1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements ELF object file writer information.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/ADT/iterator.h"
21 #include "llvm/BinaryFormat/ELF.h"
22 #include "llvm/MC/MCAsmBackend.h"
23 #include "llvm/MC/MCAsmInfo.h"
24 #include "llvm/MC/MCAsmLayout.h"
25 #include "llvm/MC/MCAssembler.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCELFObjectWriter.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCFixup.h"
30 #include "llvm/MC/MCFixupKindInfo.h"
31 #include "llvm/MC/MCFragment.h"
32 #include "llvm/MC/MCObjectWriter.h"
33 #include "llvm/MC/MCSection.h"
34 #include "llvm/MC/MCSectionELF.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/MC/MCSymbolELF.h"
37 #include "llvm/MC/MCTargetOptions.h"
38 #include "llvm/MC/MCValue.h"
39 #include "llvm/MC/StringTableBuilder.h"
40 #include "llvm/Support/Alignment.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compression.h"
43 #include "llvm/Support/Endian.h"
44 #include "llvm/Support/EndianStream.h"
45 #include "llvm/Support/Error.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/LEB128.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/SMLoc.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/TargetParser/Host.h"
65 #define DEBUG_TYPE "reloc-info"
69 using SectionIndexMapTy
= DenseMap
<const MCSectionELF
*, uint32_t>;
71 class ELFObjectWriter
;
74 bool isDwoSection(const MCSectionELF
&Sec
) {
75 return Sec
.getName().ends_with(".dwo");
78 class SymbolTableWriter
{
82 // indexes we are going to write to .symtab_shndx.
83 std::vector
<uint32_t> ShndxIndexes
;
85 // The numbel of symbols written so far.
88 void createSymtabShndx();
90 template <typename T
> void write(T Value
);
93 SymbolTableWriter(ELFWriter
&EWriter
, bool Is64Bit
);
95 void writeSymbol(uint32_t name
, uint8_t info
, uint64_t value
, uint64_t size
,
96 uint8_t other
, uint32_t shndx
, bool Reserved
);
98 ArrayRef
<uint32_t> getShndxIndexes() const { return ShndxIndexes
; }
102 ELFObjectWriter
&OWriter
;
103 support::endian::Writer W
;
111 static uint64_t SymbolValue(const MCSymbol
&Sym
, const MCAsmLayout
&Layout
);
112 static bool isInSymtab(const MCAsmLayout
&Layout
, const MCSymbolELF
&Symbol
,
113 bool Used
, bool Renamed
);
115 /// Helper struct for containing some precomputed information on symbols.
116 struct ELFSymbolData
{
117 const MCSymbolELF
*Symbol
;
119 uint32_t SectionIndex
;
124 /// @name Symbol Table Data
127 StringTableBuilder StrTabBuilder
{StringTableBuilder::ELF
};
131 // This holds the symbol table index of the last local symbol.
132 unsigned LastLocalSymbolIndex
= ~0u;
133 // This holds the .strtab section index.
134 unsigned StringTableIndex
= ~0u;
135 // This holds the .symtab section index.
136 unsigned SymbolTableIndex
= ~0u;
138 // Sections in the order they are to be output in the section table.
139 std::vector
<const MCSectionELF
*> SectionTable
;
140 unsigned addToSectionTable(const MCSectionELF
*Sec
);
142 // TargetObjectWriter wrappers.
143 bool is64Bit() const;
144 bool usesRela(const MCSectionELF
&Sec
) const;
146 uint64_t align(Align Alignment
);
148 bool maybeWriteCompression(uint32_t ChType
, uint64_t Size
,
149 SmallVectorImpl
<uint8_t> &CompressedContents
,
153 ELFWriter(ELFObjectWriter
&OWriter
, raw_pwrite_stream
&OS
,
154 bool IsLittleEndian
, DwoMode Mode
)
155 : OWriter(OWriter
), W(OS
, IsLittleEndian
? llvm::endianness::little
156 : llvm::endianness::big
),
159 void WriteWord(uint64_t Word
) {
161 W
.write
<uint64_t>(Word
);
163 W
.write
<uint32_t>(Word
);
166 template <typename T
> void write(T Val
) {
170 void writeHeader(const MCAssembler
&Asm
);
172 void writeSymbol(SymbolTableWriter
&Writer
, uint32_t StringIndex
,
173 ELFSymbolData
&MSD
, const MCAsmLayout
&Layout
);
175 // Start and end offset of each section
176 using SectionOffsetsTy
=
177 std::map
<const MCSectionELF
*, std::pair
<uint64_t, uint64_t>>;
179 // Map from a signature symbol to the group section index
180 using RevGroupMapTy
= DenseMap
<const MCSymbol
*, unsigned>;
182 /// Compute the symbol table data
184 /// \param Asm - The assembler.
185 /// \param SectionIndexMap - Maps a section to its index.
186 /// \param RevGroupMap - Maps a signature symbol to the group section.
187 void computeSymbolTable(MCAssembler
&Asm
, const MCAsmLayout
&Layout
,
188 const SectionIndexMapTy
&SectionIndexMap
,
189 const RevGroupMapTy
&RevGroupMap
,
190 SectionOffsetsTy
&SectionOffsets
);
192 void writeAddrsigSection();
194 MCSectionELF
*createRelocationSection(MCContext
&Ctx
,
195 const MCSectionELF
&Sec
);
197 void createMemtagRelocs(MCAssembler
&Asm
);
199 void writeSectionHeader(const MCAsmLayout
&Layout
,
200 const SectionIndexMapTy
&SectionIndexMap
,
201 const SectionOffsetsTy
&SectionOffsets
);
203 void writeSectionData(const MCAssembler
&Asm
, MCSection
&Sec
,
204 const MCAsmLayout
&Layout
);
206 void WriteSecHdrEntry(uint32_t Name
, uint32_t Type
, uint64_t Flags
,
207 uint64_t Address
, uint64_t Offset
, uint64_t Size
,
208 uint32_t Link
, uint32_t Info
, MaybeAlign Alignment
,
211 void writeRelocations(const MCAssembler
&Asm
, const MCSectionELF
&Sec
);
213 uint64_t writeObject(MCAssembler
&Asm
, const MCAsmLayout
&Layout
);
214 void writeSection(const SectionIndexMapTy
&SectionIndexMap
,
215 uint32_t GroupSymbolIndex
, uint64_t Offset
, uint64_t Size
,
216 const MCSectionELF
&Section
);
219 class ELFObjectWriter
: public MCObjectWriter
{
220 /// The target specific ELF writer instance.
221 std::unique_ptr
<MCELFObjectTargetWriter
> TargetObjectWriter
;
223 DenseMap
<const MCSectionELF
*, std::vector
<ELFRelocationEntry
>> Relocations
;
225 DenseMap
<const MCSymbolELF
*, const MCSymbolELF
*> Renames
;
227 bool SeenGnuAbi
= false;
229 std::optional
<uint8_t> OverrideABIVersion
;
231 bool hasRelocationAddend() const;
233 bool shouldRelocateWithSymbol(const MCAssembler
&Asm
, const MCValue
&Val
,
234 const MCSymbolELF
*Sym
, uint64_t C
,
235 unsigned Type
) const;
238 ELFObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
)
239 : TargetObjectWriter(std::move(MOTW
)) {}
241 void reset() override
{
243 OverrideABIVersion
.reset();
246 MCObjectWriter::reset();
249 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler
&Asm
,
250 const MCSymbol
&SymA
,
251 const MCFragment
&FB
, bool InSet
,
252 bool IsPCRel
) const override
;
254 virtual bool checkRelocation(MCContext
&Ctx
, SMLoc Loc
,
255 const MCSectionELF
*From
,
256 const MCSectionELF
*To
) {
260 void recordRelocation(MCAssembler
&Asm
, const MCAsmLayout
&Layout
,
261 const MCFragment
*Fragment
, const MCFixup
&Fixup
,
262 MCValue Target
, uint64_t &FixedValue
) override
;
264 void executePostLayoutBinding(MCAssembler
&Asm
,
265 const MCAsmLayout
&Layout
) override
;
267 void markGnuAbi() override
{ SeenGnuAbi
= true; }
268 bool seenGnuAbi() const { return SeenGnuAbi
; }
270 bool seenOverrideABIVersion() const { return OverrideABIVersion
.has_value(); }
271 uint8_t getOverrideABIVersion() const { return OverrideABIVersion
.value(); }
272 void setOverrideABIVersion(uint8_t V
) override
{ OverrideABIVersion
= V
; }
274 friend struct ELFWriter
;
277 class ELFSingleObjectWriter
: public ELFObjectWriter
{
278 raw_pwrite_stream
&OS
;
282 ELFSingleObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
,
283 raw_pwrite_stream
&OS
, bool IsLittleEndian
)
284 : ELFObjectWriter(std::move(MOTW
)), OS(OS
),
285 IsLittleEndian(IsLittleEndian
) {}
287 uint64_t writeObject(MCAssembler
&Asm
, const MCAsmLayout
&Layout
) override
{
288 return ELFWriter(*this, OS
, IsLittleEndian
, ELFWriter::AllSections
)
289 .writeObject(Asm
, Layout
);
292 friend struct ELFWriter
;
295 class ELFDwoObjectWriter
: public ELFObjectWriter
{
296 raw_pwrite_stream
&OS
, &DwoOS
;
300 ELFDwoObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
,
301 raw_pwrite_stream
&OS
, raw_pwrite_stream
&DwoOS
,
303 : ELFObjectWriter(std::move(MOTW
)), OS(OS
), DwoOS(DwoOS
),
304 IsLittleEndian(IsLittleEndian
) {}
306 bool checkRelocation(MCContext
&Ctx
, SMLoc Loc
, const MCSectionELF
*From
,
307 const MCSectionELF
*To
) override
{
308 if (isDwoSection(*From
)) {
309 Ctx
.reportError(Loc
, "A dwo section may not contain relocations");
312 if (To
&& isDwoSection(*To
)) {
313 Ctx
.reportError(Loc
, "A relocation may not refer to a dwo section");
319 uint64_t writeObject(MCAssembler
&Asm
, const MCAsmLayout
&Layout
) override
{
320 uint64_t Size
= ELFWriter(*this, OS
, IsLittleEndian
, ELFWriter::NonDwoOnly
)
321 .writeObject(Asm
, Layout
);
322 Size
+= ELFWriter(*this, DwoOS
, IsLittleEndian
, ELFWriter::DwoOnly
)
323 .writeObject(Asm
, Layout
);
328 } // end anonymous namespace
330 uint64_t ELFWriter::align(Align Alignment
) {
331 uint64_t Offset
= W
.OS
.tell();
332 uint64_t NewOffset
= alignTo(Offset
, Alignment
);
333 W
.OS
.write_zeros(NewOffset
- Offset
);
337 unsigned ELFWriter::addToSectionTable(const MCSectionELF
*Sec
) {
338 SectionTable
.push_back(Sec
);
339 StrTabBuilder
.add(Sec
->getName());
340 return SectionTable
.size();
343 void SymbolTableWriter::createSymtabShndx() {
344 if (!ShndxIndexes
.empty())
347 ShndxIndexes
.resize(NumWritten
);
350 template <typename T
> void SymbolTableWriter::write(T Value
) {
351 EWriter
.write(Value
);
354 SymbolTableWriter::SymbolTableWriter(ELFWriter
&EWriter
, bool Is64Bit
)
355 : EWriter(EWriter
), Is64Bit(Is64Bit
), NumWritten(0) {}
357 void SymbolTableWriter::writeSymbol(uint32_t name
, uint8_t info
, uint64_t value
,
358 uint64_t size
, uint8_t other
,
359 uint32_t shndx
, bool Reserved
) {
360 bool LargeIndex
= shndx
>= ELF::SHN_LORESERVE
&& !Reserved
;
365 if (!ShndxIndexes
.empty()) {
367 ShndxIndexes
.push_back(shndx
);
369 ShndxIndexes
.push_back(0);
372 uint16_t Index
= LargeIndex
? uint16_t(ELF::SHN_XINDEX
) : shndx
;
375 write(name
); // st_name
376 write(info
); // st_info
377 write(other
); // st_other
378 write(Index
); // st_shndx
379 write(value
); // st_value
380 write(size
); // st_size
382 write(name
); // st_name
383 write(uint32_t(value
)); // st_value
384 write(uint32_t(size
)); // st_size
385 write(info
); // st_info
386 write(other
); // st_other
387 write(Index
); // st_shndx
393 bool ELFWriter::is64Bit() const {
394 return OWriter
.TargetObjectWriter
->is64Bit();
397 bool ELFWriter::usesRela(const MCSectionELF
&Sec
) const {
398 return OWriter
.hasRelocationAddend() &&
399 Sec
.getType() != ELF::SHT_LLVM_CALL_GRAPH_PROFILE
;
402 // Emit the ELF header.
403 void ELFWriter::writeHeader(const MCAssembler
&Asm
) {
409 // emitWord method behaves differently for ELF32 and ELF64, writing
410 // 4 bytes in the former and 8 in the latter.
412 W
.OS
<< ELF::ElfMagic
; // e_ident[EI_MAG0] to e_ident[EI_MAG3]
414 W
.OS
<< char(is64Bit() ? ELF::ELFCLASS64
: ELF::ELFCLASS32
); // e_ident[EI_CLASS]
417 W
.OS
<< char(W
.Endian
== llvm::endianness::little
? ELF::ELFDATA2LSB
420 W
.OS
<< char(ELF::EV_CURRENT
); // e_ident[EI_VERSION]
422 uint8_t OSABI
= OWriter
.TargetObjectWriter
->getOSABI();
423 W
.OS
<< char(OSABI
== ELF::ELFOSABI_NONE
&& OWriter
.seenGnuAbi()
424 ? int(ELF::ELFOSABI_GNU
)
426 // e_ident[EI_ABIVERSION]
427 W
.OS
<< char(OWriter
.seenOverrideABIVersion()
428 ? OWriter
.getOverrideABIVersion()
429 : OWriter
.TargetObjectWriter
->getABIVersion());
431 W
.OS
.write_zeros(ELF::EI_NIDENT
- ELF::EI_PAD
);
433 W
.write
<uint16_t>(ELF::ET_REL
); // e_type
435 W
.write
<uint16_t>(OWriter
.TargetObjectWriter
->getEMachine()); // e_machine = target
437 W
.write
<uint32_t>(ELF::EV_CURRENT
); // e_version
438 WriteWord(0); // e_entry, no entry point in .o file
439 WriteWord(0); // e_phoff, no program header for .o
440 WriteWord(0); // e_shoff = sec hdr table off in bytes
442 // e_flags = whatever the target wants
443 W
.write
<uint32_t>(Asm
.getELFHeaderEFlags());
445 // e_ehsize = ELF header size
446 W
.write
<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr
)
447 : sizeof(ELF::Elf32_Ehdr
));
449 W
.write
<uint16_t>(0); // e_phentsize = prog header entry size
450 W
.write
<uint16_t>(0); // e_phnum = # prog header entries = 0
452 // e_shentsize = Section header entry size
453 W
.write
<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr
)
454 : sizeof(ELF::Elf32_Shdr
));
456 // e_shnum = # of section header ents
457 W
.write
<uint16_t>(0);
459 // e_shstrndx = Section # of '.strtab'
460 assert(StringTableIndex
< ELF::SHN_LORESERVE
);
461 W
.write
<uint16_t>(StringTableIndex
);
464 uint64_t ELFWriter::SymbolValue(const MCSymbol
&Sym
,
465 const MCAsmLayout
&Layout
) {
467 return Sym
.getCommonAlignment()->value();
470 if (!Layout
.getSymbolOffset(Sym
, Res
))
473 if (Layout
.getAssembler().isThumbFunc(&Sym
))
479 static uint8_t mergeTypeForSet(uint8_t origType
, uint8_t newType
) {
480 uint8_t Type
= newType
;
482 // Propagation rules:
483 // IFUNC > FUNC > OBJECT > NOTYPE
484 // TLS_OBJECT > OBJECT > NOTYPE
486 // dont let the new type degrade the old type
490 case ELF::STT_GNU_IFUNC
:
491 if (Type
== ELF::STT_FUNC
|| Type
== ELF::STT_OBJECT
||
492 Type
== ELF::STT_NOTYPE
|| Type
== ELF::STT_TLS
)
493 Type
= ELF::STT_GNU_IFUNC
;
496 if (Type
== ELF::STT_OBJECT
|| Type
== ELF::STT_NOTYPE
||
497 Type
== ELF::STT_TLS
)
498 Type
= ELF::STT_FUNC
;
500 case ELF::STT_OBJECT
:
501 if (Type
== ELF::STT_NOTYPE
)
502 Type
= ELF::STT_OBJECT
;
505 if (Type
== ELF::STT_OBJECT
|| Type
== ELF::STT_NOTYPE
||
506 Type
== ELF::STT_GNU_IFUNC
|| Type
== ELF::STT_FUNC
)
514 static bool isIFunc(const MCSymbolELF
*Symbol
) {
515 while (Symbol
->getType() != ELF::STT_GNU_IFUNC
) {
516 const MCSymbolRefExpr
*Value
;
517 if (!Symbol
->isVariable() ||
518 !(Value
= dyn_cast
<MCSymbolRefExpr
>(Symbol
->getVariableValue())) ||
519 Value
->getKind() != MCSymbolRefExpr::VK_None
||
520 mergeTypeForSet(Symbol
->getType(), ELF::STT_GNU_IFUNC
) != ELF::STT_GNU_IFUNC
)
522 Symbol
= &cast
<MCSymbolELF
>(Value
->getSymbol());
527 void ELFWriter::writeSymbol(SymbolTableWriter
&Writer
, uint32_t StringIndex
,
528 ELFSymbolData
&MSD
, const MCAsmLayout
&Layout
) {
529 const auto &Symbol
= cast
<MCSymbolELF
>(*MSD
.Symbol
);
530 const MCSymbolELF
*Base
=
531 cast_or_null
<MCSymbolELF
>(Layout
.getBaseSymbol(Symbol
));
533 // This has to be in sync with when computeSymbolTable uses SHN_ABS or
535 bool IsReserved
= !Base
|| Symbol
.isCommon();
537 // Binding and Type share the same byte as upper and lower nibbles
538 uint8_t Binding
= Symbol
.getBinding();
539 uint8_t Type
= Symbol
.getType();
540 if (isIFunc(&Symbol
))
541 Type
= ELF::STT_GNU_IFUNC
;
543 Type
= mergeTypeForSet(Type
, Base
->getType());
545 uint8_t Info
= (Binding
<< 4) | Type
;
547 // Other and Visibility share the same byte with Visibility using the lower
549 uint8_t Visibility
= Symbol
.getVisibility();
550 uint8_t Other
= Symbol
.getOther() | Visibility
;
552 uint64_t Value
= SymbolValue(*MSD
.Symbol
, Layout
);
555 const MCExpr
*ESize
= MSD
.Symbol
->getSize();
556 if (!ESize
&& Base
) {
557 // For expressions like .set y, x+1, if y's size is unset, inherit from x.
558 ESize
= Base
->getSize();
560 // For `.size x, 2; y = x; .size y, 1; z = y; z1 = z; .symver y, y@v1`, z,
561 // z1, and y@v1's st_size equals y's. However, `Base` is `x` which will give
562 // us 2. Follow the MCSymbolRefExpr assignment chain, which covers most
563 // needs. MCBinaryExpr is not handled.
564 const MCSymbolELF
*Sym
= &Symbol
;
565 while (Sym
->isVariable()) {
567 dyn_cast
<MCSymbolRefExpr
>(Sym
->getVariableValue(false))) {
568 Sym
= cast
<MCSymbolELF
>(&Expr
->getSymbol());
571 ESize
= Sym
->getSize();
579 if (!ESize
->evaluateKnownAbsolute(Res
, Layout
))
580 report_fatal_error("Size expression must be absolute.");
584 // Write out the symbol table entry
585 Writer
.writeSymbol(StringIndex
, Info
, Value
, Size
, Other
, MSD
.SectionIndex
,
589 bool ELFWriter::isInSymtab(const MCAsmLayout
&Layout
, const MCSymbolELF
&Symbol
,
590 bool Used
, bool Renamed
) {
591 if (Symbol
.isVariable()) {
592 const MCExpr
*Expr
= Symbol
.getVariableValue();
593 // Target Expressions that are always inlined do not appear in the symtab
594 if (const auto *T
= dyn_cast
<MCTargetExpr
>(Expr
))
595 if (T
->inlineAssignedExpr())
597 if (const MCSymbolRefExpr
*Ref
= dyn_cast
<MCSymbolRefExpr
>(Expr
)) {
598 if (Ref
->getKind() == MCSymbolRefExpr::VK_WEAKREF
)
609 if (Symbol
.isVariable() && Symbol
.isUndefined()) {
610 // FIXME: this is here just to diagnose the case of a var = commmon_sym.
611 Layout
.getBaseSymbol(Symbol
);
615 if (Symbol
.isTemporary())
618 if (Symbol
.getType() == ELF::STT_SECTION
)
624 void ELFWriter::createMemtagRelocs(MCAssembler
&Asm
) {
625 MCSectionELF
*MemtagRelocs
= nullptr;
626 for (const MCSymbol
&Sym
: Asm
.symbols()) {
627 const auto &SymE
= cast
<MCSymbolELF
>(Sym
);
628 if (!SymE
.isMemtag())
630 if (MemtagRelocs
== nullptr) {
631 MemtagRelocs
= OWriter
.TargetObjectWriter
->getMemtagRelocsSection(Asm
.getContext());
632 if (MemtagRelocs
== nullptr)
633 report_fatal_error("Tagged globals are not available on this architecture.");
634 Asm
.registerSection(*MemtagRelocs
);
636 ELFRelocationEntry
Rec(0, &SymE
, ELF::R_AARCH64_NONE
, 0, nullptr, 0);
637 OWriter
.Relocations
[MemtagRelocs
].push_back(Rec
);
641 void ELFWriter::computeSymbolTable(
642 MCAssembler
&Asm
, const MCAsmLayout
&Layout
,
643 const SectionIndexMapTy
&SectionIndexMap
, const RevGroupMapTy
&RevGroupMap
,
644 SectionOffsetsTy
&SectionOffsets
) {
645 MCContext
&Ctx
= Asm
.getContext();
646 SymbolTableWriter
Writer(*this, is64Bit());
649 unsigned EntrySize
= is64Bit() ? ELF::SYMENTRY_SIZE64
: ELF::SYMENTRY_SIZE32
;
650 MCSectionELF
*SymtabSection
=
651 Ctx
.getELFSection(".symtab", ELF::SHT_SYMTAB
, 0, EntrySize
);
652 SymtabSection
->setAlignment(is64Bit() ? Align(8) : Align(4));
653 SymbolTableIndex
= addToSectionTable(SymtabSection
);
655 uint64_t SecStart
= align(SymtabSection
->getAlign());
657 // The first entry is the undefined symbol entry.
658 Writer
.writeSymbol(0, 0, 0, 0, 0, 0, false);
660 std::vector
<ELFSymbolData
> LocalSymbolData
;
661 std::vector
<ELFSymbolData
> ExternalSymbolData
;
662 MutableArrayRef
<std::pair
<std::string
, size_t>> FileNames
=
664 for (const std::pair
<std::string
, size_t> &F
: FileNames
)
665 StrTabBuilder
.add(F
.first
);
667 // Add the data for the symbols.
668 bool HasLargeSectionIndex
= false;
669 for (auto It
: llvm::enumerate(Asm
.symbols())) {
670 const auto &Symbol
= cast
<MCSymbolELF
>(It
.value());
671 bool Used
= Symbol
.isUsedInReloc();
672 bool WeakrefUsed
= Symbol
.isWeakrefUsedInReloc();
673 bool isSignature
= Symbol
.isSignature();
675 if (!isInSymtab(Layout
, Symbol
, Used
|| WeakrefUsed
|| isSignature
,
676 OWriter
.Renames
.count(&Symbol
)))
679 if (Symbol
.isTemporary() && Symbol
.isUndefined()) {
680 Ctx
.reportError(SMLoc(), "Undefined temporary symbol " + Symbol
.getName());
685 MSD
.Symbol
= cast
<MCSymbolELF
>(&Symbol
);
686 MSD
.Order
= It
.index();
688 bool Local
= Symbol
.getBinding() == ELF::STB_LOCAL
;
689 assert(Local
|| !Symbol
.isTemporary());
691 if (Symbol
.isAbsolute()) {
692 MSD
.SectionIndex
= ELF::SHN_ABS
;
693 } else if (Symbol
.isCommon()) {
694 if (Symbol
.isTargetCommon()) {
695 MSD
.SectionIndex
= Symbol
.getIndex();
698 MSD
.SectionIndex
= ELF::SHN_COMMON
;
700 } else if (Symbol
.isUndefined()) {
701 if (isSignature
&& !Used
) {
702 MSD
.SectionIndex
= RevGroupMap
.lookup(&Symbol
);
703 if (MSD
.SectionIndex
>= ELF::SHN_LORESERVE
)
704 HasLargeSectionIndex
= true;
706 MSD
.SectionIndex
= ELF::SHN_UNDEF
;
709 const MCSectionELF
&Section
=
710 static_cast<const MCSectionELF
&>(Symbol
.getSection());
712 // We may end up with a situation when section symbol is technically
713 // defined, but should not be. That happens because we explicitly
714 // pre-create few .debug_* sections to have accessors.
715 // And if these sections were not really defined in the code, but were
716 // referenced, we simply error out.
717 if (!Section
.isRegistered()) {
718 assert(static_cast<const MCSymbolELF
&>(Symbol
).getType() ==
720 Ctx
.reportError(SMLoc(),
721 "Undefined section reference: " + Symbol
.getName());
725 if (Mode
== NonDwoOnly
&& isDwoSection(Section
))
727 MSD
.SectionIndex
= SectionIndexMap
.lookup(&Section
);
728 assert(MSD
.SectionIndex
&& "Invalid section index!");
729 if (MSD
.SectionIndex
>= ELF::SHN_LORESERVE
)
730 HasLargeSectionIndex
= true;
733 StringRef Name
= Symbol
.getName();
735 // Sections have their own string table
736 if (Symbol
.getType() != ELF::STT_SECTION
) {
738 StrTabBuilder
.add(Name
);
742 LocalSymbolData
.push_back(MSD
);
744 ExternalSymbolData
.push_back(MSD
);
747 // This holds the .symtab_shndx section index.
748 unsigned SymtabShndxSectionIndex
= 0;
750 if (HasLargeSectionIndex
) {
751 MCSectionELF
*SymtabShndxSection
=
752 Ctx
.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX
, 0, 4);
753 SymtabShndxSectionIndex
= addToSectionTable(SymtabShndxSection
);
754 SymtabShndxSection
->setAlignment(Align(4));
757 StrTabBuilder
.finalize();
759 // Make the first STT_FILE precede previous local symbols.
761 auto FileNameIt
= FileNames
.begin();
762 if (!FileNames
.empty())
763 FileNames
[0].second
= 0;
765 for (ELFSymbolData
&MSD
: LocalSymbolData
) {
766 // Emit STT_FILE symbols before their associated local symbols.
767 for (; FileNameIt
!= FileNames
.end() && FileNameIt
->second
<= MSD
.Order
;
769 Writer
.writeSymbol(StrTabBuilder
.getOffset(FileNameIt
->first
),
770 ELF::STT_FILE
| ELF::STB_LOCAL
, 0, 0, ELF::STV_DEFAULT
,
775 unsigned StringIndex
= MSD
.Symbol
->getType() == ELF::STT_SECTION
777 : StrTabBuilder
.getOffset(MSD
.Name
);
778 MSD
.Symbol
->setIndex(Index
++);
779 writeSymbol(Writer
, StringIndex
, MSD
, Layout
);
781 for (; FileNameIt
!= FileNames
.end(); ++FileNameIt
) {
782 Writer
.writeSymbol(StrTabBuilder
.getOffset(FileNameIt
->first
),
783 ELF::STT_FILE
| ELF::STB_LOCAL
, 0, 0, ELF::STV_DEFAULT
,
788 // Write the symbol table entries.
789 LastLocalSymbolIndex
= Index
;
791 for (ELFSymbolData
&MSD
: ExternalSymbolData
) {
792 unsigned StringIndex
= StrTabBuilder
.getOffset(MSD
.Name
);
793 MSD
.Symbol
->setIndex(Index
++);
794 writeSymbol(Writer
, StringIndex
, MSD
, Layout
);
795 assert(MSD
.Symbol
->getBinding() != ELF::STB_LOCAL
);
798 uint64_t SecEnd
= W
.OS
.tell();
799 SectionOffsets
[SymtabSection
] = std::make_pair(SecStart
, SecEnd
);
801 ArrayRef
<uint32_t> ShndxIndexes
= Writer
.getShndxIndexes();
802 if (ShndxIndexes
.empty()) {
803 assert(SymtabShndxSectionIndex
== 0);
806 assert(SymtabShndxSectionIndex
!= 0);
808 SecStart
= W
.OS
.tell();
809 const MCSectionELF
*SymtabShndxSection
=
810 SectionTable
[SymtabShndxSectionIndex
- 1];
811 for (uint32_t Index
: ShndxIndexes
)
813 SecEnd
= W
.OS
.tell();
814 SectionOffsets
[SymtabShndxSection
] = std::make_pair(SecStart
, SecEnd
);
817 void ELFWriter::writeAddrsigSection() {
818 for (const MCSymbol
*Sym
: OWriter
.AddrsigSyms
)
819 if (Sym
->getIndex() != 0)
820 encodeULEB128(Sym
->getIndex(), W
.OS
);
823 MCSectionELF
*ELFWriter::createRelocationSection(MCContext
&Ctx
,
824 const MCSectionELF
&Sec
) {
825 if (OWriter
.Relocations
[&Sec
].empty())
828 const StringRef SectionName
= Sec
.getName();
829 bool Rela
= usesRela(Sec
);
830 std::string RelaSectionName
= Rela
? ".rela" : ".rel";
831 RelaSectionName
+= SectionName
;
835 EntrySize
= is64Bit() ? sizeof(ELF::Elf64_Rela
) : sizeof(ELF::Elf32_Rela
);
837 EntrySize
= is64Bit() ? sizeof(ELF::Elf64_Rel
) : sizeof(ELF::Elf32_Rel
);
839 unsigned Flags
= ELF::SHF_INFO_LINK
;
840 if (Sec
.getFlags() & ELF::SHF_GROUP
)
841 Flags
= ELF::SHF_GROUP
;
843 MCSectionELF
*RelaSection
= Ctx
.createELFRelSection(
844 RelaSectionName
, Rela
? ELF::SHT_RELA
: ELF::SHT_REL
, Flags
, EntrySize
,
845 Sec
.getGroup(), &Sec
);
846 RelaSection
->setAlignment(is64Bit() ? Align(8) : Align(4));
850 // Include the debug info compression header.
851 bool ELFWriter::maybeWriteCompression(
852 uint32_t ChType
, uint64_t Size
,
853 SmallVectorImpl
<uint8_t> &CompressedContents
, Align Alignment
) {
855 is64Bit() ? sizeof(ELF::Elf64_Chdr
) : sizeof(ELF::Elf32_Chdr
);
856 if (Size
<= HdrSize
+ CompressedContents
.size())
858 // Platform specific header is followed by compressed data.
860 // Write Elf64_Chdr header.
861 write(static_cast<ELF::Elf64_Word
>(ChType
));
862 write(static_cast<ELF::Elf64_Word
>(0)); // ch_reserved field.
863 write(static_cast<ELF::Elf64_Xword
>(Size
));
864 write(static_cast<ELF::Elf64_Xword
>(Alignment
.value()));
866 // Write Elf32_Chdr header otherwise.
867 write(static_cast<ELF::Elf32_Word
>(ChType
));
868 write(static_cast<ELF::Elf32_Word
>(Size
));
869 write(static_cast<ELF::Elf32_Word
>(Alignment
.value()));
874 void ELFWriter::writeSectionData(const MCAssembler
&Asm
, MCSection
&Sec
,
875 const MCAsmLayout
&Layout
) {
876 MCSectionELF
&Section
= static_cast<MCSectionELF
&>(Sec
);
877 StringRef SectionName
= Section
.getName();
879 auto &MC
= Asm
.getContext();
880 const auto &MAI
= MC
.getAsmInfo();
882 const DebugCompressionType CompressionType
= MAI
->compressDebugSections();
883 if (CompressionType
== DebugCompressionType::None
||
884 !SectionName
.starts_with(".debug_")) {
885 Asm
.writeSectionData(W
.OS
, &Section
, Layout
);
889 SmallVector
<char, 128> UncompressedData
;
890 raw_svector_ostream
VecOS(UncompressedData
);
891 Asm
.writeSectionData(VecOS
, &Section
, Layout
);
892 ArrayRef
<uint8_t> Uncompressed
=
893 ArrayRef(reinterpret_cast<uint8_t *>(UncompressedData
.data()),
894 UncompressedData
.size());
896 SmallVector
<uint8_t, 128> Compressed
;
898 switch (CompressionType
) {
899 case DebugCompressionType::None
:
900 llvm_unreachable("has been handled");
901 case DebugCompressionType::Zlib
:
902 ChType
= ELF::ELFCOMPRESS_ZLIB
;
904 case DebugCompressionType::Zstd
:
905 ChType
= ELF::ELFCOMPRESS_ZSTD
;
908 compression::compress(compression::Params(CompressionType
), Uncompressed
,
910 if (!maybeWriteCompression(ChType
, UncompressedData
.size(), Compressed
,
912 W
.OS
<< UncompressedData
;
916 Section
.setFlags(Section
.getFlags() | ELF::SHF_COMPRESSED
);
917 // Alignment field should reflect the requirements of
918 // the compressed section header.
919 Section
.setAlignment(is64Bit() ? Align(8) : Align(4));
920 W
.OS
<< toStringRef(Compressed
);
923 void ELFWriter::WriteSecHdrEntry(uint32_t Name
, uint32_t Type
, uint64_t Flags
,
924 uint64_t Address
, uint64_t Offset
,
925 uint64_t Size
, uint32_t Link
, uint32_t Info
,
926 MaybeAlign Alignment
, uint64_t EntrySize
) {
927 W
.write
<uint32_t>(Name
); // sh_name: index into string table
928 W
.write
<uint32_t>(Type
); // sh_type
929 WriteWord(Flags
); // sh_flags
930 WriteWord(Address
); // sh_addr
931 WriteWord(Offset
); // sh_offset
932 WriteWord(Size
); // sh_size
933 W
.write
<uint32_t>(Link
); // sh_link
934 W
.write
<uint32_t>(Info
); // sh_info
935 WriteWord(Alignment
? Alignment
->value() : 0); // sh_addralign
936 WriteWord(EntrySize
); // sh_entsize
939 void ELFWriter::writeRelocations(const MCAssembler
&Asm
,
940 const MCSectionELF
&Sec
) {
941 std::vector
<ELFRelocationEntry
> &Relocs
= OWriter
.Relocations
[&Sec
];
943 // We record relocations by pushing to the end of a vector. Reverse the vector
944 // to get the relocations in the order they were created.
945 // In most cases that is not important, but it can be for special sections
946 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
947 std::reverse(Relocs
.begin(), Relocs
.end());
949 // Sort the relocation entries. MIPS needs this.
950 OWriter
.TargetObjectWriter
->sortRelocs(Asm
, Relocs
);
952 const bool Rela
= usesRela(Sec
);
953 for (unsigned i
= 0, e
= Relocs
.size(); i
!= e
; ++i
) {
954 const ELFRelocationEntry
&Entry
= Relocs
[e
- i
- 1];
955 unsigned Index
= Entry
.Symbol
? Entry
.Symbol
->getIndex() : 0;
959 if (OWriter
.TargetObjectWriter
->getEMachine() == ELF::EM_MIPS
) {
960 write(uint32_t(Index
));
962 write(OWriter
.TargetObjectWriter
->getRSsym(Entry
.Type
));
963 write(OWriter
.TargetObjectWriter
->getRType3(Entry
.Type
));
964 write(OWriter
.TargetObjectWriter
->getRType2(Entry
.Type
));
965 write(OWriter
.TargetObjectWriter
->getRType(Entry
.Type
));
967 struct ELF::Elf64_Rela ERE64
;
968 ERE64
.setSymbolAndType(Index
, Entry
.Type
);
974 write(uint32_t(Entry
.Offset
));
976 struct ELF::Elf32_Rela ERE32
;
977 ERE32
.setSymbolAndType(Index
, Entry
.Type
);
981 write(uint32_t(Entry
.Addend
));
983 if (OWriter
.TargetObjectWriter
->getEMachine() == ELF::EM_MIPS
) {
985 OWriter
.TargetObjectWriter
->getRType2(Entry
.Type
)) {
986 write(uint32_t(Entry
.Offset
));
988 ERE32
.setSymbolAndType(0, RType
);
993 OWriter
.TargetObjectWriter
->getRType3(Entry
.Type
)) {
994 write(uint32_t(Entry
.Offset
));
996 ERE32
.setSymbolAndType(0, RType
);
1005 void ELFWriter::writeSection(const SectionIndexMapTy
&SectionIndexMap
,
1006 uint32_t GroupSymbolIndex
, uint64_t Offset
,
1007 uint64_t Size
, const MCSectionELF
&Section
) {
1008 uint64_t sh_link
= 0;
1009 uint64_t sh_info
= 0;
1011 switch(Section
.getType()) {
1016 case ELF::SHT_DYNAMIC
:
1017 llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1020 case ELF::SHT_RELA
: {
1021 sh_link
= SymbolTableIndex
;
1022 assert(sh_link
&& ".symtab not found");
1023 const MCSection
*InfoSection
= Section
.getLinkedToSection();
1024 sh_info
= SectionIndexMap
.lookup(cast
<MCSectionELF
>(InfoSection
));
1028 case ELF::SHT_SYMTAB
:
1029 sh_link
= StringTableIndex
;
1030 sh_info
= LastLocalSymbolIndex
;
1033 case ELF::SHT_SYMTAB_SHNDX
:
1034 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE
:
1035 case ELF::SHT_LLVM_ADDRSIG
:
1036 sh_link
= SymbolTableIndex
;
1039 case ELF::SHT_GROUP
:
1040 sh_link
= SymbolTableIndex
;
1041 sh_info
= GroupSymbolIndex
;
1045 if (Section
.getFlags() & ELF::SHF_LINK_ORDER
) {
1046 // If the value in the associated metadata is not a definition, Sym will be
1047 // undefined. Represent this with sh_link=0.
1048 const MCSymbol
*Sym
= Section
.getLinkedToSymbol();
1049 if (Sym
&& Sym
->isInSection()) {
1050 const MCSectionELF
*Sec
= cast
<MCSectionELF
>(&Sym
->getSection());
1051 sh_link
= SectionIndexMap
.lookup(Sec
);
1055 WriteSecHdrEntry(StrTabBuilder
.getOffset(Section
.getName()),
1056 Section
.getType(), Section
.getFlags(), 0, Offset
, Size
,
1057 sh_link
, sh_info
, Section
.getAlign(),
1058 Section
.getEntrySize());
1061 void ELFWriter::writeSectionHeader(
1062 const MCAsmLayout
&Layout
, const SectionIndexMapTy
&SectionIndexMap
,
1063 const SectionOffsetsTy
&SectionOffsets
) {
1064 const unsigned NumSections
= SectionTable
.size();
1066 // Null section first.
1067 uint64_t FirstSectionSize
=
1068 (NumSections
+ 1) >= ELF::SHN_LORESERVE
? NumSections
+ 1 : 0;
1069 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize
, 0, 0, std::nullopt
, 0);
1071 for (const MCSectionELF
*Section
: SectionTable
) {
1072 uint32_t GroupSymbolIndex
;
1073 unsigned Type
= Section
->getType();
1074 if (Type
!= ELF::SHT_GROUP
)
1075 GroupSymbolIndex
= 0;
1077 GroupSymbolIndex
= Section
->getGroup()->getIndex();
1079 const std::pair
<uint64_t, uint64_t> &Offsets
=
1080 SectionOffsets
.find(Section
)->second
;
1082 if (Type
== ELF::SHT_NOBITS
)
1083 Size
= Layout
.getSectionAddressSize(Section
);
1085 Size
= Offsets
.second
- Offsets
.first
;
1087 writeSection(SectionIndexMap
, GroupSymbolIndex
, Offsets
.first
, Size
,
1092 uint64_t ELFWriter::writeObject(MCAssembler
&Asm
, const MCAsmLayout
&Layout
) {
1093 uint64_t StartOffset
= W
.OS
.tell();
1095 MCContext
&Ctx
= Asm
.getContext();
1096 MCSectionELF
*StrtabSection
=
1097 Ctx
.getELFSection(".strtab", ELF::SHT_STRTAB
, 0);
1098 StringTableIndex
= addToSectionTable(StrtabSection
);
1100 createMemtagRelocs(Asm
);
1102 RevGroupMapTy RevGroupMap
;
1103 SectionIndexMapTy SectionIndexMap
;
1105 std::map
<const MCSymbol
*, std::vector
<const MCSectionELF
*>> GroupMembers
;
1107 // Write out the ELF header ...
1110 // ... then the sections ...
1111 SectionOffsetsTy SectionOffsets
;
1112 std::vector
<MCSectionELF
*> Groups
;
1113 std::vector
<MCSectionELF
*> Relocations
;
1114 for (MCSection
&Sec
: Asm
) {
1115 MCSectionELF
&Section
= static_cast<MCSectionELF
&>(Sec
);
1116 if (Mode
== NonDwoOnly
&& isDwoSection(Section
))
1118 if (Mode
== DwoOnly
&& !isDwoSection(Section
))
1121 // Remember the offset into the file for this section.
1122 const uint64_t SecStart
= align(Section
.getAlign());
1124 const MCSymbolELF
*SignatureSymbol
= Section
.getGroup();
1125 writeSectionData(Asm
, Section
, Layout
);
1127 uint64_t SecEnd
= W
.OS
.tell();
1128 SectionOffsets
[&Section
] = std::make_pair(SecStart
, SecEnd
);
1130 MCSectionELF
*RelSection
= createRelocationSection(Ctx
, Section
);
1132 if (SignatureSymbol
) {
1133 unsigned &GroupIdx
= RevGroupMap
[SignatureSymbol
];
1135 MCSectionELF
*Group
=
1136 Ctx
.createELFGroupSection(SignatureSymbol
, Section
.isComdat());
1137 GroupIdx
= addToSectionTable(Group
);
1138 Group
->setAlignment(Align(4));
1139 Groups
.push_back(Group
);
1141 std::vector
<const MCSectionELF
*> &Members
=
1142 GroupMembers
[SignatureSymbol
];
1143 Members
.push_back(&Section
);
1145 Members
.push_back(RelSection
);
1148 SectionIndexMap
[&Section
] = addToSectionTable(&Section
);
1150 SectionIndexMap
[RelSection
] = addToSectionTable(RelSection
);
1151 Relocations
.push_back(RelSection
);
1154 OWriter
.TargetObjectWriter
->addTargetSectionFlags(Ctx
, Section
);
1157 for (MCSectionELF
*Group
: Groups
) {
1158 // Remember the offset into the file for this section.
1159 const uint64_t SecStart
= align(Group
->getAlign());
1161 const MCSymbol
*SignatureSymbol
= Group
->getGroup();
1162 assert(SignatureSymbol
);
1163 write(uint32_t(Group
->isComdat() ? unsigned(ELF::GRP_COMDAT
) : 0));
1164 for (const MCSectionELF
*Member
: GroupMembers
[SignatureSymbol
]) {
1165 uint32_t SecIndex
= SectionIndexMap
.lookup(Member
);
1169 uint64_t SecEnd
= W
.OS
.tell();
1170 SectionOffsets
[Group
] = std::make_pair(SecStart
, SecEnd
);
1173 if (Mode
== DwoOnly
) {
1174 // dwo files don't have symbol tables or relocations, but they do have
1176 StrTabBuilder
.finalize();
1178 MCSectionELF
*AddrsigSection
;
1179 if (OWriter
.EmitAddrsigSection
) {
1180 AddrsigSection
= Ctx
.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG
,
1182 addToSectionTable(AddrsigSection
);
1185 // Compute symbol table information.
1186 computeSymbolTable(Asm
, Layout
, SectionIndexMap
, RevGroupMap
,
1189 for (MCSectionELF
*RelSection
: Relocations
) {
1190 // Remember the offset into the file for this section.
1191 const uint64_t SecStart
= align(RelSection
->getAlign());
1193 writeRelocations(Asm
,
1194 cast
<MCSectionELF
>(*RelSection
->getLinkedToSection()));
1196 uint64_t SecEnd
= W
.OS
.tell();
1197 SectionOffsets
[RelSection
] = std::make_pair(SecStart
, SecEnd
);
1200 if (OWriter
.EmitAddrsigSection
) {
1201 uint64_t SecStart
= W
.OS
.tell();
1202 writeAddrsigSection();
1203 uint64_t SecEnd
= W
.OS
.tell();
1204 SectionOffsets
[AddrsigSection
] = std::make_pair(SecStart
, SecEnd
);
1209 uint64_t SecStart
= W
.OS
.tell();
1210 StrTabBuilder
.write(W
.OS
);
1211 SectionOffsets
[StrtabSection
] = std::make_pair(SecStart
, W
.OS
.tell());
1214 const uint64_t SectionHeaderOffset
= align(is64Bit() ? Align(8) : Align(4));
1216 // ... then the section header table ...
1217 writeSectionHeader(Layout
, SectionIndexMap
, SectionOffsets
);
1219 uint16_t NumSections
= support::endian::byte_swap
<uint16_t>(
1220 (SectionTable
.size() + 1 >= ELF::SHN_LORESERVE
) ? (uint16_t)ELF::SHN_UNDEF
1221 : SectionTable
.size() + 1,
1223 unsigned NumSectionsOffset
;
1225 auto &Stream
= static_cast<raw_pwrite_stream
&>(W
.OS
);
1228 support::endian::byte_swap
<uint64_t>(SectionHeaderOffset
, W
.Endian
);
1229 Stream
.pwrite(reinterpret_cast<char *>(&Val
), sizeof(Val
),
1230 offsetof(ELF::Elf64_Ehdr
, e_shoff
));
1231 NumSectionsOffset
= offsetof(ELF::Elf64_Ehdr
, e_shnum
);
1234 support::endian::byte_swap
<uint32_t>(SectionHeaderOffset
, W
.Endian
);
1235 Stream
.pwrite(reinterpret_cast<char *>(&Val
), sizeof(Val
),
1236 offsetof(ELF::Elf32_Ehdr
, e_shoff
));
1237 NumSectionsOffset
= offsetof(ELF::Elf32_Ehdr
, e_shnum
);
1239 Stream
.pwrite(reinterpret_cast<char *>(&NumSections
), sizeof(NumSections
),
1242 return W
.OS
.tell() - StartOffset
;
1245 bool ELFObjectWriter::hasRelocationAddend() const {
1246 return TargetObjectWriter
->hasRelocationAddend();
1249 void ELFObjectWriter::executePostLayoutBinding(MCAssembler
&Asm
,
1250 const MCAsmLayout
&Layout
) {
1251 // The presence of symbol versions causes undefined symbols and
1252 // versions declared with @@@ to be renamed.
1253 for (const MCAssembler::Symver
&S
: Asm
.Symvers
) {
1254 StringRef AliasName
= S
.Name
;
1255 const auto &Symbol
= cast
<MCSymbolELF
>(*S
.Sym
);
1256 size_t Pos
= AliasName
.find('@');
1257 assert(Pos
!= StringRef::npos
);
1259 StringRef Prefix
= AliasName
.substr(0, Pos
);
1260 StringRef Rest
= AliasName
.substr(Pos
);
1261 StringRef Tail
= Rest
;
1262 if (Rest
.starts_with("@@@"))
1263 Tail
= Rest
.substr(Symbol
.isUndefined() ? 2 : 1);
1266 cast
<MCSymbolELF
>(Asm
.getContext().getOrCreateSymbol(Prefix
+ Tail
));
1267 Asm
.registerSymbol(*Alias
);
1268 const MCExpr
*Value
= MCSymbolRefExpr::create(&Symbol
, Asm
.getContext());
1269 Alias
->setVariableValue(Value
);
1271 // Aliases defined with .symvar copy the binding from the symbol they alias.
1272 // This is the first place we are able to copy this information.
1273 Alias
->setBinding(Symbol
.getBinding());
1274 Alias
->setVisibility(Symbol
.getVisibility());
1275 Alias
->setOther(Symbol
.getOther());
1277 if (!Symbol
.isUndefined() && S
.KeepOriginalSym
)
1280 if (Symbol
.isUndefined() && Rest
.starts_with("@@") &&
1281 !Rest
.starts_with("@@@")) {
1282 Asm
.getContext().reportError(S
.Loc
, "default version symbol " +
1283 AliasName
+ " must be defined");
1287 if (Renames
.count(&Symbol
) && Renames
[&Symbol
] != Alias
) {
1288 Asm
.getContext().reportError(S
.Loc
, Twine("multiple versions for ") +
1293 Renames
.insert(std::make_pair(&Symbol
, Alias
));
1296 for (const MCSymbol
*&Sym
: AddrsigSyms
) {
1297 if (const MCSymbol
*R
= Renames
.lookup(cast
<MCSymbolELF
>(Sym
)))
1299 if (Sym
->isInSection() && Sym
->getName().starts_with(".L"))
1300 Sym
= Sym
->getSection().getBeginSymbol();
1301 Sym
->setUsedInReloc();
1305 // It is always valid to create a relocation with a symbol. It is preferable
1306 // to use a relocation with a section if that is possible. Using the section
1307 // allows us to omit some local symbols from the symbol table.
1308 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler
&Asm
,
1310 const MCSymbolELF
*Sym
,
1312 unsigned Type
) const {
1313 const MCSymbolRefExpr
*RefA
= Val
.getSymA();
1314 // A PCRel relocation to an absolute value has no symbol (or section). We
1315 // represent that with a relocation to a null section.
1319 MCSymbolRefExpr::VariantKind Kind
= RefA
->getKind();
1323 // The .odp creation emits a relocation against the symbol ".TOC." which
1324 // create a R_PPC64_TOC relocation. However the relocation symbol name
1325 // in final object creation should be NULL, since the symbol does not
1326 // really exist, it is just the reference to TOC base for the current
1327 // object file. Since the symbol is undefined, returning false results
1328 // in a relocation with a null section which is the desired result.
1329 case MCSymbolRefExpr::VK_PPC_TOCBASE
:
1332 // These VariantKind cause the relocation to refer to something other than
1333 // the symbol itself, like a linker generated table. Since the address of
1334 // symbol is not relevant, we cannot replace the symbol with the
1335 // section and patch the difference in the addend.
1336 case MCSymbolRefExpr::VK_GOT
:
1337 case MCSymbolRefExpr::VK_PLT
:
1338 case MCSymbolRefExpr::VK_GOTPCREL
:
1339 case MCSymbolRefExpr::VK_GOTPCREL_NORELAX
:
1340 case MCSymbolRefExpr::VK_PPC_GOT_LO
:
1341 case MCSymbolRefExpr::VK_PPC_GOT_HI
:
1342 case MCSymbolRefExpr::VK_PPC_GOT_HA
:
1346 // An undefined symbol is not in any section, so the relocation has to point
1347 // to the symbol itself.
1348 assert(Sym
&& "Expected a symbol");
1349 if (Sym
->isUndefined())
1352 // For memory-tagged symbols, ensure that the relocation uses the symbol. For
1353 // tagged symbols, we emit an empty relocation (R_AARCH64_NONE) in a special
1354 // section (SHT_AARCH64_MEMTAG_GLOBALS_STATIC) to indicate to the linker that
1355 // this global needs to be tagged. In addition, the linker needs to know
1356 // whether to emit a special addend when relocating `end` symbols, and this
1357 // can only be determined by the attributes of the symbol itself.
1358 if (Sym
->isMemtag())
1361 unsigned Binding
= Sym
->getBinding();
1364 llvm_unreachable("Invalid Binding");
1365 case ELF::STB_LOCAL
:
1368 // If the symbol is weak, it might be overridden by a symbol in another
1369 // file. The relocation has to point to the symbol so that the linker
1372 case ELF::STB_GLOBAL
:
1373 case ELF::STB_GNU_UNIQUE
:
1374 // Global ELF symbols can be preempted by the dynamic linker. The relocation
1375 // has to point to the symbol for a reason analogous to the STB_WEAK case.
1379 // Keep symbol type for a local ifunc because it may result in an IRELATIVE
1380 // reloc that the dynamic loader will use to resolve the address at startup
1382 if (Sym
->getType() == ELF::STT_GNU_IFUNC
)
1385 // If a relocation points to a mergeable section, we have to be careful.
1386 // If the offset is zero, a relocation with the section will encode the
1387 // same information. With a non-zero offset, the situation is different.
1388 // For example, a relocation can point 42 bytes past the end of a string.
1389 // If we change such a relocation to use the section, the linker would think
1390 // that it pointed to another string and subtracting 42 at runtime will
1391 // produce the wrong value.
1392 if (Sym
->isInSection()) {
1393 auto &Sec
= cast
<MCSectionELF
>(Sym
->getSection());
1394 unsigned Flags
= Sec
.getFlags();
1395 if (Flags
& ELF::SHF_MERGE
) {
1399 // gold<2.34 incorrectly ignored the addend for R_386_GOTOFF (9)
1400 // (http://sourceware.org/PR16794).
1401 if (TargetObjectWriter
->getEMachine() == ELF::EM_386
&&
1402 Type
== ELF::R_386_GOTOFF
)
1405 // ld.lld handles R_MIPS_HI16/R_MIPS_LO16 separately, not as a whole, so
1406 // it doesn't know that an R_MIPS_HI16 with implicit addend 1 and an
1407 // R_MIPS_LO16 with implicit addend -32768 represents 32768, which is in
1408 // range of a MergeInputSection. We could introduce a new RelExpr member
1409 // (like R_RISCV_PC_INDIRECT for R_RISCV_PCREL_HI20 / R_RISCV_PCREL_LO12)
1410 // but the complexity is unnecessary given that GNU as keeps the original
1411 // symbol for this case as well.
1412 if (TargetObjectWriter
->getEMachine() == ELF::EM_MIPS
&&
1413 !hasRelocationAddend())
1417 // Most TLS relocations use a got, so they need the symbol. Even those that
1418 // are just an offset (@tpoff), require a symbol in gold versions before
1419 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
1420 // http://sourceware.org/PR16773.
1421 if (Flags
& ELF::SHF_TLS
)
1425 // If the symbol is a thumb function the final relocation must set the lowest
1426 // bit. With a symbol that is done by just having the symbol have that bit
1427 // set, so we would lose the bit if we relocated with the section.
1428 // FIXME: We could use the section but add the bit to the relocation value.
1429 if (Asm
.isThumbFunc(Sym
))
1432 if (TargetObjectWriter
->needsRelocateWithSymbol(Val
, *Sym
, Type
))
1437 void ELFObjectWriter::recordRelocation(MCAssembler
&Asm
,
1438 const MCAsmLayout
&Layout
,
1439 const MCFragment
*Fragment
,
1440 const MCFixup
&Fixup
, MCValue Target
,
1441 uint64_t &FixedValue
) {
1442 MCAsmBackend
&Backend
= Asm
.getBackend();
1443 bool IsPCRel
= Backend
.getFixupKindInfo(Fixup
.getKind()).Flags
&
1444 MCFixupKindInfo::FKF_IsPCRel
;
1445 const MCSectionELF
&FixupSection
= cast
<MCSectionELF
>(*Fragment
->getParent());
1446 uint64_t C
= Target
.getConstant();
1447 uint64_t FixupOffset
= Layout
.getFragmentOffset(Fragment
) + Fixup
.getOffset();
1448 MCContext
&Ctx
= Asm
.getContext();
1450 if (const MCSymbolRefExpr
*RefB
= Target
.getSymB()) {
1451 const auto &SymB
= cast
<MCSymbolELF
>(RefB
->getSymbol());
1452 if (SymB
.isUndefined()) {
1453 Ctx
.reportError(Fixup
.getLoc(),
1454 Twine("symbol '") + SymB
.getName() +
1455 "' can not be undefined in a subtraction expression");
1459 assert(!SymB
.isAbsolute() && "Should have been folded");
1460 const MCSection
&SecB
= SymB
.getSection();
1461 if (&SecB
!= &FixupSection
) {
1462 Ctx
.reportError(Fixup
.getLoc(),
1463 "Cannot represent a difference across sections");
1467 assert(!IsPCRel
&& "should have been folded");
1469 C
+= FixupOffset
- Layout
.getSymbolOffset(SymB
);
1472 // We either rejected the fixup or folded B into C at this point.
1473 const MCSymbolRefExpr
*RefA
= Target
.getSymA();
1474 const auto *SymA
= RefA
? cast
<MCSymbolELF
>(&RefA
->getSymbol()) : nullptr;
1476 bool ViaWeakRef
= false;
1477 if (SymA
&& SymA
->isVariable()) {
1478 const MCExpr
*Expr
= SymA
->getVariableValue();
1479 if (const auto *Inner
= dyn_cast
<MCSymbolRefExpr
>(Expr
)) {
1480 if (Inner
->getKind() == MCSymbolRefExpr::VK_WEAKREF
) {
1481 SymA
= cast
<MCSymbolELF
>(&Inner
->getSymbol());
1487 const MCSectionELF
*SecA
= (SymA
&& SymA
->isInSection())
1488 ? cast
<MCSectionELF
>(&SymA
->getSection())
1490 if (!checkRelocation(Ctx
, Fixup
.getLoc(), &FixupSection
, SecA
))
1493 unsigned Type
= TargetObjectWriter
->getRelocType(Ctx
, Target
, Fixup
, IsPCRel
);
1494 const auto *Parent
= cast
<MCSectionELF
>(Fragment
->getParent());
1495 // Emiting relocation with sybmol for CG Profile to help with --cg-profile.
1496 bool RelocateWithSymbol
=
1497 shouldRelocateWithSymbol(Asm
, Target
, SymA
, C
, Type
) ||
1498 (Parent
->getType() == ELF::SHT_LLVM_CALL_GRAPH_PROFILE
);
1499 uint64_t Addend
= 0;
1501 FixedValue
= !RelocateWithSymbol
&& SymA
&& !SymA
->isUndefined()
1502 ? C
+ Layout
.getSymbolOffset(*SymA
)
1504 if (hasRelocationAddend()) {
1505 Addend
= FixedValue
;
1509 if (!RelocateWithSymbol
) {
1510 const auto *SectionSymbol
=
1511 SecA
? cast
<MCSymbolELF
>(SecA
->getBeginSymbol()) : nullptr;
1513 SectionSymbol
->setUsedInReloc();
1514 ELFRelocationEntry
Rec(FixupOffset
, SectionSymbol
, Type
, Addend
, SymA
, C
);
1515 Relocations
[&FixupSection
].push_back(Rec
);
1519 const MCSymbolELF
*RenamedSymA
= SymA
;
1521 if (const MCSymbolELF
*R
= Renames
.lookup(SymA
))
1525 RenamedSymA
->setIsWeakrefUsedInReloc();
1527 RenamedSymA
->setUsedInReloc();
1529 ELFRelocationEntry
Rec(FixupOffset
, RenamedSymA
, Type
, Addend
, SymA
, C
);
1530 Relocations
[&FixupSection
].push_back(Rec
);
1533 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1534 const MCAssembler
&Asm
, const MCSymbol
&SA
, const MCFragment
&FB
,
1535 bool InSet
, bool IsPCRel
) const {
1536 const auto &SymA
= cast
<MCSymbolELF
>(SA
);
1539 if (SymA
.getBinding() != ELF::STB_LOCAL
||
1540 SymA
.getType() == ELF::STT_GNU_IFUNC
)
1543 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm
, SymA
, FB
,
1547 std::unique_ptr
<MCObjectWriter
>
1548 llvm::createELFObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
,
1549 raw_pwrite_stream
&OS
, bool IsLittleEndian
) {
1550 return std::make_unique
<ELFSingleObjectWriter
>(std::move(MOTW
), OS
,
1554 std::unique_ptr
<MCObjectWriter
>
1555 llvm::createELFDwoObjectWriter(std::unique_ptr
<MCELFObjectTargetWriter
> MOTW
,
1556 raw_pwrite_stream
&OS
, raw_pwrite_stream
&DwoOS
,
1557 bool IsLittleEndian
) {
1558 return std::make_unique
<ELFDwoObjectWriter
>(std::move(MOTW
), OS
, DwoOS
,