[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / IR / VFABIDemangler.cpp
blobcdfb9fbfaa084d3b597860f6774426d8dace9fa5
1 //===- VFABIDemangler.cpp - Vector Function ABI demangler -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/IR/VFABIDemangler.h"
10 #include "llvm/ADT/SetVector.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/StringSwitch.h"
13 #include "llvm/IR/Module.h"
14 #include "llvm/Support/Debug.h"
15 #include "llvm/Support/raw_ostream.h"
16 #include <limits>
18 using namespace llvm;
20 #define DEBUG_TYPE "vfabi-demangler"
22 namespace {
23 /// Utilities for the Vector Function ABI name parser.
25 /// Return types for the parser functions.
26 enum class ParseRet {
27 OK, // Found.
28 None, // Not found.
29 Error // Syntax error.
32 /// Extracts the `<isa>` information from the mangled string, and
33 /// sets the `ISA` accordingly. If successful, the <isa> token is removed
34 /// from the input string `MangledName`.
35 static ParseRet tryParseISA(StringRef &MangledName, VFISAKind &ISA) {
36 if (MangledName.empty())
37 return ParseRet::Error;
39 if (MangledName.consume_front(VFABI::_LLVM_)) {
40 ISA = VFISAKind::LLVM;
41 } else {
42 ISA = StringSwitch<VFISAKind>(MangledName.take_front(1))
43 .Case("n", VFISAKind::AdvancedSIMD)
44 .Case("s", VFISAKind::SVE)
45 .Case("b", VFISAKind::SSE)
46 .Case("c", VFISAKind::AVX)
47 .Case("d", VFISAKind::AVX2)
48 .Case("e", VFISAKind::AVX512)
49 .Default(VFISAKind::Unknown);
50 MangledName = MangledName.drop_front(1);
53 return ParseRet::OK;
56 /// Extracts the `<mask>` information from the mangled string, and
57 /// sets `IsMasked` accordingly. If successful, the <mask> token is removed
58 /// from the input string `MangledName`.
59 static ParseRet tryParseMask(StringRef &MangledName, bool &IsMasked) {
60 if (MangledName.consume_front("M")) {
61 IsMasked = true;
62 return ParseRet::OK;
65 if (MangledName.consume_front("N")) {
66 IsMasked = false;
67 return ParseRet::OK;
70 return ParseRet::Error;
73 /// Extract the `<vlen>` information from the mangled string, and
74 /// sets `ParsedVF` accordingly. A `<vlen> == "x"` token is interpreted as a
75 /// scalable vector length and the boolean is set to true, otherwise a nonzero
76 /// unsigned integer will be directly used as a VF. On success, the `<vlen>`
77 /// token is removed from the input string `ParseString`.
78 static ParseRet tryParseVLEN(StringRef &ParseString, VFISAKind ISA,
79 std::pair<unsigned, bool> &ParsedVF) {
80 if (ParseString.consume_front("x")) {
81 // SVE is the only scalable ISA currently supported.
82 if (ISA != VFISAKind::SVE) {
83 LLVM_DEBUG(dbgs() << "Vector function variant declared with scalable VF "
84 << "but ISA is not SVE\n");
85 return ParseRet::Error;
87 // We can't determine the VF of a scalable vector by looking at the vlen
88 // string (just 'x'), so say we successfully parsed it but return a 'true'
89 // for the scalable field with an invalid VF field so that we know to look
90 // up the actual VF based on element types from the parameters or return.
91 ParsedVF = {0, true};
92 return ParseRet::OK;
95 unsigned VF = 0;
96 if (ParseString.consumeInteger(10, VF))
97 return ParseRet::Error;
99 // The token `0` is invalid for VLEN.
100 if (VF == 0)
101 return ParseRet::Error;
103 ParsedVF = {VF, false};
104 return ParseRet::OK;
107 /// The function looks for the following strings at the beginning of
108 /// the input string `ParseString`:
110 /// <token> <number>
112 /// On success, it removes the parsed parameter from `ParseString`,
113 /// sets `PKind` to the correspondent enum value, sets `Pos` to
114 /// <number>, and return success. On a syntax error, it return a
115 /// parsing error. If nothing is parsed, it returns std::nullopt.
117 /// The function expects <token> to be one of "ls", "Rs", "Us" or
118 /// "Ls".
119 static ParseRet tryParseLinearTokenWithRuntimeStep(StringRef &ParseString,
120 VFParamKind &PKind, int &Pos,
121 const StringRef Token) {
122 if (ParseString.consume_front(Token)) {
123 PKind = VFABI::getVFParamKindFromString(Token);
124 if (ParseString.consumeInteger(10, Pos))
125 return ParseRet::Error;
126 return ParseRet::OK;
129 return ParseRet::None;
132 /// The function looks for the following string at the beginning of
133 /// the input string `ParseString`:
135 /// <token> <number>
137 /// <token> is one of "ls", "Rs", "Us" or "Ls".
139 /// On success, it removes the parsed parameter from `ParseString`,
140 /// sets `PKind` to the correspondent enum value, sets `StepOrPos` to
141 /// <number>, and return success. On a syntax error, it return a
142 /// parsing error. If nothing is parsed, it returns std::nullopt.
143 static ParseRet tryParseLinearWithRuntimeStep(StringRef &ParseString,
144 VFParamKind &PKind,
145 int &StepOrPos) {
146 ParseRet Ret;
148 // "ls" <RuntimeStepPos>
149 Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "ls");
150 if (Ret != ParseRet::None)
151 return Ret;
153 // "Rs" <RuntimeStepPos>
154 Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Rs");
155 if (Ret != ParseRet::None)
156 return Ret;
158 // "Ls" <RuntimeStepPos>
159 Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Ls");
160 if (Ret != ParseRet::None)
161 return Ret;
163 // "Us" <RuntimeStepPos>
164 Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Us");
165 if (Ret != ParseRet::None)
166 return Ret;
168 return ParseRet::None;
171 /// The function looks for the following strings at the beginning of
172 /// the input string `ParseString`:
174 /// <token> {"n"} <number>
176 /// On success, it removes the parsed parameter from `ParseString`,
177 /// sets `PKind` to the correspondent enum value, sets `LinearStep` to
178 /// <number>, and return success. On a syntax error, it return a
179 /// parsing error. If nothing is parsed, it returns std::nullopt.
181 /// The function expects <token> to be one of "l", "R", "U" or
182 /// "L".
183 static ParseRet tryParseCompileTimeLinearToken(StringRef &ParseString,
184 VFParamKind &PKind,
185 int &LinearStep,
186 const StringRef Token) {
187 if (ParseString.consume_front(Token)) {
188 PKind = VFABI::getVFParamKindFromString(Token);
189 const bool Negate = ParseString.consume_front("n");
190 if (ParseString.consumeInteger(10, LinearStep))
191 LinearStep = 1;
192 if (Negate)
193 LinearStep *= -1;
194 return ParseRet::OK;
197 return ParseRet::None;
200 /// The function looks for the following strings at the beginning of
201 /// the input string `ParseString`:
203 /// ["l" | "R" | "U" | "L"] {"n"} <number>
205 /// On success, it removes the parsed parameter from `ParseString`,
206 /// sets `PKind` to the correspondent enum value, sets `LinearStep` to
207 /// <number>, and return success. On a syntax error, it return a
208 /// parsing error. If nothing is parsed, it returns std::nullopt.
209 static ParseRet tryParseLinearWithCompileTimeStep(StringRef &ParseString,
210 VFParamKind &PKind,
211 int &StepOrPos) {
212 // "l" {"n"} <CompileTimeStep>
213 if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "l") ==
214 ParseRet::OK)
215 return ParseRet::OK;
217 // "R" {"n"} <CompileTimeStep>
218 if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "R") ==
219 ParseRet::OK)
220 return ParseRet::OK;
222 // "L" {"n"} <CompileTimeStep>
223 if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "L") ==
224 ParseRet::OK)
225 return ParseRet::OK;
227 // "U" {"n"} <CompileTimeStep>
228 if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "U") ==
229 ParseRet::OK)
230 return ParseRet::OK;
232 return ParseRet::None;
235 /// Looks into the <parameters> part of the mangled name in search
236 /// for valid paramaters at the beginning of the string
237 /// `ParseString`.
239 /// On success, it removes the parsed parameter from `ParseString`,
240 /// sets `PKind` to the correspondent enum value, sets `StepOrPos`
241 /// accordingly, and return success. On a syntax error, it return a
242 /// parsing error. If nothing is parsed, it returns std::nullopt.
243 static ParseRet tryParseParameter(StringRef &ParseString, VFParamKind &PKind,
244 int &StepOrPos) {
245 if (ParseString.consume_front("v")) {
246 PKind = VFParamKind::Vector;
247 StepOrPos = 0;
248 return ParseRet::OK;
251 if (ParseString.consume_front("u")) {
252 PKind = VFParamKind::OMP_Uniform;
253 StepOrPos = 0;
254 return ParseRet::OK;
257 const ParseRet HasLinearRuntime =
258 tryParseLinearWithRuntimeStep(ParseString, PKind, StepOrPos);
259 if (HasLinearRuntime != ParseRet::None)
260 return HasLinearRuntime;
262 const ParseRet HasLinearCompileTime =
263 tryParseLinearWithCompileTimeStep(ParseString, PKind, StepOrPos);
264 if (HasLinearCompileTime != ParseRet::None)
265 return HasLinearCompileTime;
267 return ParseRet::None;
270 /// Looks into the <parameters> part of the mangled name in search
271 /// of a valid 'aligned' clause. The function should be invoked
272 /// after parsing a parameter via `tryParseParameter`.
274 /// On success, it removes the parsed parameter from `ParseString`,
275 /// sets `PKind` to the correspondent enum value, sets `StepOrPos`
276 /// accordingly, and return success. On a syntax error, it return a
277 /// parsing error. If nothing is parsed, it returns std::nullopt.
278 static ParseRet tryParseAlign(StringRef &ParseString, Align &Alignment) {
279 uint64_t Val;
280 // "a" <number>
281 if (ParseString.consume_front("a")) {
282 if (ParseString.consumeInteger(10, Val))
283 return ParseRet::Error;
285 if (!isPowerOf2_64(Val))
286 return ParseRet::Error;
288 Alignment = Align(Val);
290 return ParseRet::OK;
293 return ParseRet::None;
296 // Returns the 'natural' VF for a given scalar element type, based on the
297 // current architecture.
299 // For SVE (currently the only scalable architecture with a defined name
300 // mangling), we assume a minimum vector size of 128b and return a VF based on
301 // the number of elements of the given type which would fit in such a vector.
302 static std::optional<ElementCount> getElementCountForTy(const VFISAKind ISA,
303 const Type *Ty) {
304 // Only AArch64 SVE is supported at present.
305 assert(ISA == VFISAKind::SVE &&
306 "Scalable VF decoding only implemented for SVE\n");
308 if (Ty->isIntegerTy(64) || Ty->isDoubleTy() || Ty->isPointerTy())
309 return ElementCount::getScalable(2);
310 if (Ty->isIntegerTy(32) || Ty->isFloatTy())
311 return ElementCount::getScalable(4);
312 if (Ty->isIntegerTy(16) || Ty->is16bitFPTy())
313 return ElementCount::getScalable(8);
314 if (Ty->isIntegerTy(8))
315 return ElementCount::getScalable(16);
317 return std::nullopt;
320 // Extract the VectorizationFactor from a given function signature, based
321 // on the widest scalar element types that will become vector parameters.
322 static std::optional<ElementCount>
323 getScalableECFromSignature(const FunctionType *Signature, const VFISAKind ISA,
324 const SmallVectorImpl<VFParameter> &Params) {
325 // Start with a very wide EC and drop when we find smaller ECs based on type.
326 ElementCount MinEC =
327 ElementCount::getScalable(std::numeric_limits<unsigned int>::max());
328 for (auto &Param : Params) {
329 // Only vector parameters are used when determining the VF; uniform or
330 // linear are left as scalars, so do not affect VF.
331 if (Param.ParamKind == VFParamKind::Vector) {
332 Type *PTy = Signature->getParamType(Param.ParamPos);
334 std::optional<ElementCount> EC = getElementCountForTy(ISA, PTy);
335 // If we have an unknown scalar element type we can't find a reasonable
336 // VF.
337 if (!EC)
338 return std::nullopt;
340 // Find the smallest VF, based on the widest scalar type.
341 if (ElementCount::isKnownLT(*EC, MinEC))
342 MinEC = *EC;
346 // Also check the return type if not void.
347 Type *RetTy = Signature->getReturnType();
348 if (!RetTy->isVoidTy()) {
349 std::optional<ElementCount> ReturnEC = getElementCountForTy(ISA, RetTy);
350 // If we have an unknown scalar element type we can't find a reasonable VF.
351 if (!ReturnEC)
352 return std::nullopt;
353 if (ElementCount::isKnownLT(*ReturnEC, MinEC))
354 MinEC = *ReturnEC;
357 // The SVE Vector function call ABI bases the VF on the widest element types
358 // present, and vector arguments containing types of that width are always
359 // considered to be packed. Arguments with narrower elements are considered
360 // to be unpacked.
361 if (MinEC.getKnownMinValue() < std::numeric_limits<unsigned int>::max())
362 return MinEC;
364 return std::nullopt;
366 } // namespace
368 // Format of the ABI name:
369 // _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)]
370 std::optional<VFInfo> VFABI::tryDemangleForVFABI(StringRef MangledName,
371 const FunctionType *FTy) {
372 const StringRef OriginalName = MangledName;
373 // Assume there is no custom name <redirection>, and therefore the
374 // vector name consists of
375 // _ZGV<isa><mask><vlen><parameters>_<scalarname>.
376 StringRef VectorName = MangledName;
378 // Parse the fixed size part of the mangled name
379 if (!MangledName.consume_front("_ZGV"))
380 return std::nullopt;
382 // Extract ISA. An unknow ISA is also supported, so we accept all
383 // values.
384 VFISAKind ISA;
385 if (tryParseISA(MangledName, ISA) != ParseRet::OK)
386 return std::nullopt;
388 // Extract <mask>.
389 bool IsMasked;
390 if (tryParseMask(MangledName, IsMasked) != ParseRet::OK)
391 return std::nullopt;
393 // Parse the variable size, starting from <vlen>.
394 std::pair<unsigned, bool> ParsedVF;
395 if (tryParseVLEN(MangledName, ISA, ParsedVF) != ParseRet::OK)
396 return std::nullopt;
398 // Parse the <parameters>.
399 ParseRet ParamFound;
400 SmallVector<VFParameter, 8> Parameters;
401 do {
402 const unsigned ParameterPos = Parameters.size();
403 VFParamKind PKind;
404 int StepOrPos;
405 ParamFound = tryParseParameter(MangledName, PKind, StepOrPos);
407 // Bail off if there is a parsing error in the parsing of the parameter.
408 if (ParamFound == ParseRet::Error)
409 return std::nullopt;
411 if (ParamFound == ParseRet::OK) {
412 Align Alignment;
413 // Look for the alignment token "a <number>".
414 const ParseRet AlignFound = tryParseAlign(MangledName, Alignment);
415 // Bail off if there is a syntax error in the align token.
416 if (AlignFound == ParseRet::Error)
417 return std::nullopt;
419 // Add the parameter.
420 Parameters.push_back({ParameterPos, PKind, StepOrPos, Alignment});
422 } while (ParamFound == ParseRet::OK);
424 // A valid MangledName must have at least one valid entry in the
425 // <parameters>.
426 if (Parameters.empty())
427 return std::nullopt;
429 // If the number of arguments of the scalar function does not match the
430 // vector variant we have just demangled then reject the mapping.
431 if (Parameters.size() != FTy->getNumParams())
432 return std::nullopt;
434 // Figure out the number of lanes in vectors for this function variant. This
435 // is easy for fixed length, as the vlen encoding just gives us the value
436 // directly. However, if the vlen mangling indicated that this function
437 // variant expects scalable vectors we need to work it out based on the
438 // demangled parameter types and the scalar function signature.
439 std::optional<ElementCount> EC;
440 if (ParsedVF.second) {
441 EC = getScalableECFromSignature(FTy, ISA, Parameters);
442 if (!EC)
443 return std::nullopt;
444 } else
445 EC = ElementCount::getFixed(ParsedVF.first);
447 // Check for the <scalarname> and the optional <redirection>, which
448 // are separated from the prefix with "_"
449 if (!MangledName.consume_front("_"))
450 return std::nullopt;
452 // The rest of the string must be in the format:
453 // <scalarname>[(<redirection>)]
454 const StringRef ScalarName =
455 MangledName.take_while([](char In) { return In != '('; });
457 if (ScalarName.empty())
458 return std::nullopt;
460 // Reduce MangledName to [(<redirection>)].
461 MangledName = MangledName.ltrim(ScalarName);
462 // Find the optional custom name redirection.
463 if (MangledName.consume_front("(")) {
464 if (!MangledName.consume_back(")"))
465 return std::nullopt;
466 // Update the vector variant with the one specified by the user.
467 VectorName = MangledName;
468 // If the vector name is missing, bail out.
469 if (VectorName.empty())
470 return std::nullopt;
473 // LLVM internal mapping via the TargetLibraryInfo (TLI) must be
474 // redirected to an existing name.
475 if (ISA == VFISAKind::LLVM && VectorName == OriginalName)
476 return std::nullopt;
478 // When <mask> is "M", we need to add a parameter that is used as
479 // global predicate for the function.
480 if (IsMasked) {
481 const unsigned Pos = Parameters.size();
482 Parameters.push_back({Pos, VFParamKind::GlobalPredicate});
485 // Asserts for parameters of type `VFParamKind::GlobalPredicate`, as
486 // prescribed by the Vector Function ABI specifications supported by
487 // this parser:
488 // 1. Uniqueness.
489 // 2. Must be the last in the parameter list.
490 const auto NGlobalPreds =
491 llvm::count_if(Parameters, [](const VFParameter &PK) {
492 return PK.ParamKind == VFParamKind::GlobalPredicate;
494 assert(NGlobalPreds < 2 && "Cannot have more than one global predicate.");
495 if (NGlobalPreds)
496 assert(Parameters.back().ParamKind == VFParamKind::GlobalPredicate &&
497 "The global predicate must be the last parameter");
499 const VFShape Shape({*EC, Parameters});
500 return VFInfo({Shape, std::string(ScalarName), std::string(VectorName), ISA});
503 VFParamKind VFABI::getVFParamKindFromString(const StringRef Token) {
504 const VFParamKind ParamKind = StringSwitch<VFParamKind>(Token)
505 .Case("v", VFParamKind::Vector)
506 .Case("l", VFParamKind::OMP_Linear)
507 .Case("R", VFParamKind::OMP_LinearRef)
508 .Case("L", VFParamKind::OMP_LinearVal)
509 .Case("U", VFParamKind::OMP_LinearUVal)
510 .Case("ls", VFParamKind::OMP_LinearPos)
511 .Case("Ls", VFParamKind::OMP_LinearValPos)
512 .Case("Rs", VFParamKind::OMP_LinearRefPos)
513 .Case("Us", VFParamKind::OMP_LinearUValPos)
514 .Case("u", VFParamKind::OMP_Uniform)
515 .Default(VFParamKind::Unknown);
517 if (ParamKind != VFParamKind::Unknown)
518 return ParamKind;
520 // This function should never be invoked with an invalid input.
521 llvm_unreachable("This fuction should be invoken only on parameters"
522 " that have a textual representation in the mangled name"
523 " of the Vector Function ABI");
526 void VFABI::getVectorVariantNames(
527 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
528 const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString();
529 if (S.empty())
530 return;
532 SmallVector<StringRef, 8> ListAttr;
533 S.split(ListAttr, ",");
535 for (const auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
536 std::optional<VFInfo> Info =
537 VFABI::tryDemangleForVFABI(S, CI.getFunctionType());
538 if (Info && CI.getModule()->getFunction(Info->VectorName)) {
539 LLVM_DEBUG(dbgs() << "VFABI: Adding mapping '" << S << "' for " << CI
540 << "\n");
541 VariantMappings.push_back(std::string(S));
542 } else
543 LLVM_DEBUG(dbgs() << "VFABI: Invalid mapping '" << S << "'\n");
547 FunctionType *VFABI::createFunctionType(const VFInfo &Info,
548 const FunctionType *ScalarFTy) {
549 // Create vector parameter types
550 SmallVector<Type *, 8> VecTypes;
551 ElementCount VF = Info.Shape.VF;
552 int ScalarParamIndex = 0;
553 for (auto VFParam : Info.Shape.Parameters) {
554 if (VFParam.ParamKind == VFParamKind::GlobalPredicate) {
555 VectorType *MaskTy =
556 VectorType::get(Type::getInt1Ty(ScalarFTy->getContext()), VF);
557 VecTypes.push_back(MaskTy);
558 continue;
561 Type *OperandTy = ScalarFTy->getParamType(ScalarParamIndex++);
562 if (VFParam.ParamKind == VFParamKind::Vector)
563 OperandTy = VectorType::get(OperandTy, VF);
564 VecTypes.push_back(OperandTy);
567 auto *RetTy = ScalarFTy->getReturnType();
568 if (!RetTy->isVoidTy())
569 RetTy = VectorType::get(RetTy, VF);
570 return FunctionType::get(RetTy, VecTypes, false);
573 void VFABI::setVectorVariantNames(CallInst *CI,
574 ArrayRef<std::string> VariantMappings) {
575 if (VariantMappings.empty())
576 return;
578 SmallString<256> Buffer;
579 llvm::raw_svector_ostream Out(Buffer);
580 for (const std::string &VariantMapping : VariantMappings)
581 Out << VariantMapping << ",";
582 // Get rid of the trailing ','.
583 assert(!Buffer.str().empty() && "Must have at least one char.");
584 Buffer.pop_back();
586 Module *M = CI->getModule();
587 #ifndef NDEBUG
588 for (const std::string &VariantMapping : VariantMappings) {
589 LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << VariantMapping << "'\n");
590 std::optional<VFInfo> VI =
591 VFABI::tryDemangleForVFABI(VariantMapping, CI->getFunctionType());
592 assert(VI && "Cannot add an invalid VFABI name.");
593 assert(M->getNamedValue(VI->VectorName) &&
594 "Cannot add variant to attribute: "
595 "vector function declaration is missing.");
597 #endif
598 CI->addFnAttr(
599 Attribute::get(M->getContext(), MappingsAttrName, Buffer.str()));
602 bool VFShape::hasValidParameterList() const {
603 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
604 ++Pos) {
605 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
607 switch (Parameters[Pos].ParamKind) {
608 default: // Nothing to check.
609 break;
610 case VFParamKind::OMP_Linear:
611 case VFParamKind::OMP_LinearRef:
612 case VFParamKind::OMP_LinearVal:
613 case VFParamKind::OMP_LinearUVal:
614 // Compile time linear steps must be non-zero.
615 if (Parameters[Pos].LinearStepOrPos == 0)
616 return false;
617 break;
618 case VFParamKind::OMP_LinearPos:
619 case VFParamKind::OMP_LinearRefPos:
620 case VFParamKind::OMP_LinearValPos:
621 case VFParamKind::OMP_LinearUValPos:
622 // The runtime linear step must be referring to some other
623 // parameters in the signature.
624 if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
625 return false;
626 // The linear step parameter must be marked as uniform.
627 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
628 VFParamKind::OMP_Uniform)
629 return false;
630 // The linear step parameter can't point at itself.
631 if (Parameters[Pos].LinearStepOrPos == int(Pos))
632 return false;
633 break;
634 case VFParamKind::GlobalPredicate:
635 // The global predicate must be the unique. Can be placed anywhere in the
636 // signature.
637 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
638 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
639 return false;
640 break;
643 return true;