[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Scalar / ConstraintElimination.cpp
blob7b672e89b67aae48e599660ea324462319c4ae9c
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Verifier.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/DebugCounter.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/ValueMapper.h"
42 #include <cmath>
43 #include <optional>
44 #include <string>
46 using namespace llvm;
47 using namespace PatternMatch;
49 #define DEBUG_TYPE "constraint-elimination"
51 STATISTIC(NumCondsRemoved, "Number of instructions removed");
52 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
53 "Controls which conditions are eliminated");
55 static cl::opt<unsigned>
56 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
57 cl::desc("Maximum number of rows to keep in constraint system"));
59 static cl::opt<bool> DumpReproducers(
60 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
61 cl::desc("Dump IR to reproduce successful transformations."));
63 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
64 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
66 // A helper to multiply 2 signed integers where overflowing is allowed.
67 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
68 int64_t Result;
69 MulOverflow(A, B, Result);
70 return Result;
73 // A helper to add 2 signed integers where overflowing is allowed.
74 static int64_t addWithOverflow(int64_t A, int64_t B) {
75 int64_t Result;
76 AddOverflow(A, B, Result);
77 return Result;
80 static Instruction *getContextInstForUse(Use &U) {
81 Instruction *UserI = cast<Instruction>(U.getUser());
82 if (auto *Phi = dyn_cast<PHINode>(UserI))
83 UserI = Phi->getIncomingBlock(U)->getTerminator();
84 return UserI;
87 namespace {
88 /// Struct to express a condition of the form %Op0 Pred %Op1.
89 struct ConditionTy {
90 CmpInst::Predicate Pred;
91 Value *Op0;
92 Value *Op1;
94 ConditionTy()
95 : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {}
96 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
97 : Pred(Pred), Op0(Op0), Op1(Op1) {}
100 /// Represents either
101 /// * a condition that holds on entry to a block (=condition fact)
102 /// * an assume (=assume fact)
103 /// * a use of a compare instruction to simplify.
104 /// It also tracks the Dominator DFS in and out numbers for each entry.
105 struct FactOrCheck {
106 enum class EntryTy {
107 ConditionFact, /// A condition that holds on entry to a block.
108 InstFact, /// A fact that holds after Inst executed (e.g. an assume or
109 /// min/mix intrinsic.
110 InstCheck, /// An instruction to simplify (e.g. an overflow math
111 /// intrinsics).
112 UseCheck /// An use of a compare instruction to simplify.
115 union {
116 Instruction *Inst;
117 Use *U;
118 ConditionTy Cond;
121 /// A pre-condition that must hold for the current fact to be added to the
122 /// system.
123 ConditionTy DoesHold;
125 unsigned NumIn;
126 unsigned NumOut;
127 EntryTy Ty;
129 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
130 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
131 Ty(Ty) {}
133 FactOrCheck(DomTreeNode *DTN, Use *U)
134 : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr),
135 NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
136 Ty(EntryTy::UseCheck) {}
138 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1,
139 ConditionTy Precond = ConditionTy())
140 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()),
141 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
143 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred,
144 Value *Op0, Value *Op1,
145 ConditionTy Precond = ConditionTy()) {
146 return FactOrCheck(DTN, Pred, Op0, Op1, Precond);
149 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
150 return FactOrCheck(EntryTy::InstFact, DTN, Inst);
153 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
154 return FactOrCheck(DTN, U);
157 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
158 return FactOrCheck(EntryTy::InstCheck, DTN, CI);
161 bool isCheck() const {
162 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
165 Instruction *getContextInst() const {
166 if (Ty == EntryTy::UseCheck)
167 return getContextInstForUse(*U);
168 return Inst;
171 Instruction *getInstructionToSimplify() const {
172 assert(isCheck());
173 if (Ty == EntryTy::InstCheck)
174 return Inst;
175 // The use may have been simplified to a constant already.
176 return dyn_cast<Instruction>(*U);
179 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
182 /// Keep state required to build worklist.
183 struct State {
184 DominatorTree &DT;
185 LoopInfo &LI;
186 ScalarEvolution &SE;
187 SmallVector<FactOrCheck, 64> WorkList;
189 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE)
190 : DT(DT), LI(LI), SE(SE) {}
192 /// Process block \p BB and add known facts to work-list.
193 void addInfoFor(BasicBlock &BB);
195 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares
196 /// controlling the loop header.
197 void addInfoForInductions(BasicBlock &BB);
199 /// Returns true if we can add a known condition from BB to its successor
200 /// block Succ.
201 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
202 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
206 class ConstraintInfo;
208 struct StackEntry {
209 unsigned NumIn;
210 unsigned NumOut;
211 bool IsSigned = false;
212 /// Variables that can be removed from the system once the stack entry gets
213 /// removed.
214 SmallVector<Value *, 2> ValuesToRelease;
216 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
217 SmallVector<Value *, 2> ValuesToRelease)
218 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
219 ValuesToRelease(ValuesToRelease) {}
222 struct ConstraintTy {
223 SmallVector<int64_t, 8> Coefficients;
224 SmallVector<ConditionTy, 2> Preconditions;
226 SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
228 bool IsSigned = false;
230 ConstraintTy() = default;
232 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
233 bool IsNe)
234 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) {
237 unsigned size() const { return Coefficients.size(); }
239 unsigned empty() const { return Coefficients.empty(); }
241 /// Returns true if all preconditions for this list of constraints are
242 /// satisfied given \p CS and the corresponding \p Value2Index mapping.
243 bool isValid(const ConstraintInfo &Info) const;
245 bool isEq() const { return IsEq; }
247 bool isNe() const { return IsNe; }
249 /// Check if the current constraint is implied by the given ConstraintSystem.
251 /// \return true or false if the constraint is proven to be respectively true,
252 /// or false. When the constraint cannot be proven to be either true or false,
253 /// std::nullopt is returned.
254 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
256 private:
257 bool IsEq = false;
258 bool IsNe = false;
261 /// Wrapper encapsulating separate constraint systems and corresponding value
262 /// mappings for both unsigned and signed information. Facts are added to and
263 /// conditions are checked against the corresponding system depending on the
264 /// signed-ness of their predicates. While the information is kept separate
265 /// based on signed-ness, certain conditions can be transferred between the two
266 /// systems.
267 class ConstraintInfo {
269 ConstraintSystem UnsignedCS;
270 ConstraintSystem SignedCS;
272 const DataLayout &DL;
274 public:
275 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
276 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {
277 auto &Value2Index = getValue2Index(false);
278 // Add Arg > -1 constraints to unsigned system for all function arguments.
279 for (Value *Arg : FunctionArgs) {
280 ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
281 false, false, false);
282 VarPos.Coefficients[Value2Index[Arg]] = -1;
283 UnsignedCS.addVariableRow(VarPos.Coefficients);
287 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
288 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
290 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
291 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
294 ConstraintSystem &getCS(bool Signed) {
295 return Signed ? SignedCS : UnsignedCS;
297 const ConstraintSystem &getCS(bool Signed) const {
298 return Signed ? SignedCS : UnsignedCS;
301 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
302 void popLastNVariables(bool Signed, unsigned N) {
303 getCS(Signed).popLastNVariables(N);
306 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
308 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
309 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
311 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
312 /// constraints, using indices from the corresponding constraint system.
313 /// New variables that need to be added to the system are collected in
314 /// \p NewVariables.
315 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
316 SmallVectorImpl<Value *> &NewVariables) const;
318 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
319 /// constraints using getConstraint. Returns an empty constraint if the result
320 /// cannot be used to query the existing constraint system, e.g. because it
321 /// would require adding new variables. Also tries to convert signed
322 /// predicates to unsigned ones if possible to allow using the unsigned system
323 /// which increases the effectiveness of the signed <-> unsigned transfer
324 /// logic.
325 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
326 Value *Op1) const;
328 /// Try to add information from \p A \p Pred \p B to the unsigned/signed
329 /// system if \p Pred is signed/unsigned.
330 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
331 unsigned NumIn, unsigned NumOut,
332 SmallVectorImpl<StackEntry> &DFSInStack);
335 /// Represents a (Coefficient * Variable) entry after IR decomposition.
336 struct DecompEntry {
337 int64_t Coefficient;
338 Value *Variable;
339 /// True if the variable is known positive in the current constraint.
340 bool IsKnownNonNegative;
342 DecompEntry(int64_t Coefficient, Value *Variable,
343 bool IsKnownNonNegative = false)
344 : Coefficient(Coefficient), Variable(Variable),
345 IsKnownNonNegative(IsKnownNonNegative) {}
348 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
349 struct Decomposition {
350 int64_t Offset = 0;
351 SmallVector<DecompEntry, 3> Vars;
353 Decomposition(int64_t Offset) : Offset(Offset) {}
354 Decomposition(Value *V, bool IsKnownNonNegative = false) {
355 Vars.emplace_back(1, V, IsKnownNonNegative);
357 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
358 : Offset(Offset), Vars(Vars) {}
360 void add(int64_t OtherOffset) {
361 Offset = addWithOverflow(Offset, OtherOffset);
364 void add(const Decomposition &Other) {
365 add(Other.Offset);
366 append_range(Vars, Other.Vars);
369 void sub(const Decomposition &Other) {
370 Decomposition Tmp = Other;
371 Tmp.mul(-1);
372 add(Tmp.Offset);
373 append_range(Vars, Tmp.Vars);
376 void mul(int64_t Factor) {
377 Offset = multiplyWithOverflow(Offset, Factor);
378 for (auto &Var : Vars)
379 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
383 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr.
384 struct OffsetResult {
385 Value *BasePtr;
386 APInt ConstantOffset;
387 MapVector<Value *, APInt> VariableOffsets;
388 bool AllInbounds;
390 OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {}
392 OffsetResult(GEPOperator &GEP, const DataLayout &DL)
393 : BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) {
394 ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0);
397 } // namespace
399 // Try to collect variable and constant offsets for \p GEP, partly traversing
400 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting
401 // the offset fails.
402 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) {
403 OffsetResult Result(GEP, DL);
404 unsigned BitWidth = Result.ConstantOffset.getBitWidth();
405 if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets,
406 Result.ConstantOffset))
407 return {};
409 // If we have a nested GEP, check if we can combine the constant offset of the
410 // inner GEP with the outer GEP.
411 if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) {
412 MapVector<Value *, APInt> VariableOffsets2;
413 APInt ConstantOffset2(BitWidth, 0);
414 bool CanCollectInner = InnerGEP->collectOffset(
415 DL, BitWidth, VariableOffsets2, ConstantOffset2);
416 // TODO: Support cases with more than 1 variable offset.
417 if (!CanCollectInner || Result.VariableOffsets.size() > 1 ||
418 VariableOffsets2.size() > 1 ||
419 (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) {
420 // More than 1 variable index, use outer result.
421 return Result;
423 Result.BasePtr = InnerGEP->getPointerOperand();
424 Result.ConstantOffset += ConstantOffset2;
425 if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1)
426 Result.VariableOffsets = VariableOffsets2;
427 Result.AllInbounds &= InnerGEP->isInBounds();
429 return Result;
432 static Decomposition decompose(Value *V,
433 SmallVectorImpl<ConditionTy> &Preconditions,
434 bool IsSigned, const DataLayout &DL);
436 static bool canUseSExt(ConstantInt *CI) {
437 const APInt &Val = CI->getValue();
438 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
441 static Decomposition decomposeGEP(GEPOperator &GEP,
442 SmallVectorImpl<ConditionTy> &Preconditions,
443 bool IsSigned, const DataLayout &DL) {
444 // Do not reason about pointers where the index size is larger than 64 bits,
445 // as the coefficients used to encode constraints are 64 bit integers.
446 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
447 return &GEP;
449 assert(!IsSigned && "The logic below only supports decomposition for "
450 "unsigned predicates at the moment.");
451 const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] =
452 collectOffsets(GEP, DL);
453 if (!BasePtr || !AllInbounds)
454 return &GEP;
456 Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr));
457 for (auto [Index, Scale] : VariableOffsets) {
458 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
459 IdxResult.mul(Scale.getSExtValue());
460 Result.add(IdxResult);
462 // If Op0 is signed non-negative, the GEP is increasing monotonically and
463 // can be de-composed.
464 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
465 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
466 ConstantInt::get(Index->getType(), 0));
468 return Result;
471 // Decomposes \p V into a constant offset + list of pairs { Coefficient,
472 // Variable } where Coefficient * Variable. The sum of the constant offset and
473 // pairs equals \p V.
474 static Decomposition decompose(Value *V,
475 SmallVectorImpl<ConditionTy> &Preconditions,
476 bool IsSigned, const DataLayout &DL) {
478 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
479 bool IsSignedB) {
480 auto ResA = decompose(A, Preconditions, IsSigned, DL);
481 auto ResB = decompose(B, Preconditions, IsSignedB, DL);
482 ResA.add(ResB);
483 return ResA;
486 Type *Ty = V->getType()->getScalarType();
487 if (Ty->isPointerTy() && !IsSigned) {
488 if (auto *GEP = dyn_cast<GEPOperator>(V))
489 return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
490 if (isa<ConstantPointerNull>(V))
491 return int64_t(0);
493 return V;
496 // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so
497 // coefficient add/mul may wrap, while the operation in the full bit width
498 // would not.
499 if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64)
500 return V;
502 // Decompose \p V used with a signed predicate.
503 if (IsSigned) {
504 if (auto *CI = dyn_cast<ConstantInt>(V)) {
505 if (canUseSExt(CI))
506 return CI->getSExtValue();
508 Value *Op0;
509 Value *Op1;
510 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
511 return MergeResults(Op0, Op1, IsSigned);
513 ConstantInt *CI;
514 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
515 auto Result = decompose(Op0, Preconditions, IsSigned, DL);
516 Result.mul(CI->getSExtValue());
517 return Result;
520 // (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of
521 // shift == bw-1.
522 if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) {
523 uint64_t Shift = CI->getValue().getLimitedValue();
524 if (Shift < Ty->getIntegerBitWidth() - 1) {
525 assert(Shift < 64 && "Would overflow");
526 auto Result = decompose(Op0, Preconditions, IsSigned, DL);
527 Result.mul(int64_t(1) << Shift);
528 return Result;
532 return V;
535 if (auto *CI = dyn_cast<ConstantInt>(V)) {
536 if (CI->uge(MaxConstraintValue))
537 return V;
538 return int64_t(CI->getZExtValue());
541 Value *Op0;
542 bool IsKnownNonNegative = false;
543 if (match(V, m_ZExt(m_Value(Op0)))) {
544 IsKnownNonNegative = true;
545 V = Op0;
548 Value *Op1;
549 ConstantInt *CI;
550 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
551 return MergeResults(Op0, Op1, IsSigned);
553 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
554 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
555 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
556 ConstantInt::get(Op0->getType(), 0));
557 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
558 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
559 ConstantInt::get(Op1->getType(), 0));
561 return MergeResults(Op0, Op1, IsSigned);
564 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
565 canUseSExt(CI)) {
566 Preconditions.emplace_back(
567 CmpInst::ICMP_UGE, Op0,
568 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
569 return MergeResults(Op0, CI, true);
572 // Decompose or as an add if there are no common bits between the operands.
573 if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI))))
574 return MergeResults(Op0, CI, IsSigned);
576 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
577 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
578 return {V, IsKnownNonNegative};
579 auto Result = decompose(Op1, Preconditions, IsSigned, DL);
580 Result.mul(int64_t{1} << CI->getSExtValue());
581 return Result;
584 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
585 (!CI->isNegative())) {
586 auto Result = decompose(Op1, Preconditions, IsSigned, DL);
587 Result.mul(CI->getSExtValue());
588 return Result;
591 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) {
592 auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
593 auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
594 ResA.sub(ResB);
595 return ResA;
598 return {V, IsKnownNonNegative};
601 ConstraintTy
602 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
603 SmallVectorImpl<Value *> &NewVariables) const {
604 assert(NewVariables.empty() && "NewVariables must be empty when passed in");
605 bool IsEq = false;
606 bool IsNe = false;
608 // Try to convert Pred to one of ULE/SLT/SLE/SLT.
609 switch (Pred) {
610 case CmpInst::ICMP_UGT:
611 case CmpInst::ICMP_UGE:
612 case CmpInst::ICMP_SGT:
613 case CmpInst::ICMP_SGE: {
614 Pred = CmpInst::getSwappedPredicate(Pred);
615 std::swap(Op0, Op1);
616 break;
618 case CmpInst::ICMP_EQ:
619 if (match(Op1, m_Zero())) {
620 Pred = CmpInst::ICMP_ULE;
621 } else {
622 IsEq = true;
623 Pred = CmpInst::ICMP_ULE;
625 break;
626 case CmpInst::ICMP_NE:
627 if (match(Op1, m_Zero())) {
628 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
629 std::swap(Op0, Op1);
630 } else {
631 IsNe = true;
632 Pred = CmpInst::ICMP_ULE;
634 break;
635 default:
636 break;
639 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
640 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
641 return {};
643 SmallVector<ConditionTy, 4> Preconditions;
644 bool IsSigned = CmpInst::isSigned(Pred);
645 auto &Value2Index = getValue2Index(IsSigned);
646 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
647 Preconditions, IsSigned, DL);
648 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
649 Preconditions, IsSigned, DL);
650 int64_t Offset1 = ADec.Offset;
651 int64_t Offset2 = BDec.Offset;
652 Offset1 *= -1;
654 auto &VariablesA = ADec.Vars;
655 auto &VariablesB = BDec.Vars;
657 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
658 // new entry to NewVariables.
659 SmallDenseMap<Value *, unsigned> NewIndexMap;
660 auto GetOrAddIndex = [&Value2Index, &NewVariables,
661 &NewIndexMap](Value *V) -> unsigned {
662 auto V2I = Value2Index.find(V);
663 if (V2I != Value2Index.end())
664 return V2I->second;
665 auto Insert =
666 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
667 if (Insert.second)
668 NewVariables.push_back(V);
669 return Insert.first->second;
672 // Make sure all variables have entries in Value2Index or NewVariables.
673 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
674 GetOrAddIndex(KV.Variable);
676 // Build result constraint, by first adding all coefficients from A and then
677 // subtracting all coefficients from B.
678 ConstraintTy Res(
679 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
680 IsSigned, IsEq, IsNe);
681 // Collect variables that are known to be positive in all uses in the
682 // constraint.
683 SmallDenseMap<Value *, bool> KnownNonNegativeVariables;
684 auto &R = Res.Coefficients;
685 for (const auto &KV : VariablesA) {
686 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
687 auto I =
688 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
689 I.first->second &= KV.IsKnownNonNegative;
692 for (const auto &KV : VariablesB) {
693 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
694 R[GetOrAddIndex(KV.Variable)]))
695 return {};
696 auto I =
697 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
698 I.first->second &= KV.IsKnownNonNegative;
701 int64_t OffsetSum;
702 if (AddOverflow(Offset1, Offset2, OffsetSum))
703 return {};
704 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
705 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
706 return {};
707 R[0] = OffsetSum;
708 Res.Preconditions = std::move(Preconditions);
710 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
711 // variables.
712 while (!NewVariables.empty()) {
713 int64_t Last = R.back();
714 if (Last != 0)
715 break;
716 R.pop_back();
717 Value *RemovedV = NewVariables.pop_back_val();
718 NewIndexMap.erase(RemovedV);
721 // Add extra constraints for variables that are known positive.
722 for (auto &KV : KnownNonNegativeVariables) {
723 if (!KV.second ||
724 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
725 continue;
726 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
727 C[GetOrAddIndex(KV.first)] = -1;
728 Res.ExtraInfo.push_back(C);
730 return Res;
733 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
734 Value *Op0,
735 Value *Op1) const {
736 Constant *NullC = Constant::getNullValue(Op0->getType());
737 // Handle trivially true compares directly to avoid adding V UGE 0 constraints
738 // for all variables in the unsigned system.
739 if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) ||
740 (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) {
741 auto &Value2Index = getValue2Index(false);
742 // Return constraint that's trivially true.
743 return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false,
744 false, false);
747 // If both operands are known to be non-negative, change signed predicates to
748 // unsigned ones. This increases the reasoning effectiveness in combination
749 // with the signed <-> unsigned transfer logic.
750 if (CmpInst::isSigned(Pred) &&
751 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
752 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
753 Pred = CmpInst::getUnsignedPredicate(Pred);
755 SmallVector<Value *> NewVariables;
756 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
757 if (!NewVariables.empty())
758 return {};
759 return R;
762 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
763 return Coefficients.size() > 0 &&
764 all_of(Preconditions, [&Info](const ConditionTy &C) {
765 return Info.doesHold(C.Pred, C.Op0, C.Op1);
769 std::optional<bool>
770 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
771 bool IsConditionImplied = CS.isConditionImplied(Coefficients);
773 if (IsEq || IsNe) {
774 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
775 bool IsNegatedOrEqualImplied =
776 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
778 // In order to check that `%a == %b` is true (equality), both conditions `%a
779 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
780 // is true), we return true if they both hold, false in the other cases.
781 if (IsConditionImplied && IsNegatedOrEqualImplied)
782 return IsEq;
784 auto Negated = ConstraintSystem::negate(Coefficients);
785 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
787 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
788 bool IsStrictLessThanImplied =
789 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
791 // In order to check that `%a != %b` is true (non-equality), either
792 // condition `%a > %b` or `%a < %b` must hold true. When checking for
793 // non-equality (`IsNe` is true), we return true if one of the two holds,
794 // false in the other cases.
795 if (IsNegatedImplied || IsStrictLessThanImplied)
796 return IsNe;
798 return std::nullopt;
801 if (IsConditionImplied)
802 return true;
804 auto Negated = ConstraintSystem::negate(Coefficients);
805 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
806 if (IsNegatedImplied)
807 return false;
809 // Neither the condition nor its negated holds, did not prove anything.
810 return std::nullopt;
813 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
814 Value *B) const {
815 auto R = getConstraintForSolving(Pred, A, B);
816 return R.isValid(*this) &&
817 getCS(R.IsSigned).isConditionImplied(R.Coefficients);
820 void ConstraintInfo::transferToOtherSystem(
821 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
822 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
823 auto IsKnownNonNegative = [this](Value *V) {
824 return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) ||
825 isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1);
827 // Check if we can combine facts from the signed and unsigned systems to
828 // derive additional facts.
829 if (!A->getType()->isIntegerTy())
830 return;
831 // FIXME: This currently depends on the order we add facts. Ideally we
832 // would first add all known facts and only then try to add additional
833 // facts.
834 switch (Pred) {
835 default:
836 break;
837 case CmpInst::ICMP_ULT:
838 case CmpInst::ICMP_ULE:
839 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
840 if (IsKnownNonNegative(B)) {
841 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
842 NumOut, DFSInStack);
843 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
844 DFSInStack);
846 break;
847 case CmpInst::ICMP_UGE:
848 case CmpInst::ICMP_UGT:
849 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
850 if (IsKnownNonNegative(A)) {
851 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
852 NumOut, DFSInStack);
853 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
854 DFSInStack);
856 break;
857 case CmpInst::ICMP_SLT:
858 if (IsKnownNonNegative(A))
859 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
860 break;
861 case CmpInst::ICMP_SGT: {
862 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
863 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
864 NumOut, DFSInStack);
865 if (IsKnownNonNegative(B))
866 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
868 break;
870 case CmpInst::ICMP_SGE:
871 if (IsKnownNonNegative(B))
872 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
873 break;
877 #ifndef NDEBUG
879 static void dumpConstraint(ArrayRef<int64_t> C,
880 const DenseMap<Value *, unsigned> &Value2Index) {
881 ConstraintSystem CS(Value2Index);
882 CS.addVariableRowFill(C);
883 CS.dump();
885 #endif
887 void State::addInfoForInductions(BasicBlock &BB) {
888 auto *L = LI.getLoopFor(&BB);
889 if (!L || L->getHeader() != &BB)
890 return;
892 Value *A;
893 Value *B;
894 CmpInst::Predicate Pred;
896 if (!match(BB.getTerminator(),
897 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value())))
898 return;
899 PHINode *PN = dyn_cast<PHINode>(A);
900 if (!PN) {
901 Pred = CmpInst::getSwappedPredicate(Pred);
902 std::swap(A, B);
903 PN = dyn_cast<PHINode>(A);
906 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 ||
907 !SE.isSCEVable(PN->getType()))
908 return;
910 BasicBlock *InLoopSucc = nullptr;
911 if (Pred == CmpInst::ICMP_NE)
912 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0);
913 else if (Pred == CmpInst::ICMP_EQ)
914 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1);
915 else
916 return;
918 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB)
919 return;
921 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN));
922 BasicBlock *LoopPred = L->getLoopPredecessor();
923 if (!AR || AR->getLoop() != L || !LoopPred)
924 return;
926 const SCEV *StartSCEV = AR->getStart();
927 Value *StartValue = nullptr;
928 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) {
929 StartValue = C->getValue();
930 } else {
931 StartValue = PN->getIncomingValueForBlock(LoopPred);
932 assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value");
935 DomTreeNode *DTN = DT.getNode(InLoopSucc);
936 auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT);
937 auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT);
938 bool MonotonicallyIncreasingUnsigned =
939 IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing;
940 bool MonotonicallyIncreasingSigned =
941 IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing;
942 // If SCEV guarantees that AR does not wrap, PN >= StartValue can be added
943 // unconditionally.
944 if (MonotonicallyIncreasingUnsigned)
945 WorkList.push_back(
946 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue));
947 if (MonotonicallyIncreasingSigned)
948 WorkList.push_back(
949 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue));
951 APInt StepOffset;
952 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
953 StepOffset = C->getAPInt();
954 else
955 return;
957 // Make sure the bound B is loop-invariant.
958 if (!L->isLoopInvariant(B))
959 return;
961 // Handle negative steps.
962 if (StepOffset.isNegative()) {
963 // TODO: Extend to allow steps > -1.
964 if (!(-StepOffset).isOne())
965 return;
967 // AR may wrap.
968 // Add StartValue >= PN conditional on B <= StartValue which guarantees that
969 // the loop exits before wrapping with a step of -1.
970 WorkList.push_back(FactOrCheck::getConditionFact(
971 DTN, CmpInst::ICMP_UGE, StartValue, PN,
972 ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
973 WorkList.push_back(FactOrCheck::getConditionFact(
974 DTN, CmpInst::ICMP_SGE, StartValue, PN,
975 ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
976 // Add PN > B conditional on B <= StartValue which guarantees that the loop
977 // exits when reaching B with a step of -1.
978 WorkList.push_back(FactOrCheck::getConditionFact(
979 DTN, CmpInst::ICMP_UGT, PN, B,
980 ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
981 WorkList.push_back(FactOrCheck::getConditionFact(
982 DTN, CmpInst::ICMP_SGT, PN, B,
983 ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
984 return;
987 // Make sure AR either steps by 1 or that the value we compare against is a
988 // GEP based on the same start value and all offsets are a multiple of the
989 // step size, to guarantee that the induction will reach the value.
990 if (StepOffset.isZero() || StepOffset.isNegative())
991 return;
993 if (!StepOffset.isOne()) {
994 // Check whether B-Start is known to be a multiple of StepOffset.
995 const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV);
996 if (isa<SCEVCouldNotCompute>(BMinusStart) ||
997 !SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero())
998 return;
1001 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which
1002 // guarantees that the loop exits before wrapping in combination with the
1003 // restrictions on B and the step above.
1004 if (!MonotonicallyIncreasingUnsigned)
1005 WorkList.push_back(FactOrCheck::getConditionFact(
1006 DTN, CmpInst::ICMP_UGE, PN, StartValue,
1007 ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1008 if (!MonotonicallyIncreasingSigned)
1009 WorkList.push_back(FactOrCheck::getConditionFact(
1010 DTN, CmpInst::ICMP_SGE, PN, StartValue,
1011 ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1013 WorkList.push_back(FactOrCheck::getConditionFact(
1014 DTN, CmpInst::ICMP_ULT, PN, B,
1015 ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
1016 WorkList.push_back(FactOrCheck::getConditionFact(
1017 DTN, CmpInst::ICMP_SLT, PN, B,
1018 ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
1021 void State::addInfoFor(BasicBlock &BB) {
1022 addInfoForInductions(BB);
1024 // True as long as long as the current instruction is guaranteed to execute.
1025 bool GuaranteedToExecute = true;
1026 // Queue conditions and assumes.
1027 for (Instruction &I : BB) {
1028 if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
1029 for (Use &U : Cmp->uses()) {
1030 auto *UserI = getContextInstForUse(U);
1031 auto *DTN = DT.getNode(UserI->getParent());
1032 if (!DTN)
1033 continue;
1034 WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
1036 continue;
1039 auto *II = dyn_cast<IntrinsicInst>(&I);
1040 Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic;
1041 switch (ID) {
1042 case Intrinsic::assume: {
1043 Value *A, *B;
1044 CmpInst::Predicate Pred;
1045 if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
1046 break;
1047 if (GuaranteedToExecute) {
1048 // The assume is guaranteed to execute when BB is entered, hence Cond
1049 // holds on entry to BB.
1050 WorkList.emplace_back(FactOrCheck::getConditionFact(
1051 DT.getNode(I.getParent()), Pred, A, B));
1052 } else {
1053 WorkList.emplace_back(
1054 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
1056 break;
1058 // Enqueue ssub_with_overflow for simplification.
1059 case Intrinsic::ssub_with_overflow:
1060 WorkList.push_back(
1061 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
1062 break;
1063 // Enqueue the intrinsics to add extra info.
1064 case Intrinsic::umin:
1065 case Intrinsic::umax:
1066 case Intrinsic::smin:
1067 case Intrinsic::smax:
1068 // TODO: Check if it is possible to instead only added the min/max facts
1069 // when simplifying uses of the min/max intrinsics.
1070 if (!isGuaranteedNotToBePoison(&I))
1071 break;
1072 [[fallthrough]];
1073 case Intrinsic::abs:
1074 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I));
1075 break;
1078 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
1081 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) {
1082 for (auto &Case : Switch->cases()) {
1083 BasicBlock *Succ = Case.getCaseSuccessor();
1084 Value *V = Case.getCaseValue();
1085 if (!canAddSuccessor(BB, Succ))
1086 continue;
1087 WorkList.emplace_back(FactOrCheck::getConditionFact(
1088 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V));
1090 return;
1093 auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
1094 if (!Br || !Br->isConditional())
1095 return;
1097 Value *Cond = Br->getCondition();
1099 // If the condition is a chain of ORs/AND and the successor only has the
1100 // current block as predecessor, queue conditions for the successor.
1101 Value *Op0, *Op1;
1102 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
1103 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1104 bool IsOr = match(Cond, m_LogicalOr());
1105 bool IsAnd = match(Cond, m_LogicalAnd());
1106 // If there's a select that matches both AND and OR, we need to commit to
1107 // one of the options. Arbitrarily pick OR.
1108 if (IsOr && IsAnd)
1109 IsAnd = false;
1111 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
1112 if (canAddSuccessor(BB, Successor)) {
1113 SmallVector<Value *> CondWorkList;
1114 SmallPtrSet<Value *, 8> SeenCond;
1115 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
1116 if (SeenCond.insert(V).second)
1117 CondWorkList.push_back(V);
1119 QueueValue(Op1);
1120 QueueValue(Op0);
1121 while (!CondWorkList.empty()) {
1122 Value *Cur = CondWorkList.pop_back_val();
1123 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
1124 WorkList.emplace_back(FactOrCheck::getConditionFact(
1125 DT.getNode(Successor),
1126 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate())
1127 : Cmp->getPredicate(),
1128 Cmp->getOperand(0), Cmp->getOperand(1)));
1129 continue;
1131 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
1132 QueueValue(Op1);
1133 QueueValue(Op0);
1134 continue;
1136 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
1137 QueueValue(Op1);
1138 QueueValue(Op0);
1139 continue;
1143 return;
1146 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
1147 if (!CmpI)
1148 return;
1149 if (canAddSuccessor(BB, Br->getSuccessor(0)))
1150 WorkList.emplace_back(FactOrCheck::getConditionFact(
1151 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(),
1152 CmpI->getOperand(0), CmpI->getOperand(1)));
1153 if (canAddSuccessor(BB, Br->getSuccessor(1)))
1154 WorkList.emplace_back(FactOrCheck::getConditionFact(
1155 DT.getNode(Br->getSuccessor(1)),
1156 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0),
1157 CmpI->getOperand(1)));
1160 #ifndef NDEBUG
1161 static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred,
1162 Value *LHS, Value *RHS) {
1163 OS << "icmp " << Pred << ' ';
1164 LHS->printAsOperand(OS, /*PrintType=*/true);
1165 OS << ", ";
1166 RHS->printAsOperand(OS, /*PrintType=*/false);
1168 #endif
1170 namespace {
1171 /// Helper to keep track of a condition and if it should be treated as negated
1172 /// for reproducer construction.
1173 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a
1174 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack.
1175 struct ReproducerEntry {
1176 ICmpInst::Predicate Pred;
1177 Value *LHS;
1178 Value *RHS;
1180 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
1181 : Pred(Pred), LHS(LHS), RHS(RHS) {}
1183 } // namespace
1185 /// Helper function to generate a reproducer function for simplifying \p Cond.
1186 /// The reproducer function contains a series of @llvm.assume calls, one for
1187 /// each condition in \p Stack. For each condition, the operand instruction are
1188 /// cloned until we reach operands that have an entry in \p Value2Index. Those
1189 /// will then be added as function arguments. \p DT is used to order cloned
1190 /// instructions. The reproducer function will get added to \p M, if it is
1191 /// non-null. Otherwise no reproducer function is generated.
1192 static void generateReproducer(CmpInst *Cond, Module *M,
1193 ArrayRef<ReproducerEntry> Stack,
1194 ConstraintInfo &Info, DominatorTree &DT) {
1195 if (!M)
1196 return;
1198 LLVMContext &Ctx = Cond->getContext();
1200 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
1202 ValueToValueMapTy Old2New;
1203 SmallVector<Value *> Args;
1204 SmallPtrSet<Value *, 8> Seen;
1205 // Traverse Cond and its operands recursively until we reach a value that's in
1206 // Value2Index or not an instruction, or not a operation that
1207 // ConstraintElimination can decompose. Such values will be considered as
1208 // external inputs to the reproducer, they are collected and added as function
1209 // arguments later.
1210 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1211 auto &Value2Index = Info.getValue2Index(IsSigned);
1212 SmallVector<Value *, 4> WorkList(Ops);
1213 while (!WorkList.empty()) {
1214 Value *V = WorkList.pop_back_val();
1215 if (!Seen.insert(V).second)
1216 continue;
1217 if (Old2New.find(V) != Old2New.end())
1218 continue;
1219 if (isa<Constant>(V))
1220 continue;
1222 auto *I = dyn_cast<Instruction>(V);
1223 if (Value2Index.contains(V) || !I ||
1224 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
1225 Old2New[V] = V;
1226 Args.push_back(V);
1227 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n");
1228 } else {
1229 append_range(WorkList, I->operands());
1234 for (auto &Entry : Stack)
1235 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE)
1236 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred));
1237 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate()));
1239 SmallVector<Type *> ParamTys;
1240 for (auto *P : Args)
1241 ParamTys.push_back(P->getType());
1243 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
1244 /*isVarArg=*/false);
1245 Function *F = Function::Create(FTy, Function::ExternalLinkage,
1246 Cond->getModule()->getName() +
1247 Cond->getFunction()->getName() + "repro",
1249 // Add arguments to the reproducer function for each external value collected.
1250 for (unsigned I = 0; I < Args.size(); ++I) {
1251 F->getArg(I)->setName(Args[I]->getName());
1252 Old2New[Args[I]] = F->getArg(I);
1255 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
1256 IRBuilder<> Builder(Entry);
1257 Builder.CreateRet(Builder.getTrue());
1258 Builder.SetInsertPoint(Entry->getTerminator());
1260 // Clone instructions in \p Ops and their operands recursively until reaching
1261 // an value in Value2Index (external input to the reproducer). Update Old2New
1262 // mapping for the original and cloned instructions. Sort instructions to
1263 // clone by dominance, then insert the cloned instructions in the function.
1264 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1265 SmallVector<Value *, 4> WorkList(Ops);
1266 SmallVector<Instruction *> ToClone;
1267 auto &Value2Index = Info.getValue2Index(IsSigned);
1268 while (!WorkList.empty()) {
1269 Value *V = WorkList.pop_back_val();
1270 if (Old2New.find(V) != Old2New.end())
1271 continue;
1273 auto *I = dyn_cast<Instruction>(V);
1274 if (!Value2Index.contains(V) && I) {
1275 Old2New[V] = nullptr;
1276 ToClone.push_back(I);
1277 append_range(WorkList, I->operands());
1281 sort(ToClone,
1282 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
1283 for (Instruction *I : ToClone) {
1284 Instruction *Cloned = I->clone();
1285 Old2New[I] = Cloned;
1286 Old2New[I]->setName(I->getName());
1287 Cloned->insertBefore(&*Builder.GetInsertPoint());
1288 Cloned->dropUnknownNonDebugMetadata();
1289 Cloned->setDebugLoc({});
1293 // Materialize the assumptions for the reproducer using the entries in Stack.
1294 // That is, first clone the operands of the condition recursively until we
1295 // reach an external input to the reproducer and add them to the reproducer
1296 // function. Then add an ICmp for the condition (with the inverse predicate if
1297 // the entry is negated) and an assert using the ICmp.
1298 for (auto &Entry : Stack) {
1299 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE)
1300 continue;
1302 LLVM_DEBUG(dbgs() << " Materializing assumption ";
1303 dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS);
1304 dbgs() << "\n");
1305 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred));
1307 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS);
1308 Builder.CreateAssumption(Cmp);
1311 // Finally, clone the condition to reproduce and remap instruction operands in
1312 // the reproducer using Old2New.
1313 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
1314 Entry->getTerminator()->setOperand(0, Cond);
1315 remapInstructionsInBlocks({Entry}, Old2New);
1317 assert(!verifyFunction(*F, &dbgs()));
1320 static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A,
1321 Value *B, Instruction *CheckInst,
1322 ConstraintInfo &Info) {
1323 LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n");
1325 auto R = Info.getConstraintForSolving(Pred, A, B);
1326 if (R.empty() || !R.isValid(Info)){
1327 LLVM_DEBUG(dbgs() << " failed to decompose condition\n");
1328 return std::nullopt;
1331 auto &CSToUse = Info.getCS(R.IsSigned);
1333 // If there was extra information collected during decomposition, apply
1334 // it now and remove it immediately once we are done with reasoning
1335 // about the constraint.
1336 for (auto &Row : R.ExtraInfo)
1337 CSToUse.addVariableRow(Row);
1338 auto InfoRestorer = make_scope_exit([&]() {
1339 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1340 CSToUse.popLastConstraint();
1343 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
1344 if (!DebugCounter::shouldExecute(EliminatedCounter))
1345 return std::nullopt;
1347 LLVM_DEBUG({
1348 dbgs() << "Condition ";
1349 dumpUnpackedICmp(
1350 dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred),
1351 A, B);
1352 dbgs() << " implied by dominating constraints\n";
1353 CSToUse.dump();
1355 return ImpliedCondition;
1358 return std::nullopt;
1361 static bool checkAndReplaceCondition(
1362 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1363 Instruction *ContextInst, Module *ReproducerModule,
1364 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT,
1365 SmallVectorImpl<Instruction *> &ToRemove) {
1366 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1367 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1368 Constant *ConstantC = ConstantInt::getBool(
1369 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1370 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
1371 ContextInst](Use &U) {
1372 auto *UserI = getContextInstForUse(U);
1373 auto *DTN = DT.getNode(UserI->getParent());
1374 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1375 return false;
1376 if (UserI->getParent() == ContextInst->getParent() &&
1377 UserI->comesBefore(ContextInst))
1378 return false;
1380 // Conditions in an assume trivially simplify to true. Skip uses
1381 // in assume calls to not destroy the available information.
1382 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1383 return !II || II->getIntrinsicID() != Intrinsic::assume;
1385 NumCondsRemoved++;
1386 if (Cmp->use_empty())
1387 ToRemove.push_back(Cmp);
1388 return true;
1391 if (auto ImpliedCondition =
1392 checkCondition(Cmp->getPredicate(), Cmp->getOperand(0),
1393 Cmp->getOperand(1), Cmp, Info))
1394 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1395 return false;
1398 static void
1399 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1400 Module *ReproducerModule,
1401 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1402 SmallVectorImpl<StackEntry> &DFSInStack) {
1403 Info.popLastConstraint(E.IsSigned);
1404 // Remove variables in the system that went out of scope.
1405 auto &Mapping = Info.getValue2Index(E.IsSigned);
1406 for (Value *V : E.ValuesToRelease)
1407 Mapping.erase(V);
1408 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1409 DFSInStack.pop_back();
1410 if (ReproducerModule)
1411 ReproducerCondStack.pop_back();
1414 /// Check if either the first condition of an AND or OR is implied by the
1415 /// (negated in case of OR) second condition or vice versa.
1416 static bool checkOrAndOpImpliedByOther(
1417 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
1418 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1419 SmallVectorImpl<StackEntry> &DFSInStack) {
1421 CmpInst::Predicate Pred;
1422 Value *A, *B;
1423 Instruction *JoinOp = CB.getContextInst();
1424 CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify());
1425 unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0;
1427 // Don't try to simplify the first condition of a select by the second, as
1428 // this may make the select more poisonous than the original one.
1429 // TODO: check if the first operand may be poison.
1430 if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp))
1431 return false;
1433 if (!match(JoinOp->getOperand(OtherOpIdx),
1434 m_ICmp(Pred, m_Value(A), m_Value(B))))
1435 return false;
1437 // For OR, check if the negated condition implies CmpToCheck.
1438 bool IsOr = match(JoinOp, m_LogicalOr());
1439 if (IsOr)
1440 Pred = CmpInst::getInversePredicate(Pred);
1442 // Optimistically add fact from first condition.
1443 unsigned OldSize = DFSInStack.size();
1444 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1445 if (OldSize == DFSInStack.size())
1446 return false;
1448 bool Changed = false;
1449 // Check if the second condition can be simplified now.
1450 if (auto ImpliedCondition =
1451 checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0),
1452 CmpToCheck->getOperand(1), CmpToCheck, Info)) {
1453 if (IsOr && isa<SelectInst>(JoinOp)) {
1454 JoinOp->setOperand(
1455 OtherOpIdx == 0 ? 2 : 0,
1456 ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1457 } else
1458 JoinOp->setOperand(
1459 1 - OtherOpIdx,
1460 ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
1462 Changed = true;
1465 // Remove entries again.
1466 while (OldSize < DFSInStack.size()) {
1467 StackEntry E = DFSInStack.back();
1468 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
1469 DFSInStack);
1471 return Changed;
1474 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1475 unsigned NumIn, unsigned NumOut,
1476 SmallVectorImpl<StackEntry> &DFSInStack) {
1477 // If the constraint has a pre-condition, skip the constraint if it does not
1478 // hold.
1479 SmallVector<Value *> NewVariables;
1480 auto R = getConstraint(Pred, A, B, NewVariables);
1482 // TODO: Support non-equality for facts as well.
1483 if (!R.isValid(*this) || R.isNe())
1484 return;
1486 LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B);
1487 dbgs() << "'\n");
1488 bool Added = false;
1489 auto &CSToUse = getCS(R.IsSigned);
1490 if (R.Coefficients.empty())
1491 return;
1493 Added |= CSToUse.addVariableRowFill(R.Coefficients);
1495 // If R has been added to the system, add the new variables and queue it for
1496 // removal once it goes out-of-scope.
1497 if (Added) {
1498 SmallVector<Value *, 2> ValuesToRelease;
1499 auto &Value2Index = getValue2Index(R.IsSigned);
1500 for (Value *V : NewVariables) {
1501 Value2Index.insert({V, Value2Index.size() + 1});
1502 ValuesToRelease.push_back(V);
1505 LLVM_DEBUG({
1506 dbgs() << " constraint: ";
1507 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1508 dbgs() << "\n";
1511 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1512 std::move(ValuesToRelease));
1514 if (!R.IsSigned) {
1515 for (Value *V : NewVariables) {
1516 ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
1517 false, false, false);
1518 VarPos.Coefficients[Value2Index[V]] = -1;
1519 CSToUse.addVariableRow(VarPos.Coefficients);
1520 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1521 SmallVector<Value *, 2>());
1525 if (R.isEq()) {
1526 // Also add the inverted constraint for equality constraints.
1527 for (auto &Coeff : R.Coefficients)
1528 Coeff *= -1;
1529 CSToUse.addVariableRowFill(R.Coefficients);
1531 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1532 SmallVector<Value *, 2>());
1537 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
1538 SmallVectorImpl<Instruction *> &ToRemove) {
1539 bool Changed = false;
1540 IRBuilder<> Builder(II->getParent(), II->getIterator());
1541 Value *Sub = nullptr;
1542 for (User *U : make_early_inc_range(II->users())) {
1543 if (match(U, m_ExtractValue<0>(m_Value()))) {
1544 if (!Sub)
1545 Sub = Builder.CreateSub(A, B);
1546 U->replaceAllUsesWith(Sub);
1547 Changed = true;
1548 } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1549 U->replaceAllUsesWith(Builder.getFalse());
1550 Changed = true;
1551 } else
1552 continue;
1554 if (U->use_empty()) {
1555 auto *I = cast<Instruction>(U);
1556 ToRemove.push_back(I);
1557 I->setOperand(0, PoisonValue::get(II->getType()));
1558 Changed = true;
1562 if (II->use_empty()) {
1563 II->eraseFromParent();
1564 Changed = true;
1566 return Changed;
1569 static bool
1570 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
1571 SmallVectorImpl<Instruction *> &ToRemove) {
1572 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1573 ConstraintInfo &Info) {
1574 auto R = Info.getConstraintForSolving(Pred, A, B);
1575 if (R.size() < 2 || !R.isValid(Info))
1576 return false;
1578 auto &CSToUse = Info.getCS(R.IsSigned);
1579 return CSToUse.isConditionImplied(R.Coefficients);
1582 bool Changed = false;
1583 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1584 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1585 // can be simplified to a regular sub.
1586 Value *A = II->getArgOperand(0);
1587 Value *B = II->getArgOperand(1);
1588 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1589 !DoesConditionHold(CmpInst::ICMP_SGE, B,
1590 ConstantInt::get(A->getType(), 0), Info))
1591 return false;
1592 Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1594 return Changed;
1597 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI,
1598 ScalarEvolution &SE,
1599 OptimizationRemarkEmitter &ORE) {
1600 bool Changed = false;
1601 DT.updateDFSNumbers();
1602 SmallVector<Value *> FunctionArgs;
1603 for (Value &Arg : F.args())
1604 FunctionArgs.push_back(&Arg);
1605 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs);
1606 State S(DT, LI, SE);
1607 std::unique_ptr<Module> ReproducerModule(
1608 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1610 // First, collect conditions implied by branches and blocks with their
1611 // Dominator DFS in and out numbers.
1612 for (BasicBlock &BB : F) {
1613 if (!DT.getNode(&BB))
1614 continue;
1615 S.addInfoFor(BB);
1618 // Next, sort worklist by dominance, so that dominating conditions to check
1619 // and facts come before conditions and facts dominated by them. If a
1620 // condition to check and a fact have the same numbers, conditional facts come
1621 // first. Assume facts and checks are ordered according to their relative
1622 // order in the containing basic block. Also make sure conditions with
1623 // constant operands come before conditions without constant operands. This
1624 // increases the effectiveness of the current signed <-> unsigned fact
1625 // transfer logic.
1626 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1627 auto HasNoConstOp = [](const FactOrCheck &B) {
1628 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0);
1629 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1);
1630 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1);
1632 // If both entries have the same In numbers, conditional facts come first.
1633 // Otherwise use the relative order in the basic block.
1634 if (A.NumIn == B.NumIn) {
1635 if (A.isConditionFact() && B.isConditionFact()) {
1636 bool NoConstOpA = HasNoConstOp(A);
1637 bool NoConstOpB = HasNoConstOp(B);
1638 return NoConstOpA < NoConstOpB;
1640 if (A.isConditionFact())
1641 return true;
1642 if (B.isConditionFact())
1643 return false;
1644 auto *InstA = A.getContextInst();
1645 auto *InstB = B.getContextInst();
1646 return InstA->comesBefore(InstB);
1648 return A.NumIn < B.NumIn;
1651 SmallVector<Instruction *> ToRemove;
1653 // Finally, process ordered worklist and eliminate implied conditions.
1654 SmallVector<StackEntry, 16> DFSInStack;
1655 SmallVector<ReproducerEntry> ReproducerCondStack;
1656 for (FactOrCheck &CB : S.WorkList) {
1657 // First, pop entries from the stack that are out-of-scope for CB. Remove
1658 // the corresponding entry from the constraint system.
1659 while (!DFSInStack.empty()) {
1660 auto &E = DFSInStack.back();
1661 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1662 << "\n");
1663 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1664 assert(E.NumIn <= CB.NumIn);
1665 if (CB.NumOut <= E.NumOut)
1666 break;
1667 LLVM_DEBUG({
1668 dbgs() << "Removing ";
1669 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1670 Info.getValue2Index(E.IsSigned));
1671 dbgs() << "\n";
1673 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1674 DFSInStack);
1677 // For a block, check if any CmpInsts become known based on the current set
1678 // of constraints.
1679 if (CB.isCheck()) {
1680 Instruction *Inst = CB.getInstructionToSimplify();
1681 if (!Inst)
1682 continue;
1683 LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst
1684 << "\n");
1685 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1686 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1687 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1688 bool Simplified = checkAndReplaceCondition(
1689 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1690 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove);
1691 if (!Simplified &&
1692 match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) {
1693 Simplified =
1694 checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(),
1695 ReproducerCondStack, DFSInStack);
1697 Changed |= Simplified;
1699 continue;
1702 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) {
1703 LLVM_DEBUG(dbgs() << "Processing fact to add to the system: ";
1704 dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n");
1705 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1706 LLVM_DEBUG(
1707 dbgs()
1708 << "Skip adding constraint because system has too many rows.\n");
1709 return;
1712 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1713 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1714 ReproducerCondStack.emplace_back(Pred, A, B);
1716 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1717 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1718 // Add dummy entries to ReproducerCondStack to keep it in sync with
1719 // DFSInStack.
1720 for (unsigned I = 0,
1721 E = (DFSInStack.size() - ReproducerCondStack.size());
1722 I < E; ++I) {
1723 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE,
1724 nullptr, nullptr);
1729 ICmpInst::Predicate Pred;
1730 if (!CB.isConditionFact()) {
1731 Value *X;
1732 if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) {
1733 // TODO: Add CB.Inst >= 0 fact.
1734 AddFact(CmpInst::ICMP_SGE, CB.Inst, X);
1735 continue;
1738 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) {
1739 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1740 AddFact(Pred, MinMax, MinMax->getLHS());
1741 AddFact(Pred, MinMax, MinMax->getRHS());
1742 continue;
1746 Value *A = nullptr, *B = nullptr;
1747 if (CB.isConditionFact()) {
1748 Pred = CB.Cond.Pred;
1749 A = CB.Cond.Op0;
1750 B = CB.Cond.Op1;
1751 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE &&
1752 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) {
1753 LLVM_DEBUG({
1754 dbgs() << "Not adding fact ";
1755 dumpUnpackedICmp(dbgs(), Pred, A, B);
1756 dbgs() << " because precondition ";
1757 dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0,
1758 CB.DoesHold.Op1);
1759 dbgs() << " does not hold.\n";
1761 continue;
1763 } else {
1764 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>(
1765 m_ICmp(Pred, m_Value(A), m_Value(B))));
1766 (void)Matched;
1767 assert(Matched && "Must have an assume intrinsic with a icmp operand");
1769 AddFact(Pred, A, B);
1772 if (ReproducerModule && !ReproducerModule->functions().empty()) {
1773 std::string S;
1774 raw_string_ostream StringS(S);
1775 ReproducerModule->print(StringS, nullptr);
1776 StringS.flush();
1777 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1778 Rem << ore::NV("module") << S;
1779 ORE.emit(Rem);
1782 #ifndef NDEBUG
1783 unsigned SignedEntries =
1784 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1785 assert(Info.getCS(false).size() - FunctionArgs.size() ==
1786 DFSInStack.size() - SignedEntries &&
1787 "updates to CS and DFSInStack are out of sync");
1788 assert(Info.getCS(true).size() == SignedEntries &&
1789 "updates to CS and DFSInStack are out of sync");
1790 #endif
1792 for (Instruction *I : ToRemove)
1793 I->eraseFromParent();
1794 return Changed;
1797 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1798 FunctionAnalysisManager &AM) {
1799 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1800 auto &LI = AM.getResult<LoopAnalysis>(F);
1801 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1802 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1803 if (!eliminateConstraints(F, DT, LI, SE, ORE))
1804 return PreservedAnalyses::all();
1806 PreservedAnalyses PA;
1807 PA.preserve<DominatorTreeAnalysis>();
1808 PA.preserve<LoopAnalysis>();
1809 PA.preserve<ScalarEvolutionAnalysis>();
1810 PA.preserveSet<CFGAnalyses>();
1811 return PA;