[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Scalar / ConstantHoisting.cpp
blob49f8761a13923267727f92637a2321557a6585c9
1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCostInst will always return TCC_Free.
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/Analysis/BlockFrequencyInfo.h"
42 #include "llvm/Analysis/ProfileSummaryInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/BlockFrequency.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Scalar.h"
63 #include "llvm/Transforms/Utils/Local.h"
64 #include "llvm/Transforms/Utils/SizeOpts.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstdint>
68 #include <iterator>
69 #include <tuple>
70 #include <utility>
72 using namespace llvm;
73 using namespace consthoist;
75 #define DEBUG_TYPE "consthoist"
77 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
78 STATISTIC(NumConstantsRebased, "Number of constants rebased");
80 static cl::opt<bool> ConstHoistWithBlockFrequency(
81 "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
82 cl::desc("Enable the use of the block frequency analysis to reduce the "
83 "chance to execute const materialization more frequently than "
84 "without hoisting."));
86 static cl::opt<bool> ConstHoistGEP(
87 "consthoist-gep", cl::init(false), cl::Hidden,
88 cl::desc("Try hoisting constant gep expressions"));
90 static cl::opt<unsigned>
91 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
92 cl::desc("Do not rebase if number of dependent constants of a Base is less "
93 "than this number."),
94 cl::init(0), cl::Hidden);
96 namespace {
98 /// The constant hoisting pass.
99 class ConstantHoistingLegacyPass : public FunctionPass {
100 public:
101 static char ID; // Pass identification, replacement for typeid
103 ConstantHoistingLegacyPass() : FunctionPass(ID) {
104 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
107 bool runOnFunction(Function &Fn) override;
109 StringRef getPassName() const override { return "Constant Hoisting"; }
111 void getAnalysisUsage(AnalysisUsage &AU) const override {
112 AU.setPreservesCFG();
113 if (ConstHoistWithBlockFrequency)
114 AU.addRequired<BlockFrequencyInfoWrapperPass>();
115 AU.addRequired<DominatorTreeWrapperPass>();
116 AU.addRequired<ProfileSummaryInfoWrapperPass>();
117 AU.addRequired<TargetTransformInfoWrapperPass>();
120 private:
121 ConstantHoistingPass Impl;
124 } // end anonymous namespace
126 char ConstantHoistingLegacyPass::ID = 0;
128 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
129 "Constant Hoisting", false, false)
130 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
131 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
132 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
133 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
134 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
135 "Constant Hoisting", false, false)
137 FunctionPass *llvm::createConstantHoistingPass() {
138 return new ConstantHoistingLegacyPass();
141 /// Perform the constant hoisting optimization for the given function.
142 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
143 if (skipFunction(Fn))
144 return false;
146 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
147 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
149 bool MadeChange =
150 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
151 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
152 ConstHoistWithBlockFrequency
153 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
154 : nullptr,
155 Fn.getEntryBlock(),
156 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
158 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
160 return MadeChange;
163 void ConstantHoistingPass::collectMatInsertPts(
164 const RebasedConstantListType &RebasedConstants,
165 SmallVectorImpl<Instruction *> &MatInsertPts) const {
166 for (const RebasedConstantInfo &RCI : RebasedConstants)
167 for (const ConstantUser &U : RCI.Uses)
168 MatInsertPts.emplace_back(findMatInsertPt(U.Inst, U.OpndIdx));
171 /// Find the constant materialization insertion point.
172 Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
173 unsigned Idx) const {
174 // If the operand is a cast instruction, then we have to materialize the
175 // constant before the cast instruction.
176 if (Idx != ~0U) {
177 Value *Opnd = Inst->getOperand(Idx);
178 if (auto CastInst = dyn_cast<Instruction>(Opnd))
179 if (CastInst->isCast())
180 return CastInst;
183 // The simple and common case. This also includes constant expressions.
184 if (!isa<PHINode>(Inst) && !Inst->isEHPad())
185 return Inst;
187 // We can't insert directly before a phi node or an eh pad. Insert before
188 // the terminator of the incoming or dominating block.
189 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
190 BasicBlock *InsertionBlock = nullptr;
191 if (Idx != ~0U && isa<PHINode>(Inst)) {
192 InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
193 if (!InsertionBlock->isEHPad()) {
194 return InsertionBlock->getTerminator();
196 } else {
197 InsertionBlock = Inst->getParent();
200 // This must be an EH pad. Iterate over immediate dominators until we find a
201 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
202 // and terminators.
203 auto *IDom = DT->getNode(InsertionBlock)->getIDom();
204 while (IDom->getBlock()->isEHPad()) {
205 assert(Entry != IDom->getBlock() && "eh pad in entry block");
206 IDom = IDom->getIDom();
209 return IDom->getBlock()->getTerminator();
212 /// Given \p BBs as input, find another set of BBs which collectively
213 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
214 /// set found in \p BBs.
215 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
216 BasicBlock *Entry,
217 SetVector<BasicBlock *> &BBs) {
218 assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
219 // Nodes on the current path to the root.
220 SmallPtrSet<BasicBlock *, 8> Path;
221 // Candidates includes any block 'BB' in set 'BBs' that is not strictly
222 // dominated by any other blocks in set 'BBs', and all nodes in the path
223 // in the dominator tree from Entry to 'BB'.
224 SmallPtrSet<BasicBlock *, 16> Candidates;
225 for (auto *BB : BBs) {
226 // Ignore unreachable basic blocks.
227 if (!DT.isReachableFromEntry(BB))
228 continue;
229 Path.clear();
230 // Walk up the dominator tree until Entry or another BB in BBs
231 // is reached. Insert the nodes on the way to the Path.
232 BasicBlock *Node = BB;
233 // The "Path" is a candidate path to be added into Candidates set.
234 bool isCandidate = false;
235 do {
236 Path.insert(Node);
237 if (Node == Entry || Candidates.count(Node)) {
238 isCandidate = true;
239 break;
241 assert(DT.getNode(Node)->getIDom() &&
242 "Entry doens't dominate current Node");
243 Node = DT.getNode(Node)->getIDom()->getBlock();
244 } while (!BBs.count(Node));
246 // If isCandidate is false, Node is another Block in BBs dominating
247 // current 'BB'. Drop the nodes on the Path.
248 if (!isCandidate)
249 continue;
251 // Add nodes on the Path into Candidates.
252 Candidates.insert(Path.begin(), Path.end());
255 // Sort the nodes in Candidates in top-down order and save the nodes
256 // in Orders.
257 unsigned Idx = 0;
258 SmallVector<BasicBlock *, 16> Orders;
259 Orders.push_back(Entry);
260 while (Idx != Orders.size()) {
261 BasicBlock *Node = Orders[Idx++];
262 for (auto *ChildDomNode : DT.getNode(Node)->children()) {
263 if (Candidates.count(ChildDomNode->getBlock()))
264 Orders.push_back(ChildDomNode->getBlock());
268 // Visit Orders in bottom-up order.
269 using InsertPtsCostPair =
270 std::pair<SetVector<BasicBlock *>, BlockFrequency>;
272 // InsertPtsMap is a map from a BB to the best insertion points for the
273 // subtree of BB (subtree not including the BB itself).
274 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
275 InsertPtsMap.reserve(Orders.size() + 1);
276 for (BasicBlock *Node : llvm::reverse(Orders)) {
277 bool NodeInBBs = BBs.count(Node);
278 auto &InsertPts = InsertPtsMap[Node].first;
279 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
281 // Return the optimal insert points in BBs.
282 if (Node == Entry) {
283 BBs.clear();
284 if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
285 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
286 BBs.insert(Entry);
287 else
288 BBs.insert(InsertPts.begin(), InsertPts.end());
289 break;
292 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
293 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
294 // will update its parent's ParentInsertPts and ParentPtsFreq.
295 auto &ParentInsertPts = InsertPtsMap[Parent].first;
296 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
297 // Choose to insert in Node or in subtree of Node.
298 // Don't hoist to EHPad because we may not find a proper place to insert
299 // in EHPad.
300 // If the total frequency of InsertPts is the same as the frequency of the
301 // target Node, and InsertPts contains more than one nodes, choose hoisting
302 // to reduce code size.
303 if (NodeInBBs ||
304 (!Node->isEHPad() &&
305 (InsertPtsFreq > BFI.getBlockFreq(Node) ||
306 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
307 ParentInsertPts.insert(Node);
308 ParentPtsFreq += BFI.getBlockFreq(Node);
309 } else {
310 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
311 ParentPtsFreq += InsertPtsFreq;
316 /// Find an insertion point that dominates all uses.
317 SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
318 const ConstantInfo &ConstInfo,
319 const ArrayRef<Instruction *> MatInsertPts) const {
320 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
321 // Collect all basic blocks.
322 SetVector<BasicBlock *> BBs;
323 SetVector<Instruction *> InsertPts;
325 for (Instruction *MatInsertPt : MatInsertPts)
326 BBs.insert(MatInsertPt->getParent());
328 if (BBs.count(Entry)) {
329 InsertPts.insert(&Entry->front());
330 return InsertPts;
333 if (BFI) {
334 findBestInsertionSet(*DT, *BFI, Entry, BBs);
335 for (BasicBlock *BB : BBs)
336 InsertPts.insert(&*BB->getFirstInsertionPt());
337 return InsertPts;
340 while (BBs.size() >= 2) {
341 BasicBlock *BB, *BB1, *BB2;
342 BB1 = BBs.pop_back_val();
343 BB2 = BBs.pop_back_val();
344 BB = DT->findNearestCommonDominator(BB1, BB2);
345 if (BB == Entry) {
346 InsertPts.insert(&Entry->front());
347 return InsertPts;
349 BBs.insert(BB);
351 assert((BBs.size() == 1) && "Expected only one element.");
352 Instruction &FirstInst = (*BBs.begin())->front();
353 InsertPts.insert(findMatInsertPt(&FirstInst));
354 return InsertPts;
357 /// Record constant integer ConstInt for instruction Inst at operand
358 /// index Idx.
360 /// The operand at index Idx is not necessarily the constant integer itself. It
361 /// could also be a cast instruction or a constant expression that uses the
362 /// constant integer.
363 void ConstantHoistingPass::collectConstantCandidates(
364 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
365 ConstantInt *ConstInt) {
366 InstructionCost Cost;
367 // Ask the target about the cost of materializing the constant for the given
368 // instruction and operand index.
369 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
370 Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
371 ConstInt->getValue(), ConstInt->getType(),
372 TargetTransformInfo::TCK_SizeAndLatency);
373 else
374 Cost = TTI->getIntImmCostInst(
375 Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
376 TargetTransformInfo::TCK_SizeAndLatency, Inst);
378 // Ignore cheap integer constants.
379 if (Cost > TargetTransformInfo::TCC_Basic) {
380 ConstCandMapType::iterator Itr;
381 bool Inserted;
382 ConstPtrUnionType Cand = ConstInt;
383 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
384 if (Inserted) {
385 ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
386 Itr->second = ConstIntCandVec.size() - 1;
388 ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
389 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
390 << "Collect constant " << *ConstInt << " from " << *Inst
391 << " with cost " << Cost << '\n';
392 else dbgs() << "Collect constant " << *ConstInt
393 << " indirectly from " << *Inst << " via "
394 << *Inst->getOperand(Idx) << " with cost " << Cost
395 << '\n';);
399 /// Record constant GEP expression for instruction Inst at operand index Idx.
400 void ConstantHoistingPass::collectConstantCandidates(
401 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
402 ConstantExpr *ConstExpr) {
403 // TODO: Handle vector GEPs
404 if (ConstExpr->getType()->isVectorTy())
405 return;
407 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
408 if (!BaseGV)
409 return;
411 // Get offset from the base GV.
412 PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
413 IntegerType *OffsetTy = DL->getIndexType(*Ctx, GVPtrTy->getAddressSpace());
414 APInt Offset(DL->getTypeSizeInBits(OffsetTy), /*val*/ 0, /*isSigned*/ true);
415 auto *GEPO = cast<GEPOperator>(ConstExpr);
417 // TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a
418 // non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to
419 // inbounds GEP for now -- alternatively, we could drop inbounds from the
420 // constant expression,
421 if (!GEPO->isInBounds())
422 return;
424 if (!GEPO->accumulateConstantOffset(*DL, Offset))
425 return;
427 if (!Offset.isIntN(32))
428 return;
430 // A constant GEP expression that has a GlobalVariable as base pointer is
431 // usually lowered to a load from constant pool. Such operation is unlikely
432 // to be cheaper than compute it by <Base + Offset>, which can be lowered to
433 // an ADD instruction or folded into Load/Store instruction.
434 InstructionCost Cost =
435 TTI->getIntImmCostInst(Instruction::Add, 1, Offset, OffsetTy,
436 TargetTransformInfo::TCK_SizeAndLatency, Inst);
437 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
438 ConstCandMapType::iterator Itr;
439 bool Inserted;
440 ConstPtrUnionType Cand = ConstExpr;
441 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
442 if (Inserted) {
443 ExprCandVec.push_back(ConstantCandidate(
444 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
445 ConstExpr));
446 Itr->second = ExprCandVec.size() - 1;
448 ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
451 /// Check the operand for instruction Inst at index Idx.
452 void ConstantHoistingPass::collectConstantCandidates(
453 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
454 Value *Opnd = Inst->getOperand(Idx);
456 // Visit constant integers.
457 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
458 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
459 return;
462 // Visit cast instructions that have constant integers.
463 if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
464 // Only visit cast instructions, which have been skipped. All other
465 // instructions should have already been visited.
466 if (!CastInst->isCast())
467 return;
469 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
470 // Pretend the constant is directly used by the instruction and ignore
471 // the cast instruction.
472 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
473 return;
477 // Visit constant expressions that have constant integers.
478 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
479 // Handle constant gep expressions.
480 if (ConstHoistGEP && isa<GEPOperator>(ConstExpr))
481 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
483 // Only visit constant cast expressions.
484 if (!ConstExpr->isCast())
485 return;
487 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
488 // Pretend the constant is directly used by the instruction and ignore
489 // the constant expression.
490 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
491 return;
496 /// Scan the instruction for expensive integer constants and record them
497 /// in the constant candidate vector.
498 void ConstantHoistingPass::collectConstantCandidates(
499 ConstCandMapType &ConstCandMap, Instruction *Inst) {
500 // Skip all cast instructions. They are visited indirectly later on.
501 if (Inst->isCast())
502 return;
504 // Scan all operands.
505 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
506 // The cost of materializing the constants (defined in
507 // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
508 // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
509 // So it's safe for us to collect constant candidates from all
510 // IntrinsicInsts.
511 if (canReplaceOperandWithVariable(Inst, Idx)) {
512 collectConstantCandidates(ConstCandMap, Inst, Idx);
514 } // end of for all operands
517 /// Collect all integer constants in the function that cannot be folded
518 /// into an instruction itself.
519 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
520 ConstCandMapType ConstCandMap;
521 for (BasicBlock &BB : Fn) {
522 // Ignore unreachable basic blocks.
523 if (!DT->isReachableFromEntry(&BB))
524 continue;
525 for (Instruction &Inst : BB)
526 if (!TTI->preferToKeepConstantsAttached(Inst, Fn))
527 collectConstantCandidates(ConstCandMap, &Inst);
531 // This helper function is necessary to deal with values that have different
532 // bit widths (APInt Operator- does not like that). If the value cannot be
533 // represented in uint64 we return an "empty" APInt. This is then interpreted
534 // as the value is not in range.
535 static std::optional<APInt> calculateOffsetDiff(const APInt &V1,
536 const APInt &V2) {
537 std::optional<APInt> Res;
538 unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
539 V1.getBitWidth() : V2.getBitWidth();
540 uint64_t LimVal1 = V1.getLimitedValue();
541 uint64_t LimVal2 = V2.getLimitedValue();
543 if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
544 return Res;
546 uint64_t Diff = LimVal1 - LimVal2;
547 return APInt(BW, Diff, true);
550 // From a list of constants, one needs to picked as the base and the other
551 // constants will be transformed into an offset from that base constant. The
552 // question is which we can pick best? For example, consider these constants
553 // and their number of uses:
555 // Constants| 2 | 4 | 12 | 42 |
556 // NumUses | 3 | 2 | 8 | 7 |
558 // Selecting constant 12 because it has the most uses will generate negative
559 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
560 // offsets lead to less optimal code generation, then there might be better
561 // solutions. Suppose immediates in the range of 0..35 are most optimally
562 // supported by the architecture, then selecting constant 2 is most optimal
563 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
564 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
565 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
566 // selecting the base constant the range of the offsets is a very important
567 // factor too that we take into account here. This algorithm calculates a total
568 // costs for selecting a constant as the base and substract the costs if
569 // immediates are out of range. It has quadratic complexity, so we call this
570 // function only when we're optimising for size and there are less than 100
571 // constants, we fall back to the straightforward algorithm otherwise
572 // which does not do all the offset calculations.
573 unsigned
574 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
575 ConstCandVecType::iterator E,
576 ConstCandVecType::iterator &MaxCostItr) {
577 unsigned NumUses = 0;
579 if (!OptForSize || std::distance(S,E) > 100) {
580 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
581 NumUses += ConstCand->Uses.size();
582 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
583 MaxCostItr = ConstCand;
585 return NumUses;
588 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
589 InstructionCost MaxCost = -1;
590 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
591 auto Value = ConstCand->ConstInt->getValue();
592 Type *Ty = ConstCand->ConstInt->getType();
593 InstructionCost Cost = 0;
594 NumUses += ConstCand->Uses.size();
595 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
596 << "\n");
598 for (auto User : ConstCand->Uses) {
599 unsigned Opcode = User.Inst->getOpcode();
600 unsigned OpndIdx = User.OpndIdx;
601 Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
602 TargetTransformInfo::TCK_SizeAndLatency);
603 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
605 for (auto C2 = S; C2 != E; ++C2) {
606 std::optional<APInt> Diff = calculateOffsetDiff(
607 C2->ConstInt->getValue(), ConstCand->ConstInt->getValue());
608 if (Diff) {
609 const InstructionCost ImmCosts =
610 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, *Diff, Ty);
611 Cost -= ImmCosts;
612 LLVM_DEBUG(dbgs() << "Offset " << *Diff << " "
613 << "has penalty: " << ImmCosts << "\n"
614 << "Adjusted cost: " << Cost << "\n");
618 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
619 if (Cost > MaxCost) {
620 MaxCost = Cost;
621 MaxCostItr = ConstCand;
622 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
623 << "\n");
626 return NumUses;
629 /// Find the base constant within the given range and rebase all other
630 /// constants with respect to the base constant.
631 void ConstantHoistingPass::findAndMakeBaseConstant(
632 ConstCandVecType::iterator S, ConstCandVecType::iterator E,
633 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
634 auto MaxCostItr = S;
635 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
637 // Don't hoist constants that have only one use.
638 if (NumUses <= 1)
639 return;
641 ConstantInt *ConstInt = MaxCostItr->ConstInt;
642 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
643 ConstantInfo ConstInfo;
644 ConstInfo.BaseInt = ConstInt;
645 ConstInfo.BaseExpr = ConstExpr;
646 Type *Ty = ConstInt->getType();
648 // Rebase the constants with respect to the base constant.
649 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
650 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
651 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
652 Type *ConstTy =
653 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
654 ConstInfo.RebasedConstants.push_back(
655 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
657 ConstInfoVec.push_back(std::move(ConstInfo));
660 /// Finds and combines constant candidates that can be easily
661 /// rematerialized with an add from a common base constant.
662 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
663 // If BaseGV is nullptr, find base among candidate constant integers;
664 // Otherwise find base among constant GEPs that share the same BaseGV.
665 ConstCandVecType &ConstCandVec = BaseGV ?
666 ConstGEPCandMap[BaseGV] : ConstIntCandVec;
667 ConstInfoVecType &ConstInfoVec = BaseGV ?
668 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
670 // Sort the constants by value and type. This invalidates the mapping!
671 llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
672 const ConstantCandidate &RHS) {
673 if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
674 return LHS.ConstInt->getBitWidth() < RHS.ConstInt->getBitWidth();
675 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
678 // Simple linear scan through the sorted constant candidate vector for viable
679 // merge candidates.
680 auto MinValItr = ConstCandVec.begin();
681 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
682 CC != E; ++CC) {
683 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
684 Type *MemUseValTy = nullptr;
685 for (auto &U : CC->Uses) {
686 auto *UI = U.Inst;
687 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
688 MemUseValTy = LI->getType();
689 break;
690 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
691 // Make sure the constant is used as pointer operand of the StoreInst.
692 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
693 MemUseValTy = SI->getValueOperand()->getType();
694 break;
699 // Check if the constant is in range of an add with immediate.
700 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
701 if ((Diff.getBitWidth() <= 64) &&
702 TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
703 // Check if Diff can be used as offset in addressing mode of the user
704 // memory instruction.
705 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
706 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
707 /*HasBaseReg*/true, /*Scale*/0)))
708 continue;
710 // We either have now a different constant type or the constant is not in
711 // range of an add with immediate anymore.
712 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
713 // Start a new base constant search.
714 MinValItr = CC;
716 // Finalize the last base constant search.
717 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
720 /// Updates the operand at Idx in instruction Inst with the result of
721 /// instruction Mat. If the instruction is a PHI node then special
722 /// handling for duplicate values from the same incoming basic block is
723 /// required.
724 /// \return The update will always succeed, but the return value indicated if
725 /// Mat was used for the update or not.
726 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
727 if (auto PHI = dyn_cast<PHINode>(Inst)) {
728 // Check if any previous operand of the PHI node has the same incoming basic
729 // block. This is a very odd case that happens when the incoming basic block
730 // has a switch statement. In this case use the same value as the previous
731 // operand(s), otherwise we will fail verification due to different values.
732 // The values are actually the same, but the variable names are different
733 // and the verifier doesn't like that.
734 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
735 for (unsigned i = 0; i < Idx; ++i) {
736 if (PHI->getIncomingBlock(i) == IncomingBB) {
737 Value *IncomingVal = PHI->getIncomingValue(i);
738 Inst->setOperand(Idx, IncomingVal);
739 return false;
744 Inst->setOperand(Idx, Mat);
745 return true;
748 /// Emit materialization code for all rebased constants and update their
749 /// users.
750 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
751 UserAdjustment *Adj) {
752 Instruction *Mat = Base;
754 // The same offset can be dereferenced to different types in nested struct.
755 if (!Adj->Offset && Adj->Ty && Adj->Ty != Base->getType())
756 Adj->Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
758 if (Adj->Offset) {
759 if (Adj->Ty) {
760 // Constant being rebased is a ConstantExpr.
761 Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base, Adj->Offset,
762 "mat_gep", Adj->MatInsertPt);
763 // Hide it behind a bitcast.
764 Mat = new BitCastInst(Mat, Adj->Ty, "mat_bitcast", Adj->MatInsertPt);
765 } else
766 // Constant being rebased is a ConstantInt.
767 Mat = BinaryOperator::Create(Instruction::Add, Base, Adj->Offset,
768 "const_mat", Adj->MatInsertPt);
770 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
771 << " + " << *Adj->Offset << ") in BB "
772 << Mat->getParent()->getName() << '\n'
773 << *Mat << '\n');
774 Mat->setDebugLoc(Adj->User.Inst->getDebugLoc());
776 Value *Opnd = Adj->User.Inst->getOperand(Adj->User.OpndIdx);
778 // Visit constant integer.
779 if (isa<ConstantInt>(Opnd)) {
780 LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
781 if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat) && Adj->Offset)
782 Mat->eraseFromParent();
783 LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n');
784 return;
787 // Visit cast instruction.
788 if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
789 assert(CastInst->isCast() && "Expected an cast instruction!");
790 // Check if we already have visited this cast instruction before to avoid
791 // unnecessary cloning.
792 Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
793 if (!ClonedCastInst) {
794 ClonedCastInst = CastInst->clone();
795 ClonedCastInst->setOperand(0, Mat);
796 ClonedCastInst->insertAfter(CastInst);
797 // Use the same debug location as the original cast instruction.
798 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
799 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
800 << "To : " << *ClonedCastInst << '\n');
803 LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
804 updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ClonedCastInst);
805 LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n');
806 return;
809 // Visit constant expression.
810 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
811 if (isa<GEPOperator>(ConstExpr)) {
812 // Operand is a ConstantGEP, replace it.
813 updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat);
814 return;
817 // Aside from constant GEPs, only constant cast expressions are collected.
818 assert(ConstExpr->isCast() && "ConstExpr should be a cast");
819 Instruction *ConstExprInst = ConstExpr->getAsInstruction(Adj->MatInsertPt);
820 ConstExprInst->setOperand(0, Mat);
822 // Use the same debug location as the instruction we are about to update.
823 ConstExprInst->setDebugLoc(Adj->User.Inst->getDebugLoc());
825 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
826 << "From : " << *ConstExpr << '\n');
827 LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
828 if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ConstExprInst)) {
829 ConstExprInst->eraseFromParent();
830 if (Adj->Offset)
831 Mat->eraseFromParent();
833 LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n');
834 return;
838 /// Hoist and hide the base constant behind a bitcast and emit
839 /// materialization code for derived constants.
840 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
841 bool MadeChange = false;
842 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
843 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
844 for (const consthoist::ConstantInfo &ConstInfo : ConstInfoVec) {
845 SmallVector<Instruction *, 4> MatInsertPts;
846 collectMatInsertPts(ConstInfo.RebasedConstants, MatInsertPts);
847 SetVector<Instruction *> IPSet =
848 findConstantInsertionPoint(ConstInfo, MatInsertPts);
849 // We can have an empty set if the function contains unreachable blocks.
850 if (IPSet.empty())
851 continue;
853 unsigned UsesNum = 0;
854 unsigned ReBasesNum = 0;
855 unsigned NotRebasedNum = 0;
856 for (Instruction *IP : IPSet) {
857 // First, collect constants depending on this IP of the base.
858 UsesNum = 0;
859 SmallVector<UserAdjustment, 4> ToBeRebased;
860 unsigned MatCtr = 0;
861 for (auto const &RCI : ConstInfo.RebasedConstants) {
862 UsesNum += RCI.Uses.size();
863 for (auto const &U : RCI.Uses) {
864 Instruction *MatInsertPt = MatInsertPts[MatCtr++];
865 BasicBlock *OrigMatInsertBB = MatInsertPt->getParent();
866 // If Base constant is to be inserted in multiple places,
867 // generate rebase for U using the Base dominating U.
868 if (IPSet.size() == 1 ||
869 DT->dominates(IP->getParent(), OrigMatInsertBB))
870 ToBeRebased.emplace_back(RCI.Offset, RCI.Ty, MatInsertPt, U);
874 // If only few constants depend on this IP of base, skip rebasing,
875 // assuming the base and the rebased have the same materialization cost.
876 if (ToBeRebased.size() < MinNumOfDependentToRebase) {
877 NotRebasedNum += ToBeRebased.size();
878 continue;
881 // Emit an instance of the base at this IP.
882 Instruction *Base = nullptr;
883 // Hoist and hide the base constant behind a bitcast.
884 if (ConstInfo.BaseExpr) {
885 assert(BaseGV && "A base constant expression must have an base GV");
886 Type *Ty = ConstInfo.BaseExpr->getType();
887 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
888 } else {
889 IntegerType *Ty = ConstInfo.BaseInt->getIntegerType();
890 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
893 Base->setDebugLoc(IP->getDebugLoc());
895 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
896 << ") to BB " << IP->getParent()->getName() << '\n'
897 << *Base << '\n');
899 // Emit materialization code for rebased constants depending on this IP.
900 for (UserAdjustment &R : ToBeRebased) {
901 emitBaseConstants(Base, &R);
902 ReBasesNum++;
903 // Use the same debug location as the last user of the constant.
904 Base->setDebugLoc(DILocation::getMergedLocation(
905 Base->getDebugLoc(), R.User.Inst->getDebugLoc()));
907 assert(!Base->use_empty() && "The use list is empty!?");
908 assert(isa<Instruction>(Base->user_back()) &&
909 "All uses should be instructions.");
911 (void)UsesNum;
912 (void)ReBasesNum;
913 (void)NotRebasedNum;
914 // Expect all uses are rebased after rebase is done.
915 assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
916 "Not all uses are rebased");
918 NumConstantsHoisted++;
920 // Base constant is also included in ConstInfo.RebasedConstants, so
921 // deduct 1 from ConstInfo.RebasedConstants.size().
922 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
924 MadeChange = true;
926 return MadeChange;
929 /// Check all cast instructions we made a copy of and remove them if they
930 /// have no more users.
931 void ConstantHoistingPass::deleteDeadCastInst() const {
932 for (auto const &I : ClonedCastMap)
933 if (I.first->use_empty())
934 I.first->eraseFromParent();
937 /// Optimize expensive integer constants in the given function.
938 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
939 DominatorTree &DT, BlockFrequencyInfo *BFI,
940 BasicBlock &Entry, ProfileSummaryInfo *PSI) {
941 this->TTI = &TTI;
942 this->DT = &DT;
943 this->BFI = BFI;
944 this->DL = &Fn.getParent()->getDataLayout();
945 this->Ctx = &Fn.getContext();
946 this->Entry = &Entry;
947 this->PSI = PSI;
948 this->OptForSize = Entry.getParent()->hasOptSize() ||
949 llvm::shouldOptimizeForSize(Entry.getParent(), PSI, BFI,
950 PGSOQueryType::IRPass);
952 // Collect all constant candidates.
953 collectConstantCandidates(Fn);
955 // Combine constants that can be easily materialized with an add from a common
956 // base constant.
957 if (!ConstIntCandVec.empty())
958 findBaseConstants(nullptr);
959 for (const auto &MapEntry : ConstGEPCandMap)
960 if (!MapEntry.second.empty())
961 findBaseConstants(MapEntry.first);
963 // Finally hoist the base constant and emit materialization code for dependent
964 // constants.
965 bool MadeChange = false;
966 if (!ConstIntInfoVec.empty())
967 MadeChange = emitBaseConstants(nullptr);
968 for (const auto &MapEntry : ConstGEPInfoMap)
969 if (!MapEntry.second.empty())
970 MadeChange |= emitBaseConstants(MapEntry.first);
973 // Cleanup dead instructions.
974 deleteDeadCastInst();
976 cleanup();
978 return MadeChange;
981 PreservedAnalyses ConstantHoistingPass::run(Function &F,
982 FunctionAnalysisManager &AM) {
983 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
984 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
985 auto BFI = ConstHoistWithBlockFrequency
986 ? &AM.getResult<BlockFrequencyAnalysis>(F)
987 : nullptr;
988 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
989 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
990 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
991 return PreservedAnalyses::all();
993 PreservedAnalyses PA;
994 PA.preserveSet<CFGAnalyses>();
995 return PA;