitableToTailDup when BB hasn't been
1550 // Do backward checking.
1551 // For all cases above, we need a backward checking to filter out edges that
1552 // are not 'strongly' biased.
1556 // We select edge BB->Succ if
1557 // freq(BB->Succ) > freq(Succ) * HotProb
1558 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1560 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1561 // Case 1 is covered too, because the first equation reduces to:
1562 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1563 BlockFrequency PredEdgeFreq
=
1564 MBFI
->getBlockFreq(Pred
) * MBPI
->getEdgeProbability(Pred
, Succ
);
1565 if (PredEdgeFreq
* HotProb
>= CandidateEdgeFreq
* HotProb
.getCompl()) {
1566 BadCFGConflict
= true;
1571 if (BadCFGConflict
) {
1572 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ
) << " -> "
1573 << SuccProb
<< " (prob) (non-cold CFG conflict)\n");
1580 /// Select the best successor for a block.
1582 /// This looks across all successors of a particular block and attempts to
1583 /// select the "best" one to be the layout successor. It only considers direct
1584 /// successors which also pass the block filter. It will attempt to avoid
1585 /// breaking CFG structure, but cave and break such structures in the case of
1586 /// very hot successor edges.
1588 /// \returns The best successor block found, or null if none are viable, along
1589 /// with a boolean indicating if tail duplication is necessary.
1590 MachineBlockPlacement::BlockAndTailDupResult
1591 MachineBlockPlacement::selectBestSuccessor(
1592 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
1593 const BlockFilterSet
*BlockFilter
) {
1594 const BranchProbability
HotProb(StaticLikelyProb
, 100);
1596 BlockAndTailDupResult BestSucc
= { nullptr, false };
1597 auto BestProb
= BranchProbability::getZero();
1599 SmallVector
<MachineBasicBlock
*, 4> Successors
;
1600 auto AdjustedSumProb
=
1601 collectViableSuccessors(BB
, Chain
, BlockFilter
, Successors
);
1603 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB
)
1606 // if we already precomputed the best successor for BB, return that if still
1608 auto FoundEdge
= ComputedEdges
.find(BB
);
1609 if (FoundEdge
!= ComputedEdges
.end()) {
1610 MachineBasicBlock
*Succ
= FoundEdge
->second
.BB
;
1611 ComputedEdges
.erase(FoundEdge
);
1612 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1613 if (BB
->isSuccessor(Succ
) && (!BlockFilter
|| BlockFilter
->count(Succ
)) &&
1614 SuccChain
!= &Chain
&& Succ
== *SuccChain
->begin())
1615 return FoundEdge
->second
;
1618 // if BB is part of a trellis, Use the trellis to determine the optimal
1619 // fallthrough edges
1620 if (isTrellis(BB
, Successors
, Chain
, BlockFilter
))
1621 return getBestTrellisSuccessor(BB
, Successors
, AdjustedSumProb
, Chain
,
1624 // For blocks with CFG violations, we may be able to lay them out anyway with
1625 // tail-duplication. We keep this vector so we can perform the probability
1626 // calculations the minimum number of times.
1627 SmallVector
<std::pair
<BranchProbability
, MachineBasicBlock
*>, 4>
1629 for (MachineBasicBlock
*Succ
: Successors
) {
1630 auto RealSuccProb
= MBPI
->getEdgeProbability(BB
, Succ
);
1631 BranchProbability SuccProb
=
1632 getAdjustedProbability(RealSuccProb
, AdjustedSumProb
);
1634 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
1635 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1636 // predecessor that yields lower global cost.
1637 if (hasBetterLayoutPredecessor(BB
, Succ
, SuccChain
, SuccProb
, RealSuccProb
,
1638 Chain
, BlockFilter
)) {
1639 // If tail duplication would make Succ profitable, place it.
1640 if (allowTailDupPlacement() && shouldTailDuplicate(Succ
))
1641 DupCandidates
.emplace_back(SuccProb
, Succ
);
1646 dbgs() << " Candidate: " << getBlockName(Succ
)
1647 << ", probability: " << SuccProb
1648 << (SuccChain
.UnscheduledPredecessors
!= 0 ? " (CFG break)" : "")
1651 if (BestSucc
.BB
&& BestProb
>= SuccProb
) {
1652 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1656 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1658 BestProb
= SuccProb
;
1660 // Handle the tail duplication candidates in order of decreasing probability.
1661 // Stop at the first one that is profitable. Also stop if they are less
1662 // profitable than BestSucc. Position is important because we preserve it and
1663 // prefer first best match. Here we aren't comparing in order, so we capture
1664 // the position instead.
1665 llvm::stable_sort(DupCandidates
,
1666 [](std::tuple
<BranchProbability
, MachineBasicBlock
*> L
,
1667 std::tuple
<BranchProbability
, MachineBasicBlock
*> R
) {
1668 return std::get
<0>(L
) > std::get
<0>(R
);
1670 for (auto &Tup
: DupCandidates
) {
1671 BranchProbability DupProb
;
1672 MachineBasicBlock
*Succ
;
1673 std::tie(DupProb
, Succ
) = Tup
;
1674 if (DupProb
< BestProb
)
1676 if (canTailDuplicateUnplacedPreds(BB
, Succ
, Chain
, BlockFilter
)
1677 && (isProfitableToTailDup(BB
, Succ
, BestProb
, Chain
, BlockFilter
))) {
1678 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ
)
1679 << ", probability: " << DupProb
1680 << " (Tail Duplicate)\n");
1682 BestSucc
.ShouldTailDup
= true;
1688 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc
.BB
) << "\n");
1693 /// Select the best block from a worklist.
1695 /// This looks through the provided worklist as a list of candidate basic
1696 /// blocks and select the most profitable one to place. The definition of
1697 /// profitable only really makes sense in the context of a loop. This returns
1698 /// the most frequently visited block in the worklist, which in the case of
1699 /// a loop, is the one most desirable to be physically close to the rest of the
1700 /// loop body in order to improve i-cache behavior.
1702 /// \returns The best block found, or null if none are viable.
1703 MachineBasicBlock
*MachineBlockPlacement::selectBestCandidateBlock(
1704 const BlockChain
&Chain
, SmallVectorImpl
<MachineBasicBlock
*> &WorkList
) {
1705 // Once we need to walk the worklist looking for a candidate, cleanup the
1706 // worklist of already placed entries.
1707 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1708 // some code complexity) into the loop below.
1709 llvm::erase_if(WorkList
, [&](MachineBasicBlock
*BB
) {
1710 return BlockToChain
.lookup(BB
) == &Chain
;
1713 if (WorkList
.empty())
1716 bool IsEHPad
= WorkList
[0]->isEHPad();
1718 MachineBasicBlock
*BestBlock
= nullptr;
1719 BlockFrequency BestFreq
;
1720 for (MachineBasicBlock
*MBB
: WorkList
) {
1721 assert(MBB
->isEHPad() == IsEHPad
&&
1722 "EHPad mismatch between block and work list.");
1724 BlockChain
&SuccChain
= *BlockToChain
[MBB
];
1725 if (&SuccChain
== &Chain
)
1728 assert(SuccChain
.UnscheduledPredecessors
== 0 &&
1729 "Found CFG-violating block");
1731 BlockFrequency CandidateFreq
= MBFI
->getBlockFreq(MBB
);
1732 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB
) << " -> "
1733 << printBlockFreq(MBFI
->getMBFI(), CandidateFreq
)
1736 // For ehpad, we layout the least probable first as to avoid jumping back
1737 // from least probable landingpads to more probable ones.
1739 // FIXME: Using probability is probably (!) not the best way to achieve
1740 // this. We should probably have a more principled approach to layout
1743 // The goal is to get:
1745 // +--------------------------+
1747 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1751 // +-------------------------------------+
1753 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1754 if (BestBlock
&& (IsEHPad
^ (BestFreq
>= CandidateFreq
)))
1758 BestFreq
= CandidateFreq
;
1764 /// Retrieve the first unplaced basic block.
1766 /// This routine is called when we are unable to use the CFG to walk through
1767 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1768 /// We walk through the function's blocks in order, starting from the
1769 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1770 /// re-scanning the entire sequence on repeated calls to this routine.
1771 MachineBasicBlock
*MachineBlockPlacement::getFirstUnplacedBlock(
1772 const BlockChain
&PlacedChain
,
1773 MachineFunction::iterator
&PrevUnplacedBlockIt
,
1774 const BlockFilterSet
*BlockFilter
) {
1775 for (MachineFunction::iterator I
= PrevUnplacedBlockIt
, E
= F
->end(); I
!= E
;
1777 if (BlockFilter
&& !BlockFilter
->count(&*I
))
1779 if (BlockToChain
[&*I
] != &PlacedChain
) {
1780 PrevUnplacedBlockIt
= I
;
1781 // Now select the head of the chain to which the unplaced block belongs
1782 // as the block to place. This will force the entire chain to be placed,
1783 // and satisfies the requirements of merging chains.
1784 return *BlockToChain
[&*I
]->begin();
1790 void MachineBlockPlacement::fillWorkLists(
1791 const MachineBasicBlock
*MBB
,
1792 SmallPtrSetImpl
<BlockChain
*> &UpdatedPreds
,
1793 const BlockFilterSet
*BlockFilter
= nullptr) {
1794 BlockChain
&Chain
= *BlockToChain
[MBB
];
1795 if (!UpdatedPreds
.insert(&Chain
).second
)
1799 Chain
.UnscheduledPredecessors
== 0 &&
1800 "Attempting to place block with unscheduled predecessors in worklist.");
1801 for (MachineBasicBlock
*ChainBB
: Chain
) {
1802 assert(BlockToChain
[ChainBB
] == &Chain
&&
1803 "Block in chain doesn't match BlockToChain map.");
1804 for (MachineBasicBlock
*Pred
: ChainBB
->predecessors()) {
1805 if (BlockFilter
&& !BlockFilter
->count(Pred
))
1807 if (BlockToChain
[Pred
] == &Chain
)
1809 ++Chain
.UnscheduledPredecessors
;
1813 if (Chain
.UnscheduledPredecessors
!= 0)
1816 MachineBasicBlock
*BB
= *Chain
.begin();
1818 EHPadWorkList
.push_back(BB
);
1820 BlockWorkList
.push_back(BB
);
1823 void MachineBlockPlacement::buildChain(
1824 const MachineBasicBlock
*HeadBB
, BlockChain
&Chain
,
1825 BlockFilterSet
*BlockFilter
) {
1826 assert(HeadBB
&& "BB must not be null.\n");
1827 assert(BlockToChain
[HeadBB
] == &Chain
&& "BlockToChainMap mis-match.\n");
1828 MachineFunction::iterator PrevUnplacedBlockIt
= F
->begin();
1830 const MachineBasicBlock
*LoopHeaderBB
= HeadBB
;
1831 markChainSuccessors(Chain
, LoopHeaderBB
, BlockFilter
);
1832 MachineBasicBlock
*BB
= *std::prev(Chain
.end());
1834 assert(BB
&& "null block found at end of chain in loop.");
1835 assert(BlockToChain
[BB
] == &Chain
&& "BlockToChainMap mis-match in loop.");
1836 assert(*std::prev(Chain
.end()) == BB
&& "BB Not found at end of chain.");
1839 // Look for the best viable successor if there is one to place immediately
1840 // after this block.
1841 auto Result
= selectBestSuccessor(BB
, Chain
, BlockFilter
);
1842 MachineBasicBlock
* BestSucc
= Result
.BB
;
1843 bool ShouldTailDup
= Result
.ShouldTailDup
;
1844 if (allowTailDupPlacement())
1845 ShouldTailDup
|= (BestSucc
&& canTailDuplicateUnplacedPreds(BB
, BestSucc
,
1849 // If an immediate successor isn't available, look for the best viable
1850 // block among those we've identified as not violating the loop's CFG at
1851 // this point. This won't be a fallthrough, but it will increase locality.
1853 BestSucc
= selectBestCandidateBlock(Chain
, BlockWorkList
);
1855 BestSucc
= selectBestCandidateBlock(Chain
, EHPadWorkList
);
1858 BestSucc
= getFirstUnplacedBlock(Chain
, PrevUnplacedBlockIt
, BlockFilter
);
1862 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1863 "layout successor until the CFG reduces\n");
1866 // Placement may have changed tail duplication opportunities.
1867 // Check for that now.
1868 if (allowTailDupPlacement() && BestSucc
&& ShouldTailDup
) {
1869 repeatedlyTailDuplicateBlock(BestSucc
, BB
, LoopHeaderBB
, Chain
,
1870 BlockFilter
, PrevUnplacedBlockIt
);
1871 // If the chosen successor was duplicated into BB, don't bother laying
1872 // it out, just go round the loop again with BB as the chain end.
1873 if (!BB
->isSuccessor(BestSucc
))
1877 // Place this block, updating the datastructures to reflect its placement.
1878 BlockChain
&SuccChain
= *BlockToChain
[BestSucc
];
1879 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1880 // we selected a successor that didn't fit naturally into the CFG.
1881 SuccChain
.UnscheduledPredecessors
= 0;
1882 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB
) << " to "
1883 << getBlockName(BestSucc
) << "\n");
1884 markChainSuccessors(SuccChain
, LoopHeaderBB
, BlockFilter
);
1885 Chain
.merge(BestSucc
, &SuccChain
);
1886 BB
= *std::prev(Chain
.end());
1889 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1890 << getBlockName(*Chain
.begin()) << "\n");
1893 // If bottom of block BB has only one successor OldTop, in most cases it is
1894 // profitable to move it before OldTop, except the following case:
1904 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1905 // layout the other successor below it, so it can't reduce taken branch.
1906 // In this case we keep its original layout.
1908 MachineBlockPlacement::canMoveBottomBlockToTop(
1909 const MachineBasicBlock
*BottomBlock
,
1910 const MachineBasicBlock
*OldTop
) {
1911 if (BottomBlock
->pred_size() != 1)
1913 MachineBasicBlock
*Pred
= *BottomBlock
->pred_begin();
1914 if (Pred
->succ_size() != 2)
1917 MachineBasicBlock
*OtherBB
= *Pred
->succ_begin();
1918 if (OtherBB
== BottomBlock
)
1919 OtherBB
= *Pred
->succ_rbegin();
1920 if (OtherBB
== OldTop
)
1926 // Find out the possible fall through frequence to the top of a loop.
1928 MachineBlockPlacement::TopFallThroughFreq(
1929 const MachineBasicBlock
*Top
,
1930 const BlockFilterSet
&LoopBlockSet
) {
1931 BlockFrequency MaxFreq
= BlockFrequency(0);
1932 for (MachineBasicBlock
*Pred
: Top
->predecessors()) {
1933 BlockChain
*PredChain
= BlockToChain
[Pred
];
1934 if (!LoopBlockSet
.count(Pred
) &&
1935 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
1936 // Found a Pred block can be placed before Top.
1937 // Check if Top is the best successor of Pred.
1938 auto TopProb
= MBPI
->getEdgeProbability(Pred
, Top
);
1940 for (MachineBasicBlock
*Succ
: Pred
->successors()) {
1941 auto SuccProb
= MBPI
->getEdgeProbability(Pred
, Succ
);
1942 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1943 // Check if Succ can be placed after Pred.
1944 // Succ should not be in any chain, or it is the head of some chain.
1945 if (!LoopBlockSet
.count(Succ
) && (SuccProb
> TopProb
) &&
1946 (!SuccChain
|| Succ
== *SuccChain
->begin())) {
1952 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
1953 MBPI
->getEdgeProbability(Pred
, Top
);
1954 if (EdgeFreq
> MaxFreq
)
1962 // Compute the fall through gains when move NewTop before OldTop.
1964 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1965 // marked as "+" are increased fallthrough, this function computes
1967 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1984 MachineBlockPlacement::FallThroughGains(
1985 const MachineBasicBlock
*NewTop
,
1986 const MachineBasicBlock
*OldTop
,
1987 const MachineBasicBlock
*ExitBB
,
1988 const BlockFilterSet
&LoopBlockSet
) {
1989 BlockFrequency FallThrough2Top
= TopFallThroughFreq(OldTop
, LoopBlockSet
);
1990 BlockFrequency FallThrough2Exit
= BlockFrequency(0);
1992 FallThrough2Exit
= MBFI
->getBlockFreq(NewTop
) *
1993 MBPI
->getEdgeProbability(NewTop
, ExitBB
);
1994 BlockFrequency BackEdgeFreq
= MBFI
->getBlockFreq(NewTop
) *
1995 MBPI
->getEdgeProbability(NewTop
, OldTop
);
1997 // Find the best Pred of NewTop.
1998 MachineBasicBlock
*BestPred
= nullptr;
1999 BlockFrequency FallThroughFromPred
= BlockFrequency(0);
2000 for (MachineBasicBlock
*Pred
: NewTop
->predecessors()) {
2001 if (!LoopBlockSet
.count(Pred
))
2003 BlockChain
*PredChain
= BlockToChain
[Pred
];
2004 if (!PredChain
|| Pred
== *std::prev(PredChain
->end())) {
2005 BlockFrequency EdgeFreq
=
2006 MBFI
->getBlockFreq(Pred
) * MBPI
->getEdgeProbability(Pred
, NewTop
);
2007 if (EdgeFreq
> FallThroughFromPred
) {
2008 FallThroughFromPred
= EdgeFreq
;
2014 // If NewTop is not placed after Pred, another successor can be placed
2016 BlockFrequency NewFreq
= BlockFrequency(0);
2018 for (MachineBasicBlock
*Succ
: BestPred
->successors()) {
2019 if ((Succ
== NewTop
) || (Succ
== BestPred
) || !LoopBlockSet
.count(Succ
))
2021 if (ComputedEdges
.contains(Succ
))
2023 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2024 if ((SuccChain
&& (Succ
!= *SuccChain
->begin())) ||
2025 (SuccChain
== BlockToChain
[BestPred
]))
2027 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(BestPred
) *
2028 MBPI
->getEdgeProbability(BestPred
, Succ
);
2029 if (EdgeFreq
> NewFreq
)
2032 BlockFrequency OrigEdgeFreq
= MBFI
->getBlockFreq(BestPred
) *
2033 MBPI
->getEdgeProbability(BestPred
, NewTop
);
2034 if (NewFreq
> OrigEdgeFreq
) {
2035 // If NewTop is not the best successor of Pred, then Pred doesn't
2036 // fallthrough to NewTop. So there is no FallThroughFromPred and
2038 NewFreq
= BlockFrequency(0);
2039 FallThroughFromPred
= BlockFrequency(0);
2043 BlockFrequency Result
= BlockFrequency(0);
2044 BlockFrequency Gains
= BackEdgeFreq
+ NewFreq
;
2045 BlockFrequency Lost
=
2046 FallThrough2Top
+ FallThrough2Exit
+ FallThroughFromPred
;
2048 Result
= Gains
- Lost
;
2052 /// Helper function of findBestLoopTop. Find the best loop top block
2053 /// from predecessors of old top.
2055 /// Look for a block which is strictly better than the old top for laying
2056 /// out before the old top of the loop. This looks for only two patterns:
2058 /// 1. a block has only one successor, the old loop top
2060 /// Because such a block will always result in an unconditional jump,
2061 /// rotating it in front of the old top is always profitable.
2063 /// 2. a block has two successors, one is old top, another is exit
2064 /// and it has more than one predecessors
2066 /// If it is below one of its predecessors P, only P can fall through to
2067 /// it, all other predecessors need a jump to it, and another conditional
2068 /// jump to loop header. If it is moved before loop header, all its
2069 /// predecessors jump to it, then fall through to loop header. So all its
2070 /// predecessors except P can reduce one taken branch.
2071 /// At the same time, move it before old top increases the taken branch
2072 /// to loop exit block, so the reduced taken branch will be compared with
2073 /// the increased taken branch to the loop exit block.
2075 MachineBlockPlacement::findBestLoopTopHelper(
2076 MachineBasicBlock
*OldTop
,
2077 const MachineLoop
&L
,
2078 const BlockFilterSet
&LoopBlockSet
) {
2079 // Check that the header hasn't been fused with a preheader block due to
2080 // crazy branches. If it has, we need to start with the header at the top to
2081 // prevent pulling the preheader into the loop body.
2082 BlockChain
&HeaderChain
= *BlockToChain
[OldTop
];
2083 if (!LoopBlockSet
.count(*HeaderChain
.begin()))
2085 if (OldTop
!= *HeaderChain
.begin())
2088 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop
)
2091 BlockFrequency BestGains
= BlockFrequency(0);
2092 MachineBasicBlock
*BestPred
= nullptr;
2093 for (MachineBasicBlock
*Pred
: OldTop
->predecessors()) {
2094 if (!LoopBlockSet
.count(Pred
))
2096 if (Pred
== L
.getHeader())
2098 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred
) << ", has "
2099 << Pred
->succ_size() << " successors, "
2100 << printBlockFreq(MBFI
->getMBFI(), *Pred
) << " freq\n");
2101 if (Pred
->succ_size() > 2)
2104 MachineBasicBlock
*OtherBB
= nullptr;
2105 if (Pred
->succ_size() == 2) {
2106 OtherBB
= *Pred
->succ_begin();
2107 if (OtherBB
== OldTop
)
2108 OtherBB
= *Pred
->succ_rbegin();
2111 if (!canMoveBottomBlockToTop(Pred
, OldTop
))
2114 BlockFrequency Gains
= FallThroughGains(Pred
, OldTop
, OtherBB
,
2116 if ((Gains
> BlockFrequency(0)) &&
2117 (Gains
> BestGains
||
2118 ((Gains
== BestGains
) && Pred
->isLayoutSuccessor(OldTop
)))) {
2124 // If no direct predecessor is fine, just use the loop header.
2126 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2130 // Walk backwards through any straight line of predecessors.
2131 while (BestPred
->pred_size() == 1 &&
2132 (*BestPred
->pred_begin())->succ_size() == 1 &&
2133 *BestPred
->pred_begin() != L
.getHeader())
2134 BestPred
= *BestPred
->pred_begin();
2136 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred
) << "\n");
2140 /// Find the best loop top block for layout.
2142 /// This function iteratively calls findBestLoopTopHelper, until no new better
2143 /// BB can be found.
2145 MachineBlockPlacement::findBestLoopTop(const MachineLoop
&L
,
2146 const BlockFilterSet
&LoopBlockSet
) {
2147 // Placing the latch block before the header may introduce an extra branch
2148 // that skips this block the first time the loop is executed, which we want
2149 // to avoid when optimising for size.
2150 // FIXME: in theory there is a case that does not introduce a new branch,
2151 // i.e. when the layout predecessor does not fallthrough to the loop header.
2152 // In practice this never happens though: there always seems to be a preheader
2153 // that can fallthrough and that is also placed before the header.
2154 bool OptForSize
= F
->getFunction().hasOptSize() ||
2155 llvm::shouldOptimizeForSize(L
.getHeader(), PSI
, MBFI
.get());
2157 return L
.getHeader();
2159 MachineBasicBlock
*OldTop
= nullptr;
2160 MachineBasicBlock
*NewTop
= L
.getHeader();
2161 while (NewTop
!= OldTop
) {
2163 NewTop
= findBestLoopTopHelper(OldTop
, L
, LoopBlockSet
);
2164 if (NewTop
!= OldTop
)
2165 ComputedEdges
[NewTop
] = { OldTop
, false };
2170 /// Find the best loop exiting block for layout.
2172 /// This routine implements the logic to analyze the loop looking for the best
2173 /// block to layout at the top of the loop. Typically this is done to maximize
2174 /// fallthrough opportunities.
2176 MachineBlockPlacement::findBestLoopExit(const MachineLoop
&L
,
2177 const BlockFilterSet
&LoopBlockSet
,
2178 BlockFrequency
&ExitFreq
) {
2179 // We don't want to layout the loop linearly in all cases. If the loop header
2180 // is just a normal basic block in the loop, we want to look for what block
2181 // within the loop is the best one to layout at the top. However, if the loop
2182 // header has be pre-merged into a chain due to predecessors not having
2183 // analyzable branches, *and* the predecessor it is merged with is *not* part
2184 // of the loop, rotating the header into the middle of the loop will create
2185 // a non-contiguous range of blocks which is Very Bad. So start with the
2186 // header and only rotate if safe.
2187 BlockChain
&HeaderChain
= *BlockToChain
[L
.getHeader()];
2188 if (!LoopBlockSet
.count(*HeaderChain
.begin()))
2191 BlockFrequency BestExitEdgeFreq
;
2192 unsigned BestExitLoopDepth
= 0;
2193 MachineBasicBlock
*ExitingBB
= nullptr;
2194 // If there are exits to outer loops, loop rotation can severely limit
2195 // fallthrough opportunities unless it selects such an exit. Keep a set of
2196 // blocks where rotating to exit with that block will reach an outer loop.
2197 SmallPtrSet
<MachineBasicBlock
*, 4> BlocksExitingToOuterLoop
;
2199 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2200 << getBlockName(L
.getHeader()) << "\n");
2201 for (MachineBasicBlock
*MBB
: L
.getBlocks()) {
2202 BlockChain
&Chain
= *BlockToChain
[MBB
];
2203 // Ensure that this block is at the end of a chain; otherwise it could be
2204 // mid-way through an inner loop or a successor of an unanalyzable branch.
2205 if (MBB
!= *std::prev(Chain
.end()))
2208 // Now walk the successors. We need to establish whether this has a viable
2209 // exiting successor and whether it has a viable non-exiting successor.
2210 // We store the old exiting state and restore it if a viable looping
2211 // successor isn't found.
2212 MachineBasicBlock
*OldExitingBB
= ExitingBB
;
2213 BlockFrequency OldBestExitEdgeFreq
= BestExitEdgeFreq
;
2214 bool HasLoopingSucc
= false;
2215 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
2216 if (Succ
->isEHPad())
2220 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
2221 // Don't split chains, either this chain or the successor's chain.
2222 if (&Chain
== &SuccChain
) {
2223 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB
) << " -> "
2224 << getBlockName(Succ
) << " (chain conflict)\n");
2228 auto SuccProb
= MBPI
->getEdgeProbability(MBB
, Succ
);
2229 if (LoopBlockSet
.count(Succ
)) {
2230 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB
) << " -> "
2231 << getBlockName(Succ
) << " (" << SuccProb
<< ")\n");
2232 HasLoopingSucc
= true;
2236 unsigned SuccLoopDepth
= 0;
2237 if (MachineLoop
*ExitLoop
= MLI
->getLoopFor(Succ
)) {
2238 SuccLoopDepth
= ExitLoop
->getLoopDepth();
2239 if (ExitLoop
->contains(&L
))
2240 BlocksExitingToOuterLoop
.insert(MBB
);
2243 BlockFrequency ExitEdgeFreq
= MBFI
->getBlockFreq(MBB
) * SuccProb
;
2245 dbgs() << " exiting: " << getBlockName(MBB
) << " -> "
2246 << getBlockName(Succ
) << " [L:" << SuccLoopDepth
<< "] ("
2247 << printBlockFreq(MBFI
->getMBFI(), ExitEdgeFreq
) << ")\n");
2248 // Note that we bias this toward an existing layout successor to retain
2249 // incoming order in the absence of better information. The exit must have
2250 // a frequency higher than the current exit before we consider breaking
2252 BranchProbability
Bias(100 - ExitBlockBias
, 100);
2253 if (!ExitingBB
|| SuccLoopDepth
> BestExitLoopDepth
||
2254 ExitEdgeFreq
> BestExitEdgeFreq
||
2255 (MBB
->isLayoutSuccessor(Succ
) &&
2256 !(ExitEdgeFreq
< BestExitEdgeFreq
* Bias
))) {
2257 BestExitEdgeFreq
= ExitEdgeFreq
;
2262 if (!HasLoopingSucc
) {
2263 // Restore the old exiting state, no viable looping successor was found.
2264 ExitingBB
= OldExitingBB
;
2265 BestExitEdgeFreq
= OldBestExitEdgeFreq
;
2268 // Without a candidate exiting block or with only a single block in the
2269 // loop, just use the loop header to layout the loop.
2272 dbgs() << " No other candidate exit blocks, using loop header\n");
2275 if (L
.getNumBlocks() == 1) {
2276 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2280 // Also, if we have exit blocks which lead to outer loops but didn't select
2281 // one of them as the exiting block we are rotating toward, disable loop
2282 // rotation altogether.
2283 if (!BlocksExitingToOuterLoop
.empty() &&
2284 !BlocksExitingToOuterLoop
.count(ExitingBB
))
2287 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB
)
2289 ExitFreq
= BestExitEdgeFreq
;
2293 /// Check if there is a fallthrough to loop header Top.
2295 /// 1. Look for a Pred that can be layout before Top.
2296 /// 2. Check if Top is the most possible successor of Pred.
2298 MachineBlockPlacement::hasViableTopFallthrough(
2299 const MachineBasicBlock
*Top
,
2300 const BlockFilterSet
&LoopBlockSet
) {
2301 for (MachineBasicBlock
*Pred
: Top
->predecessors()) {
2302 BlockChain
*PredChain
= BlockToChain
[Pred
];
2303 if (!LoopBlockSet
.count(Pred
) &&
2304 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
2305 // Found a Pred block can be placed before Top.
2306 // Check if Top is the best successor of Pred.
2307 auto TopProb
= MBPI
->getEdgeProbability(Pred
, Top
);
2309 for (MachineBasicBlock
*Succ
: Pred
->successors()) {
2310 auto SuccProb
= MBPI
->getEdgeProbability(Pred
, Succ
);
2311 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2312 // Check if Succ can be placed after Pred.
2313 // Succ should not be in any chain, or it is the head of some chain.
2314 if ((!SuccChain
|| Succ
== *SuccChain
->begin()) && SuccProb
> TopProb
) {
2326 /// Attempt to rotate an exiting block to the bottom of the loop.
2328 /// Once we have built a chain, try to rotate it to line up the hot exit block
2329 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2330 /// branches. For example, if the loop has fallthrough into its header and out
2331 /// of its bottom already, don't rotate it.
2332 void MachineBlockPlacement::rotateLoop(BlockChain
&LoopChain
,
2333 const MachineBasicBlock
*ExitingBB
,
2334 BlockFrequency ExitFreq
,
2335 const BlockFilterSet
&LoopBlockSet
) {
2339 MachineBasicBlock
*Top
= *LoopChain
.begin();
2340 MachineBasicBlock
*Bottom
= *std::prev(LoopChain
.end());
2342 // If ExitingBB is already the last one in a chain then nothing to do.
2343 if (Bottom
== ExitingBB
)
2346 // The entry block should always be the first BB in a function.
2347 if (Top
->isEntryBlock())
2350 bool ViableTopFallthrough
= hasViableTopFallthrough(Top
, LoopBlockSet
);
2352 // If the header has viable fallthrough, check whether the current loop
2353 // bottom is a viable exiting block. If so, bail out as rotating will
2354 // introduce an unnecessary branch.
2355 if (ViableTopFallthrough
) {
2356 for (MachineBasicBlock
*Succ
: Bottom
->successors()) {
2357 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2358 if (!LoopBlockSet
.count(Succ
) &&
2359 (!SuccChain
|| Succ
== *SuccChain
->begin()))
2363 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2364 // frequency is larger than top fallthrough.
2365 BlockFrequency FallThrough2Top
= TopFallThroughFreq(Top
, LoopBlockSet
);
2366 if (FallThrough2Top
>= ExitFreq
)
2370 BlockChain::iterator ExitIt
= llvm::find(LoopChain
, ExitingBB
);
2371 if (ExitIt
== LoopChain
.end())
2374 // Rotating a loop exit to the bottom when there is a fallthrough to top
2375 // trades the entry fallthrough for an exit fallthrough.
2376 // If there is no bottom->top edge, but the chosen exit block does have
2377 // a fallthrough, we break that fallthrough for nothing in return.
2379 // Let's consider an example. We have a built chain of basic blocks
2380 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2381 // By doing a rotation we get
2382 // Bk+1, ..., Bn, B1, ..., Bk
2383 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2384 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2385 // It might be compensated by fallthrough Bn -> B1.
2386 // So we have a condition to avoid creation of extra branch by loop rotation.
2387 // All below must be true to avoid loop rotation:
2388 // If there is a fallthrough to top (B1)
2389 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2390 // There is no fallthrough from bottom (Bn) to top (B1).
2391 // Please note that there is no exit fallthrough from Bn because we checked it
2393 if (ViableTopFallthrough
) {
2394 assert(std::next(ExitIt
) != LoopChain
.end() &&
2395 "Exit should not be last BB");
2396 MachineBasicBlock
*NextBlockInChain
= *std::next(ExitIt
);
2397 if (ExitingBB
->isSuccessor(NextBlockInChain
))
2398 if (!Bottom
->isSuccessor(Top
))
2402 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB
)
2404 std::rotate(LoopChain
.begin(), std::next(ExitIt
), LoopChain
.end());
2407 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2409 /// With profile data, we can determine the cost in terms of missed fall through
2410 /// opportunities when rotating a loop chain and select the best rotation.
2411 /// Basically, there are three kinds of cost to consider for each rotation:
2412 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2413 /// the loop to the loop header.
2414 /// 2. The possibly missed fall through edges (if they exist) from the loop
2415 /// exits to BB out of the loop.
2416 /// 3. The missed fall through edge (if it exists) from the last BB to the
2417 /// first BB in the loop chain.
2418 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2419 /// We select the best rotation with the smallest cost.
2420 void MachineBlockPlacement::rotateLoopWithProfile(
2421 BlockChain
&LoopChain
, const MachineLoop
&L
,
2422 const BlockFilterSet
&LoopBlockSet
) {
2423 auto RotationPos
= LoopChain
.end();
2424 MachineBasicBlock
*ChainHeaderBB
= *LoopChain
.begin();
2426 // The entry block should always be the first BB in a function.
2427 if (ChainHeaderBB
->isEntryBlock())
2430 BlockFrequency SmallestRotationCost
= BlockFrequency::max();
2432 // A utility lambda that scales up a block frequency by dividing it by a
2433 // branch probability which is the reciprocal of the scale.
2434 auto ScaleBlockFrequency
= [](BlockFrequency Freq
,
2435 unsigned Scale
) -> BlockFrequency
{
2437 return BlockFrequency(0);
2438 // Use operator / between BlockFrequency and BranchProbability to implement
2439 // saturating multiplication.
2440 return Freq
/ BranchProbability(1, Scale
);
2443 // Compute the cost of the missed fall-through edge to the loop header if the
2444 // chain head is not the loop header. As we only consider natural loops with
2445 // single header, this computation can be done only once.
2446 BlockFrequency
HeaderFallThroughCost(0);
2447 for (auto *Pred
: ChainHeaderBB
->predecessors()) {
2448 BlockChain
*PredChain
= BlockToChain
[Pred
];
2449 if (!LoopBlockSet
.count(Pred
) &&
2450 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
2451 auto EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
2452 MBPI
->getEdgeProbability(Pred
, ChainHeaderBB
);
2453 auto FallThruCost
= ScaleBlockFrequency(EdgeFreq
, MisfetchCost
);
2454 // If the predecessor has only an unconditional jump to the header, we
2455 // need to consider the cost of this jump.
2456 if (Pred
->succ_size() == 1)
2457 FallThruCost
+= ScaleBlockFrequency(EdgeFreq
, JumpInstCost
);
2458 HeaderFallThroughCost
= std::max(HeaderFallThroughCost
, FallThruCost
);
2462 // Here we collect all exit blocks in the loop, and for each exit we find out
2463 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2464 // as the sum of frequencies of exit edges we collect here, excluding the exit
2465 // edge from the tail of the loop chain.
2466 SmallVector
<std::pair
<MachineBasicBlock
*, BlockFrequency
>, 4> ExitsWithFreq
;
2467 for (auto *BB
: LoopChain
) {
2468 auto LargestExitEdgeProb
= BranchProbability::getZero();
2469 for (auto *Succ
: BB
->successors()) {
2470 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2471 if (!LoopBlockSet
.count(Succ
) &&
2472 (!SuccChain
|| Succ
== *SuccChain
->begin())) {
2473 auto SuccProb
= MBPI
->getEdgeProbability(BB
, Succ
);
2474 LargestExitEdgeProb
= std::max(LargestExitEdgeProb
, SuccProb
);
2477 if (LargestExitEdgeProb
> BranchProbability::getZero()) {
2478 auto ExitFreq
= MBFI
->getBlockFreq(BB
) * LargestExitEdgeProb
;
2479 ExitsWithFreq
.emplace_back(BB
, ExitFreq
);
2483 // In this loop we iterate every block in the loop chain and calculate the
2484 // cost assuming the block is the head of the loop chain. When the loop ends,
2485 // we should have found the best candidate as the loop chain's head.
2486 for (auto Iter
= LoopChain
.begin(), TailIter
= std::prev(LoopChain
.end()),
2487 EndIter
= LoopChain
.end();
2488 Iter
!= EndIter
; Iter
++, TailIter
++) {
2489 // TailIter is used to track the tail of the loop chain if the block we are
2490 // checking (pointed by Iter) is the head of the chain.
2491 if (TailIter
== LoopChain
.end())
2492 TailIter
= LoopChain
.begin();
2494 auto TailBB
= *TailIter
;
2496 // Calculate the cost by putting this BB to the top.
2497 BlockFrequency Cost
= BlockFrequency(0);
2499 // If the current BB is the loop header, we need to take into account the
2500 // cost of the missed fall through edge from outside of the loop to the
2502 if (Iter
!= LoopChain
.begin())
2503 Cost
+= HeaderFallThroughCost
;
2505 // Collect the loop exit cost by summing up frequencies of all exit edges
2506 // except the one from the chain tail.
2507 for (auto &ExitWithFreq
: ExitsWithFreq
)
2508 if (TailBB
!= ExitWithFreq
.first
)
2509 Cost
+= ExitWithFreq
.second
;
2511 // The cost of breaking the once fall-through edge from the tail to the top
2512 // of the loop chain. Here we need to consider three cases:
2513 // 1. If the tail node has only one successor, then we will get an
2514 // additional jmp instruction. So the cost here is (MisfetchCost +
2515 // JumpInstCost) * tail node frequency.
2516 // 2. If the tail node has two successors, then we may still get an
2517 // additional jmp instruction if the layout successor after the loop
2518 // chain is not its CFG successor. Note that the more frequently executed
2519 // jmp instruction will be put ahead of the other one. Assume the
2520 // frequency of those two branches are x and y, where x is the frequency
2521 // of the edge to the chain head, then the cost will be
2522 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2523 // 3. If the tail node has more than two successors (this rarely happens),
2524 // we won't consider any additional cost.
2525 if (TailBB
->isSuccessor(*Iter
)) {
2526 auto TailBBFreq
= MBFI
->getBlockFreq(TailBB
);
2527 if (TailBB
->succ_size() == 1)
2528 Cost
+= ScaleBlockFrequency(TailBBFreq
, MisfetchCost
+ JumpInstCost
);
2529 else if (TailBB
->succ_size() == 2) {
2530 auto TailToHeadProb
= MBPI
->getEdgeProbability(TailBB
, *Iter
);
2531 auto TailToHeadFreq
= TailBBFreq
* TailToHeadProb
;
2532 auto ColderEdgeFreq
= TailToHeadProb
> BranchProbability(1, 2)
2533 ? TailBBFreq
* TailToHeadProb
.getCompl()
2535 Cost
+= ScaleBlockFrequency(TailToHeadFreq
, MisfetchCost
) +
2536 ScaleBlockFrequency(ColderEdgeFreq
, JumpInstCost
);
2540 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2541 << getBlockName(*Iter
) << " to the top: "
2542 << printBlockFreq(MBFI
->getMBFI(), Cost
) << "\n");
2544 if (Cost
< SmallestRotationCost
) {
2545 SmallestRotationCost
= Cost
;
2550 if (RotationPos
!= LoopChain
.end()) {
2551 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos
)
2552 << " to the top\n");
2553 std::rotate(LoopChain
.begin(), RotationPos
, LoopChain
.end());
2557 /// Collect blocks in the given loop that are to be placed.
2559 /// When profile data is available, exclude cold blocks from the returned set;
2560 /// otherwise, collect all blocks in the loop.
2561 MachineBlockPlacement::BlockFilterSet
2562 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop
&L
) {
2563 BlockFilterSet LoopBlockSet
;
2565 // Filter cold blocks off from LoopBlockSet when profile data is available.
2566 // Collect the sum of frequencies of incoming edges to the loop header from
2567 // outside. If we treat the loop as a super block, this is the frequency of
2568 // the loop. Then for each block in the loop, we calculate the ratio between
2569 // its frequency and the frequency of the loop block. When it is too small,
2570 // don't add it to the loop chain. If there are outer loops, then this block
2571 // will be merged into the first outer loop chain for which this block is not
2572 // cold anymore. This needs precise profile data and we only do this when
2573 // profile data is available.
2574 if (F
->getFunction().hasProfileData() || ForceLoopColdBlock
) {
2575 BlockFrequency
LoopFreq(0);
2576 for (auto *LoopPred
: L
.getHeader()->predecessors())
2577 if (!L
.contains(LoopPred
))
2578 LoopFreq
+= MBFI
->getBlockFreq(LoopPred
) *
2579 MBPI
->getEdgeProbability(LoopPred
, L
.getHeader());
2581 for (MachineBasicBlock
*LoopBB
: L
.getBlocks()) {
2582 if (LoopBlockSet
.count(LoopBB
))
2584 auto Freq
= MBFI
->getBlockFreq(LoopBB
).getFrequency();
2585 if (Freq
== 0 || LoopFreq
.getFrequency() / Freq
> LoopToColdBlockRatio
)
2587 BlockChain
*Chain
= BlockToChain
[LoopBB
];
2588 for (MachineBasicBlock
*ChainBB
: *Chain
)
2589 LoopBlockSet
.insert(ChainBB
);
2592 LoopBlockSet
.insert(L
.block_begin(), L
.block_end());
2594 return LoopBlockSet
;
2597 /// Forms basic block chains from the natural loop structures.
2599 /// These chains are designed to preserve the existing *structure* of the code
2600 /// as much as possible. We can then stitch the chains together in a way which
2601 /// both preserves the topological structure and minimizes taken conditional
2603 void MachineBlockPlacement::buildLoopChains(const MachineLoop
&L
) {
2604 // First recurse through any nested loops, building chains for those inner
2606 for (const MachineLoop
*InnerLoop
: L
)
2607 buildLoopChains(*InnerLoop
);
2609 assert(BlockWorkList
.empty() &&
2610 "BlockWorkList not empty when starting to build loop chains.");
2611 assert(EHPadWorkList
.empty() &&
2612 "EHPadWorkList not empty when starting to build loop chains.");
2613 BlockFilterSet LoopBlockSet
= collectLoopBlockSet(L
);
2615 // Check if we have profile data for this function. If yes, we will rotate
2616 // this loop by modeling costs more precisely which requires the profile data
2617 // for better layout.
2618 bool RotateLoopWithProfile
=
2619 ForcePreciseRotationCost
||
2620 (PreciseRotationCost
&& F
->getFunction().hasProfileData());
2622 // First check to see if there is an obviously preferable top block for the
2623 // loop. This will default to the header, but may end up as one of the
2624 // predecessors to the header if there is one which will result in strictly
2625 // fewer branches in the loop body.
2626 MachineBasicBlock
*LoopTop
= findBestLoopTop(L
, LoopBlockSet
);
2628 // If we selected just the header for the loop top, look for a potentially
2629 // profitable exit block in the event that rotating the loop can eliminate
2630 // branches by placing an exit edge at the bottom.
2632 // Loops are processed innermost to uttermost, make sure we clear
2633 // PreferredLoopExit before processing a new loop.
2634 PreferredLoopExit
= nullptr;
2635 BlockFrequency ExitFreq
;
2636 if (!RotateLoopWithProfile
&& LoopTop
== L
.getHeader())
2637 PreferredLoopExit
= findBestLoopExit(L
, LoopBlockSet
, ExitFreq
);
2639 BlockChain
&LoopChain
= *BlockToChain
[LoopTop
];
2641 // FIXME: This is a really lame way of walking the chains in the loop: we
2642 // walk the blocks, and use a set to prevent visiting a particular chain
2644 SmallPtrSet
<BlockChain
*, 4> UpdatedPreds
;
2645 assert(LoopChain
.UnscheduledPredecessors
== 0 &&
2646 "LoopChain should not have unscheduled predecessors.");
2647 UpdatedPreds
.insert(&LoopChain
);
2649 for (const MachineBasicBlock
*LoopBB
: LoopBlockSet
)
2650 fillWorkLists(LoopBB
, UpdatedPreds
, &LoopBlockSet
);
2652 buildChain(LoopTop
, LoopChain
, &LoopBlockSet
);
2654 if (RotateLoopWithProfile
)
2655 rotateLoopWithProfile(LoopChain
, L
, LoopBlockSet
);
2657 rotateLoop(LoopChain
, PreferredLoopExit
, ExitFreq
, LoopBlockSet
);
2660 // Crash at the end so we get all of the debugging output first.
2661 bool BadLoop
= false;
2662 if (LoopChain
.UnscheduledPredecessors
) {
2664 dbgs() << "Loop chain contains a block without its preds placed!\n"
2665 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2666 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n";
2668 for (MachineBasicBlock
*ChainBB
: LoopChain
) {
2669 dbgs() << " ... " << getBlockName(ChainBB
) << "\n";
2670 if (!LoopBlockSet
.remove(ChainBB
)) {
2671 // We don't mark the loop as bad here because there are real situations
2672 // where this can occur. For example, with an unanalyzable fallthrough
2673 // from a loop block to a non-loop block or vice versa.
2674 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2675 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2676 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n"
2677 << " Bad block: " << getBlockName(ChainBB
) << "\n";
2681 if (!LoopBlockSet
.empty()) {
2683 for (const MachineBasicBlock
*LoopBB
: LoopBlockSet
)
2684 dbgs() << "Loop contains blocks never placed into a chain!\n"
2685 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2686 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n"
2687 << " Bad block: " << getBlockName(LoopBB
) << "\n";
2689 assert(!BadLoop
&& "Detected problems with the placement of this loop.");
2692 BlockWorkList
.clear();
2693 EHPadWorkList
.clear();
2696 void MachineBlockPlacement::buildCFGChains() {
2697 // Ensure that every BB in the function has an associated chain to simplify
2698 // the assumptions of the remaining algorithm.
2699 SmallVector
<MachineOperand
, 4> Cond
; // For analyzeBranch.
2700 for (MachineFunction::iterator FI
= F
->begin(), FE
= F
->end(); FI
!= FE
;
2702 MachineBasicBlock
*BB
= &*FI
;
2704 new (ChainAllocator
.Allocate()) BlockChain(BlockToChain
, BB
);
2705 // Also, merge any blocks which we cannot reason about and must preserve
2706 // the exact fallthrough behavior for.
2709 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For analyzeBranch.
2710 if (!TII
->analyzeBranch(*BB
, TBB
, FBB
, Cond
) || !FI
->canFallThrough())
2713 MachineFunction::iterator NextFI
= std::next(FI
);
2714 MachineBasicBlock
*NextBB
= &*NextFI
;
2715 // Ensure that the layout successor is a viable block, as we know that
2716 // fallthrough is a possibility.
2717 assert(NextFI
!= FE
&& "Can't fallthrough past the last block.");
2718 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2719 << getBlockName(BB
) << " -> " << getBlockName(NextBB
)
2721 Chain
->merge(NextBB
, nullptr);
2723 BlocksWithUnanalyzableExits
.insert(&*BB
);
2730 // Build any loop-based chains.
2731 PreferredLoopExit
= nullptr;
2732 for (MachineLoop
*L
: *MLI
)
2733 buildLoopChains(*L
);
2735 assert(BlockWorkList
.empty() &&
2736 "BlockWorkList should be empty before building final chain.");
2737 assert(EHPadWorkList
.empty() &&
2738 "EHPadWorkList should be empty before building final chain.");
2740 SmallPtrSet
<BlockChain
*, 4> UpdatedPreds
;
2741 for (MachineBasicBlock
&MBB
: *F
)
2742 fillWorkLists(&MBB
, UpdatedPreds
);
2744 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2745 buildChain(&F
->front(), FunctionChain
);
2748 using FunctionBlockSetType
= SmallPtrSet
<MachineBasicBlock
*, 16>;
2751 // Crash at the end so we get all of the debugging output first.
2752 bool BadFunc
= false;
2753 FunctionBlockSetType FunctionBlockSet
;
2754 for (MachineBasicBlock
&MBB
: *F
)
2755 FunctionBlockSet
.insert(&MBB
);
2757 for (MachineBasicBlock
*ChainBB
: FunctionChain
)
2758 if (!FunctionBlockSet
.erase(ChainBB
)) {
2760 dbgs() << "Function chain contains a block not in the function!\n"
2761 << " Bad block: " << getBlockName(ChainBB
) << "\n";
2764 if (!FunctionBlockSet
.empty()) {
2766 for (MachineBasicBlock
*RemainingBB
: FunctionBlockSet
)
2767 dbgs() << "Function contains blocks never placed into a chain!\n"
2768 << " Bad block: " << getBlockName(RemainingBB
) << "\n";
2770 assert(!BadFunc
&& "Detected problems with the block placement.");
2773 // Remember original layout ordering, so we can update terminators after
2774 // reordering to point to the original layout successor.
2775 SmallVector
<MachineBasicBlock
*, 4> OriginalLayoutSuccessors(
2776 F
->getNumBlockIDs());
2778 MachineBasicBlock
*LastMBB
= nullptr;
2779 for (auto &MBB
: *F
) {
2780 if (LastMBB
!= nullptr)
2781 OriginalLayoutSuccessors
[LastMBB
->getNumber()] = &MBB
;
2784 OriginalLayoutSuccessors
[F
->back().getNumber()] = nullptr;
2787 // Splice the blocks into place.
2788 MachineFunction::iterator InsertPos
= F
->begin();
2789 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F
->getName() << "\n");
2790 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2791 LLVM_DEBUG(dbgs() << (ChainBB
== *FunctionChain
.begin() ? "Placing chain "
2793 << getBlockName(ChainBB
) << "\n");
2794 if (InsertPos
!= MachineFunction::iterator(ChainBB
))
2795 F
->splice(InsertPos
, ChainBB
);
2799 // Update the terminator of the previous block.
2800 if (ChainBB
== *FunctionChain
.begin())
2802 MachineBasicBlock
*PrevBB
= &*std::prev(MachineFunction::iterator(ChainBB
));
2804 // FIXME: It would be awesome of updateTerminator would just return rather
2805 // than assert when the branch cannot be analyzed in order to remove this
2808 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For analyzeBranch.
2811 if (!BlocksWithUnanalyzableExits
.count(PrevBB
)) {
2812 // Given the exact block placement we chose, we may actually not _need_ to
2813 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2814 // do that at this point is a bug.
2815 assert((!TII
->analyzeBranch(*PrevBB
, TBB
, FBB
, Cond
) ||
2816 !PrevBB
->canFallThrough()) &&
2817 "Unexpected block with un-analyzable fallthrough!");
2819 TBB
= FBB
= nullptr;
2823 // The "PrevBB" is not yet updated to reflect current code layout, so,
2824 // o. it may fall-through to a block without explicit "goto" instruction
2825 // before layout, and no longer fall-through it after layout; or
2826 // o. just opposite.
2828 // analyzeBranch() may return erroneous value for FBB when these two
2829 // situations take place. For the first scenario FBB is mistakenly set NULL;
2830 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2831 // mistakenly pointing to "*BI".
2832 // Thus, if the future change needs to use FBB before the layout is set, it
2833 // has to correct FBB first by using the code similar to the following:
2835 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2836 // PrevBB->updateTerminator();
2838 // TBB = FBB = nullptr;
2839 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2840 // // FIXME: This should never take place.
2841 // TBB = FBB = nullptr;
2844 if (!TII
->analyzeBranch(*PrevBB
, TBB
, FBB
, Cond
)) {
2845 PrevBB
->updateTerminator(OriginalLayoutSuccessors
[PrevBB
->getNumber()]);
2849 // Fixup the last block.
2851 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For analyzeBranch.
2852 if (!TII
->analyzeBranch(F
->back(), TBB
, FBB
, Cond
)) {
2853 MachineBasicBlock
*PrevBB
= &F
->back();
2854 PrevBB
->updateTerminator(OriginalLayoutSuccessors
[PrevBB
->getNumber()]);
2857 BlockWorkList
.clear();
2858 EHPadWorkList
.clear();
2861 void MachineBlockPlacement::optimizeBranches() {
2862 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2863 SmallVector
<MachineOperand
, 4> Cond
; // For analyzeBranch.
2865 // Now that all the basic blocks in the chain have the proper layout,
2866 // make a final call to analyzeBranch with AllowModify set.
2867 // Indeed, the target may be able to optimize the branches in a way we
2868 // cannot because all branches may not be analyzable.
2869 // E.g., the target may be able to remove an unconditional branch to
2870 // a fallthrough when it occurs after predicated terminators.
2871 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2873 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For analyzeBranch.
2874 if (!TII
->analyzeBranch(*ChainBB
, TBB
, FBB
, Cond
, /*AllowModify*/ true)) {
2875 // If PrevBB has a two-way branch, try to re-order the branches
2876 // such that we branch to the successor with higher probability first.
2877 if (TBB
&& !Cond
.empty() && FBB
&&
2878 MBPI
->getEdgeProbability(ChainBB
, FBB
) >
2879 MBPI
->getEdgeProbability(ChainBB
, TBB
) &&
2880 !TII
->reverseBranchCondition(Cond
)) {
2881 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2882 << getBlockName(ChainBB
) << "\n");
2883 LLVM_DEBUG(dbgs() << " Edge probability: "
2884 << MBPI
->getEdgeProbability(ChainBB
, FBB
) << " vs "
2885 << MBPI
->getEdgeProbability(ChainBB
, TBB
) << "\n");
2886 DebugLoc dl
; // FIXME: this is nowhere
2887 TII
->removeBranch(*ChainBB
);
2888 TII
->insertBranch(*ChainBB
, FBB
, TBB
, Cond
, dl
);
2894 void MachineBlockPlacement::alignBlocks() {
2895 // Walk through the backedges of the function now that we have fully laid out
2896 // the basic blocks and align the destination of each backedge. We don't rely
2897 // exclusively on the loop info here so that we can align backedges in
2898 // unnatural CFGs and backedges that were introduced purely because of the
2899 // loop rotations done during this layout pass.
2900 if (F
->getFunction().hasMinSize() ||
2901 (F
->getFunction().hasOptSize() && !TLI
->alignLoopsWithOptSize()))
2903 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2904 if (FunctionChain
.begin() == FunctionChain
.end())
2905 return; // Empty chain.
2907 const BranchProbability
ColdProb(1, 5); // 20%
2908 BlockFrequency EntryFreq
= MBFI
->getBlockFreq(&F
->front());
2909 BlockFrequency WeightedEntryFreq
= EntryFreq
* ColdProb
;
2910 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2911 if (ChainBB
== *FunctionChain
.begin())
2914 // Don't align non-looping basic blocks. These are unlikely to execute
2915 // enough times to matter in practice. Note that we'll still handle
2916 // unnatural CFGs inside of a natural outer loop (the common case) and
2918 MachineLoop
*L
= MLI
->getLoopFor(ChainBB
);
2922 const Align TLIAlign
= TLI
->getPrefLoopAlignment(L
);
2923 unsigned MDAlign
= 1;
2924 MDNode
*LoopID
= L
->getLoopID();
2926 for (unsigned I
= 1, E
= LoopID
->getNumOperands(); I
< E
; ++I
) {
2927 MDNode
*MD
= dyn_cast
<MDNode
>(LoopID
->getOperand(I
));
2930 MDString
*S
= dyn_cast
<MDString
>(MD
->getOperand(0));
2933 if (S
->getString() == "llvm.loop.align") {
2934 assert(MD
->getNumOperands() == 2 &&
2935 "per-loop align metadata should have two operands.");
2937 mdconst::extract
<ConstantInt
>(MD
->getOperand(1))->getZExtValue();
2938 assert(MDAlign
>= 1 && "per-loop align value must be positive.");
2943 // Use max of the TLIAlign and MDAlign
2944 const Align LoopAlign
= std::max(TLIAlign
, Align(MDAlign
));
2946 continue; // Don't care about loop alignment.
2948 // If the block is cold relative to the function entry don't waste space
2950 BlockFrequency Freq
= MBFI
->getBlockFreq(ChainBB
);
2951 if (Freq
< WeightedEntryFreq
)
2954 // If the block is cold relative to its loop header, don't align it
2955 // regardless of what edges into the block exist.
2956 MachineBasicBlock
*LoopHeader
= L
->getHeader();
2957 BlockFrequency LoopHeaderFreq
= MBFI
->getBlockFreq(LoopHeader
);
2958 if (Freq
< (LoopHeaderFreq
* ColdProb
))
2961 // If the global profiles indicates so, don't align it.
2962 if (llvm::shouldOptimizeForSize(ChainBB
, PSI
, MBFI
.get()) &&
2963 !TLI
->alignLoopsWithOptSize())
2966 // Check for the existence of a non-layout predecessor which would benefit
2967 // from aligning this block.
2968 MachineBasicBlock
*LayoutPred
=
2969 &*std::prev(MachineFunction::iterator(ChainBB
));
2971 auto DetermineMaxAlignmentPadding
= [&]() {
2972 // Set the maximum bytes allowed to be emitted for alignment.
2974 if (MaxBytesForAlignmentOverride
.getNumOccurrences() > 0)
2975 MaxBytes
= MaxBytesForAlignmentOverride
;
2977 MaxBytes
= TLI
->getMaxPermittedBytesForAlignment(ChainBB
);
2978 ChainBB
->setMaxBytesForAlignment(MaxBytes
);
2981 // Force alignment if all the predecessors are jumps. We already checked
2982 // that the block isn't cold above.
2983 if (!LayoutPred
->isSuccessor(ChainBB
)) {
2984 ChainBB
->setAlignment(LoopAlign
);
2985 DetermineMaxAlignmentPadding();
2989 // Align this block if the layout predecessor's edge into this block is
2990 // cold relative to the block. When this is true, other predecessors make up
2991 // all of the hot entries into the block and thus alignment is likely to be
2993 BranchProbability LayoutProb
=
2994 MBPI
->getEdgeProbability(LayoutPred
, ChainBB
);
2995 BlockFrequency LayoutEdgeFreq
= MBFI
->getBlockFreq(LayoutPred
) * LayoutProb
;
2996 if (LayoutEdgeFreq
<= (Freq
* ColdProb
)) {
2997 ChainBB
->setAlignment(LoopAlign
);
2998 DetermineMaxAlignmentPadding();
3003 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
3004 /// it was duplicated into its chain predecessor and removed.
3005 /// \p BB - Basic block that may be duplicated.
3007 /// \p LPred - Chosen layout predecessor of \p BB.
3008 /// Updated to be the chain end if LPred is removed.
3009 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3010 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3011 /// Used to identify which blocks to update predecessor
3013 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3014 /// chosen in the given order due to unnatural CFG
3015 /// only needed if \p BB is removed and
3016 /// \p PrevUnplacedBlockIt pointed to \p BB.
3017 /// @return true if \p BB was removed.
3018 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
3019 MachineBasicBlock
*BB
, MachineBasicBlock
*&LPred
,
3020 const MachineBasicBlock
*LoopHeaderBB
,
3021 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
3022 MachineFunction::iterator
&PrevUnplacedBlockIt
) {
3023 bool Removed
, DuplicatedToLPred
;
3024 bool DuplicatedToOriginalLPred
;
3025 Removed
= maybeTailDuplicateBlock(BB
, LPred
, Chain
, BlockFilter
,
3026 PrevUnplacedBlockIt
,
3030 DuplicatedToOriginalLPred
= DuplicatedToLPred
;
3031 // Iteratively try to duplicate again. It can happen that a block that is
3032 // duplicated into is still small enough to be duplicated again.
3033 // No need to call markBlockSuccessors in this case, as the blocks being
3034 // duplicated from here on are already scheduled.
3035 while (DuplicatedToLPred
&& Removed
) {
3036 MachineBasicBlock
*DupBB
, *DupPred
;
3037 // The removal callback causes Chain.end() to be updated when a block is
3038 // removed. On the first pass through the loop, the chain end should be the
3039 // same as it was on function entry. On subsequent passes, because we are
3040 // duplicating the block at the end of the chain, if it is removed the
3041 // chain will have shrunk by one block.
3042 BlockChain::iterator ChainEnd
= Chain
.end();
3043 DupBB
= *(--ChainEnd
);
3044 // Now try to duplicate again.
3045 if (ChainEnd
== Chain
.begin())
3047 DupPred
= *std::prev(ChainEnd
);
3048 Removed
= maybeTailDuplicateBlock(DupBB
, DupPred
, Chain
, BlockFilter
,
3049 PrevUnplacedBlockIt
,
3052 // If BB was duplicated into LPred, it is now scheduled. But because it was
3053 // removed, markChainSuccessors won't be called for its chain. Instead we
3054 // call markBlockSuccessors for LPred to achieve the same effect. This must go
3055 // at the end because repeating the tail duplication can increase the number
3056 // of unscheduled predecessors.
3057 LPred
= *std::prev(Chain
.end());
3058 if (DuplicatedToOriginalLPred
)
3059 markBlockSuccessors(Chain
, LPred
, LoopHeaderBB
, BlockFilter
);
3063 /// Tail duplicate \p BB into (some) predecessors if profitable.
3064 /// \p BB - Basic block that may be duplicated
3065 /// \p LPred - Chosen layout predecessor of \p BB
3066 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3067 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3068 /// Used to identify which blocks to update predecessor
3070 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3071 /// chosen in the given order due to unnatural CFG
3072 /// only needed if \p BB is removed and
3073 /// \p PrevUnplacedBlockIt pointed to \p BB.
3074 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3075 /// \return - True if the block was duplicated into all preds and removed.
3076 bool MachineBlockPlacement::maybeTailDuplicateBlock(
3077 MachineBasicBlock
*BB
, MachineBasicBlock
*LPred
,
3078 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
3079 MachineFunction::iterator
&PrevUnplacedBlockIt
,
3080 bool &DuplicatedToLPred
) {
3081 DuplicatedToLPred
= false;
3082 if (!shouldTailDuplicate(BB
))
3085 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB
->getNumber()
3088 // This has to be a callback because none of it can be done after
3090 bool Removed
= false;
3091 auto RemovalCallback
=
3092 [&](MachineBasicBlock
*RemBB
) {
3093 // Signal to outer function
3096 // Conservative default.
3097 bool InWorkList
= true;
3098 // Remove from the Chain and Chain Map
3099 if (BlockToChain
.count(RemBB
)) {
3100 BlockChain
*Chain
= BlockToChain
[RemBB
];
3101 InWorkList
= Chain
->UnscheduledPredecessors
== 0;
3102 Chain
->remove(RemBB
);
3103 BlockToChain
.erase(RemBB
);
3106 // Handle the unplaced block iterator
3107 if (&(*PrevUnplacedBlockIt
) == RemBB
) {
3108 PrevUnplacedBlockIt
++;
3111 // Handle the Work Lists
3113 SmallVectorImpl
<MachineBasicBlock
*> &RemoveList
= BlockWorkList
;
3114 if (RemBB
->isEHPad())
3115 RemoveList
= EHPadWorkList
;
3116 llvm::erase(RemoveList
, RemBB
);
3119 // Handle the filter set
3121 BlockFilter
->remove(RemBB
);
3124 // Remove the block from loop info.
3125 MLI
->removeBlock(RemBB
);
3126 if (RemBB
== PreferredLoopExit
)
3127 PreferredLoopExit
= nullptr;
3129 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3130 << getBlockName(RemBB
) << "\n");
3132 auto RemovalCallbackRef
=
3133 function_ref
<void(MachineBasicBlock
*)>(RemovalCallback
);
3135 SmallVector
<MachineBasicBlock
*, 8> DuplicatedPreds
;
3136 bool IsSimple
= TailDup
.isSimpleBB(BB
);
3137 SmallVector
<MachineBasicBlock
*, 8> CandidatePreds
;
3138 SmallVectorImpl
<MachineBasicBlock
*> *CandidatePtr
= nullptr;
3139 if (F
->getFunction().hasProfileData()) {
3140 // We can do partial duplication with precise profile information.
3141 findDuplicateCandidates(CandidatePreds
, BB
, BlockFilter
);
3142 if (CandidatePreds
.size() == 0)
3144 if (CandidatePreds
.size() < BB
->pred_size())
3145 CandidatePtr
= &CandidatePreds
;
3147 TailDup
.tailDuplicateAndUpdate(IsSimple
, BB
, LPred
, &DuplicatedPreds
,
3148 &RemovalCallbackRef
, CandidatePtr
);
3150 // Update UnscheduledPredecessors to reflect tail-duplication.
3151 DuplicatedToLPred
= false;
3152 for (MachineBasicBlock
*Pred
: DuplicatedPreds
) {
3153 // We're only looking for unscheduled predecessors that match the filter.
3154 BlockChain
* PredChain
= BlockToChain
[Pred
];
3156 DuplicatedToLPred
= true;
3157 if (Pred
== LPred
|| (BlockFilter
&& !BlockFilter
->count(Pred
))
3158 || PredChain
== &Chain
)
3160 for (MachineBasicBlock
*NewSucc
: Pred
->successors()) {
3161 if (BlockFilter
&& !BlockFilter
->count(NewSucc
))
3163 BlockChain
*NewChain
= BlockToChain
[NewSucc
];
3164 if (NewChain
!= &Chain
&& NewChain
!= PredChain
)
3165 NewChain
->UnscheduledPredecessors
++;
3171 // Count the number of actual machine instructions.
3172 static uint64_t countMBBInstruction(MachineBasicBlock
*MBB
) {
3173 uint64_t InstrCount
= 0;
3174 for (MachineInstr
&MI
: *MBB
) {
3175 if (!MI
.isPHI() && !MI
.isMetaInstruction())
3181 // The size cost of duplication is the instruction size of the duplicated block.
3182 // So we should scale the threshold accordingly. But the instruction size is not
3183 // available on all targets, so we use the number of instructions instead.
3184 BlockFrequency
MachineBlockPlacement::scaleThreshold(MachineBasicBlock
*BB
) {
3185 return BlockFrequency(DupThreshold
.getFrequency() * countMBBInstruction(BB
));
3188 // Returns true if BB is Pred's best successor.
3189 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock
*BB
,
3190 MachineBasicBlock
*Pred
,
3191 BlockFilterSet
*BlockFilter
) {
3194 if (BlockFilter
&& !BlockFilter
->count(Pred
))
3196 BlockChain
*PredChain
= BlockToChain
[Pred
];
3197 if (PredChain
&& (Pred
!= *std::prev(PredChain
->end())))
3200 // Find the successor with largest probability excluding BB.
3201 BranchProbability BestProb
= BranchProbability::getZero();
3202 for (MachineBasicBlock
*Succ
: Pred
->successors())
3204 if (BlockFilter
&& !BlockFilter
->count(Succ
))
3206 BlockChain
*SuccChain
= BlockToChain
[Succ
];
3207 if (SuccChain
&& (Succ
!= *SuccChain
->begin()))
3209 BranchProbability SuccProb
= MBPI
->getEdgeProbability(Pred
, Succ
);
3210 if (SuccProb
> BestProb
)
3211 BestProb
= SuccProb
;
3214 BranchProbability BBProb
= MBPI
->getEdgeProbability(Pred
, BB
);
3215 if (BBProb
<= BestProb
)
3218 // Compute the number of reduced taken branches if Pred falls through to BB
3219 // instead of another successor. Then compare it with threshold.
3220 BlockFrequency PredFreq
= getBlockCountOrFrequency(Pred
);
3221 BlockFrequency Gain
= PredFreq
* (BBProb
- BestProb
);
3222 return Gain
> scaleThreshold(BB
);
3225 // Find out the predecessors of BB and BB can be beneficially duplicated into
3227 void MachineBlockPlacement::findDuplicateCandidates(
3228 SmallVectorImpl
<MachineBasicBlock
*> &Candidates
,
3229 MachineBasicBlock
*BB
,
3230 BlockFilterSet
*BlockFilter
) {
3231 MachineBasicBlock
*Fallthrough
= nullptr;
3232 BranchProbability DefaultBranchProb
= BranchProbability::getZero();
3233 BlockFrequency
BBDupThreshold(scaleThreshold(BB
));
3234 SmallVector
<MachineBasicBlock
*, 8> Preds(BB
->predecessors());
3235 SmallVector
<MachineBasicBlock
*, 8> Succs(BB
->successors());
3237 // Sort for highest frequency.
3238 auto CmpSucc
= [&](MachineBasicBlock
*A
, MachineBasicBlock
*B
) {
3239 return MBPI
->getEdgeProbability(BB
, A
) > MBPI
->getEdgeProbability(BB
, B
);
3241 auto CmpPred
= [&](MachineBasicBlock
*A
, MachineBasicBlock
*B
) {
3242 return MBFI
->getBlockFreq(A
) > MBFI
->getBlockFreq(B
);
3244 llvm::stable_sort(Succs
, CmpSucc
);
3245 llvm::stable_sort(Preds
, CmpPred
);
3247 auto SuccIt
= Succs
.begin();
3248 if (SuccIt
!= Succs
.end()) {
3249 DefaultBranchProb
= MBPI
->getEdgeProbability(BB
, *SuccIt
).getCompl();
3252 // For each predecessors of BB, compute the benefit of duplicating BB,
3253 // if it is larger than the threshold, add it into Candidates.
3255 // If we have following control flow.
3266 // And it can be partially duplicated as
3279 // The benefit of duplicating into a predecessor is defined as
3280 // Orig_taken_branch - Duplicated_taken_branch
3282 // The Orig_taken_branch is computed with the assumption that predecessor
3283 // jumps to BB and the most possible successor is laid out after BB.
3285 // The Duplicated_taken_branch is computed with the assumption that BB is
3286 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3287 // SB2 for PB2 in our case). If there is no available successor, the combined
3288 // block jumps to all BB's successor, like PB3 in this example.
3290 // If a predecessor has multiple successors, so BB can't be duplicated into
3291 // it. But it can beneficially fall through to BB, and duplicate BB into other
3293 for (MachineBasicBlock
*Pred
: Preds
) {
3294 BlockFrequency PredFreq
= getBlockCountOrFrequency(Pred
);
3296 if (!TailDup
.canTailDuplicate(BB
, Pred
)) {
3297 // BB can't be duplicated into Pred, but it is possible to be layout
3299 if (!Fallthrough
&& isBestSuccessor(BB
, Pred
, BlockFilter
)) {
3301 if (SuccIt
!= Succs
.end())
3307 BlockFrequency OrigCost
= PredFreq
+ PredFreq
* DefaultBranchProb
;
3308 BlockFrequency DupCost
;
3309 if (SuccIt
== Succs
.end()) {
3310 // Jump to all successors;
3311 if (Succs
.size() > 0)
3312 DupCost
+= PredFreq
;
3314 // Fallthrough to *SuccIt, jump to all other successors;
3315 DupCost
+= PredFreq
;
3316 DupCost
-= PredFreq
* MBPI
->getEdgeProbability(BB
, *SuccIt
);
3319 assert(OrigCost
>= DupCost
);
3320 OrigCost
-= DupCost
;
3321 if (OrigCost
> BBDupThreshold
) {
3322 Candidates
.push_back(Pred
);
3323 if (SuccIt
!= Succs
.end())
3328 // No predecessors can optimally fallthrough to BB.
3329 // So we can change one duplication into fallthrough.
3331 if ((Candidates
.size() < Preds
.size()) && (Candidates
.size() > 0)) {
3332 Candidates
[0] = Candidates
.back();
3333 Candidates
.pop_back();
3338 void MachineBlockPlacement::initDupThreshold() {
3339 DupThreshold
= BlockFrequency(0);
3340 if (!F
->getFunction().hasProfileData())
3343 // We prefer to use prifile count.
3344 uint64_t HotThreshold
= PSI
->getOrCompHotCountThreshold();
3345 if (HotThreshold
!= UINT64_MAX
) {
3346 UseProfileCount
= true;
3348 BlockFrequency(HotThreshold
* TailDupProfilePercentThreshold
/ 100);
3352 // Profile count is not available, we can use block frequency instead.
3353 BlockFrequency MaxFreq
= BlockFrequency(0);
3354 for (MachineBasicBlock
&MBB
: *F
) {
3355 BlockFrequency Freq
= MBFI
->getBlockFreq(&MBB
);
3360 BranchProbability
ThresholdProb(TailDupPlacementPenalty
, 100);
3361 DupThreshold
= BlockFrequency(MaxFreq
* ThresholdProb
);
3362 UseProfileCount
= false;
3365 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction
&MF
) {
3366 if (skipFunction(MF
.getFunction()))
3369 // Check for single-block functions and skip them.
3370 if (std::next(MF
.begin()) == MF
.end())
3374 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
3375 MBFI
= std::make_unique
<MBFIWrapper
>(
3376 getAnalysis
<MachineBlockFrequencyInfo
>());
3377 MLI
= &getAnalysis
<MachineLoopInfo
>();
3378 TII
= MF
.getSubtarget().getInstrInfo();
3379 TLI
= MF
.getSubtarget().getTargetLowering();
3381 PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
3385 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3386 // there are no MachineLoops.
3387 PreferredLoopExit
= nullptr;
3389 assert(BlockToChain
.empty() &&
3390 "BlockToChain map should be empty before starting placement.");
3391 assert(ComputedEdges
.empty() &&
3392 "Computed Edge map should be empty before starting placement.");
3394 unsigned TailDupSize
= TailDupPlacementThreshold
;
3395 // If only the aggressive threshold is explicitly set, use it.
3396 if (TailDupPlacementAggressiveThreshold
.getNumOccurrences() != 0 &&
3397 TailDupPlacementThreshold
.getNumOccurrences() == 0)
3398 TailDupSize
= TailDupPlacementAggressiveThreshold
;
3400 TargetPassConfig
*PassConfig
= &getAnalysis
<TargetPassConfig
>();
3401 // For aggressive optimization, we can adjust some thresholds to be less
3403 if (PassConfig
->getOptLevel() >= CodeGenOptLevel::Aggressive
) {
3404 // At O3 we should be more willing to copy blocks for tail duplication. This
3405 // increases size pressure, so we only do it at O3
3406 // Do this unless only the regular threshold is explicitly set.
3407 if (TailDupPlacementThreshold
.getNumOccurrences() == 0 ||
3408 TailDupPlacementAggressiveThreshold
.getNumOccurrences() != 0)
3409 TailDupSize
= TailDupPlacementAggressiveThreshold
;
3412 // If there's no threshold provided through options, query the target
3413 // information for a threshold instead.
3414 if (TailDupPlacementThreshold
.getNumOccurrences() == 0 &&
3415 (PassConfig
->getOptLevel() < CodeGenOptLevel::Aggressive
||
3416 TailDupPlacementAggressiveThreshold
.getNumOccurrences() == 0))
3417 TailDupSize
= TII
->getTailDuplicateSize(PassConfig
->getOptLevel());
3419 if (allowTailDupPlacement()) {
3420 MPDT
= &getAnalysis
<MachinePostDominatorTree
>();
3421 bool OptForSize
= MF
.getFunction().hasOptSize() ||
3422 llvm::shouldOptimizeForSize(&MF
, PSI
, &MBFI
->getMBFI());
3425 bool PreRegAlloc
= false;
3426 TailDup
.initMF(MF
, PreRegAlloc
, MBPI
, MBFI
.get(), PSI
,
3427 /* LayoutMode */ true, TailDupSize
);
3428 precomputeTriangleChains();
3433 // Changing the layout can create new tail merging opportunities.
3434 // TailMerge can create jump into if branches that make CFG irreducible for
3435 // HW that requires structured CFG.
3436 bool EnableTailMerge
= !MF
.getTarget().requiresStructuredCFG() &&
3437 PassConfig
->getEnableTailMerge() &&
3438 BranchFoldPlacement
;
3439 // No tail merging opportunities if the block number is less than four.
3440 if (MF
.size() > 3 && EnableTailMerge
) {
3441 unsigned TailMergeSize
= TailDupSize
+ 1;
3442 BranchFolder
BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3443 *MBFI
, *MBPI
, PSI
, TailMergeSize
);
3445 if (BF
.OptimizeFunction(MF
, TII
, MF
.getSubtarget().getRegisterInfo(), MLI
,
3446 /*AfterPlacement=*/true)) {
3447 // Redo the layout if tail merging creates/removes/moves blocks.
3448 BlockToChain
.clear();
3449 ComputedEdges
.clear();
3450 // Must redo the post-dominator tree if blocks were changed.
3452 MPDT
->runOnMachineFunction(MF
);
3453 ChainAllocator
.DestroyAll();
3458 // Apply a post-processing optimizing block placement.
3459 if (MF
.size() >= 3 && EnableExtTspBlockPlacement
&&
3460 (ApplyExtTspWithoutProfile
|| MF
.getFunction().hasProfileData())) {
3461 // Find a new placement and modify the layout of the blocks in the function.
3464 // Re-create CFG chain so that we can optimizeBranches and alignBlocks.
3465 createCFGChainExtTsp();
3471 BlockToChain
.clear();
3472 ComputedEdges
.clear();
3473 ChainAllocator
.DestroyAll();
3475 bool HasMaxBytesOverride
=
3476 MaxBytesForAlignmentOverride
.getNumOccurrences() > 0;
3479 // Align all of the blocks in the function to a specific alignment.
3480 for (MachineBasicBlock
&MBB
: MF
) {
3481 if (HasMaxBytesOverride
)
3482 MBB
.setAlignment(Align(1ULL << AlignAllBlock
),
3483 MaxBytesForAlignmentOverride
);
3485 MBB
.setAlignment(Align(1ULL << AlignAllBlock
));
3487 else if (AlignAllNonFallThruBlocks
) {
3488 // Align all of the blocks that have no fall-through predecessors to a
3489 // specific alignment.
3490 for (auto MBI
= std::next(MF
.begin()), MBE
= MF
.end(); MBI
!= MBE
; ++MBI
) {
3491 auto LayoutPred
= std::prev(MBI
);
3492 if (!LayoutPred
->isSuccessor(&*MBI
)) {
3493 if (HasMaxBytesOverride
)
3494 MBI
->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks
),
3495 MaxBytesForAlignmentOverride
);
3497 MBI
->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks
));
3501 if (ViewBlockLayoutWithBFI
!= GVDT_None
&&
3502 (ViewBlockFreqFuncName
.empty() ||
3503 F
->getFunction().getName().equals(ViewBlockFreqFuncName
))) {
3504 if (RenumberBlocksBeforeView
)
3505 MF
.RenumberBlocks();
3506 MBFI
->view("MBP." + MF
.getName(), false);
3509 // We always return true as we have no way to track whether the final order
3510 // differs from the original order.
3514 void MachineBlockPlacement::applyExtTsp() {
3515 // Prepare data; blocks are indexed by their index in the current ordering.
3516 DenseMap
<const MachineBasicBlock
*, uint64_t> BlockIndex
;
3517 BlockIndex
.reserve(F
->size());
3518 std::vector
<const MachineBasicBlock
*> CurrentBlockOrder
;
3519 CurrentBlockOrder
.reserve(F
->size());
3520 size_t NumBlocks
= 0;
3521 for (const MachineBasicBlock
&MBB
: *F
) {
3522 BlockIndex
[&MBB
] = NumBlocks
++;
3523 CurrentBlockOrder
.push_back(&MBB
);
3526 auto BlockSizes
= std::vector
<uint64_t>(F
->size());
3527 auto BlockCounts
= std::vector
<uint64_t>(F
->size());
3528 std::vector
<codelayout::EdgeCount
> JumpCounts
;
3529 for (MachineBasicBlock
&MBB
: *F
) {
3530 // Getting the block frequency.
3531 BlockFrequency BlockFreq
= MBFI
->getBlockFreq(&MBB
);
3532 BlockCounts
[BlockIndex
[&MBB
]] = BlockFreq
.getFrequency();
3533 // Getting the block size:
3534 // - approximate the size of an instruction by 4 bytes, and
3535 // - ignore debug instructions.
3536 // Note: getting the exact size of each block is target-dependent and can be
3537 // done by extending the interface of MCCodeEmitter. Experimentally we do
3538 // not see a perf improvement with the exact block sizes.
3540 instructionsWithoutDebug(MBB
.instr_begin(), MBB
.instr_end());
3541 int NumInsts
= std::distance(NonDbgInsts
.begin(), NonDbgInsts
.end());
3542 BlockSizes
[BlockIndex
[&MBB
]] = 4 * NumInsts
;
3543 // Getting jump frequencies.
3544 for (MachineBasicBlock
*Succ
: MBB
.successors()) {
3545 auto EP
= MBPI
->getEdgeProbability(&MBB
, Succ
);
3546 BlockFrequency JumpFreq
= BlockFreq
* EP
;
3547 JumpCounts
.push_back(
3548 {BlockIndex
[&MBB
], BlockIndex
[Succ
], JumpFreq
.getFrequency()});
3552 LLVM_DEBUG(dbgs() << "Applying ext-tsp layout for |V| = " << F
->size()
3553 << " with profile = " << F
->getFunction().hasProfileData()
3554 << " (" << F
->getName().str() << ")"
3557 dbgs() << format(" original layout score: %0.2f\n",
3558 calcExtTspScore(BlockSizes
, BlockCounts
, JumpCounts
)));
3560 // Run the layout algorithm.
3561 auto NewOrder
= computeExtTspLayout(BlockSizes
, BlockCounts
, JumpCounts
);
3562 std::vector
<const MachineBasicBlock
*> NewBlockOrder
;
3563 NewBlockOrder
.reserve(F
->size());
3564 for (uint64_t Node
: NewOrder
) {
3565 NewBlockOrder
.push_back(CurrentBlockOrder
[Node
]);
3567 LLVM_DEBUG(dbgs() << format(" optimized layout score: %0.2f\n",
3568 calcExtTspScore(NewOrder
, BlockSizes
, BlockCounts
,
3571 // Assign new block order.
3572 assignBlockOrder(NewBlockOrder
);
3575 void MachineBlockPlacement::assignBlockOrder(
3576 const std::vector
<const MachineBasicBlock
*> &NewBlockOrder
) {
3577 assert(F
->size() == NewBlockOrder
.size() && "Incorrect size of block order");
3578 F
->RenumberBlocks();
3580 bool HasChanges
= false;
3581 for (size_t I
= 0; I
< NewBlockOrder
.size(); I
++) {
3582 if (NewBlockOrder
[I
] != F
->getBlockNumbered(I
)) {
3587 // Stop early if the new block order is identical to the existing one.
3591 SmallVector
<MachineBasicBlock
*, 4> PrevFallThroughs(F
->getNumBlockIDs());
3592 for (auto &MBB
: *F
) {
3593 PrevFallThroughs
[MBB
.getNumber()] = MBB
.getFallThrough();
3596 // Sort basic blocks in the function according to the computed order.
3597 DenseMap
<const MachineBasicBlock
*, size_t> NewIndex
;
3598 for (const MachineBasicBlock
*MBB
: NewBlockOrder
) {
3599 NewIndex
[MBB
] = NewIndex
.size();
3601 F
->sort([&](MachineBasicBlock
&L
, MachineBasicBlock
&R
) {
3602 return NewIndex
[&L
] < NewIndex
[&R
];
3605 // Update basic block branches by inserting explicit fallthrough branches
3606 // when required and re-optimize branches when possible.
3607 const TargetInstrInfo
*TII
= F
->getSubtarget().getInstrInfo();
3608 SmallVector
<MachineOperand
, 4> Cond
;
3609 for (auto &MBB
: *F
) {
3610 MachineFunction::iterator NextMBB
= std::next(MBB
.getIterator());
3611 MachineFunction::iterator EndIt
= MBB
.getParent()->end();
3612 auto *FTMBB
= PrevFallThroughs
[MBB
.getNumber()];
3613 // If this block had a fallthrough before we need an explicit unconditional
3614 // branch to that block if the fallthrough block is not adjacent to the
3615 // block in the new order.
3616 if (FTMBB
&& (NextMBB
== EndIt
|| &*NextMBB
!= FTMBB
)) {
3617 TII
->insertUnconditionalBranch(MBB
, FTMBB
, MBB
.findBranchDebugLoc());
3620 // It might be possible to optimize branches by flipping the condition.
3622 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
3623 if (TII
->analyzeBranch(MBB
, TBB
, FBB
, Cond
))
3625 MBB
.updateTerminator(FTMBB
);
3629 // Make sure we correctly constructed all branches.
3630 F
->verify(this, "After optimized block reordering");
3634 void MachineBlockPlacement::createCFGChainExtTsp() {
3635 BlockToChain
.clear();
3636 ComputedEdges
.clear();
3637 ChainAllocator
.DestroyAll();
3639 MachineBasicBlock
*HeadBB
= &F
->front();
3640 BlockChain
*FunctionChain
=
3641 new (ChainAllocator
.Allocate()) BlockChain(BlockToChain
, HeadBB
);
3643 for (MachineBasicBlock
&MBB
: *F
) {
3645 continue; // Ignore head of the chain
3646 FunctionChain
->merge(&MBB
, nullptr);
3652 /// A pass to compute block placement statistics.
3654 /// A separate pass to compute interesting statistics for evaluating block
3655 /// placement. This is separate from the actual placement pass so that they can
3656 /// be computed in the absence of any placement transformations or when using
3657 /// alternative placement strategies.
3658 class MachineBlockPlacementStats
: public MachineFunctionPass
{
3659 /// A handle to the branch probability pass.
3660 const MachineBranchProbabilityInfo
*MBPI
;
3662 /// A handle to the function-wide block frequency pass.
3663 const MachineBlockFrequencyInfo
*MBFI
;
3666 static char ID
; // Pass identification, replacement for typeid
3668 MachineBlockPlacementStats() : MachineFunctionPass(ID
) {
3669 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3672 bool runOnMachineFunction(MachineFunction
&F
) override
;
3674 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
3675 AU
.addRequired
<MachineBranchProbabilityInfo
>();
3676 AU
.addRequired
<MachineBlockFrequencyInfo
>();
3677 AU
.setPreservesAll();
3678 MachineFunctionPass::getAnalysisUsage(AU
);
3682 } // end anonymous namespace
3684 char MachineBlockPlacementStats::ID
= 0;
3686 char &llvm::MachineBlockPlacementStatsID
= MachineBlockPlacementStats::ID
;
3688 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats
, "block-placement-stats",
3689 "Basic Block Placement Stats", false, false)
3690 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
3691 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
3692 INITIALIZE_PASS_END(MachineBlockPlacementStats
, "block-placement-stats",
3693 "Basic Block Placement Stats", false, false)
3695 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction
&F
) {
3696 // Check for single-block functions and skip them.
3697 if (std::next(F
.begin()) == F
.end())
3700 if (!isFunctionInPrintList(F
.getName()))
3703 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
3704 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
3706 for (MachineBasicBlock
&MBB
: F
) {
3707 BlockFrequency BlockFreq
= MBFI
->getBlockFreq(&MBB
);
3708 Statistic
&NumBranches
=
3709 (MBB
.succ_size() > 1) ? NumCondBranches
: NumUncondBranches
;
3710 Statistic
&BranchTakenFreq
=
3711 (MBB
.succ_size() > 1) ? CondBranchTakenFreq
: UncondBranchTakenFreq
;
3712 for (MachineBasicBlock
*Succ
: MBB
.successors()) {
3713 // Skip if this successor is a fallthrough.
3714 if (MBB
.isLayoutSuccessor(Succ
))
3717 BlockFrequency EdgeFreq
=
3718 BlockFreq
* MBPI
->getEdgeProbability(&MBB
, Succ
);
3720 BranchTakenFreq
+= EdgeFreq
.getFrequency();