[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Passes / PassBuilderPipelines.cpp
blob6ede8638291206696070ac67eb046a089a3ab130
1 //===- Construction of pass pipelines -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file provides the implementation of the PassBuilder based on our
11 /// static pass registry as well as related functionality. It also provides
12 /// helpers to aid in analyzing, debugging, and testing passes and pass
13 /// pipelines.
14 ///
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/BasicAliasAnalysis.h"
20 #include "llvm/Analysis/CGSCCPassManager.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/InlineAdvisor.h"
23 #include "llvm/Analysis/ProfileSummaryInfo.h"
24 #include "llvm/Analysis/ScopedNoAliasAA.h"
25 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
26 #include "llvm/IR/PassManager.h"
27 #include "llvm/Passes/OptimizationLevel.h"
28 #include "llvm/Passes/PassBuilder.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/PGOOptions.h"
32 #include "llvm/Support/VirtualFileSystem.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
35 #include "llvm/Transforms/Coroutines/CoroCleanup.h"
36 #include "llvm/Transforms/Coroutines/CoroConditionalWrapper.h"
37 #include "llvm/Transforms/Coroutines/CoroEarly.h"
38 #include "llvm/Transforms/Coroutines/CoroElide.h"
39 #include "llvm/Transforms/Coroutines/CoroSplit.h"
40 #include "llvm/Transforms/HipStdPar/HipStdPar.h"
41 #include "llvm/Transforms/IPO/AlwaysInliner.h"
42 #include "llvm/Transforms/IPO/Annotation2Metadata.h"
43 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
44 #include "llvm/Transforms/IPO/Attributor.h"
45 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
46 #include "llvm/Transforms/IPO/ConstantMerge.h"
47 #include "llvm/Transforms/IPO/CrossDSOCFI.h"
48 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
49 #include "llvm/Transforms/IPO/ElimAvailExtern.h"
50 #include "llvm/Transforms/IPO/EmbedBitcodePass.h"
51 #include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
52 #include "llvm/Transforms/IPO/FunctionAttrs.h"
53 #include "llvm/Transforms/IPO/GlobalDCE.h"
54 #include "llvm/Transforms/IPO/GlobalOpt.h"
55 #include "llvm/Transforms/IPO/GlobalSplit.h"
56 #include "llvm/Transforms/IPO/HotColdSplitting.h"
57 #include "llvm/Transforms/IPO/IROutliner.h"
58 #include "llvm/Transforms/IPO/InferFunctionAttrs.h"
59 #include "llvm/Transforms/IPO/Inliner.h"
60 #include "llvm/Transforms/IPO/LowerTypeTests.h"
61 #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h"
62 #include "llvm/Transforms/IPO/MergeFunctions.h"
63 #include "llvm/Transforms/IPO/ModuleInliner.h"
64 #include "llvm/Transforms/IPO/OpenMPOpt.h"
65 #include "llvm/Transforms/IPO/PartialInlining.h"
66 #include "llvm/Transforms/IPO/SCCP.h"
67 #include "llvm/Transforms/IPO/SampleProfile.h"
68 #include "llvm/Transforms/IPO/SampleProfileProbe.h"
69 #include "llvm/Transforms/IPO/SyntheticCountsPropagation.h"
70 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
71 #include "llvm/Transforms/InstCombine/InstCombine.h"
72 #include "llvm/Transforms/Instrumentation/CGProfile.h"
73 #include "llvm/Transforms/Instrumentation/ControlHeightReduction.h"
74 #include "llvm/Transforms/Instrumentation/InstrOrderFile.h"
75 #include "llvm/Transforms/Instrumentation/InstrProfiling.h"
76 #include "llvm/Transforms/Instrumentation/MemProfiler.h"
77 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
78 #include "llvm/Transforms/Scalar/ADCE.h"
79 #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
80 #include "llvm/Transforms/Scalar/AnnotationRemarks.h"
81 #include "llvm/Transforms/Scalar/BDCE.h"
82 #include "llvm/Transforms/Scalar/CallSiteSplitting.h"
83 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
84 #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
85 #include "llvm/Transforms/Scalar/DFAJumpThreading.h"
86 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
87 #include "llvm/Transforms/Scalar/DivRemPairs.h"
88 #include "llvm/Transforms/Scalar/EarlyCSE.h"
89 #include "llvm/Transforms/Scalar/Float2Int.h"
90 #include "llvm/Transforms/Scalar/GVN.h"
91 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
92 #include "llvm/Transforms/Scalar/InferAlignment.h"
93 #include "llvm/Transforms/Scalar/InstSimplifyPass.h"
94 #include "llvm/Transforms/Scalar/JumpThreading.h"
95 #include "llvm/Transforms/Scalar/LICM.h"
96 #include "llvm/Transforms/Scalar/LoopDeletion.h"
97 #include "llvm/Transforms/Scalar/LoopDistribute.h"
98 #include "llvm/Transforms/Scalar/LoopFlatten.h"
99 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
100 #include "llvm/Transforms/Scalar/LoopInstSimplify.h"
101 #include "llvm/Transforms/Scalar/LoopInterchange.h"
102 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
103 #include "llvm/Transforms/Scalar/LoopPassManager.h"
104 #include "llvm/Transforms/Scalar/LoopRotation.h"
105 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
106 #include "llvm/Transforms/Scalar/LoopSink.h"
107 #include "llvm/Transforms/Scalar/LoopUnrollAndJamPass.h"
108 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
109 #include "llvm/Transforms/Scalar/LoopVersioningLICM.h"
110 #include "llvm/Transforms/Scalar/LowerConstantIntrinsics.h"
111 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
112 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
113 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
114 #include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h"
115 #include "llvm/Transforms/Scalar/NewGVN.h"
116 #include "llvm/Transforms/Scalar/Reassociate.h"
117 #include "llvm/Transforms/Scalar/SCCP.h"
118 #include "llvm/Transforms/Scalar/SROA.h"
119 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
120 #include "llvm/Transforms/Scalar/SimplifyCFG.h"
121 #include "llvm/Transforms/Scalar/SpeculativeExecution.h"
122 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
123 #include "llvm/Transforms/Scalar/WarnMissedTransforms.h"
124 #include "llvm/Transforms/Utils/AddDiscriminators.h"
125 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
126 #include "llvm/Transforms/Utils/CanonicalizeAliases.h"
127 #include "llvm/Transforms/Utils/CountVisits.h"
128 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
129 #include "llvm/Transforms/Utils/LibCallsShrinkWrap.h"
130 #include "llvm/Transforms/Utils/Mem2Reg.h"
131 #include "llvm/Transforms/Utils/MoveAutoInit.h"
132 #include "llvm/Transforms/Utils/NameAnonGlobals.h"
133 #include "llvm/Transforms/Utils/RelLookupTableConverter.h"
134 #include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
135 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
136 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
137 #include "llvm/Transforms/Vectorize/VectorCombine.h"
139 using namespace llvm;
141 static cl::opt<InliningAdvisorMode> UseInlineAdvisor(
142 "enable-ml-inliner", cl::init(InliningAdvisorMode::Default), cl::Hidden,
143 cl::desc("Enable ML policy for inliner. Currently trained for -Oz only"),
144 cl::values(clEnumValN(InliningAdvisorMode::Default, "default",
145 "Heuristics-based inliner version"),
146 clEnumValN(InliningAdvisorMode::Development, "development",
147 "Use development mode (runtime-loadable model)"),
148 clEnumValN(InliningAdvisorMode::Release, "release",
149 "Use release mode (AOT-compiled model)")));
151 static cl::opt<bool> EnableSyntheticCounts(
152 "enable-npm-synthetic-counts", cl::Hidden,
153 cl::desc("Run synthetic function entry count generation "
154 "pass"));
156 /// Flag to enable inline deferral during PGO.
157 static cl::opt<bool>
158 EnablePGOInlineDeferral("enable-npm-pgo-inline-deferral", cl::init(true),
159 cl::Hidden,
160 cl::desc("Enable inline deferral during PGO"));
162 static cl::opt<bool> EnableModuleInliner("enable-module-inliner",
163 cl::init(false), cl::Hidden,
164 cl::desc("Enable module inliner"));
166 static cl::opt<bool> PerformMandatoryInliningsFirst(
167 "mandatory-inlining-first", cl::init(false), cl::Hidden,
168 cl::desc("Perform mandatory inlinings module-wide, before performing "
169 "inlining"));
171 static cl::opt<bool> EnableEagerlyInvalidateAnalyses(
172 "eagerly-invalidate-analyses", cl::init(true), cl::Hidden,
173 cl::desc("Eagerly invalidate more analyses in default pipelines"));
175 static cl::opt<bool> EnableMergeFunctions(
176 "enable-merge-functions", cl::init(false), cl::Hidden,
177 cl::desc("Enable function merging as part of the optimization pipeline"));
179 static cl::opt<bool> EnablePostPGOLoopRotation(
180 "enable-post-pgo-loop-rotation", cl::init(true), cl::Hidden,
181 cl::desc("Run the loop rotation transformation after PGO instrumentation"));
183 static cl::opt<bool> EnableGlobalAnalyses(
184 "enable-global-analyses", cl::init(true), cl::Hidden,
185 cl::desc("Enable inter-procedural analyses"));
187 static cl::opt<bool>
188 RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden,
189 cl::desc("Run Partial inlinining pass"));
191 static cl::opt<bool> ExtraVectorizerPasses(
192 "extra-vectorizer-passes", cl::init(false), cl::Hidden,
193 cl::desc("Run cleanup optimization passes after vectorization"));
195 static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
196 cl::desc("Run the NewGVN pass"));
198 static cl::opt<bool> EnableLoopInterchange(
199 "enable-loopinterchange", cl::init(false), cl::Hidden,
200 cl::desc("Enable the experimental LoopInterchange Pass"));
202 static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam",
203 cl::init(false), cl::Hidden,
204 cl::desc("Enable Unroll And Jam Pass"));
206 static cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false),
207 cl::Hidden,
208 cl::desc("Enable the LoopFlatten Pass"));
210 static cl::opt<bool>
211 EnableDFAJumpThreading("enable-dfa-jump-thread",
212 cl::desc("Enable DFA jump threading"),
213 cl::init(false), cl::Hidden);
215 static cl::opt<bool>
216 EnableHotColdSplit("hot-cold-split",
217 cl::desc("Enable hot-cold splitting pass"));
219 static cl::opt<bool> EnableIROutliner("ir-outliner", cl::init(false),
220 cl::Hidden,
221 cl::desc("Enable ir outliner pass"));
223 static cl::opt<bool>
224 DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
225 cl::desc("Disable pre-instrumentation inliner"));
227 static cl::opt<int> PreInlineThreshold(
228 "preinline-threshold", cl::Hidden, cl::init(75),
229 cl::desc("Control the amount of inlining in pre-instrumentation inliner "
230 "(default = 75)"));
232 static cl::opt<bool>
233 EnableGVNHoist("enable-gvn-hoist",
234 cl::desc("Enable the GVN hoisting pass (default = off)"));
236 static cl::opt<bool>
237 EnableGVNSink("enable-gvn-sink",
238 cl::desc("Enable the GVN sinking pass (default = off)"));
240 // This option is used in simplifying testing SampleFDO optimizations for
241 // profile loading.
242 static cl::opt<bool>
243 EnableCHR("enable-chr", cl::init(true), cl::Hidden,
244 cl::desc("Enable control height reduction optimization (CHR)"));
246 static cl::opt<bool> FlattenedProfileUsed(
247 "flattened-profile-used", cl::init(false), cl::Hidden,
248 cl::desc("Indicate the sample profile being used is flattened, i.e., "
249 "no inline hierachy exists in the profile"));
251 static cl::opt<bool> EnableOrderFileInstrumentation(
252 "enable-order-file-instrumentation", cl::init(false), cl::Hidden,
253 cl::desc("Enable order file instrumentation (default = off)"));
255 static cl::opt<bool>
256 EnableMatrix("enable-matrix", cl::init(false), cl::Hidden,
257 cl::desc("Enable lowering of the matrix intrinsics"));
259 static cl::opt<bool> EnableConstraintElimination(
260 "enable-constraint-elimination", cl::init(true), cl::Hidden,
261 cl::desc(
262 "Enable pass to eliminate conditions based on linear constraints"));
264 static cl::opt<AttributorRunOption> AttributorRun(
265 "attributor-enable", cl::Hidden, cl::init(AttributorRunOption::NONE),
266 cl::desc("Enable the attributor inter-procedural deduction pass"),
267 cl::values(clEnumValN(AttributorRunOption::ALL, "all",
268 "enable all attributor runs"),
269 clEnumValN(AttributorRunOption::MODULE, "module",
270 "enable module-wide attributor runs"),
271 clEnumValN(AttributorRunOption::CGSCC, "cgscc",
272 "enable call graph SCC attributor runs"),
273 clEnumValN(AttributorRunOption::NONE, "none",
274 "disable attributor runs")));
276 static cl::opt<bool> UseLoopVersioningLICM(
277 "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
278 cl::desc("Enable the experimental Loop Versioning LICM pass"));
280 namespace llvm {
281 cl::opt<bool> EnableMemProfContextDisambiguation(
282 "enable-memprof-context-disambiguation", cl::init(false), cl::Hidden,
283 cl::ZeroOrMore, cl::desc("Enable MemProf context disambiguation"));
285 extern cl::opt<bool> EnableInferAlignmentPass;
286 } // namespace llvm
288 PipelineTuningOptions::PipelineTuningOptions() {
289 LoopInterleaving = true;
290 LoopVectorization = true;
291 SLPVectorization = false;
292 LoopUnrolling = true;
293 ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
294 LicmMssaOptCap = SetLicmMssaOptCap;
295 LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
296 CallGraphProfile = true;
297 UnifiedLTO = false;
298 MergeFunctions = EnableMergeFunctions;
299 InlinerThreshold = -1;
300 EagerlyInvalidateAnalyses = EnableEagerlyInvalidateAnalyses;
303 namespace llvm {
304 extern cl::opt<unsigned> MaxDevirtIterations;
305 } // namespace llvm
307 void PassBuilder::invokePeepholeEPCallbacks(FunctionPassManager &FPM,
308 OptimizationLevel Level) {
309 for (auto &C : PeepholeEPCallbacks)
310 C(FPM, Level);
312 void PassBuilder::invokeLateLoopOptimizationsEPCallbacks(
313 LoopPassManager &LPM, OptimizationLevel Level) {
314 for (auto &C : LateLoopOptimizationsEPCallbacks)
315 C(LPM, Level);
317 void PassBuilder::invokeLoopOptimizerEndEPCallbacks(LoopPassManager &LPM,
318 OptimizationLevel Level) {
319 for (auto &C : LoopOptimizerEndEPCallbacks)
320 C(LPM, Level);
322 void PassBuilder::invokeScalarOptimizerLateEPCallbacks(
323 FunctionPassManager &FPM, OptimizationLevel Level) {
324 for (auto &C : ScalarOptimizerLateEPCallbacks)
325 C(FPM, Level);
327 void PassBuilder::invokeCGSCCOptimizerLateEPCallbacks(CGSCCPassManager &CGPM,
328 OptimizationLevel Level) {
329 for (auto &C : CGSCCOptimizerLateEPCallbacks)
330 C(CGPM, Level);
332 void PassBuilder::invokeVectorizerStartEPCallbacks(FunctionPassManager &FPM,
333 OptimizationLevel Level) {
334 for (auto &C : VectorizerStartEPCallbacks)
335 C(FPM, Level);
337 void PassBuilder::invokeOptimizerEarlyEPCallbacks(ModulePassManager &MPM,
338 OptimizationLevel Level) {
339 for (auto &C : OptimizerEarlyEPCallbacks)
340 C(MPM, Level);
342 void PassBuilder::invokeOptimizerLastEPCallbacks(ModulePassManager &MPM,
343 OptimizationLevel Level) {
344 for (auto &C : OptimizerLastEPCallbacks)
345 C(MPM, Level);
347 void PassBuilder::invokeFullLinkTimeOptimizationEarlyEPCallbacks(
348 ModulePassManager &MPM, OptimizationLevel Level) {
349 for (auto &C : FullLinkTimeOptimizationEarlyEPCallbacks)
350 C(MPM, Level);
352 void PassBuilder::invokeFullLinkTimeOptimizationLastEPCallbacks(
353 ModulePassManager &MPM, OptimizationLevel Level) {
354 for (auto &C : FullLinkTimeOptimizationLastEPCallbacks)
355 C(MPM, Level);
357 void PassBuilder::invokePipelineStartEPCallbacks(ModulePassManager &MPM,
358 OptimizationLevel Level) {
359 for (auto &C : PipelineStartEPCallbacks)
360 C(MPM, Level);
362 void PassBuilder::invokePipelineEarlySimplificationEPCallbacks(
363 ModulePassManager &MPM, OptimizationLevel Level) {
364 for (auto &C : PipelineEarlySimplificationEPCallbacks)
365 C(MPM, Level);
368 // Helper to add AnnotationRemarksPass.
369 static void addAnnotationRemarksPass(ModulePassManager &MPM) {
370 MPM.addPass(createModuleToFunctionPassAdaptor(AnnotationRemarksPass()));
373 // Helper to check if the current compilation phase is preparing for LTO
374 static bool isLTOPreLink(ThinOrFullLTOPhase Phase) {
375 return Phase == ThinOrFullLTOPhase::ThinLTOPreLink ||
376 Phase == ThinOrFullLTOPhase::FullLTOPreLink;
379 // TODO: Investigate the cost/benefit of tail call elimination on debugging.
380 FunctionPassManager
381 PassBuilder::buildO1FunctionSimplificationPipeline(OptimizationLevel Level,
382 ThinOrFullLTOPhase Phase) {
384 FunctionPassManager FPM;
386 if (AreStatisticsEnabled())
387 FPM.addPass(CountVisitsPass());
389 // Form SSA out of local memory accesses after breaking apart aggregates into
390 // scalars.
391 FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
393 // Catch trivial redundancies
394 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
396 // Hoisting of scalars and load expressions.
397 FPM.addPass(
398 SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
399 FPM.addPass(InstCombinePass());
401 FPM.addPass(LibCallsShrinkWrapPass());
403 invokePeepholeEPCallbacks(FPM, Level);
405 FPM.addPass(
406 SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
408 // Form canonically associated expression trees, and simplify the trees using
409 // basic mathematical properties. For example, this will form (nearly)
410 // minimal multiplication trees.
411 FPM.addPass(ReassociatePass());
413 // Add the primary loop simplification pipeline.
414 // FIXME: Currently this is split into two loop pass pipelines because we run
415 // some function passes in between them. These can and should be removed
416 // and/or replaced by scheduling the loop pass equivalents in the correct
417 // positions. But those equivalent passes aren't powerful enough yet.
418 // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
419 // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
420 // fully replace `SimplifyCFGPass`, and the closest to the other we have is
421 // `LoopInstSimplify`.
422 LoopPassManager LPM1, LPM2;
424 // Simplify the loop body. We do this initially to clean up after other loop
425 // passes run, either when iterating on a loop or on inner loops with
426 // implications on the outer loop.
427 LPM1.addPass(LoopInstSimplifyPass());
428 LPM1.addPass(LoopSimplifyCFGPass());
430 // Try to remove as much code from the loop header as possible,
431 // to reduce amount of IR that will have to be duplicated. However,
432 // do not perform speculative hoisting the first time as LICM
433 // will destroy metadata that may not need to be destroyed if run
434 // after loop rotation.
435 // TODO: Investigate promotion cap for O1.
436 LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
437 /*AllowSpeculation=*/false));
439 LPM1.addPass(LoopRotatePass(/* Disable header duplication */ true,
440 isLTOPreLink(Phase)));
441 // TODO: Investigate promotion cap for O1.
442 LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
443 /*AllowSpeculation=*/true));
444 LPM1.addPass(SimpleLoopUnswitchPass());
445 if (EnableLoopFlatten)
446 LPM1.addPass(LoopFlattenPass());
448 LPM2.addPass(LoopIdiomRecognizePass());
449 LPM2.addPass(IndVarSimplifyPass());
451 invokeLateLoopOptimizationsEPCallbacks(LPM2, Level);
453 LPM2.addPass(LoopDeletionPass());
455 if (EnableLoopInterchange)
456 LPM2.addPass(LoopInterchangePass());
458 // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
459 // because it changes IR to makes profile annotation in back compile
460 // inaccurate. The normal unroller doesn't pay attention to forced full unroll
461 // attributes so we need to make sure and allow the full unroll pass to pay
462 // attention to it.
463 if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink || !PGOOpt ||
464 PGOOpt->Action != PGOOptions::SampleUse)
465 LPM2.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
466 /* OnlyWhenForced= */ !PTO.LoopUnrolling,
467 PTO.ForgetAllSCEVInLoopUnroll));
469 invokeLoopOptimizerEndEPCallbacks(LPM2, Level);
471 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1),
472 /*UseMemorySSA=*/true,
473 /*UseBlockFrequencyInfo=*/true));
474 FPM.addPass(
475 SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
476 FPM.addPass(InstCombinePass());
477 // The loop passes in LPM2 (LoopFullUnrollPass) do not preserve MemorySSA.
478 // *All* loop passes must preserve it, in order to be able to use it.
479 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2),
480 /*UseMemorySSA=*/false,
481 /*UseBlockFrequencyInfo=*/false));
483 // Delete small array after loop unroll.
484 FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
486 // Specially optimize memory movement as it doesn't look like dataflow in SSA.
487 FPM.addPass(MemCpyOptPass());
489 // Sparse conditional constant propagation.
490 // FIXME: It isn't clear why we do this *after* loop passes rather than
491 // before...
492 FPM.addPass(SCCPPass());
494 // Delete dead bit computations (instcombine runs after to fold away the dead
495 // computations, and then ADCE will run later to exploit any new DCE
496 // opportunities that creates).
497 FPM.addPass(BDCEPass());
499 // Run instcombine after redundancy and dead bit elimination to exploit
500 // opportunities opened up by them.
501 FPM.addPass(InstCombinePass());
502 invokePeepholeEPCallbacks(FPM, Level);
504 FPM.addPass(CoroElidePass());
506 invokeScalarOptimizerLateEPCallbacks(FPM, Level);
508 // Finally, do an expensive DCE pass to catch all the dead code exposed by
509 // the simplifications and basic cleanup after all the simplifications.
510 // TODO: Investigate if this is too expensive.
511 FPM.addPass(ADCEPass());
512 FPM.addPass(
513 SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
514 FPM.addPass(InstCombinePass());
515 invokePeepholeEPCallbacks(FPM, Level);
517 return FPM;
520 FunctionPassManager
521 PassBuilder::buildFunctionSimplificationPipeline(OptimizationLevel Level,
522 ThinOrFullLTOPhase Phase) {
523 assert(Level != OptimizationLevel::O0 && "Must request optimizations!");
525 // The O1 pipeline has a separate pipeline creation function to simplify
526 // construction readability.
527 if (Level.getSpeedupLevel() == 1)
528 return buildO1FunctionSimplificationPipeline(Level, Phase);
530 FunctionPassManager FPM;
532 if (AreStatisticsEnabled())
533 FPM.addPass(CountVisitsPass());
535 // Form SSA out of local memory accesses after breaking apart aggregates into
536 // scalars.
537 FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
539 // Catch trivial redundancies
540 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
541 if (EnableKnowledgeRetention)
542 FPM.addPass(AssumeSimplifyPass());
544 // Hoisting of scalars and load expressions.
545 if (EnableGVNHoist)
546 FPM.addPass(GVNHoistPass());
548 // Global value numbering based sinking.
549 if (EnableGVNSink) {
550 FPM.addPass(GVNSinkPass());
551 FPM.addPass(
552 SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
555 // Speculative execution if the target has divergent branches; otherwise nop.
556 FPM.addPass(SpeculativeExecutionPass(/* OnlyIfDivergentTarget =*/true));
558 // Optimize based on known information about branches, and cleanup afterward.
559 FPM.addPass(JumpThreadingPass());
560 FPM.addPass(CorrelatedValuePropagationPass());
562 FPM.addPass(
563 SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
564 FPM.addPass(InstCombinePass());
565 FPM.addPass(AggressiveInstCombinePass());
567 if (!Level.isOptimizingForSize())
568 FPM.addPass(LibCallsShrinkWrapPass());
570 invokePeepholeEPCallbacks(FPM, Level);
572 // For PGO use pipeline, try to optimize memory intrinsics such as memcpy
573 // using the size value profile. Don't perform this when optimizing for size.
574 if (PGOOpt && PGOOpt->Action == PGOOptions::IRUse &&
575 !Level.isOptimizingForSize())
576 FPM.addPass(PGOMemOPSizeOpt());
578 FPM.addPass(TailCallElimPass());
579 FPM.addPass(
580 SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
582 // Form canonically associated expression trees, and simplify the trees using
583 // basic mathematical properties. For example, this will form (nearly)
584 // minimal multiplication trees.
585 FPM.addPass(ReassociatePass());
587 if (EnableConstraintElimination)
588 FPM.addPass(ConstraintEliminationPass());
590 // Add the primary loop simplification pipeline.
591 // FIXME: Currently this is split into two loop pass pipelines because we run
592 // some function passes in between them. These can and should be removed
593 // and/or replaced by scheduling the loop pass equivalents in the correct
594 // positions. But those equivalent passes aren't powerful enough yet.
595 // Specifically, `SimplifyCFGPass` and `InstCombinePass` are currently still
596 // used. We have `LoopSimplifyCFGPass` which isn't yet powerful enough yet to
597 // fully replace `SimplifyCFGPass`, and the closest to the other we have is
598 // `LoopInstSimplify`.
599 LoopPassManager LPM1, LPM2;
601 // Simplify the loop body. We do this initially to clean up after other loop
602 // passes run, either when iterating on a loop or on inner loops with
603 // implications on the outer loop.
604 LPM1.addPass(LoopInstSimplifyPass());
605 LPM1.addPass(LoopSimplifyCFGPass());
607 // Try to remove as much code from the loop header as possible,
608 // to reduce amount of IR that will have to be duplicated. However,
609 // do not perform speculative hoisting the first time as LICM
610 // will destroy metadata that may not need to be destroyed if run
611 // after loop rotation.
612 // TODO: Investigate promotion cap for O1.
613 LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
614 /*AllowSpeculation=*/false));
616 // Disable header duplication in loop rotation at -Oz.
617 LPM1.addPass(
618 LoopRotatePass(Level != OptimizationLevel::Oz, isLTOPreLink(Phase)));
619 // TODO: Investigate promotion cap for O1.
620 LPM1.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
621 /*AllowSpeculation=*/true));
622 LPM1.addPass(
623 SimpleLoopUnswitchPass(/* NonTrivial */ Level == OptimizationLevel::O3));
624 if (EnableLoopFlatten)
625 LPM1.addPass(LoopFlattenPass());
627 LPM2.addPass(LoopIdiomRecognizePass());
628 LPM2.addPass(IndVarSimplifyPass());
630 invokeLateLoopOptimizationsEPCallbacks(LPM2, Level);
632 LPM2.addPass(LoopDeletionPass());
634 if (EnableLoopInterchange)
635 LPM2.addPass(LoopInterchangePass());
637 // Do not enable unrolling in PreLinkThinLTO phase during sample PGO
638 // because it changes IR to makes profile annotation in back compile
639 // inaccurate. The normal unroller doesn't pay attention to forced full unroll
640 // attributes so we need to make sure and allow the full unroll pass to pay
641 // attention to it.
642 if (Phase != ThinOrFullLTOPhase::ThinLTOPreLink || !PGOOpt ||
643 PGOOpt->Action != PGOOptions::SampleUse)
644 LPM2.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
645 /* OnlyWhenForced= */ !PTO.LoopUnrolling,
646 PTO.ForgetAllSCEVInLoopUnroll));
648 invokeLoopOptimizerEndEPCallbacks(LPM2, Level);
650 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM1),
651 /*UseMemorySSA=*/true,
652 /*UseBlockFrequencyInfo=*/true));
653 FPM.addPass(
654 SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
655 FPM.addPass(InstCombinePass());
656 // The loop passes in LPM2 (LoopIdiomRecognizePass, IndVarSimplifyPass,
657 // LoopDeletionPass and LoopFullUnrollPass) do not preserve MemorySSA.
658 // *All* loop passes must preserve it, in order to be able to use it.
659 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM2),
660 /*UseMemorySSA=*/false,
661 /*UseBlockFrequencyInfo=*/false));
663 // Delete small array after loop unroll.
664 FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
666 // Try vectorization/scalarization transforms that are both improvements
667 // themselves and can allow further folds with GVN and InstCombine.
668 FPM.addPass(VectorCombinePass(/*TryEarlyFoldsOnly=*/true));
670 // Eliminate redundancies.
671 FPM.addPass(MergedLoadStoreMotionPass());
672 if (RunNewGVN)
673 FPM.addPass(NewGVNPass());
674 else
675 FPM.addPass(GVNPass());
677 // Sparse conditional constant propagation.
678 // FIXME: It isn't clear why we do this *after* loop passes rather than
679 // before...
680 FPM.addPass(SCCPPass());
682 // Delete dead bit computations (instcombine runs after to fold away the dead
683 // computations, and then ADCE will run later to exploit any new DCE
684 // opportunities that creates).
685 FPM.addPass(BDCEPass());
687 // Run instcombine after redundancy and dead bit elimination to exploit
688 // opportunities opened up by them.
689 FPM.addPass(InstCombinePass());
690 invokePeepholeEPCallbacks(FPM, Level);
692 // Re-consider control flow based optimizations after redundancy elimination,
693 // redo DCE, etc.
694 if (EnableDFAJumpThreading && Level.getSizeLevel() == 0)
695 FPM.addPass(DFAJumpThreadingPass());
697 FPM.addPass(JumpThreadingPass());
698 FPM.addPass(CorrelatedValuePropagationPass());
700 // Finally, do an expensive DCE pass to catch all the dead code exposed by
701 // the simplifications and basic cleanup after all the simplifications.
702 // TODO: Investigate if this is too expensive.
703 FPM.addPass(ADCEPass());
705 // Specially optimize memory movement as it doesn't look like dataflow in SSA.
706 FPM.addPass(MemCpyOptPass());
708 FPM.addPass(DSEPass());
709 FPM.addPass(MoveAutoInitPass());
711 FPM.addPass(createFunctionToLoopPassAdaptor(
712 LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
713 /*AllowSpeculation=*/true),
714 /*UseMemorySSA=*/true, /*UseBlockFrequencyInfo=*/false));
716 FPM.addPass(CoroElidePass());
718 invokeScalarOptimizerLateEPCallbacks(FPM, Level);
720 FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions()
721 .convertSwitchRangeToICmp(true)
722 .hoistCommonInsts(true)
723 .sinkCommonInsts(true)));
724 FPM.addPass(InstCombinePass());
725 invokePeepholeEPCallbacks(FPM, Level);
727 return FPM;
730 void PassBuilder::addRequiredLTOPreLinkPasses(ModulePassManager &MPM) {
731 MPM.addPass(CanonicalizeAliasesPass());
732 MPM.addPass(NameAnonGlobalPass());
735 void PassBuilder::addPreInlinerPasses(ModulePassManager &MPM,
736 OptimizationLevel Level,
737 ThinOrFullLTOPhase LTOPhase) {
738 assert(Level != OptimizationLevel::O0 && "Not expecting O0 here!");
739 if (DisablePreInliner)
740 return;
741 InlineParams IP;
743 IP.DefaultThreshold = PreInlineThreshold;
745 // FIXME: The hint threshold has the same value used by the regular inliner
746 // when not optimzing for size. This should probably be lowered after
747 // performance testing.
748 // FIXME: this comment is cargo culted from the old pass manager, revisit).
749 IP.HintThreshold = Level.isOptimizingForSize() ? PreInlineThreshold : 325;
750 ModuleInlinerWrapperPass MIWP(
751 IP, /* MandatoryFirst */ true,
752 InlineContext{LTOPhase, InlinePass::EarlyInliner});
753 CGSCCPassManager &CGPipeline = MIWP.getPM();
755 FunctionPassManager FPM;
756 FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
757 FPM.addPass(EarlyCSEPass()); // Catch trivial redundancies.
758 FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
759 true))); // Merge & remove basic blocks.
760 FPM.addPass(InstCombinePass()); // Combine silly sequences.
761 invokePeepholeEPCallbacks(FPM, Level);
763 CGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
764 std::move(FPM), PTO.EagerlyInvalidateAnalyses));
766 MPM.addPass(std::move(MIWP));
768 // Delete anything that is now dead to make sure that we don't instrument
769 // dead code. Instrumentation can end up keeping dead code around and
770 // dramatically increase code size.
771 MPM.addPass(GlobalDCEPass());
774 void PassBuilder::addPGOInstrPasses(ModulePassManager &MPM,
775 OptimizationLevel Level, bool RunProfileGen,
776 bool IsCS, bool AtomicCounterUpdate,
777 std::string ProfileFile,
778 std::string ProfileRemappingFile,
779 IntrusiveRefCntPtr<vfs::FileSystem> FS) {
780 assert(Level != OptimizationLevel::O0 && "Not expecting O0 here!");
782 if (!RunProfileGen) {
783 assert(!ProfileFile.empty() && "Profile use expecting a profile file!");
784 MPM.addPass(
785 PGOInstrumentationUse(ProfileFile, ProfileRemappingFile, IsCS, FS));
786 // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
787 // RequireAnalysisPass for PSI before subsequent non-module passes.
788 MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
789 return;
792 // Perform PGO instrumentation.
793 MPM.addPass(PGOInstrumentationGen(IsCS));
795 if (EnablePostPGOLoopRotation) {
796 // Disable header duplication in loop rotation at -Oz.
797 MPM.addPass(createModuleToFunctionPassAdaptor(
798 createFunctionToLoopPassAdaptor(
799 LoopRotatePass(Level != OptimizationLevel::Oz),
800 /*UseMemorySSA=*/false,
801 /*UseBlockFrequencyInfo=*/false),
802 PTO.EagerlyInvalidateAnalyses));
805 // Add the profile lowering pass.
806 InstrProfOptions Options;
807 if (!ProfileFile.empty())
808 Options.InstrProfileOutput = ProfileFile;
809 // Do counter promotion at Level greater than O0.
810 Options.DoCounterPromotion = true;
811 Options.UseBFIInPromotion = IsCS;
812 Options.Atomic = AtomicCounterUpdate;
813 MPM.addPass(InstrProfilingLoweringPass(Options, IsCS));
816 void PassBuilder::addPGOInstrPassesForO0(
817 ModulePassManager &MPM, bool RunProfileGen, bool IsCS,
818 bool AtomicCounterUpdate, std::string ProfileFile,
819 std::string ProfileRemappingFile, IntrusiveRefCntPtr<vfs::FileSystem> FS) {
820 if (!RunProfileGen) {
821 assert(!ProfileFile.empty() && "Profile use expecting a profile file!");
822 MPM.addPass(
823 PGOInstrumentationUse(ProfileFile, ProfileRemappingFile, IsCS, FS));
824 // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
825 // RequireAnalysisPass for PSI before subsequent non-module passes.
826 MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
827 return;
830 // Perform PGO instrumentation.
831 MPM.addPass(PGOInstrumentationGen(IsCS));
832 // Add the profile lowering pass.
833 InstrProfOptions Options;
834 if (!ProfileFile.empty())
835 Options.InstrProfileOutput = ProfileFile;
836 // Do not do counter promotion at O0.
837 Options.DoCounterPromotion = false;
838 Options.UseBFIInPromotion = IsCS;
839 Options.Atomic = AtomicCounterUpdate;
840 MPM.addPass(InstrProfilingLoweringPass(Options, IsCS));
843 static InlineParams getInlineParamsFromOptLevel(OptimizationLevel Level) {
844 return getInlineParams(Level.getSpeedupLevel(), Level.getSizeLevel());
847 ModuleInlinerWrapperPass
848 PassBuilder::buildInlinerPipeline(OptimizationLevel Level,
849 ThinOrFullLTOPhase Phase) {
850 InlineParams IP;
851 if (PTO.InlinerThreshold == -1)
852 IP = getInlineParamsFromOptLevel(Level);
853 else
854 IP = getInlineParams(PTO.InlinerThreshold);
855 // For PreLinkThinLTO + SamplePGO, set hot-caller threshold to 0 to
856 // disable hot callsite inline (as much as possible [1]) because it makes
857 // profile annotation in the backend inaccurate.
859 // [1] Note the cost of a function could be below zero due to erased
860 // prologue / epilogue.
861 if (Phase == ThinOrFullLTOPhase::ThinLTOPreLink && PGOOpt &&
862 PGOOpt->Action == PGOOptions::SampleUse)
863 IP.HotCallSiteThreshold = 0;
865 if (PGOOpt)
866 IP.EnableDeferral = EnablePGOInlineDeferral;
868 ModuleInlinerWrapperPass MIWP(IP, PerformMandatoryInliningsFirst,
869 InlineContext{Phase, InlinePass::CGSCCInliner},
870 UseInlineAdvisor, MaxDevirtIterations);
872 // Require the GlobalsAA analysis for the module so we can query it within
873 // the CGSCC pipeline.
874 if (EnableGlobalAnalyses) {
875 MIWP.addModulePass(RequireAnalysisPass<GlobalsAA, Module>());
876 // Invalidate AAManager so it can be recreated and pick up the newly
877 // available GlobalsAA.
878 MIWP.addModulePass(
879 createModuleToFunctionPassAdaptor(InvalidateAnalysisPass<AAManager>()));
882 // Require the ProfileSummaryAnalysis for the module so we can query it within
883 // the inliner pass.
884 MIWP.addModulePass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
886 // Now begin the main postorder CGSCC pipeline.
887 // FIXME: The current CGSCC pipeline has its origins in the legacy pass
888 // manager and trying to emulate its precise behavior. Much of this doesn't
889 // make a lot of sense and we should revisit the core CGSCC structure.
890 CGSCCPassManager &MainCGPipeline = MIWP.getPM();
892 // Note: historically, the PruneEH pass was run first to deduce nounwind and
893 // generally clean up exception handling overhead. It isn't clear this is
894 // valuable as the inliner doesn't currently care whether it is inlining an
895 // invoke or a call.
897 if (AttributorRun & AttributorRunOption::CGSCC)
898 MainCGPipeline.addPass(AttributorCGSCCPass());
900 // Deduce function attributes. We do another run of this after the function
901 // simplification pipeline, so this only needs to run when it could affect the
902 // function simplification pipeline, which is only the case with recursive
903 // functions.
904 MainCGPipeline.addPass(PostOrderFunctionAttrsPass(/*SkipNonRecursive*/ true));
906 // When at O3 add argument promotion to the pass pipeline.
907 // FIXME: It isn't at all clear why this should be limited to O3.
908 if (Level == OptimizationLevel::O3)
909 MainCGPipeline.addPass(ArgumentPromotionPass());
911 // Try to perform OpenMP specific optimizations. This is a (quick!) no-op if
912 // there are no OpenMP runtime calls present in the module.
913 if (Level == OptimizationLevel::O2 || Level == OptimizationLevel::O3)
914 MainCGPipeline.addPass(OpenMPOptCGSCCPass());
916 invokeCGSCCOptimizerLateEPCallbacks(MainCGPipeline, Level);
918 // Add the core function simplification pipeline nested inside the
919 // CGSCC walk.
920 MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
921 buildFunctionSimplificationPipeline(Level, Phase),
922 PTO.EagerlyInvalidateAnalyses, /*NoRerun=*/true));
924 // Finally, deduce any function attributes based on the fully simplified
925 // function.
926 MainCGPipeline.addPass(PostOrderFunctionAttrsPass());
928 // Mark that the function is fully simplified and that it shouldn't be
929 // simplified again if we somehow revisit it due to CGSCC mutations unless
930 // it's been modified since.
931 MainCGPipeline.addPass(createCGSCCToFunctionPassAdaptor(
932 RequireAnalysisPass<ShouldNotRunFunctionPassesAnalysis, Function>()));
934 MainCGPipeline.addPass(CoroSplitPass(Level != OptimizationLevel::O0));
936 // Make sure we don't affect potential future NoRerun CGSCC adaptors.
937 MIWP.addLateModulePass(createModuleToFunctionPassAdaptor(
938 InvalidateAnalysisPass<ShouldNotRunFunctionPassesAnalysis>()));
940 return MIWP;
943 ModulePassManager
944 PassBuilder::buildModuleInlinerPipeline(OptimizationLevel Level,
945 ThinOrFullLTOPhase Phase) {
946 ModulePassManager MPM;
948 InlineParams IP = getInlineParamsFromOptLevel(Level);
949 // For PreLinkThinLTO + SamplePGO, set hot-caller threshold to 0 to
950 // disable hot callsite inline (as much as possible [1]) because it makes
951 // profile annotation in the backend inaccurate.
953 // [1] Note the cost of a function could be below zero due to erased
954 // prologue / epilogue.
955 if (Phase == ThinOrFullLTOPhase::ThinLTOPreLink && PGOOpt &&
956 PGOOpt->Action == PGOOptions::SampleUse)
957 IP.HotCallSiteThreshold = 0;
959 if (PGOOpt)
960 IP.EnableDeferral = EnablePGOInlineDeferral;
962 // The inline deferral logic is used to avoid losing some
963 // inlining chance in future. It is helpful in SCC inliner, in which
964 // inlining is processed in bottom-up order.
965 // While in module inliner, the inlining order is a priority-based order
966 // by default. The inline deferral is unnecessary there. So we disable the
967 // inline deferral logic in module inliner.
968 IP.EnableDeferral = false;
970 MPM.addPass(ModuleInlinerPass(IP, UseInlineAdvisor, Phase));
972 MPM.addPass(createModuleToFunctionPassAdaptor(
973 buildFunctionSimplificationPipeline(Level, Phase),
974 PTO.EagerlyInvalidateAnalyses));
976 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
977 CoroSplitPass(Level != OptimizationLevel::O0)));
979 return MPM;
982 ModulePassManager
983 PassBuilder::buildModuleSimplificationPipeline(OptimizationLevel Level,
984 ThinOrFullLTOPhase Phase) {
985 assert(Level != OptimizationLevel::O0 &&
986 "Should not be used for O0 pipeline");
988 assert(Phase != ThinOrFullLTOPhase::FullLTOPostLink &&
989 "FullLTOPostLink shouldn't call buildModuleSimplificationPipeline!");
991 ModulePassManager MPM;
993 // Place pseudo probe instrumentation as the first pass of the pipeline to
994 // minimize the impact of optimization changes.
995 if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
996 Phase != ThinOrFullLTOPhase::ThinLTOPostLink)
997 MPM.addPass(SampleProfileProbePass(TM));
999 bool HasSampleProfile = PGOOpt && (PGOOpt->Action == PGOOptions::SampleUse);
1001 // In ThinLTO mode, when flattened profile is used, all the available
1002 // profile information will be annotated in PreLink phase so there is
1003 // no need to load the profile again in PostLink.
1004 bool LoadSampleProfile =
1005 HasSampleProfile &&
1006 !(FlattenedProfileUsed && Phase == ThinOrFullLTOPhase::ThinLTOPostLink);
1008 // During the ThinLTO backend phase we perform early indirect call promotion
1009 // here, before globalopt. Otherwise imported available_externally functions
1010 // look unreferenced and are removed. If we are going to load the sample
1011 // profile then defer until later.
1012 // TODO: See if we can move later and consolidate with the location where
1013 // we perform ICP when we are loading a sample profile.
1014 // TODO: We pass HasSampleProfile (whether there was a sample profile file
1015 // passed to the compile) to the SamplePGO flag of ICP. This is used to
1016 // determine whether the new direct calls are annotated with prof metadata.
1017 // Ideally this should be determined from whether the IR is annotated with
1018 // sample profile, and not whether the a sample profile was provided on the
1019 // command line. E.g. for flattened profiles where we will not be reloading
1020 // the sample profile in the ThinLTO backend, we ideally shouldn't have to
1021 // provide the sample profile file.
1022 if (Phase == ThinOrFullLTOPhase::ThinLTOPostLink && !LoadSampleProfile)
1023 MPM.addPass(PGOIndirectCallPromotion(true /* InLTO */, HasSampleProfile));
1025 // Create an early function pass manager to cleanup the output of the
1026 // frontend. Not necessary with LTO post link pipelines since the pre link
1027 // pipeline already cleaned up the frontend output.
1028 if (Phase != ThinOrFullLTOPhase::ThinLTOPostLink) {
1029 // Do basic inference of function attributes from known properties of system
1030 // libraries and other oracles.
1031 MPM.addPass(InferFunctionAttrsPass());
1032 MPM.addPass(CoroEarlyPass());
1034 FunctionPassManager EarlyFPM;
1035 // Lower llvm.expect to metadata before attempting transforms.
1036 // Compare/branch metadata may alter the behavior of passes like
1037 // SimplifyCFG.
1038 EarlyFPM.addPass(LowerExpectIntrinsicPass());
1039 EarlyFPM.addPass(SimplifyCFGPass());
1040 EarlyFPM.addPass(SROAPass(SROAOptions::ModifyCFG));
1041 EarlyFPM.addPass(EarlyCSEPass());
1042 if (Level == OptimizationLevel::O3)
1043 EarlyFPM.addPass(CallSiteSplittingPass());
1044 MPM.addPass(createModuleToFunctionPassAdaptor(
1045 std::move(EarlyFPM), PTO.EagerlyInvalidateAnalyses));
1048 if (LoadSampleProfile) {
1049 // Annotate sample profile right after early FPM to ensure freshness of
1050 // the debug info.
1051 MPM.addPass(SampleProfileLoaderPass(PGOOpt->ProfileFile,
1052 PGOOpt->ProfileRemappingFile, Phase));
1053 // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
1054 // RequireAnalysisPass for PSI before subsequent non-module passes.
1055 MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
1056 // Do not invoke ICP in the LTOPrelink phase as it makes it hard
1057 // for the profile annotation to be accurate in the LTO backend.
1058 if (!isLTOPreLink(Phase))
1059 // We perform early indirect call promotion here, before globalopt.
1060 // This is important for the ThinLTO backend phase because otherwise
1061 // imported available_externally functions look unreferenced and are
1062 // removed.
1063 MPM.addPass(
1064 PGOIndirectCallPromotion(true /* IsInLTO */, true /* SamplePGO */));
1067 // Try to perform OpenMP specific optimizations on the module. This is a
1068 // (quick!) no-op if there are no OpenMP runtime calls present in the module.
1069 MPM.addPass(OpenMPOptPass());
1071 if (AttributorRun & AttributorRunOption::MODULE)
1072 MPM.addPass(AttributorPass());
1074 // Lower type metadata and the type.test intrinsic in the ThinLTO
1075 // post link pipeline after ICP. This is to enable usage of the type
1076 // tests in ICP sequences.
1077 if (Phase == ThinOrFullLTOPhase::ThinLTOPostLink)
1078 MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1080 invokePipelineEarlySimplificationEPCallbacks(MPM, Level);
1082 // Interprocedural constant propagation now that basic cleanup has occurred
1083 // and prior to optimizing globals.
1084 // FIXME: This position in the pipeline hasn't been carefully considered in
1085 // years, it should be re-analyzed.
1086 MPM.addPass(IPSCCPPass(
1087 IPSCCPOptions(/*AllowFuncSpec=*/
1088 Level != OptimizationLevel::Os &&
1089 Level != OptimizationLevel::Oz &&
1090 !isLTOPreLink(Phase))));
1092 // Attach metadata to indirect call sites indicating the set of functions
1093 // they may target at run-time. This should follow IPSCCP.
1094 MPM.addPass(CalledValuePropagationPass());
1096 // Optimize globals to try and fold them into constants.
1097 MPM.addPass(GlobalOptPass());
1099 // Create a small function pass pipeline to cleanup after all the global
1100 // optimizations.
1101 FunctionPassManager GlobalCleanupPM;
1102 // FIXME: Should this instead by a run of SROA?
1103 GlobalCleanupPM.addPass(PromotePass());
1104 GlobalCleanupPM.addPass(InstCombinePass());
1105 invokePeepholeEPCallbacks(GlobalCleanupPM, Level);
1106 GlobalCleanupPM.addPass(
1107 SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
1108 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(GlobalCleanupPM),
1109 PTO.EagerlyInvalidateAnalyses));
1111 // Invoke the pre-inliner passes for instrumentation PGO or MemProf.
1112 if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
1113 (PGOOpt->Action == PGOOptions::IRInstr ||
1114 PGOOpt->Action == PGOOptions::IRUse || !PGOOpt->MemoryProfile.empty()))
1115 addPreInlinerPasses(MPM, Level, Phase);
1117 // Add all the requested passes for instrumentation PGO, if requested.
1118 if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
1119 (PGOOpt->Action == PGOOptions::IRInstr ||
1120 PGOOpt->Action == PGOOptions::IRUse)) {
1121 addPGOInstrPasses(MPM, Level,
1122 /*RunProfileGen=*/PGOOpt->Action == PGOOptions::IRInstr,
1123 /*IsCS=*/false, PGOOpt->AtomicCounterUpdate,
1124 PGOOpt->ProfileFile, PGOOpt->ProfileRemappingFile,
1125 PGOOpt->FS);
1126 MPM.addPass(PGOIndirectCallPromotion(false, false));
1128 if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
1129 PGOOpt->CSAction == PGOOptions::CSIRInstr)
1130 MPM.addPass(PGOInstrumentationGenCreateVar(PGOOpt->CSProfileGenFile));
1132 if (PGOOpt && Phase != ThinOrFullLTOPhase::ThinLTOPostLink &&
1133 !PGOOpt->MemoryProfile.empty())
1134 MPM.addPass(MemProfUsePass(PGOOpt->MemoryProfile, PGOOpt->FS));
1136 // Synthesize function entry counts for non-PGO compilation.
1137 if (EnableSyntheticCounts && !PGOOpt)
1138 MPM.addPass(SyntheticCountsPropagation());
1140 MPM.addPass(AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/true));
1142 if (EnableModuleInliner)
1143 MPM.addPass(buildModuleInlinerPipeline(Level, Phase));
1144 else
1145 MPM.addPass(buildInlinerPipeline(Level, Phase));
1147 // Remove any dead arguments exposed by cleanups, constant folding globals,
1148 // and argument promotion.
1149 MPM.addPass(DeadArgumentEliminationPass());
1151 MPM.addPass(CoroCleanupPass());
1153 // Optimize globals now that functions are fully simplified.
1154 MPM.addPass(GlobalOptPass());
1155 MPM.addPass(GlobalDCEPass());
1157 return MPM;
1160 /// TODO: Should LTO cause any differences to this set of passes?
1161 void PassBuilder::addVectorPasses(OptimizationLevel Level,
1162 FunctionPassManager &FPM, bool IsFullLTO) {
1163 FPM.addPass(LoopVectorizePass(
1164 LoopVectorizeOptions(!PTO.LoopInterleaving, !PTO.LoopVectorization)));
1166 if (EnableInferAlignmentPass)
1167 FPM.addPass(InferAlignmentPass());
1168 if (IsFullLTO) {
1169 // The vectorizer may have significantly shortened a loop body; unroll
1170 // again. Unroll small loops to hide loop backedge latency and saturate any
1171 // parallel execution resources of an out-of-order processor. We also then
1172 // need to clean up redundancies and loop invariant code.
1173 // FIXME: It would be really good to use a loop-integrated instruction
1174 // combiner for cleanup here so that the unrolling and LICM can be pipelined
1175 // across the loop nests.
1176 // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
1177 if (EnableUnrollAndJam && PTO.LoopUnrolling)
1178 FPM.addPass(createFunctionToLoopPassAdaptor(
1179 LoopUnrollAndJamPass(Level.getSpeedupLevel())));
1180 FPM.addPass(LoopUnrollPass(LoopUnrollOptions(
1181 Level.getSpeedupLevel(), /*OnlyWhenForced=*/!PTO.LoopUnrolling,
1182 PTO.ForgetAllSCEVInLoopUnroll)));
1183 FPM.addPass(WarnMissedTransformationsPass());
1184 // Now that we are done with loop unrolling, be it either by LoopVectorizer,
1185 // or LoopUnroll passes, some variable-offset GEP's into alloca's could have
1186 // become constant-offset, thus enabling SROA and alloca promotion. Do so.
1187 // NOTE: we are very late in the pipeline, and we don't have any LICM
1188 // or SimplifyCFG passes scheduled after us, that would cleanup
1189 // the CFG mess this may created if allowed to modify CFG, so forbid that.
1190 FPM.addPass(SROAPass(SROAOptions::PreserveCFG));
1193 if (!IsFullLTO) {
1194 // Eliminate loads by forwarding stores from the previous iteration to loads
1195 // of the current iteration.
1196 FPM.addPass(LoopLoadEliminationPass());
1198 // Cleanup after the loop optimization passes.
1199 FPM.addPass(InstCombinePass());
1201 if (Level.getSpeedupLevel() > 1 && ExtraVectorizerPasses) {
1202 ExtraVectorPassManager ExtraPasses;
1203 // At higher optimization levels, try to clean up any runtime overlap and
1204 // alignment checks inserted by the vectorizer. We want to track correlated
1205 // runtime checks for two inner loops in the same outer loop, fold any
1206 // common computations, hoist loop-invariant aspects out of any outer loop,
1207 // and unswitch the runtime checks if possible. Once hoisted, we may have
1208 // dead (or speculatable) control flows or more combining opportunities.
1209 ExtraPasses.addPass(EarlyCSEPass());
1210 ExtraPasses.addPass(CorrelatedValuePropagationPass());
1211 ExtraPasses.addPass(InstCombinePass());
1212 LoopPassManager LPM;
1213 LPM.addPass(LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1214 /*AllowSpeculation=*/true));
1215 LPM.addPass(SimpleLoopUnswitchPass(/* NonTrivial */ Level ==
1216 OptimizationLevel::O3));
1217 ExtraPasses.addPass(
1218 createFunctionToLoopPassAdaptor(std::move(LPM), /*UseMemorySSA=*/true,
1219 /*UseBlockFrequencyInfo=*/true));
1220 ExtraPasses.addPass(
1221 SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
1222 ExtraPasses.addPass(InstCombinePass());
1223 FPM.addPass(std::move(ExtraPasses));
1226 // Now that we've formed fast to execute loop structures, we do further
1227 // optimizations. These are run afterward as they might block doing complex
1228 // analyses and transforms such as what are needed for loop vectorization.
1230 // Cleanup after loop vectorization, etc. Simplification passes like CVP and
1231 // GVN, loop transforms, and others have already run, so it's now better to
1232 // convert to more optimized IR using more aggressive simplify CFG options.
1233 // The extra sinking transform can create larger basic blocks, so do this
1234 // before SLP vectorization.
1235 FPM.addPass(SimplifyCFGPass(SimplifyCFGOptions()
1236 .forwardSwitchCondToPhi(true)
1237 .convertSwitchRangeToICmp(true)
1238 .convertSwitchToLookupTable(true)
1239 .needCanonicalLoops(false)
1240 .hoistCommonInsts(true)
1241 .sinkCommonInsts(true)));
1243 if (IsFullLTO) {
1244 FPM.addPass(SCCPPass());
1245 FPM.addPass(InstCombinePass());
1246 FPM.addPass(BDCEPass());
1249 // Optimize parallel scalar instruction chains into SIMD instructions.
1250 if (PTO.SLPVectorization) {
1251 FPM.addPass(SLPVectorizerPass());
1252 if (Level.getSpeedupLevel() > 1 && ExtraVectorizerPasses) {
1253 FPM.addPass(EarlyCSEPass());
1256 // Enhance/cleanup vector code.
1257 FPM.addPass(VectorCombinePass());
1259 if (!IsFullLTO) {
1260 FPM.addPass(InstCombinePass());
1261 // Unroll small loops to hide loop backedge latency and saturate any
1262 // parallel execution resources of an out-of-order processor. We also then
1263 // need to clean up redundancies and loop invariant code.
1264 // FIXME: It would be really good to use a loop-integrated instruction
1265 // combiner for cleanup here so that the unrolling and LICM can be pipelined
1266 // across the loop nests.
1267 // We do UnrollAndJam in a separate LPM to ensure it happens before unroll
1268 if (EnableUnrollAndJam && PTO.LoopUnrolling) {
1269 FPM.addPass(createFunctionToLoopPassAdaptor(
1270 LoopUnrollAndJamPass(Level.getSpeedupLevel())));
1272 FPM.addPass(LoopUnrollPass(LoopUnrollOptions(
1273 Level.getSpeedupLevel(), /*OnlyWhenForced=*/!PTO.LoopUnrolling,
1274 PTO.ForgetAllSCEVInLoopUnroll)));
1275 FPM.addPass(WarnMissedTransformationsPass());
1276 // Now that we are done with loop unrolling, be it either by LoopVectorizer,
1277 // or LoopUnroll passes, some variable-offset GEP's into alloca's could have
1278 // become constant-offset, thus enabling SROA and alloca promotion. Do so.
1279 // NOTE: we are very late in the pipeline, and we don't have any LICM
1280 // or SimplifyCFG passes scheduled after us, that would cleanup
1281 // the CFG mess this may created if allowed to modify CFG, so forbid that.
1282 FPM.addPass(SROAPass(SROAOptions::PreserveCFG));
1285 if (EnableInferAlignmentPass)
1286 FPM.addPass(InferAlignmentPass());
1287 FPM.addPass(InstCombinePass());
1289 // This is needed for two reasons:
1290 // 1. It works around problems that instcombine introduces, such as sinking
1291 // expensive FP divides into loops containing multiplications using the
1292 // divide result.
1293 // 2. It helps to clean up some loop-invariant code created by the loop
1294 // unroll pass when IsFullLTO=false.
1295 FPM.addPass(createFunctionToLoopPassAdaptor(
1296 LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1297 /*AllowSpeculation=*/true),
1298 /*UseMemorySSA=*/true, /*UseBlockFrequencyInfo=*/false));
1300 // Now that we've vectorized and unrolled loops, we may have more refined
1301 // alignment information, try to re-derive it here.
1302 FPM.addPass(AlignmentFromAssumptionsPass());
1305 ModulePassManager
1306 PassBuilder::buildModuleOptimizationPipeline(OptimizationLevel Level,
1307 ThinOrFullLTOPhase LTOPhase) {
1308 const bool LTOPreLink = isLTOPreLink(LTOPhase);
1309 ModulePassManager MPM;
1311 // Run partial inlining pass to partially inline functions that have
1312 // large bodies.
1313 if (RunPartialInlining)
1314 MPM.addPass(PartialInlinerPass());
1316 // Remove avail extern fns and globals definitions since we aren't compiling
1317 // an object file for later LTO. For LTO we want to preserve these so they
1318 // are eligible for inlining at link-time. Note if they are unreferenced they
1319 // will be removed by GlobalDCE later, so this only impacts referenced
1320 // available externally globals. Eventually they will be suppressed during
1321 // codegen, but eliminating here enables more opportunity for GlobalDCE as it
1322 // may make globals referenced by available external functions dead and saves
1323 // running remaining passes on the eliminated functions. These should be
1324 // preserved during prelinking for link-time inlining decisions.
1325 if (!LTOPreLink)
1326 MPM.addPass(EliminateAvailableExternallyPass());
1328 if (EnableOrderFileInstrumentation)
1329 MPM.addPass(InstrOrderFilePass());
1331 // Do RPO function attribute inference across the module to forward-propagate
1332 // attributes where applicable.
1333 // FIXME: Is this really an optimization rather than a canonicalization?
1334 MPM.addPass(ReversePostOrderFunctionAttrsPass());
1336 // Do a post inline PGO instrumentation and use pass. This is a context
1337 // sensitive PGO pass. We don't want to do this in LTOPreLink phrase as
1338 // cross-module inline has not been done yet. The context sensitive
1339 // instrumentation is after all the inlines are done.
1340 if (!LTOPreLink && PGOOpt) {
1341 if (PGOOpt->CSAction == PGOOptions::CSIRInstr)
1342 addPGOInstrPasses(MPM, Level, /*RunProfileGen=*/true,
1343 /*IsCS=*/true, PGOOpt->AtomicCounterUpdate,
1344 PGOOpt->CSProfileGenFile, PGOOpt->ProfileRemappingFile,
1345 PGOOpt->FS);
1346 else if (PGOOpt->CSAction == PGOOptions::CSIRUse)
1347 addPGOInstrPasses(MPM, Level, /*RunProfileGen=*/false,
1348 /*IsCS=*/true, PGOOpt->AtomicCounterUpdate,
1349 PGOOpt->ProfileFile, PGOOpt->ProfileRemappingFile,
1350 PGOOpt->FS);
1353 // Re-compute GlobalsAA here prior to function passes. This is particularly
1354 // useful as the above will have inlined, DCE'ed, and function-attr
1355 // propagated everything. We should at this point have a reasonably minimal
1356 // and richly annotated call graph. By computing aliasing and mod/ref
1357 // information for all local globals here, the late loop passes and notably
1358 // the vectorizer will be able to use them to help recognize vectorizable
1359 // memory operations.
1360 if (EnableGlobalAnalyses)
1361 MPM.addPass(RecomputeGlobalsAAPass());
1363 invokeOptimizerEarlyEPCallbacks(MPM, Level);
1365 FunctionPassManager OptimizePM;
1366 // Scheduling LoopVersioningLICM when inlining is over, because after that
1367 // we may see more accurate aliasing. Reason to run this late is that too
1368 // early versioning may prevent further inlining due to increase of code
1369 // size. Other optimizations which runs later might get benefit of no-alias
1370 // assumption in clone loop.
1371 if (UseLoopVersioningLICM) {
1372 OptimizePM.addPass(
1373 createFunctionToLoopPassAdaptor(LoopVersioningLICMPass()));
1374 // LoopVersioningLICM pass might increase new LICM opportunities.
1375 OptimizePM.addPass(createFunctionToLoopPassAdaptor(
1376 LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1377 /*AllowSpeculation=*/true),
1378 /*USeMemorySSA=*/true, /*UseBlockFrequencyInfo=*/false));
1381 OptimizePM.addPass(Float2IntPass());
1382 OptimizePM.addPass(LowerConstantIntrinsicsPass());
1384 if (EnableMatrix) {
1385 OptimizePM.addPass(LowerMatrixIntrinsicsPass());
1386 OptimizePM.addPass(EarlyCSEPass());
1389 // CHR pass should only be applied with the profile information.
1390 // The check is to check the profile summary information in CHR.
1391 if (EnableCHR && Level == OptimizationLevel::O3)
1392 OptimizePM.addPass(ControlHeightReductionPass());
1394 // FIXME: We need to run some loop optimizations to re-rotate loops after
1395 // simplifycfg and others undo their rotation.
1397 // Optimize the loop execution. These passes operate on entire loop nests
1398 // rather than on each loop in an inside-out manner, and so they are actually
1399 // function passes.
1401 invokeVectorizerStartEPCallbacks(OptimizePM, Level);
1403 LoopPassManager LPM;
1404 // First rotate loops that may have been un-rotated by prior passes.
1405 // Disable header duplication at -Oz.
1406 LPM.addPass(LoopRotatePass(Level != OptimizationLevel::Oz, LTOPreLink));
1407 // Some loops may have become dead by now. Try to delete them.
1408 // FIXME: see discussion in https://reviews.llvm.org/D112851,
1409 // this may need to be revisited once we run GVN before loop deletion
1410 // in the simplification pipeline.
1411 LPM.addPass(LoopDeletionPass());
1412 OptimizePM.addPass(createFunctionToLoopPassAdaptor(
1413 std::move(LPM), /*UseMemorySSA=*/false, /*UseBlockFrequencyInfo=*/false));
1415 // Distribute loops to allow partial vectorization. I.e. isolate dependences
1416 // into separate loop that would otherwise inhibit vectorization. This is
1417 // currently only performed for loops marked with the metadata
1418 // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
1419 OptimizePM.addPass(LoopDistributePass());
1421 // Populates the VFABI attribute with the scalar-to-vector mappings
1422 // from the TargetLibraryInfo.
1423 OptimizePM.addPass(InjectTLIMappings());
1425 addVectorPasses(Level, OptimizePM, /* IsFullLTO */ false);
1427 // LoopSink pass sinks instructions hoisted by LICM, which serves as a
1428 // canonicalization pass that enables other optimizations. As a result,
1429 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
1430 // result too early.
1431 OptimizePM.addPass(LoopSinkPass());
1433 // And finally clean up LCSSA form before generating code.
1434 OptimizePM.addPass(InstSimplifyPass());
1436 // This hoists/decomposes div/rem ops. It should run after other sink/hoist
1437 // passes to avoid re-sinking, but before SimplifyCFG because it can allow
1438 // flattening of blocks.
1439 OptimizePM.addPass(DivRemPairsPass());
1441 // Try to annotate calls that were created during optimization.
1442 OptimizePM.addPass(TailCallElimPass());
1444 // LoopSink (and other loop passes since the last simplifyCFG) might have
1445 // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
1446 OptimizePM.addPass(
1447 SimplifyCFGPass(SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
1449 // Add the core optimizing pipeline.
1450 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(OptimizePM),
1451 PTO.EagerlyInvalidateAnalyses));
1453 invokeOptimizerLastEPCallbacks(MPM, Level);
1455 // Split out cold code. Splitting is done late to avoid hiding context from
1456 // other optimizations and inadvertently regressing performance. The tradeoff
1457 // is that this has a higher code size cost than splitting early.
1458 if (EnableHotColdSplit && !LTOPreLink)
1459 MPM.addPass(HotColdSplittingPass());
1461 // Search the code for similar regions of code. If enough similar regions can
1462 // be found where extracting the regions into their own function will decrease
1463 // the size of the program, we extract the regions, a deduplicate the
1464 // structurally similar regions.
1465 if (EnableIROutliner)
1466 MPM.addPass(IROutlinerPass());
1468 // Merge functions if requested.
1469 if (PTO.MergeFunctions)
1470 MPM.addPass(MergeFunctionsPass());
1472 // Now we need to do some global optimization transforms.
1473 // FIXME: It would seem like these should come first in the optimization
1474 // pipeline and maybe be the bottom of the canonicalization pipeline? Weird
1475 // ordering here.
1476 MPM.addPass(GlobalDCEPass());
1477 MPM.addPass(ConstantMergePass());
1479 if (PTO.CallGraphProfile && !LTOPreLink)
1480 MPM.addPass(CGProfilePass(LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink ||
1481 LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink));
1483 // TODO: Relative look table converter pass caused an issue when full lto is
1484 // enabled. See https://reviews.llvm.org/D94355 for more details.
1485 // Until the issue fixed, disable this pass during pre-linking phase.
1486 if (!LTOPreLink)
1487 MPM.addPass(RelLookupTableConverterPass());
1489 return MPM;
1492 ModulePassManager
1493 PassBuilder::buildPerModuleDefaultPipeline(OptimizationLevel Level,
1494 bool LTOPreLink) {
1495 if (Level == OptimizationLevel::O0)
1496 return buildO0DefaultPipeline(Level, LTOPreLink);
1498 ModulePassManager MPM;
1500 // Convert @llvm.global.annotations to !annotation metadata.
1501 MPM.addPass(Annotation2MetadataPass());
1503 // Force any function attributes we want the rest of the pipeline to observe.
1504 MPM.addPass(ForceFunctionAttrsPass());
1506 if (PGOOpt && PGOOpt->DebugInfoForProfiling)
1507 MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
1509 // Apply module pipeline start EP callback.
1510 invokePipelineStartEPCallbacks(MPM, Level);
1512 const ThinOrFullLTOPhase LTOPhase = LTOPreLink
1513 ? ThinOrFullLTOPhase::FullLTOPreLink
1514 : ThinOrFullLTOPhase::None;
1515 // Add the core simplification pipeline.
1516 MPM.addPass(buildModuleSimplificationPipeline(Level, LTOPhase));
1518 // Now add the optimization pipeline.
1519 MPM.addPass(buildModuleOptimizationPipeline(Level, LTOPhase));
1521 if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
1522 PGOOpt->Action == PGOOptions::SampleUse)
1523 MPM.addPass(PseudoProbeUpdatePass());
1525 // Emit annotation remarks.
1526 addAnnotationRemarksPass(MPM);
1528 if (LTOPreLink)
1529 addRequiredLTOPreLinkPasses(MPM);
1530 return MPM;
1533 ModulePassManager
1534 PassBuilder::buildFatLTODefaultPipeline(OptimizationLevel Level, bool ThinLTO,
1535 bool EmitSummary) {
1536 ModulePassManager MPM;
1537 if (ThinLTO)
1538 MPM.addPass(buildThinLTOPreLinkDefaultPipeline(Level));
1539 else
1540 MPM.addPass(buildLTOPreLinkDefaultPipeline(Level));
1541 MPM.addPass(EmbedBitcodePass(ThinLTO, EmitSummary));
1543 // Use the ThinLTO post-link pipeline with sample profiling
1544 if (ThinLTO && PGOOpt && PGOOpt->Action == PGOOptions::SampleUse)
1545 MPM.addPass(buildThinLTODefaultPipeline(Level, /*ImportSummary=*/nullptr));
1546 else {
1547 // otherwise, just use module optimization
1548 MPM.addPass(
1549 buildModuleOptimizationPipeline(Level, ThinOrFullLTOPhase::None));
1550 // Emit annotation remarks.
1551 addAnnotationRemarksPass(MPM);
1553 return MPM;
1556 ModulePassManager
1557 PassBuilder::buildThinLTOPreLinkDefaultPipeline(OptimizationLevel Level) {
1558 if (Level == OptimizationLevel::O0)
1559 return buildO0DefaultPipeline(Level, /*LTOPreLink*/true);
1561 ModulePassManager MPM;
1563 // Convert @llvm.global.annotations to !annotation metadata.
1564 MPM.addPass(Annotation2MetadataPass());
1566 // Force any function attributes we want the rest of the pipeline to observe.
1567 MPM.addPass(ForceFunctionAttrsPass());
1569 if (PGOOpt && PGOOpt->DebugInfoForProfiling)
1570 MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
1572 // Apply module pipeline start EP callback.
1573 invokePipelineStartEPCallbacks(MPM, Level);
1575 // If we are planning to perform ThinLTO later, we don't bloat the code with
1576 // unrolling/vectorization/... now. Just simplify the module as much as we
1577 // can.
1578 MPM.addPass(buildModuleSimplificationPipeline(
1579 Level, ThinOrFullLTOPhase::ThinLTOPreLink));
1581 // Run partial inlining pass to partially inline functions that have
1582 // large bodies.
1583 // FIXME: It isn't clear whether this is really the right place to run this
1584 // in ThinLTO. Because there is another canonicalization and simplification
1585 // phase that will run after the thin link, running this here ends up with
1586 // less information than will be available later and it may grow functions in
1587 // ways that aren't beneficial.
1588 if (RunPartialInlining)
1589 MPM.addPass(PartialInlinerPass());
1591 if (PGOOpt && PGOOpt->PseudoProbeForProfiling &&
1592 PGOOpt->Action == PGOOptions::SampleUse)
1593 MPM.addPass(PseudoProbeUpdatePass());
1595 // Handle Optimizer{Early,Last}EPCallbacks added by clang on PreLink. Actual
1596 // optimization is going to be done in PostLink stage, but clang can't add
1597 // callbacks there in case of in-process ThinLTO called by linker.
1598 invokeOptimizerEarlyEPCallbacks(MPM, Level);
1599 invokeOptimizerLastEPCallbacks(MPM, Level);
1601 // Emit annotation remarks.
1602 addAnnotationRemarksPass(MPM);
1604 addRequiredLTOPreLinkPasses(MPM);
1606 return MPM;
1609 ModulePassManager PassBuilder::buildThinLTODefaultPipeline(
1610 OptimizationLevel Level, const ModuleSummaryIndex *ImportSummary) {
1611 ModulePassManager MPM;
1613 if (ImportSummary) {
1614 // For ThinLTO we must apply the context disambiguation decisions early, to
1615 // ensure we can correctly match the callsites to summary data.
1616 if (EnableMemProfContextDisambiguation)
1617 MPM.addPass(MemProfContextDisambiguation(ImportSummary));
1619 // These passes import type identifier resolutions for whole-program
1620 // devirtualization and CFI. They must run early because other passes may
1621 // disturb the specific instruction patterns that these passes look for,
1622 // creating dependencies on resolutions that may not appear in the summary.
1624 // For example, GVN may transform the pattern assume(type.test) appearing in
1625 // two basic blocks into assume(phi(type.test, type.test)), which would
1626 // transform a dependency on a WPD resolution into a dependency on a type
1627 // identifier resolution for CFI.
1629 // Also, WPD has access to more precise information than ICP and can
1630 // devirtualize more effectively, so it should operate on the IR first.
1632 // The WPD and LowerTypeTest passes need to run at -O0 to lower type
1633 // metadata and intrinsics.
1634 MPM.addPass(WholeProgramDevirtPass(nullptr, ImportSummary));
1635 MPM.addPass(LowerTypeTestsPass(nullptr, ImportSummary));
1638 if (Level == OptimizationLevel::O0) {
1639 // Run a second time to clean up any type tests left behind by WPD for use
1640 // in ICP.
1641 MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1642 // Drop available_externally and unreferenced globals. This is necessary
1643 // with ThinLTO in order to avoid leaving undefined references to dead
1644 // globals in the object file.
1645 MPM.addPass(EliminateAvailableExternallyPass());
1646 MPM.addPass(GlobalDCEPass());
1647 return MPM;
1650 // Add the core simplification pipeline.
1651 MPM.addPass(buildModuleSimplificationPipeline(
1652 Level, ThinOrFullLTOPhase::ThinLTOPostLink));
1654 // Now add the optimization pipeline.
1655 MPM.addPass(buildModuleOptimizationPipeline(
1656 Level, ThinOrFullLTOPhase::ThinLTOPostLink));
1658 // Emit annotation remarks.
1659 addAnnotationRemarksPass(MPM);
1661 return MPM;
1664 ModulePassManager
1665 PassBuilder::buildLTOPreLinkDefaultPipeline(OptimizationLevel Level) {
1666 // FIXME: We should use a customized pre-link pipeline!
1667 return buildPerModuleDefaultPipeline(Level,
1668 /* LTOPreLink */ true);
1671 ModulePassManager
1672 PassBuilder::buildLTODefaultPipeline(OptimizationLevel Level,
1673 ModuleSummaryIndex *ExportSummary) {
1674 ModulePassManager MPM;
1676 invokeFullLinkTimeOptimizationEarlyEPCallbacks(MPM, Level);
1678 // Create a function that performs CFI checks for cross-DSO calls with targets
1679 // in the current module.
1680 MPM.addPass(CrossDSOCFIPass());
1682 if (Level == OptimizationLevel::O0) {
1683 // The WPD and LowerTypeTest passes need to run at -O0 to lower type
1684 // metadata and intrinsics.
1685 MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));
1686 MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1687 // Run a second time to clean up any type tests left behind by WPD for use
1688 // in ICP.
1689 MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1691 invokeFullLinkTimeOptimizationLastEPCallbacks(MPM, Level);
1693 // Emit annotation remarks.
1694 addAnnotationRemarksPass(MPM);
1696 return MPM;
1699 if (PGOOpt && PGOOpt->Action == PGOOptions::SampleUse) {
1700 // Load sample profile before running the LTO optimization pipeline.
1701 MPM.addPass(SampleProfileLoaderPass(PGOOpt->ProfileFile,
1702 PGOOpt->ProfileRemappingFile,
1703 ThinOrFullLTOPhase::FullLTOPostLink));
1704 // Cache ProfileSummaryAnalysis once to avoid the potential need to insert
1705 // RequireAnalysisPass for PSI before subsequent non-module passes.
1706 MPM.addPass(RequireAnalysisPass<ProfileSummaryAnalysis, Module>());
1709 // Try to run OpenMP optimizations, quick no-op if no OpenMP metadata present.
1710 MPM.addPass(OpenMPOptPass(ThinOrFullLTOPhase::FullLTOPostLink));
1712 // Remove unused virtual tables to improve the quality of code generated by
1713 // whole-program devirtualization and bitset lowering.
1714 MPM.addPass(GlobalDCEPass(/*InLTOPostLink=*/true));
1716 // Do basic inference of function attributes from known properties of system
1717 // libraries and other oracles.
1718 MPM.addPass(InferFunctionAttrsPass());
1720 if (Level.getSpeedupLevel() > 1) {
1721 MPM.addPass(createModuleToFunctionPassAdaptor(
1722 CallSiteSplittingPass(), PTO.EagerlyInvalidateAnalyses));
1724 // Indirect call promotion. This should promote all the targets that are
1725 // left by the earlier promotion pass that promotes intra-module targets.
1726 // This two-step promotion is to save the compile time. For LTO, it should
1727 // produce the same result as if we only do promotion here.
1728 MPM.addPass(PGOIndirectCallPromotion(
1729 true /* InLTO */, PGOOpt && PGOOpt->Action == PGOOptions::SampleUse));
1731 // Propagate constants at call sites into the functions they call. This
1732 // opens opportunities for globalopt (and inlining) by substituting function
1733 // pointers passed as arguments to direct uses of functions.
1734 MPM.addPass(IPSCCPPass(IPSCCPOptions(/*AllowFuncSpec=*/
1735 Level != OptimizationLevel::Os &&
1736 Level != OptimizationLevel::Oz)));
1738 // Attach metadata to indirect call sites indicating the set of functions
1739 // they may target at run-time. This should follow IPSCCP.
1740 MPM.addPass(CalledValuePropagationPass());
1743 // Now deduce any function attributes based in the current code.
1744 MPM.addPass(
1745 createModuleToPostOrderCGSCCPassAdaptor(PostOrderFunctionAttrsPass()));
1747 // Do RPO function attribute inference across the module to forward-propagate
1748 // attributes where applicable.
1749 // FIXME: Is this really an optimization rather than a canonicalization?
1750 MPM.addPass(ReversePostOrderFunctionAttrsPass());
1752 // Use in-range annotations on GEP indices to split globals where beneficial.
1753 MPM.addPass(GlobalSplitPass());
1755 // Run whole program optimization of virtual call when the list of callees
1756 // is fixed.
1757 MPM.addPass(WholeProgramDevirtPass(ExportSummary, nullptr));
1759 // Stop here at -O1.
1760 if (Level == OptimizationLevel::O1) {
1761 // The LowerTypeTestsPass needs to run to lower type metadata and the
1762 // type.test intrinsics. The pass does nothing if CFI is disabled.
1763 MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1764 // Run a second time to clean up any type tests left behind by WPD for use
1765 // in ICP (which is performed earlier than this in the regular LTO
1766 // pipeline).
1767 MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1769 invokeFullLinkTimeOptimizationLastEPCallbacks(MPM, Level);
1771 // Emit annotation remarks.
1772 addAnnotationRemarksPass(MPM);
1774 return MPM;
1777 // Optimize globals to try and fold them into constants.
1778 MPM.addPass(GlobalOptPass());
1780 // Promote any localized globals to SSA registers.
1781 MPM.addPass(createModuleToFunctionPassAdaptor(PromotePass()));
1783 // Linking modules together can lead to duplicate global constant, only
1784 // keep one copy of each constant.
1785 MPM.addPass(ConstantMergePass());
1787 // Remove unused arguments from functions.
1788 MPM.addPass(DeadArgumentEliminationPass());
1790 // Reduce the code after globalopt and ipsccp. Both can open up significant
1791 // simplification opportunities, and both can propagate functions through
1792 // function pointers. When this happens, we often have to resolve varargs
1793 // calls, etc, so let instcombine do this.
1794 FunctionPassManager PeepholeFPM;
1795 PeepholeFPM.addPass(InstCombinePass());
1796 if (Level.getSpeedupLevel() > 1)
1797 PeepholeFPM.addPass(AggressiveInstCombinePass());
1798 invokePeepholeEPCallbacks(PeepholeFPM, Level);
1800 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(PeepholeFPM),
1801 PTO.EagerlyInvalidateAnalyses));
1803 // Note: historically, the PruneEH pass was run first to deduce nounwind and
1804 // generally clean up exception handling overhead. It isn't clear this is
1805 // valuable as the inliner doesn't currently care whether it is inlining an
1806 // invoke or a call.
1807 // Run the inliner now.
1808 if (EnableModuleInliner) {
1809 MPM.addPass(ModuleInlinerPass(getInlineParamsFromOptLevel(Level),
1810 UseInlineAdvisor,
1811 ThinOrFullLTOPhase::FullLTOPostLink));
1812 } else {
1813 MPM.addPass(ModuleInlinerWrapperPass(
1814 getInlineParamsFromOptLevel(Level),
1815 /* MandatoryFirst */ true,
1816 InlineContext{ThinOrFullLTOPhase::FullLTOPostLink,
1817 InlinePass::CGSCCInliner}));
1820 // Perform context disambiguation after inlining, since that would reduce the
1821 // amount of additional cloning required to distinguish the allocation
1822 // contexts.
1823 if (EnableMemProfContextDisambiguation)
1824 MPM.addPass(MemProfContextDisambiguation());
1826 // Optimize globals again after we ran the inliner.
1827 MPM.addPass(GlobalOptPass());
1829 // Run the OpenMPOpt pass again after global optimizations.
1830 MPM.addPass(OpenMPOptPass(ThinOrFullLTOPhase::FullLTOPostLink));
1832 // Garbage collect dead functions.
1833 MPM.addPass(GlobalDCEPass(/*InLTOPostLink=*/true));
1835 // If we didn't decide to inline a function, check to see if we can
1836 // transform it to pass arguments by value instead of by reference.
1837 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(ArgumentPromotionPass()));
1839 FunctionPassManager FPM;
1840 // The IPO Passes may leave cruft around. Clean up after them.
1841 FPM.addPass(InstCombinePass());
1842 invokePeepholeEPCallbacks(FPM, Level);
1844 if (EnableConstraintElimination)
1845 FPM.addPass(ConstraintEliminationPass());
1847 FPM.addPass(JumpThreadingPass());
1849 // Do a post inline PGO instrumentation and use pass. This is a context
1850 // sensitive PGO pass.
1851 if (PGOOpt) {
1852 if (PGOOpt->CSAction == PGOOptions::CSIRInstr)
1853 addPGOInstrPasses(MPM, Level, /*RunProfileGen=*/true,
1854 /*IsCS=*/true, PGOOpt->AtomicCounterUpdate,
1855 PGOOpt->CSProfileGenFile, PGOOpt->ProfileRemappingFile,
1856 PGOOpt->FS);
1857 else if (PGOOpt->CSAction == PGOOptions::CSIRUse)
1858 addPGOInstrPasses(MPM, Level, /*RunProfileGen=*/false,
1859 /*IsCS=*/true, PGOOpt->AtomicCounterUpdate,
1860 PGOOpt->ProfileFile, PGOOpt->ProfileRemappingFile,
1861 PGOOpt->FS);
1864 // Break up allocas
1865 FPM.addPass(SROAPass(SROAOptions::ModifyCFG));
1867 // LTO provides additional opportunities for tailcall elimination due to
1868 // link-time inlining, and visibility of nocapture attribute.
1869 FPM.addPass(TailCallElimPass());
1871 // Run a few AA driver optimizations here and now to cleanup the code.
1872 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM),
1873 PTO.EagerlyInvalidateAnalyses));
1875 MPM.addPass(
1876 createModuleToPostOrderCGSCCPassAdaptor(PostOrderFunctionAttrsPass()));
1878 // Require the GlobalsAA analysis for the module so we can query it within
1879 // MainFPM.
1880 if (EnableGlobalAnalyses) {
1881 MPM.addPass(RequireAnalysisPass<GlobalsAA, Module>());
1882 // Invalidate AAManager so it can be recreated and pick up the newly
1883 // available GlobalsAA.
1884 MPM.addPass(
1885 createModuleToFunctionPassAdaptor(InvalidateAnalysisPass<AAManager>()));
1888 FunctionPassManager MainFPM;
1889 MainFPM.addPass(createFunctionToLoopPassAdaptor(
1890 LICMPass(PTO.LicmMssaOptCap, PTO.LicmMssaNoAccForPromotionCap,
1891 /*AllowSpeculation=*/true),
1892 /*USeMemorySSA=*/true, /*UseBlockFrequencyInfo=*/false));
1894 if (RunNewGVN)
1895 MainFPM.addPass(NewGVNPass());
1896 else
1897 MainFPM.addPass(GVNPass());
1899 // Remove dead memcpy()'s.
1900 MainFPM.addPass(MemCpyOptPass());
1902 // Nuke dead stores.
1903 MainFPM.addPass(DSEPass());
1904 MainFPM.addPass(MoveAutoInitPass());
1905 MainFPM.addPass(MergedLoadStoreMotionPass());
1907 LoopPassManager LPM;
1908 if (EnableLoopFlatten && Level.getSpeedupLevel() > 1)
1909 LPM.addPass(LoopFlattenPass());
1910 LPM.addPass(IndVarSimplifyPass());
1911 LPM.addPass(LoopDeletionPass());
1912 // FIXME: Add loop interchange.
1914 // Unroll small loops and perform peeling.
1915 LPM.addPass(LoopFullUnrollPass(Level.getSpeedupLevel(),
1916 /* OnlyWhenForced= */ !PTO.LoopUnrolling,
1917 PTO.ForgetAllSCEVInLoopUnroll));
1918 // The loop passes in LPM (LoopFullUnrollPass) do not preserve MemorySSA.
1919 // *All* loop passes must preserve it, in order to be able to use it.
1920 MainFPM.addPass(createFunctionToLoopPassAdaptor(
1921 std::move(LPM), /*UseMemorySSA=*/false, /*UseBlockFrequencyInfo=*/true));
1923 MainFPM.addPass(LoopDistributePass());
1925 addVectorPasses(Level, MainFPM, /* IsFullLTO */ true);
1927 // Run the OpenMPOpt CGSCC pass again late.
1928 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1929 OpenMPOptCGSCCPass(ThinOrFullLTOPhase::FullLTOPostLink)));
1931 invokePeepholeEPCallbacks(MainFPM, Level);
1932 MainFPM.addPass(JumpThreadingPass());
1933 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(MainFPM),
1934 PTO.EagerlyInvalidateAnalyses));
1936 // Lower type metadata and the type.test intrinsic. This pass supports
1937 // clang's control flow integrity mechanisms (-fsanitize=cfi*) and needs
1938 // to be run at link time if CFI is enabled. This pass does nothing if
1939 // CFI is disabled.
1940 MPM.addPass(LowerTypeTestsPass(ExportSummary, nullptr));
1941 // Run a second time to clean up any type tests left behind by WPD for use
1942 // in ICP (which is performed earlier than this in the regular LTO pipeline).
1943 MPM.addPass(LowerTypeTestsPass(nullptr, nullptr, true));
1945 // Enable splitting late in the FullLTO post-link pipeline.
1946 if (EnableHotColdSplit)
1947 MPM.addPass(HotColdSplittingPass());
1949 // Add late LTO optimization passes.
1950 FunctionPassManager LateFPM;
1952 // LoopSink pass sinks instructions hoisted by LICM, which serves as a
1953 // canonicalization pass that enables other optimizations. As a result,
1954 // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
1955 // result too early.
1956 LateFPM.addPass(LoopSinkPass());
1958 // This hoists/decomposes div/rem ops. It should run after other sink/hoist
1959 // passes to avoid re-sinking, but before SimplifyCFG because it can allow
1960 // flattening of blocks.
1961 LateFPM.addPass(DivRemPairsPass());
1963 // Delete basic blocks, which optimization passes may have killed.
1964 LateFPM.addPass(SimplifyCFGPass(
1965 SimplifyCFGOptions().convertSwitchRangeToICmp(true).hoistCommonInsts(
1966 true)));
1967 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(LateFPM)));
1969 // Drop bodies of available eternally objects to improve GlobalDCE.
1970 MPM.addPass(EliminateAvailableExternallyPass());
1972 // Now that we have optimized the program, discard unreachable functions.
1973 MPM.addPass(GlobalDCEPass(/*InLTOPostLink=*/true));
1975 if (PTO.MergeFunctions)
1976 MPM.addPass(MergeFunctionsPass());
1978 if (PTO.CallGraphProfile)
1979 MPM.addPass(CGProfilePass(/*InLTOPostLink=*/true));
1981 invokeFullLinkTimeOptimizationLastEPCallbacks(MPM, Level);
1983 // Emit annotation remarks.
1984 addAnnotationRemarksPass(MPM);
1986 return MPM;
1989 ModulePassManager PassBuilder::buildO0DefaultPipeline(OptimizationLevel Level,
1990 bool LTOPreLink) {
1991 assert(Level == OptimizationLevel::O0 &&
1992 "buildO0DefaultPipeline should only be used with O0");
1994 ModulePassManager MPM;
1996 // Perform pseudo probe instrumentation in O0 mode. This is for the
1997 // consistency between different build modes. For example, a LTO build can be
1998 // mixed with an O0 prelink and an O2 postlink. Loading a sample profile in
1999 // the postlink will require pseudo probe instrumentation in the prelink.
2000 if (PGOOpt && PGOOpt->PseudoProbeForProfiling)
2001 MPM.addPass(SampleProfileProbePass(TM));
2003 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr ||
2004 PGOOpt->Action == PGOOptions::IRUse))
2005 addPGOInstrPassesForO0(
2006 MPM,
2007 /*RunProfileGen=*/(PGOOpt->Action == PGOOptions::IRInstr),
2008 /*IsCS=*/false, PGOOpt->AtomicCounterUpdate, PGOOpt->ProfileFile,
2009 PGOOpt->ProfileRemappingFile, PGOOpt->FS);
2011 invokePipelineStartEPCallbacks(MPM, Level);
2013 if (PGOOpt && PGOOpt->DebugInfoForProfiling)
2014 MPM.addPass(createModuleToFunctionPassAdaptor(AddDiscriminatorsPass()));
2016 invokePipelineEarlySimplificationEPCallbacks(MPM, Level);
2018 // Build a minimal pipeline based on the semantics required by LLVM,
2019 // which is just that always inlining occurs. Further, disable generating
2020 // lifetime intrinsics to avoid enabling further optimizations during
2021 // code generation.
2022 MPM.addPass(AlwaysInlinerPass(
2023 /*InsertLifetimeIntrinsics=*/false));
2025 if (PTO.MergeFunctions)
2026 MPM.addPass(MergeFunctionsPass());
2028 if (EnableMatrix)
2029 MPM.addPass(
2030 createModuleToFunctionPassAdaptor(LowerMatrixIntrinsicsPass(true)));
2032 if (!CGSCCOptimizerLateEPCallbacks.empty()) {
2033 CGSCCPassManager CGPM;
2034 invokeCGSCCOptimizerLateEPCallbacks(CGPM, Level);
2035 if (!CGPM.isEmpty())
2036 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
2038 if (!LateLoopOptimizationsEPCallbacks.empty()) {
2039 LoopPassManager LPM;
2040 invokeLateLoopOptimizationsEPCallbacks(LPM, Level);
2041 if (!LPM.isEmpty()) {
2042 MPM.addPass(createModuleToFunctionPassAdaptor(
2043 createFunctionToLoopPassAdaptor(std::move(LPM))));
2046 if (!LoopOptimizerEndEPCallbacks.empty()) {
2047 LoopPassManager LPM;
2048 invokeLoopOptimizerEndEPCallbacks(LPM, Level);
2049 if (!LPM.isEmpty()) {
2050 MPM.addPass(createModuleToFunctionPassAdaptor(
2051 createFunctionToLoopPassAdaptor(std::move(LPM))));
2054 if (!ScalarOptimizerLateEPCallbacks.empty()) {
2055 FunctionPassManager FPM;
2056 invokeScalarOptimizerLateEPCallbacks(FPM, Level);
2057 if (!FPM.isEmpty())
2058 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
2061 invokeOptimizerEarlyEPCallbacks(MPM, Level);
2063 if (!VectorizerStartEPCallbacks.empty()) {
2064 FunctionPassManager FPM;
2065 invokeVectorizerStartEPCallbacks(FPM, Level);
2066 if (!FPM.isEmpty())
2067 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
2070 ModulePassManager CoroPM;
2071 CoroPM.addPass(CoroEarlyPass());
2072 CGSCCPassManager CGPM;
2073 CGPM.addPass(CoroSplitPass());
2074 CoroPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
2075 CoroPM.addPass(CoroCleanupPass());
2076 CoroPM.addPass(GlobalDCEPass());
2077 MPM.addPass(CoroConditionalWrapper(std::move(CoroPM)));
2079 invokeOptimizerLastEPCallbacks(MPM, Level);
2081 if (LTOPreLink)
2082 addRequiredLTOPreLinkPasses(MPM);
2084 MPM.addPass(createModuleToFunctionPassAdaptor(AnnotationRemarksPass()));
2086 return MPM;
2089 AAManager PassBuilder::buildDefaultAAPipeline() {
2090 AAManager AA;
2092 // The order in which these are registered determines their priority when
2093 // being queried.
2095 // First we register the basic alias analysis that provides the majority of
2096 // per-function local AA logic. This is a stateless, on-demand local set of
2097 // AA techniques.
2098 AA.registerFunctionAnalysis<BasicAA>();
2100 // Next we query fast, specialized alias analyses that wrap IR-embedded
2101 // information about aliasing.
2102 AA.registerFunctionAnalysis<ScopedNoAliasAA>();
2103 AA.registerFunctionAnalysis<TypeBasedAA>();
2105 // Add support for querying global aliasing information when available.
2106 // Because the `AAManager` is a function analysis and `GlobalsAA` is a module
2107 // analysis, all that the `AAManager` can do is query for any *cached*
2108 // results from `GlobalsAA` through a readonly proxy.
2109 if (EnableGlobalAnalyses)
2110 AA.registerModuleAnalysis<GlobalsAA>();
2112 // Add target-specific alias analyses.
2113 if (TM)
2114 TM->registerDefaultAliasAnalyses(AA);
2116 return AA;