[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / IR / DebugInfoMetadata.cpp
blob51950fc937f0aba68708de0f8e4728f98b181c5c
1 //===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the debug info Metadata classes.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/DebugInfoMetadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/IR/DebugProgramInstruction.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/Type.h"
23 #include "llvm/IR/Value.h"
25 #include <numeric>
26 #include <optional>
28 using namespace llvm;
30 namespace llvm {
31 // Use FS-AFDO discriminator.
32 cl::opt<bool> EnableFSDiscriminator(
33 "enable-fs-discriminator", cl::Hidden,
34 cl::desc("Enable adding flow sensitive discriminators"));
35 } // namespace llvm
37 const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
38 std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
40 DebugVariable::DebugVariable(const DbgVariableIntrinsic *DII)
41 : Variable(DII->getVariable()),
42 Fragment(DII->getExpression()->getFragmentInfo()),
43 InlinedAt(DII->getDebugLoc().getInlinedAt()) {}
45 DebugVariable::DebugVariable(const DPValue *DPV)
46 : Variable(DPV->getVariable()),
47 Fragment(DPV->getExpression()->getFragmentInfo()),
48 InlinedAt(DPV->getDebugLoc().getInlinedAt()) {}
50 DebugVariableAggregate::DebugVariableAggregate(const DbgVariableIntrinsic *DVI)
51 : DebugVariable(DVI->getVariable(), std::nullopt,
52 DVI->getDebugLoc()->getInlinedAt()) {}
54 DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
55 unsigned Column, ArrayRef<Metadata *> MDs,
56 bool ImplicitCode)
57 : MDNode(C, DILocationKind, Storage, MDs) {
58 assert((MDs.size() == 1 || MDs.size() == 2) &&
59 "Expected a scope and optional inlined-at");
61 // Set line and column.
62 assert(Column < (1u << 16) && "Expected 16-bit column");
64 SubclassData32 = Line;
65 SubclassData16 = Column;
67 setImplicitCode(ImplicitCode);
70 static void adjustColumn(unsigned &Column) {
71 // Set to unknown on overflow. We only have 16 bits to play with here.
72 if (Column >= (1u << 16))
73 Column = 0;
76 DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
77 unsigned Column, Metadata *Scope,
78 Metadata *InlinedAt, bool ImplicitCode,
79 StorageType Storage, bool ShouldCreate) {
80 // Fixup column.
81 adjustColumn(Column);
83 if (Storage == Uniqued) {
84 if (auto *N = getUniqued(Context.pImpl->DILocations,
85 DILocationInfo::KeyTy(Line, Column, Scope,
86 InlinedAt, ImplicitCode)))
87 return N;
88 if (!ShouldCreate)
89 return nullptr;
90 } else {
91 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
94 SmallVector<Metadata *, 2> Ops;
95 Ops.push_back(Scope);
96 if (InlinedAt)
97 Ops.push_back(InlinedAt);
98 return storeImpl(new (Ops.size(), Storage) DILocation(
99 Context, Storage, Line, Column, Ops, ImplicitCode),
100 Storage, Context.pImpl->DILocations);
103 DILocation *DILocation::getMergedLocations(ArrayRef<DILocation *> Locs) {
104 if (Locs.empty())
105 return nullptr;
106 if (Locs.size() == 1)
107 return Locs[0];
108 auto *Merged = Locs[0];
109 for (DILocation *L : llvm::drop_begin(Locs)) {
110 Merged = getMergedLocation(Merged, L);
111 if (Merged == nullptr)
112 break;
114 return Merged;
117 DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) {
118 if (!LocA || !LocB)
119 return nullptr;
121 if (LocA == LocB)
122 return LocA;
124 LLVMContext &C = LocA->getContext();
126 using LocVec = SmallVector<const DILocation *>;
127 LocVec ALocs;
128 LocVec BLocs;
129 SmallDenseMap<std::pair<const DISubprogram *, const DILocation *>, unsigned,
131 ALookup;
133 // Walk through LocA and its inlined-at locations, populate them in ALocs and
134 // save the index for the subprogram and inlined-at pair, which we use to find
135 // a matching starting location in LocB's chain.
136 for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) {
137 ALocs.push_back(L);
138 auto Res = ALookup.try_emplace(
139 {L->getScope()->getSubprogram(), L->getInlinedAt()}, I);
140 assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?");
141 (void)Res;
144 LocVec::reverse_iterator ARIt = ALocs.rend();
145 LocVec::reverse_iterator BRIt = BLocs.rend();
147 // Populate BLocs and look for a matching starting location, the first
148 // location with the same subprogram and inlined-at location as in LocA's
149 // chain. Since the two locations have the same inlined-at location we do
150 // not need to look at those parts of the chains.
151 for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) {
152 BLocs.push_back(L);
154 if (ARIt != ALocs.rend())
155 // We have already found a matching starting location.
156 continue;
158 auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()});
159 if (IT == ALookup.end())
160 continue;
162 // The + 1 is to account for the &*rev_it = &(it - 1) relationship.
163 ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1);
164 BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1);
166 // If we have found a matching starting location we do not need to add more
167 // locations to BLocs, since we will only look at location pairs preceding
168 // the matching starting location, and adding more elements to BLocs could
169 // invalidate the iterator that we initialized here.
170 break;
173 // Merge the two locations if possible, using the supplied
174 // inlined-at location for the created location.
175 auto MergeLocPair = [&C](const DILocation *L1, const DILocation *L2,
176 DILocation *InlinedAt) -> DILocation * {
177 if (L1 == L2)
178 return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(),
179 InlinedAt);
181 // If the locations originate from different subprograms we can't produce
182 // a common location.
183 if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram())
184 return nullptr;
186 // Return the nearest common scope inside a subprogram.
187 auto GetNearestCommonScope = [](DIScope *S1, DIScope *S2) -> DIScope * {
188 SmallPtrSet<DIScope *, 8> Scopes;
189 for (; S1; S1 = S1->getScope()) {
190 Scopes.insert(S1);
191 if (isa<DISubprogram>(S1))
192 break;
195 for (; S2; S2 = S2->getScope()) {
196 if (Scopes.count(S2))
197 return S2;
198 if (isa<DISubprogram>(S2))
199 break;
202 return nullptr;
205 auto Scope = GetNearestCommonScope(L1->getScope(), L2->getScope());
206 assert(Scope && "No common scope in the same subprogram?");
208 bool SameLine = L1->getLine() == L2->getLine();
209 bool SameCol = L1->getColumn() == L2->getColumn();
210 unsigned Line = SameLine ? L1->getLine() : 0;
211 unsigned Col = SameLine && SameCol ? L1->getColumn() : 0;
213 return DILocation::get(C, Line, Col, Scope, InlinedAt);
216 DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr;
218 // If we have found a common starting location, walk up the inlined-at chains
219 // and try to produce common locations.
220 for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) {
221 DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result);
223 if (!Tmp)
224 // We have walked up to a point in the chains where the two locations
225 // are irreconsilable. At this point Result contains the nearest common
226 // location in the inlined-at chains of LocA and LocB, so we break here.
227 break;
229 Result = Tmp;
232 if (Result)
233 return Result;
235 // We ended up with LocA and LocB as irreconsilable locations. Produce a
236 // location at 0:0 with one of the locations' scope. The function has
237 // historically picked A's scope, and a nullptr inlined-at location, so that
238 // behavior is mimicked here but I am not sure if this is always the correct
239 // way to handle this.
240 return DILocation::get(C, 0, 0, LocA->getScope(), nullptr);
243 std::optional<unsigned>
244 DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
245 std::array<unsigned, 3> Components = {BD, DF, CI};
246 uint64_t RemainingWork = 0U;
247 // We use RemainingWork to figure out if we have no remaining components to
248 // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
249 // encode anything for the latter 2.
250 // Since any of the input components is at most 32 bits, their sum will be
251 // less than 34 bits, and thus RemainingWork won't overflow.
252 RemainingWork =
253 std::accumulate(Components.begin(), Components.end(), RemainingWork);
255 int I = 0;
256 unsigned Ret = 0;
257 unsigned NextBitInsertionIndex = 0;
258 while (RemainingWork > 0) {
259 unsigned C = Components[I++];
260 RemainingWork -= C;
261 unsigned EC = encodeComponent(C);
262 Ret |= (EC << NextBitInsertionIndex);
263 NextBitInsertionIndex += encodingBits(C);
266 // Encoding may be unsuccessful because of overflow. We determine success by
267 // checking equivalence of components before & after encoding. Alternatively,
268 // we could determine Success during encoding, but the current alternative is
269 // simpler.
270 unsigned TBD, TDF, TCI = 0;
271 decodeDiscriminator(Ret, TBD, TDF, TCI);
272 if (TBD == BD && TDF == DF && TCI == CI)
273 return Ret;
274 return std::nullopt;
277 void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF,
278 unsigned &CI) {
279 BD = getUnsignedFromPrefixEncoding(D);
280 DF = getUnsignedFromPrefixEncoding(getNextComponentInDiscriminator(D));
281 CI = getUnsignedFromPrefixEncoding(
282 getNextComponentInDiscriminator(getNextComponentInDiscriminator(D)));
284 dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; }
286 DINode::DIFlags DINode::getFlag(StringRef Flag) {
287 return StringSwitch<DIFlags>(Flag)
288 #define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
289 #include "llvm/IR/DebugInfoFlags.def"
290 .Default(DINode::FlagZero);
293 StringRef DINode::getFlagString(DIFlags Flag) {
294 switch (Flag) {
295 #define HANDLE_DI_FLAG(ID, NAME) \
296 case Flag##NAME: \
297 return "DIFlag" #NAME;
298 #include "llvm/IR/DebugInfoFlags.def"
300 return "";
303 DINode::DIFlags DINode::splitFlags(DIFlags Flags,
304 SmallVectorImpl<DIFlags> &SplitFlags) {
305 // Flags that are packed together need to be specially handled, so
306 // that, for example, we emit "DIFlagPublic" and not
307 // "DIFlagPrivate | DIFlagProtected".
308 if (DIFlags A = Flags & FlagAccessibility) {
309 if (A == FlagPrivate)
310 SplitFlags.push_back(FlagPrivate);
311 else if (A == FlagProtected)
312 SplitFlags.push_back(FlagProtected);
313 else
314 SplitFlags.push_back(FlagPublic);
315 Flags &= ~A;
317 if (DIFlags R = Flags & FlagPtrToMemberRep) {
318 if (R == FlagSingleInheritance)
319 SplitFlags.push_back(FlagSingleInheritance);
320 else if (R == FlagMultipleInheritance)
321 SplitFlags.push_back(FlagMultipleInheritance);
322 else
323 SplitFlags.push_back(FlagVirtualInheritance);
324 Flags &= ~R;
326 if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
327 Flags &= ~FlagIndirectVirtualBase;
328 SplitFlags.push_back(FlagIndirectVirtualBase);
331 #define HANDLE_DI_FLAG(ID, NAME) \
332 if (DIFlags Bit = Flags & Flag##NAME) { \
333 SplitFlags.push_back(Bit); \
334 Flags &= ~Bit; \
336 #include "llvm/IR/DebugInfoFlags.def"
337 return Flags;
340 DIScope *DIScope::getScope() const {
341 if (auto *T = dyn_cast<DIType>(this))
342 return T->getScope();
344 if (auto *SP = dyn_cast<DISubprogram>(this))
345 return SP->getScope();
347 if (auto *LB = dyn_cast<DILexicalBlockBase>(this))
348 return LB->getScope();
350 if (auto *NS = dyn_cast<DINamespace>(this))
351 return NS->getScope();
353 if (auto *CB = dyn_cast<DICommonBlock>(this))
354 return CB->getScope();
356 if (auto *M = dyn_cast<DIModule>(this))
357 return M->getScope();
359 assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
360 "Unhandled type of scope.");
361 return nullptr;
364 StringRef DIScope::getName() const {
365 if (auto *T = dyn_cast<DIType>(this))
366 return T->getName();
367 if (auto *SP = dyn_cast<DISubprogram>(this))
368 return SP->getName();
369 if (auto *NS = dyn_cast<DINamespace>(this))
370 return NS->getName();
371 if (auto *CB = dyn_cast<DICommonBlock>(this))
372 return CB->getName();
373 if (auto *M = dyn_cast<DIModule>(this))
374 return M->getName();
375 assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) ||
376 isa<DICompileUnit>(this)) &&
377 "Unhandled type of scope.");
378 return "";
381 #ifndef NDEBUG
382 static bool isCanonical(const MDString *S) {
383 return !S || !S->getString().empty();
385 #endif
387 dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; }
388 GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
389 MDString *Header,
390 ArrayRef<Metadata *> DwarfOps,
391 StorageType Storage, bool ShouldCreate) {
392 unsigned Hash = 0;
393 if (Storage == Uniqued) {
394 GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
395 if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key))
396 return N;
397 if (!ShouldCreate)
398 return nullptr;
399 Hash = Key.getHash();
400 } else {
401 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
404 // Use a nullptr for empty headers.
405 assert(isCanonical(Header) && "Expected canonical MDString");
406 Metadata *PreOps[] = {Header};
407 return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode(
408 Context, Storage, Hash, Tag, PreOps, DwarfOps),
409 Storage, Context.pImpl->GenericDINodes);
412 void GenericDINode::recalculateHash() {
413 setHash(GenericDINodeInfo::KeyTy::calculateHash(this));
416 #define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
417 #define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
418 #define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \
419 do { \
420 if (Storage == Uniqued) { \
421 if (auto *N = getUniqued(Context.pImpl->CLASS##s, \
422 CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \
423 return N; \
424 if (!ShouldCreate) \
425 return nullptr; \
426 } else { \
427 assert(ShouldCreate && \
428 "Expected non-uniqued nodes to always be created"); \
430 } while (false)
431 #define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \
432 return storeImpl(new (std::size(OPS), Storage) \
433 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
434 Storage, Context.pImpl->CLASS##s)
435 #define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \
436 return storeImpl(new (0u, Storage) \
437 CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \
438 Storage, Context.pImpl->CLASS##s)
439 #define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \
440 return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \
441 Storage, Context.pImpl->CLASS##s)
442 #define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \
443 return storeImpl(new (NUM_OPS, Storage) \
444 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
445 Storage, Context.pImpl->CLASS##s)
447 DISubrange::DISubrange(LLVMContext &C, StorageType Storage,
448 ArrayRef<Metadata *> Ops)
449 : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {}
450 DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
451 StorageType Storage, bool ShouldCreate) {
452 auto *CountNode = ConstantAsMetadata::get(
453 ConstantInt::getSigned(Type::getInt64Ty(Context), Count));
454 auto *LB = ConstantAsMetadata::get(
455 ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
456 return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
457 ShouldCreate);
460 DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
461 int64_t Lo, StorageType Storage,
462 bool ShouldCreate) {
463 auto *LB = ConstantAsMetadata::get(
464 ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
465 return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
466 ShouldCreate);
469 DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
470 Metadata *LB, Metadata *UB, Metadata *Stride,
471 StorageType Storage, bool ShouldCreate) {
472 DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
473 Metadata *Ops[] = {CountNode, LB, UB, Stride};
474 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops);
477 DISubrange::BoundType DISubrange::getCount() const {
478 Metadata *CB = getRawCountNode();
479 if (!CB)
480 return BoundType();
482 assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) ||
483 isa<DIExpression>(CB)) &&
484 "Count must be signed constant or DIVariable or DIExpression");
486 if (auto *MD = dyn_cast<ConstantAsMetadata>(CB))
487 return BoundType(cast<ConstantInt>(MD->getValue()));
489 if (auto *MD = dyn_cast<DIVariable>(CB))
490 return BoundType(MD);
492 if (auto *MD = dyn_cast<DIExpression>(CB))
493 return BoundType(MD);
495 return BoundType();
498 DISubrange::BoundType DISubrange::getLowerBound() const {
499 Metadata *LB = getRawLowerBound();
500 if (!LB)
501 return BoundType();
503 assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) ||
504 isa<DIExpression>(LB)) &&
505 "LowerBound must be signed constant or DIVariable or DIExpression");
507 if (auto *MD = dyn_cast<ConstantAsMetadata>(LB))
508 return BoundType(cast<ConstantInt>(MD->getValue()));
510 if (auto *MD = dyn_cast<DIVariable>(LB))
511 return BoundType(MD);
513 if (auto *MD = dyn_cast<DIExpression>(LB))
514 return BoundType(MD);
516 return BoundType();
519 DISubrange::BoundType DISubrange::getUpperBound() const {
520 Metadata *UB = getRawUpperBound();
521 if (!UB)
522 return BoundType();
524 assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) ||
525 isa<DIExpression>(UB)) &&
526 "UpperBound must be signed constant or DIVariable or DIExpression");
528 if (auto *MD = dyn_cast<ConstantAsMetadata>(UB))
529 return BoundType(cast<ConstantInt>(MD->getValue()));
531 if (auto *MD = dyn_cast<DIVariable>(UB))
532 return BoundType(MD);
534 if (auto *MD = dyn_cast<DIExpression>(UB))
535 return BoundType(MD);
537 return BoundType();
540 DISubrange::BoundType DISubrange::getStride() const {
541 Metadata *ST = getRawStride();
542 if (!ST)
543 return BoundType();
545 assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) ||
546 isa<DIExpression>(ST)) &&
547 "Stride must be signed constant or DIVariable or DIExpression");
549 if (auto *MD = dyn_cast<ConstantAsMetadata>(ST))
550 return BoundType(cast<ConstantInt>(MD->getValue()));
552 if (auto *MD = dyn_cast<DIVariable>(ST))
553 return BoundType(MD);
555 if (auto *MD = dyn_cast<DIExpression>(ST))
556 return BoundType(MD);
558 return BoundType();
560 DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage,
561 ArrayRef<Metadata *> Ops)
562 : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange,
563 Ops) {}
565 DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
566 Metadata *CountNode, Metadata *LB,
567 Metadata *UB, Metadata *Stride,
568 StorageType Storage,
569 bool ShouldCreate) {
570 DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
571 Metadata *Ops[] = {CountNode, LB, UB, Stride};
572 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops);
575 DIGenericSubrange::BoundType DIGenericSubrange::getCount() const {
576 Metadata *CB = getRawCountNode();
577 if (!CB)
578 return BoundType();
580 assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) &&
581 "Count must be signed constant or DIVariable or DIExpression");
583 if (auto *MD = dyn_cast<DIVariable>(CB))
584 return BoundType(MD);
586 if (auto *MD = dyn_cast<DIExpression>(CB))
587 return BoundType(MD);
589 return BoundType();
592 DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const {
593 Metadata *LB = getRawLowerBound();
594 if (!LB)
595 return BoundType();
597 assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) &&
598 "LowerBound must be signed constant or DIVariable or DIExpression");
600 if (auto *MD = dyn_cast<DIVariable>(LB))
601 return BoundType(MD);
603 if (auto *MD = dyn_cast<DIExpression>(LB))
604 return BoundType(MD);
606 return BoundType();
609 DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const {
610 Metadata *UB = getRawUpperBound();
611 if (!UB)
612 return BoundType();
614 assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) &&
615 "UpperBound must be signed constant or DIVariable or DIExpression");
617 if (auto *MD = dyn_cast<DIVariable>(UB))
618 return BoundType(MD);
620 if (auto *MD = dyn_cast<DIExpression>(UB))
621 return BoundType(MD);
623 return BoundType();
626 DIGenericSubrange::BoundType DIGenericSubrange::getStride() const {
627 Metadata *ST = getRawStride();
628 if (!ST)
629 return BoundType();
631 assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) &&
632 "Stride must be signed constant or DIVariable or DIExpression");
634 if (auto *MD = dyn_cast<DIVariable>(ST))
635 return BoundType(MD);
637 if (auto *MD = dyn_cast<DIExpression>(ST))
638 return BoundType(MD);
640 return BoundType();
643 DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage,
644 const APInt &Value, bool IsUnsigned,
645 ArrayRef<Metadata *> Ops)
646 : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops),
647 Value(Value) {
648 SubclassData32 = IsUnsigned;
650 DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
651 bool IsUnsigned, MDString *Name,
652 StorageType Storage, bool ShouldCreate) {
653 assert(isCanonical(Name) && "Expected canonical MDString");
654 DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name));
655 Metadata *Ops[] = {Name};
656 DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops);
659 DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag,
660 MDString *Name, uint64_t SizeInBits,
661 uint32_t AlignInBits, unsigned Encoding,
662 DIFlags Flags, StorageType Storage,
663 bool ShouldCreate) {
664 assert(isCanonical(Name) && "Expected canonical MDString");
665 DEFINE_GETIMPL_LOOKUP(DIBasicType,
666 (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags));
667 Metadata *Ops[] = {nullptr, nullptr, Name};
668 DEFINE_GETIMPL_STORE(DIBasicType,
669 (Tag, SizeInBits, AlignInBits, Encoding, Flags), Ops);
672 std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
673 switch (getEncoding()) {
674 case dwarf::DW_ATE_signed:
675 case dwarf::DW_ATE_signed_char:
676 return Signedness::Signed;
677 case dwarf::DW_ATE_unsigned:
678 case dwarf::DW_ATE_unsigned_char:
679 return Signedness::Unsigned;
680 default:
681 return std::nullopt;
685 DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
686 MDString *Name, Metadata *StringLength,
687 Metadata *StringLengthExp,
688 Metadata *StringLocationExp,
689 uint64_t SizeInBits, uint32_t AlignInBits,
690 unsigned Encoding, StorageType Storage,
691 bool ShouldCreate) {
692 assert(isCanonical(Name) && "Expected canonical MDString");
693 DEFINE_GETIMPL_LOOKUP(DIStringType,
694 (Tag, Name, StringLength, StringLengthExp,
695 StringLocationExp, SizeInBits, AlignInBits, Encoding));
696 Metadata *Ops[] = {nullptr, nullptr, Name,
697 StringLength, StringLengthExp, StringLocationExp};
698 DEFINE_GETIMPL_STORE(DIStringType, (Tag, SizeInBits, AlignInBits, Encoding),
699 Ops);
701 DIType *DIDerivedType::getClassType() const {
702 assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
703 return cast_or_null<DIType>(getExtraData());
705 uint32_t DIDerivedType::getVBPtrOffset() const {
706 assert(getTag() == dwarf::DW_TAG_inheritance);
707 if (auto *CM = cast_or_null<ConstantAsMetadata>(getExtraData()))
708 if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue()))
709 return static_cast<uint32_t>(CI->getZExtValue());
710 return 0;
712 Constant *DIDerivedType::getStorageOffsetInBits() const {
713 assert(getTag() == dwarf::DW_TAG_member && isBitField());
714 if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
715 return C->getValue();
716 return nullptr;
719 Constant *DIDerivedType::getConstant() const {
720 assert((getTag() == dwarf::DW_TAG_member ||
721 getTag() == dwarf::DW_TAG_variable) &&
722 isStaticMember());
723 if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
724 return C->getValue();
725 return nullptr;
727 Constant *DIDerivedType::getDiscriminantValue() const {
728 assert(getTag() == dwarf::DW_TAG_member && !isStaticMember());
729 if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
730 return C->getValue();
731 return nullptr;
734 DIDerivedType *
735 DIDerivedType::getImpl(LLVMContext &Context, unsigned Tag, MDString *Name,
736 Metadata *File, unsigned Line, Metadata *Scope,
737 Metadata *BaseType, uint64_t SizeInBits,
738 uint32_t AlignInBits, uint64_t OffsetInBits,
739 std::optional<unsigned> DWARFAddressSpace, DIFlags Flags,
740 Metadata *ExtraData, Metadata *Annotations,
741 StorageType Storage, bool ShouldCreate) {
742 assert(isCanonical(Name) && "Expected canonical MDString");
743 DEFINE_GETIMPL_LOOKUP(DIDerivedType,
744 (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
745 AlignInBits, OffsetInBits, DWARFAddressSpace, Flags,
746 ExtraData, Annotations));
747 Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData, Annotations};
748 DEFINE_GETIMPL_STORE(DIDerivedType,
749 (Tag, Line, SizeInBits, AlignInBits, OffsetInBits,
750 DWARFAddressSpace, Flags),
751 Ops);
754 DICompositeType *DICompositeType::getImpl(
755 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
756 unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
757 uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags,
758 Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
759 Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator,
760 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
761 Metadata *Rank, Metadata *Annotations, StorageType Storage,
762 bool ShouldCreate) {
763 assert(isCanonical(Name) && "Expected canonical MDString");
765 // Keep this in sync with buildODRType.
766 DEFINE_GETIMPL_LOOKUP(DICompositeType,
767 (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
768 AlignInBits, OffsetInBits, Flags, Elements,
769 RuntimeLang, VTableHolder, TemplateParams, Identifier,
770 Discriminator, DataLocation, Associated, Allocated,
771 Rank, Annotations));
772 Metadata *Ops[] = {File, Scope, Name, BaseType,
773 Elements, VTableHolder, TemplateParams, Identifier,
774 Discriminator, DataLocation, Associated, Allocated,
775 Rank, Annotations};
776 DEFINE_GETIMPL_STORE(
777 DICompositeType,
778 (Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags),
779 Ops);
782 DICompositeType *DICompositeType::buildODRType(
783 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
784 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
785 uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
786 DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
787 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
788 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
789 Metadata *Rank, Metadata *Annotations) {
790 assert(!Identifier.getString().empty() && "Expected valid identifier");
791 if (!Context.isODRUniquingDebugTypes())
792 return nullptr;
793 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
794 if (!CT)
795 return CT = DICompositeType::getDistinct(
796 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
797 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
798 VTableHolder, TemplateParams, &Identifier, Discriminator,
799 DataLocation, Associated, Allocated, Rank, Annotations);
801 if (CT->getTag() != Tag)
802 return nullptr;
804 // Only mutate CT if it's a forward declaration and the new operands aren't.
805 assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
806 if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
807 return CT;
809 // Mutate CT in place. Keep this in sync with getImpl.
810 CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits,
811 Flags);
812 Metadata *Ops[] = {File, Scope, Name, BaseType,
813 Elements, VTableHolder, TemplateParams, &Identifier,
814 Discriminator, DataLocation, Associated, Allocated,
815 Rank, Annotations};
816 assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
817 "Mismatched number of operands");
818 for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
819 if (Ops[I] != CT->getOperand(I))
820 CT->setOperand(I, Ops[I]);
821 return CT;
824 DICompositeType *DICompositeType::getODRType(
825 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
826 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
827 uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
828 DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
829 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
830 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
831 Metadata *Rank, Metadata *Annotations) {
832 assert(!Identifier.getString().empty() && "Expected valid identifier");
833 if (!Context.isODRUniquingDebugTypes())
834 return nullptr;
835 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
836 if (!CT) {
837 CT = DICompositeType::getDistinct(
838 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
839 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder,
840 TemplateParams, &Identifier, Discriminator, DataLocation, Associated,
841 Allocated, Rank, Annotations);
842 } else {
843 if (CT->getTag() != Tag)
844 return nullptr;
846 return CT;
849 DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context,
850 MDString &Identifier) {
851 assert(!Identifier.getString().empty() && "Expected valid identifier");
852 if (!Context.isODRUniquingDebugTypes())
853 return nullptr;
854 return Context.pImpl->DITypeMap->lookup(&Identifier);
856 DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage,
857 DIFlags Flags, uint8_t CC,
858 ArrayRef<Metadata *> Ops)
859 : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0,
860 0, 0, 0, Flags, Ops),
861 CC(CC) {}
863 DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
864 uint8_t CC, Metadata *TypeArray,
865 StorageType Storage,
866 bool ShouldCreate) {
867 DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray));
868 Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray};
869 DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops);
872 DIFile::DIFile(LLVMContext &C, StorageType Storage,
873 std::optional<ChecksumInfo<MDString *>> CS, MDString *Src,
874 ArrayRef<Metadata *> Ops)
875 : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops),
876 Checksum(CS), Source(Src) {}
878 // FIXME: Implement this string-enum correspondence with a .def file and macros,
879 // so that the association is explicit rather than implied.
880 static const char *ChecksumKindName[DIFile::CSK_Last] = {
881 "CSK_MD5",
882 "CSK_SHA1",
883 "CSK_SHA256",
886 StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
887 assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
888 // The first space was originally the CSK_None variant, which is now
889 // obsolete, but the space is still reserved in ChecksumKind, so we account
890 // for it here.
891 return ChecksumKindName[CSKind - 1];
894 std::optional<DIFile::ChecksumKind>
895 DIFile::getChecksumKind(StringRef CSKindStr) {
896 return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr)
897 .Case("CSK_MD5", DIFile::CSK_MD5)
898 .Case("CSK_SHA1", DIFile::CSK_SHA1)
899 .Case("CSK_SHA256", DIFile::CSK_SHA256)
900 .Default(std::nullopt);
903 DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
904 MDString *Directory,
905 std::optional<DIFile::ChecksumInfo<MDString *>> CS,
906 MDString *Source, StorageType Storage,
907 bool ShouldCreate) {
908 assert(isCanonical(Filename) && "Expected canonical MDString");
909 assert(isCanonical(Directory) && "Expected canonical MDString");
910 assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
911 // We do *NOT* expect Source to be a canonical MDString because nullptr
912 // means none, so we need something to represent the empty file.
913 DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source));
914 Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source};
915 DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops);
917 DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage,
918 unsigned SourceLanguage, bool IsOptimized,
919 unsigned RuntimeVersion, unsigned EmissionKind,
920 uint64_t DWOId, bool SplitDebugInlining,
921 bool DebugInfoForProfiling, unsigned NameTableKind,
922 bool RangesBaseAddress, ArrayRef<Metadata *> Ops)
923 : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops),
924 SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion),
925 DWOId(DWOId), EmissionKind(EmissionKind), NameTableKind(NameTableKind),
926 IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining),
927 DebugInfoForProfiling(DebugInfoForProfiling),
928 RangesBaseAddress(RangesBaseAddress) {
929 assert(Storage != Uniqued);
932 DICompileUnit *DICompileUnit::getImpl(
933 LLVMContext &Context, unsigned SourceLanguage, Metadata *File,
934 MDString *Producer, bool IsOptimized, MDString *Flags,
935 unsigned RuntimeVersion, MDString *SplitDebugFilename,
936 unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
937 Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
938 uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
939 unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
940 MDString *SDK, StorageType Storage, bool ShouldCreate) {
941 assert(Storage != Uniqued && "Cannot unique DICompileUnit");
942 assert(isCanonical(Producer) && "Expected canonical MDString");
943 assert(isCanonical(Flags) && "Expected canonical MDString");
944 assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
946 Metadata *Ops[] = {File,
947 Producer,
948 Flags,
949 SplitDebugFilename,
950 EnumTypes,
951 RetainedTypes,
952 GlobalVariables,
953 ImportedEntities,
954 Macros,
955 SysRoot,
956 SDK};
957 return storeImpl(new (std::size(Ops), Storage) DICompileUnit(
958 Context, Storage, SourceLanguage, IsOptimized,
959 RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
960 DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
961 Ops),
962 Storage);
965 std::optional<DICompileUnit::DebugEmissionKind>
966 DICompileUnit::getEmissionKind(StringRef Str) {
967 return StringSwitch<std::optional<DebugEmissionKind>>(Str)
968 .Case("NoDebug", NoDebug)
969 .Case("FullDebug", FullDebug)
970 .Case("LineTablesOnly", LineTablesOnly)
971 .Case("DebugDirectivesOnly", DebugDirectivesOnly)
972 .Default(std::nullopt);
975 std::optional<DICompileUnit::DebugNameTableKind>
976 DICompileUnit::getNameTableKind(StringRef Str) {
977 return StringSwitch<std::optional<DebugNameTableKind>>(Str)
978 .Case("Default", DebugNameTableKind::Default)
979 .Case("GNU", DebugNameTableKind::GNU)
980 .Case("Apple", DebugNameTableKind::Apple)
981 .Case("None", DebugNameTableKind::None)
982 .Default(std::nullopt);
985 const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) {
986 switch (EK) {
987 case NoDebug:
988 return "NoDebug";
989 case FullDebug:
990 return "FullDebug";
991 case LineTablesOnly:
992 return "LineTablesOnly";
993 case DebugDirectivesOnly:
994 return "DebugDirectivesOnly";
996 return nullptr;
999 const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) {
1000 switch (NTK) {
1001 case DebugNameTableKind::Default:
1002 return nullptr;
1003 case DebugNameTableKind::GNU:
1004 return "GNU";
1005 case DebugNameTableKind::Apple:
1006 return "Apple";
1007 case DebugNameTableKind::None:
1008 return "None";
1010 return nullptr;
1012 DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line,
1013 unsigned ScopeLine, unsigned VirtualIndex,
1014 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags,
1015 ArrayRef<Metadata *> Ops)
1016 : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops),
1017 Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex),
1018 ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) {
1019 static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range");
1021 DISubprogram::DISPFlags
1022 DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized,
1023 unsigned Virtuality, bool IsMainSubprogram) {
1024 // We're assuming virtuality is the low-order field.
1025 static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) &&
1026 int(SPFlagPureVirtual) ==
1027 int(dwarf::DW_VIRTUALITY_pure_virtual),
1028 "Virtuality constant mismatch");
1029 return static_cast<DISPFlags>(
1030 (Virtuality & SPFlagVirtuality) |
1031 (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) |
1032 (IsDefinition ? SPFlagDefinition : SPFlagZero) |
1033 (IsOptimized ? SPFlagOptimized : SPFlagZero) |
1034 (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero));
1037 DISubprogram *DILocalScope::getSubprogram() const {
1038 if (auto *Block = dyn_cast<DILexicalBlockBase>(this))
1039 return Block->getScope()->getSubprogram();
1040 return const_cast<DISubprogram *>(cast<DISubprogram>(this));
1043 DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const {
1044 if (auto *File = dyn_cast<DILexicalBlockFile>(this))
1045 return File->getScope()->getNonLexicalBlockFileScope();
1046 return const_cast<DILocalScope *>(this);
1049 DILocalScope *DILocalScope::cloneScopeForSubprogram(
1050 DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx,
1051 DenseMap<const MDNode *, MDNode *> &Cache) {
1052 SmallVector<DIScope *> ScopeChain;
1053 DIScope *CachedResult = nullptr;
1055 for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope);
1056 Scope = Scope->getScope()) {
1057 if (auto It = Cache.find(Scope); It != Cache.end()) {
1058 CachedResult = cast<DIScope>(It->second);
1059 break;
1061 ScopeChain.push_back(Scope);
1064 // Recreate the scope chain, bottom-up, starting at the new subprogram (or a
1065 // cached result).
1066 DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP;
1067 for (DIScope *ScopeToUpdate : reverse(ScopeChain)) {
1068 TempMDNode ClonedScope = ScopeToUpdate->clone();
1069 cast<DILexicalBlockBase>(*ClonedScope).replaceScope(UpdatedScope);
1070 UpdatedScope =
1071 cast<DIScope>(MDNode::replaceWithUniqued(std::move(ClonedScope)));
1072 Cache[ScopeToUpdate] = UpdatedScope;
1075 return cast<DILocalScope>(UpdatedScope);
1078 DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) {
1079 return StringSwitch<DISPFlags>(Flag)
1080 #define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
1081 #include "llvm/IR/DebugInfoFlags.def"
1082 .Default(SPFlagZero);
1085 StringRef DISubprogram::getFlagString(DISPFlags Flag) {
1086 switch (Flag) {
1087 // Appease a warning.
1088 case SPFlagVirtuality:
1089 return "";
1090 #define HANDLE_DISP_FLAG(ID, NAME) \
1091 case SPFlag##NAME: \
1092 return "DISPFlag" #NAME;
1093 #include "llvm/IR/DebugInfoFlags.def"
1095 return "";
1098 DISubprogram::DISPFlags
1099 DISubprogram::splitFlags(DISPFlags Flags,
1100 SmallVectorImpl<DISPFlags> &SplitFlags) {
1101 // Multi-bit fields can require special handling. In our case, however, the
1102 // only multi-bit field is virtuality, and all its values happen to be
1103 // single-bit values, so the right behavior just falls out.
1104 #define HANDLE_DISP_FLAG(ID, NAME) \
1105 if (DISPFlags Bit = Flags & SPFlag##NAME) { \
1106 SplitFlags.push_back(Bit); \
1107 Flags &= ~Bit; \
1109 #include "llvm/IR/DebugInfoFlags.def"
1110 return Flags;
1113 DISubprogram *DISubprogram::getImpl(
1114 LLVMContext &Context, Metadata *Scope, MDString *Name,
1115 MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
1116 unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
1117 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
1118 Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
1119 Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName,
1120 StorageType Storage, bool ShouldCreate) {
1121 assert(isCanonical(Name) && "Expected canonical MDString");
1122 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1123 assert(isCanonical(TargetFuncName) && "Expected canonical MDString");
1124 DEFINE_GETIMPL_LOOKUP(DISubprogram,
1125 (Scope, Name, LinkageName, File, Line, Type, ScopeLine,
1126 ContainingType, VirtualIndex, ThisAdjustment, Flags,
1127 SPFlags, Unit, TemplateParams, Declaration,
1128 RetainedNodes, ThrownTypes, Annotations,
1129 TargetFuncName));
1130 SmallVector<Metadata *, 13> Ops = {
1131 File, Scope, Name, LinkageName,
1132 Type, Unit, Declaration, RetainedNodes,
1133 ContainingType, TemplateParams, ThrownTypes, Annotations,
1134 TargetFuncName};
1135 if (!TargetFuncName) {
1136 Ops.pop_back();
1137 if (!Annotations) {
1138 Ops.pop_back();
1139 if (!ThrownTypes) {
1140 Ops.pop_back();
1141 if (!TemplateParams) {
1142 Ops.pop_back();
1143 if (!ContainingType)
1144 Ops.pop_back();
1149 DEFINE_GETIMPL_STORE_N(
1150 DISubprogram,
1151 (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops,
1152 Ops.size());
1155 bool DISubprogram::describes(const Function *F) const {
1156 assert(F && "Invalid function");
1157 return F->getSubprogram() == this;
1159 DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID,
1160 StorageType Storage,
1161 ArrayRef<Metadata *> Ops)
1162 : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {}
1164 DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1165 Metadata *File, unsigned Line,
1166 unsigned Column, StorageType Storage,
1167 bool ShouldCreate) {
1168 // Fixup column.
1169 adjustColumn(Column);
1171 assert(Scope && "Expected scope");
1172 DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column));
1173 Metadata *Ops[] = {File, Scope};
1174 DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops);
1177 DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
1178 Metadata *Scope, Metadata *File,
1179 unsigned Discriminator,
1180 StorageType Storage,
1181 bool ShouldCreate) {
1182 assert(Scope && "Expected scope");
1183 DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator));
1184 Metadata *Ops[] = {File, Scope};
1185 DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops);
1188 DINamespace::DINamespace(LLVMContext &Context, StorageType Storage,
1189 bool ExportSymbols, ArrayRef<Metadata *> Ops)
1190 : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) {
1191 SubclassData1 = ExportSymbols;
1193 DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
1194 MDString *Name, bool ExportSymbols,
1195 StorageType Storage, bool ShouldCreate) {
1196 assert(isCanonical(Name) && "Expected canonical MDString");
1197 DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols));
1198 // The nullptr is for DIScope's File operand. This should be refactored.
1199 Metadata *Ops[] = {nullptr, Scope, Name};
1200 DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops);
1203 DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage,
1204 unsigned LineNo, ArrayRef<Metadata *> Ops)
1205 : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block,
1206 Ops) {
1207 SubclassData32 = LineNo;
1209 DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1210 Metadata *Decl, MDString *Name,
1211 Metadata *File, unsigned LineNo,
1212 StorageType Storage, bool ShouldCreate) {
1213 assert(isCanonical(Name) && "Expected canonical MDString");
1214 DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo));
1215 // The nullptr is for DIScope's File operand. This should be refactored.
1216 Metadata *Ops[] = {Scope, Decl, Name, File};
1217 DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops);
1220 DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo,
1221 bool IsDecl, ArrayRef<Metadata *> Ops)
1222 : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) {
1223 SubclassData1 = IsDecl;
1224 SubclassData32 = LineNo;
1226 DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
1227 Metadata *Scope, MDString *Name,
1228 MDString *ConfigurationMacros,
1229 MDString *IncludePath, MDString *APINotesFile,
1230 unsigned LineNo, bool IsDecl, StorageType Storage,
1231 bool ShouldCreate) {
1232 assert(isCanonical(Name) && "Expected canonical MDString");
1233 DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros,
1234 IncludePath, APINotesFile, LineNo, IsDecl));
1235 Metadata *Ops[] = {File, Scope, Name, ConfigurationMacros,
1236 IncludePath, APINotesFile};
1237 DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
1239 DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context,
1240 StorageType Storage,
1241 bool IsDefault,
1242 ArrayRef<Metadata *> Ops)
1243 : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage,
1244 dwarf::DW_TAG_template_type_parameter, IsDefault,
1245 Ops) {}
1247 DITemplateTypeParameter *
1248 DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
1249 Metadata *Type, bool isDefault,
1250 StorageType Storage, bool ShouldCreate) {
1251 assert(isCanonical(Name) && "Expected canonical MDString");
1252 DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault));
1253 Metadata *Ops[] = {Name, Type};
1254 DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops);
1257 DITemplateValueParameter *DITemplateValueParameter::getImpl(
1258 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
1259 bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
1260 assert(isCanonical(Name) && "Expected canonical MDString");
1261 DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter,
1262 (Tag, Name, Type, isDefault, Value));
1263 Metadata *Ops[] = {Name, Type, Value};
1264 DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops);
1267 DIGlobalVariable *
1268 DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1269 MDString *LinkageName, Metadata *File, unsigned Line,
1270 Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
1271 Metadata *StaticDataMemberDeclaration,
1272 Metadata *TemplateParams, uint32_t AlignInBits,
1273 Metadata *Annotations, StorageType Storage,
1274 bool ShouldCreate) {
1275 assert(isCanonical(Name) && "Expected canonical MDString");
1276 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1277 DEFINE_GETIMPL_LOOKUP(
1278 DIGlobalVariable,
1279 (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition,
1280 StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations));
1281 Metadata *Ops[] = {Scope,
1282 Name,
1283 File,
1284 Type,
1285 Name,
1286 LinkageName,
1287 StaticDataMemberDeclaration,
1288 TemplateParams,
1289 Annotations};
1290 DEFINE_GETIMPL_STORE(DIGlobalVariable,
1291 (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
1294 DILocalVariable *
1295 DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1296 Metadata *File, unsigned Line, Metadata *Type,
1297 unsigned Arg, DIFlags Flags, uint32_t AlignInBits,
1298 Metadata *Annotations, StorageType Storage,
1299 bool ShouldCreate) {
1300 // 64K ought to be enough for any frontend.
1301 assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
1303 assert(Scope && "Expected scope");
1304 assert(isCanonical(Name) && "Expected canonical MDString");
1305 DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg,
1306 Flags, AlignInBits, Annotations));
1307 Metadata *Ops[] = {Scope, Name, File, Type, Annotations};
1308 DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops);
1311 DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage,
1312 signed Line, ArrayRef<Metadata *> Ops,
1313 uint32_t AlignInBits)
1314 : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) {
1315 SubclassData32 = AlignInBits;
1317 std::optional<uint64_t> DIVariable::getSizeInBits() const {
1318 // This is used by the Verifier so be mindful of broken types.
1319 const Metadata *RawType = getRawType();
1320 while (RawType) {
1321 // Try to get the size directly.
1322 if (auto *T = dyn_cast<DIType>(RawType))
1323 if (uint64_t Size = T->getSizeInBits())
1324 return Size;
1326 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
1327 // Look at the base type.
1328 RawType = DT->getRawBaseType();
1329 continue;
1332 // Missing type or size.
1333 break;
1336 // Fail gracefully.
1337 return std::nullopt;
1340 DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line,
1341 ArrayRef<Metadata *> Ops)
1342 : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) {
1343 SubclassData32 = Line;
1345 DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1346 Metadata *File, unsigned Line, StorageType Storage,
1347 bool ShouldCreate) {
1348 assert(Scope && "Expected scope");
1349 assert(isCanonical(Name) && "Expected canonical MDString");
1350 DEFINE_GETIMPL_LOOKUP(DILabel, (Scope, Name, File, Line));
1351 Metadata *Ops[] = {Scope, Name, File};
1352 DEFINE_GETIMPL_STORE(DILabel, (Line), Ops);
1355 DIExpression *DIExpression::getImpl(LLVMContext &Context,
1356 ArrayRef<uint64_t> Elements,
1357 StorageType Storage, bool ShouldCreate) {
1358 DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements));
1359 DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements));
1361 bool DIExpression::isEntryValue() const {
1362 if (auto singleLocElts = getSingleLocationExpressionElements()) {
1363 return singleLocElts->size() > 0 &&
1364 (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value;
1366 return false;
1368 bool DIExpression::startsWithDeref() const {
1369 if (auto singleLocElts = getSingleLocationExpressionElements())
1370 return singleLocElts->size() > 0 &&
1371 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1372 return false;
1374 bool DIExpression::isDeref() const {
1375 if (auto singleLocElts = getSingleLocationExpressionElements())
1376 return singleLocElts->size() == 1 &&
1377 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1378 return false;
1381 DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage,
1382 bool ShouldCreate) {
1383 // Uniqued DIAssignID are not supported as the instance address *is* the ID.
1384 assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported");
1385 return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage);
1388 unsigned DIExpression::ExprOperand::getSize() const {
1389 uint64_t Op = getOp();
1391 if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
1392 return 2;
1394 switch (Op) {
1395 case dwarf::DW_OP_LLVM_convert:
1396 case dwarf::DW_OP_LLVM_fragment:
1397 case dwarf::DW_OP_bregx:
1398 return 3;
1399 case dwarf::DW_OP_constu:
1400 case dwarf::DW_OP_consts:
1401 case dwarf::DW_OP_deref_size:
1402 case dwarf::DW_OP_plus_uconst:
1403 case dwarf::DW_OP_LLVM_tag_offset:
1404 case dwarf::DW_OP_LLVM_entry_value:
1405 case dwarf::DW_OP_LLVM_arg:
1406 case dwarf::DW_OP_regx:
1407 return 2;
1408 default:
1409 return 1;
1413 bool DIExpression::isValid() const {
1414 for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
1415 // Check that there's space for the operand.
1416 if (I->get() + I->getSize() > E->get())
1417 return false;
1419 uint64_t Op = I->getOp();
1420 if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
1421 (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
1422 return true;
1424 // Check that the operand is valid.
1425 switch (Op) {
1426 default:
1427 return false;
1428 case dwarf::DW_OP_LLVM_fragment:
1429 // A fragment operator must appear at the end.
1430 return I->get() + I->getSize() == E->get();
1431 case dwarf::DW_OP_stack_value: {
1432 // Must be the last one or followed by a DW_OP_LLVM_fragment.
1433 if (I->get() + I->getSize() == E->get())
1434 break;
1435 auto J = I;
1436 if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
1437 return false;
1438 break;
1440 case dwarf::DW_OP_swap: {
1441 // Must be more than one implicit element on the stack.
1443 // FIXME: A better way to implement this would be to add a local variable
1444 // that keeps track of the stack depth and introduce something like a
1445 // DW_LLVM_OP_implicit_location as a placeholder for the location this
1446 // DIExpression is attached to, or else pass the number of implicit stack
1447 // elements into isValid.
1448 if (getNumElements() == 1)
1449 return false;
1450 break;
1452 case dwarf::DW_OP_LLVM_entry_value: {
1453 // An entry value operator must appear at the beginning or immediately
1454 // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can
1455 // currently only be 1, because we support only entry values of a simple
1456 // register location. One reason for this is that we currently can't
1457 // calculate the size of the resulting DWARF block for other expressions.
1458 auto FirstOp = expr_op_begin();
1459 if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0)
1460 ++FirstOp;
1461 return I->get() == FirstOp->get() && I->getArg(0) == 1;
1463 case dwarf::DW_OP_LLVM_implicit_pointer:
1464 case dwarf::DW_OP_LLVM_convert:
1465 case dwarf::DW_OP_LLVM_arg:
1466 case dwarf::DW_OP_LLVM_tag_offset:
1467 case dwarf::DW_OP_constu:
1468 case dwarf::DW_OP_plus_uconst:
1469 case dwarf::DW_OP_plus:
1470 case dwarf::DW_OP_minus:
1471 case dwarf::DW_OP_mul:
1472 case dwarf::DW_OP_div:
1473 case dwarf::DW_OP_mod:
1474 case dwarf::DW_OP_or:
1475 case dwarf::DW_OP_and:
1476 case dwarf::DW_OP_xor:
1477 case dwarf::DW_OP_shl:
1478 case dwarf::DW_OP_shr:
1479 case dwarf::DW_OP_shra:
1480 case dwarf::DW_OP_deref:
1481 case dwarf::DW_OP_deref_size:
1482 case dwarf::DW_OP_xderef:
1483 case dwarf::DW_OP_lit0:
1484 case dwarf::DW_OP_not:
1485 case dwarf::DW_OP_dup:
1486 case dwarf::DW_OP_regx:
1487 case dwarf::DW_OP_bregx:
1488 case dwarf::DW_OP_push_object_address:
1489 case dwarf::DW_OP_over:
1490 case dwarf::DW_OP_consts:
1491 case dwarf::DW_OP_eq:
1492 case dwarf::DW_OP_ne:
1493 case dwarf::DW_OP_gt:
1494 case dwarf::DW_OP_ge:
1495 case dwarf::DW_OP_lt:
1496 case dwarf::DW_OP_le:
1497 break;
1500 return true;
1503 bool DIExpression::isImplicit() const {
1504 if (!isValid())
1505 return false;
1507 if (getNumElements() == 0)
1508 return false;
1510 for (const auto &It : expr_ops()) {
1511 switch (It.getOp()) {
1512 default:
1513 break;
1514 case dwarf::DW_OP_stack_value:
1515 case dwarf::DW_OP_LLVM_tag_offset:
1516 return true;
1520 return false;
1523 bool DIExpression::isComplex() const {
1524 if (!isValid())
1525 return false;
1527 if (getNumElements() == 0)
1528 return false;
1530 // If there are any elements other than fragment or tag_offset, then some
1531 // kind of complex computation occurs.
1532 for (const auto &It : expr_ops()) {
1533 switch (It.getOp()) {
1534 case dwarf::DW_OP_LLVM_tag_offset:
1535 case dwarf::DW_OP_LLVM_fragment:
1536 case dwarf::DW_OP_LLVM_arg:
1537 continue;
1538 default:
1539 return true;
1543 return false;
1546 bool DIExpression::isSingleLocationExpression() const {
1547 if (!isValid())
1548 return false;
1550 if (getNumElements() == 0)
1551 return true;
1553 auto ExprOpBegin = expr_ops().begin();
1554 auto ExprOpEnd = expr_ops().end();
1555 if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) {
1556 if (ExprOpBegin->getArg(0) != 0)
1557 return false;
1558 ++ExprOpBegin;
1561 return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) {
1562 return Op.getOp() == dwarf::DW_OP_LLVM_arg;
1566 std::optional<ArrayRef<uint64_t>>
1567 DIExpression::getSingleLocationExpressionElements() const {
1568 // Check for `isValid` covered by `isSingleLocationExpression`.
1569 if (!isSingleLocationExpression())
1570 return std::nullopt;
1572 // An empty expression is already non-variadic.
1573 if (!getNumElements())
1574 return ArrayRef<uint64_t>();
1576 // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do
1577 // anything.
1578 if (getElements()[0] == dwarf::DW_OP_LLVM_arg)
1579 return getElements().drop_front(2);
1580 return getElements();
1583 const DIExpression *
1584 DIExpression::convertToUndefExpression(const DIExpression *Expr) {
1585 SmallVector<uint64_t, 3> UndefOps;
1586 if (auto FragmentInfo = Expr->getFragmentInfo()) {
1587 UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits,
1588 FragmentInfo->SizeInBits});
1590 return DIExpression::get(Expr->getContext(), UndefOps);
1593 const DIExpression *
1594 DIExpression::convertToVariadicExpression(const DIExpression *Expr) {
1595 if (any_of(Expr->expr_ops(), [](auto ExprOp) {
1596 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1598 return Expr;
1599 SmallVector<uint64_t> NewOps;
1600 NewOps.reserve(Expr->getNumElements() + 2);
1601 NewOps.append({dwarf::DW_OP_LLVM_arg, 0});
1602 NewOps.append(Expr->elements_begin(), Expr->elements_end());
1603 return DIExpression::get(Expr->getContext(), NewOps);
1606 std::optional<const DIExpression *>
1607 DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) {
1608 if (!Expr)
1609 return std::nullopt;
1611 if (auto Elts = Expr->getSingleLocationExpressionElements())
1612 return DIExpression::get(Expr->getContext(), *Elts);
1614 return std::nullopt;
1617 void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops,
1618 const DIExpression *Expr,
1619 bool IsIndirect) {
1620 // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0`
1621 // to the existing expression ops.
1622 if (none_of(Expr->expr_ops(), [](auto ExprOp) {
1623 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1625 Ops.append({dwarf::DW_OP_LLVM_arg, 0});
1626 // If Expr is not indirect, we only need to insert the expression elements and
1627 // we're done.
1628 if (!IsIndirect) {
1629 Ops.append(Expr->elements_begin(), Expr->elements_end());
1630 return;
1632 // If Expr is indirect, insert the implied DW_OP_deref at the end of the
1633 // expression but before DW_OP_{stack_value, LLVM_fragment} if they are
1634 // present.
1635 for (auto Op : Expr->expr_ops()) {
1636 if (Op.getOp() == dwarf::DW_OP_stack_value ||
1637 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1638 Ops.push_back(dwarf::DW_OP_deref);
1639 IsIndirect = false;
1641 Op.appendToVector(Ops);
1643 if (IsIndirect)
1644 Ops.push_back(dwarf::DW_OP_deref);
1647 bool DIExpression::isEqualExpression(const DIExpression *FirstExpr,
1648 bool FirstIndirect,
1649 const DIExpression *SecondExpr,
1650 bool SecondIndirect) {
1651 SmallVector<uint64_t> FirstOps;
1652 DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect);
1653 SmallVector<uint64_t> SecondOps;
1654 DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr,
1655 SecondIndirect);
1656 return FirstOps == SecondOps;
1659 std::optional<DIExpression::FragmentInfo>
1660 DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) {
1661 for (auto I = Start; I != End; ++I)
1662 if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
1663 DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)};
1664 return Info;
1666 return std::nullopt;
1669 void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops,
1670 int64_t Offset) {
1671 if (Offset > 0) {
1672 Ops.push_back(dwarf::DW_OP_plus_uconst);
1673 Ops.push_back(Offset);
1674 } else if (Offset < 0) {
1675 Ops.push_back(dwarf::DW_OP_constu);
1676 // Avoid UB when encountering LLONG_MIN, because in 2's complement
1677 // abs(LLONG_MIN) is LLONG_MAX+1.
1678 uint64_t AbsMinusOne = -(Offset+1);
1679 Ops.push_back(AbsMinusOne + 1);
1680 Ops.push_back(dwarf::DW_OP_minus);
1684 bool DIExpression::extractIfOffset(int64_t &Offset) const {
1685 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
1686 if (!SingleLocEltsOpt)
1687 return false;
1688 auto SingleLocElts = *SingleLocEltsOpt;
1690 if (SingleLocElts.size() == 0) {
1691 Offset = 0;
1692 return true;
1695 if (SingleLocElts.size() == 2 &&
1696 SingleLocElts[0] == dwarf::DW_OP_plus_uconst) {
1697 Offset = SingleLocElts[1];
1698 return true;
1701 if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) {
1702 if (SingleLocElts[2] == dwarf::DW_OP_plus) {
1703 Offset = SingleLocElts[1];
1704 return true;
1706 if (SingleLocElts[2] == dwarf::DW_OP_minus) {
1707 Offset = -SingleLocElts[1];
1708 return true;
1712 return false;
1715 bool DIExpression::hasAllLocationOps(unsigned N) const {
1716 SmallDenseSet<uint64_t, 4> SeenOps;
1717 for (auto ExprOp : expr_ops())
1718 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
1719 SeenOps.insert(ExprOp.getArg(0));
1720 for (uint64_t Idx = 0; Idx < N; ++Idx)
1721 if (!SeenOps.contains(Idx))
1722 return false;
1723 return true;
1726 const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr,
1727 unsigned &AddrClass) {
1728 // FIXME: This seems fragile. Nothing that verifies that these elements
1729 // actually map to ops and not operands.
1730 auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements();
1731 if (!SingleLocEltsOpt)
1732 return nullptr;
1733 auto SingleLocElts = *SingleLocEltsOpt;
1735 const unsigned PatternSize = 4;
1736 if (SingleLocElts.size() >= PatternSize &&
1737 SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu &&
1738 SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap &&
1739 SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) {
1740 AddrClass = SingleLocElts[PatternSize - 3];
1742 if (SingleLocElts.size() == PatternSize)
1743 return nullptr;
1744 return DIExpression::get(
1745 Expr->getContext(),
1746 ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize));
1748 return Expr;
1751 DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags,
1752 int64_t Offset) {
1753 SmallVector<uint64_t, 8> Ops;
1754 if (Flags & DIExpression::DerefBefore)
1755 Ops.push_back(dwarf::DW_OP_deref);
1757 appendOffset(Ops, Offset);
1758 if (Flags & DIExpression::DerefAfter)
1759 Ops.push_back(dwarf::DW_OP_deref);
1761 bool StackValue = Flags & DIExpression::StackValue;
1762 bool EntryValue = Flags & DIExpression::EntryValue;
1764 return prependOpcodes(Expr, Ops, StackValue, EntryValue);
1767 DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr,
1768 ArrayRef<uint64_t> Ops,
1769 unsigned ArgNo, bool StackValue) {
1770 assert(Expr && "Can't add ops to this expression");
1772 // Handle non-variadic intrinsics by prepending the opcodes.
1773 if (!any_of(Expr->expr_ops(),
1774 [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) {
1775 assert(ArgNo == 0 &&
1776 "Location Index must be 0 for a non-variadic expression.");
1777 SmallVector<uint64_t, 8> NewOps(Ops.begin(), Ops.end());
1778 return DIExpression::prependOpcodes(Expr, NewOps, StackValue);
1781 SmallVector<uint64_t, 8> NewOps;
1782 for (auto Op : Expr->expr_ops()) {
1783 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1784 if (StackValue) {
1785 if (Op.getOp() == dwarf::DW_OP_stack_value)
1786 StackValue = false;
1787 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1788 NewOps.push_back(dwarf::DW_OP_stack_value);
1789 StackValue = false;
1792 Op.appendToVector(NewOps);
1793 if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo)
1794 NewOps.insert(NewOps.end(), Ops.begin(), Ops.end());
1796 if (StackValue)
1797 NewOps.push_back(dwarf::DW_OP_stack_value);
1799 return DIExpression::get(Expr->getContext(), NewOps);
1802 DIExpression *DIExpression::replaceArg(const DIExpression *Expr,
1803 uint64_t OldArg, uint64_t NewArg) {
1804 assert(Expr && "Can't replace args in this expression");
1806 SmallVector<uint64_t, 8> NewOps;
1808 for (auto Op : Expr->expr_ops()) {
1809 if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) {
1810 Op.appendToVector(NewOps);
1811 continue;
1813 NewOps.push_back(dwarf::DW_OP_LLVM_arg);
1814 uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0);
1815 // OldArg has been deleted from the Op list, so decrement all indices
1816 // greater than it.
1817 if (Arg > OldArg)
1818 --Arg;
1819 NewOps.push_back(Arg);
1821 return DIExpression::get(Expr->getContext(), NewOps);
1824 DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr,
1825 SmallVectorImpl<uint64_t> &Ops,
1826 bool StackValue, bool EntryValue) {
1827 assert(Expr && "Can't prepend ops to this expression");
1829 if (EntryValue) {
1830 Ops.push_back(dwarf::DW_OP_LLVM_entry_value);
1831 // Use a block size of 1 for the target register operand. The
1832 // DWARF backend currently cannot emit entry values with a block
1833 // size > 1.
1834 Ops.push_back(1);
1837 // If there are no ops to prepend, do not even add the DW_OP_stack_value.
1838 if (Ops.empty())
1839 StackValue = false;
1840 for (auto Op : Expr->expr_ops()) {
1841 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1842 if (StackValue) {
1843 if (Op.getOp() == dwarf::DW_OP_stack_value)
1844 StackValue = false;
1845 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1846 Ops.push_back(dwarf::DW_OP_stack_value);
1847 StackValue = false;
1850 Op.appendToVector(Ops);
1852 if (StackValue)
1853 Ops.push_back(dwarf::DW_OP_stack_value);
1854 return DIExpression::get(Expr->getContext(), Ops);
1857 DIExpression *DIExpression::append(const DIExpression *Expr,
1858 ArrayRef<uint64_t> Ops) {
1859 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1861 // Copy Expr's current op list.
1862 SmallVector<uint64_t, 16> NewOps;
1863 for (auto Op : Expr->expr_ops()) {
1864 // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
1865 if (Op.getOp() == dwarf::DW_OP_stack_value ||
1866 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1867 NewOps.append(Ops.begin(), Ops.end());
1869 // Ensure that the new opcodes are only appended once.
1870 Ops = std::nullopt;
1872 Op.appendToVector(NewOps);
1875 NewOps.append(Ops.begin(), Ops.end());
1876 auto *result = DIExpression::get(Expr->getContext(), NewOps);
1877 assert(result->isValid() && "concatenated expression is not valid");
1878 return result;
1881 DIExpression *DIExpression::appendToStack(const DIExpression *Expr,
1882 ArrayRef<uint64_t> Ops) {
1883 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1884 assert(none_of(Ops,
1885 [](uint64_t Op) {
1886 return Op == dwarf::DW_OP_stack_value ||
1887 Op == dwarf::DW_OP_LLVM_fragment;
1888 }) &&
1889 "Can't append this op");
1891 // Append a DW_OP_deref after Expr's current op list if it's non-empty and
1892 // has no DW_OP_stack_value.
1894 // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
1895 std::optional<FragmentInfo> FI = Expr->getFragmentInfo();
1896 unsigned DropUntilStackValue = FI ? 3 : 0;
1897 ArrayRef<uint64_t> ExprOpsBeforeFragment =
1898 Expr->getElements().drop_back(DropUntilStackValue);
1899 bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
1900 (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
1901 bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
1903 // Append a DW_OP_deref after Expr's current op list if needed, then append
1904 // the new ops, and finally ensure that a single DW_OP_stack_value is present.
1905 SmallVector<uint64_t, 16> NewOps;
1906 if (NeedsDeref)
1907 NewOps.push_back(dwarf::DW_OP_deref);
1908 NewOps.append(Ops.begin(), Ops.end());
1909 if (NeedsStackValue)
1910 NewOps.push_back(dwarf::DW_OP_stack_value);
1911 return DIExpression::append(Expr, NewOps);
1914 std::optional<DIExpression *> DIExpression::createFragmentExpression(
1915 const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
1916 SmallVector<uint64_t, 8> Ops;
1917 // Track whether it's safe to split the value at the top of the DWARF stack,
1918 // assuming that it'll be used as an implicit location value.
1919 bool CanSplitValue = true;
1920 // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
1921 if (Expr) {
1922 for (auto Op : Expr->expr_ops()) {
1923 switch (Op.getOp()) {
1924 default:
1925 break;
1926 case dwarf::DW_OP_shr:
1927 case dwarf::DW_OP_shra:
1928 case dwarf::DW_OP_shl:
1929 case dwarf::DW_OP_plus:
1930 case dwarf::DW_OP_plus_uconst:
1931 case dwarf::DW_OP_minus:
1932 // We can't safely split arithmetic or shift operations into multiple
1933 // fragments because we can't express carry-over between fragments.
1935 // FIXME: We *could* preserve the lowest fragment of a constant offset
1936 // operation if the offset fits into SizeInBits.
1937 CanSplitValue = false;
1938 break;
1939 case dwarf::DW_OP_deref:
1940 case dwarf::DW_OP_deref_size:
1941 case dwarf::DW_OP_deref_type:
1942 case dwarf::DW_OP_xderef:
1943 case dwarf::DW_OP_xderef_size:
1944 case dwarf::DW_OP_xderef_type:
1945 // Preceeding arithmetic operations have been applied to compute an
1946 // address. It's okay to split the value loaded from that address.
1947 CanSplitValue = true;
1948 break;
1949 case dwarf::DW_OP_stack_value:
1950 // Bail if this expression computes a value that cannot be split.
1951 if (!CanSplitValue)
1952 return std::nullopt;
1953 break;
1954 case dwarf::DW_OP_LLVM_fragment: {
1955 // Make the new offset point into the existing fragment.
1956 uint64_t FragmentOffsetInBits = Op.getArg(0);
1957 uint64_t FragmentSizeInBits = Op.getArg(1);
1958 (void)FragmentSizeInBits;
1959 assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
1960 "new fragment outside of original fragment");
1961 OffsetInBits += FragmentOffsetInBits;
1962 continue;
1965 Op.appendToVector(Ops);
1968 assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split");
1969 assert(Expr && "Unknown DIExpression");
1970 Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1971 Ops.push_back(OffsetInBits);
1972 Ops.push_back(SizeInBits);
1973 return DIExpression::get(Expr->getContext(), Ops);
1976 std::pair<DIExpression *, const ConstantInt *>
1977 DIExpression::constantFold(const ConstantInt *CI) {
1978 // Copy the APInt so we can modify it.
1979 APInt NewInt = CI->getValue();
1980 SmallVector<uint64_t, 8> Ops;
1982 // Fold operators only at the beginning of the expression.
1983 bool First = true;
1984 bool Changed = false;
1985 for (auto Op : expr_ops()) {
1986 switch (Op.getOp()) {
1987 default:
1988 // We fold only the leading part of the expression; if we get to a part
1989 // that we're going to copy unchanged, and haven't done any folding,
1990 // then the entire expression is unchanged and we can return early.
1991 if (!Changed)
1992 return {this, CI};
1993 First = false;
1994 break;
1995 case dwarf::DW_OP_LLVM_convert:
1996 if (!First)
1997 break;
1998 Changed = true;
1999 if (Op.getArg(1) == dwarf::DW_ATE_signed)
2000 NewInt = NewInt.sextOrTrunc(Op.getArg(0));
2001 else {
2002 assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand");
2003 NewInt = NewInt.zextOrTrunc(Op.getArg(0));
2005 continue;
2007 Op.appendToVector(Ops);
2009 if (!Changed)
2010 return {this, CI};
2011 return {DIExpression::get(getContext(), Ops),
2012 ConstantInt::get(getContext(), NewInt)};
2015 uint64_t DIExpression::getNumLocationOperands() const {
2016 uint64_t Result = 0;
2017 for (auto ExprOp : expr_ops())
2018 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2019 Result = std::max(Result, ExprOp.getArg(0) + 1);
2020 assert(hasAllLocationOps(Result) &&
2021 "Expression is missing one or more location operands.");
2022 return Result;
2025 std::optional<DIExpression::SignedOrUnsignedConstant>
2026 DIExpression::isConstant() const {
2028 // Recognize signed and unsigned constants.
2029 // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value
2030 // (DW_OP_LLVM_fragment of Len).
2031 // An unsigned constant can be represented as
2032 // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len).
2034 if ((getNumElements() != 2 && getNumElements() != 3 &&
2035 getNumElements() != 6) ||
2036 (getElement(0) != dwarf::DW_OP_consts &&
2037 getElement(0) != dwarf::DW_OP_constu))
2038 return std::nullopt;
2040 if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts)
2041 return SignedOrUnsignedConstant::SignedConstant;
2043 if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) ||
2044 (getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value ||
2045 getElement(3) != dwarf::DW_OP_LLVM_fragment)))
2046 return std::nullopt;
2047 return getElement(0) == dwarf::DW_OP_constu
2048 ? SignedOrUnsignedConstant::UnsignedConstant
2049 : SignedOrUnsignedConstant::SignedConstant;
2052 DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
2053 bool Signed) {
2054 dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
2055 DIExpression::ExtOps Ops{{dwarf::DW_OP_LLVM_convert, FromSize, TK,
2056 dwarf::DW_OP_LLVM_convert, ToSize, TK}};
2057 return Ops;
2060 DIExpression *DIExpression::appendExt(const DIExpression *Expr,
2061 unsigned FromSize, unsigned ToSize,
2062 bool Signed) {
2063 return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed));
2066 DIGlobalVariableExpression *
2067 DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
2068 Metadata *Expression, StorageType Storage,
2069 bool ShouldCreate) {
2070 DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression));
2071 Metadata *Ops[] = {Variable, Expression};
2072 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops);
2074 DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage,
2075 unsigned Line, unsigned Attributes,
2076 ArrayRef<Metadata *> Ops)
2077 : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops),
2078 Line(Line), Attributes(Attributes) {}
2080 DIObjCProperty *DIObjCProperty::getImpl(
2081 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
2082 MDString *GetterName, MDString *SetterName, unsigned Attributes,
2083 Metadata *Type, StorageType Storage, bool ShouldCreate) {
2084 assert(isCanonical(Name) && "Expected canonical MDString");
2085 assert(isCanonical(GetterName) && "Expected canonical MDString");
2086 assert(isCanonical(SetterName) && "Expected canonical MDString");
2087 DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName,
2088 SetterName, Attributes, Type));
2089 Metadata *Ops[] = {Name, File, GetterName, SetterName, Type};
2090 DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
2093 DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
2094 Metadata *Scope, Metadata *Entity,
2095 Metadata *File, unsigned Line,
2096 MDString *Name, Metadata *Elements,
2097 StorageType Storage,
2098 bool ShouldCreate) {
2099 assert(isCanonical(Name) && "Expected canonical MDString");
2100 DEFINE_GETIMPL_LOOKUP(DIImportedEntity,
2101 (Tag, Scope, Entity, File, Line, Name, Elements));
2102 Metadata *Ops[] = {Scope, Entity, Name, File, Elements};
2103 DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops);
2106 DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line,
2107 MDString *Name, MDString *Value, StorageType Storage,
2108 bool ShouldCreate) {
2109 assert(isCanonical(Name) && "Expected canonical MDString");
2110 DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value));
2111 Metadata *Ops[] = {Name, Value};
2112 DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops);
2115 DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
2116 unsigned Line, Metadata *File,
2117 Metadata *Elements, StorageType Storage,
2118 bool ShouldCreate) {
2119 DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements));
2120 Metadata *Ops[] = {File, Elements};
2121 DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops);
2124 DIArgList *DIArgList::get(LLVMContext &Context,
2125 ArrayRef<ValueAsMetadata *> Args) {
2126 auto ExistingIt = Context.pImpl->DIArgLists.find_as(DIArgListKeyInfo(Args));
2127 if (ExistingIt != Context.pImpl->DIArgLists.end())
2128 return *ExistingIt;
2129 DIArgList *NewArgList = new DIArgList(Context, Args);
2130 Context.pImpl->DIArgLists.insert(NewArgList);
2131 return NewArgList;
2134 void DIArgList::handleChangedOperand(void *Ref, Metadata *New) {
2135 ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref);
2136 assert((!New || isa<ValueAsMetadata>(New)) &&
2137 "DIArgList must be passed a ValueAsMetadata");
2138 untrack();
2139 // We need to update the set storage once the Args are updated since they
2140 // form the key to the DIArgLists store.
2141 getContext().pImpl->DIArgLists.erase(this);
2142 ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(New);
2143 for (ValueAsMetadata *&VM : Args) {
2144 if (&VM == OldVMPtr) {
2145 if (NewVM)
2146 VM = NewVM;
2147 else
2148 VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType()));
2151 // We've changed the contents of this DIArgList, and the set storage may
2152 // already contain a DIArgList with our new set of args; if it does, then we
2153 // must RAUW this with the existing DIArgList, otherwise we simply insert this
2154 // back into the set storage.
2155 DIArgList *ExistingArgList = getUniqued(getContext().pImpl->DIArgLists, this);
2156 if (ExistingArgList) {
2157 replaceAllUsesWith(ExistingArgList);
2158 // Clear this here so we don't try to untrack in the destructor.
2159 Args.clear();
2160 delete this;
2161 return;
2163 getContext().pImpl->DIArgLists.insert(this);
2164 track();
2166 void DIArgList::track() {
2167 for (ValueAsMetadata *&VAM : Args)
2168 if (VAM)
2169 MetadataTracking::track(&VAM, *VAM, *this);
2171 void DIArgList::untrack() {
2172 for (ValueAsMetadata *&VAM : Args)
2173 if (VAM)
2174 MetadataTracking::untrack(&VAM, *VAM);
2176 void DIArgList::dropAllReferences(bool Untrack) {
2177 if (Untrack)
2178 untrack();
2179 Args.clear();
2180 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);