[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / IR / AsmWriter.cpp
blob3c15784a0ed5eba19e65b4d95d928b2dc5ce5fd4
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/iterator_range.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/AssemblyAnnotationWriter.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Comdat.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DebugProgramInstruction.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalObject.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/IRPrintingPasses.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSlotTracker.h"
60 #include "llvm/IR/ModuleSummaryIndex.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/TypeFinder.h"
64 #include "llvm/IR/TypedPointerType.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/Support/AtomicOrdering.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/Format.h"
74 #include "llvm/Support/FormattedStream.h"
75 #include "llvm/Support/SaveAndRestore.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cctype>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <memory>
84 #include <optional>
85 #include <string>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
90 using namespace llvm;
92 // Make virtual table appear in this compilation unit.
93 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
95 //===----------------------------------------------------------------------===//
96 // Helper Functions
97 //===----------------------------------------------------------------------===//
99 using OrderMap = MapVector<const Value *, unsigned>;
101 using UseListOrderMap =
102 DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
104 /// Look for a value that might be wrapped as metadata, e.g. a value in a
105 /// metadata operand. Returns the input value as-is if it is not wrapped.
106 static const Value *skipMetadataWrapper(const Value *V) {
107 if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
108 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
109 return VAM->getValue();
110 return V;
113 static void orderValue(const Value *V, OrderMap &OM) {
114 if (OM.lookup(V))
115 return;
117 if (const Constant *C = dyn_cast<Constant>(V))
118 if (C->getNumOperands() && !isa<GlobalValue>(C))
119 for (const Value *Op : C->operands())
120 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
121 orderValue(Op, OM);
123 // Note: we cannot cache this lookup above, since inserting into the map
124 // changes the map's size, and thus affects the other IDs.
125 unsigned ID = OM.size() + 1;
126 OM[V] = ID;
129 static OrderMap orderModule(const Module *M) {
130 OrderMap OM;
132 for (const GlobalVariable &G : M->globals()) {
133 if (G.hasInitializer())
134 if (!isa<GlobalValue>(G.getInitializer()))
135 orderValue(G.getInitializer(), OM);
136 orderValue(&G, OM);
138 for (const GlobalAlias &A : M->aliases()) {
139 if (!isa<GlobalValue>(A.getAliasee()))
140 orderValue(A.getAliasee(), OM);
141 orderValue(&A, OM);
143 for (const GlobalIFunc &I : M->ifuncs()) {
144 if (!isa<GlobalValue>(I.getResolver()))
145 orderValue(I.getResolver(), OM);
146 orderValue(&I, OM);
148 for (const Function &F : *M) {
149 for (const Use &U : F.operands())
150 if (!isa<GlobalValue>(U.get()))
151 orderValue(U.get(), OM);
153 orderValue(&F, OM);
155 if (F.isDeclaration())
156 continue;
158 for (const Argument &A : F.args())
159 orderValue(&A, OM);
160 for (const BasicBlock &BB : F) {
161 orderValue(&BB, OM);
162 for (const Instruction &I : BB) {
163 for (const Value *Op : I.operands()) {
164 Op = skipMetadataWrapper(Op);
165 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
166 isa<InlineAsm>(*Op))
167 orderValue(Op, OM);
169 orderValue(&I, OM);
173 return OM;
176 static std::vector<unsigned>
177 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
178 // Predict use-list order for this one.
179 using Entry = std::pair<const Use *, unsigned>;
180 SmallVector<Entry, 64> List;
181 for (const Use &U : V->uses())
182 // Check if this user will be serialized.
183 if (OM.lookup(U.getUser()))
184 List.push_back(std::make_pair(&U, List.size()));
186 if (List.size() < 2)
187 // We may have lost some users.
188 return {};
190 // When referencing a value before its declaration, a temporary value is
191 // created, which will later be RAUWed with the actual value. This reverses
192 // the use list. This happens for all values apart from basic blocks.
193 bool GetsReversed = !isa<BasicBlock>(V);
194 if (auto *BA = dyn_cast<BlockAddress>(V))
195 ID = OM.lookup(BA->getBasicBlock());
196 llvm::sort(List, [&](const Entry &L, const Entry &R) {
197 const Use *LU = L.first;
198 const Use *RU = R.first;
199 if (LU == RU)
200 return false;
202 auto LID = OM.lookup(LU->getUser());
203 auto RID = OM.lookup(RU->getUser());
205 // If ID is 4, then expect: 7 6 5 1 2 3.
206 if (LID < RID) {
207 if (GetsReversed)
208 if (RID <= ID)
209 return true;
210 return false;
212 if (RID < LID) {
213 if (GetsReversed)
214 if (LID <= ID)
215 return false;
216 return true;
219 // LID and RID are equal, so we have different operands of the same user.
220 // Assume operands are added in order for all instructions.
221 if (GetsReversed)
222 if (LID <= ID)
223 return LU->getOperandNo() < RU->getOperandNo();
224 return LU->getOperandNo() > RU->getOperandNo();
227 if (llvm::is_sorted(List, llvm::less_second()))
228 // Order is already correct.
229 return {};
231 // Store the shuffle.
232 std::vector<unsigned> Shuffle(List.size());
233 for (size_t I = 0, E = List.size(); I != E; ++I)
234 Shuffle[I] = List[I].second;
235 return Shuffle;
238 static UseListOrderMap predictUseListOrder(const Module *M) {
239 OrderMap OM = orderModule(M);
240 UseListOrderMap ULOM;
241 for (const auto &Pair : OM) {
242 const Value *V = Pair.first;
243 if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
244 continue;
246 std::vector<unsigned> Shuffle =
247 predictValueUseListOrder(V, Pair.second, OM);
248 if (Shuffle.empty())
249 continue;
251 const Function *F = nullptr;
252 if (auto *I = dyn_cast<Instruction>(V))
253 F = I->getFunction();
254 if (auto *A = dyn_cast<Argument>(V))
255 F = A->getParent();
256 if (auto *BB = dyn_cast<BasicBlock>(V))
257 F = BB->getParent();
258 ULOM[F][V] = std::move(Shuffle);
260 return ULOM;
263 static const Module *getModuleFromVal(const Value *V) {
264 if (const Argument *MA = dyn_cast<Argument>(V))
265 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
267 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
268 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
270 if (const Instruction *I = dyn_cast<Instruction>(V)) {
271 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
272 return M ? M->getParent() : nullptr;
275 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
276 return GV->getParent();
278 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
279 for (const User *U : MAV->users())
280 if (isa<Instruction>(U))
281 if (const Module *M = getModuleFromVal(U))
282 return M;
283 return nullptr;
286 return nullptr;
289 static const Module *getModuleFromDPI(const DPMarker *Marker) {
290 const Function *M =
291 Marker->getParent() ? Marker->getParent()->getParent() : nullptr;
292 return M ? M->getParent() : nullptr;
295 static const Module *getModuleFromDPI(const DPValue *DPV) {
296 return getModuleFromDPI(DPV->getMarker());
299 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
300 switch (cc) {
301 default: Out << "cc" << cc; break;
302 case CallingConv::Fast: Out << "fastcc"; break;
303 case CallingConv::Cold: Out << "coldcc"; break;
304 case CallingConv::AnyReg: Out << "anyregcc"; break;
305 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
306 case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
307 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
308 case CallingConv::GHC: Out << "ghccc"; break;
309 case CallingConv::Tail: Out << "tailcc"; break;
310 case CallingConv::GRAAL: Out << "graalcc"; break;
311 case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
312 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
313 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
314 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
315 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
316 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
317 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
318 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
319 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
320 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
321 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
322 case CallingConv::AArch64_SVE_VectorCall:
323 Out << "aarch64_sve_vector_pcs";
324 break;
325 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0:
326 Out << "aarch64_sme_preservemost_from_x0";
327 break;
328 case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2:
329 Out << "aarch64_sme_preservemost_from_x2";
330 break;
331 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
332 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
333 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
334 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
335 case CallingConv::PTX_Device: Out << "ptx_device"; break;
336 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
337 case CallingConv::Win64: Out << "win64cc"; break;
338 case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
339 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
340 case CallingConv::Swift: Out << "swiftcc"; break;
341 case CallingConv::SwiftTail: Out << "swifttailcc"; break;
342 case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
343 case CallingConv::DUMMY_HHVM:
344 Out << "hhvmcc";
345 break;
346 case CallingConv::DUMMY_HHVM_C:
347 Out << "hhvm_ccc";
348 break;
349 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
350 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
351 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
352 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
353 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
354 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
355 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
356 case CallingConv::AMDGPU_CS_Chain:
357 Out << "amdgpu_cs_chain";
358 break;
359 case CallingConv::AMDGPU_CS_ChainPreserve:
360 Out << "amdgpu_cs_chain_preserve";
361 break;
362 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
363 case CallingConv::AMDGPU_Gfx: Out << "amdgpu_gfx"; break;
364 case CallingConv::M68k_RTD: Out << "m68k_rtdcc"; break;
368 enum PrefixType {
369 GlobalPrefix,
370 ComdatPrefix,
371 LabelPrefix,
372 LocalPrefix,
373 NoPrefix
376 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
377 assert(!Name.empty() && "Cannot get empty name!");
379 // Scan the name to see if it needs quotes first.
380 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
381 if (!NeedsQuotes) {
382 for (unsigned char C : Name) {
383 // By making this unsigned, the value passed in to isalnum will always be
384 // in the range 0-255. This is important when building with MSVC because
385 // its implementation will assert. This situation can arise when dealing
386 // with UTF-8 multibyte characters.
387 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
388 C != '_') {
389 NeedsQuotes = true;
390 break;
395 // If we didn't need any quotes, just write out the name in one blast.
396 if (!NeedsQuotes) {
397 OS << Name;
398 return;
401 // Okay, we need quotes. Output the quotes and escape any scary characters as
402 // needed.
403 OS << '"';
404 printEscapedString(Name, OS);
405 OS << '"';
408 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
409 /// (if the string only contains simple characters) or is surrounded with ""'s
410 /// (if it has special chars in it). Print it out.
411 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
412 switch (Prefix) {
413 case NoPrefix:
414 break;
415 case GlobalPrefix:
416 OS << '@';
417 break;
418 case ComdatPrefix:
419 OS << '$';
420 break;
421 case LabelPrefix:
422 break;
423 case LocalPrefix:
424 OS << '%';
425 break;
427 printLLVMNameWithoutPrefix(OS, Name);
430 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
431 /// (if the string only contains simple characters) or is surrounded with ""'s
432 /// (if it has special chars in it). Print it out.
433 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
434 PrintLLVMName(OS, V->getName(),
435 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
438 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
439 Out << ", <";
440 if (isa<ScalableVectorType>(Ty))
441 Out << "vscale x ";
442 Out << Mask.size() << " x i32> ";
443 bool FirstElt = true;
444 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
445 Out << "zeroinitializer";
446 } else if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) {
447 Out << "poison";
448 } else {
449 Out << "<";
450 for (int Elt : Mask) {
451 if (FirstElt)
452 FirstElt = false;
453 else
454 Out << ", ";
455 Out << "i32 ";
456 if (Elt == PoisonMaskElem)
457 Out << "poison";
458 else
459 Out << Elt;
461 Out << ">";
465 namespace {
467 class TypePrinting {
468 public:
469 TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
471 TypePrinting(const TypePrinting &) = delete;
472 TypePrinting &operator=(const TypePrinting &) = delete;
474 /// The named types that are used by the current module.
475 TypeFinder &getNamedTypes();
477 /// The numbered types, number to type mapping.
478 std::vector<StructType *> &getNumberedTypes();
480 bool empty();
482 void print(Type *Ty, raw_ostream &OS);
484 void printStructBody(StructType *Ty, raw_ostream &OS);
486 private:
487 void incorporateTypes();
489 /// A module to process lazily when needed. Set to nullptr as soon as used.
490 const Module *DeferredM;
492 TypeFinder NamedTypes;
494 // The numbered types, along with their value.
495 DenseMap<StructType *, unsigned> Type2Number;
497 std::vector<StructType *> NumberedTypes;
500 } // end anonymous namespace
502 TypeFinder &TypePrinting::getNamedTypes() {
503 incorporateTypes();
504 return NamedTypes;
507 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
508 incorporateTypes();
510 // We know all the numbers that each type is used and we know that it is a
511 // dense assignment. Convert the map to an index table, if it's not done
512 // already (judging from the sizes):
513 if (NumberedTypes.size() == Type2Number.size())
514 return NumberedTypes;
516 NumberedTypes.resize(Type2Number.size());
517 for (const auto &P : Type2Number) {
518 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
519 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
520 NumberedTypes[P.second] = P.first;
522 return NumberedTypes;
525 bool TypePrinting::empty() {
526 incorporateTypes();
527 return NamedTypes.empty() && Type2Number.empty();
530 void TypePrinting::incorporateTypes() {
531 if (!DeferredM)
532 return;
534 NamedTypes.run(*DeferredM, false);
535 DeferredM = nullptr;
537 // The list of struct types we got back includes all the struct types, split
538 // the unnamed ones out to a numbering and remove the anonymous structs.
539 unsigned NextNumber = 0;
541 std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
542 for (StructType *STy : NamedTypes) {
543 // Ignore anonymous types.
544 if (STy->isLiteral())
545 continue;
547 if (STy->getName().empty())
548 Type2Number[STy] = NextNumber++;
549 else
550 *NextToUse++ = STy;
553 NamedTypes.erase(NextToUse, NamedTypes.end());
556 /// Write the specified type to the specified raw_ostream, making use of type
557 /// names or up references to shorten the type name where possible.
558 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
559 switch (Ty->getTypeID()) {
560 case Type::VoidTyID: OS << "void"; return;
561 case Type::HalfTyID: OS << "half"; return;
562 case Type::BFloatTyID: OS << "bfloat"; return;
563 case Type::FloatTyID: OS << "float"; return;
564 case Type::DoubleTyID: OS << "double"; return;
565 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
566 case Type::FP128TyID: OS << "fp128"; return;
567 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
568 case Type::LabelTyID: OS << "label"; return;
569 case Type::MetadataTyID: OS << "metadata"; return;
570 case Type::X86_MMXTyID: OS << "x86_mmx"; return;
571 case Type::X86_AMXTyID: OS << "x86_amx"; return;
572 case Type::TokenTyID: OS << "token"; return;
573 case Type::IntegerTyID:
574 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
575 return;
577 case Type::FunctionTyID: {
578 FunctionType *FTy = cast<FunctionType>(Ty);
579 print(FTy->getReturnType(), OS);
580 OS << " (";
581 ListSeparator LS;
582 for (Type *Ty : FTy->params()) {
583 OS << LS;
584 print(Ty, OS);
586 if (FTy->isVarArg())
587 OS << LS << "...";
588 OS << ')';
589 return;
591 case Type::StructTyID: {
592 StructType *STy = cast<StructType>(Ty);
594 if (STy->isLiteral())
595 return printStructBody(STy, OS);
597 if (!STy->getName().empty())
598 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
600 incorporateTypes();
601 const auto I = Type2Number.find(STy);
602 if (I != Type2Number.end())
603 OS << '%' << I->second;
604 else // Not enumerated, print the hex address.
605 OS << "%\"type " << STy << '\"';
606 return;
608 case Type::PointerTyID: {
609 PointerType *PTy = cast<PointerType>(Ty);
610 OS << "ptr";
611 if (unsigned AddressSpace = PTy->getAddressSpace())
612 OS << " addrspace(" << AddressSpace << ')';
613 return;
615 case Type::ArrayTyID: {
616 ArrayType *ATy = cast<ArrayType>(Ty);
617 OS << '[' << ATy->getNumElements() << " x ";
618 print(ATy->getElementType(), OS);
619 OS << ']';
620 return;
622 case Type::FixedVectorTyID:
623 case Type::ScalableVectorTyID: {
624 VectorType *PTy = cast<VectorType>(Ty);
625 ElementCount EC = PTy->getElementCount();
626 OS << "<";
627 if (EC.isScalable())
628 OS << "vscale x ";
629 OS << EC.getKnownMinValue() << " x ";
630 print(PTy->getElementType(), OS);
631 OS << '>';
632 return;
634 case Type::TypedPointerTyID: {
635 TypedPointerType *TPTy = cast<TypedPointerType>(Ty);
636 OS << "typedptr(" << *TPTy->getElementType() << ", "
637 << TPTy->getAddressSpace() << ")";
638 return;
640 case Type::TargetExtTyID:
641 TargetExtType *TETy = cast<TargetExtType>(Ty);
642 OS << "target(\"";
643 printEscapedString(Ty->getTargetExtName(), OS);
644 OS << "\"";
645 for (Type *Inner : TETy->type_params())
646 OS << ", " << *Inner;
647 for (unsigned IntParam : TETy->int_params())
648 OS << ", " << IntParam;
649 OS << ")";
650 return;
652 llvm_unreachable("Invalid TypeID");
655 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
656 if (STy->isOpaque()) {
657 OS << "opaque";
658 return;
661 if (STy->isPacked())
662 OS << '<';
664 if (STy->getNumElements() == 0) {
665 OS << "{}";
666 } else {
667 OS << "{ ";
668 ListSeparator LS;
669 for (Type *Ty : STy->elements()) {
670 OS << LS;
671 print(Ty, OS);
674 OS << " }";
676 if (STy->isPacked())
677 OS << '>';
680 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() = default;
682 namespace llvm {
684 //===----------------------------------------------------------------------===//
685 // SlotTracker Class: Enumerate slot numbers for unnamed values
686 //===----------------------------------------------------------------------===//
687 /// This class provides computation of slot numbers for LLVM Assembly writing.
689 class SlotTracker : public AbstractSlotTrackerStorage {
690 public:
691 /// ValueMap - A mapping of Values to slot numbers.
692 using ValueMap = DenseMap<const Value *, unsigned>;
694 private:
695 /// TheModule - The module for which we are holding slot numbers.
696 const Module* TheModule;
698 /// TheFunction - The function for which we are holding slot numbers.
699 const Function* TheFunction = nullptr;
700 bool FunctionProcessed = false;
701 bool ShouldInitializeAllMetadata;
703 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
704 ProcessModuleHookFn;
705 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
706 ProcessFunctionHookFn;
708 /// The summary index for which we are holding slot numbers.
709 const ModuleSummaryIndex *TheIndex = nullptr;
711 /// mMap - The slot map for the module level data.
712 ValueMap mMap;
713 unsigned mNext = 0;
715 /// fMap - The slot map for the function level data.
716 ValueMap fMap;
717 unsigned fNext = 0;
719 /// mdnMap - Map for MDNodes.
720 DenseMap<const MDNode*, unsigned> mdnMap;
721 unsigned mdnNext = 0;
723 /// asMap - The slot map for attribute sets.
724 DenseMap<AttributeSet, unsigned> asMap;
725 unsigned asNext = 0;
727 /// ModulePathMap - The slot map for Module paths used in the summary index.
728 StringMap<unsigned> ModulePathMap;
729 unsigned ModulePathNext = 0;
731 /// GUIDMap - The slot map for GUIDs used in the summary index.
732 DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
733 unsigned GUIDNext = 0;
735 /// TypeIdMap - The slot map for type ids used in the summary index.
736 StringMap<unsigned> TypeIdMap;
737 unsigned TypeIdNext = 0;
739 /// TypeIdCompatibleVtableMap - The slot map for type compatible vtable ids
740 /// used in the summary index.
741 StringMap<unsigned> TypeIdCompatibleVtableMap;
742 unsigned TypeIdCompatibleVtableNext = 0;
744 public:
745 /// Construct from a module.
747 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
748 /// functions, giving correct numbering for metadata referenced only from
749 /// within a function (even if no functions have been initialized).
750 explicit SlotTracker(const Module *M,
751 bool ShouldInitializeAllMetadata = false);
753 /// Construct from a function, starting out in incorp state.
755 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
756 /// functions, giving correct numbering for metadata referenced only from
757 /// within a function (even if no functions have been initialized).
758 explicit SlotTracker(const Function *F,
759 bool ShouldInitializeAllMetadata = false);
761 /// Construct from a module summary index.
762 explicit SlotTracker(const ModuleSummaryIndex *Index);
764 SlotTracker(const SlotTracker &) = delete;
765 SlotTracker &operator=(const SlotTracker &) = delete;
767 ~SlotTracker() = default;
769 void setProcessHook(
770 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
771 void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
772 const Function *, bool)>);
774 unsigned getNextMetadataSlot() override { return mdnNext; }
776 void createMetadataSlot(const MDNode *N) override;
778 /// Return the slot number of the specified value in it's type
779 /// plane. If something is not in the SlotTracker, return -1.
780 int getLocalSlot(const Value *V);
781 int getGlobalSlot(const GlobalValue *V);
782 int getMetadataSlot(const MDNode *N) override;
783 int getAttributeGroupSlot(AttributeSet AS);
784 int getModulePathSlot(StringRef Path);
785 int getGUIDSlot(GlobalValue::GUID GUID);
786 int getTypeIdSlot(StringRef Id);
787 int getTypeIdCompatibleVtableSlot(StringRef Id);
789 /// If you'd like to deal with a function instead of just a module, use
790 /// this method to get its data into the SlotTracker.
791 void incorporateFunction(const Function *F) {
792 TheFunction = F;
793 FunctionProcessed = false;
796 const Function *getFunction() const { return TheFunction; }
798 /// After calling incorporateFunction, use this method to remove the
799 /// most recently incorporated function from the SlotTracker. This
800 /// will reset the state of the machine back to just the module contents.
801 void purgeFunction();
803 /// MDNode map iterators.
804 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
806 mdn_iterator mdn_begin() { return mdnMap.begin(); }
807 mdn_iterator mdn_end() { return mdnMap.end(); }
808 unsigned mdn_size() const { return mdnMap.size(); }
809 bool mdn_empty() const { return mdnMap.empty(); }
811 /// AttributeSet map iterators.
812 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
814 as_iterator as_begin() { return asMap.begin(); }
815 as_iterator as_end() { return asMap.end(); }
816 unsigned as_size() const { return asMap.size(); }
817 bool as_empty() const { return asMap.empty(); }
819 /// GUID map iterators.
820 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
822 /// These functions do the actual initialization.
823 inline void initializeIfNeeded();
824 int initializeIndexIfNeeded();
826 // Implementation Details
827 private:
828 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
829 void CreateModuleSlot(const GlobalValue *V);
831 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
832 void CreateMetadataSlot(const MDNode *N);
834 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
835 void CreateFunctionSlot(const Value *V);
837 /// Insert the specified AttributeSet into the slot table.
838 void CreateAttributeSetSlot(AttributeSet AS);
840 inline void CreateModulePathSlot(StringRef Path);
841 void CreateGUIDSlot(GlobalValue::GUID GUID);
842 void CreateTypeIdSlot(StringRef Id);
843 void CreateTypeIdCompatibleVtableSlot(StringRef Id);
845 /// Add all of the module level global variables (and their initializers)
846 /// and function declarations, but not the contents of those functions.
847 void processModule();
848 // Returns number of allocated slots
849 int processIndex();
851 /// Add all of the functions arguments, basic blocks, and instructions.
852 void processFunction();
854 /// Add the metadata directly attached to a GlobalObject.
855 void processGlobalObjectMetadata(const GlobalObject &GO);
857 /// Add all of the metadata from a function.
858 void processFunctionMetadata(const Function &F);
860 /// Add all of the metadata from an instruction.
861 void processInstructionMetadata(const Instruction &I);
863 /// Add all of the metadata from an instruction.
864 void processDPValueMetadata(const DPValue &DPV);
867 } // end namespace llvm
869 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
870 const Function *F)
871 : M(M), F(F), Machine(&Machine) {}
873 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
874 bool ShouldInitializeAllMetadata)
875 : ShouldCreateStorage(M),
876 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
878 ModuleSlotTracker::~ModuleSlotTracker() = default;
880 SlotTracker *ModuleSlotTracker::getMachine() {
881 if (!ShouldCreateStorage)
882 return Machine;
884 ShouldCreateStorage = false;
885 MachineStorage =
886 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
887 Machine = MachineStorage.get();
888 if (ProcessModuleHookFn)
889 Machine->setProcessHook(ProcessModuleHookFn);
890 if (ProcessFunctionHookFn)
891 Machine->setProcessHook(ProcessFunctionHookFn);
892 return Machine;
895 void ModuleSlotTracker::incorporateFunction(const Function &F) {
896 // Using getMachine() may lazily create the slot tracker.
897 if (!getMachine())
898 return;
900 // Nothing to do if this is the right function already.
901 if (this->F == &F)
902 return;
903 if (this->F)
904 Machine->purgeFunction();
905 Machine->incorporateFunction(&F);
906 this->F = &F;
909 int ModuleSlotTracker::getLocalSlot(const Value *V) {
910 assert(F && "No function incorporated");
911 return Machine->getLocalSlot(V);
914 void ModuleSlotTracker::setProcessHook(
915 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
916 Fn) {
917 ProcessModuleHookFn = Fn;
920 void ModuleSlotTracker::setProcessHook(
921 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
922 Fn) {
923 ProcessFunctionHookFn = Fn;
926 static SlotTracker *createSlotTracker(const Value *V) {
927 if (const Argument *FA = dyn_cast<Argument>(V))
928 return new SlotTracker(FA->getParent());
930 if (const Instruction *I = dyn_cast<Instruction>(V))
931 if (I->getParent())
932 return new SlotTracker(I->getParent()->getParent());
934 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
935 return new SlotTracker(BB->getParent());
937 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
938 return new SlotTracker(GV->getParent());
940 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
941 return new SlotTracker(GA->getParent());
943 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
944 return new SlotTracker(GIF->getParent());
946 if (const Function *Func = dyn_cast<Function>(V))
947 return new SlotTracker(Func);
949 return nullptr;
952 #if 0
953 #define ST_DEBUG(X) dbgs() << X
954 #else
955 #define ST_DEBUG(X)
956 #endif
958 // Module level constructor. Causes the contents of the Module (sans functions)
959 // to be added to the slot table.
960 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
961 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
963 // Function level constructor. Causes the contents of the Module and the one
964 // function provided to be added to the slot table.
965 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
966 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
967 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
969 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
970 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
972 inline void SlotTracker::initializeIfNeeded() {
973 if (TheModule) {
974 processModule();
975 TheModule = nullptr; ///< Prevent re-processing next time we're called.
978 if (TheFunction && !FunctionProcessed)
979 processFunction();
982 int SlotTracker::initializeIndexIfNeeded() {
983 if (!TheIndex)
984 return 0;
985 int NumSlots = processIndex();
986 TheIndex = nullptr; ///< Prevent re-processing next time we're called.
987 return NumSlots;
990 // Iterate through all the global variables, functions, and global
991 // variable initializers and create slots for them.
992 void SlotTracker::processModule() {
993 ST_DEBUG("begin processModule!\n");
995 // Add all of the unnamed global variables to the value table.
996 for (const GlobalVariable &Var : TheModule->globals()) {
997 if (!Var.hasName())
998 CreateModuleSlot(&Var);
999 processGlobalObjectMetadata(Var);
1000 auto Attrs = Var.getAttributes();
1001 if (Attrs.hasAttributes())
1002 CreateAttributeSetSlot(Attrs);
1005 for (const GlobalAlias &A : TheModule->aliases()) {
1006 if (!A.hasName())
1007 CreateModuleSlot(&A);
1010 for (const GlobalIFunc &I : TheModule->ifuncs()) {
1011 if (!I.hasName())
1012 CreateModuleSlot(&I);
1015 // Add metadata used by named metadata.
1016 for (const NamedMDNode &NMD : TheModule->named_metadata()) {
1017 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
1018 CreateMetadataSlot(NMD.getOperand(i));
1021 for (const Function &F : *TheModule) {
1022 if (!F.hasName())
1023 // Add all the unnamed functions to the table.
1024 CreateModuleSlot(&F);
1026 if (ShouldInitializeAllMetadata)
1027 processFunctionMetadata(F);
1029 // Add all the function attributes to the table.
1030 // FIXME: Add attributes of other objects?
1031 AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
1032 if (FnAttrs.hasAttributes())
1033 CreateAttributeSetSlot(FnAttrs);
1036 if (ProcessModuleHookFn)
1037 ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
1039 ST_DEBUG("end processModule!\n");
1042 // Process the arguments, basic blocks, and instructions of a function.
1043 void SlotTracker::processFunction() {
1044 ST_DEBUG("begin processFunction!\n");
1045 fNext = 0;
1047 // Process function metadata if it wasn't hit at the module-level.
1048 if (!ShouldInitializeAllMetadata)
1049 processFunctionMetadata(*TheFunction);
1051 // Add all the function arguments with no names.
1052 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1053 AE = TheFunction->arg_end(); AI != AE; ++AI)
1054 if (!AI->hasName())
1055 CreateFunctionSlot(&*AI);
1057 ST_DEBUG("Inserting Instructions:\n");
1059 // Add all of the basic blocks and instructions with no names.
1060 for (auto &BB : *TheFunction) {
1061 if (!BB.hasName())
1062 CreateFunctionSlot(&BB);
1064 for (auto &I : BB) {
1065 if (!I.getType()->isVoidTy() && !I.hasName())
1066 CreateFunctionSlot(&I);
1068 // We allow direct calls to any llvm.foo function here, because the
1069 // target may not be linked into the optimizer.
1070 if (const auto *Call = dyn_cast<CallBase>(&I)) {
1071 // Add all the call attributes to the table.
1072 AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1073 if (Attrs.hasAttributes())
1074 CreateAttributeSetSlot(Attrs);
1079 if (ProcessFunctionHookFn)
1080 ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1082 FunctionProcessed = true;
1084 ST_DEBUG("end processFunction!\n");
1087 // Iterate through all the GUID in the index and create slots for them.
1088 int SlotTracker::processIndex() {
1089 ST_DEBUG("begin processIndex!\n");
1090 assert(TheIndex);
1092 // The first block of slots are just the module ids, which start at 0 and are
1093 // assigned consecutively. Since the StringMap iteration order isn't
1094 // guaranteed, order by path string before assigning slots.
1095 std::vector<StringRef> ModulePaths;
1096 for (auto &[ModPath, _] : TheIndex->modulePaths())
1097 ModulePaths.push_back(ModPath);
1098 llvm::sort(ModulePaths.begin(), ModulePaths.end());
1099 for (auto &ModPath : ModulePaths)
1100 CreateModulePathSlot(ModPath);
1102 // Start numbering the GUIDs after the module ids.
1103 GUIDNext = ModulePathNext;
1105 for (auto &GlobalList : *TheIndex)
1106 CreateGUIDSlot(GlobalList.first);
1108 // Start numbering the TypeIdCompatibleVtables after the GUIDs.
1109 TypeIdCompatibleVtableNext = GUIDNext;
1110 for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1111 CreateTypeIdCompatibleVtableSlot(TId.first);
1113 // Start numbering the TypeIds after the TypeIdCompatibleVtables.
1114 TypeIdNext = TypeIdCompatibleVtableNext;
1115 for (const auto &TID : TheIndex->typeIds())
1116 CreateTypeIdSlot(TID.second.first);
1118 ST_DEBUG("end processIndex!\n");
1119 return TypeIdNext;
1122 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1123 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1124 GO.getAllMetadata(MDs);
1125 for (auto &MD : MDs)
1126 CreateMetadataSlot(MD.second);
1129 void SlotTracker::processFunctionMetadata(const Function &F) {
1130 processGlobalObjectMetadata(F);
1131 for (auto &BB : F) {
1132 for (auto &I : BB) {
1133 for (const DPValue &DPV : I.getDbgValueRange())
1134 processDPValueMetadata(DPV);
1135 processInstructionMetadata(I);
1140 void SlotTracker::processDPValueMetadata(const DPValue &DPV) {
1141 CreateMetadataSlot(DPV.getVariable());
1142 CreateMetadataSlot(DPV.getDebugLoc());
1143 if (DPV.isDbgAssign()) {
1144 CreateMetadataSlot(DPV.getAssignID());
1148 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1149 // Process metadata used directly by intrinsics.
1150 if (const CallInst *CI = dyn_cast<CallInst>(&I))
1151 if (Function *F = CI->getCalledFunction())
1152 if (F->isIntrinsic())
1153 for (auto &Op : I.operands())
1154 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1155 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1156 CreateMetadataSlot(N);
1158 // Process metadata attached to this instruction.
1159 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1160 I.getAllMetadata(MDs);
1161 for (auto &MD : MDs)
1162 CreateMetadataSlot(MD.second);
1165 /// Clean up after incorporating a function. This is the only way to get out of
1166 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1167 /// incorporation state is indicated by TheFunction != 0.
1168 void SlotTracker::purgeFunction() {
1169 ST_DEBUG("begin purgeFunction!\n");
1170 fMap.clear(); // Simply discard the function level map
1171 TheFunction = nullptr;
1172 FunctionProcessed = false;
1173 ST_DEBUG("end purgeFunction!\n");
1176 /// getGlobalSlot - Get the slot number of a global value.
1177 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1178 // Check for uninitialized state and do lazy initialization.
1179 initializeIfNeeded();
1181 // Find the value in the module map
1182 ValueMap::iterator MI = mMap.find(V);
1183 return MI == mMap.end() ? -1 : (int)MI->second;
1186 void SlotTracker::setProcessHook(
1187 std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1188 Fn) {
1189 ProcessModuleHookFn = Fn;
1192 void SlotTracker::setProcessHook(
1193 std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1194 Fn) {
1195 ProcessFunctionHookFn = Fn;
1198 /// getMetadataSlot - Get the slot number of a MDNode.
1199 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1201 /// getMetadataSlot - Get the slot number of a MDNode.
1202 int SlotTracker::getMetadataSlot(const MDNode *N) {
1203 // Check for uninitialized state and do lazy initialization.
1204 initializeIfNeeded();
1206 // Find the MDNode in the module map
1207 mdn_iterator MI = mdnMap.find(N);
1208 return MI == mdnMap.end() ? -1 : (int)MI->second;
1211 /// getLocalSlot - Get the slot number for a value that is local to a function.
1212 int SlotTracker::getLocalSlot(const Value *V) {
1213 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1215 // Check for uninitialized state and do lazy initialization.
1216 initializeIfNeeded();
1218 ValueMap::iterator FI = fMap.find(V);
1219 return FI == fMap.end() ? -1 : (int)FI->second;
1222 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1223 // Check for uninitialized state and do lazy initialization.
1224 initializeIfNeeded();
1226 // Find the AttributeSet in the module map.
1227 as_iterator AI = asMap.find(AS);
1228 return AI == asMap.end() ? -1 : (int)AI->second;
1231 int SlotTracker::getModulePathSlot(StringRef Path) {
1232 // Check for uninitialized state and do lazy initialization.
1233 initializeIndexIfNeeded();
1235 // Find the Module path in the map
1236 auto I = ModulePathMap.find(Path);
1237 return I == ModulePathMap.end() ? -1 : (int)I->second;
1240 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1241 // Check for uninitialized state and do lazy initialization.
1242 initializeIndexIfNeeded();
1244 // Find the GUID in the map
1245 guid_iterator I = GUIDMap.find(GUID);
1246 return I == GUIDMap.end() ? -1 : (int)I->second;
1249 int SlotTracker::getTypeIdSlot(StringRef Id) {
1250 // Check for uninitialized state and do lazy initialization.
1251 initializeIndexIfNeeded();
1253 // Find the TypeId string in the map
1254 auto I = TypeIdMap.find(Id);
1255 return I == TypeIdMap.end() ? -1 : (int)I->second;
1258 int SlotTracker::getTypeIdCompatibleVtableSlot(StringRef Id) {
1259 // Check for uninitialized state and do lazy initialization.
1260 initializeIndexIfNeeded();
1262 // Find the TypeIdCompatibleVtable string in the map
1263 auto I = TypeIdCompatibleVtableMap.find(Id);
1264 return I == TypeIdCompatibleVtableMap.end() ? -1 : (int)I->second;
1267 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1268 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1269 assert(V && "Can't insert a null Value into SlotTracker!");
1270 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1271 assert(!V->hasName() && "Doesn't need a slot!");
1273 unsigned DestSlot = mNext++;
1274 mMap[V] = DestSlot;
1276 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1277 DestSlot << " [");
1278 // G = Global, F = Function, A = Alias, I = IFunc, o = other
1279 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1280 (isa<Function>(V) ? 'F' :
1281 (isa<GlobalAlias>(V) ? 'A' :
1282 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1285 /// CreateSlot - Create a new slot for the specified value if it has no name.
1286 void SlotTracker::CreateFunctionSlot(const Value *V) {
1287 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1289 unsigned DestSlot = fNext++;
1290 fMap[V] = DestSlot;
1292 // G = Global, F = Function, o = other
1293 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1294 DestSlot << " [o]\n");
1297 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1298 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1299 assert(N && "Can't insert a null Value into SlotTracker!");
1301 // Don't make slots for DIExpressions. We just print them inline everywhere.
1302 if (isa<DIExpression>(N))
1303 return;
1305 unsigned DestSlot = mdnNext;
1306 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1307 return;
1308 ++mdnNext;
1310 // Recursively add any MDNodes referenced by operands.
1311 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1312 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1313 CreateMetadataSlot(Op);
1316 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1317 assert(AS.hasAttributes() && "Doesn't need a slot!");
1319 as_iterator I = asMap.find(AS);
1320 if (I != asMap.end())
1321 return;
1323 unsigned DestSlot = asNext++;
1324 asMap[AS] = DestSlot;
1327 /// Create a new slot for the specified Module
1328 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1329 ModulePathMap[Path] = ModulePathNext++;
1332 /// Create a new slot for the specified GUID
1333 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1334 GUIDMap[GUID] = GUIDNext++;
1337 /// Create a new slot for the specified Id
1338 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1339 TypeIdMap[Id] = TypeIdNext++;
1342 /// Create a new slot for the specified Id
1343 void SlotTracker::CreateTypeIdCompatibleVtableSlot(StringRef Id) {
1344 TypeIdCompatibleVtableMap[Id] = TypeIdCompatibleVtableNext++;
1347 namespace {
1348 /// Common instances used by most of the printer functions.
1349 struct AsmWriterContext {
1350 TypePrinting *TypePrinter = nullptr;
1351 SlotTracker *Machine = nullptr;
1352 const Module *Context = nullptr;
1354 AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1355 : TypePrinter(TP), Machine(ST), Context(M) {}
1357 static AsmWriterContext &getEmpty() {
1358 static AsmWriterContext EmptyCtx(nullptr, nullptr);
1359 return EmptyCtx;
1362 /// A callback that will be triggered when the underlying printer
1363 /// prints a Metadata as operand.
1364 virtual void onWriteMetadataAsOperand(const Metadata *) {}
1366 virtual ~AsmWriterContext() = default;
1368 } // end anonymous namespace
1370 //===----------------------------------------------------------------------===//
1371 // AsmWriter Implementation
1372 //===----------------------------------------------------------------------===//
1374 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1375 AsmWriterContext &WriterCtx);
1377 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1378 AsmWriterContext &WriterCtx,
1379 bool FromValue = false);
1381 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1382 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U))
1383 Out << FPO->getFastMathFlags();
1385 if (const OverflowingBinaryOperator *OBO =
1386 dyn_cast<OverflowingBinaryOperator>(U)) {
1387 if (OBO->hasNoUnsignedWrap())
1388 Out << " nuw";
1389 if (OBO->hasNoSignedWrap())
1390 Out << " nsw";
1391 } else if (const PossiblyExactOperator *Div =
1392 dyn_cast<PossiblyExactOperator>(U)) {
1393 if (Div->isExact())
1394 Out << " exact";
1395 } else if (const PossiblyDisjointInst *PDI =
1396 dyn_cast<PossiblyDisjointInst>(U)) {
1397 if (PDI->isDisjoint())
1398 Out << " disjoint";
1399 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1400 if (GEP->isInBounds())
1401 Out << " inbounds";
1402 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(U)) {
1403 if (NNI->hasNonNeg())
1404 Out << " nneg";
1408 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1409 AsmWriterContext &WriterCtx) {
1410 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1411 if (CI->getType()->isIntegerTy(1)) {
1412 Out << (CI->getZExtValue() ? "true" : "false");
1413 return;
1415 Out << CI->getValue();
1416 return;
1419 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1420 const APFloat &APF = CFP->getValueAPF();
1421 if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1422 &APF.getSemantics() == &APFloat::IEEEdouble()) {
1423 // We would like to output the FP constant value in exponential notation,
1424 // but we cannot do this if doing so will lose precision. Check here to
1425 // make sure that we only output it in exponential format if we can parse
1426 // the value back and get the same value.
1428 bool ignored;
1429 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1430 bool isInf = APF.isInfinity();
1431 bool isNaN = APF.isNaN();
1432 if (!isInf && !isNaN) {
1433 double Val = APF.convertToDouble();
1434 SmallString<128> StrVal;
1435 APF.toString(StrVal, 6, 0, false);
1436 // Check to make sure that the stringized number is not some string like
1437 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1438 // that the string matches the "[-+]?[0-9]" regex.
1440 assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
1441 isDigit(StrVal[1]))) &&
1442 "[-+]?[0-9] regex does not match!");
1443 // Reparse stringized version!
1444 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1445 Out << StrVal;
1446 return;
1449 // Otherwise we could not reparse it to exactly the same value, so we must
1450 // output the string in hexadecimal format! Note that loading and storing
1451 // floating point types changes the bits of NaNs on some hosts, notably
1452 // x86, so we must not use these types.
1453 static_assert(sizeof(double) == sizeof(uint64_t),
1454 "assuming that double is 64 bits!");
1455 APFloat apf = APF;
1456 // Floats are represented in ASCII IR as double, convert.
1457 // FIXME: We should allow 32-bit hex float and remove this.
1458 if (!isDouble) {
1459 // A signaling NaN is quieted on conversion, so we need to recreate the
1460 // expected value after convert (quiet bit of the payload is clear).
1461 bool IsSNAN = apf.isSignaling();
1462 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1463 &ignored);
1464 if (IsSNAN) {
1465 APInt Payload = apf.bitcastToAPInt();
1466 apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
1467 &Payload);
1470 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1471 return;
1474 // Either half, bfloat or some form of long double.
1475 // These appear as a magic letter identifying the type, then a
1476 // fixed number of hex digits.
1477 Out << "0x";
1478 APInt API = APF.bitcastToAPInt();
1479 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1480 Out << 'K';
1481 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1482 /*Upper=*/true);
1483 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1484 /*Upper=*/true);
1485 return;
1486 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1487 Out << 'L';
1488 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1489 /*Upper=*/true);
1490 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1491 /*Upper=*/true);
1492 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1493 Out << 'M';
1494 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1495 /*Upper=*/true);
1496 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1497 /*Upper=*/true);
1498 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1499 Out << 'H';
1500 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1501 /*Upper=*/true);
1502 } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1503 Out << 'R';
1504 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1505 /*Upper=*/true);
1506 } else
1507 llvm_unreachable("Unsupported floating point type");
1508 return;
1511 if (isa<ConstantAggregateZero>(CV) || isa<ConstantTargetNone>(CV)) {
1512 Out << "zeroinitializer";
1513 return;
1516 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1517 Out << "blockaddress(";
1518 WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx);
1519 Out << ", ";
1520 WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx);
1521 Out << ")";
1522 return;
1525 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1526 Out << "dso_local_equivalent ";
1527 WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx);
1528 return;
1531 if (const auto *NC = dyn_cast<NoCFIValue>(CV)) {
1532 Out << "no_cfi ";
1533 WriteAsOperandInternal(Out, NC->getGlobalValue(), WriterCtx);
1534 return;
1537 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1538 Type *ETy = CA->getType()->getElementType();
1539 Out << '[';
1540 WriterCtx.TypePrinter->print(ETy, Out);
1541 Out << ' ';
1542 WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx);
1543 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1544 Out << ", ";
1545 WriterCtx.TypePrinter->print(ETy, Out);
1546 Out << ' ';
1547 WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx);
1549 Out << ']';
1550 return;
1553 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1554 // As a special case, print the array as a string if it is an array of
1555 // i8 with ConstantInt values.
1556 if (CA->isString()) {
1557 Out << "c\"";
1558 printEscapedString(CA->getAsString(), Out);
1559 Out << '"';
1560 return;
1563 Type *ETy = CA->getType()->getElementType();
1564 Out << '[';
1565 WriterCtx.TypePrinter->print(ETy, Out);
1566 Out << ' ';
1567 WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx);
1568 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1569 Out << ", ";
1570 WriterCtx.TypePrinter->print(ETy, Out);
1571 Out << ' ';
1572 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx);
1574 Out << ']';
1575 return;
1578 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1579 if (CS->getType()->isPacked())
1580 Out << '<';
1581 Out << '{';
1582 unsigned N = CS->getNumOperands();
1583 if (N) {
1584 Out << ' ';
1585 WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1586 Out << ' ';
1588 WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx);
1590 for (unsigned i = 1; i < N; i++) {
1591 Out << ", ";
1592 WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1593 Out << ' ';
1595 WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx);
1597 Out << ' ';
1600 Out << '}';
1601 if (CS->getType()->isPacked())
1602 Out << '>';
1603 return;
1606 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1607 auto *CVVTy = cast<FixedVectorType>(CV->getType());
1608 Type *ETy = CVVTy->getElementType();
1609 Out << '<';
1610 WriterCtx.TypePrinter->print(ETy, Out);
1611 Out << ' ';
1612 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx);
1613 for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1614 Out << ", ";
1615 WriterCtx.TypePrinter->print(ETy, Out);
1616 Out << ' ';
1617 WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx);
1619 Out << '>';
1620 return;
1623 if (isa<ConstantPointerNull>(CV)) {
1624 Out << "null";
1625 return;
1628 if (isa<ConstantTokenNone>(CV)) {
1629 Out << "none";
1630 return;
1633 if (isa<PoisonValue>(CV)) {
1634 Out << "poison";
1635 return;
1638 if (isa<UndefValue>(CV)) {
1639 Out << "undef";
1640 return;
1643 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1644 Out << CE->getOpcodeName();
1645 WriteOptimizationInfo(Out, CE);
1646 if (CE->isCompare())
1647 Out << ' ' << static_cast<CmpInst::Predicate>(CE->getPredicate());
1648 Out << " (";
1650 std::optional<unsigned> InRangeOp;
1651 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1652 WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1653 Out << ", ";
1654 InRangeOp = GEP->getInRangeIndex();
1655 if (InRangeOp)
1656 ++*InRangeOp;
1659 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1660 if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1661 Out << "inrange ";
1662 WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1663 Out << ' ';
1664 WriteAsOperandInternal(Out, *OI, WriterCtx);
1665 if (OI+1 != CE->op_end())
1666 Out << ", ";
1669 if (CE->isCast()) {
1670 Out << " to ";
1671 WriterCtx.TypePrinter->print(CE->getType(), Out);
1674 if (CE->getOpcode() == Instruction::ShuffleVector)
1675 PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1677 Out << ')';
1678 return;
1681 Out << "<placeholder or erroneous Constant>";
1684 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1685 AsmWriterContext &WriterCtx) {
1686 Out << "!{";
1687 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1688 const Metadata *MD = Node->getOperand(mi);
1689 if (!MD)
1690 Out << "null";
1691 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1692 Value *V = MDV->getValue();
1693 WriterCtx.TypePrinter->print(V->getType(), Out);
1694 Out << ' ';
1695 WriteAsOperandInternal(Out, V, WriterCtx);
1696 } else {
1697 WriteAsOperandInternal(Out, MD, WriterCtx);
1698 WriterCtx.onWriteMetadataAsOperand(MD);
1700 if (mi + 1 != me)
1701 Out << ", ";
1704 Out << "}";
1707 namespace {
1709 struct FieldSeparator {
1710 bool Skip = true;
1711 const char *Sep;
1713 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1716 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1717 if (FS.Skip) {
1718 FS.Skip = false;
1719 return OS;
1721 return OS << FS.Sep;
1724 struct MDFieldPrinter {
1725 raw_ostream &Out;
1726 FieldSeparator FS;
1727 AsmWriterContext &WriterCtx;
1729 explicit MDFieldPrinter(raw_ostream &Out)
1730 : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1731 MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1732 : Out(Out), WriterCtx(Ctx) {}
1734 void printTag(const DINode *N);
1735 void printMacinfoType(const DIMacroNode *N);
1736 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1737 void printString(StringRef Name, StringRef Value,
1738 bool ShouldSkipEmpty = true);
1739 void printMetadata(StringRef Name, const Metadata *MD,
1740 bool ShouldSkipNull = true);
1741 template <class IntTy>
1742 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1743 void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1744 bool ShouldSkipZero);
1745 void printBool(StringRef Name, bool Value,
1746 std::optional<bool> Default = std::nullopt);
1747 void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1748 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1749 template <class IntTy, class Stringifier>
1750 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1751 bool ShouldSkipZero = true);
1752 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1753 void printNameTableKind(StringRef Name,
1754 DICompileUnit::DebugNameTableKind NTK);
1757 } // end anonymous namespace
1759 void MDFieldPrinter::printTag(const DINode *N) {
1760 Out << FS << "tag: ";
1761 auto Tag = dwarf::TagString(N->getTag());
1762 if (!Tag.empty())
1763 Out << Tag;
1764 else
1765 Out << N->getTag();
1768 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1769 Out << FS << "type: ";
1770 auto Type = dwarf::MacinfoString(N->getMacinfoType());
1771 if (!Type.empty())
1772 Out << Type;
1773 else
1774 Out << N->getMacinfoType();
1777 void MDFieldPrinter::printChecksum(
1778 const DIFile::ChecksumInfo<StringRef> &Checksum) {
1779 Out << FS << "checksumkind: " << Checksum.getKindAsString();
1780 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1783 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1784 bool ShouldSkipEmpty) {
1785 if (ShouldSkipEmpty && Value.empty())
1786 return;
1788 Out << FS << Name << ": \"";
1789 printEscapedString(Value, Out);
1790 Out << "\"";
1793 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1794 AsmWriterContext &WriterCtx) {
1795 if (!MD) {
1796 Out << "null";
1797 return;
1799 WriteAsOperandInternal(Out, MD, WriterCtx);
1800 WriterCtx.onWriteMetadataAsOperand(MD);
1803 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1804 bool ShouldSkipNull) {
1805 if (ShouldSkipNull && !MD)
1806 return;
1808 Out << FS << Name << ": ";
1809 writeMetadataAsOperand(Out, MD, WriterCtx);
1812 template <class IntTy>
1813 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1814 if (ShouldSkipZero && !Int)
1815 return;
1817 Out << FS << Name << ": " << Int;
1820 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1821 bool IsUnsigned, bool ShouldSkipZero) {
1822 if (ShouldSkipZero && Int.isZero())
1823 return;
1825 Out << FS << Name << ": ";
1826 Int.print(Out, !IsUnsigned);
1829 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1830 std::optional<bool> Default) {
1831 if (Default && Value == *Default)
1832 return;
1833 Out << FS << Name << ": " << (Value ? "true" : "false");
1836 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1837 if (!Flags)
1838 return;
1840 Out << FS << Name << ": ";
1842 SmallVector<DINode::DIFlags, 8> SplitFlags;
1843 auto Extra = DINode::splitFlags(Flags, SplitFlags);
1845 FieldSeparator FlagsFS(" | ");
1846 for (auto F : SplitFlags) {
1847 auto StringF = DINode::getFlagString(F);
1848 assert(!StringF.empty() && "Expected valid flag");
1849 Out << FlagsFS << StringF;
1851 if (Extra || SplitFlags.empty())
1852 Out << FlagsFS << Extra;
1855 void MDFieldPrinter::printDISPFlags(StringRef Name,
1856 DISubprogram::DISPFlags Flags) {
1857 // Always print this field, because no flags in the IR at all will be
1858 // interpreted as old-style isDefinition: true.
1859 Out << FS << Name << ": ";
1861 if (!Flags) {
1862 Out << 0;
1863 return;
1866 SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1867 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1869 FieldSeparator FlagsFS(" | ");
1870 for (auto F : SplitFlags) {
1871 auto StringF = DISubprogram::getFlagString(F);
1872 assert(!StringF.empty() && "Expected valid flag");
1873 Out << FlagsFS << StringF;
1875 if (Extra || SplitFlags.empty())
1876 Out << FlagsFS << Extra;
1879 void MDFieldPrinter::printEmissionKind(StringRef Name,
1880 DICompileUnit::DebugEmissionKind EK) {
1881 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1884 void MDFieldPrinter::printNameTableKind(StringRef Name,
1885 DICompileUnit::DebugNameTableKind NTK) {
1886 if (NTK == DICompileUnit::DebugNameTableKind::Default)
1887 return;
1888 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1891 template <class IntTy, class Stringifier>
1892 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1893 Stringifier toString, bool ShouldSkipZero) {
1894 if (!Value)
1895 return;
1897 Out << FS << Name << ": ";
1898 auto S = toString(Value);
1899 if (!S.empty())
1900 Out << S;
1901 else
1902 Out << Value;
1905 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1906 AsmWriterContext &WriterCtx) {
1907 Out << "!GenericDINode(";
1908 MDFieldPrinter Printer(Out, WriterCtx);
1909 Printer.printTag(N);
1910 Printer.printString("header", N->getHeader());
1911 if (N->getNumDwarfOperands()) {
1912 Out << Printer.FS << "operands: {";
1913 FieldSeparator IFS;
1914 for (auto &I : N->dwarf_operands()) {
1915 Out << IFS;
1916 writeMetadataAsOperand(Out, I, WriterCtx);
1918 Out << "}";
1920 Out << ")";
1923 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1924 AsmWriterContext &WriterCtx) {
1925 Out << "!DILocation(";
1926 MDFieldPrinter Printer(Out, WriterCtx);
1927 // Always output the line, since 0 is a relevant and important value for it.
1928 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1929 Printer.printInt("column", DL->getColumn());
1930 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1931 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1932 Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1933 /* Default */ false);
1934 Out << ")";
1937 static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL,
1938 AsmWriterContext &WriterCtx) {
1939 Out << "!DIAssignID()";
1940 MDFieldPrinter Printer(Out, WriterCtx);
1943 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1944 AsmWriterContext &WriterCtx) {
1945 Out << "!DISubrange(";
1946 MDFieldPrinter Printer(Out, WriterCtx);
1948 auto *Count = N->getRawCountNode();
1949 if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
1950 auto *CV = cast<ConstantInt>(CE->getValue());
1951 Printer.printInt("count", CV->getSExtValue(),
1952 /* ShouldSkipZero */ false);
1953 } else
1954 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1956 // A lowerBound of constant 0 should not be skipped, since it is different
1957 // from an unspecified lower bound (= nullptr).
1958 auto *LBound = N->getRawLowerBound();
1959 if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1960 auto *LV = cast<ConstantInt>(LE->getValue());
1961 Printer.printInt("lowerBound", LV->getSExtValue(),
1962 /* ShouldSkipZero */ false);
1963 } else
1964 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1966 auto *UBound = N->getRawUpperBound();
1967 if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1968 auto *UV = cast<ConstantInt>(UE->getValue());
1969 Printer.printInt("upperBound", UV->getSExtValue(),
1970 /* ShouldSkipZero */ false);
1971 } else
1972 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1974 auto *Stride = N->getRawStride();
1975 if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1976 auto *SV = cast<ConstantInt>(SE->getValue());
1977 Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1978 } else
1979 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1981 Out << ")";
1984 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
1985 AsmWriterContext &WriterCtx) {
1986 Out << "!DIGenericSubrange(";
1987 MDFieldPrinter Printer(Out, WriterCtx);
1989 auto IsConstant = [&](Metadata *Bound) -> bool {
1990 if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
1991 return BE->isConstant() &&
1992 DIExpression::SignedOrUnsignedConstant::SignedConstant ==
1993 *BE->isConstant();
1995 return false;
1998 auto GetConstant = [&](Metadata *Bound) -> int64_t {
1999 assert(IsConstant(Bound) && "Expected constant");
2000 auto *BE = dyn_cast_or_null<DIExpression>(Bound);
2001 return static_cast<int64_t>(BE->getElement(1));
2004 auto *Count = N->getRawCountNode();
2005 if (IsConstant(Count))
2006 Printer.printInt("count", GetConstant(Count),
2007 /* ShouldSkipZero */ false);
2008 else
2009 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
2011 auto *LBound = N->getRawLowerBound();
2012 if (IsConstant(LBound))
2013 Printer.printInt("lowerBound", GetConstant(LBound),
2014 /* ShouldSkipZero */ false);
2015 else
2016 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
2018 auto *UBound = N->getRawUpperBound();
2019 if (IsConstant(UBound))
2020 Printer.printInt("upperBound", GetConstant(UBound),
2021 /* ShouldSkipZero */ false);
2022 else
2023 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
2025 auto *Stride = N->getRawStride();
2026 if (IsConstant(Stride))
2027 Printer.printInt("stride", GetConstant(Stride),
2028 /* ShouldSkipZero */ false);
2029 else
2030 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
2032 Out << ")";
2035 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
2036 AsmWriterContext &) {
2037 Out << "!DIEnumerator(";
2038 MDFieldPrinter Printer(Out);
2039 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
2040 Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
2041 /*ShouldSkipZero=*/false);
2042 if (N->isUnsigned())
2043 Printer.printBool("isUnsigned", true);
2044 Out << ")";
2047 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
2048 AsmWriterContext &) {
2049 Out << "!DIBasicType(";
2050 MDFieldPrinter Printer(Out);
2051 if (N->getTag() != dwarf::DW_TAG_base_type)
2052 Printer.printTag(N);
2053 Printer.printString("name", N->getName());
2054 Printer.printInt("size", N->getSizeInBits());
2055 Printer.printInt("align", N->getAlignInBits());
2056 Printer.printDwarfEnum("encoding", N->getEncoding(),
2057 dwarf::AttributeEncodingString);
2058 Printer.printDIFlags("flags", N->getFlags());
2059 Out << ")";
2062 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
2063 AsmWriterContext &WriterCtx) {
2064 Out << "!DIStringType(";
2065 MDFieldPrinter Printer(Out, WriterCtx);
2066 if (N->getTag() != dwarf::DW_TAG_string_type)
2067 Printer.printTag(N);
2068 Printer.printString("name", N->getName());
2069 Printer.printMetadata("stringLength", N->getRawStringLength());
2070 Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2071 Printer.printMetadata("stringLocationExpression",
2072 N->getRawStringLocationExp());
2073 Printer.printInt("size", N->getSizeInBits());
2074 Printer.printInt("align", N->getAlignInBits());
2075 Printer.printDwarfEnum("encoding", N->getEncoding(),
2076 dwarf::AttributeEncodingString);
2077 Out << ")";
2080 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2081 AsmWriterContext &WriterCtx) {
2082 Out << "!DIDerivedType(";
2083 MDFieldPrinter Printer(Out, WriterCtx);
2084 Printer.printTag(N);
2085 Printer.printString("name", N->getName());
2086 Printer.printMetadata("scope", N->getRawScope());
2087 Printer.printMetadata("file", N->getRawFile());
2088 Printer.printInt("line", N->getLine());
2089 Printer.printMetadata("baseType", N->getRawBaseType(),
2090 /* ShouldSkipNull */ false);
2091 Printer.printInt("size", N->getSizeInBits());
2092 Printer.printInt("align", N->getAlignInBits());
2093 Printer.printInt("offset", N->getOffsetInBits());
2094 Printer.printDIFlags("flags", N->getFlags());
2095 Printer.printMetadata("extraData", N->getRawExtraData());
2096 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2097 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2098 /* ShouldSkipZero */ false);
2099 Printer.printMetadata("annotations", N->getRawAnnotations());
2100 Out << ")";
2103 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2104 AsmWriterContext &WriterCtx) {
2105 Out << "!DICompositeType(";
2106 MDFieldPrinter Printer(Out, WriterCtx);
2107 Printer.printTag(N);
2108 Printer.printString("name", N->getName());
2109 Printer.printMetadata("scope", N->getRawScope());
2110 Printer.printMetadata("file", N->getRawFile());
2111 Printer.printInt("line", N->getLine());
2112 Printer.printMetadata("baseType", N->getRawBaseType());
2113 Printer.printInt("size", N->getSizeInBits());
2114 Printer.printInt("align", N->getAlignInBits());
2115 Printer.printInt("offset", N->getOffsetInBits());
2116 Printer.printDIFlags("flags", N->getFlags());
2117 Printer.printMetadata("elements", N->getRawElements());
2118 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2119 dwarf::LanguageString);
2120 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2121 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2122 Printer.printString("identifier", N->getIdentifier());
2123 Printer.printMetadata("discriminator", N->getRawDiscriminator());
2124 Printer.printMetadata("dataLocation", N->getRawDataLocation());
2125 Printer.printMetadata("associated", N->getRawAssociated());
2126 Printer.printMetadata("allocated", N->getRawAllocated());
2127 if (auto *RankConst = N->getRankConst())
2128 Printer.printInt("rank", RankConst->getSExtValue(),
2129 /* ShouldSkipZero */ false);
2130 else
2131 Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2132 Printer.printMetadata("annotations", N->getRawAnnotations());
2133 Out << ")";
2136 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2137 AsmWriterContext &WriterCtx) {
2138 Out << "!DISubroutineType(";
2139 MDFieldPrinter Printer(Out, WriterCtx);
2140 Printer.printDIFlags("flags", N->getFlags());
2141 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2142 Printer.printMetadata("types", N->getRawTypeArray(),
2143 /* ShouldSkipNull */ false);
2144 Out << ")";
2147 static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) {
2148 Out << "!DIFile(";
2149 MDFieldPrinter Printer(Out);
2150 Printer.printString("filename", N->getFilename(),
2151 /* ShouldSkipEmpty */ false);
2152 Printer.printString("directory", N->getDirectory(),
2153 /* ShouldSkipEmpty */ false);
2154 // Print all values for checksum together, or not at all.
2155 if (N->getChecksum())
2156 Printer.printChecksum(*N->getChecksum());
2157 Printer.printString("source", N->getSource().value_or(StringRef()),
2158 /* ShouldSkipEmpty */ true);
2159 Out << ")";
2162 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2163 AsmWriterContext &WriterCtx) {
2164 Out << "!DICompileUnit(";
2165 MDFieldPrinter Printer(Out, WriterCtx);
2166 Printer.printDwarfEnum("language", N->getSourceLanguage(),
2167 dwarf::LanguageString, /* ShouldSkipZero */ false);
2168 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2169 Printer.printString("producer", N->getProducer());
2170 Printer.printBool("isOptimized", N->isOptimized());
2171 Printer.printString("flags", N->getFlags());
2172 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2173 /* ShouldSkipZero */ false);
2174 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2175 Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2176 Printer.printMetadata("enums", N->getRawEnumTypes());
2177 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2178 Printer.printMetadata("globals", N->getRawGlobalVariables());
2179 Printer.printMetadata("imports", N->getRawImportedEntities());
2180 Printer.printMetadata("macros", N->getRawMacros());
2181 Printer.printInt("dwoId", N->getDWOId());
2182 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2183 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2184 false);
2185 Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2186 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2187 Printer.printString("sysroot", N->getSysRoot());
2188 Printer.printString("sdk", N->getSDK());
2189 Out << ")";
2192 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2193 AsmWriterContext &WriterCtx) {
2194 Out << "!DISubprogram(";
2195 MDFieldPrinter Printer(Out, WriterCtx);
2196 Printer.printString("name", N->getName());
2197 Printer.printString("linkageName", N->getLinkageName());
2198 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2199 Printer.printMetadata("file", N->getRawFile());
2200 Printer.printInt("line", N->getLine());
2201 Printer.printMetadata("type", N->getRawType());
2202 Printer.printInt("scopeLine", N->getScopeLine());
2203 Printer.printMetadata("containingType", N->getRawContainingType());
2204 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2205 N->getVirtualIndex() != 0)
2206 Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2207 Printer.printInt("thisAdjustment", N->getThisAdjustment());
2208 Printer.printDIFlags("flags", N->getFlags());
2209 Printer.printDISPFlags("spFlags", N->getSPFlags());
2210 Printer.printMetadata("unit", N->getRawUnit());
2211 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2212 Printer.printMetadata("declaration", N->getRawDeclaration());
2213 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2214 Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2215 Printer.printMetadata("annotations", N->getRawAnnotations());
2216 Printer.printString("targetFuncName", N->getTargetFuncName());
2217 Out << ")";
2220 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2221 AsmWriterContext &WriterCtx) {
2222 Out << "!DILexicalBlock(";
2223 MDFieldPrinter Printer(Out, WriterCtx);
2224 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2225 Printer.printMetadata("file", N->getRawFile());
2226 Printer.printInt("line", N->getLine());
2227 Printer.printInt("column", N->getColumn());
2228 Out << ")";
2231 static void writeDILexicalBlockFile(raw_ostream &Out,
2232 const DILexicalBlockFile *N,
2233 AsmWriterContext &WriterCtx) {
2234 Out << "!DILexicalBlockFile(";
2235 MDFieldPrinter Printer(Out, WriterCtx);
2236 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2237 Printer.printMetadata("file", N->getRawFile());
2238 Printer.printInt("discriminator", N->getDiscriminator(),
2239 /* ShouldSkipZero */ false);
2240 Out << ")";
2243 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2244 AsmWriterContext &WriterCtx) {
2245 Out << "!DINamespace(";
2246 MDFieldPrinter Printer(Out, WriterCtx);
2247 Printer.printString("name", N->getName());
2248 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2249 Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2250 Out << ")";
2253 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2254 AsmWriterContext &WriterCtx) {
2255 Out << "!DICommonBlock(";
2256 MDFieldPrinter Printer(Out, WriterCtx);
2257 Printer.printMetadata("scope", N->getRawScope(), false);
2258 Printer.printMetadata("declaration", N->getRawDecl(), false);
2259 Printer.printString("name", N->getName());
2260 Printer.printMetadata("file", N->getRawFile());
2261 Printer.printInt("line", N->getLineNo());
2262 Out << ")";
2265 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2266 AsmWriterContext &WriterCtx) {
2267 Out << "!DIMacro(";
2268 MDFieldPrinter Printer(Out, WriterCtx);
2269 Printer.printMacinfoType(N);
2270 Printer.printInt("line", N->getLine());
2271 Printer.printString("name", N->getName());
2272 Printer.printString("value", N->getValue());
2273 Out << ")";
2276 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2277 AsmWriterContext &WriterCtx) {
2278 Out << "!DIMacroFile(";
2279 MDFieldPrinter Printer(Out, WriterCtx);
2280 Printer.printInt("line", N->getLine());
2281 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2282 Printer.printMetadata("nodes", N->getRawElements());
2283 Out << ")";
2286 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2287 AsmWriterContext &WriterCtx) {
2288 Out << "!DIModule(";
2289 MDFieldPrinter Printer(Out, WriterCtx);
2290 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2291 Printer.printString("name", N->getName());
2292 Printer.printString("configMacros", N->getConfigurationMacros());
2293 Printer.printString("includePath", N->getIncludePath());
2294 Printer.printString("apinotes", N->getAPINotesFile());
2295 Printer.printMetadata("file", N->getRawFile());
2296 Printer.printInt("line", N->getLineNo());
2297 Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2298 Out << ")";
2301 static void writeDITemplateTypeParameter(raw_ostream &Out,
2302 const DITemplateTypeParameter *N,
2303 AsmWriterContext &WriterCtx) {
2304 Out << "!DITemplateTypeParameter(";
2305 MDFieldPrinter Printer(Out, WriterCtx);
2306 Printer.printString("name", N->getName());
2307 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2308 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2309 Out << ")";
2312 static void writeDITemplateValueParameter(raw_ostream &Out,
2313 const DITemplateValueParameter *N,
2314 AsmWriterContext &WriterCtx) {
2315 Out << "!DITemplateValueParameter(";
2316 MDFieldPrinter Printer(Out, WriterCtx);
2317 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2318 Printer.printTag(N);
2319 Printer.printString("name", N->getName());
2320 Printer.printMetadata("type", N->getRawType());
2321 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2322 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2323 Out << ")";
2326 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2327 AsmWriterContext &WriterCtx) {
2328 Out << "!DIGlobalVariable(";
2329 MDFieldPrinter Printer(Out, WriterCtx);
2330 Printer.printString("name", N->getName());
2331 Printer.printString("linkageName", N->getLinkageName());
2332 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2333 Printer.printMetadata("file", N->getRawFile());
2334 Printer.printInt("line", N->getLine());
2335 Printer.printMetadata("type", N->getRawType());
2336 Printer.printBool("isLocal", N->isLocalToUnit());
2337 Printer.printBool("isDefinition", N->isDefinition());
2338 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2339 Printer.printMetadata("templateParams", N->getRawTemplateParams());
2340 Printer.printInt("align", N->getAlignInBits());
2341 Printer.printMetadata("annotations", N->getRawAnnotations());
2342 Out << ")";
2345 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2346 AsmWriterContext &WriterCtx) {
2347 Out << "!DILocalVariable(";
2348 MDFieldPrinter Printer(Out, WriterCtx);
2349 Printer.printString("name", N->getName());
2350 Printer.printInt("arg", N->getArg());
2351 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2352 Printer.printMetadata("file", N->getRawFile());
2353 Printer.printInt("line", N->getLine());
2354 Printer.printMetadata("type", N->getRawType());
2355 Printer.printDIFlags("flags", N->getFlags());
2356 Printer.printInt("align", N->getAlignInBits());
2357 Printer.printMetadata("annotations", N->getRawAnnotations());
2358 Out << ")";
2361 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2362 AsmWriterContext &WriterCtx) {
2363 Out << "!DILabel(";
2364 MDFieldPrinter Printer(Out, WriterCtx);
2365 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2366 Printer.printString("name", N->getName());
2367 Printer.printMetadata("file", N->getRawFile());
2368 Printer.printInt("line", N->getLine());
2369 Out << ")";
2372 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2373 AsmWriterContext &WriterCtx) {
2374 Out << "!DIExpression(";
2375 FieldSeparator FS;
2376 if (N->isValid()) {
2377 for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2378 auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2379 assert(!OpStr.empty() && "Expected valid opcode");
2381 Out << FS << OpStr;
2382 if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2383 Out << FS << Op.getArg(0);
2384 Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2385 } else {
2386 for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2387 Out << FS << Op.getArg(A);
2390 } else {
2391 for (const auto &I : N->getElements())
2392 Out << FS << I;
2394 Out << ")";
2397 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2398 AsmWriterContext &WriterCtx,
2399 bool FromValue = false) {
2400 assert(FromValue &&
2401 "Unexpected DIArgList metadata outside of value argument");
2402 Out << "!DIArgList(";
2403 FieldSeparator FS;
2404 MDFieldPrinter Printer(Out, WriterCtx);
2405 for (Metadata *Arg : N->getArgs()) {
2406 Out << FS;
2407 WriteAsOperandInternal(Out, Arg, WriterCtx, true);
2409 Out << ")";
2412 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2413 const DIGlobalVariableExpression *N,
2414 AsmWriterContext &WriterCtx) {
2415 Out << "!DIGlobalVariableExpression(";
2416 MDFieldPrinter Printer(Out, WriterCtx);
2417 Printer.printMetadata("var", N->getVariable());
2418 Printer.printMetadata("expr", N->getExpression());
2419 Out << ")";
2422 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2423 AsmWriterContext &WriterCtx) {
2424 Out << "!DIObjCProperty(";
2425 MDFieldPrinter Printer(Out, WriterCtx);
2426 Printer.printString("name", N->getName());
2427 Printer.printMetadata("file", N->getRawFile());
2428 Printer.printInt("line", N->getLine());
2429 Printer.printString("setter", N->getSetterName());
2430 Printer.printString("getter", N->getGetterName());
2431 Printer.printInt("attributes", N->getAttributes());
2432 Printer.printMetadata("type", N->getRawType());
2433 Out << ")";
2436 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2437 AsmWriterContext &WriterCtx) {
2438 Out << "!DIImportedEntity(";
2439 MDFieldPrinter Printer(Out, WriterCtx);
2440 Printer.printTag(N);
2441 Printer.printString("name", N->getName());
2442 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2443 Printer.printMetadata("entity", N->getRawEntity());
2444 Printer.printMetadata("file", N->getRawFile());
2445 Printer.printInt("line", N->getLine());
2446 Printer.printMetadata("elements", N->getRawElements());
2447 Out << ")";
2450 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2451 AsmWriterContext &Ctx) {
2452 if (Node->isDistinct())
2453 Out << "distinct ";
2454 else if (Node->isTemporary())
2455 Out << "<temporary!> "; // Handle broken code.
2457 switch (Node->getMetadataID()) {
2458 default:
2459 llvm_unreachable("Expected uniquable MDNode");
2460 #define HANDLE_MDNODE_LEAF(CLASS) \
2461 case Metadata::CLASS##Kind: \
2462 write##CLASS(Out, cast<CLASS>(Node), Ctx); \
2463 break;
2464 #include "llvm/IR/Metadata.def"
2468 // Full implementation of printing a Value as an operand with support for
2469 // TypePrinting, etc.
2470 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2471 AsmWriterContext &WriterCtx) {
2472 if (V->hasName()) {
2473 PrintLLVMName(Out, V);
2474 return;
2477 const Constant *CV = dyn_cast<Constant>(V);
2478 if (CV && !isa<GlobalValue>(CV)) {
2479 assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2480 WriteConstantInternal(Out, CV, WriterCtx);
2481 return;
2484 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2485 Out << "asm ";
2486 if (IA->hasSideEffects())
2487 Out << "sideeffect ";
2488 if (IA->isAlignStack())
2489 Out << "alignstack ";
2490 // We don't emit the AD_ATT dialect as it's the assumed default.
2491 if (IA->getDialect() == InlineAsm::AD_Intel)
2492 Out << "inteldialect ";
2493 if (IA->canThrow())
2494 Out << "unwind ";
2495 Out << '"';
2496 printEscapedString(IA->getAsmString(), Out);
2497 Out << "\", \"";
2498 printEscapedString(IA->getConstraintString(), Out);
2499 Out << '"';
2500 return;
2503 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2504 WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx,
2505 /* FromValue */ true);
2506 return;
2509 char Prefix = '%';
2510 int Slot;
2511 auto *Machine = WriterCtx.Machine;
2512 // If we have a SlotTracker, use it.
2513 if (Machine) {
2514 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2515 Slot = Machine->getGlobalSlot(GV);
2516 Prefix = '@';
2517 } else {
2518 Slot = Machine->getLocalSlot(V);
2520 // If the local value didn't succeed, then we may be referring to a value
2521 // from a different function. Translate it, as this can happen when using
2522 // address of blocks.
2523 if (Slot == -1)
2524 if ((Machine = createSlotTracker(V))) {
2525 Slot = Machine->getLocalSlot(V);
2526 delete Machine;
2529 } else if ((Machine = createSlotTracker(V))) {
2530 // Otherwise, create one to get the # and then destroy it.
2531 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2532 Slot = Machine->getGlobalSlot(GV);
2533 Prefix = '@';
2534 } else {
2535 Slot = Machine->getLocalSlot(V);
2537 delete Machine;
2538 Machine = nullptr;
2539 } else {
2540 Slot = -1;
2543 if (Slot != -1)
2544 Out << Prefix << Slot;
2545 else
2546 Out << "<badref>";
2549 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2550 AsmWriterContext &WriterCtx,
2551 bool FromValue) {
2552 // Write DIExpressions and DIArgLists inline when used as a value. Improves
2553 // readability of debug info intrinsics.
2554 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2555 writeDIExpression(Out, Expr, WriterCtx);
2556 return;
2558 if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2559 writeDIArgList(Out, ArgList, WriterCtx, FromValue);
2560 return;
2563 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2564 std::unique_ptr<SlotTracker> MachineStorage;
2565 SaveAndRestore SARMachine(WriterCtx.Machine);
2566 if (!WriterCtx.Machine) {
2567 MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2568 WriterCtx.Machine = MachineStorage.get();
2570 int Slot = WriterCtx.Machine->getMetadataSlot(N);
2571 if (Slot == -1) {
2572 if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2573 writeDILocation(Out, Loc, WriterCtx);
2574 return;
2576 // Give the pointer value instead of "badref", since this comes up all
2577 // the time when debugging.
2578 Out << "<" << N << ">";
2579 } else
2580 Out << '!' << Slot;
2581 return;
2584 if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2585 Out << "!\"";
2586 printEscapedString(MDS->getString(), Out);
2587 Out << '"';
2588 return;
2591 auto *V = cast<ValueAsMetadata>(MD);
2592 assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2593 assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2594 "Unexpected function-local metadata outside of value argument");
2596 WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2597 Out << ' ';
2598 WriteAsOperandInternal(Out, V->getValue(), WriterCtx);
2601 namespace {
2603 class AssemblyWriter {
2604 formatted_raw_ostream &Out;
2605 const Module *TheModule = nullptr;
2606 const ModuleSummaryIndex *TheIndex = nullptr;
2607 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2608 SlotTracker &Machine;
2609 TypePrinting TypePrinter;
2610 AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2611 SetVector<const Comdat *> Comdats;
2612 bool IsForDebug;
2613 bool ShouldPreserveUseListOrder;
2614 UseListOrderMap UseListOrders;
2615 SmallVector<StringRef, 8> MDNames;
2616 /// Synchronization scope names registered with LLVMContext.
2617 SmallVector<StringRef, 8> SSNs;
2618 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2620 public:
2621 /// Construct an AssemblyWriter with an external SlotTracker
2622 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2623 AssemblyAnnotationWriter *AAW, bool IsForDebug,
2624 bool ShouldPreserveUseListOrder = false);
2626 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2627 const ModuleSummaryIndex *Index, bool IsForDebug);
2629 AsmWriterContext getContext() {
2630 return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2633 void printMDNodeBody(const MDNode *MD);
2634 void printNamedMDNode(const NamedMDNode *NMD);
2636 void printModule(const Module *M);
2638 void writeOperand(const Value *Op, bool PrintType);
2639 void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2640 void writeOperandBundles(const CallBase *Call);
2641 void writeSyncScope(const LLVMContext &Context,
2642 SyncScope::ID SSID);
2643 void writeAtomic(const LLVMContext &Context,
2644 AtomicOrdering Ordering,
2645 SyncScope::ID SSID);
2646 void writeAtomicCmpXchg(const LLVMContext &Context,
2647 AtomicOrdering SuccessOrdering,
2648 AtomicOrdering FailureOrdering,
2649 SyncScope::ID SSID);
2651 void writeAllMDNodes();
2652 void writeMDNode(unsigned Slot, const MDNode *Node);
2653 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2654 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2655 void writeAllAttributeGroups();
2657 void printTypeIdentities();
2658 void printGlobal(const GlobalVariable *GV);
2659 void printAlias(const GlobalAlias *GA);
2660 void printIFunc(const GlobalIFunc *GI);
2661 void printComdat(const Comdat *C);
2662 void printFunction(const Function *F);
2663 void printArgument(const Argument *FA, AttributeSet Attrs);
2664 void printBasicBlock(const BasicBlock *BB);
2665 void printInstructionLine(const Instruction &I);
2666 void printInstruction(const Instruction &I);
2667 void printDPMarker(const DPMarker &DPI);
2668 void printDPValue(const DPValue &DPI);
2670 void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2671 void printUseLists(const Function *F);
2673 void printModuleSummaryIndex();
2674 void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2675 void printSummary(const GlobalValueSummary &Summary);
2676 void printAliasSummary(const AliasSummary *AS);
2677 void printGlobalVarSummary(const GlobalVarSummary *GS);
2678 void printFunctionSummary(const FunctionSummary *FS);
2679 void printTypeIdSummary(const TypeIdSummary &TIS);
2680 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2681 void printTypeTestResolution(const TypeTestResolution &TTRes);
2682 void printArgs(const std::vector<uint64_t> &Args);
2683 void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2684 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2685 void printVFuncId(const FunctionSummary::VFuncId VFId);
2686 void
2687 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2688 const char *Tag);
2689 void
2690 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2691 const char *Tag);
2693 private:
2694 /// Print out metadata attachments.
2695 void printMetadataAttachments(
2696 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2697 StringRef Separator);
2699 // printInfoComment - Print a little comment after the instruction indicating
2700 // which slot it occupies.
2701 void printInfoComment(const Value &V);
2703 // printGCRelocateComment - print comment after call to the gc.relocate
2704 // intrinsic indicating base and derived pointer names.
2705 void printGCRelocateComment(const GCRelocateInst &Relocate);
2708 } // end anonymous namespace
2710 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2711 const Module *M, AssemblyAnnotationWriter *AAW,
2712 bool IsForDebug, bool ShouldPreserveUseListOrder)
2713 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2714 IsForDebug(IsForDebug),
2715 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2716 if (!TheModule)
2717 return;
2718 for (const GlobalObject &GO : TheModule->global_objects())
2719 if (const Comdat *C = GO.getComdat())
2720 Comdats.insert(C);
2723 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2724 const ModuleSummaryIndex *Index, bool IsForDebug)
2725 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2726 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2728 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2729 if (!Operand) {
2730 Out << "<null operand!>";
2731 return;
2733 if (PrintType) {
2734 TypePrinter.print(Operand->getType(), Out);
2735 Out << ' ';
2737 auto WriterCtx = getContext();
2738 WriteAsOperandInternal(Out, Operand, WriterCtx);
2741 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2742 SyncScope::ID SSID) {
2743 switch (SSID) {
2744 case SyncScope::System: {
2745 break;
2747 default: {
2748 if (SSNs.empty())
2749 Context.getSyncScopeNames(SSNs);
2751 Out << " syncscope(\"";
2752 printEscapedString(SSNs[SSID], Out);
2753 Out << "\")";
2754 break;
2759 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2760 AtomicOrdering Ordering,
2761 SyncScope::ID SSID) {
2762 if (Ordering == AtomicOrdering::NotAtomic)
2763 return;
2765 writeSyncScope(Context, SSID);
2766 Out << " " << toIRString(Ordering);
2769 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2770 AtomicOrdering SuccessOrdering,
2771 AtomicOrdering FailureOrdering,
2772 SyncScope::ID SSID) {
2773 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2774 FailureOrdering != AtomicOrdering::NotAtomic);
2776 writeSyncScope(Context, SSID);
2777 Out << " " << toIRString(SuccessOrdering);
2778 Out << " " << toIRString(FailureOrdering);
2781 void AssemblyWriter::writeParamOperand(const Value *Operand,
2782 AttributeSet Attrs) {
2783 if (!Operand) {
2784 Out << "<null operand!>";
2785 return;
2788 // Print the type
2789 TypePrinter.print(Operand->getType(), Out);
2790 // Print parameter attributes list
2791 if (Attrs.hasAttributes()) {
2792 Out << ' ';
2793 writeAttributeSet(Attrs);
2795 Out << ' ';
2796 // Print the operand
2797 auto WriterCtx = getContext();
2798 WriteAsOperandInternal(Out, Operand, WriterCtx);
2801 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2802 if (!Call->hasOperandBundles())
2803 return;
2805 Out << " [ ";
2807 bool FirstBundle = true;
2808 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2809 OperandBundleUse BU = Call->getOperandBundleAt(i);
2811 if (!FirstBundle)
2812 Out << ", ";
2813 FirstBundle = false;
2815 Out << '"';
2816 printEscapedString(BU.getTagName(), Out);
2817 Out << '"';
2819 Out << '(';
2821 bool FirstInput = true;
2822 auto WriterCtx = getContext();
2823 for (const auto &Input : BU.Inputs) {
2824 if (!FirstInput)
2825 Out << ", ";
2826 FirstInput = false;
2828 if (Input == nullptr)
2829 Out << "<null operand bundle!>";
2830 else {
2831 TypePrinter.print(Input->getType(), Out);
2832 Out << " ";
2833 WriteAsOperandInternal(Out, Input, WriterCtx);
2837 Out << ')';
2840 Out << " ]";
2843 void AssemblyWriter::printModule(const Module *M) {
2844 Machine.initializeIfNeeded();
2846 if (ShouldPreserveUseListOrder)
2847 UseListOrders = predictUseListOrder(M);
2849 if (!M->getModuleIdentifier().empty() &&
2850 // Don't print the ID if it will start a new line (which would
2851 // require a comment char before it).
2852 M->getModuleIdentifier().find('\n') == std::string::npos)
2853 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2855 if (!M->getSourceFileName().empty()) {
2856 Out << "source_filename = \"";
2857 printEscapedString(M->getSourceFileName(), Out);
2858 Out << "\"\n";
2861 const std::string &DL = M->getDataLayoutStr();
2862 if (!DL.empty())
2863 Out << "target datalayout = \"" << DL << "\"\n";
2864 if (!M->getTargetTriple().empty())
2865 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2867 if (!M->getModuleInlineAsm().empty()) {
2868 Out << '\n';
2870 // Split the string into lines, to make it easier to read the .ll file.
2871 StringRef Asm = M->getModuleInlineAsm();
2872 do {
2873 StringRef Front;
2874 std::tie(Front, Asm) = Asm.split('\n');
2876 // We found a newline, print the portion of the asm string from the
2877 // last newline up to this newline.
2878 Out << "module asm \"";
2879 printEscapedString(Front, Out);
2880 Out << "\"\n";
2881 } while (!Asm.empty());
2884 printTypeIdentities();
2886 // Output all comdats.
2887 if (!Comdats.empty())
2888 Out << '\n';
2889 for (const Comdat *C : Comdats) {
2890 printComdat(C);
2891 if (C != Comdats.back())
2892 Out << '\n';
2895 // Output all globals.
2896 if (!M->global_empty()) Out << '\n';
2897 for (const GlobalVariable &GV : M->globals()) {
2898 printGlobal(&GV); Out << '\n';
2901 // Output all aliases.
2902 if (!M->alias_empty()) Out << "\n";
2903 for (const GlobalAlias &GA : M->aliases())
2904 printAlias(&GA);
2906 // Output all ifuncs.
2907 if (!M->ifunc_empty()) Out << "\n";
2908 for (const GlobalIFunc &GI : M->ifuncs())
2909 printIFunc(&GI);
2911 // Output all of the functions.
2912 for (const Function &F : *M) {
2913 Out << '\n';
2914 printFunction(&F);
2917 // Output global use-lists.
2918 printUseLists(nullptr);
2920 // Output all attribute groups.
2921 if (!Machine.as_empty()) {
2922 Out << '\n';
2923 writeAllAttributeGroups();
2926 // Output named metadata.
2927 if (!M->named_metadata_empty()) Out << '\n';
2929 for (const NamedMDNode &Node : M->named_metadata())
2930 printNamedMDNode(&Node);
2932 // Output metadata.
2933 if (!Machine.mdn_empty()) {
2934 Out << '\n';
2935 writeAllMDNodes();
2939 void AssemblyWriter::printModuleSummaryIndex() {
2940 assert(TheIndex);
2941 int NumSlots = Machine.initializeIndexIfNeeded();
2943 Out << "\n";
2945 // Print module path entries. To print in order, add paths to a vector
2946 // indexed by module slot.
2947 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2948 std::string RegularLTOModuleName =
2949 ModuleSummaryIndex::getRegularLTOModuleName();
2950 moduleVec.resize(TheIndex->modulePaths().size());
2951 for (auto &[ModPath, ModHash] : TheIndex->modulePaths())
2952 moduleVec[Machine.getModulePathSlot(ModPath)] = std::make_pair(
2953 // An empty module path is a special entry for a regular LTO module
2954 // created during the thin link.
2955 ModPath.empty() ? RegularLTOModuleName : std::string(ModPath), ModHash);
2957 unsigned i = 0;
2958 for (auto &ModPair : moduleVec) {
2959 Out << "^" << i++ << " = module: (";
2960 Out << "path: \"";
2961 printEscapedString(ModPair.first, Out);
2962 Out << "\", hash: (";
2963 FieldSeparator FS;
2964 for (auto Hash : ModPair.second)
2965 Out << FS << Hash;
2966 Out << "))\n";
2969 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2970 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2971 for (auto &GlobalList : *TheIndex) {
2972 auto GUID = GlobalList.first;
2973 for (auto &Summary : GlobalList.second.SummaryList)
2974 SummaryToGUIDMap[Summary.get()] = GUID;
2977 // Print the global value summary entries.
2978 for (auto &GlobalList : *TheIndex) {
2979 auto GUID = GlobalList.first;
2980 auto VI = TheIndex->getValueInfo(GlobalList);
2981 printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2984 // Print the TypeIdMap entries.
2985 for (const auto &TID : TheIndex->typeIds()) {
2986 Out << "^" << Machine.getTypeIdSlot(TID.second.first)
2987 << " = typeid: (name: \"" << TID.second.first << "\"";
2988 printTypeIdSummary(TID.second.second);
2989 Out << ") ; guid = " << TID.first << "\n";
2992 // Print the TypeIdCompatibleVtableMap entries.
2993 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2994 auto GUID = GlobalValue::getGUID(TId.first);
2995 Out << "^" << Machine.getTypeIdCompatibleVtableSlot(TId.first)
2996 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2997 printTypeIdCompatibleVtableSummary(TId.second);
2998 Out << ") ; guid = " << GUID << "\n";
3001 // Don't emit flags when it's not really needed (value is zero by default).
3002 if (TheIndex->getFlags()) {
3003 Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
3004 ++NumSlots;
3007 Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
3008 << "\n";
3011 static const char *
3012 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
3013 switch (K) {
3014 case WholeProgramDevirtResolution::Indir:
3015 return "indir";
3016 case WholeProgramDevirtResolution::SingleImpl:
3017 return "singleImpl";
3018 case WholeProgramDevirtResolution::BranchFunnel:
3019 return "branchFunnel";
3021 llvm_unreachable("invalid WholeProgramDevirtResolution kind");
3024 static const char *getWholeProgDevirtResByArgKindName(
3025 WholeProgramDevirtResolution::ByArg::Kind K) {
3026 switch (K) {
3027 case WholeProgramDevirtResolution::ByArg::Indir:
3028 return "indir";
3029 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
3030 return "uniformRetVal";
3031 case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
3032 return "uniqueRetVal";
3033 case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
3034 return "virtualConstProp";
3036 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
3039 static const char *getTTResKindName(TypeTestResolution::Kind K) {
3040 switch (K) {
3041 case TypeTestResolution::Unknown:
3042 return "unknown";
3043 case TypeTestResolution::Unsat:
3044 return "unsat";
3045 case TypeTestResolution::ByteArray:
3046 return "byteArray";
3047 case TypeTestResolution::Inline:
3048 return "inline";
3049 case TypeTestResolution::Single:
3050 return "single";
3051 case TypeTestResolution::AllOnes:
3052 return "allOnes";
3054 llvm_unreachable("invalid TypeTestResolution kind");
3057 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3058 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
3059 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
3061 // The following fields are only used if the target does not support the use
3062 // of absolute symbols to store constants. Print only if non-zero.
3063 if (TTRes.AlignLog2)
3064 Out << ", alignLog2: " << TTRes.AlignLog2;
3065 if (TTRes.SizeM1)
3066 Out << ", sizeM1: " << TTRes.SizeM1;
3067 if (TTRes.BitMask)
3068 // BitMask is uint8_t which causes it to print the corresponding char.
3069 Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3070 if (TTRes.InlineBits)
3071 Out << ", inlineBits: " << TTRes.InlineBits;
3073 Out << ")";
3076 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3077 Out << ", summary: (";
3078 printTypeTestResolution(TIS.TTRes);
3079 if (!TIS.WPDRes.empty()) {
3080 Out << ", wpdResolutions: (";
3081 FieldSeparator FS;
3082 for (auto &WPDRes : TIS.WPDRes) {
3083 Out << FS;
3084 Out << "(offset: " << WPDRes.first << ", ";
3085 printWPDRes(WPDRes.second);
3086 Out << ")";
3088 Out << ")";
3090 Out << ")";
3093 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3094 const TypeIdCompatibleVtableInfo &TI) {
3095 Out << ", summary: (";
3096 FieldSeparator FS;
3097 for (auto &P : TI) {
3098 Out << FS;
3099 Out << "(offset: " << P.AddressPointOffset << ", ";
3100 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3101 Out << ")";
3103 Out << ")";
3106 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3107 Out << "args: (";
3108 FieldSeparator FS;
3109 for (auto arg : Args) {
3110 Out << FS;
3111 Out << arg;
3113 Out << ")";
3116 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3117 Out << "wpdRes: (kind: ";
3118 Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3120 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3121 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3123 if (!WPDRes.ResByArg.empty()) {
3124 Out << ", resByArg: (";
3125 FieldSeparator FS;
3126 for (auto &ResByArg : WPDRes.ResByArg) {
3127 Out << FS;
3128 printArgs(ResByArg.first);
3129 Out << ", byArg: (kind: ";
3130 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3131 if (ResByArg.second.TheKind ==
3132 WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3133 ResByArg.second.TheKind ==
3134 WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3135 Out << ", info: " << ResByArg.second.Info;
3137 // The following fields are only used if the target does not support the
3138 // use of absolute symbols to store constants. Print only if non-zero.
3139 if (ResByArg.second.Byte || ResByArg.second.Bit)
3140 Out << ", byte: " << ResByArg.second.Byte
3141 << ", bit: " << ResByArg.second.Bit;
3143 Out << ")";
3145 Out << ")";
3147 Out << ")";
3150 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3151 switch (SK) {
3152 case GlobalValueSummary::AliasKind:
3153 return "alias";
3154 case GlobalValueSummary::FunctionKind:
3155 return "function";
3156 case GlobalValueSummary::GlobalVarKind:
3157 return "variable";
3159 llvm_unreachable("invalid summary kind");
3162 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3163 Out << ", aliasee: ";
3164 // The indexes emitted for distributed backends may not include the
3165 // aliasee summary (only if it is being imported directly). Handle
3166 // that case by just emitting "null" as the aliasee.
3167 if (AS->hasAliasee())
3168 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3169 else
3170 Out << "null";
3173 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3174 auto VTableFuncs = GS->vTableFuncs();
3175 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3176 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3177 << "constant: " << GS->VarFlags.Constant;
3178 if (!VTableFuncs.empty())
3179 Out << ", "
3180 << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3181 Out << ")";
3183 if (!VTableFuncs.empty()) {
3184 Out << ", vTableFuncs: (";
3185 FieldSeparator FS;
3186 for (auto &P : VTableFuncs) {
3187 Out << FS;
3188 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3189 << ", offset: " << P.VTableOffset;
3190 Out << ")";
3192 Out << ")";
3196 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3197 switch (LT) {
3198 case GlobalValue::ExternalLinkage:
3199 return "external";
3200 case GlobalValue::PrivateLinkage:
3201 return "private";
3202 case GlobalValue::InternalLinkage:
3203 return "internal";
3204 case GlobalValue::LinkOnceAnyLinkage:
3205 return "linkonce";
3206 case GlobalValue::LinkOnceODRLinkage:
3207 return "linkonce_odr";
3208 case GlobalValue::WeakAnyLinkage:
3209 return "weak";
3210 case GlobalValue::WeakODRLinkage:
3211 return "weak_odr";
3212 case GlobalValue::CommonLinkage:
3213 return "common";
3214 case GlobalValue::AppendingLinkage:
3215 return "appending";
3216 case GlobalValue::ExternalWeakLinkage:
3217 return "extern_weak";
3218 case GlobalValue::AvailableExternallyLinkage:
3219 return "available_externally";
3221 llvm_unreachable("invalid linkage");
3224 // When printing the linkage types in IR where the ExternalLinkage is
3225 // not printed, and other linkage types are expected to be printed with
3226 // a space after the name.
3227 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3228 if (LT == GlobalValue::ExternalLinkage)
3229 return "";
3230 return getLinkageName(LT) + " ";
3233 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3234 switch (Vis) {
3235 case GlobalValue::DefaultVisibility:
3236 return "default";
3237 case GlobalValue::HiddenVisibility:
3238 return "hidden";
3239 case GlobalValue::ProtectedVisibility:
3240 return "protected";
3242 llvm_unreachable("invalid visibility");
3245 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3246 Out << ", insts: " << FS->instCount();
3247 if (FS->fflags().anyFlagSet())
3248 Out << ", " << FS->fflags();
3250 if (!FS->calls().empty()) {
3251 Out << ", calls: (";
3252 FieldSeparator IFS;
3253 for (auto &Call : FS->calls()) {
3254 Out << IFS;
3255 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3256 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3257 Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3258 else if (Call.second.RelBlockFreq)
3259 Out << ", relbf: " << Call.second.RelBlockFreq;
3260 // Follow the convention of emitting flags as a boolean value, but only
3261 // emit if true to avoid unnecessary verbosity and test churn.
3262 if (Call.second.HasTailCall)
3263 Out << ", tail: 1";
3264 Out << ")";
3266 Out << ")";
3269 if (const auto *TIdInfo = FS->getTypeIdInfo())
3270 printTypeIdInfo(*TIdInfo);
3272 // The AllocationType identifiers capture the profiled context behavior
3273 // reaching a specific static allocation site (possibly cloned).
3274 auto AllocTypeName = [](uint8_t Type) -> const char * {
3275 switch (Type) {
3276 case (uint8_t)AllocationType::None:
3277 return "none";
3278 case (uint8_t)AllocationType::NotCold:
3279 return "notcold";
3280 case (uint8_t)AllocationType::Cold:
3281 return "cold";
3282 case (uint8_t)AllocationType::Hot:
3283 return "hot";
3285 llvm_unreachable("Unexpected alloc type");
3288 if (!FS->allocs().empty()) {
3289 Out << ", allocs: (";
3290 FieldSeparator AFS;
3291 for (auto &AI : FS->allocs()) {
3292 Out << AFS;
3293 Out << "(versions: (";
3294 FieldSeparator VFS;
3295 for (auto V : AI.Versions) {
3296 Out << VFS;
3297 Out << AllocTypeName(V);
3299 Out << "), memProf: (";
3300 FieldSeparator MIBFS;
3301 for (auto &MIB : AI.MIBs) {
3302 Out << MIBFS;
3303 Out << "(type: " << AllocTypeName((uint8_t)MIB.AllocType);
3304 Out << ", stackIds: (";
3305 FieldSeparator SIDFS;
3306 for (auto Id : MIB.StackIdIndices) {
3307 Out << SIDFS;
3308 Out << TheIndex->getStackIdAtIndex(Id);
3310 Out << "))";
3312 Out << "))";
3314 Out << ")";
3317 if (!FS->callsites().empty()) {
3318 Out << ", callsites: (";
3319 FieldSeparator SNFS;
3320 for (auto &CI : FS->callsites()) {
3321 Out << SNFS;
3322 if (CI.Callee)
3323 Out << "(callee: ^" << Machine.getGUIDSlot(CI.Callee.getGUID());
3324 else
3325 Out << "(callee: null";
3326 Out << ", clones: (";
3327 FieldSeparator VFS;
3328 for (auto V : CI.Clones) {
3329 Out << VFS;
3330 Out << V;
3332 Out << "), stackIds: (";
3333 FieldSeparator SIDFS;
3334 for (auto Id : CI.StackIdIndices) {
3335 Out << SIDFS;
3336 Out << TheIndex->getStackIdAtIndex(Id);
3338 Out << "))";
3340 Out << ")";
3343 auto PrintRange = [&](const ConstantRange &Range) {
3344 Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3347 if (!FS->paramAccesses().empty()) {
3348 Out << ", params: (";
3349 FieldSeparator IFS;
3350 for (auto &PS : FS->paramAccesses()) {
3351 Out << IFS;
3352 Out << "(param: " << PS.ParamNo;
3353 Out << ", offset: ";
3354 PrintRange(PS.Use);
3355 if (!PS.Calls.empty()) {
3356 Out << ", calls: (";
3357 FieldSeparator IFS;
3358 for (auto &Call : PS.Calls) {
3359 Out << IFS;
3360 Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3361 Out << ", param: " << Call.ParamNo;
3362 Out << ", offset: ";
3363 PrintRange(Call.Offsets);
3364 Out << ")";
3366 Out << ")";
3368 Out << ")";
3370 Out << ")";
3374 void AssemblyWriter::printTypeIdInfo(
3375 const FunctionSummary::TypeIdInfo &TIDInfo) {
3376 Out << ", typeIdInfo: (";
3377 FieldSeparator TIDFS;
3378 if (!TIDInfo.TypeTests.empty()) {
3379 Out << TIDFS;
3380 Out << "typeTests: (";
3381 FieldSeparator FS;
3382 for (auto &GUID : TIDInfo.TypeTests) {
3383 auto TidIter = TheIndex->typeIds().equal_range(GUID);
3384 if (TidIter.first == TidIter.second) {
3385 Out << FS;
3386 Out << GUID;
3387 continue;
3389 // Print all type id that correspond to this GUID.
3390 for (auto It = TidIter.first; It != TidIter.second; ++It) {
3391 Out << FS;
3392 auto Slot = Machine.getTypeIdSlot(It->second.first);
3393 assert(Slot != -1);
3394 Out << "^" << Slot;
3397 Out << ")";
3399 if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3400 Out << TIDFS;
3401 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3403 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3404 Out << TIDFS;
3405 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3407 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3408 Out << TIDFS;
3409 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3410 "typeTestAssumeConstVCalls");
3412 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3413 Out << TIDFS;
3414 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3415 "typeCheckedLoadConstVCalls");
3417 Out << ")";
3420 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3421 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3422 if (TidIter.first == TidIter.second) {
3423 Out << "vFuncId: (";
3424 Out << "guid: " << VFId.GUID;
3425 Out << ", offset: " << VFId.Offset;
3426 Out << ")";
3427 return;
3429 // Print all type id that correspond to this GUID.
3430 FieldSeparator FS;
3431 for (auto It = TidIter.first; It != TidIter.second; ++It) {
3432 Out << FS;
3433 Out << "vFuncId: (";
3434 auto Slot = Machine.getTypeIdSlot(It->second.first);
3435 assert(Slot != -1);
3436 Out << "^" << Slot;
3437 Out << ", offset: " << VFId.Offset;
3438 Out << ")";
3442 void AssemblyWriter::printNonConstVCalls(
3443 const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3444 Out << Tag << ": (";
3445 FieldSeparator FS;
3446 for (auto &VFuncId : VCallList) {
3447 Out << FS;
3448 printVFuncId(VFuncId);
3450 Out << ")";
3453 void AssemblyWriter::printConstVCalls(
3454 const std::vector<FunctionSummary::ConstVCall> &VCallList,
3455 const char *Tag) {
3456 Out << Tag << ": (";
3457 FieldSeparator FS;
3458 for (auto &ConstVCall : VCallList) {
3459 Out << FS;
3460 Out << "(";
3461 printVFuncId(ConstVCall.VFunc);
3462 if (!ConstVCall.Args.empty()) {
3463 Out << ", ";
3464 printArgs(ConstVCall.Args);
3466 Out << ")";
3468 Out << ")";
3471 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3472 GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3473 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3474 Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3475 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3476 << ", flags: (";
3477 Out << "linkage: " << getLinkageName(LT);
3478 Out << ", visibility: "
3479 << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3480 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3481 Out << ", live: " << GVFlags.Live;
3482 Out << ", dsoLocal: " << GVFlags.DSOLocal;
3483 Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3484 Out << ")";
3486 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3487 printAliasSummary(cast<AliasSummary>(&Summary));
3488 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3489 printFunctionSummary(cast<FunctionSummary>(&Summary));
3490 else
3491 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3493 auto RefList = Summary.refs();
3494 if (!RefList.empty()) {
3495 Out << ", refs: (";
3496 FieldSeparator FS;
3497 for (auto &Ref : RefList) {
3498 Out << FS;
3499 if (Ref.isReadOnly())
3500 Out << "readonly ";
3501 else if (Ref.isWriteOnly())
3502 Out << "writeonly ";
3503 Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3505 Out << ")";
3508 Out << ")";
3511 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3512 Out << "^" << Slot << " = gv: (";
3513 if (!VI.name().empty())
3514 Out << "name: \"" << VI.name() << "\"";
3515 else
3516 Out << "guid: " << VI.getGUID();
3517 if (!VI.getSummaryList().empty()) {
3518 Out << ", summaries: (";
3519 FieldSeparator FS;
3520 for (auto &Summary : VI.getSummaryList()) {
3521 Out << FS;
3522 printSummary(*Summary);
3524 Out << ")";
3526 Out << ")";
3527 if (!VI.name().empty())
3528 Out << " ; guid = " << VI.getGUID();
3529 Out << "\n";
3532 static void printMetadataIdentifier(StringRef Name,
3533 formatted_raw_ostream &Out) {
3534 if (Name.empty()) {
3535 Out << "<empty name> ";
3536 } else {
3537 unsigned char FirstC = static_cast<unsigned char>(Name[0]);
3538 if (isalpha(FirstC) || FirstC == '-' || FirstC == '$' || FirstC == '.' ||
3539 FirstC == '_')
3540 Out << FirstC;
3541 else
3542 Out << '\\' << hexdigit(FirstC >> 4) << hexdigit(FirstC & 0x0F);
3543 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3544 unsigned char C = Name[i];
3545 if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
3546 Out << C;
3547 else
3548 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3553 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3554 Out << '!';
3555 printMetadataIdentifier(NMD->getName(), Out);
3556 Out << " = !{";
3557 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3558 if (i)
3559 Out << ", ";
3561 // Write DIExpressions inline.
3562 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3563 MDNode *Op = NMD->getOperand(i);
3564 if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3565 writeDIExpression(Out, Expr, AsmWriterContext::getEmpty());
3566 continue;
3569 int Slot = Machine.getMetadataSlot(Op);
3570 if (Slot == -1)
3571 Out << "<badref>";
3572 else
3573 Out << '!' << Slot;
3575 Out << "}\n";
3578 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3579 formatted_raw_ostream &Out) {
3580 switch (Vis) {
3581 case GlobalValue::DefaultVisibility: break;
3582 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
3583 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3587 static void PrintDSOLocation(const GlobalValue &GV,
3588 formatted_raw_ostream &Out) {
3589 if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3590 Out << "dso_local ";
3593 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3594 formatted_raw_ostream &Out) {
3595 switch (SCT) {
3596 case GlobalValue::DefaultStorageClass: break;
3597 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3598 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3602 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3603 formatted_raw_ostream &Out) {
3604 switch (TLM) {
3605 case GlobalVariable::NotThreadLocal:
3606 break;
3607 case GlobalVariable::GeneralDynamicTLSModel:
3608 Out << "thread_local ";
3609 break;
3610 case GlobalVariable::LocalDynamicTLSModel:
3611 Out << "thread_local(localdynamic) ";
3612 break;
3613 case GlobalVariable::InitialExecTLSModel:
3614 Out << "thread_local(initialexec) ";
3615 break;
3616 case GlobalVariable::LocalExecTLSModel:
3617 Out << "thread_local(localexec) ";
3618 break;
3622 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3623 switch (UA) {
3624 case GlobalVariable::UnnamedAddr::None:
3625 return "";
3626 case GlobalVariable::UnnamedAddr::Local:
3627 return "local_unnamed_addr";
3628 case GlobalVariable::UnnamedAddr::Global:
3629 return "unnamed_addr";
3631 llvm_unreachable("Unknown UnnamedAddr");
3634 static void maybePrintComdat(formatted_raw_ostream &Out,
3635 const GlobalObject &GO) {
3636 const Comdat *C = GO.getComdat();
3637 if (!C)
3638 return;
3640 if (isa<GlobalVariable>(GO))
3641 Out << ',';
3642 Out << " comdat";
3644 if (GO.getName() == C->getName())
3645 return;
3647 Out << '(';
3648 PrintLLVMName(Out, C->getName(), ComdatPrefix);
3649 Out << ')';
3652 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3653 if (GV->isMaterializable())
3654 Out << "; Materializable\n";
3656 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3657 WriteAsOperandInternal(Out, GV, WriterCtx);
3658 Out << " = ";
3660 if (!GV->hasInitializer() && GV->hasExternalLinkage())
3661 Out << "external ";
3663 Out << getLinkageNameWithSpace(GV->getLinkage());
3664 PrintDSOLocation(*GV, Out);
3665 PrintVisibility(GV->getVisibility(), Out);
3666 PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3667 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3668 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3669 if (!UA.empty())
3670 Out << UA << ' ';
3672 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3673 Out << "addrspace(" << AddressSpace << ") ";
3674 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3675 Out << (GV->isConstant() ? "constant " : "global ");
3676 TypePrinter.print(GV->getValueType(), Out);
3678 if (GV->hasInitializer()) {
3679 Out << ' ';
3680 writeOperand(GV->getInitializer(), false);
3683 if (GV->hasSection()) {
3684 Out << ", section \"";
3685 printEscapedString(GV->getSection(), Out);
3686 Out << '"';
3688 if (GV->hasPartition()) {
3689 Out << ", partition \"";
3690 printEscapedString(GV->getPartition(), Out);
3691 Out << '"';
3693 if (auto CM = GV->getCodeModel()) {
3694 Out << ", code_model \"";
3695 switch (*CM) {
3696 case CodeModel::Tiny:
3697 Out << "tiny";
3698 break;
3699 case CodeModel::Small:
3700 Out << "small";
3701 break;
3702 case CodeModel::Kernel:
3703 Out << "kernel";
3704 break;
3705 case CodeModel::Medium:
3706 Out << "medium";
3707 break;
3708 case CodeModel::Large:
3709 Out << "large";
3710 break;
3712 Out << '"';
3715 using SanitizerMetadata = llvm::GlobalValue::SanitizerMetadata;
3716 if (GV->hasSanitizerMetadata()) {
3717 SanitizerMetadata MD = GV->getSanitizerMetadata();
3718 if (MD.NoAddress)
3719 Out << ", no_sanitize_address";
3720 if (MD.NoHWAddress)
3721 Out << ", no_sanitize_hwaddress";
3722 if (MD.Memtag)
3723 Out << ", sanitize_memtag";
3724 if (MD.IsDynInit)
3725 Out << ", sanitize_address_dyninit";
3728 maybePrintComdat(Out, *GV);
3729 if (MaybeAlign A = GV->getAlign())
3730 Out << ", align " << A->value();
3732 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3733 GV->getAllMetadata(MDs);
3734 printMetadataAttachments(MDs, ", ");
3736 auto Attrs = GV->getAttributes();
3737 if (Attrs.hasAttributes())
3738 Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3740 printInfoComment(*GV);
3743 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
3744 if (GA->isMaterializable())
3745 Out << "; Materializable\n";
3747 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
3748 WriteAsOperandInternal(Out, GA, WriterCtx);
3749 Out << " = ";
3751 Out << getLinkageNameWithSpace(GA->getLinkage());
3752 PrintDSOLocation(*GA, Out);
3753 PrintVisibility(GA->getVisibility(), Out);
3754 PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
3755 PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
3756 StringRef UA = getUnnamedAddrEncoding(GA->getUnnamedAddr());
3757 if (!UA.empty())
3758 Out << UA << ' ';
3760 Out << "alias ";
3762 TypePrinter.print(GA->getValueType(), Out);
3763 Out << ", ";
3765 if (const Constant *Aliasee = GA->getAliasee()) {
3766 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
3767 } else {
3768 TypePrinter.print(GA->getType(), Out);
3769 Out << " <<NULL ALIASEE>>";
3772 if (GA->hasPartition()) {
3773 Out << ", partition \"";
3774 printEscapedString(GA->getPartition(), Out);
3775 Out << '"';
3778 printInfoComment(*GA);
3779 Out << '\n';
3782 void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
3783 if (GI->isMaterializable())
3784 Out << "; Materializable\n";
3786 AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
3787 WriteAsOperandInternal(Out, GI, WriterCtx);
3788 Out << " = ";
3790 Out << getLinkageNameWithSpace(GI->getLinkage());
3791 PrintDSOLocation(*GI, Out);
3792 PrintVisibility(GI->getVisibility(), Out);
3794 Out << "ifunc ";
3796 TypePrinter.print(GI->getValueType(), Out);
3797 Out << ", ";
3799 if (const Constant *Resolver = GI->getResolver()) {
3800 writeOperand(Resolver, !isa<ConstantExpr>(Resolver));
3801 } else {
3802 TypePrinter.print(GI->getType(), Out);
3803 Out << " <<NULL RESOLVER>>";
3806 if (GI->hasPartition()) {
3807 Out << ", partition \"";
3808 printEscapedString(GI->getPartition(), Out);
3809 Out << '"';
3812 printInfoComment(*GI);
3813 Out << '\n';
3816 void AssemblyWriter::printComdat(const Comdat *C) {
3817 C->print(Out);
3820 void AssemblyWriter::printTypeIdentities() {
3821 if (TypePrinter.empty())
3822 return;
3824 Out << '\n';
3826 // Emit all numbered types.
3827 auto &NumberedTypes = TypePrinter.getNumberedTypes();
3828 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3829 Out << '%' << I << " = type ";
3831 // Make sure we print out at least one level of the type structure, so
3832 // that we do not get %2 = type %2
3833 TypePrinter.printStructBody(NumberedTypes[I], Out);
3834 Out << '\n';
3837 auto &NamedTypes = TypePrinter.getNamedTypes();
3838 for (StructType *NamedType : NamedTypes) {
3839 PrintLLVMName(Out, NamedType->getName(), LocalPrefix);
3840 Out << " = type ";
3842 // Make sure we print out at least one level of the type structure, so
3843 // that we do not get %FILE = type %FILE
3844 TypePrinter.printStructBody(NamedType, Out);
3845 Out << '\n';
3849 /// printFunction - Print all aspects of a function.
3850 void AssemblyWriter::printFunction(const Function *F) {
3851 bool ConvertBack = F->IsNewDbgInfoFormat;
3852 if (ConvertBack)
3853 const_cast<Function *>(F)->convertFromNewDbgValues();
3854 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3856 if (F->isMaterializable())
3857 Out << "; Materializable\n";
3859 const AttributeList &Attrs = F->getAttributes();
3860 if (Attrs.hasFnAttrs()) {
3861 AttributeSet AS = Attrs.getFnAttrs();
3862 std::string AttrStr;
3864 for (const Attribute &Attr : AS) {
3865 if (!Attr.isStringAttribute()) {
3866 if (!AttrStr.empty()) AttrStr += ' ';
3867 AttrStr += Attr.getAsString();
3871 if (!AttrStr.empty())
3872 Out << "; Function Attrs: " << AttrStr << '\n';
3875 Machine.incorporateFunction(F);
3877 if (F->isDeclaration()) {
3878 Out << "declare";
3879 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3880 F->getAllMetadata(MDs);
3881 printMetadataAttachments(MDs, " ");
3882 Out << ' ';
3883 } else
3884 Out << "define ";
3886 Out << getLinkageNameWithSpace(F->getLinkage());
3887 PrintDSOLocation(*F, Out);
3888 PrintVisibility(F->getVisibility(), Out);
3889 PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3891 // Print the calling convention.
3892 if (F->getCallingConv() != CallingConv::C) {
3893 PrintCallingConv(F->getCallingConv(), Out);
3894 Out << " ";
3897 FunctionType *FT = F->getFunctionType();
3898 if (Attrs.hasRetAttrs())
3899 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3900 TypePrinter.print(F->getReturnType(), Out);
3901 AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
3902 Out << ' ';
3903 WriteAsOperandInternal(Out, F, WriterCtx);
3904 Out << '(';
3906 // Loop over the arguments, printing them...
3907 if (F->isDeclaration() && !IsForDebug) {
3908 // We're only interested in the type here - don't print argument names.
3909 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3910 // Insert commas as we go... the first arg doesn't get a comma
3911 if (I)
3912 Out << ", ";
3913 // Output type...
3914 TypePrinter.print(FT->getParamType(I), Out);
3916 AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
3917 if (ArgAttrs.hasAttributes()) {
3918 Out << ' ';
3919 writeAttributeSet(ArgAttrs);
3922 } else {
3923 // The arguments are meaningful here, print them in detail.
3924 for (const Argument &Arg : F->args()) {
3925 // Insert commas as we go... the first arg doesn't get a comma
3926 if (Arg.getArgNo() != 0)
3927 Out << ", ";
3928 printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
3932 // Finish printing arguments...
3933 if (FT->isVarArg()) {
3934 if (FT->getNumParams()) Out << ", ";
3935 Out << "..."; // Output varargs portion of signature!
3937 Out << ')';
3938 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3939 if (!UA.empty())
3940 Out << ' ' << UA;
3941 // We print the function address space if it is non-zero or if we are writing
3942 // a module with a non-zero program address space or if there is no valid
3943 // Module* so that the file can be parsed without the datalayout string.
3944 const Module *Mod = F->getParent();
3945 if (F->getAddressSpace() != 0 || !Mod ||
3946 Mod->getDataLayout().getProgramAddressSpace() != 0)
3947 Out << " addrspace(" << F->getAddressSpace() << ")";
3948 if (Attrs.hasFnAttrs())
3949 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
3950 if (F->hasSection()) {
3951 Out << " section \"";
3952 printEscapedString(F->getSection(), Out);
3953 Out << '"';
3955 if (F->hasPartition()) {
3956 Out << " partition \"";
3957 printEscapedString(F->getPartition(), Out);
3958 Out << '"';
3960 maybePrintComdat(Out, *F);
3961 if (MaybeAlign A = F->getAlign())
3962 Out << " align " << A->value();
3963 if (F->hasGC())
3964 Out << " gc \"" << F->getGC() << '"';
3965 if (F->hasPrefixData()) {
3966 Out << " prefix ";
3967 writeOperand(F->getPrefixData(), true);
3969 if (F->hasPrologueData()) {
3970 Out << " prologue ";
3971 writeOperand(F->getPrologueData(), true);
3973 if (F->hasPersonalityFn()) {
3974 Out << " personality ";
3975 writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3978 if (F->isDeclaration()) {
3979 Out << '\n';
3980 } else {
3981 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3982 F->getAllMetadata(MDs);
3983 printMetadataAttachments(MDs, " ");
3985 Out << " {";
3986 // Output all of the function's basic blocks.
3987 for (const BasicBlock &BB : *F)
3988 printBasicBlock(&BB);
3990 // Output the function's use-lists.
3991 printUseLists(F);
3993 Out << "}\n";
3996 if (ConvertBack)
3997 const_cast<Function *>(F)->convertToNewDbgValues();
3998 Machine.purgeFunction();
4001 /// printArgument - This member is called for every argument that is passed into
4002 /// the function. Simply print it out
4003 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
4004 // Output type...
4005 TypePrinter.print(Arg->getType(), Out);
4007 // Output parameter attributes list
4008 if (Attrs.hasAttributes()) {
4009 Out << ' ';
4010 writeAttributeSet(Attrs);
4013 // Output name, if available...
4014 if (Arg->hasName()) {
4015 Out << ' ';
4016 PrintLLVMName(Out, Arg);
4017 } else {
4018 int Slot = Machine.getLocalSlot(Arg);
4019 assert(Slot != -1 && "expect argument in function here");
4020 Out << " %" << Slot;
4024 /// printBasicBlock - This member is called for each basic block in a method.
4025 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
4026 bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
4027 if (BB->hasName()) { // Print out the label if it exists...
4028 Out << "\n";
4029 PrintLLVMName(Out, BB->getName(), LabelPrefix);
4030 Out << ':';
4031 } else if (!IsEntryBlock) {
4032 Out << "\n";
4033 int Slot = Machine.getLocalSlot(BB);
4034 if (Slot != -1)
4035 Out << Slot << ":";
4036 else
4037 Out << "<badref>:";
4040 if (!IsEntryBlock) {
4041 // Output predecessors for the block.
4042 Out.PadToColumn(50);
4043 Out << ";";
4044 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
4046 if (PI == PE) {
4047 Out << " No predecessors!";
4048 } else {
4049 Out << " preds = ";
4050 writeOperand(*PI, false);
4051 for (++PI; PI != PE; ++PI) {
4052 Out << ", ";
4053 writeOperand(*PI, false);
4058 Out << "\n";
4060 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
4062 // Output all of the instructions in the basic block...
4063 for (const Instruction &I : *BB) {
4064 printInstructionLine(I);
4067 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
4070 /// printInstructionLine - Print an instruction and a newline character.
4071 void AssemblyWriter::printInstructionLine(const Instruction &I) {
4072 printInstruction(I);
4073 Out << '\n';
4076 /// printGCRelocateComment - print comment after call to the gc.relocate
4077 /// intrinsic indicating base and derived pointer names.
4078 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
4079 Out << " ; (";
4080 writeOperand(Relocate.getBasePtr(), false);
4081 Out << ", ";
4082 writeOperand(Relocate.getDerivedPtr(), false);
4083 Out << ")";
4086 /// printInfoComment - Print a little comment after the instruction indicating
4087 /// which slot it occupies.
4088 void AssemblyWriter::printInfoComment(const Value &V) {
4089 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
4090 printGCRelocateComment(*Relocate);
4092 if (AnnotationWriter) {
4093 AnnotationWriter->printInfoComment(V, Out);
4094 } else if (const Instruction *I = dyn_cast<Instruction>(&V)) {
4095 if (I->DbgMarker) {
4096 // In the new, experimental DPValue representation of debug-info, print
4097 // out which instructions have DPMarkers and where they are.
4098 Out << "; dbgmarker @ " << I->DbgMarker;
4103 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
4104 raw_ostream &Out) {
4105 // We print the address space of the call if it is non-zero.
4106 if (Operand == nullptr) {
4107 Out << " <cannot get addrspace!>";
4108 return;
4110 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
4111 bool PrintAddrSpace = CallAddrSpace != 0;
4112 if (!PrintAddrSpace) {
4113 const Module *Mod = getModuleFromVal(I);
4114 // We also print it if it is zero but not equal to the program address space
4115 // or if we can't find a valid Module* to make it possible to parse
4116 // the resulting file even without a datalayout string.
4117 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
4118 PrintAddrSpace = true;
4120 if (PrintAddrSpace)
4121 Out << " addrspace(" << CallAddrSpace << ")";
4124 // This member is called for each Instruction in a function..
4125 void AssemblyWriter::printInstruction(const Instruction &I) {
4126 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
4128 // Print out indentation for an instruction.
4129 Out << " ";
4131 // Print out name if it exists...
4132 if (I.hasName()) {
4133 PrintLLVMName(Out, &I);
4134 Out << " = ";
4135 } else if (!I.getType()->isVoidTy()) {
4136 // Print out the def slot taken.
4137 int SlotNum = Machine.getLocalSlot(&I);
4138 if (SlotNum == -1)
4139 Out << "<badref> = ";
4140 else
4141 Out << '%' << SlotNum << " = ";
4144 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4145 if (CI->isMustTailCall())
4146 Out << "musttail ";
4147 else if (CI->isTailCall())
4148 Out << "tail ";
4149 else if (CI->isNoTailCall())
4150 Out << "notail ";
4153 // Print out the opcode...
4154 Out << I.getOpcodeName();
4156 // If this is an atomic load or store, print out the atomic marker.
4157 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
4158 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
4159 Out << " atomic";
4161 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
4162 Out << " weak";
4164 // If this is a volatile operation, print out the volatile marker.
4165 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
4166 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
4167 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
4168 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
4169 Out << " volatile";
4171 // Print out optimization information.
4172 WriteOptimizationInfo(Out, &I);
4174 // Print out the compare instruction predicates
4175 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
4176 Out << ' ' << CI->getPredicate();
4178 // Print out the atomicrmw operation
4179 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
4180 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
4182 // Print out the type of the operands...
4183 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
4185 // Special case conditional branches to swizzle the condition out to the front
4186 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
4187 const BranchInst &BI(cast<BranchInst>(I));
4188 Out << ' ';
4189 writeOperand(BI.getCondition(), true);
4190 Out << ", ";
4191 writeOperand(BI.getSuccessor(0), true);
4192 Out << ", ";
4193 writeOperand(BI.getSuccessor(1), true);
4195 } else if (isa<SwitchInst>(I)) {
4196 const SwitchInst& SI(cast<SwitchInst>(I));
4197 // Special case switch instruction to get formatting nice and correct.
4198 Out << ' ';
4199 writeOperand(SI.getCondition(), true);
4200 Out << ", ";
4201 writeOperand(SI.getDefaultDest(), true);
4202 Out << " [";
4203 for (auto Case : SI.cases()) {
4204 Out << "\n ";
4205 writeOperand(Case.getCaseValue(), true);
4206 Out << ", ";
4207 writeOperand(Case.getCaseSuccessor(), true);
4209 Out << "\n ]";
4210 } else if (isa<IndirectBrInst>(I)) {
4211 // Special case indirectbr instruction to get formatting nice and correct.
4212 Out << ' ';
4213 writeOperand(Operand, true);
4214 Out << ", [";
4216 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4217 if (i != 1)
4218 Out << ", ";
4219 writeOperand(I.getOperand(i), true);
4221 Out << ']';
4222 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4223 Out << ' ';
4224 TypePrinter.print(I.getType(), Out);
4225 Out << ' ';
4227 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4228 if (op) Out << ", ";
4229 Out << "[ ";
4230 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4231 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4233 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4234 Out << ' ';
4235 writeOperand(I.getOperand(0), true);
4236 for (unsigned i : EVI->indices())
4237 Out << ", " << i;
4238 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4239 Out << ' ';
4240 writeOperand(I.getOperand(0), true); Out << ", ";
4241 writeOperand(I.getOperand(1), true);
4242 for (unsigned i : IVI->indices())
4243 Out << ", " << i;
4244 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4245 Out << ' ';
4246 TypePrinter.print(I.getType(), Out);
4247 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4248 Out << '\n';
4250 if (LPI->isCleanup())
4251 Out << " cleanup";
4253 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4254 if (i != 0 || LPI->isCleanup()) Out << "\n";
4255 if (LPI->isCatch(i))
4256 Out << " catch ";
4257 else
4258 Out << " filter ";
4260 writeOperand(LPI->getClause(i), true);
4262 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4263 Out << " within ";
4264 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4265 Out << " [";
4266 unsigned Op = 0;
4267 for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4268 if (Op > 0)
4269 Out << ", ";
4270 writeOperand(PadBB, /*PrintType=*/true);
4271 ++Op;
4273 Out << "] unwind ";
4274 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4275 writeOperand(UnwindDest, /*PrintType=*/true);
4276 else
4277 Out << "to caller";
4278 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4279 Out << " within ";
4280 writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4281 Out << " [";
4282 for (unsigned Op = 0, NumOps = FPI->arg_size(); Op < NumOps; ++Op) {
4283 if (Op > 0)
4284 Out << ", ";
4285 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4287 Out << ']';
4288 } else if (isa<ReturnInst>(I) && !Operand) {
4289 Out << " void";
4290 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4291 Out << " from ";
4292 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4294 Out << " to ";
4295 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4296 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4297 Out << " from ";
4298 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4300 Out << " unwind ";
4301 if (CRI->hasUnwindDest())
4302 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4303 else
4304 Out << "to caller";
4305 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4306 // Print the calling convention being used.
4307 if (CI->getCallingConv() != CallingConv::C) {
4308 Out << " ";
4309 PrintCallingConv(CI->getCallingConv(), Out);
4312 Operand = CI->getCalledOperand();
4313 FunctionType *FTy = CI->getFunctionType();
4314 Type *RetTy = FTy->getReturnType();
4315 const AttributeList &PAL = CI->getAttributes();
4317 if (PAL.hasRetAttrs())
4318 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4320 // Only print addrspace(N) if necessary:
4321 maybePrintCallAddrSpace(Operand, &I, Out);
4323 // If possible, print out the short form of the call instruction. We can
4324 // only do this if the first argument is a pointer to a nonvararg function,
4325 // and if the return type is not a pointer to a function.
4326 Out << ' ';
4327 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4328 Out << ' ';
4329 writeOperand(Operand, false);
4330 Out << '(';
4331 for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
4332 if (op > 0)
4333 Out << ", ";
4334 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4337 // Emit an ellipsis if this is a musttail call in a vararg function. This
4338 // is only to aid readability, musttail calls forward varargs by default.
4339 if (CI->isMustTailCall() && CI->getParent() &&
4340 CI->getParent()->getParent() &&
4341 CI->getParent()->getParent()->isVarArg()) {
4342 if (CI->arg_size() > 0)
4343 Out << ", ";
4344 Out << "...";
4347 Out << ')';
4348 if (PAL.hasFnAttrs())
4349 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4351 writeOperandBundles(CI);
4352 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4353 Operand = II->getCalledOperand();
4354 FunctionType *FTy = II->getFunctionType();
4355 Type *RetTy = FTy->getReturnType();
4356 const AttributeList &PAL = II->getAttributes();
4358 // Print the calling convention being used.
4359 if (II->getCallingConv() != CallingConv::C) {
4360 Out << " ";
4361 PrintCallingConv(II->getCallingConv(), Out);
4364 if (PAL.hasRetAttrs())
4365 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4367 // Only print addrspace(N) if necessary:
4368 maybePrintCallAddrSpace(Operand, &I, Out);
4370 // If possible, print out the short form of the invoke instruction. We can
4371 // only do this if the first argument is a pointer to a nonvararg function,
4372 // and if the return type is not a pointer to a function.
4374 Out << ' ';
4375 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4376 Out << ' ';
4377 writeOperand(Operand, false);
4378 Out << '(';
4379 for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4380 if (op)
4381 Out << ", ";
4382 writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4385 Out << ')';
4386 if (PAL.hasFnAttrs())
4387 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4389 writeOperandBundles(II);
4391 Out << "\n to ";
4392 writeOperand(II->getNormalDest(), true);
4393 Out << " unwind ";
4394 writeOperand(II->getUnwindDest(), true);
4395 } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4396 Operand = CBI->getCalledOperand();
4397 FunctionType *FTy = CBI->getFunctionType();
4398 Type *RetTy = FTy->getReturnType();
4399 const AttributeList &PAL = CBI->getAttributes();
4401 // Print the calling convention being used.
4402 if (CBI->getCallingConv() != CallingConv::C) {
4403 Out << " ";
4404 PrintCallingConv(CBI->getCallingConv(), Out);
4407 if (PAL.hasRetAttrs())
4408 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4410 // If possible, print out the short form of the callbr instruction. We can
4411 // only do this if the first argument is a pointer to a nonvararg function,
4412 // and if the return type is not a pointer to a function.
4414 Out << ' ';
4415 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4416 Out << ' ';
4417 writeOperand(Operand, false);
4418 Out << '(';
4419 for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4420 if (op)
4421 Out << ", ";
4422 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4425 Out << ')';
4426 if (PAL.hasFnAttrs())
4427 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4429 writeOperandBundles(CBI);
4431 Out << "\n to ";
4432 writeOperand(CBI->getDefaultDest(), true);
4433 Out << " [";
4434 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4435 if (i != 0)
4436 Out << ", ";
4437 writeOperand(CBI->getIndirectDest(i), true);
4439 Out << ']';
4440 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4441 Out << ' ';
4442 if (AI->isUsedWithInAlloca())
4443 Out << "inalloca ";
4444 if (AI->isSwiftError())
4445 Out << "swifterror ";
4446 TypePrinter.print(AI->getAllocatedType(), Out);
4448 // Explicitly write the array size if the code is broken, if it's an array
4449 // allocation, or if the type is not canonical for scalar allocations. The
4450 // latter case prevents the type from mutating when round-tripping through
4451 // assembly.
4452 if (!AI->getArraySize() || AI->isArrayAllocation() ||
4453 !AI->getArraySize()->getType()->isIntegerTy(32)) {
4454 Out << ", ";
4455 writeOperand(AI->getArraySize(), true);
4457 if (MaybeAlign A = AI->getAlign()) {
4458 Out << ", align " << A->value();
4461 unsigned AddrSpace = AI->getAddressSpace();
4462 if (AddrSpace != 0) {
4463 Out << ", addrspace(" << AddrSpace << ')';
4465 } else if (isa<CastInst>(I)) {
4466 if (Operand) {
4467 Out << ' ';
4468 writeOperand(Operand, true); // Work with broken code
4470 Out << " to ";
4471 TypePrinter.print(I.getType(), Out);
4472 } else if (isa<VAArgInst>(I)) {
4473 if (Operand) {
4474 Out << ' ';
4475 writeOperand(Operand, true); // Work with broken code
4477 Out << ", ";
4478 TypePrinter.print(I.getType(), Out);
4479 } else if (Operand) { // Print the normal way.
4480 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4481 Out << ' ';
4482 TypePrinter.print(GEP->getSourceElementType(), Out);
4483 Out << ',';
4484 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4485 Out << ' ';
4486 TypePrinter.print(LI->getType(), Out);
4487 Out << ',';
4490 // PrintAllTypes - Instructions who have operands of all the same type
4491 // omit the type from all but the first operand. If the instruction has
4492 // different type operands (for example br), then they are all printed.
4493 bool PrintAllTypes = false;
4494 Type *TheType = Operand->getType();
4496 // Select, Store, ShuffleVector, CmpXchg and AtomicRMW always print all
4497 // types.
4498 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) ||
4499 isa<ReturnInst>(I) || isa<AtomicCmpXchgInst>(I) ||
4500 isa<AtomicRMWInst>(I)) {
4501 PrintAllTypes = true;
4502 } else {
4503 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4504 Operand = I.getOperand(i);
4505 // note that Operand shouldn't be null, but the test helps make dump()
4506 // more tolerant of malformed IR
4507 if (Operand && Operand->getType() != TheType) {
4508 PrintAllTypes = true; // We have differing types! Print them all!
4509 break;
4514 if (!PrintAllTypes) {
4515 Out << ' ';
4516 TypePrinter.print(TheType, Out);
4519 Out << ' ';
4520 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4521 if (i) Out << ", ";
4522 writeOperand(I.getOperand(i), PrintAllTypes);
4526 // Print atomic ordering/alignment for memory operations
4527 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4528 if (LI->isAtomic())
4529 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4530 if (MaybeAlign A = LI->getAlign())
4531 Out << ", align " << A->value();
4532 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4533 if (SI->isAtomic())
4534 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4535 if (MaybeAlign A = SI->getAlign())
4536 Out << ", align " << A->value();
4537 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4538 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4539 CXI->getFailureOrdering(), CXI->getSyncScopeID());
4540 Out << ", align " << CXI->getAlign().value();
4541 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4542 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4543 RMWI->getSyncScopeID());
4544 Out << ", align " << RMWI->getAlign().value();
4545 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4546 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4547 } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4548 PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4551 // Print Metadata info.
4552 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4553 I.getAllMetadata(InstMD);
4554 printMetadataAttachments(InstMD, ", ");
4556 // Print a nice comment.
4557 printInfoComment(I);
4560 void AssemblyWriter::printDPMarker(const DPMarker &Marker) {
4561 // There's no formal representation of a DPMarker -- print purely as a
4562 // debugging aid.
4563 for (const DPValue &DPI2 : Marker.StoredDPValues) {
4564 printDPValue(DPI2);
4565 Out << "\n";
4568 Out << " DPMarker -> { ";
4569 printInstruction(*Marker.MarkedInstr);
4570 Out << " }";
4571 return;
4574 void AssemblyWriter::printDPValue(const DPValue &Value) {
4575 // There's no formal representation of a DPValue -- print purely as a
4576 // debugging aid.
4577 Out << " DPValue ";
4579 switch (Value.getType()) {
4580 case DPValue::LocationType::Value:
4581 Out << "value";
4582 break;
4583 case DPValue::LocationType::Declare:
4584 Out << "declare";
4585 break;
4586 case DPValue::LocationType::Assign:
4587 Out << "assign";
4588 break;
4589 default:
4590 llvm_unreachable("Tried to print a DPValue with an invalid LocationType!");
4592 Out << " { ";
4593 auto WriterCtx = getContext();
4594 WriteAsOperandInternal(Out, Value.getRawLocation(), WriterCtx, true);
4595 Out << ", ";
4596 WriteAsOperandInternal(Out, Value.getVariable(), WriterCtx, true);
4597 Out << ", ";
4598 WriteAsOperandInternal(Out, Value.getExpression(), WriterCtx, true);
4599 Out << ", ";
4600 if (Value.isDbgAssign()) {
4601 WriteAsOperandInternal(Out, Value.getAssignID(), WriterCtx, true);
4602 Out << ", ";
4603 WriteAsOperandInternal(Out, Value.getRawAddress(), WriterCtx, true);
4604 Out << ", ";
4605 WriteAsOperandInternal(Out, Value.getAddressExpression(), WriterCtx, true);
4606 Out << ", ";
4608 WriteAsOperandInternal(Out, Value.getDebugLoc().get(), WriterCtx, true);
4609 Out << " marker @" << Value.getMarker();
4610 Out << " }";
4613 void AssemblyWriter::printMetadataAttachments(
4614 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4615 StringRef Separator) {
4616 if (MDs.empty())
4617 return;
4619 if (MDNames.empty())
4620 MDs[0].second->getContext().getMDKindNames(MDNames);
4622 auto WriterCtx = getContext();
4623 for (const auto &I : MDs) {
4624 unsigned Kind = I.first;
4625 Out << Separator;
4626 if (Kind < MDNames.size()) {
4627 Out << "!";
4628 printMetadataIdentifier(MDNames[Kind], Out);
4629 } else
4630 Out << "!<unknown kind #" << Kind << ">";
4631 Out << ' ';
4632 WriteAsOperandInternal(Out, I.second, WriterCtx);
4636 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4637 Out << '!' << Slot << " = ";
4638 printMDNodeBody(Node);
4639 Out << "\n";
4642 void AssemblyWriter::writeAllMDNodes() {
4643 SmallVector<const MDNode *, 16> Nodes;
4644 Nodes.resize(Machine.mdn_size());
4645 for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4646 Nodes[I.second] = cast<MDNode>(I.first);
4648 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4649 writeMDNode(i, Nodes[i]);
4653 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4654 auto WriterCtx = getContext();
4655 WriteMDNodeBodyInternal(Out, Node, WriterCtx);
4658 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4659 if (!Attr.isTypeAttribute()) {
4660 Out << Attr.getAsString(InAttrGroup);
4661 return;
4664 Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4665 if (Type *Ty = Attr.getValueAsType()) {
4666 Out << '(';
4667 TypePrinter.print(Ty, Out);
4668 Out << ')';
4672 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4673 bool InAttrGroup) {
4674 bool FirstAttr = true;
4675 for (const auto &Attr : AttrSet) {
4676 if (!FirstAttr)
4677 Out << ' ';
4678 writeAttribute(Attr, InAttrGroup);
4679 FirstAttr = false;
4683 void AssemblyWriter::writeAllAttributeGroups() {
4684 std::vector<std::pair<AttributeSet, unsigned>> asVec;
4685 asVec.resize(Machine.as_size());
4687 for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4688 asVec[I.second] = I;
4690 for (const auto &I : asVec)
4691 Out << "attributes #" << I.second << " = { "
4692 << I.first.getAsString(true) << " }\n";
4695 void AssemblyWriter::printUseListOrder(const Value *V,
4696 const std::vector<unsigned> &Shuffle) {
4697 bool IsInFunction = Machine.getFunction();
4698 if (IsInFunction)
4699 Out << " ";
4701 Out << "uselistorder";
4702 if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4703 Out << "_bb ";
4704 writeOperand(BB->getParent(), false);
4705 Out << ", ";
4706 writeOperand(BB, false);
4707 } else {
4708 Out << " ";
4709 writeOperand(V, true);
4711 Out << ", { ";
4713 assert(Shuffle.size() >= 2 && "Shuffle too small");
4714 Out << Shuffle[0];
4715 for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4716 Out << ", " << Shuffle[I];
4717 Out << " }\n";
4720 void AssemblyWriter::printUseLists(const Function *F) {
4721 auto It = UseListOrders.find(F);
4722 if (It == UseListOrders.end())
4723 return;
4725 Out << "\n; uselistorder directives\n";
4726 for (const auto &Pair : It->second)
4727 printUseListOrder(Pair.first, Pair.second);
4730 //===----------------------------------------------------------------------===//
4731 // External Interface declarations
4732 //===----------------------------------------------------------------------===//
4734 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4735 bool ShouldPreserveUseListOrder,
4736 bool IsForDebug) const {
4737 SlotTracker SlotTable(this->getParent());
4738 formatted_raw_ostream OS(ROS);
4739 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4740 IsForDebug,
4741 ShouldPreserveUseListOrder);
4742 W.printFunction(this);
4745 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4746 bool ShouldPreserveUseListOrder,
4747 bool IsForDebug) const {
4748 SlotTracker SlotTable(this->getParent());
4749 formatted_raw_ostream OS(ROS);
4750 AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4751 IsForDebug,
4752 ShouldPreserveUseListOrder);
4753 W.printBasicBlock(this);
4756 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4757 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4758 // RemoveDIs: always print with debug-info in intrinsic format.
4759 bool ConvertAfter = IsNewDbgInfoFormat;
4760 if (IsNewDbgInfoFormat)
4761 const_cast<Module *>(this)->convertFromNewDbgValues();
4763 SlotTracker SlotTable(this);
4764 formatted_raw_ostream OS(ROS);
4765 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4766 ShouldPreserveUseListOrder);
4767 W.printModule(this);
4769 if (ConvertAfter)
4770 const_cast<Module *>(this)->convertToNewDbgValues();
4773 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4774 SlotTracker SlotTable(getParent());
4775 formatted_raw_ostream OS(ROS);
4776 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4777 W.printNamedMDNode(this);
4780 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4781 bool IsForDebug) const {
4782 std::optional<SlotTracker> LocalST;
4783 SlotTracker *SlotTable;
4784 if (auto *ST = MST.getMachine())
4785 SlotTable = ST;
4786 else {
4787 LocalST.emplace(getParent());
4788 SlotTable = &*LocalST;
4791 formatted_raw_ostream OS(ROS);
4792 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4793 W.printNamedMDNode(this);
4796 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4797 PrintLLVMName(ROS, getName(), ComdatPrefix);
4798 ROS << " = comdat ";
4800 switch (getSelectionKind()) {
4801 case Comdat::Any:
4802 ROS << "any";
4803 break;
4804 case Comdat::ExactMatch:
4805 ROS << "exactmatch";
4806 break;
4807 case Comdat::Largest:
4808 ROS << "largest";
4809 break;
4810 case Comdat::NoDeduplicate:
4811 ROS << "nodeduplicate";
4812 break;
4813 case Comdat::SameSize:
4814 ROS << "samesize";
4815 break;
4818 ROS << '\n';
4821 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4822 TypePrinting TP;
4823 TP.print(const_cast<Type*>(this), OS);
4825 if (NoDetails)
4826 return;
4828 // If the type is a named struct type, print the body as well.
4829 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4830 if (!STy->isLiteral()) {
4831 OS << " = type ";
4832 TP.printStructBody(STy, OS);
4836 static bool isReferencingMDNode(const Instruction &I) {
4837 if (const auto *CI = dyn_cast<CallInst>(&I))
4838 if (Function *F = CI->getCalledFunction())
4839 if (F->isIntrinsic())
4840 for (auto &Op : I.operands())
4841 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4842 if (isa<MDNode>(V->getMetadata()))
4843 return true;
4844 return false;
4847 void DPMarker::print(raw_ostream &ROS, bool IsForDebug) const {
4849 ModuleSlotTracker MST(getModuleFromDPI(this), true);
4850 print(ROS, MST, IsForDebug);
4853 void DPValue::print(raw_ostream &ROS, bool IsForDebug) const {
4855 ModuleSlotTracker MST(getModuleFromDPI(this), true);
4856 print(ROS, MST, IsForDebug);
4859 void DPMarker::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4860 bool IsForDebug) const {
4861 // There's no formal representation of a DPMarker -- print purely as a
4862 // debugging aid.
4863 formatted_raw_ostream OS(ROS);
4864 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4865 SlotTracker &SlotTable =
4866 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4867 auto incorporateFunction = [&](const Function *F) {
4868 if (F)
4869 MST.incorporateFunction(*F);
4871 incorporateFunction(getParent() ? getParent()->getParent() : nullptr);
4872 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
4873 W.printDPMarker(*this);
4876 void DPValue::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4877 bool IsForDebug) const {
4878 // There's no formal representation of a DPValue -- print purely as a
4879 // debugging aid.
4880 formatted_raw_ostream OS(ROS);
4881 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4882 SlotTracker &SlotTable =
4883 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4884 auto incorporateFunction = [&](const Function *F) {
4885 if (F)
4886 MST.incorporateFunction(*F);
4888 incorporateFunction(Marker->getParent() ? Marker->getParent()->getParent()
4889 : nullptr);
4890 AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
4891 W.printDPValue(*this);
4894 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4895 bool ShouldInitializeAllMetadata = false;
4896 if (auto *I = dyn_cast<Instruction>(this))
4897 ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4898 else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4899 ShouldInitializeAllMetadata = true;
4901 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4902 print(ROS, MST, IsForDebug);
4905 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4906 bool IsForDebug) const {
4907 formatted_raw_ostream OS(ROS);
4908 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4909 SlotTracker &SlotTable =
4910 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4911 auto incorporateFunction = [&](const Function *F) {
4912 if (F)
4913 MST.incorporateFunction(*F);
4916 if (const Instruction *I = dyn_cast<Instruction>(this)) {
4917 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4918 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4919 W.printInstruction(*I);
4920 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4921 incorporateFunction(BB->getParent());
4922 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4923 W.printBasicBlock(BB);
4924 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4925 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4926 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4927 W.printGlobal(V);
4928 else if (const Function *F = dyn_cast<Function>(GV))
4929 W.printFunction(F);
4930 else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV))
4931 W.printAlias(A);
4932 else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV))
4933 W.printIFunc(I);
4934 else
4935 llvm_unreachable("Unknown GlobalValue to print out!");
4936 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4937 V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4938 } else if (const Constant *C = dyn_cast<Constant>(this)) {
4939 TypePrinting TypePrinter;
4940 TypePrinter.print(C->getType(), OS);
4941 OS << ' ';
4942 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
4943 WriteConstantInternal(OS, C, WriterCtx);
4944 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4945 this->printAsOperand(OS, /* PrintType */ true, MST);
4946 } else {
4947 llvm_unreachable("Unknown value to print out!");
4951 /// Print without a type, skipping the TypePrinting object.
4953 /// \return \c true iff printing was successful.
4954 static bool printWithoutType(const Value &V, raw_ostream &O,
4955 SlotTracker *Machine, const Module *M) {
4956 if (V.hasName() || isa<GlobalValue>(V) ||
4957 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4958 AsmWriterContext WriterCtx(nullptr, Machine, M);
4959 WriteAsOperandInternal(O, &V, WriterCtx);
4960 return true;
4962 return false;
4965 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4966 ModuleSlotTracker &MST) {
4967 TypePrinting TypePrinter(MST.getModule());
4968 if (PrintType) {
4969 TypePrinter.print(V.getType(), O);
4970 O << ' ';
4973 AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
4974 WriteAsOperandInternal(O, &V, WriterCtx);
4977 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4978 const Module *M) const {
4979 if (!M)
4980 M = getModuleFromVal(this);
4982 if (!PrintType)
4983 if (printWithoutType(*this, O, nullptr, M))
4984 return;
4986 SlotTracker Machine(
4987 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4988 ModuleSlotTracker MST(Machine, M);
4989 printAsOperandImpl(*this, O, PrintType, MST);
4992 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4993 ModuleSlotTracker &MST) const {
4994 if (!PrintType)
4995 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4996 return;
4998 printAsOperandImpl(*this, O, PrintType, MST);
5001 /// Recursive version of printMetadataImpl.
5002 static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD,
5003 AsmWriterContext &WriterCtx) {
5004 formatted_raw_ostream OS(ROS);
5005 WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true);
5007 auto *N = dyn_cast<MDNode>(&MD);
5008 if (!N || isa<DIExpression>(MD))
5009 return;
5011 OS << " = ";
5012 WriteMDNodeBodyInternal(OS, N, WriterCtx);
5015 namespace {
5016 struct MDTreeAsmWriterContext : public AsmWriterContext {
5017 unsigned Level;
5018 // {Level, Printed string}
5019 using EntryTy = std::pair<unsigned, std::string>;
5020 SmallVector<EntryTy, 4> Buffer;
5022 // Used to break the cycle in case there is any.
5023 SmallPtrSet<const Metadata *, 4> Visited;
5025 raw_ostream &MainOS;
5027 MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
5028 raw_ostream &OS, const Metadata *InitMD)
5029 : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
5031 void onWriteMetadataAsOperand(const Metadata *MD) override {
5032 if (!Visited.insert(MD).second)
5033 return;
5035 std::string Str;
5036 raw_string_ostream SS(Str);
5037 ++Level;
5038 // A placeholder entry to memorize the correct
5039 // position in buffer.
5040 Buffer.emplace_back(std::make_pair(Level, ""));
5041 unsigned InsertIdx = Buffer.size() - 1;
5043 printMetadataImplRec(SS, *MD, *this);
5044 Buffer[InsertIdx].second = std::move(SS.str());
5045 --Level;
5048 ~MDTreeAsmWriterContext() {
5049 for (const auto &Entry : Buffer) {
5050 MainOS << "\n";
5051 unsigned NumIndent = Entry.first * 2U;
5052 MainOS.indent(NumIndent) << Entry.second;
5056 } // end anonymous namespace
5058 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
5059 ModuleSlotTracker &MST, const Module *M,
5060 bool OnlyAsOperand, bool PrintAsTree = false) {
5061 formatted_raw_ostream OS(ROS);
5063 TypePrinting TypePrinter(M);
5065 std::unique_ptr<AsmWriterContext> WriterCtx;
5066 if (PrintAsTree && !OnlyAsOperand)
5067 WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
5068 &TypePrinter, MST.getMachine(), M, OS, &MD);
5069 else
5070 WriterCtx =
5071 std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M);
5073 WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true);
5075 auto *N = dyn_cast<MDNode>(&MD);
5076 if (OnlyAsOperand || !N || isa<DIExpression>(MD))
5077 return;
5079 OS << " = ";
5080 WriteMDNodeBodyInternal(OS, N, *WriterCtx);
5083 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
5084 ModuleSlotTracker MST(M, isa<MDNode>(this));
5085 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
5088 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
5089 const Module *M) const {
5090 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
5093 void Metadata::print(raw_ostream &OS, const Module *M,
5094 bool /*IsForDebug*/) const {
5095 ModuleSlotTracker MST(M, isa<MDNode>(this));
5096 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
5099 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
5100 const Module *M, bool /*IsForDebug*/) const {
5101 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
5104 void MDNode::printTree(raw_ostream &OS, const Module *M) const {
5105 ModuleSlotTracker MST(M, true);
5106 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
5107 /*PrintAsTree=*/true);
5110 void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST,
5111 const Module *M) const {
5112 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
5113 /*PrintAsTree=*/true);
5116 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
5117 SlotTracker SlotTable(this);
5118 formatted_raw_ostream OS(ROS);
5119 AssemblyWriter W(OS, SlotTable, this, IsForDebug);
5120 W.printModuleSummaryIndex();
5123 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
5124 unsigned UB) const {
5125 SlotTracker *ST = MachineStorage.get();
5126 if (!ST)
5127 return;
5129 for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
5130 if (I.second >= LB && I.second < UB)
5131 L.push_back(std::make_pair(I.second, I.first));
5134 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5135 // Value::dump - allow easy printing of Values from the debugger.
5136 LLVM_DUMP_METHOD
5137 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5139 // Value::dump - allow easy printing of Values from the debugger.
5140 LLVM_DUMP_METHOD
5141 void DPMarker::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5143 // Value::dump - allow easy printing of Values from the debugger.
5144 LLVM_DUMP_METHOD
5145 void DPValue::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5147 // Type::dump - allow easy printing of Types from the debugger.
5148 LLVM_DUMP_METHOD
5149 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5151 // Module::dump() - Allow printing of Modules from the debugger.
5152 LLVM_DUMP_METHOD
5153 void Module::dump() const {
5154 print(dbgs(), nullptr,
5155 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
5158 // Allow printing of Comdats from the debugger.
5159 LLVM_DUMP_METHOD
5160 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5162 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
5163 LLVM_DUMP_METHOD
5164 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5166 LLVM_DUMP_METHOD
5167 void Metadata::dump() const { dump(nullptr); }
5169 LLVM_DUMP_METHOD
5170 void Metadata::dump(const Module *M) const {
5171 print(dbgs(), M, /*IsForDebug=*/true);
5172 dbgs() << '\n';
5175 LLVM_DUMP_METHOD
5176 void MDNode::dumpTree() const { dumpTree(nullptr); }
5178 LLVM_DUMP_METHOD
5179 void MDNode::dumpTree(const Module *M) const {
5180 printTree(dbgs(), M);
5181 dbgs() << '\n';
5184 // Allow printing of ModuleSummaryIndex from the debugger.
5185 LLVM_DUMP_METHOD
5186 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5187 #endif