1 //===- StackColoring.cpp --------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements the stack-coloring optimization that looks for
10 // lifetime markers machine instructions (LIFETIME_START and LIFETIME_END),
11 // which represent the possible lifetime of stack slots. It attempts to
12 // merge disjoint stack slots and reduce the used stack space.
13 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 // TODO: In the future we plan to improve stack coloring in the following ways:
16 // 1. Allow merging multiple small slots into a single larger slot at different
18 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/CodeGen/LiveInterval.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/PseudoSourceValueManager.h"
40 #include "llvm/CodeGen/SlotIndexes.h"
41 #include "llvm/CodeGen/TargetOpcodes.h"
42 #include "llvm/CodeGen/WinEHFuncInfo.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Use.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/InitializePasses.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
65 #define DEBUG_TYPE "stack-coloring"
68 DisableColoring("no-stack-coloring",
69 cl::init(false), cl::Hidden
,
70 cl::desc("Disable stack coloring"));
72 /// The user may write code that uses allocas outside of the declared lifetime
73 /// zone. This can happen when the user returns a reference to a local
74 /// data-structure. We can detect these cases and decide not to optimize the
75 /// code. If this flag is enabled, we try to save the user. This option
76 /// is treated as overriding LifetimeStartOnFirstUse below.
78 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
79 cl::init(false), cl::Hidden
,
80 cl::desc("Do not optimize lifetime zones that "
83 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
84 /// use of stack slot as start of slot lifetime, as opposed to looking
85 /// for LIFETIME_START marker). See "Implementation notes" below for
88 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
89 cl::init(true), cl::Hidden
,
90 cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
93 STATISTIC(NumMarkerSeen
, "Number of lifetime markers found.");
94 STATISTIC(StackSpaceSaved
, "Number of bytes saved due to merging slots.");
95 STATISTIC(StackSlotMerged
, "Number of stack slot merged.");
96 STATISTIC(EscapedAllocas
, "Number of allocas that escaped the lifetime region");
98 //===----------------------------------------------------------------------===//
100 //===----------------------------------------------------------------------===//
102 // Stack Coloring reduces stack usage by merging stack slots when they
103 // can't be used together. For example, consider the following C program:
105 // void bar(char *, int);
106 // void foo(bool var) {
125 // Naively-compiled, this program would use 12k of stack space. However, the
126 // stack slot corresponding to `z` is always destroyed before either of the
127 // stack slots for `x` or `y` are used, and then `x` is only used if `var`
128 // is true, while `y` is only used if `var` is false. So in no time are 2
129 // of the stack slots used together, and therefore we can merge them,
130 // compiling the function using only a single 4k alloca:
132 // void foo(bool var) { // equivalent
145 // This is an important optimization if we want stack space to be under
146 // control in large functions, both open-coded ones and ones created by
149 // Implementation Notes:
150 // ---------------------
152 // An important part of the above reasoning is that `z` can't be accessed
153 // while the latter 2 calls to `bar` are running. This is justified because
154 // `z`'s lifetime is over after we exit from block `A:`, so any further
155 // accesses to it would be UB. The way we represent this information
156 // in LLVM is by having frontends delimit blocks with `lifetime.start`
157 // and `lifetime.end` intrinsics.
159 // The effect of these intrinsics seems to be as follows (maybe I should
160 // specify this in the reference?):
162 // L1) at start, each stack-slot is marked as *out-of-scope*, unless no
163 // lifetime intrinsic refers to that stack slot, in which case
164 // it is marked as *in-scope*.
165 // L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
166 // the stack slot is overwritten with `undef`.
167 // L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
168 // L4) on function exit, all stack slots are marked as *out-of-scope*.
169 // L5) `lifetime.end` is a no-op when called on a slot that is already
171 // L6) memory accesses to *out-of-scope* stack slots are UB.
172 // L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
173 // are invalidated, unless the slot is "degenerate". This is used to
174 // justify not marking slots as in-use until the pointer to them is
175 // used, but feels a bit hacky in the presence of things like LICM. See
176 // the "Degenerate Slots" section for more details.
178 // Now, let's ground stack coloring on these rules. We'll define a slot
179 // as *in-use* at a (dynamic) point in execution if it either can be
180 // written to at that point, or if it has a live and non-undef content
183 // Obviously, slots that are never *in-use* together can be merged, and
184 // in our example `foo`, the slots for `x`, `y` and `z` are never
185 // in-use together (of course, sometimes slots that *are* in-use together
186 // might still be mergable, but we don't care about that here).
188 // In this implementation, we successively merge pairs of slots that are
189 // not *in-use* together. We could be smarter - for example, we could merge
190 // a single large slot with 2 small slots, or we could construct the
191 // interference graph and run a "smart" graph coloring algorithm, but with
192 // that aside, how do we find out whether a pair of slots might be *in-use*
195 // From our rules, we see that *out-of-scope* slots are never *in-use*,
196 // and from (L7) we see that "non-degenerate" slots remain non-*in-use*
197 // until their address is taken. Therefore, we can approximate slot activity
200 // A subtle point: naively, we might try to figure out which pairs of
201 // stack-slots interfere by propagating `S in-use` through the CFG for every
202 // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
203 // which they are both *in-use*.
205 // That is sound, but overly conservative in some cases: in our (artificial)
206 // example `foo`, either `x` or `y` might be in use at the label `B:`, but
207 // as `x` is only in use if we came in from the `var` edge and `y` only
208 // if we came from the `!var` edge, they still can't be in use together.
209 // See PR32488 for an important real-life case.
211 // If we wanted to find all points of interference precisely, we could
212 // propagate `S in-use` and `S&T in-use` predicates through the CFG. That
213 // would be precise, but requires propagating `O(n^2)` dataflow facts.
215 // However, we aren't interested in the *set* of points of interference
216 // between 2 stack slots, only *whether* there *is* such a point. So we
217 // can rely on a little trick: for `S` and `T` to be in-use together,
218 // one of them needs to become in-use while the other is in-use (or
219 // they might both become in use simultaneously). We can check this
220 // by also keeping track of the points at which a stack slot might *start*
226 // Consider the following motivating example:
229 // char b1[1024], b2[1024];
235 // char b4[1024], b5[1024];
236 // <uses of b2, b4, b5>;
241 // In the code above, "b3" and "b4" are declared in distinct lexical
242 // scopes, meaning that it is easy to prove that they can share the
243 // same stack slot. Variables "b1" and "b2" are declared in the same
244 // scope, meaning that from a lexical point of view, their lifetimes
245 // overlap. From a control flow pointer of view, however, the two
246 // variables are accessed in disjoint regions of the CFG, thus it
247 // should be possible for them to share the same stack slot. An ideal
248 // stack allocation for the function above would look like:
254 // Achieving this allocation is tricky, however, due to the way
255 // lifetime markers are inserted. Here is a simplified view of the
256 // control flow graph for the code above:
258 // +------ block 0 -------+
259 // 0| LIFETIME_START b1, b2 |
260 // 1| <test 'if' condition> |
261 // +-----------------------+
263 // +------ block 1 -------+ +------ block 2 -------+
264 // 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 |
265 // 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> |
266 // 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 |
267 // +-----------------------+ +-----------------------+
269 // +------ block 3 -------+
270 // 8| <cleanupcode> |
271 // 9| LIFETIME_END b1, b2 |
273 // +-----------------------+
275 // If we create live intervals for the variables above strictly based
276 // on the lifetime markers, we'll get the set of intervals on the
277 // left. If we ignore the lifetime start markers and instead treat a
278 // variable's lifetime as beginning with the first reference to the
279 // var, then we get the intervals on the right.
281 // LIFETIME_START First Use
282 // b1: [0,9] [3,4] [8,9]
288 // For the intervals on the left, the best we can do is overlap two
289 // variables (b3 and b4, for example); this gives us a stack size of
290 // 4*1024 bytes, not ideal. When treating first-use as the start of a
291 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
292 // byte stack (better).
297 // Relying entirely on first-use of stack slots is problematic,
298 // however, due to the fact that optimizations can sometimes migrate
299 // uses of a variable outside of its lifetime start/end region. Here
303 // char b1[1024], b2[1024];
316 // Before optimization, the control flow graph for the code above
317 // might look like the following:
319 // +------ block 0 -------+
320 // 0| LIFETIME_START b1, b2 |
321 // 1| <test 'if' condition> |
322 // +-----------------------+
324 // +------ block 1 -------+ +------- block 2 -------+
325 // 2| <uses of b2> | 3| <uses of b1> |
326 // +-----------------------+ +-----------------------+
328 // | +------- block 3 -------+ <-\.
329 // | 4| <while condition> | |
330 // | +-----------------------+ |
332 // | / +------- block 4 -------+
333 // \ / 5| LIFETIME_START b3 | |
334 // \ / 6| <uses of b3> | |
335 // \ / 7| LIFETIME_END b3 | |
336 // \ | +------------------------+ |
338 // +------ block 5 -----+ \---------------
339 // 8| <cleanupcode> |
340 // 9| LIFETIME_END b1, b2 |
342 // +---------------------+
344 // During optimization, however, it can happen that an instruction
345 // computing an address in "b3" (for example, a loop-invariant GEP) is
346 // hoisted up out of the loop from block 4 to block 2. [Note that
347 // this is not an actual load from the stack, only an instruction that
348 // computes the address to be loaded]. If this happens, there is now a
349 // path leading from the first use of b3 to the return instruction
350 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
351 // now larger than if we were computing live intervals strictly based
352 // on lifetime markers. In the example above, this lengthened lifetime
353 // would mean that it would appear illegal to overlap b3 with b2.
355 // To deal with this such cases, the code in ::collectMarkers() below
356 // tries to identify "degenerate" slots -- those slots where on a single
357 // forward pass through the CFG we encounter a first reference to slot
358 // K before we hit the slot K lifetime start marker. For such slots,
359 // we fall back on using the lifetime start marker as the beginning of
360 // the variable's lifetime. NB: with this implementation, slots can
361 // appear degenerate in cases where there is unstructured control flow:
366 // memcpy(&b[0], ...);
371 // If in RPO ordering chosen to walk the CFG we happen to visit the b[k]
372 // before visiting the memcpy block (which will contain the lifetime start
373 // for "b" then it will appear that 'b' has a degenerate lifetime.
377 /// StackColoring - A machine pass for merging disjoint stack allocations,
378 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
379 class StackColoring
: public MachineFunctionPass
{
380 MachineFrameInfo
*MFI
= nullptr;
381 MachineFunction
*MF
= nullptr;
383 /// A class representing liveness information for a single basic block.
384 /// Each bit in the BitVector represents the liveness property
385 /// for a different stack slot.
386 struct BlockLifetimeInfo
{
387 /// Which slots BEGINs in each basic block.
390 /// Which slots ENDs in each basic block.
393 /// Which slots are marked as LIVE_IN, coming into each basic block.
396 /// Which slots are marked as LIVE_OUT, coming out of each basic block.
400 /// Maps active slots (per bit) for each basic block.
401 using LivenessMap
= DenseMap
<const MachineBasicBlock
*, BlockLifetimeInfo
>;
402 LivenessMap BlockLiveness
;
404 /// Maps serial numbers to basic blocks.
405 DenseMap
<const MachineBasicBlock
*, int> BasicBlocks
;
407 /// Maps basic blocks to a serial number.
408 SmallVector
<const MachineBasicBlock
*, 8> BasicBlockNumbering
;
410 /// Maps slots to their use interval. Outside of this interval, slots
411 /// values are either dead or `undef` and they will not be written to.
412 SmallVector
<std::unique_ptr
<LiveInterval
>, 16> Intervals
;
414 /// Maps slots to the points where they can become in-use.
415 SmallVector
<SmallVector
<SlotIndex
, 4>, 16> LiveStarts
;
417 /// VNInfo is used for the construction of LiveIntervals.
418 VNInfo::Allocator VNInfoAllocator
;
420 /// SlotIndex analysis object.
421 SlotIndexes
*Indexes
= nullptr;
423 /// The list of lifetime markers found. These markers are to be removed
424 /// once the coloring is done.
425 SmallVector
<MachineInstr
*, 8> Markers
;
427 /// Record the FI slots for which we have seen some sort of
428 /// lifetime marker (either start or end).
429 BitVector InterestingSlots
;
431 /// FI slots that need to be handled conservatively (for these
432 /// slots lifetime-start-on-first-use is disabled).
433 BitVector ConservativeSlots
;
435 /// Number of iterations taken during data flow analysis.
436 unsigned NumIterations
;
441 StackColoring() : MachineFunctionPass(ID
) {
442 initializeStackColoringPass(*PassRegistry::getPassRegistry());
445 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
446 bool runOnMachineFunction(MachineFunction
&Func
) override
;
449 /// Used in collectMarkers
450 using BlockBitVecMap
= DenseMap
<const MachineBasicBlock
*, BitVector
>;
454 void dumpIntervals() const;
455 void dumpBB(MachineBasicBlock
*MBB
) const;
456 void dumpBV(const char *tag
, const BitVector
&BV
) const;
458 /// Removes all of the lifetime marker instructions from the function.
459 /// \returns true if any markers were removed.
460 bool removeAllMarkers();
462 /// Scan the machine function and find all of the lifetime markers.
463 /// Record the findings in the BEGIN and END vectors.
464 /// \returns the number of markers found.
465 unsigned collectMarkers(unsigned NumSlot
);
467 /// Perform the dataflow calculation and calculate the lifetime for each of
468 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
469 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
470 /// in and out blocks.
471 void calculateLocalLiveness();
473 /// Returns TRUE if we're using the first-use-begins-lifetime method for
474 /// this slot (if FALSE, then the start marker is treated as start of lifetime).
475 bool applyFirstUse(int Slot
) {
476 if (!LifetimeStartOnFirstUse
|| ProtectFromEscapedAllocas
)
478 if (ConservativeSlots
.test(Slot
))
483 /// Examines the specified instruction and returns TRUE if the instruction
484 /// represents the start or end of an interesting lifetime. The slot or slots
485 /// starting or ending are added to the vector "slots" and "isStart" is set
487 /// \returns True if inst contains a lifetime start or end
488 bool isLifetimeStartOrEnd(const MachineInstr
&MI
,
489 SmallVector
<int, 4> &slots
,
492 /// Construct the LiveIntervals for the slots.
493 void calculateLiveIntervals(unsigned NumSlots
);
495 /// Go over the machine function and change instructions which use stack
496 /// slots to use the joint slots.
497 void remapInstructions(DenseMap
<int, int> &SlotRemap
);
499 /// The input program may contain instructions which are not inside lifetime
500 /// markers. This can happen due to a bug in the compiler or due to a bug in
501 /// user code (for example, returning a reference to a local variable).
502 /// This procedure checks all of the instructions in the function and
503 /// invalidates lifetime ranges which do not contain all of the instructions
504 /// which access that frame slot.
505 void removeInvalidSlotRanges();
507 /// Map entries which point to other entries to their destination.
508 /// A->B->C becomes A->C.
509 void expungeSlotMap(DenseMap
<int, int> &SlotRemap
, unsigned NumSlots
);
512 } // end anonymous namespace
514 char StackColoring::ID
= 0;
516 char &llvm::StackColoringID
= StackColoring::ID
;
518 INITIALIZE_PASS_BEGIN(StackColoring
, DEBUG_TYPE
,
519 "Merge disjoint stack slots", false, false)
520 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
521 INITIALIZE_PASS_END(StackColoring
, DEBUG_TYPE
,
522 "Merge disjoint stack slots", false, false)
524 void StackColoring::getAnalysisUsage(AnalysisUsage
&AU
) const {
525 AU
.addRequired
<SlotIndexes
>();
526 MachineFunctionPass::getAnalysisUsage(AU
);
529 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
530 LLVM_DUMP_METHOD
void StackColoring::dumpBV(const char *tag
,
531 const BitVector
&BV
) const {
532 dbgs() << tag
<< " : { ";
533 for (unsigned I
= 0, E
= BV
.size(); I
!= E
; ++I
)
534 dbgs() << BV
.test(I
) << " ";
538 LLVM_DUMP_METHOD
void StackColoring::dumpBB(MachineBasicBlock
*MBB
) const {
539 LivenessMap::const_iterator BI
= BlockLiveness
.find(MBB
);
540 assert(BI
!= BlockLiveness
.end() && "Block not found");
541 const BlockLifetimeInfo
&BlockInfo
= BI
->second
;
543 dumpBV("BEGIN", BlockInfo
.Begin
);
544 dumpBV("END", BlockInfo
.End
);
545 dumpBV("LIVE_IN", BlockInfo
.LiveIn
);
546 dumpBV("LIVE_OUT", BlockInfo
.LiveOut
);
549 LLVM_DUMP_METHOD
void StackColoring::dump() const {
550 for (MachineBasicBlock
*MBB
: depth_first(MF
)) {
551 dbgs() << "Inspecting block #" << MBB
->getNumber() << " ["
552 << MBB
->getName() << "]\n";
557 LLVM_DUMP_METHOD
void StackColoring::dumpIntervals() const {
558 for (unsigned I
= 0, E
= Intervals
.size(); I
!= E
; ++I
) {
559 dbgs() << "Interval[" << I
<< "]:\n";
560 Intervals
[I
]->dump();
565 static inline int getStartOrEndSlot(const MachineInstr
&MI
)
567 assert((MI
.getOpcode() == TargetOpcode::LIFETIME_START
||
568 MI
.getOpcode() == TargetOpcode::LIFETIME_END
) &&
569 "Expected LIFETIME_START or LIFETIME_END op");
570 const MachineOperand
&MO
= MI
.getOperand(0);
571 int Slot
= MO
.getIndex();
577 // At the moment the only way to end a variable lifetime is with
578 // a VARIABLE_LIFETIME op (which can't contain a start). If things
579 // change and the IR allows for a single inst that both begins
580 // and ends lifetime(s), this interface will need to be reworked.
581 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr
&MI
,
582 SmallVector
<int, 4> &slots
,
584 if (MI
.getOpcode() == TargetOpcode::LIFETIME_START
||
585 MI
.getOpcode() == TargetOpcode::LIFETIME_END
) {
586 int Slot
= getStartOrEndSlot(MI
);
589 if (!InterestingSlots
.test(Slot
))
591 slots
.push_back(Slot
);
592 if (MI
.getOpcode() == TargetOpcode::LIFETIME_END
) {
596 if (!applyFirstUse(Slot
)) {
600 } else if (LifetimeStartOnFirstUse
&& !ProtectFromEscapedAllocas
) {
601 if (!MI
.isDebugInstr()) {
603 for (const MachineOperand
&MO
: MI
.operands()) {
606 int Slot
= MO
.getIndex();
609 if (InterestingSlots
.test(Slot
) && applyFirstUse(Slot
)) {
610 slots
.push_back(Slot
);
623 unsigned StackColoring::collectMarkers(unsigned NumSlot
) {
624 unsigned MarkersFound
= 0;
625 BlockBitVecMap SeenStartMap
;
626 InterestingSlots
.clear();
627 InterestingSlots
.resize(NumSlot
);
628 ConservativeSlots
.clear();
629 ConservativeSlots
.resize(NumSlot
);
631 // number of start and end lifetime ops for each slot
632 SmallVector
<int, 8> NumStartLifetimes(NumSlot
, 0);
633 SmallVector
<int, 8> NumEndLifetimes(NumSlot
, 0);
635 // Step 1: collect markers and populate the "InterestingSlots"
636 // and "ConservativeSlots" sets.
637 for (MachineBasicBlock
*MBB
: depth_first(MF
)) {
638 // Compute the set of slots for which we've seen a START marker but have
639 // not yet seen an END marker at this point in the walk (e.g. on entry
641 BitVector BetweenStartEnd
;
642 BetweenStartEnd
.resize(NumSlot
);
643 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
644 BlockBitVecMap::const_iterator I
= SeenStartMap
.find(Pred
);
645 if (I
!= SeenStartMap
.end()) {
646 BetweenStartEnd
|= I
->second
;
650 // Walk the instructions in the block to look for start/end ops.
651 for (MachineInstr
&MI
: *MBB
) {
652 if (MI
.isDebugInstr())
654 if (MI
.getOpcode() == TargetOpcode::LIFETIME_START
||
655 MI
.getOpcode() == TargetOpcode::LIFETIME_END
) {
656 int Slot
= getStartOrEndSlot(MI
);
659 InterestingSlots
.set(Slot
);
660 if (MI
.getOpcode() == TargetOpcode::LIFETIME_START
) {
661 BetweenStartEnd
.set(Slot
);
662 NumStartLifetimes
[Slot
] += 1;
664 BetweenStartEnd
.reset(Slot
);
665 NumEndLifetimes
[Slot
] += 1;
667 const AllocaInst
*Allocation
= MFI
->getObjectAllocation(Slot
);
669 LLVM_DEBUG(dbgs() << "Found a lifetime ");
670 LLVM_DEBUG(dbgs() << (MI
.getOpcode() == TargetOpcode::LIFETIME_START
673 LLVM_DEBUG(dbgs() << " marker for slot #" << Slot
);
675 << " with allocation: " << Allocation
->getName() << "\n");
677 Markers
.push_back(&MI
);
680 for (const MachineOperand
&MO
: MI
.operands()) {
683 int Slot
= MO
.getIndex();
686 if (! BetweenStartEnd
.test(Slot
)) {
687 ConservativeSlots
.set(Slot
);
692 BitVector
&SeenStart
= SeenStartMap
[MBB
];
693 SeenStart
|= BetweenStartEnd
;
699 // PR27903: slots with multiple start or end lifetime ops are not
700 // safe to enable for "lifetime-start-on-first-use".
701 for (unsigned slot
= 0; slot
< NumSlot
; ++slot
) {
702 if (NumStartLifetimes
[slot
] > 1 || NumEndLifetimes
[slot
] > 1)
703 ConservativeSlots
.set(slot
);
706 // The write to the catch object by the personality function is not propely
707 // modeled in IR: It happens before any cleanuppads are executed, even if the
708 // first mention of the catch object is in a catchpad. As such, mark catch
709 // object slots as conservative, so they are excluded from first-use analysis.
710 if (WinEHFuncInfo
*EHInfo
= MF
->getWinEHFuncInfo())
711 for (WinEHTryBlockMapEntry
&TBME
: EHInfo
->TryBlockMap
)
712 for (WinEHHandlerType
&H
: TBME
.HandlerArray
)
713 if (H
.CatchObj
.FrameIndex
!= std::numeric_limits
<int>::max() &&
714 H
.CatchObj
.FrameIndex
>= 0)
715 ConservativeSlots
.set(H
.CatchObj
.FrameIndex
);
717 LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots
));
719 // Step 2: compute begin/end sets for each block
721 // NOTE: We use a depth-first iteration to ensure that we obtain a
722 // deterministic numbering.
723 for (MachineBasicBlock
*MBB
: depth_first(MF
)) {
724 // Assign a serial number to this basic block.
725 BasicBlocks
[MBB
] = BasicBlockNumbering
.size();
726 BasicBlockNumbering
.push_back(MBB
);
728 // Keep a reference to avoid repeated lookups.
729 BlockLifetimeInfo
&BlockInfo
= BlockLiveness
[MBB
];
731 BlockInfo
.Begin
.resize(NumSlot
);
732 BlockInfo
.End
.resize(NumSlot
);
734 SmallVector
<int, 4> slots
;
735 for (MachineInstr
&MI
: *MBB
) {
736 bool isStart
= false;
738 if (isLifetimeStartOrEnd(MI
, slots
, isStart
)) {
740 assert(slots
.size() == 1 && "unexpected: MI ends multiple slots");
742 if (BlockInfo
.Begin
.test(Slot
)) {
743 BlockInfo
.Begin
.reset(Slot
);
745 BlockInfo
.End
.set(Slot
);
747 for (auto Slot
: slots
) {
748 LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot
);
750 << " at " << printMBBReference(*MBB
) << " index ");
751 LLVM_DEBUG(Indexes
->getInstructionIndex(MI
).print(dbgs()));
752 const AllocaInst
*Allocation
= MFI
->getObjectAllocation(Slot
);
755 << " with allocation: " << Allocation
->getName());
757 LLVM_DEBUG(dbgs() << "\n");
758 if (BlockInfo
.End
.test(Slot
)) {
759 BlockInfo
.End
.reset(Slot
);
761 BlockInfo
.Begin
.set(Slot
);
768 // Update statistics.
769 NumMarkerSeen
+= MarkersFound
;
773 void StackColoring::calculateLocalLiveness() {
774 unsigned NumIters
= 0;
780 for (const MachineBasicBlock
*BB
: BasicBlockNumbering
) {
781 // Use an iterator to avoid repeated lookups.
782 LivenessMap::iterator BI
= BlockLiveness
.find(BB
);
783 assert(BI
!= BlockLiveness
.end() && "Block not found");
784 BlockLifetimeInfo
&BlockInfo
= BI
->second
;
786 // Compute LiveIn by unioning together the LiveOut sets of all preds.
787 BitVector LocalLiveIn
;
788 for (MachineBasicBlock
*Pred
: BB
->predecessors()) {
789 LivenessMap::const_iterator I
= BlockLiveness
.find(Pred
);
790 // PR37130: transformations prior to stack coloring can
791 // sometimes leave behind statically unreachable blocks; these
792 // can be safely skipped here.
793 if (I
!= BlockLiveness
.end())
794 LocalLiveIn
|= I
->second
.LiveOut
;
797 // Compute LiveOut by subtracting out lifetimes that end in this
798 // block, then adding in lifetimes that begin in this block. If
799 // we have both BEGIN and END markers in the same basic block
800 // then we know that the BEGIN marker comes after the END,
801 // because we already handle the case where the BEGIN comes
802 // before the END when collecting the markers (and building the
803 // BEGIN/END vectors).
804 BitVector LocalLiveOut
= LocalLiveIn
;
805 LocalLiveOut
.reset(BlockInfo
.End
);
806 LocalLiveOut
|= BlockInfo
.Begin
;
808 // Update block LiveIn set, noting whether it has changed.
809 if (LocalLiveIn
.test(BlockInfo
.LiveIn
)) {
811 BlockInfo
.LiveIn
|= LocalLiveIn
;
814 // Update block LiveOut set, noting whether it has changed.
815 if (LocalLiveOut
.test(BlockInfo
.LiveOut
)) {
817 BlockInfo
.LiveOut
|= LocalLiveOut
;
822 NumIterations
= NumIters
;
825 void StackColoring::calculateLiveIntervals(unsigned NumSlots
) {
826 SmallVector
<SlotIndex
, 16> Starts
;
827 SmallVector
<bool, 16> DefinitelyInUse
;
829 // For each block, find which slots are active within this block
830 // and update the live intervals.
831 for (const MachineBasicBlock
&MBB
: *MF
) {
833 Starts
.resize(NumSlots
);
834 DefinitelyInUse
.clear();
835 DefinitelyInUse
.resize(NumSlots
);
837 // Start the interval of the slots that we previously found to be 'in-use'.
838 BlockLifetimeInfo
&MBBLiveness
= BlockLiveness
[&MBB
];
839 for (int pos
= MBBLiveness
.LiveIn
.find_first(); pos
!= -1;
840 pos
= MBBLiveness
.LiveIn
.find_next(pos
)) {
841 Starts
[pos
] = Indexes
->getMBBStartIdx(&MBB
);
844 // Create the interval for the basic blocks containing lifetime begin/end.
845 for (const MachineInstr
&MI
: MBB
) {
846 SmallVector
<int, 4> slots
;
847 bool IsStart
= false;
848 if (!isLifetimeStartOrEnd(MI
, slots
, IsStart
))
850 SlotIndex ThisIndex
= Indexes
->getInstructionIndex(MI
);
851 for (auto Slot
: slots
) {
853 // If a slot is already definitely in use, we don't have to emit
854 // a new start marker because there is already a pre-existing
856 if (!DefinitelyInUse
[Slot
]) {
857 LiveStarts
[Slot
].push_back(ThisIndex
);
858 DefinitelyInUse
[Slot
] = true;
860 if (!Starts
[Slot
].isValid())
861 Starts
[Slot
] = ThisIndex
;
863 if (Starts
[Slot
].isValid()) {
864 VNInfo
*VNI
= Intervals
[Slot
]->getValNumInfo(0);
865 Intervals
[Slot
]->addSegment(
866 LiveInterval::Segment(Starts
[Slot
], ThisIndex
, VNI
));
867 Starts
[Slot
] = SlotIndex(); // Invalidate the start index
868 DefinitelyInUse
[Slot
] = false;
874 // Finish up started segments
875 for (unsigned i
= 0; i
< NumSlots
; ++i
) {
876 if (!Starts
[i
].isValid())
879 SlotIndex EndIdx
= Indexes
->getMBBEndIdx(&MBB
);
880 VNInfo
*VNI
= Intervals
[i
]->getValNumInfo(0);
881 Intervals
[i
]->addSegment(LiveInterval::Segment(Starts
[i
], EndIdx
, VNI
));
886 bool StackColoring::removeAllMarkers() {
888 for (MachineInstr
*MI
: Markers
) {
889 MI
->eraseFromParent();
894 LLVM_DEBUG(dbgs() << "Removed " << Count
<< " markers.\n");
898 void StackColoring::remapInstructions(DenseMap
<int, int> &SlotRemap
) {
899 unsigned FixedInstr
= 0;
900 unsigned FixedMemOp
= 0;
901 unsigned FixedDbg
= 0;
903 // Remap debug information that refers to stack slots.
904 for (auto &VI
: MF
->getVariableDbgInfo()) {
905 if (!VI
.Var
|| !VI
.inStackSlot())
907 int Slot
= VI
.getStackSlot();
908 if (SlotRemap
.count(Slot
)) {
909 LLVM_DEBUG(dbgs() << "Remapping debug info for ["
910 << cast
<DILocalVariable
>(VI
.Var
)->getName() << "].\n");
911 VI
.updateStackSlot(SlotRemap
[Slot
]);
916 // Keep a list of *allocas* which need to be remapped.
917 DenseMap
<const AllocaInst
*, const AllocaInst
*> Allocas
;
919 // Keep a list of allocas which has been affected by the remap.
920 SmallPtrSet
<const AllocaInst
*, 32> MergedAllocas
;
922 for (const std::pair
<int, int> &SI
: SlotRemap
) {
923 const AllocaInst
*From
= MFI
->getObjectAllocation(SI
.first
);
924 const AllocaInst
*To
= MFI
->getObjectAllocation(SI
.second
);
925 assert(To
&& From
&& "Invalid allocation object");
928 // If From is before wo, its possible that there is a use of From between
930 if (From
->comesBefore(To
))
931 const_cast<AllocaInst
*>(To
)->moveBefore(const_cast<AllocaInst
*>(From
));
933 // AA might be used later for instruction scheduling, and we need it to be
934 // able to deduce the correct aliasing releationships between pointers
935 // derived from the alloca being remapped and the target of that remapping.
936 // The only safe way, without directly informing AA about the remapping
937 // somehow, is to directly update the IR to reflect the change being made
939 Instruction
*Inst
= const_cast<AllocaInst
*>(To
);
940 if (From
->getType() != To
->getType()) {
941 BitCastInst
*Cast
= new BitCastInst(Inst
, From
->getType());
942 Cast
->insertAfter(Inst
);
946 // We keep both slots to maintain AliasAnalysis metadata later.
947 MergedAllocas
.insert(From
);
948 MergedAllocas
.insert(To
);
950 // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
951 // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
952 // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
953 MachineFrameInfo::SSPLayoutKind FromKind
954 = MFI
->getObjectSSPLayout(SI
.first
);
955 MachineFrameInfo::SSPLayoutKind ToKind
= MFI
->getObjectSSPLayout(SI
.second
);
956 if (FromKind
!= MachineFrameInfo::SSPLK_None
&&
957 (ToKind
== MachineFrameInfo::SSPLK_None
||
958 (ToKind
!= MachineFrameInfo::SSPLK_LargeArray
&&
959 FromKind
!= MachineFrameInfo::SSPLK_AddrOf
)))
960 MFI
->setObjectSSPLayout(SI
.second
, FromKind
);
962 // The new alloca might not be valid in a llvm.dbg.declare for this
963 // variable, so undef out the use to make the verifier happy.
964 AllocaInst
*FromAI
= const_cast<AllocaInst
*>(From
);
965 if (FromAI
->isUsedByMetadata())
966 ValueAsMetadata::handleRAUW(FromAI
, UndefValue::get(FromAI
->getType()));
967 for (auto &Use
: FromAI
->uses()) {
968 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Use
.get()))
969 if (BCI
->isUsedByMetadata())
970 ValueAsMetadata::handleRAUW(BCI
, UndefValue::get(BCI
->getType()));
973 // Note that this will not replace uses in MMOs (which we'll update below),
974 // or anywhere else (which is why we won't delete the original
976 FromAI
->replaceAllUsesWith(Inst
);
979 // Remap all instructions to the new stack slots.
980 std::vector
<std::vector
<MachineMemOperand
*>> SSRefs(
981 MFI
->getObjectIndexEnd());
982 for (MachineBasicBlock
&BB
: *MF
)
983 for (MachineInstr
&I
: BB
) {
984 // Skip lifetime markers. We'll remove them soon.
985 if (I
.getOpcode() == TargetOpcode::LIFETIME_START
||
986 I
.getOpcode() == TargetOpcode::LIFETIME_END
)
989 // Update the MachineMemOperand to use the new alloca.
990 for (MachineMemOperand
*MMO
: I
.memoperands()) {
991 // We've replaced IR-level uses of the remapped allocas, so we only
992 // need to replace direct uses here.
993 const AllocaInst
*AI
= dyn_cast_or_null
<AllocaInst
>(MMO
->getValue());
997 if (!Allocas
.count(AI
))
1000 MMO
->setValue(Allocas
[AI
]);
1004 // Update all of the machine instruction operands.
1005 for (MachineOperand
&MO
: I
.operands()) {
1008 int FromSlot
= MO
.getIndex();
1010 // Don't touch arguments.
1014 // Only look at mapped slots.
1015 if (!SlotRemap
.count(FromSlot
))
1018 // In a debug build, check that the instruction that we are modifying is
1019 // inside the expected live range. If the instruction is not inside
1020 // the calculated range then it means that the alloca usage moved
1021 // outside of the lifetime markers, or that the user has a bug.
1022 // NOTE: Alloca address calculations which happen outside the lifetime
1023 // zone are okay, despite the fact that we don't have a good way
1024 // for validating all of the usages of the calculation.
1026 bool TouchesMemory
= I
.mayLoadOrStore();
1027 // If we *don't* protect the user from escaped allocas, don't bother
1028 // validating the instructions.
1029 if (!I
.isDebugInstr() && TouchesMemory
&& ProtectFromEscapedAllocas
) {
1030 SlotIndex Index
= Indexes
->getInstructionIndex(I
);
1031 const LiveInterval
*Interval
= &*Intervals
[FromSlot
];
1032 assert(Interval
->find(Index
) != Interval
->end() &&
1033 "Found instruction usage outside of live range.");
1037 // Fix the machine instructions.
1038 int ToSlot
= SlotRemap
[FromSlot
];
1039 MO
.setIndex(ToSlot
);
1043 // We adjust AliasAnalysis information for merged stack slots.
1044 SmallVector
<MachineMemOperand
*, 2> NewMMOs
;
1045 bool ReplaceMemOps
= false;
1046 for (MachineMemOperand
*MMO
: I
.memoperands()) {
1047 // Collect MachineMemOperands which reference
1048 // FixedStackPseudoSourceValues with old frame indices.
1049 if (const auto *FSV
= dyn_cast_or_null
<FixedStackPseudoSourceValue
>(
1050 MMO
->getPseudoValue())) {
1051 int FI
= FSV
->getFrameIndex();
1052 auto To
= SlotRemap
.find(FI
);
1053 if (To
!= SlotRemap
.end())
1054 SSRefs
[FI
].push_back(MMO
);
1057 // If this memory location can be a slot remapped here,
1058 // we remove AA information.
1059 bool MayHaveConflictingAAMD
= false;
1060 if (MMO
->getAAInfo()) {
1061 if (const Value
*MMOV
= MMO
->getValue()) {
1062 SmallVector
<Value
*, 4> Objs
;
1063 getUnderlyingObjectsForCodeGen(MMOV
, Objs
);
1066 MayHaveConflictingAAMD
= true;
1068 for (Value
*V
: Objs
) {
1069 // If this memory location comes from a known stack slot
1070 // that is not remapped, we continue checking.
1071 // Otherwise, we need to invalidate AA infomation.
1072 const AllocaInst
*AI
= dyn_cast_or_null
<AllocaInst
>(V
);
1073 if (AI
&& MergedAllocas
.count(AI
)) {
1074 MayHaveConflictingAAMD
= true;
1080 if (MayHaveConflictingAAMD
) {
1081 NewMMOs
.push_back(MF
->getMachineMemOperand(MMO
, AAMDNodes()));
1082 ReplaceMemOps
= true;
1084 NewMMOs
.push_back(MMO
);
1088 // If any memory operand is updated, set memory references of
1089 // this instruction.
1091 I
.setMemRefs(*MF
, NewMMOs
);
1094 // Rewrite MachineMemOperands that reference old frame indices.
1095 for (auto E
: enumerate(SSRefs
))
1096 if (!E
.value().empty()) {
1097 const PseudoSourceValue
*NewSV
=
1098 MF
->getPSVManager().getFixedStack(SlotRemap
.find(E
.index())->second
);
1099 for (MachineMemOperand
*Ref
: E
.value())
1100 Ref
->setValue(NewSV
);
1103 // Update the location of C++ catch objects for the MSVC personality routine.
1104 if (WinEHFuncInfo
*EHInfo
= MF
->getWinEHFuncInfo())
1105 for (WinEHTryBlockMapEntry
&TBME
: EHInfo
->TryBlockMap
)
1106 for (WinEHHandlerType
&H
: TBME
.HandlerArray
)
1107 if (H
.CatchObj
.FrameIndex
!= std::numeric_limits
<int>::max() &&
1108 SlotRemap
.count(H
.CatchObj
.FrameIndex
))
1109 H
.CatchObj
.FrameIndex
= SlotRemap
[H
.CatchObj
.FrameIndex
];
1111 LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp
<< " machine memory operands.\n");
1112 LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg
<< " debug locations.\n");
1113 LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr
<< " machine instructions.\n");
1119 void StackColoring::removeInvalidSlotRanges() {
1120 for (MachineBasicBlock
&BB
: *MF
)
1121 for (MachineInstr
&I
: BB
) {
1122 if (I
.getOpcode() == TargetOpcode::LIFETIME_START
||
1123 I
.getOpcode() == TargetOpcode::LIFETIME_END
|| I
.isDebugInstr())
1126 // Some intervals are suspicious! In some cases we find address
1127 // calculations outside of the lifetime zone, but not actual memory
1128 // read or write. Memory accesses outside of the lifetime zone are a clear
1129 // violation, but address calculations are okay. This can happen when
1130 // GEPs are hoisted outside of the lifetime zone.
1131 // So, in here we only check instructions which can read or write memory.
1132 if (!I
.mayLoad() && !I
.mayStore())
1135 // Check all of the machine operands.
1136 for (const MachineOperand
&MO
: I
.operands()) {
1140 int Slot
= MO
.getIndex();
1145 if (Intervals
[Slot
]->empty())
1148 // Check that the used slot is inside the calculated lifetime range.
1149 // If it is not, warn about it and invalidate the range.
1150 LiveInterval
*Interval
= &*Intervals
[Slot
];
1151 SlotIndex Index
= Indexes
->getInstructionIndex(I
);
1152 if (Interval
->find(Index
) == Interval
->end()) {
1154 LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot
<< "\n");
1161 void StackColoring::expungeSlotMap(DenseMap
<int, int> &SlotRemap
,
1162 unsigned NumSlots
) {
1163 // Expunge slot remap map.
1164 for (unsigned i
=0; i
< NumSlots
; ++i
) {
1165 // If we are remapping i
1166 if (SlotRemap
.count(i
)) {
1167 int Target
= SlotRemap
[i
];
1168 // As long as our target is mapped to something else, follow it.
1169 while (SlotRemap
.count(Target
)) {
1170 Target
= SlotRemap
[Target
];
1171 SlotRemap
[i
] = Target
;
1177 bool StackColoring::runOnMachineFunction(MachineFunction
&Func
) {
1178 LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
1179 << "********** Function: " << Func
.getName() << '\n');
1181 MFI
= &MF
->getFrameInfo();
1182 Indexes
= &getAnalysis
<SlotIndexes
>();
1183 BlockLiveness
.clear();
1184 BasicBlocks
.clear();
1185 BasicBlockNumbering
.clear();
1189 VNInfoAllocator
.Reset();
1191 unsigned NumSlots
= MFI
->getObjectIndexEnd();
1193 // If there are no stack slots then there are no markers to remove.
1197 SmallVector
<int, 8> SortedSlots
;
1198 SortedSlots
.reserve(NumSlots
);
1199 Intervals
.reserve(NumSlots
);
1200 LiveStarts
.resize(NumSlots
);
1202 unsigned NumMarkers
= collectMarkers(NumSlots
);
1204 unsigned TotalSize
= 0;
1205 LLVM_DEBUG(dbgs() << "Found " << NumMarkers
<< " markers and " << NumSlots
1207 LLVM_DEBUG(dbgs() << "Slot structure:\n");
1209 for (int i
=0; i
< MFI
->getObjectIndexEnd(); ++i
) {
1210 LLVM_DEBUG(dbgs() << "Slot #" << i
<< " - " << MFI
->getObjectSize(i
)
1212 TotalSize
+= MFI
->getObjectSize(i
);
1215 LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize
<< " bytes\n\n");
1217 // Don't continue because there are not enough lifetime markers, or the
1218 // stack is too small, or we are told not to optimize the slots.
1219 if (NumMarkers
< 2 || TotalSize
< 16 || DisableColoring
||
1220 skipFunction(Func
.getFunction())) {
1221 LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
1222 return removeAllMarkers();
1225 for (unsigned i
=0; i
< NumSlots
; ++i
) {
1226 std::unique_ptr
<LiveInterval
> LI(new LiveInterval(i
, 0));
1227 LI
->getNextValue(Indexes
->getZeroIndex(), VNInfoAllocator
);
1228 Intervals
.push_back(std::move(LI
));
1229 SortedSlots
.push_back(i
);
1232 // Calculate the liveness of each block.
1233 calculateLocalLiveness();
1234 LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations
<< "\n");
1237 // Propagate the liveness information.
1238 calculateLiveIntervals(NumSlots
);
1239 LLVM_DEBUG(dumpIntervals());
1241 // Search for allocas which are used outside of the declared lifetime
1243 if (ProtectFromEscapedAllocas
)
1244 removeInvalidSlotRanges();
1246 // Maps old slots to new slots.
1247 DenseMap
<int, int> SlotRemap
;
1248 unsigned RemovedSlots
= 0;
1249 unsigned ReducedSize
= 0;
1251 // Do not bother looking at empty intervals.
1252 for (unsigned I
= 0; I
< NumSlots
; ++I
) {
1253 if (Intervals
[SortedSlots
[I
]]->empty())
1254 SortedSlots
[I
] = -1;
1257 // This is a simple greedy algorithm for merging allocas. First, sort the
1258 // slots, placing the largest slots first. Next, perform an n^2 scan and look
1259 // for disjoint slots. When you find disjoint slots, merge the smaller one
1260 // into the bigger one and update the live interval. Remove the small alloca
1263 // Sort the slots according to their size. Place unused slots at the end.
1264 // Use stable sort to guarantee deterministic code generation.
1265 llvm::stable_sort(SortedSlots
, [this](int LHS
, int RHS
) {
1266 // We use -1 to denote a uninteresting slot. Place these slots at the end.
1271 // Sort according to size.
1272 return MFI
->getObjectSize(LHS
) > MFI
->getObjectSize(RHS
);
1275 for (auto &s
: LiveStarts
)
1278 bool Changed
= true;
1281 for (unsigned I
= 0; I
< NumSlots
; ++I
) {
1282 if (SortedSlots
[I
] == -1)
1285 for (unsigned J
=I
+1; J
< NumSlots
; ++J
) {
1286 if (SortedSlots
[J
] == -1)
1289 int FirstSlot
= SortedSlots
[I
];
1290 int SecondSlot
= SortedSlots
[J
];
1292 // Objects with different stack IDs cannot be merged.
1293 if (MFI
->getStackID(FirstSlot
) != MFI
->getStackID(SecondSlot
))
1296 LiveInterval
*First
= &*Intervals
[FirstSlot
];
1297 LiveInterval
*Second
= &*Intervals
[SecondSlot
];
1298 auto &FirstS
= LiveStarts
[FirstSlot
];
1299 auto &SecondS
= LiveStarts
[SecondSlot
];
1300 assert(!First
->empty() && !Second
->empty() && "Found an empty range");
1302 // Merge disjoint slots. This is a little bit tricky - see the
1303 // Implementation Notes section for an explanation.
1304 if (!First
->isLiveAtIndexes(SecondS
) &&
1305 !Second
->isLiveAtIndexes(FirstS
)) {
1307 First
->MergeSegmentsInAsValue(*Second
, First
->getValNumInfo(0));
1309 int OldSize
= FirstS
.size();
1310 FirstS
.append(SecondS
.begin(), SecondS
.end());
1311 auto Mid
= FirstS
.begin() + OldSize
;
1312 std::inplace_merge(FirstS
.begin(), Mid
, FirstS
.end());
1314 SlotRemap
[SecondSlot
] = FirstSlot
;
1315 SortedSlots
[J
] = -1;
1316 LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot
<< " and slots #"
1317 << SecondSlot
<< " together.\n");
1318 Align MaxAlignment
= std::max(MFI
->getObjectAlign(FirstSlot
),
1319 MFI
->getObjectAlign(SecondSlot
));
1321 assert(MFI
->getObjectSize(FirstSlot
) >=
1322 MFI
->getObjectSize(SecondSlot
) &&
1323 "Merging a small object into a larger one");
1326 ReducedSize
+= MFI
->getObjectSize(SecondSlot
);
1327 MFI
->setObjectAlignment(FirstSlot
, MaxAlignment
);
1328 MFI
->RemoveStackObject(SecondSlot
);
1334 // Record statistics.
1335 StackSpaceSaved
+= ReducedSize
;
1336 StackSlotMerged
+= RemovedSlots
;
1337 LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots
<< " slots. Saved "
1338 << ReducedSize
<< " bytes\n");
1340 // Scan the entire function and update all machine operands that use frame
1341 // indices to use the remapped frame index.
1342 if (!SlotRemap
.empty()) {
1343 expungeSlotMap(SlotRemap
, NumSlots
);
1344 remapInstructions(SlotRemap
);
1347 return removeAllMarkers();