[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / ProfileData / InstrProf.cpp
blob2640027455e0dadd11e12b014fc6ddb946bbc28a
1 //===- InstrProf.cpp - Instrumented profiling format support --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for clang's instrumentation based PGO and
10 // coverage.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ProfileData/InstrProf.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Config/config.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalValue.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/Instruction.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/ProfileData/InstrProfReader.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Compression.h"
37 #include "llvm/Support/Endian.h"
38 #include "llvm/Support/Error.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/LEB128.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/Path.h"
43 #include "llvm/Support/SwapByteOrder.h"
44 #include "llvm/Support/VirtualFileSystem.h"
45 #include "llvm/TargetParser/Triple.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50 #include <cstring>
51 #include <memory>
52 #include <string>
53 #include <system_error>
54 #include <type_traits>
55 #include <utility>
56 #include <vector>
58 using namespace llvm;
60 static cl::opt<bool> StaticFuncFullModulePrefix(
61 "static-func-full-module-prefix", cl::init(true), cl::Hidden,
62 cl::desc("Use full module build paths in the profile counter names for "
63 "static functions."));
65 // This option is tailored to users that have different top-level directory in
66 // profile-gen and profile-use compilation. Users need to specific the number
67 // of levels to strip. A value larger than the number of directories in the
68 // source file will strip all the directory names and only leave the basename.
70 // Note current ThinLTO module importing for the indirect-calls assumes
71 // the source directory name not being stripped. A non-zero option value here
72 // can potentially prevent some inter-module indirect-call-promotions.
73 static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
74 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
75 cl::desc("Strip specified level of directory name from source path in "
76 "the profile counter name for static functions."));
78 static std::string getInstrProfErrString(instrprof_error Err,
79 const std::string &ErrMsg = "") {
80 std::string Msg;
81 raw_string_ostream OS(Msg);
83 switch (Err) {
84 case instrprof_error::success:
85 OS << "success";
86 break;
87 case instrprof_error::eof:
88 OS << "end of File";
89 break;
90 case instrprof_error::unrecognized_format:
91 OS << "unrecognized instrumentation profile encoding format";
92 break;
93 case instrprof_error::bad_magic:
94 OS << "invalid instrumentation profile data (bad magic)";
95 break;
96 case instrprof_error::bad_header:
97 OS << "invalid instrumentation profile data (file header is corrupt)";
98 break;
99 case instrprof_error::unsupported_version:
100 OS << "unsupported instrumentation profile format version";
101 break;
102 case instrprof_error::unsupported_hash_type:
103 OS << "unsupported instrumentation profile hash type";
104 break;
105 case instrprof_error::too_large:
106 OS << "too much profile data";
107 break;
108 case instrprof_error::truncated:
109 OS << "truncated profile data";
110 break;
111 case instrprof_error::malformed:
112 OS << "malformed instrumentation profile data";
113 break;
114 case instrprof_error::missing_correlation_info:
115 OS << "debug info/binary for correlation is required";
116 break;
117 case instrprof_error::unexpected_correlation_info:
118 OS << "debug info/binary for correlation is not necessary";
119 break;
120 case instrprof_error::unable_to_correlate_profile:
121 OS << "unable to correlate profile";
122 break;
123 case instrprof_error::invalid_prof:
124 OS << "invalid profile created. Please file a bug "
125 "at: " BUG_REPORT_URL
126 " and include the profraw files that caused this error.";
127 break;
128 case instrprof_error::unknown_function:
129 OS << "no profile data available for function";
130 break;
131 case instrprof_error::hash_mismatch:
132 OS << "function control flow change detected (hash mismatch)";
133 break;
134 case instrprof_error::count_mismatch:
135 OS << "function basic block count change detected (counter mismatch)";
136 break;
137 case instrprof_error::bitmap_mismatch:
138 OS << "function bitmap size change detected (bitmap size mismatch)";
139 break;
140 case instrprof_error::counter_overflow:
141 OS << "counter overflow";
142 break;
143 case instrprof_error::value_site_count_mismatch:
144 OS << "function value site count change detected (counter mismatch)";
145 break;
146 case instrprof_error::compress_failed:
147 OS << "failed to compress data (zlib)";
148 break;
149 case instrprof_error::uncompress_failed:
150 OS << "failed to uncompress data (zlib)";
151 break;
152 case instrprof_error::empty_raw_profile:
153 OS << "empty raw profile file";
154 break;
155 case instrprof_error::zlib_unavailable:
156 OS << "profile uses zlib compression but the profile reader was built "
157 "without zlib support";
158 break;
159 case instrprof_error::raw_profile_version_mismatch:
160 OS << "raw profile version mismatch";
161 break;
162 case instrprof_error::counter_value_too_large:
163 OS << "excessively large counter value suggests corrupted profile data";
164 break;
167 // If optional error message is not empty, append it to the message.
168 if (!ErrMsg.empty())
169 OS << ": " << ErrMsg;
171 return OS.str();
174 namespace {
176 // FIXME: This class is only here to support the transition to llvm::Error. It
177 // will be removed once this transition is complete. Clients should prefer to
178 // deal with the Error value directly, rather than converting to error_code.
179 class InstrProfErrorCategoryType : public std::error_category {
180 const char *name() const noexcept override { return "llvm.instrprof"; }
182 std::string message(int IE) const override {
183 return getInstrProfErrString(static_cast<instrprof_error>(IE));
187 } // end anonymous namespace
189 const std::error_category &llvm::instrprof_category() {
190 static InstrProfErrorCategoryType ErrorCategory;
191 return ErrorCategory;
194 namespace {
196 const char *InstrProfSectNameCommon[] = {
197 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
198 SectNameCommon,
199 #include "llvm/ProfileData/InstrProfData.inc"
202 const char *InstrProfSectNameCoff[] = {
203 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
204 SectNameCoff,
205 #include "llvm/ProfileData/InstrProfData.inc"
208 const char *InstrProfSectNamePrefix[] = {
209 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
210 Prefix,
211 #include "llvm/ProfileData/InstrProfData.inc"
214 } // namespace
216 namespace llvm {
218 cl::opt<bool> DoInstrProfNameCompression(
219 "enable-name-compression",
220 cl::desc("Enable name/filename string compression"), cl::init(true));
222 std::string getInstrProfSectionName(InstrProfSectKind IPSK,
223 Triple::ObjectFormatType OF,
224 bool AddSegmentInfo) {
225 std::string SectName;
227 if (OF == Triple::MachO && AddSegmentInfo)
228 SectName = InstrProfSectNamePrefix[IPSK];
230 if (OF == Triple::COFF)
231 SectName += InstrProfSectNameCoff[IPSK];
232 else
233 SectName += InstrProfSectNameCommon[IPSK];
235 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
236 SectName += ",regular,live_support";
238 return SectName;
241 std::string InstrProfError::message() const {
242 return getInstrProfErrString(Err, Msg);
245 char InstrProfError::ID = 0;
247 std::string getPGOFuncName(StringRef Name, GlobalValue::LinkageTypes Linkage,
248 StringRef FileName,
249 uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
250 // Value names may be prefixed with a binary '1' to indicate
251 // that the backend should not modify the symbols due to any platform
252 // naming convention. Do not include that '1' in the PGO profile name.
253 if (Name[0] == '\1')
254 Name = Name.substr(1);
256 std::string NewName = std::string(Name);
257 if (llvm::GlobalValue::isLocalLinkage(Linkage)) {
258 // For local symbols, prepend the main file name to distinguish them.
259 // Do not include the full path in the file name since there's no guarantee
260 // that it will stay the same, e.g., if the files are checked out from
261 // version control in different locations.
262 if (FileName.empty())
263 NewName = NewName.insert(0, "<unknown>:");
264 else
265 NewName = NewName.insert(0, FileName.str() + ":");
267 return NewName;
270 // Strip NumPrefix level of directory name from PathNameStr. If the number of
271 // directory separators is less than NumPrefix, strip all the directories and
272 // leave base file name only.
273 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
274 uint32_t Count = NumPrefix;
275 uint32_t Pos = 0, LastPos = 0;
276 for (auto & CI : PathNameStr) {
277 ++Pos;
278 if (llvm::sys::path::is_separator(CI)) {
279 LastPos = Pos;
280 --Count;
282 if (Count == 0)
283 break;
285 return PathNameStr.substr(LastPos);
288 static StringRef getStrippedSourceFileName(const GlobalObject &GO) {
289 StringRef FileName(GO.getParent()->getSourceFileName());
290 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
291 if (StripLevel < StaticFuncStripDirNamePrefix)
292 StripLevel = StaticFuncStripDirNamePrefix;
293 if (StripLevel)
294 FileName = stripDirPrefix(FileName, StripLevel);
295 return FileName;
298 // The PGO name has the format [<filepath>;]<mangled-name> where <filepath>; is
299 // provided if linkage is local and is used to discriminate possibly identical
300 // mangled names. ";" is used because it is unlikely to be found in either
301 // <filepath> or <mangled-name>.
303 // Older compilers used getPGOFuncName() which has the format
304 // [<filepath>:]<mangled-name>. This caused trouble for Objective-C functions
305 // which commonly have :'s in their names. We still need to compute this name to
306 // lookup functions from profiles built by older compilers.
307 static std::string
308 getIRPGONameForGlobalObject(const GlobalObject &GO,
309 GlobalValue::LinkageTypes Linkage,
310 StringRef FileName) {
311 return GlobalValue::getGlobalIdentifier(GO.getName(), Linkage, FileName);
314 static std::optional<std::string> lookupPGONameFromMetadata(MDNode *MD) {
315 if (MD != nullptr) {
316 StringRef S = cast<MDString>(MD->getOperand(0))->getString();
317 return S.str();
319 return {};
322 // Returns the PGO object name. This function has some special handling
323 // when called in LTO optimization. The following only applies when calling in
324 // LTO passes (when \c InLTO is true): LTO's internalization privatizes many
325 // global linkage symbols. This happens after value profile annotation, but
326 // those internal linkage functions should not have a source prefix.
327 // Additionally, for ThinLTO mode, exported internal functions are promoted
328 // and renamed. We need to ensure that the original internal PGO name is
329 // used when computing the GUID that is compared against the profiled GUIDs.
330 // To differentiate compiler generated internal symbols from original ones,
331 // PGOFuncName meta data are created and attached to the original internal
332 // symbols in the value profile annotation step
333 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
334 // data, its original linkage must be non-internal.
335 static std::string getIRPGOObjectName(const GlobalObject &GO, bool InLTO,
336 MDNode *PGONameMetadata) {
337 if (!InLTO) {
338 auto FileName = getStrippedSourceFileName(GO);
339 return getIRPGONameForGlobalObject(GO, GO.getLinkage(), FileName);
342 // In LTO mode (when InLTO is true), first check if there is a meta data.
343 if (auto IRPGOFuncName = lookupPGONameFromMetadata(PGONameMetadata))
344 return *IRPGOFuncName;
346 // If there is no meta data, the function must be a global before the value
347 // profile annotation pass. Its current linkage may be internal if it is
348 // internalized in LTO mode.
349 return getIRPGONameForGlobalObject(GO, GlobalValue::ExternalLinkage, "");
352 // Returns the IRPGO function name and does special handling when called
353 // in LTO optimization. See the comments of `getIRPGOObjectName` for details.
354 std::string getIRPGOFuncName(const Function &F, bool InLTO) {
355 return getIRPGOObjectName(F, InLTO, getPGOFuncNameMetadata(F));
358 // Please use getIRPGOFuncName for LLVM IR instrumentation. This function is
359 // for front-end (Clang, etc) instrumentation.
360 // The implementation is kept for profile matching from older profiles.
361 // This is similar to `getIRPGOFuncName` except that this function calls
362 // 'getPGOFuncName' to get a name and `getIRPGOFuncName` calls
363 // 'getIRPGONameForGlobalObject'. See the difference between two callees in the
364 // comments of `getIRPGONameForGlobalObject`.
365 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
366 if (!InLTO) {
367 auto FileName = getStrippedSourceFileName(F);
368 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
371 // In LTO mode (when InLTO is true), first check if there is a meta data.
372 if (auto PGOFuncName = lookupPGONameFromMetadata(getPGOFuncNameMetadata(F)))
373 return *PGOFuncName;
375 // If there is no meta data, the function must be a global before the value
376 // profile annotation pass. Its current linkage may be internal if it is
377 // internalized in LTO mode.
378 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
381 // See getIRPGOFuncName() for a discription of the format.
382 std::pair<StringRef, StringRef>
383 getParsedIRPGOFuncName(StringRef IRPGOFuncName) {
384 auto [FileName, FuncName] = IRPGOFuncName.split(';');
385 if (FuncName.empty())
386 return std::make_pair(StringRef(), IRPGOFuncName);
387 return std::make_pair(FileName, FuncName);
390 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
391 if (FileName.empty())
392 return PGOFuncName;
393 // Drop the file name including ':' or ';'. See getIRPGONameForGlobalObject as
394 // well.
395 if (PGOFuncName.starts_with(FileName))
396 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
397 return PGOFuncName;
400 // \p FuncName is the string used as profile lookup key for the function. A
401 // symbol is created to hold the name. Return the legalized symbol name.
402 std::string getPGOFuncNameVarName(StringRef FuncName,
403 GlobalValue::LinkageTypes Linkage) {
404 std::string VarName = std::string(getInstrProfNameVarPrefix());
405 VarName += FuncName;
407 if (!GlobalValue::isLocalLinkage(Linkage))
408 return VarName;
410 // Now fix up illegal chars in local VarName that may upset the assembler.
411 const char InvalidChars[] = "-:;<>/\"'";
412 size_t found = VarName.find_first_of(InvalidChars);
413 while (found != std::string::npos) {
414 VarName[found] = '_';
415 found = VarName.find_first_of(InvalidChars, found + 1);
417 return VarName;
420 GlobalVariable *createPGOFuncNameVar(Module &M,
421 GlobalValue::LinkageTypes Linkage,
422 StringRef PGOFuncName) {
423 // We generally want to match the function's linkage, but available_externally
424 // and extern_weak both have the wrong semantics, and anything that doesn't
425 // need to link across compilation units doesn't need to be visible at all.
426 if (Linkage == GlobalValue::ExternalWeakLinkage)
427 Linkage = GlobalValue::LinkOnceAnyLinkage;
428 else if (Linkage == GlobalValue::AvailableExternallyLinkage)
429 Linkage = GlobalValue::LinkOnceODRLinkage;
430 else if (Linkage == GlobalValue::InternalLinkage ||
431 Linkage == GlobalValue::ExternalLinkage)
432 Linkage = GlobalValue::PrivateLinkage;
434 auto *Value =
435 ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
436 auto FuncNameVar =
437 new GlobalVariable(M, Value->getType(), true, Linkage, Value,
438 getPGOFuncNameVarName(PGOFuncName, Linkage));
440 // Hide the symbol so that we correctly get a copy for each executable.
441 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
442 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
444 return FuncNameVar;
447 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
448 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
451 Error InstrProfSymtab::create(Module &M, bool InLTO) {
452 for (Function &F : M) {
453 // Function may not have a name: like using asm("") to overwrite the name.
454 // Ignore in this case.
455 if (!F.hasName())
456 continue;
457 if (Error E = addFuncWithName(F, getIRPGOFuncName(F, InLTO)))
458 return E;
459 // Also use getPGOFuncName() so that we can find records from older profiles
460 if (Error E = addFuncWithName(F, getPGOFuncName(F, InLTO)))
461 return E;
463 Sorted = false;
464 finalizeSymtab();
465 return Error::success();
468 /// \c NameStrings is a string composed of one of more possibly encoded
469 /// sub-strings. The substrings are separated by 0 or more zero bytes. This
470 /// method decodes the string and calls `NameCallback` for each substring.
471 static Error
472 readAndDecodeStrings(StringRef NameStrings,
473 std::function<Error(StringRef)> NameCallback) {
474 const uint8_t *P = NameStrings.bytes_begin();
475 const uint8_t *EndP = NameStrings.bytes_end();
476 while (P < EndP) {
477 uint32_t N;
478 uint64_t UncompressedSize = decodeULEB128(P, &N);
479 P += N;
480 uint64_t CompressedSize = decodeULEB128(P, &N);
481 P += N;
482 bool isCompressed = (CompressedSize != 0);
483 SmallVector<uint8_t, 128> UncompressedNameStrings;
484 StringRef NameStrings;
485 if (isCompressed) {
486 if (!llvm::compression::zlib::isAvailable())
487 return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
489 if (Error E = compression::zlib::decompress(ArrayRef(P, CompressedSize),
490 UncompressedNameStrings,
491 UncompressedSize)) {
492 consumeError(std::move(E));
493 return make_error<InstrProfError>(instrprof_error::uncompress_failed);
495 P += CompressedSize;
496 NameStrings = toStringRef(UncompressedNameStrings);
497 } else {
498 NameStrings =
499 StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
500 P += UncompressedSize;
502 // Now parse the name strings.
503 SmallVector<StringRef, 0> Names;
504 NameStrings.split(Names, getInstrProfNameSeparator());
505 for (StringRef &Name : Names)
506 if (Error E = NameCallback(Name))
507 return E;
509 while (P < EndP && *P == 0)
510 P++;
512 return Error::success();
515 Error InstrProfSymtab::create(StringRef NameStrings) {
516 return readAndDecodeStrings(
517 NameStrings,
518 std::bind(&InstrProfSymtab::addFuncName, this, std::placeholders::_1));
521 Error InstrProfSymtab::addFuncWithName(Function &F, StringRef PGOFuncName) {
522 if (Error E = addFuncName(PGOFuncName))
523 return E;
524 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
525 // In ThinLTO, local function may have been promoted to global and have
526 // suffix ".llvm." added to the function name. We need to add the
527 // stripped function name to the symbol table so that we can find a match
528 // from profile.
530 // We may have other suffixes similar as ".llvm." which are needed to
531 // be stripped before the matching, but ".__uniq." suffix which is used
532 // to differentiate internal linkage functions in different modules
533 // should be kept. Now this is the only suffix with the pattern ".xxx"
534 // which is kept before matching.
535 const std::string UniqSuffix = ".__uniq.";
536 auto pos = PGOFuncName.find(UniqSuffix);
537 // Search '.' after ".__uniq." if ".__uniq." exists, otherwise
538 // search '.' from the beginning.
539 if (pos != std::string::npos)
540 pos += UniqSuffix.length();
541 else
542 pos = 0;
543 pos = PGOFuncName.find('.', pos);
544 if (pos != std::string::npos && pos != 0) {
545 StringRef OtherFuncName = PGOFuncName.substr(0, pos);
546 if (Error E = addFuncName(OtherFuncName))
547 return E;
548 MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F);
550 return Error::success();
553 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
554 finalizeSymtab();
555 auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
556 return A.first < Address;
558 // Raw function pointer collected by value profiler may be from
559 // external functions that are not instrumented. They won't have
560 // mapping data to be used by the deserializer. Force the value to
561 // be 0 in this case.
562 if (It != AddrToMD5Map.end() && It->first == Address)
563 return (uint64_t)It->second;
564 return 0;
567 void InstrProfSymtab::dumpNames(raw_ostream &OS) const {
568 SmallVector<StringRef, 0> Sorted(NameTab.keys());
569 llvm::sort(Sorted);
570 for (StringRef S : Sorted)
571 OS << S << '\n';
574 Error collectGlobalObjectNameStrings(ArrayRef<std::string> NameStrs,
575 bool doCompression, std::string &Result) {
576 assert(!NameStrs.empty() && "No name data to emit");
578 uint8_t Header[20], *P = Header;
579 std::string UncompressedNameStrings =
580 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
582 assert(StringRef(UncompressedNameStrings)
583 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
584 "PGO name is invalid (contains separator token)");
586 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
587 P += EncLen;
589 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
590 EncLen = encodeULEB128(CompressedLen, P);
591 P += EncLen;
592 char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
593 unsigned HeaderLen = P - &Header[0];
594 Result.append(HeaderStr, HeaderLen);
595 Result += InputStr;
596 return Error::success();
599 if (!doCompression) {
600 return WriteStringToResult(0, UncompressedNameStrings);
603 SmallVector<uint8_t, 128> CompressedNameStrings;
604 compression::zlib::compress(arrayRefFromStringRef(UncompressedNameStrings),
605 CompressedNameStrings,
606 compression::zlib::BestSizeCompression);
608 return WriteStringToResult(CompressedNameStrings.size(),
609 toStringRef(CompressedNameStrings));
612 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
613 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
614 StringRef NameStr =
615 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
616 return NameStr;
619 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
620 std::string &Result, bool doCompression) {
621 std::vector<std::string> NameStrs;
622 for (auto *NameVar : NameVars) {
623 NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar)));
625 return collectGlobalObjectNameStrings(
626 NameStrs, compression::zlib::isAvailable() && doCompression, Result);
629 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
630 uint64_t FuncSum = 0;
631 Sum.NumEntries += Counts.size();
632 for (uint64_t Count : Counts)
633 FuncSum += Count;
634 Sum.CountSum += FuncSum;
636 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
637 uint64_t KindSum = 0;
638 uint32_t NumValueSites = getNumValueSites(VK);
639 for (size_t I = 0; I < NumValueSites; ++I) {
640 uint32_t NV = getNumValueDataForSite(VK, I);
641 std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I);
642 for (uint32_t V = 0; V < NV; V++)
643 KindSum += VD[V].Count;
645 Sum.ValueCounts[VK] += KindSum;
649 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
650 uint32_t ValueKind,
651 OverlapStats &Overlap,
652 OverlapStats &FuncLevelOverlap) {
653 this->sortByTargetValues();
654 Input.sortByTargetValues();
655 double Score = 0.0f, FuncLevelScore = 0.0f;
656 auto I = ValueData.begin();
657 auto IE = ValueData.end();
658 auto J = Input.ValueData.begin();
659 auto JE = Input.ValueData.end();
660 while (I != IE && J != JE) {
661 if (I->Value == J->Value) {
662 Score += OverlapStats::score(I->Count, J->Count,
663 Overlap.Base.ValueCounts[ValueKind],
664 Overlap.Test.ValueCounts[ValueKind]);
665 FuncLevelScore += OverlapStats::score(
666 I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
667 FuncLevelOverlap.Test.ValueCounts[ValueKind]);
668 ++I;
669 } else if (I->Value < J->Value) {
670 ++I;
671 continue;
673 ++J;
675 Overlap.Overlap.ValueCounts[ValueKind] += Score;
676 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
679 // Return false on mismatch.
680 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
681 InstrProfRecord &Other,
682 OverlapStats &Overlap,
683 OverlapStats &FuncLevelOverlap) {
684 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
685 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
686 if (!ThisNumValueSites)
687 return;
689 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
690 getOrCreateValueSitesForKind(ValueKind);
691 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
692 Other.getValueSitesForKind(ValueKind);
693 for (uint32_t I = 0; I < ThisNumValueSites; I++)
694 ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
695 FuncLevelOverlap);
698 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
699 OverlapStats &FuncLevelOverlap,
700 uint64_t ValueCutoff) {
701 // FuncLevel CountSum for other should already computed and nonzero.
702 assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
703 accumulateCounts(FuncLevelOverlap.Base);
704 bool Mismatch = (Counts.size() != Other.Counts.size());
706 // Check if the value profiles mismatch.
707 if (!Mismatch) {
708 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
709 uint32_t ThisNumValueSites = getNumValueSites(Kind);
710 uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
711 if (ThisNumValueSites != OtherNumValueSites) {
712 Mismatch = true;
713 break;
717 if (Mismatch) {
718 Overlap.addOneMismatch(FuncLevelOverlap.Test);
719 return;
722 // Compute overlap for value counts.
723 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
724 overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);
726 double Score = 0.0;
727 uint64_t MaxCount = 0;
728 // Compute overlap for edge counts.
729 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
730 Score += OverlapStats::score(Counts[I], Other.Counts[I],
731 Overlap.Base.CountSum, Overlap.Test.CountSum);
732 MaxCount = std::max(Other.Counts[I], MaxCount);
734 Overlap.Overlap.CountSum += Score;
735 Overlap.Overlap.NumEntries += 1;
737 if (MaxCount >= ValueCutoff) {
738 double FuncScore = 0.0;
739 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
740 FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
741 FuncLevelOverlap.Base.CountSum,
742 FuncLevelOverlap.Test.CountSum);
743 FuncLevelOverlap.Overlap.CountSum = FuncScore;
744 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
745 FuncLevelOverlap.Valid = true;
749 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
750 uint64_t Weight,
751 function_ref<void(instrprof_error)> Warn) {
752 this->sortByTargetValues();
753 Input.sortByTargetValues();
754 auto I = ValueData.begin();
755 auto IE = ValueData.end();
756 for (const InstrProfValueData &J : Input.ValueData) {
757 while (I != IE && I->Value < J.Value)
758 ++I;
759 if (I != IE && I->Value == J.Value) {
760 bool Overflowed;
761 I->Count = SaturatingMultiplyAdd(J.Count, Weight, I->Count, &Overflowed);
762 if (Overflowed)
763 Warn(instrprof_error::counter_overflow);
764 ++I;
765 continue;
767 ValueData.insert(I, J);
771 void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D,
772 function_ref<void(instrprof_error)> Warn) {
773 for (InstrProfValueData &I : ValueData) {
774 bool Overflowed;
775 I.Count = SaturatingMultiply(I.Count, N, &Overflowed) / D;
776 if (Overflowed)
777 Warn(instrprof_error::counter_overflow);
781 // Merge Value Profile data from Src record to this record for ValueKind.
782 // Scale merged value counts by \p Weight.
783 void InstrProfRecord::mergeValueProfData(
784 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
785 function_ref<void(instrprof_error)> Warn) {
786 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
787 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
788 if (ThisNumValueSites != OtherNumValueSites) {
789 Warn(instrprof_error::value_site_count_mismatch);
790 return;
792 if (!ThisNumValueSites)
793 return;
794 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
795 getOrCreateValueSitesForKind(ValueKind);
796 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
797 Src.getValueSitesForKind(ValueKind);
798 for (uint32_t I = 0; I < ThisNumValueSites; I++)
799 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
802 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
803 function_ref<void(instrprof_error)> Warn) {
804 // If the number of counters doesn't match we either have bad data
805 // or a hash collision.
806 if (Counts.size() != Other.Counts.size()) {
807 Warn(instrprof_error::count_mismatch);
808 return;
811 // Special handling of the first count as the PseudoCount.
812 CountPseudoKind OtherKind = Other.getCountPseudoKind();
813 CountPseudoKind ThisKind = getCountPseudoKind();
814 if (OtherKind != NotPseudo || ThisKind != NotPseudo) {
815 // We don't allow the merge of a profile with pseudo counts and
816 // a normal profile (i.e. without pesudo counts).
817 // Profile supplimenation should be done after the profile merge.
818 if (OtherKind == NotPseudo || ThisKind == NotPseudo) {
819 Warn(instrprof_error::count_mismatch);
820 return;
822 if (OtherKind == PseudoHot || ThisKind == PseudoHot)
823 setPseudoCount(PseudoHot);
824 else
825 setPseudoCount(PseudoWarm);
826 return;
829 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
830 bool Overflowed;
831 uint64_t Value =
832 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
833 if (Value > getInstrMaxCountValue()) {
834 Value = getInstrMaxCountValue();
835 Overflowed = true;
837 Counts[I] = Value;
838 if (Overflowed)
839 Warn(instrprof_error::counter_overflow);
842 // If the number of bitmap bytes doesn't match we either have bad data
843 // or a hash collision.
844 if (BitmapBytes.size() != Other.BitmapBytes.size()) {
845 Warn(instrprof_error::bitmap_mismatch);
846 return;
849 // Bitmap bytes are merged by simply ORing them together.
850 for (size_t I = 0, E = Other.BitmapBytes.size(); I < E; ++I) {
851 BitmapBytes[I] = Other.BitmapBytes[I] | BitmapBytes[I];
854 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
855 mergeValueProfData(Kind, Other, Weight, Warn);
858 void InstrProfRecord::scaleValueProfData(
859 uint32_t ValueKind, uint64_t N, uint64_t D,
860 function_ref<void(instrprof_error)> Warn) {
861 for (auto &R : getValueSitesForKind(ValueKind))
862 R.scale(N, D, Warn);
865 void InstrProfRecord::scale(uint64_t N, uint64_t D,
866 function_ref<void(instrprof_error)> Warn) {
867 assert(D != 0 && "D cannot be 0");
868 for (auto &Count : this->Counts) {
869 bool Overflowed;
870 Count = SaturatingMultiply(Count, N, &Overflowed) / D;
871 if (Count > getInstrMaxCountValue()) {
872 Count = getInstrMaxCountValue();
873 Overflowed = true;
875 if (Overflowed)
876 Warn(instrprof_error::counter_overflow);
878 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
879 scaleValueProfData(Kind, N, D, Warn);
882 // Map indirect call target name hash to name string.
883 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
884 InstrProfSymtab *SymTab) {
885 if (!SymTab)
886 return Value;
888 if (ValueKind == IPVK_IndirectCallTarget)
889 return SymTab->getFunctionHashFromAddress(Value);
891 return Value;
894 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
895 InstrProfValueData *VData, uint32_t N,
896 InstrProfSymtab *ValueMap) {
897 for (uint32_t I = 0; I < N; I++) {
898 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
900 std::vector<InstrProfValueSiteRecord> &ValueSites =
901 getOrCreateValueSitesForKind(ValueKind);
902 if (N == 0)
903 ValueSites.emplace_back();
904 else
905 ValueSites.emplace_back(VData, VData + N);
908 std::vector<BPFunctionNode> TemporalProfTraceTy::createBPFunctionNodes(
909 ArrayRef<TemporalProfTraceTy> Traces) {
910 using IDT = BPFunctionNode::IDT;
911 using UtilityNodeT = BPFunctionNode::UtilityNodeT;
912 // Collect all function IDs ordered by their smallest timestamp. This will be
913 // used as the initial FunctionNode order.
914 SetVector<IDT> FunctionIds;
915 size_t LargestTraceSize = 0;
916 for (auto &Trace : Traces)
917 LargestTraceSize =
918 std::max(LargestTraceSize, Trace.FunctionNameRefs.size());
919 for (size_t Timestamp = 0; Timestamp < LargestTraceSize; Timestamp++)
920 for (auto &Trace : Traces)
921 if (Timestamp < Trace.FunctionNameRefs.size())
922 FunctionIds.insert(Trace.FunctionNameRefs[Timestamp]);
924 const int N = Log2_64(LargestTraceSize) + 1;
926 // TODO: We need to use the Trace.Weight field to give more weight to more
927 // important utilities
928 DenseMap<IDT, SmallVector<UtilityNodeT, 4>> FuncGroups;
929 for (size_t TraceIdx = 0; TraceIdx < Traces.size(); TraceIdx++) {
930 auto &Trace = Traces[TraceIdx].FunctionNameRefs;
931 for (size_t Timestamp = 0; Timestamp < Trace.size(); Timestamp++) {
932 for (int I = Log2_64(Timestamp + 1); I < N; I++) {
933 auto FunctionId = Trace[Timestamp];
934 UtilityNodeT GroupId = TraceIdx * N + I;
935 FuncGroups[FunctionId].push_back(GroupId);
940 std::vector<BPFunctionNode> Nodes;
941 for (auto Id : FunctionIds) {
942 auto &UNs = FuncGroups[Id];
943 llvm::sort(UNs);
944 UNs.erase(std::unique(UNs.begin(), UNs.end()), UNs.end());
945 Nodes.emplace_back(Id, UNs);
947 return Nodes;
950 #define INSTR_PROF_COMMON_API_IMPL
951 #include "llvm/ProfileData/InstrProfData.inc"
954 * ValueProfRecordClosure Interface implementation for InstrProfRecord
955 * class. These C wrappers are used as adaptors so that C++ code can be
956 * invoked as callbacks.
958 uint32_t getNumValueKindsInstrProf(const void *Record) {
959 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
962 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
963 return reinterpret_cast<const InstrProfRecord *>(Record)
964 ->getNumValueSites(VKind);
967 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
968 return reinterpret_cast<const InstrProfRecord *>(Record)
969 ->getNumValueData(VKind);
972 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
973 uint32_t S) {
974 return reinterpret_cast<const InstrProfRecord *>(R)
975 ->getNumValueDataForSite(VK, S);
978 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
979 uint32_t K, uint32_t S) {
980 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
983 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
984 ValueProfData *VD =
985 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
986 memset(VD, 0, TotalSizeInBytes);
987 return VD;
990 static ValueProfRecordClosure InstrProfRecordClosure = {
991 nullptr,
992 getNumValueKindsInstrProf,
993 getNumValueSitesInstrProf,
994 getNumValueDataInstrProf,
995 getNumValueDataForSiteInstrProf,
996 nullptr,
997 getValueForSiteInstrProf,
998 allocValueProfDataInstrProf};
1000 // Wrapper implementation using the closure mechanism.
1001 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
1002 auto Closure = InstrProfRecordClosure;
1003 Closure.Record = &Record;
1004 return getValueProfDataSize(&Closure);
1007 // Wrapper implementation using the closure mechanism.
1008 std::unique_ptr<ValueProfData>
1009 ValueProfData::serializeFrom(const InstrProfRecord &Record) {
1010 InstrProfRecordClosure.Record = &Record;
1012 std::unique_ptr<ValueProfData> VPD(
1013 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
1014 return VPD;
1017 void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
1018 InstrProfSymtab *SymTab) {
1019 Record.reserveSites(Kind, NumValueSites);
1021 InstrProfValueData *ValueData = getValueProfRecordValueData(this);
1022 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
1023 uint8_t ValueDataCount = this->SiteCountArray[VSite];
1024 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab);
1025 ValueData += ValueDataCount;
1029 // For writing/serializing, Old is the host endianness, and New is
1030 // byte order intended on disk. For Reading/deserialization, Old
1031 // is the on-disk source endianness, and New is the host endianness.
1032 void ValueProfRecord::swapBytes(llvm::endianness Old, llvm::endianness New) {
1033 using namespace support;
1035 if (Old == New)
1036 return;
1038 if (llvm::endianness::native != Old) {
1039 sys::swapByteOrder<uint32_t>(NumValueSites);
1040 sys::swapByteOrder<uint32_t>(Kind);
1042 uint32_t ND = getValueProfRecordNumValueData(this);
1043 InstrProfValueData *VD = getValueProfRecordValueData(this);
1045 // No need to swap byte array: SiteCountArrray.
1046 for (uint32_t I = 0; I < ND; I++) {
1047 sys::swapByteOrder<uint64_t>(VD[I].Value);
1048 sys::swapByteOrder<uint64_t>(VD[I].Count);
1050 if (llvm::endianness::native == Old) {
1051 sys::swapByteOrder<uint32_t>(NumValueSites);
1052 sys::swapByteOrder<uint32_t>(Kind);
1056 void ValueProfData::deserializeTo(InstrProfRecord &Record,
1057 InstrProfSymtab *SymTab) {
1058 if (NumValueKinds == 0)
1059 return;
1061 ValueProfRecord *VR = getFirstValueProfRecord(this);
1062 for (uint32_t K = 0; K < NumValueKinds; K++) {
1063 VR->deserializeTo(Record, SymTab);
1064 VR = getValueProfRecordNext(VR);
1068 template <class T>
1069 static T swapToHostOrder(const unsigned char *&D, llvm::endianness Orig) {
1070 using namespace support;
1072 if (Orig == llvm::endianness::little)
1073 return endian::readNext<T, llvm::endianness::little, unaligned>(D);
1074 else
1075 return endian::readNext<T, llvm::endianness::big, unaligned>(D);
1078 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
1079 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
1080 ValueProfData());
1083 Error ValueProfData::checkIntegrity() {
1084 if (NumValueKinds > IPVK_Last + 1)
1085 return make_error<InstrProfError>(
1086 instrprof_error::malformed, "number of value profile kinds is invalid");
1087 // Total size needs to be multiple of quadword size.
1088 if (TotalSize % sizeof(uint64_t))
1089 return make_error<InstrProfError>(
1090 instrprof_error::malformed, "total size is not multiples of quardword");
1092 ValueProfRecord *VR = getFirstValueProfRecord(this);
1093 for (uint32_t K = 0; K < this->NumValueKinds; K++) {
1094 if (VR->Kind > IPVK_Last)
1095 return make_error<InstrProfError>(instrprof_error::malformed,
1096 "value kind is invalid");
1097 VR = getValueProfRecordNext(VR);
1098 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
1099 return make_error<InstrProfError>(
1100 instrprof_error::malformed,
1101 "value profile address is greater than total size");
1103 return Error::success();
1106 Expected<std::unique_ptr<ValueProfData>>
1107 ValueProfData::getValueProfData(const unsigned char *D,
1108 const unsigned char *const BufferEnd,
1109 llvm::endianness Endianness) {
1110 using namespace support;
1112 if (D + sizeof(ValueProfData) > BufferEnd)
1113 return make_error<InstrProfError>(instrprof_error::truncated);
1115 const unsigned char *Header = D;
1116 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
1117 if (D + TotalSize > BufferEnd)
1118 return make_error<InstrProfError>(instrprof_error::too_large);
1120 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
1121 memcpy(VPD.get(), D, TotalSize);
1122 // Byte swap.
1123 VPD->swapBytesToHost(Endianness);
1125 Error E = VPD->checkIntegrity();
1126 if (E)
1127 return std::move(E);
1129 return std::move(VPD);
1132 void ValueProfData::swapBytesToHost(llvm::endianness Endianness) {
1133 using namespace support;
1135 if (Endianness == llvm::endianness::native)
1136 return;
1138 sys::swapByteOrder<uint32_t>(TotalSize);
1139 sys::swapByteOrder<uint32_t>(NumValueKinds);
1141 ValueProfRecord *VR = getFirstValueProfRecord(this);
1142 for (uint32_t K = 0; K < NumValueKinds; K++) {
1143 VR->swapBytes(Endianness, llvm::endianness::native);
1144 VR = getValueProfRecordNext(VR);
1148 void ValueProfData::swapBytesFromHost(llvm::endianness Endianness) {
1149 using namespace support;
1151 if (Endianness == llvm::endianness::native)
1152 return;
1154 ValueProfRecord *VR = getFirstValueProfRecord(this);
1155 for (uint32_t K = 0; K < NumValueKinds; K++) {
1156 ValueProfRecord *NVR = getValueProfRecordNext(VR);
1157 VR->swapBytes(llvm::endianness::native, Endianness);
1158 VR = NVR;
1160 sys::swapByteOrder<uint32_t>(TotalSize);
1161 sys::swapByteOrder<uint32_t>(NumValueKinds);
1164 void annotateValueSite(Module &M, Instruction &Inst,
1165 const InstrProfRecord &InstrProfR,
1166 InstrProfValueKind ValueKind, uint32_t SiteIdx,
1167 uint32_t MaxMDCount) {
1168 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
1169 if (!NV)
1170 return;
1172 uint64_t Sum = 0;
1173 std::unique_ptr<InstrProfValueData[]> VD =
1174 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);
1176 ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
1177 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
1180 void annotateValueSite(Module &M, Instruction &Inst,
1181 ArrayRef<InstrProfValueData> VDs,
1182 uint64_t Sum, InstrProfValueKind ValueKind,
1183 uint32_t MaxMDCount) {
1184 LLVMContext &Ctx = M.getContext();
1185 MDBuilder MDHelper(Ctx);
1186 SmallVector<Metadata *, 3> Vals;
1187 // Tag
1188 Vals.push_back(MDHelper.createString("VP"));
1189 // Value Kind
1190 Vals.push_back(MDHelper.createConstant(
1191 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
1192 // Total Count
1193 Vals.push_back(
1194 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
1196 // Value Profile Data
1197 uint32_t MDCount = MaxMDCount;
1198 for (auto &VD : VDs) {
1199 Vals.push_back(MDHelper.createConstant(
1200 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
1201 Vals.push_back(MDHelper.createConstant(
1202 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
1203 if (--MDCount == 0)
1204 break;
1206 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
1209 bool getValueProfDataFromInst(const Instruction &Inst,
1210 InstrProfValueKind ValueKind,
1211 uint32_t MaxNumValueData,
1212 InstrProfValueData ValueData[],
1213 uint32_t &ActualNumValueData, uint64_t &TotalC,
1214 bool GetNoICPValue) {
1215 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
1216 if (!MD)
1217 return false;
1219 unsigned NOps = MD->getNumOperands();
1221 if (NOps < 5)
1222 return false;
1224 // Operand 0 is a string tag "VP":
1225 MDString *Tag = cast<MDString>(MD->getOperand(0));
1226 if (!Tag)
1227 return false;
1229 if (!Tag->getString().equals("VP"))
1230 return false;
1232 // Now check kind:
1233 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
1234 if (!KindInt)
1235 return false;
1236 if (KindInt->getZExtValue() != ValueKind)
1237 return false;
1239 // Get total count
1240 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
1241 if (!TotalCInt)
1242 return false;
1243 TotalC = TotalCInt->getZExtValue();
1245 ActualNumValueData = 0;
1247 for (unsigned I = 3; I < NOps; I += 2) {
1248 if (ActualNumValueData >= MaxNumValueData)
1249 break;
1250 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
1251 ConstantInt *Count =
1252 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
1253 if (!Value || !Count)
1254 return false;
1255 uint64_t CntValue = Count->getZExtValue();
1256 if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM))
1257 continue;
1258 ValueData[ActualNumValueData].Value = Value->getZExtValue();
1259 ValueData[ActualNumValueData].Count = CntValue;
1260 ActualNumValueData++;
1262 return true;
1265 MDNode *getPGOFuncNameMetadata(const Function &F) {
1266 return F.getMetadata(getPGOFuncNameMetadataName());
1269 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
1270 // Only for internal linkage functions.
1271 if (PGOFuncName == F.getName())
1272 return;
1273 // Don't create duplicated meta-data.
1274 if (getPGOFuncNameMetadata(F))
1275 return;
1276 LLVMContext &C = F.getContext();
1277 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName));
1278 F.setMetadata(getPGOFuncNameMetadataName(), N);
1281 bool needsComdatForCounter(const Function &F, const Module &M) {
1282 if (F.hasComdat())
1283 return true;
1285 if (!Triple(M.getTargetTriple()).supportsCOMDAT())
1286 return false;
1288 // See createPGOFuncNameVar for more details. To avoid link errors, profile
1289 // counters for function with available_externally linkage needs to be changed
1290 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
1291 // created. Without using comdat, duplicate entries won't be removed by the
1292 // linker leading to increased data segement size and raw profile size. Even
1293 // worse, since the referenced counter from profile per-function data object
1294 // will be resolved to the common strong definition, the profile counts for
1295 // available_externally functions will end up being duplicated in raw profile
1296 // data. This can result in distorted profile as the counts of those dups
1297 // will be accumulated by the profile merger.
1298 GlobalValue::LinkageTypes Linkage = F.getLinkage();
1299 if (Linkage != GlobalValue::ExternalWeakLinkage &&
1300 Linkage != GlobalValue::AvailableExternallyLinkage)
1301 return false;
1303 return true;
1306 // Check if INSTR_PROF_RAW_VERSION_VAR is defined.
1307 bool isIRPGOFlagSet(const Module *M) {
1308 auto IRInstrVar =
1309 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1310 if (!IRInstrVar || IRInstrVar->hasLocalLinkage())
1311 return false;
1313 // For CSPGO+LTO, this variable might be marked as non-prevailing and we only
1314 // have the decl.
1315 if (IRInstrVar->isDeclaration())
1316 return true;
1318 // Check if the flag is set.
1319 if (!IRInstrVar->hasInitializer())
1320 return false;
1322 auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer());
1323 if (!InitVal)
1324 return false;
1325 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
1328 // Check if we can safely rename this Comdat function.
1329 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
1330 if (F.getName().empty())
1331 return false;
1332 if (!needsComdatForCounter(F, *(F.getParent())))
1333 return false;
1334 // Unsafe to rename the address-taken function (which can be used in
1335 // function comparison).
1336 if (CheckAddressTaken && F.hasAddressTaken())
1337 return false;
1338 // Only safe to do if this function may be discarded if it is not used
1339 // in the compilation unit.
1340 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
1341 return false;
1343 // For AvailableExternallyLinkage functions.
1344 if (!F.hasComdat()) {
1345 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
1346 return true;
1348 return true;
1351 // Create the variable for the profile file name.
1352 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
1353 if (InstrProfileOutput.empty())
1354 return;
1355 Constant *ProfileNameConst =
1356 ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
1357 GlobalVariable *ProfileNameVar = new GlobalVariable(
1358 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
1359 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
1360 ProfileNameVar->setVisibility(GlobalValue::HiddenVisibility);
1361 Triple TT(M.getTargetTriple());
1362 if (TT.supportsCOMDAT()) {
1363 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
1364 ProfileNameVar->setComdat(M.getOrInsertComdat(
1365 StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
1369 Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
1370 const std::string &TestFilename,
1371 bool IsCS) {
1372 auto getProfileSum = [IsCS](const std::string &Filename,
1373 CountSumOrPercent &Sum) -> Error {
1374 // This function is only used from llvm-profdata that doesn't use any kind
1375 // of VFS. Just create a default RealFileSystem to read profiles.
1376 auto FS = vfs::getRealFileSystem();
1377 auto ReaderOrErr = InstrProfReader::create(Filename, *FS);
1378 if (Error E = ReaderOrErr.takeError()) {
1379 return E;
1381 auto Reader = std::move(ReaderOrErr.get());
1382 Reader->accumulateCounts(Sum, IsCS);
1383 return Error::success();
1385 auto Ret = getProfileSum(BaseFilename, Base);
1386 if (Ret)
1387 return Ret;
1388 Ret = getProfileSum(TestFilename, Test);
1389 if (Ret)
1390 return Ret;
1391 this->BaseFilename = &BaseFilename;
1392 this->TestFilename = &TestFilename;
1393 Valid = true;
1394 return Error::success();
1397 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
1398 Mismatch.NumEntries += 1;
1399 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
1400 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1401 if (Test.ValueCounts[I] >= 1.0f)
1402 Mismatch.ValueCounts[I] +=
1403 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
1407 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
1408 Unique.NumEntries += 1;
1409 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
1410 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1411 if (Test.ValueCounts[I] >= 1.0f)
1412 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
1416 void OverlapStats::dump(raw_fd_ostream &OS) const {
1417 if (!Valid)
1418 return;
1420 const char *EntryName =
1421 (Level == ProgramLevel ? "functions" : "edge counters");
1422 if (Level == ProgramLevel) {
1423 OS << "Profile overlap infomation for base_profile: " << *BaseFilename
1424 << " and test_profile: " << *TestFilename << "\nProgram level:\n";
1425 } else {
1426 OS << "Function level:\n"
1427 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
1430 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
1431 if (Mismatch.NumEntries)
1432 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries
1433 << "\n";
1434 if (Unique.NumEntries)
1435 OS << " # of " << EntryName
1436 << " only in test_profile: " << Unique.NumEntries << "\n";
1438 OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
1439 << "\n";
1440 if (Mismatch.NumEntries)
1441 OS << " Mismatched count percentage (Edge): "
1442 << format("%.3f%%", Mismatch.CountSum * 100) << "\n";
1443 if (Unique.NumEntries)
1444 OS << " Percentage of Edge profile only in test_profile: "
1445 << format("%.3f%%", Unique.CountSum * 100) << "\n";
1446 OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum)
1447 << "\n"
1448 << " Edge profile test count sum: " << format("%.0f", Test.CountSum)
1449 << "\n";
1451 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1452 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
1453 continue;
1454 char ProfileKindName[20];
1455 switch (I) {
1456 case IPVK_IndirectCallTarget:
1457 strncpy(ProfileKindName, "IndirectCall", 19);
1458 break;
1459 case IPVK_MemOPSize:
1460 strncpy(ProfileKindName, "MemOP", 19);
1461 break;
1462 default:
1463 snprintf(ProfileKindName, 19, "VP[%d]", I);
1464 break;
1466 OS << " " << ProfileKindName
1467 << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
1468 << "\n";
1469 if (Mismatch.NumEntries)
1470 OS << " Mismatched count percentage (" << ProfileKindName
1471 << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
1472 if (Unique.NumEntries)
1473 OS << " Percentage of " << ProfileKindName
1474 << " profile only in test_profile: "
1475 << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
1476 OS << " " << ProfileKindName
1477 << " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
1478 << "\n"
1479 << " " << ProfileKindName
1480 << " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
1481 << "\n";
1485 namespace IndexedInstrProf {
1486 // A C++14 compatible version of the offsetof macro.
1487 template <typename T1, typename T2>
1488 inline size_t constexpr offsetOf(T1 T2::*Member) {
1489 constexpr T2 Object{};
1490 return size_t(&(Object.*Member)) - size_t(&Object);
1493 static inline uint64_t read(const unsigned char *Buffer, size_t Offset) {
1494 return *reinterpret_cast<const uint64_t *>(Buffer + Offset);
1497 uint64_t Header::formatVersion() const {
1498 using namespace support;
1499 return endian::byte_swap<uint64_t, llvm::endianness::little>(Version);
1502 Expected<Header> Header::readFromBuffer(const unsigned char *Buffer) {
1503 using namespace support;
1504 static_assert(std::is_standard_layout_v<Header>,
1505 "The header should be standard layout type since we use offset "
1506 "of fields to read.");
1507 Header H;
1509 H.Magic = read(Buffer, offsetOf(&Header::Magic));
1510 // Check the magic number.
1511 uint64_t Magic =
1512 endian::byte_swap<uint64_t, llvm::endianness::little>(H.Magic);
1513 if (Magic != IndexedInstrProf::Magic)
1514 return make_error<InstrProfError>(instrprof_error::bad_magic);
1516 // Read the version.
1517 H.Version = read(Buffer, offsetOf(&Header::Version));
1518 if (GET_VERSION(H.formatVersion()) >
1519 IndexedInstrProf::ProfVersion::CurrentVersion)
1520 return make_error<InstrProfError>(instrprof_error::unsupported_version);
1522 switch (GET_VERSION(H.formatVersion())) {
1523 // When a new field is added in the header add a case statement here to
1524 // populate it.
1525 static_assert(
1526 IndexedInstrProf::ProfVersion::CurrentVersion == Version11,
1527 "Please update the reading code below if a new field has been added, "
1528 "if not add a case statement to fall through to the latest version.");
1529 case 11ull:
1530 [[fallthrough]];
1531 case 10ull:
1532 H.TemporalProfTracesOffset =
1533 read(Buffer, offsetOf(&Header::TemporalProfTracesOffset));
1534 [[fallthrough]];
1535 case 9ull:
1536 H.BinaryIdOffset = read(Buffer, offsetOf(&Header::BinaryIdOffset));
1537 [[fallthrough]];
1538 case 8ull:
1539 H.MemProfOffset = read(Buffer, offsetOf(&Header::MemProfOffset));
1540 [[fallthrough]];
1541 default: // Version7 (when the backwards compatible header was introduced).
1542 H.HashType = read(Buffer, offsetOf(&Header::HashType));
1543 H.HashOffset = read(Buffer, offsetOf(&Header::HashOffset));
1546 return H;
1549 size_t Header::size() const {
1550 switch (GET_VERSION(formatVersion())) {
1551 // When a new field is added to the header add a case statement here to
1552 // compute the size as offset of the new field + size of the new field. This
1553 // relies on the field being added to the end of the list.
1554 static_assert(IndexedInstrProf::ProfVersion::CurrentVersion == Version11,
1555 "Please update the size computation below if a new field has "
1556 "been added to the header, if not add a case statement to "
1557 "fall through to the latest version.");
1558 case 11ull:
1559 [[fallthrough]];
1560 case 10ull:
1561 return offsetOf(&Header::TemporalProfTracesOffset) +
1562 sizeof(Header::TemporalProfTracesOffset);
1563 case 9ull:
1564 return offsetOf(&Header::BinaryIdOffset) + sizeof(Header::BinaryIdOffset);
1565 case 8ull:
1566 return offsetOf(&Header::MemProfOffset) + sizeof(Header::MemProfOffset);
1567 default: // Version7 (when the backwards compatible header was introduced).
1568 return offsetOf(&Header::HashOffset) + sizeof(Header::HashOffset);
1572 } // namespace IndexedInstrProf
1574 } // end namespace llvm