1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the VirtRegMap class.
11 // It also contains implementations of the Spiller interface, which, given a
12 // virtual register map and a machine function, eliminates all virtual
13 // references by replacing them with physical register references - adding spill
16 //===----------------------------------------------------------------------===//
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "LiveDebugVariables.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LiveStacks.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetFrameLowering.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/MC/LaneBitmask.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
50 #define DEBUG_TYPE "regalloc"
52 STATISTIC(NumSpillSlots
, "Number of spill slots allocated");
53 STATISTIC(NumIdCopies
, "Number of identity moves eliminated after rewriting");
55 //===----------------------------------------------------------------------===//
56 // VirtRegMap implementation
57 //===----------------------------------------------------------------------===//
59 char VirtRegMap::ID
= 0;
61 INITIALIZE_PASS(VirtRegMap
, "virtregmap", "Virtual Register Map", false, false)
63 bool VirtRegMap::runOnMachineFunction(MachineFunction
&mf
) {
64 MRI
= &mf
.getRegInfo();
65 TII
= mf
.getSubtarget().getInstrInfo();
66 TRI
= mf
.getSubtarget().getRegisterInfo();
70 Virt2StackSlotMap
.clear();
71 Virt2SplitMap
.clear();
72 Virt2ShapeMap
.clear();
78 void VirtRegMap::grow() {
79 unsigned NumRegs
= MF
->getRegInfo().getNumVirtRegs();
80 Virt2PhysMap
.resize(NumRegs
);
81 Virt2StackSlotMap
.resize(NumRegs
);
82 Virt2SplitMap
.resize(NumRegs
);
85 void VirtRegMap::assignVirt2Phys(Register virtReg
, MCPhysReg physReg
) {
86 assert(virtReg
.isVirtual() && Register::isPhysicalRegister(physReg
));
87 assert(Virt2PhysMap
[virtReg
.id()] == NO_PHYS_REG
&&
88 "attempt to assign physical register to already mapped "
90 assert(!getRegInfo().isReserved(physReg
) &&
91 "Attempt to map virtReg to a reserved physReg");
92 Virt2PhysMap
[virtReg
.id()] = physReg
;
95 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass
*RC
) {
96 unsigned Size
= TRI
->getSpillSize(*RC
);
97 Align Alignment
= TRI
->getSpillAlign(*RC
);
98 // Set preferred alignment if we are still able to realign the stack
99 auto &ST
= MF
->getSubtarget();
100 Align CurrentAlign
= ST
.getFrameLowering()->getStackAlign();
101 if (Alignment
> CurrentAlign
&& !ST
.getRegisterInfo()->canRealignStack(*MF
)) {
102 Alignment
= CurrentAlign
;
104 int SS
= MF
->getFrameInfo().CreateSpillStackObject(Size
, Alignment
);
109 bool VirtRegMap::hasPreferredPhys(Register VirtReg
) const {
110 Register Hint
= MRI
->getSimpleHint(VirtReg
);
113 if (Hint
.isVirtual())
114 Hint
= getPhys(Hint
);
115 return Register(getPhys(VirtReg
)) == Hint
;
118 bool VirtRegMap::hasKnownPreference(Register VirtReg
) const {
119 std::pair
<unsigned, Register
> Hint
= MRI
->getRegAllocationHint(VirtReg
);
120 if (Hint
.second
.isPhysical())
122 if (Hint
.second
.isVirtual())
123 return hasPhys(Hint
.second
);
127 int VirtRegMap::assignVirt2StackSlot(Register virtReg
) {
128 assert(virtReg
.isVirtual());
129 assert(Virt2StackSlotMap
[virtReg
.id()] == NO_STACK_SLOT
&&
130 "attempt to assign stack slot to already spilled register");
131 const TargetRegisterClass
* RC
= MF
->getRegInfo().getRegClass(virtReg
);
132 return Virt2StackSlotMap
[virtReg
.id()] = createSpillSlot(RC
);
135 void VirtRegMap::assignVirt2StackSlot(Register virtReg
, int SS
) {
136 assert(virtReg
.isVirtual());
137 assert(Virt2StackSlotMap
[virtReg
.id()] == NO_STACK_SLOT
&&
138 "attempt to assign stack slot to already spilled register");
140 (SS
>= MF
->getFrameInfo().getObjectIndexBegin())) &&
141 "illegal fixed frame index");
142 Virt2StackSlotMap
[virtReg
.id()] = SS
;
145 void VirtRegMap::print(raw_ostream
&OS
, const Module
*) const {
146 OS
<< "********** REGISTER MAP **********\n";
147 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
148 Register Reg
= Register::index2VirtReg(i
);
149 if (Virt2PhysMap
[Reg
] != (unsigned)VirtRegMap::NO_PHYS_REG
) {
150 OS
<< '[' << printReg(Reg
, TRI
) << " -> "
151 << printReg(Virt2PhysMap
[Reg
], TRI
) << "] "
152 << TRI
->getRegClassName(MRI
->getRegClass(Reg
)) << "\n";
156 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
157 Register Reg
= Register::index2VirtReg(i
);
158 if (Virt2StackSlotMap
[Reg
] != VirtRegMap::NO_STACK_SLOT
) {
159 OS
<< '[' << printReg(Reg
, TRI
) << " -> fi#" << Virt2StackSlotMap
[Reg
]
160 << "] " << TRI
->getRegClassName(MRI
->getRegClass(Reg
)) << "\n";
166 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
167 LLVM_DUMP_METHOD
void VirtRegMap::dump() const {
172 //===----------------------------------------------------------------------===//
174 //===----------------------------------------------------------------------===//
176 // The VirtRegRewriter is the last of the register allocator passes.
177 // It rewrites virtual registers to physical registers as specified in the
178 // VirtRegMap analysis. It also updates live-in information on basic blocks
179 // according to LiveIntervals.
183 class VirtRegRewriter
: public MachineFunctionPass
{
184 MachineFunction
*MF
= nullptr;
185 const TargetRegisterInfo
*TRI
= nullptr;
186 const TargetInstrInfo
*TII
= nullptr;
187 MachineRegisterInfo
*MRI
= nullptr;
188 SlotIndexes
*Indexes
= nullptr;
189 LiveIntervals
*LIS
= nullptr;
190 VirtRegMap
*VRM
= nullptr;
191 LiveDebugVariables
*DebugVars
= nullptr;
192 DenseSet
<Register
> RewriteRegs
;
196 void addMBBLiveIns();
197 bool readsUndefSubreg(const MachineOperand
&MO
) const;
198 void addLiveInsForSubRanges(const LiveInterval
&LI
, MCRegister PhysReg
) const;
199 void handleIdentityCopy(MachineInstr
&MI
);
200 void expandCopyBundle(MachineInstr
&MI
) const;
201 bool subRegLiveThrough(const MachineInstr
&MI
, MCRegister SuperPhysReg
) const;
205 VirtRegRewriter(bool ClearVirtRegs_
= true) :
206 MachineFunctionPass(ID
),
207 ClearVirtRegs(ClearVirtRegs_
) {}
209 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
211 bool runOnMachineFunction(MachineFunction
&) override
;
213 MachineFunctionProperties
getSetProperties() const override
{
215 return MachineFunctionProperties().set(
216 MachineFunctionProperties::Property::NoVRegs
);
219 return MachineFunctionProperties();
223 } // end anonymous namespace
225 char VirtRegRewriter::ID
= 0;
227 char &llvm::VirtRegRewriterID
= VirtRegRewriter::ID
;
229 INITIALIZE_PASS_BEGIN(VirtRegRewriter
, "virtregrewriter",
230 "Virtual Register Rewriter", false, false)
231 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
232 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
233 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables
)
234 INITIALIZE_PASS_DEPENDENCY(LiveStacks
)
235 INITIALIZE_PASS_DEPENDENCY(VirtRegMap
)
236 INITIALIZE_PASS_END(VirtRegRewriter
, "virtregrewriter",
237 "Virtual Register Rewriter", false, false)
239 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage
&AU
) const {
240 AU
.setPreservesCFG();
241 AU
.addRequired
<LiveIntervals
>();
242 AU
.addPreserved
<LiveIntervals
>();
243 AU
.addRequired
<SlotIndexes
>();
244 AU
.addPreserved
<SlotIndexes
>();
245 AU
.addRequired
<LiveDebugVariables
>();
246 AU
.addRequired
<LiveStacks
>();
247 AU
.addPreserved
<LiveStacks
>();
248 AU
.addRequired
<VirtRegMap
>();
251 AU
.addPreserved
<LiveDebugVariables
>();
253 MachineFunctionPass::getAnalysisUsage(AU
);
256 bool VirtRegRewriter::runOnMachineFunction(MachineFunction
&fn
) {
258 TRI
= MF
->getSubtarget().getRegisterInfo();
259 TII
= MF
->getSubtarget().getInstrInfo();
260 MRI
= &MF
->getRegInfo();
261 Indexes
= &getAnalysis
<SlotIndexes
>();
262 LIS
= &getAnalysis
<LiveIntervals
>();
263 VRM
= &getAnalysis
<VirtRegMap
>();
264 DebugVars
= &getAnalysis
<LiveDebugVariables
>();
265 LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
266 << "********** Function: " << MF
->getName() << '\n');
267 LLVM_DEBUG(VRM
->dump());
269 // Add kill flags while we still have virtual registers.
270 LIS
->addKillFlags(VRM
);
272 // Live-in lists on basic blocks are required for physregs.
275 // Rewrite virtual registers.
279 // Write out new DBG_VALUE instructions.
281 // We only do this if ClearVirtRegs is specified since this should be the
282 // final run of the pass and we don't want to emit them multiple times.
283 DebugVars
->emitDebugValues(VRM
);
285 // All machine operands and other references to virtual registers have been
286 // replaced. Remove the virtual registers and release all the transient data.
288 MRI
->clearVirtRegs();
294 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval
&LI
,
295 MCRegister PhysReg
) const {
297 assert(LI
.hasSubRanges());
299 using SubRangeIteratorPair
=
300 std::pair
<const LiveInterval::SubRange
*, LiveInterval::const_iterator
>;
302 SmallVector
<SubRangeIteratorPair
, 4> SubRanges
;
305 for (const LiveInterval::SubRange
&SR
: LI
.subranges()) {
306 SubRanges
.push_back(std::make_pair(&SR
, SR
.begin()));
307 if (!First
.isValid() || SR
.segments
.front().start
< First
)
308 First
= SR
.segments
.front().start
;
309 if (!Last
.isValid() || SR
.segments
.back().end
> Last
)
310 Last
= SR
.segments
.back().end
;
313 // Check all mbb start positions between First and Last while
314 // simultaneously advancing an iterator for each subrange.
315 for (SlotIndexes::MBBIndexIterator MBBI
= Indexes
->getMBBLowerBound(First
);
316 MBBI
!= Indexes
->MBBIndexEnd() && MBBI
->first
<= Last
; ++MBBI
) {
317 SlotIndex MBBBegin
= MBBI
->first
;
318 // Advance all subrange iterators so that their end position is just
319 // behind MBBBegin (or the iterator is at the end).
320 LaneBitmask LaneMask
;
321 for (auto &RangeIterPair
: SubRanges
) {
322 const LiveInterval::SubRange
*SR
= RangeIterPair
.first
;
323 LiveInterval::const_iterator
&SRI
= RangeIterPair
.second
;
324 while (SRI
!= SR
->end() && SRI
->end
<= MBBBegin
)
326 if (SRI
== SR
->end())
328 if (SRI
->start
<= MBBBegin
)
329 LaneMask
|= SR
->LaneMask
;
333 MachineBasicBlock
*MBB
= MBBI
->second
;
334 MBB
->addLiveIn(PhysReg
, LaneMask
);
338 // Compute MBB live-in lists from virtual register live ranges and their
340 void VirtRegRewriter::addMBBLiveIns() {
341 for (unsigned Idx
= 0, IdxE
= MRI
->getNumVirtRegs(); Idx
!= IdxE
; ++Idx
) {
342 Register VirtReg
= Register::index2VirtReg(Idx
);
343 if (MRI
->reg_nodbg_empty(VirtReg
))
345 LiveInterval
&LI
= LIS
->getInterval(VirtReg
);
346 if (LI
.empty() || LIS
->intervalIsInOneMBB(LI
))
348 // This is a virtual register that is live across basic blocks. Its
349 // assigned PhysReg must be marked as live-in to those blocks.
350 Register PhysReg
= VRM
->getPhys(VirtReg
);
351 if (PhysReg
== VirtRegMap::NO_PHYS_REG
) {
352 // There may be no physical register assigned if only some register
353 // classes were already allocated.
354 assert(!ClearVirtRegs
&& "Unmapped virtual register");
358 if (LI
.hasSubRanges()) {
359 addLiveInsForSubRanges(LI
, PhysReg
);
361 // Go over MBB begin positions and see if we have segments covering them.
362 // The following works because segments and the MBBIndex list are both
363 // sorted by slot indexes.
364 SlotIndexes::MBBIndexIterator I
= Indexes
->MBBIndexBegin();
365 for (const auto &Seg
: LI
) {
366 I
= Indexes
->getMBBLowerBound(I
, Seg
.start
);
367 for (; I
!= Indexes
->MBBIndexEnd() && I
->first
< Seg
.end
; ++I
) {
368 MachineBasicBlock
*MBB
= I
->second
;
369 MBB
->addLiveIn(PhysReg
);
375 // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
376 // each MBB's LiveIns set before calling addLiveIn on them.
377 for (MachineBasicBlock
&MBB
: *MF
)
378 MBB
.sortUniqueLiveIns();
381 /// Returns true if the given machine operand \p MO only reads undefined lanes.
382 /// The function only works for use operands with a subregister set.
383 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand
&MO
) const {
384 // Shortcut if the operand is already marked undef.
388 Register Reg
= MO
.getReg();
389 const LiveInterval
&LI
= LIS
->getInterval(Reg
);
390 const MachineInstr
&MI
= *MO
.getParent();
391 SlotIndex BaseIndex
= LIS
->getInstructionIndex(MI
);
392 // This code is only meant to handle reading undefined subregisters which
393 // we couldn't properly detect before.
394 assert(LI
.liveAt(BaseIndex
) &&
395 "Reads of completely dead register should be marked undef already");
396 unsigned SubRegIdx
= MO
.getSubReg();
397 assert(SubRegIdx
!= 0 && LI
.hasSubRanges());
398 LaneBitmask UseMask
= TRI
->getSubRegIndexLaneMask(SubRegIdx
);
399 // See if any of the relevant subregister liveranges is defined at this point.
400 for (const LiveInterval::SubRange
&SR
: LI
.subranges()) {
401 if ((SR
.LaneMask
& UseMask
).any() && SR
.liveAt(BaseIndex
))
407 void VirtRegRewriter::handleIdentityCopy(MachineInstr
&MI
) {
408 if (!MI
.isIdentityCopy())
410 LLVM_DEBUG(dbgs() << "Identity copy: " << MI
);
413 Register DstReg
= MI
.getOperand(0).getReg();
415 // We may have deferred allocation of the virtual register, and the rewrite
416 // regs code doesn't handle the liveness update.
417 if (DstReg
.isVirtual())
420 RewriteRegs
.insert(DstReg
);
423 // %r0 = COPY undef %r0
424 // %al = COPY %al, implicit-def %eax
425 // give us additional liveness information: The target (super-)register
426 // must not be valid before this point. Replace the COPY with a KILL
427 // instruction to maintain this information.
428 if (MI
.getOperand(1).isUndef() || MI
.getNumOperands() > 2) {
429 MI
.setDesc(TII
->get(TargetOpcode::KILL
));
430 LLVM_DEBUG(dbgs() << " replace by: " << MI
);
435 Indexes
->removeSingleMachineInstrFromMaps(MI
);
436 MI
.eraseFromBundle();
437 LLVM_DEBUG(dbgs() << " deleted.\n");
440 /// The liverange splitting logic sometimes produces bundles of copies when
441 /// subregisters are involved. Expand these into a sequence of copy instructions
442 /// after processing the last in the bundle. Does not update LiveIntervals
443 /// which we shouldn't need for this instruction anymore.
444 void VirtRegRewriter::expandCopyBundle(MachineInstr
&MI
) const {
445 if (!MI
.isCopy() && !MI
.isKill())
448 if (MI
.isBundledWithPred() && !MI
.isBundledWithSucc()) {
449 SmallVector
<MachineInstr
*, 2> MIs({&MI
});
451 // Only do this when the complete bundle is made out of COPYs and KILLs.
452 MachineBasicBlock
&MBB
= *MI
.getParent();
453 for (MachineBasicBlock::reverse_instr_iterator I
=
454 std::next(MI
.getReverseIterator()), E
= MBB
.instr_rend();
455 I
!= E
&& I
->isBundledWithSucc(); ++I
) {
456 if (!I
->isCopy() && !I
->isKill())
460 MachineInstr
*FirstMI
= MIs
.back();
462 auto anyRegsAlias
= [](const MachineInstr
*Dst
,
463 ArrayRef
<MachineInstr
*> Srcs
,
464 const TargetRegisterInfo
*TRI
) {
465 for (const MachineInstr
*Src
: Srcs
)
467 if (TRI
->regsOverlap(Dst
->getOperand(0).getReg(),
468 Src
->getOperand(1).getReg()))
473 // If any of the destination registers in the bundle of copies alias any of
474 // the source registers, try to schedule the instructions to avoid any
476 for (int E
= MIs
.size(), PrevE
= E
; E
> 1; PrevE
= E
) {
477 for (int I
= E
; I
--; )
478 if (!anyRegsAlias(MIs
[I
], ArrayRef(MIs
).take_front(E
), TRI
)) {
480 std::swap(MIs
[I
], MIs
[E
- 1]);
484 MF
->getFunction().getContext().emitError(
485 "register rewriting failed: cycle in copy bundle");
490 MachineInstr
*BundleStart
= FirstMI
;
491 for (MachineInstr
*BundledMI
: llvm::reverse(MIs
)) {
492 // If instruction is in the middle of the bundle, move it before the
493 // bundle starts, otherwise, just unbundle it. When we get to the last
494 // instruction, the bundle will have been completely undone.
495 if (BundledMI
!= BundleStart
) {
496 BundledMI
->removeFromBundle();
497 MBB
.insert(BundleStart
, BundledMI
);
498 } else if (BundledMI
->isBundledWithSucc()) {
499 BundledMI
->unbundleFromSucc();
500 BundleStart
= &*std::next(BundledMI
->getIterator());
503 if (Indexes
&& BundledMI
!= FirstMI
)
504 Indexes
->insertMachineInstrInMaps(*BundledMI
);
509 /// Check whether (part of) \p SuperPhysReg is live through \p MI.
510 /// \pre \p MI defines a subregister of a virtual register that
511 /// has been assigned to \p SuperPhysReg.
512 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr
&MI
,
513 MCRegister SuperPhysReg
) const {
514 SlotIndex MIIndex
= LIS
->getInstructionIndex(MI
);
515 SlotIndex BeforeMIUses
= MIIndex
.getBaseIndex();
516 SlotIndex AfterMIDefs
= MIIndex
.getBoundaryIndex();
517 for (MCRegUnit Unit
: TRI
->regunits(SuperPhysReg
)) {
518 const LiveRange
&UnitRange
= LIS
->getRegUnit(Unit
);
519 // If the regunit is live both before and after MI,
520 // we assume it is live through.
521 // Generally speaking, this is not true, because something like
522 // "RU = op RU" would match that description.
523 // However, we know that we are trying to assess whether
524 // a def of a virtual reg, vreg, is live at the same time of RU.
525 // If we are in the "RU = op RU" situation, that means that vreg
526 // is defined at the same time as RU (i.e., "vreg, RU = op RU").
527 // Thus, vreg and RU interferes and vreg cannot be assigned to
528 // SuperPhysReg. Therefore, this situation cannot happen.
529 if (UnitRange
.liveAt(AfterMIDefs
) && UnitRange
.liveAt(BeforeMIUses
))
535 void VirtRegRewriter::rewrite() {
536 bool NoSubRegLiveness
= !MRI
->subRegLivenessEnabled();
537 SmallVector
<Register
, 8> SuperDeads
;
538 SmallVector
<Register
, 8> SuperDefs
;
539 SmallVector
<Register
, 8> SuperKills
;
541 for (MachineFunction::iterator MBBI
= MF
->begin(), MBBE
= MF
->end();
542 MBBI
!= MBBE
; ++MBBI
) {
543 LLVM_DEBUG(MBBI
->print(dbgs(), Indexes
));
544 for (MachineInstr
&MI
: llvm::make_early_inc_range(MBBI
->instrs())) {
545 for (MachineOperand
&MO
: MI
.operands()) {
546 // Make sure MRI knows about registers clobbered by regmasks.
548 MRI
->addPhysRegsUsedFromRegMask(MO
.getRegMask());
550 if (!MO
.isReg() || !MO
.getReg().isVirtual())
552 Register VirtReg
= MO
.getReg();
553 MCRegister PhysReg
= VRM
->getPhys(VirtReg
);
554 if (PhysReg
== VirtRegMap::NO_PHYS_REG
)
557 assert(Register(PhysReg
).isPhysical());
559 RewriteRegs
.insert(PhysReg
);
560 assert(!MRI
->isReserved(PhysReg
) && "Reserved register assignment");
562 // Preserve semantics of sub-register operands.
563 unsigned SubReg
= MO
.getSubReg();
565 if (NoSubRegLiveness
|| !MRI
->shouldTrackSubRegLiveness(VirtReg
)) {
566 // A virtual register kill refers to the whole register, so we may
567 // have to add implicit killed operands for the super-register. A
568 // partial redef always kills and redefines the super-register.
569 if ((MO
.readsReg() && (MO
.isDef() || MO
.isKill())) ||
570 (MO
.isDef() && subRegLiveThrough(MI
, PhysReg
)))
571 SuperKills
.push_back(PhysReg
);
574 // Also add implicit defs for the super-register.
576 SuperDeads
.push_back(PhysReg
);
578 SuperDefs
.push_back(PhysReg
);
582 if (readsUndefSubreg(MO
))
583 // We need to add an <undef> flag if the subregister is
584 // completely undefined (and we are not adding super-register
587 } else if (!MO
.isDead()) {
592 // The def undef and def internal flags only make sense for
593 // sub-register defs, and we are substituting a full physreg. An
594 // implicit killed operand from the SuperKills list will represent the
595 // partial read of the super-register.
597 MO
.setIsUndef(false);
598 MO
.setIsInternalRead(false);
601 // PhysReg operands cannot have subregister indexes.
602 PhysReg
= TRI
->getSubReg(PhysReg
, SubReg
);
603 assert(PhysReg
.isValid() && "Invalid SubReg for physical register");
606 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
607 // we need the inlining here.
609 MO
.setIsRenamable(true);
612 // Add any missing super-register kills after rewriting the whole
614 while (!SuperKills
.empty())
615 MI
.addRegisterKilled(SuperKills
.pop_back_val(), TRI
, true);
617 while (!SuperDeads
.empty())
618 MI
.addRegisterDead(SuperDeads
.pop_back_val(), TRI
, true);
620 while (!SuperDefs
.empty())
621 MI
.addRegisterDefined(SuperDefs
.pop_back_val(), TRI
);
623 LLVM_DEBUG(dbgs() << "> " << MI
);
625 expandCopyBundle(MI
);
627 // We can remove identity copies right now.
628 handleIdentityCopy(MI
);
633 // Don't bother maintaining accurate LiveIntervals for registers which were
634 // already allocated.
635 for (Register PhysReg
: RewriteRegs
) {
636 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
)) {
637 LIS
->removeRegUnit(Unit
);
645 FunctionPass
*llvm::createVirtRegRewriter(bool ClearVirtRegs
) {
646 return new VirtRegRewriter(ClearVirtRegs
);