1 //===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Bit-Tracking Dead Code Elimination pass. Some
10 // instructions (shifts, some ands, ors, etc.) kill some of their input bits.
11 // We track these dead bits and remove instructions that compute only these
12 // dead bits. We also simplify sext that generates unused extension bits,
13 // converting it to a zext.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Scalar/BDCE.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/DemandedBits.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/Local.h"
31 #define DEBUG_TYPE "bdce"
33 STATISTIC(NumRemoved
, "Number of instructions removed (unused)");
34 STATISTIC(NumSimplified
, "Number of instructions trivialized (dead bits)");
35 STATISTIC(NumSExt2ZExt
,
36 "Number of sign extension instructions converted to zero extension");
38 /// If an instruction is trivialized (dead), then the chain of users of that
39 /// instruction may need to be cleared of assumptions that can no longer be
40 /// guaranteed correct.
41 static void clearAssumptionsOfUsers(Instruction
*I
, DemandedBits
&DB
) {
42 assert(I
->getType()->isIntOrIntVectorTy() &&
43 "Trivializing a non-integer value?");
45 // Initialize the worklist with eligible direct users.
46 SmallPtrSet
<Instruction
*, 16> Visited
;
47 SmallVector
<Instruction
*, 16> WorkList
;
48 for (User
*JU
: I
->users()) {
49 // If all bits of a user are demanded, then we know that nothing below that
50 // in the def-use chain needs to be changed.
51 auto *J
= dyn_cast
<Instruction
>(JU
);
52 if (J
&& J
->getType()->isIntOrIntVectorTy() &&
53 !DB
.getDemandedBits(J
).isAllOnes()) {
55 WorkList
.push_back(J
);
58 // Note that we need to check for non-int types above before asking for
59 // demanded bits. Normally, the only way to reach an instruction with an
60 // non-int type is via an instruction that has side effects (or otherwise
61 // will demand its input bits). However, if we have a readnone function
62 // that returns an unsized type (e.g., void), we must avoid asking for the
63 // demanded bits of the function call's return value. A void-returning
64 // readnone function is always dead (and so we can stop walking the use/def
65 // chain here), but the check is necessary to avoid asserting.
68 // DFS through subsequent users while tracking visits to avoid cycles.
69 while (!WorkList
.empty()) {
70 Instruction
*J
= WorkList
.pop_back_val();
72 // NSW, NUW, and exact are based on operands that might have changed.
73 J
->dropPoisonGeneratingFlags();
75 // We do not have to worry about llvm.assume or range metadata:
76 // 1. llvm.assume demands its operand, so trivializing can't change it.
77 // 2. range metadata only applies to memory accesses which demand all bits.
79 for (User
*KU
: J
->users()) {
80 // If all bits of a user are demanded, then we know that nothing below
81 // that in the def-use chain needs to be changed.
82 auto *K
= dyn_cast
<Instruction
>(KU
);
83 if (K
&& Visited
.insert(K
).second
&& K
->getType()->isIntOrIntVectorTy() &&
84 !DB
.getDemandedBits(K
).isAllOnes())
85 WorkList
.push_back(K
);
90 static bool bitTrackingDCE(Function
&F
, DemandedBits
&DB
) {
91 SmallVector
<Instruction
*, 128> Worklist
;
93 for (Instruction
&I
: instructions(F
)) {
94 // If the instruction has side effects and no non-dbg uses,
95 // skip it. This way we avoid computing known bits on an instruction
96 // that will not help us.
97 if (I
.mayHaveSideEffects() && I
.use_empty())
100 // Remove instructions that are dead, either because they were not reached
101 // during analysis or have no demanded bits.
102 if (DB
.isInstructionDead(&I
) ||
103 (I
.getType()->isIntOrIntVectorTy() && DB
.getDemandedBits(&I
).isZero() &&
104 wouldInstructionBeTriviallyDead(&I
))) {
105 Worklist
.push_back(&I
);
110 // Convert SExt into ZExt if none of the extension bits is required
111 if (SExtInst
*SE
= dyn_cast
<SExtInst
>(&I
)) {
112 APInt Demanded
= DB
.getDemandedBits(SE
);
113 const uint32_t SrcBitSize
= SE
->getSrcTy()->getScalarSizeInBits();
114 auto *const DstTy
= SE
->getDestTy();
115 const uint32_t DestBitSize
= DstTy
->getScalarSizeInBits();
116 if (Demanded
.countl_zero() >= (DestBitSize
- SrcBitSize
)) {
117 clearAssumptionsOfUsers(SE
, DB
);
118 IRBuilder
<> Builder(SE
);
119 I
.replaceAllUsesWith(
120 Builder
.CreateZExt(SE
->getOperand(0), DstTy
, SE
->getName()));
121 Worklist
.push_back(SE
);
128 for (Use
&U
: I
.operands()) {
129 // DemandedBits only detects dead integer uses.
130 if (!U
->getType()->isIntOrIntVectorTy())
133 if (!isa
<Instruction
>(U
) && !isa
<Argument
>(U
))
136 if (!DB
.isUseDead(&U
))
139 LLVM_DEBUG(dbgs() << "BDCE: Trivializing: " << U
<< " (all bits dead)\n");
141 clearAssumptionsOfUsers(&I
, DB
);
143 // Substitute all uses with zero. In theory we could use `freeze poison`
144 // instead, but that seems unlikely to be profitable.
145 U
.set(ConstantInt::get(U
->getType(), 0));
151 for (Instruction
*&I
: llvm::reverse(Worklist
)) {
152 salvageDebugInfo(*I
);
153 I
->dropAllReferences();
156 for (Instruction
*&I
: Worklist
) {
158 I
->eraseFromParent();
164 PreservedAnalyses
BDCEPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
165 auto &DB
= AM
.getResult
<DemandedBitsAnalysis
>(F
);
166 if (!bitTrackingDCE(F
, DB
))
167 return PreservedAnalyses::all();
169 PreservedAnalyses PA
;
170 PA
.preserveSet
<CFGAnalyses
>();