1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The code below implements dead store elimination using MemorySSA. It uses
10 // the following general approach: given a MemoryDef, walk upwards to find
11 // clobbering MemoryDefs that may be killed by the starting def. Then check
12 // that there are no uses that may read the location of the original MemoryDef
13 // in between both MemoryDefs. A bit more concretely:
15 // For all MemoryDefs StartDef:
16 // 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking
18 // 2. Check that there are no reads between MaybeDeadAccess and the StartDef by
19 // checking all uses starting at MaybeDeadAccess and walking until we see
21 // 3. For each found CurrentDef, check that:
22 // 1. There are no barrier instructions between CurrentDef and StartDef (like
23 // throws or stores with ordering constraints).
24 // 2. StartDef is executed whenever CurrentDef is executed.
25 // 3. StartDef completely overwrites CurrentDef.
26 // 4. Erase CurrentDef from the function and MemorySSA.
28 //===----------------------------------------------------------------------===//
30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringRef.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/CaptureTracking.h"
42 #include "llvm/Analysis/GlobalsModRef.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/MemoryBuiltins.h"
45 #include "llvm/Analysis/MemoryLocation.h"
46 #include "llvm/Analysis/MemorySSA.h"
47 #include "llvm/Analysis/MemorySSAUpdater.h"
48 #include "llvm/Analysis/MustExecute.h"
49 #include "llvm/Analysis/PostDominators.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/Constant.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfo.h"
58 #include "llvm/IR/Dominators.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/IRBuilder.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/DebugCounter.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include "llvm/Transforms/Utils/Local.h"
88 using namespace PatternMatch
;
90 #define DEBUG_TYPE "dse"
92 STATISTIC(NumRemainingStores
, "Number of stores remaining after DSE");
93 STATISTIC(NumRedundantStores
, "Number of redundant stores deleted");
94 STATISTIC(NumFastStores
, "Number of stores deleted");
95 STATISTIC(NumFastOther
, "Number of other instrs removed");
96 STATISTIC(NumCompletePartials
, "Number of stores dead by later partials");
97 STATISTIC(NumModifiedStores
, "Number of stores modified");
98 STATISTIC(NumCFGChecks
, "Number of stores modified");
99 STATISTIC(NumCFGTries
, "Number of stores modified");
100 STATISTIC(NumCFGSuccess
, "Number of stores modified");
101 STATISTIC(NumGetDomMemoryDefPassed
,
102 "Number of times a valid candidate is returned from getDomMemoryDef");
103 STATISTIC(NumDomMemDefChecks
,
104 "Number iterations check for reads in getDomMemoryDef");
106 DEBUG_COUNTER(MemorySSACounter
, "dse-memoryssa",
107 "Controls which MemoryDefs are eliminated.");
110 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
111 cl::init(true), cl::Hidden
,
112 cl::desc("Enable partial-overwrite tracking in DSE"));
115 EnablePartialStoreMerging("enable-dse-partial-store-merging",
116 cl::init(true), cl::Hidden
,
117 cl::desc("Enable partial store merging in DSE"));
119 static cl::opt
<unsigned>
120 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden
,
121 cl::desc("The number of memory instructions to scan for "
122 "dead store elimination (default = 150)"));
123 static cl::opt
<unsigned> MemorySSAUpwardsStepLimit(
124 "dse-memoryssa-walklimit", cl::init(90), cl::Hidden
,
125 cl::desc("The maximum number of steps while walking upwards to find "
126 "MemoryDefs that may be killed (default = 90)"));
128 static cl::opt
<unsigned> MemorySSAPartialStoreLimit(
129 "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden
,
130 cl::desc("The maximum number candidates that only partially overwrite the "
131 "killing MemoryDef to consider"
134 static cl::opt
<unsigned> MemorySSADefsPerBlockLimit(
135 "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden
,
136 cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
137 "other stores per basic block (default = 5000)"));
139 static cl::opt
<unsigned> MemorySSASameBBStepCost(
140 "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden
,
142 "The cost of a step in the same basic block as the killing MemoryDef"
145 static cl::opt
<unsigned>
146 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5),
148 cl::desc("The cost of a step in a different basic "
149 "block than the killing MemoryDef"
152 static cl::opt
<unsigned> MemorySSAPathCheckLimit(
153 "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden
,
154 cl::desc("The maximum number of blocks to check when trying to prove that "
155 "all paths to an exit go through a killing block (default = 50)"));
157 // This flags allows or disallows DSE to optimize MemorySSA during its
158 // traversal. Note that DSE optimizing MemorySSA may impact other passes
159 // downstream of the DSE invocation and can lead to issues not being
160 // reproducible in isolation (i.e. when MemorySSA is built from scratch). In
161 // those cases, the flag can be used to check if DSE's MemorySSA optimizations
162 // impact follow-up passes.
164 OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(true), cl::Hidden
,
165 cl::desc("Allow DSE to optimize memory accesses."));
167 //===----------------------------------------------------------------------===//
169 //===----------------------------------------------------------------------===//
170 using OverlapIntervalsTy
= std::map
<int64_t, int64_t>;
171 using InstOverlapIntervalsTy
= DenseMap
<Instruction
*, OverlapIntervalsTy
>;
173 /// Returns true if the end of this instruction can be safely shortened in
175 static bool isShortenableAtTheEnd(Instruction
*I
) {
176 // Don't shorten stores for now
177 if (isa
<StoreInst
>(I
))
180 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
181 switch (II
->getIntrinsicID()) {
182 default: return false;
183 case Intrinsic::memset
:
184 case Intrinsic::memcpy
:
185 case Intrinsic::memcpy_element_unordered_atomic
:
186 case Intrinsic::memset_element_unordered_atomic
:
187 // Do shorten memory intrinsics.
188 // FIXME: Add memmove if it's also safe to transform.
193 // Don't shorten libcalls calls for now.
198 /// Returns true if the beginning of this instruction can be safely shortened
200 static bool isShortenableAtTheBeginning(Instruction
*I
) {
201 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
202 // easily done by offsetting the source address.
203 return isa
<AnyMemSetInst
>(I
);
206 static std::optional
<TypeSize
> getPointerSize(const Value
*V
,
207 const DataLayout
&DL
,
208 const TargetLibraryInfo
&TLI
,
212 Opts
.NullIsUnknownSize
= NullPointerIsDefined(F
);
214 if (getObjectSize(V
, Size
, DL
, &TLI
, Opts
))
215 return TypeSize::getFixed(Size
);
221 enum OverwriteResult
{
225 OW_PartialEarlierWithFullLater
,
231 } // end anonymous namespace
233 /// Check if two instruction are masked stores that completely
234 /// overwrite one another. More specifically, \p KillingI has to
235 /// overwrite \p DeadI.
236 static OverwriteResult
isMaskedStoreOverwrite(const Instruction
*KillingI
,
237 const Instruction
*DeadI
,
238 BatchAAResults
&AA
) {
239 const auto *KillingII
= dyn_cast
<IntrinsicInst
>(KillingI
);
240 const auto *DeadII
= dyn_cast
<IntrinsicInst
>(DeadI
);
241 if (KillingII
== nullptr || DeadII
== nullptr)
243 if (KillingII
->getIntrinsicID() != DeadII
->getIntrinsicID())
245 if (KillingII
->getIntrinsicID() == Intrinsic::masked_store
) {
247 VectorType
*KillingTy
=
248 cast
<VectorType
>(KillingII
->getArgOperand(0)->getType());
249 VectorType
*DeadTy
= cast
<VectorType
>(DeadII
->getArgOperand(0)->getType());
250 if (KillingTy
->getScalarSizeInBits() != DeadTy
->getScalarSizeInBits())
253 if (KillingTy
->getElementCount() != DeadTy
->getElementCount())
256 Value
*KillingPtr
= KillingII
->getArgOperand(1)->stripPointerCasts();
257 Value
*DeadPtr
= DeadII
->getArgOperand(1)->stripPointerCasts();
258 if (KillingPtr
!= DeadPtr
&& !AA
.isMustAlias(KillingPtr
, DeadPtr
))
261 // TODO: check that KillingII's mask is a superset of the DeadII's mask.
262 if (KillingII
->getArgOperand(3) != DeadII
->getArgOperand(3))
269 /// Return 'OW_Complete' if a store to the 'KillingLoc' location completely
270 /// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the
271 /// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin'
272 /// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'.
273 /// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was
274 /// overwritten by a killing (smaller) store which doesn't write outside the big
275 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
276 /// NOTE: This function must only be called if both \p KillingLoc and \p
277 /// DeadLoc belong to the same underlying object with valid \p KillingOff and
279 static OverwriteResult
isPartialOverwrite(const MemoryLocation
&KillingLoc
,
280 const MemoryLocation
&DeadLoc
,
281 int64_t KillingOff
, int64_t DeadOff
,
283 InstOverlapIntervalsTy
&IOL
) {
284 const uint64_t KillingSize
= KillingLoc
.Size
.getValue();
285 const uint64_t DeadSize
= DeadLoc
.Size
.getValue();
286 // We may now overlap, although the overlap is not complete. There might also
287 // be other incomplete overlaps, and together, they might cover the complete
289 // Note: The correctness of this logic depends on the fact that this function
290 // is not even called providing DepWrite when there are any intervening reads.
291 if (EnablePartialOverwriteTracking
&&
292 KillingOff
< int64_t(DeadOff
+ DeadSize
) &&
293 int64_t(KillingOff
+ KillingSize
) >= DeadOff
) {
295 // Insert our part of the overlap into the map.
296 auto &IM
= IOL
[DeadI
];
297 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff
<< ", "
298 << int64_t(DeadOff
+ DeadSize
) << ") KillingLoc ["
299 << KillingOff
<< ", " << int64_t(KillingOff
+ KillingSize
)
302 // Make sure that we only insert non-overlapping intervals and combine
303 // adjacent intervals. The intervals are stored in the map with the ending
304 // offset as the key (in the half-open sense) and the starting offset as
306 int64_t KillingIntStart
= KillingOff
;
307 int64_t KillingIntEnd
= KillingOff
+ KillingSize
;
309 // Find any intervals ending at, or after, KillingIntStart which start
310 // before KillingIntEnd.
311 auto ILI
= IM
.lower_bound(KillingIntStart
);
312 if (ILI
!= IM
.end() && ILI
->second
<= KillingIntEnd
) {
313 // This existing interval is overlapped with the current store somewhere
314 // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing
315 // intervals and adjusting our start and end.
316 KillingIntStart
= std::min(KillingIntStart
, ILI
->second
);
317 KillingIntEnd
= std::max(KillingIntEnd
, ILI
->first
);
320 // Continue erasing and adjusting our end in case other previous
321 // intervals are also overlapped with the current store.
323 // |--- dead 1 ---| |--- dead 2 ---|
324 // |------- killing---------|
326 while (ILI
!= IM
.end() && ILI
->second
<= KillingIntEnd
) {
327 assert(ILI
->second
> KillingIntStart
&& "Unexpected interval");
328 KillingIntEnd
= std::max(KillingIntEnd
, ILI
->first
);
333 IM
[KillingIntEnd
] = KillingIntStart
;
336 if (ILI
->second
<= DeadOff
&& ILI
->first
>= int64_t(DeadOff
+ DeadSize
)) {
337 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc ["
338 << DeadOff
<< ", " << int64_t(DeadOff
+ DeadSize
)
339 << ") Composite KillingLoc [" << ILI
->second
<< ", "
340 << ILI
->first
<< ")\n");
341 ++NumCompletePartials
;
346 // Check for a dead store which writes to all the memory locations that
347 // the killing store writes to.
348 if (EnablePartialStoreMerging
&& KillingOff
>= DeadOff
&&
349 int64_t(DeadOff
+ DeadSize
) > KillingOff
&&
350 uint64_t(KillingOff
- DeadOff
) + KillingSize
<= DeadSize
) {
351 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff
352 << ", " << int64_t(DeadOff
+ DeadSize
)
353 << ") by a killing store [" << KillingOff
<< ", "
354 << int64_t(KillingOff
+ KillingSize
) << ")\n");
355 // TODO: Maybe come up with a better name?
356 return OW_PartialEarlierWithFullLater
;
359 // Another interesting case is if the killing store overwrites the end of the
365 // In this case we may want to trim the size of dead store to avoid
366 // generating stores to addresses which will definitely be overwritten killing
368 if (!EnablePartialOverwriteTracking
&&
369 (KillingOff
> DeadOff
&& KillingOff
< int64_t(DeadOff
+ DeadSize
) &&
370 int64_t(KillingOff
+ KillingSize
) >= int64_t(DeadOff
+ DeadSize
)))
373 // Finally, we also need to check if the killing store overwrites the
374 // beginning of the dead store.
379 // In this case we may want to move the destination address and trim the size
380 // of dead store to avoid generating stores to addresses which will definitely
381 // be overwritten killing store.
382 if (!EnablePartialOverwriteTracking
&&
383 (KillingOff
<= DeadOff
&& int64_t(KillingOff
+ KillingSize
) > DeadOff
)) {
384 assert(int64_t(KillingOff
+ KillingSize
) < int64_t(DeadOff
+ DeadSize
) &&
385 "Expect to be handled as OW_Complete");
388 // Otherwise, they don't completely overlap.
392 /// Returns true if the memory which is accessed by the second instruction is not
393 /// modified between the first and the second instruction.
394 /// Precondition: Second instruction must be dominated by the first
397 memoryIsNotModifiedBetween(Instruction
*FirstI
, Instruction
*SecondI
,
398 BatchAAResults
&AA
, const DataLayout
&DL
,
400 // Do a backwards scan through the CFG from SecondI to FirstI. Look for
401 // instructions which can modify the memory location accessed by SecondI.
403 // While doing the walk keep track of the address to check. It might be
404 // different in different basic blocks due to PHI translation.
405 using BlockAddressPair
= std::pair
<BasicBlock
*, PHITransAddr
>;
406 SmallVector
<BlockAddressPair
, 16> WorkList
;
407 // Keep track of the address we visited each block with. Bail out if we
408 // visit a block with different addresses.
409 DenseMap
<BasicBlock
*, Value
*> Visited
;
411 BasicBlock::iterator
FirstBBI(FirstI
);
413 BasicBlock::iterator
SecondBBI(SecondI
);
414 BasicBlock
*FirstBB
= FirstI
->getParent();
415 BasicBlock
*SecondBB
= SecondI
->getParent();
416 MemoryLocation MemLoc
;
417 if (auto *MemSet
= dyn_cast
<MemSetInst
>(SecondI
))
418 MemLoc
= MemoryLocation::getForDest(MemSet
);
420 MemLoc
= MemoryLocation::get(SecondI
);
422 auto *MemLocPtr
= const_cast<Value
*>(MemLoc
.Ptr
);
424 // Start checking the SecondBB.
426 std::make_pair(SecondBB
, PHITransAddr(MemLocPtr
, DL
, nullptr)));
427 bool isFirstBlock
= true;
429 // Check all blocks going backward until we reach the FirstBB.
430 while (!WorkList
.empty()) {
431 BlockAddressPair Current
= WorkList
.pop_back_val();
432 BasicBlock
*B
= Current
.first
;
433 PHITransAddr
&Addr
= Current
.second
;
434 Value
*Ptr
= Addr
.getAddr();
436 // Ignore instructions before FirstI if this is the FirstBB.
437 BasicBlock::iterator BI
= (B
== FirstBB
? FirstBBI
: B
->begin());
439 BasicBlock::iterator EI
;
441 // Ignore instructions after SecondI if this is the first visit of SecondBB.
442 assert(B
== SecondBB
&& "first block is not the store block");
444 isFirstBlock
= false;
446 // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
447 // In this case we also have to look at instructions after SecondI.
450 for (; BI
!= EI
; ++BI
) {
451 Instruction
*I
= &*BI
;
452 if (I
->mayWriteToMemory() && I
!= SecondI
)
453 if (isModSet(AA
.getModRefInfo(I
, MemLoc
.getWithNewPtr(Ptr
))))
457 assert(B
!= &FirstBB
->getParent()->getEntryBlock() &&
458 "Should not hit the entry block because SI must be dominated by LI");
459 for (BasicBlock
*Pred
: predecessors(B
)) {
460 PHITransAddr PredAddr
= Addr
;
461 if (PredAddr
.needsPHITranslationFromBlock(B
)) {
462 if (!PredAddr
.isPotentiallyPHITranslatable())
464 if (!PredAddr
.translateValue(B
, Pred
, DT
, false))
467 Value
*TranslatedPtr
= PredAddr
.getAddr();
468 auto Inserted
= Visited
.insert(std::make_pair(Pred
, TranslatedPtr
));
469 if (!Inserted
.second
) {
470 // We already visited this block before. If it was with a different
471 // address - bail out!
472 if (TranslatedPtr
!= Inserted
.first
->second
)
474 // ... otherwise just skip it.
477 WorkList
.push_back(std::make_pair(Pred
, PredAddr
));
484 static void shortenAssignment(Instruction
*Inst
, Value
*OriginalDest
,
485 uint64_t OldOffsetInBits
, uint64_t OldSizeInBits
,
486 uint64_t NewSizeInBits
, bool IsOverwriteEnd
) {
487 const DataLayout
&DL
= Inst
->getModule()->getDataLayout();
488 uint64_t DeadSliceSizeInBits
= OldSizeInBits
- NewSizeInBits
;
489 uint64_t DeadSliceOffsetInBits
=
490 OldOffsetInBits
+ (IsOverwriteEnd
? NewSizeInBits
: 0);
491 auto SetDeadFragExpr
= [](auto *Assign
,
492 DIExpression::FragmentInfo DeadFragment
) {
493 // createFragmentExpression expects an offset relative to the existing
494 // fragment offset if there is one.
495 uint64_t RelativeOffset
= DeadFragment
.OffsetInBits
-
496 Assign
->getExpression()
498 .value_or(DIExpression::FragmentInfo(0, 0))
500 if (auto NewExpr
= DIExpression::createFragmentExpression(
501 Assign
->getExpression(), RelativeOffset
, DeadFragment
.SizeInBits
)) {
502 Assign
->setExpression(*NewExpr
);
505 // Failed to create a fragment expression for this so discard the value,
506 // making this a kill location.
507 auto *Expr
= *DIExpression::createFragmentExpression(
508 DIExpression::get(Assign
->getContext(), std::nullopt
),
509 DeadFragment
.OffsetInBits
, DeadFragment
.SizeInBits
);
510 Assign
->setExpression(Expr
);
511 Assign
->setKillLocation();
514 // A DIAssignID to use so that the inserted dbg.assign intrinsics do not
515 // link to any instructions. Created in the loop below (once).
516 DIAssignID
*LinkToNothing
= nullptr;
517 LLVMContext
&Ctx
= Inst
->getContext();
518 auto GetDeadLink
= [&Ctx
, &LinkToNothing
]() {
520 LinkToNothing
= DIAssignID::getDistinct(Ctx
);
521 return LinkToNothing
;
524 // Insert an unlinked dbg.assign intrinsic for the dead fragment after each
525 // overlapping dbg.assign intrinsic. The loop invalidates the iterators
526 // returned by getAssignmentMarkers so save a copy of the markers to iterate
528 auto LinkedRange
= at::getAssignmentMarkers(Inst
);
529 SmallVector
<DPValue
*> LinkedDPVAssigns
= at::getDPVAssignmentMarkers(Inst
);
530 SmallVector
<DbgAssignIntrinsic
*> Linked(LinkedRange
.begin(),
532 auto InsertAssignForOverlap
= [&](auto *Assign
) {
533 std::optional
<DIExpression::FragmentInfo
> NewFragment
;
534 if (!at::calculateFragmentIntersect(DL
, OriginalDest
, DeadSliceOffsetInBits
,
535 DeadSliceSizeInBits
, Assign
,
538 // We couldn't calculate the intersecting fragment for some reason. Be
539 // cautious and unlink the whole assignment from the store.
540 Assign
->setKillAddress();
541 Assign
->setAssignId(GetDeadLink());
545 if (NewFragment
->SizeInBits
== 0)
548 // Fragments overlap: insert a new dbg.assign for this dead part.
549 auto *NewAssign
= static_cast<decltype(Assign
)>(Assign
->clone());
550 NewAssign
->insertAfter(Assign
);
551 NewAssign
->setAssignId(GetDeadLink());
553 SetDeadFragExpr(NewAssign
, *NewFragment
);
554 NewAssign
->setKillAddress();
556 for_each(Linked
, InsertAssignForOverlap
);
557 for_each(LinkedDPVAssigns
, InsertAssignForOverlap
);
560 static bool tryToShorten(Instruction
*DeadI
, int64_t &DeadStart
,
561 uint64_t &DeadSize
, int64_t KillingStart
,
562 uint64_t KillingSize
, bool IsOverwriteEnd
) {
563 auto *DeadIntrinsic
= cast
<AnyMemIntrinsic
>(DeadI
);
564 Align PrefAlign
= DeadIntrinsic
->getDestAlign().valueOrOne();
566 // We assume that memet/memcpy operates in chunks of the "largest" native
567 // type size and aligned on the same value. That means optimal start and size
568 // of memset/memcpy should be modulo of preferred alignment of that type. That
569 // is it there is no any sense in trying to reduce store size any further
570 // since any "extra" stores comes for free anyway.
571 // On the other hand, maximum alignment we can achieve is limited by alignment
574 // TODO: Limit maximum alignment by preferred (or abi?) alignment of the
575 // "largest" native type.
576 // Note: What is the proper way to get that value?
577 // Should TargetTransformInfo::getRegisterBitWidth be used or anything else?
578 // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign);
580 int64_t ToRemoveStart
= 0;
581 uint64_t ToRemoveSize
= 0;
582 // Compute start and size of the region to remove. Make sure 'PrefAlign' is
583 // maintained on the remaining store.
584 if (IsOverwriteEnd
) {
585 // Calculate required adjustment for 'KillingStart' in order to keep
586 // remaining store size aligned on 'PerfAlign'.
588 offsetToAlignment(uint64_t(KillingStart
- DeadStart
), PrefAlign
);
589 ToRemoveStart
= KillingStart
+ Off
;
590 if (DeadSize
<= uint64_t(ToRemoveStart
- DeadStart
))
592 ToRemoveSize
= DeadSize
- uint64_t(ToRemoveStart
- DeadStart
);
594 ToRemoveStart
= DeadStart
;
595 assert(KillingSize
>= uint64_t(DeadStart
- KillingStart
) &&
596 "Not overlapping accesses?");
597 ToRemoveSize
= KillingSize
- uint64_t(DeadStart
- KillingStart
);
598 // Calculate required adjustment for 'ToRemoveSize'in order to keep
599 // start of the remaining store aligned on 'PerfAlign'.
600 uint64_t Off
= offsetToAlignment(ToRemoveSize
, PrefAlign
);
602 if (ToRemoveSize
<= (PrefAlign
.value() - Off
))
604 ToRemoveSize
-= PrefAlign
.value() - Off
;
606 assert(isAligned(PrefAlign
, ToRemoveSize
) &&
607 "Should preserve selected alignment");
610 assert(ToRemoveSize
> 0 && "Shouldn't reach here if nothing to remove");
611 assert(DeadSize
> ToRemoveSize
&& "Can't remove more than original size");
613 uint64_t NewSize
= DeadSize
- ToRemoveSize
;
614 if (auto *AMI
= dyn_cast
<AtomicMemIntrinsic
>(DeadI
)) {
615 // When shortening an atomic memory intrinsic, the newly shortened
616 // length must remain an integer multiple of the element size.
617 const uint32_t ElementSize
= AMI
->getElementSizeInBytes();
618 if (0 != NewSize
% ElementSize
)
622 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW "
623 << (IsOverwriteEnd
? "END" : "BEGIN") << ": " << *DeadI
624 << "\n KILLER [" << ToRemoveStart
<< ", "
625 << int64_t(ToRemoveStart
+ ToRemoveSize
) << ")\n");
627 Value
*DeadWriteLength
= DeadIntrinsic
->getLength();
628 Value
*TrimmedLength
= ConstantInt::get(DeadWriteLength
->getType(), NewSize
);
629 DeadIntrinsic
->setLength(TrimmedLength
);
630 DeadIntrinsic
->setDestAlignment(PrefAlign
);
632 Value
*OrigDest
= DeadIntrinsic
->getRawDest();
633 if (!IsOverwriteEnd
) {
634 Value
*Indices
[1] = {
635 ConstantInt::get(DeadWriteLength
->getType(), ToRemoveSize
)};
636 Instruction
*NewDestGEP
= GetElementPtrInst::CreateInBounds(
637 Type::getInt8Ty(DeadIntrinsic
->getContext()), OrigDest
, Indices
, "", DeadI
);
638 NewDestGEP
->setDebugLoc(DeadIntrinsic
->getDebugLoc());
639 DeadIntrinsic
->setDest(NewDestGEP
);
642 // Update attached dbg.assign intrinsics. Assume 8-bit byte.
643 shortenAssignment(DeadI
, OrigDest
, DeadStart
* 8, DeadSize
* 8, NewSize
* 8,
646 // Finally update start and size of dead access.
648 DeadStart
+= ToRemoveSize
;
654 static bool tryToShortenEnd(Instruction
*DeadI
, OverlapIntervalsTy
&IntervalMap
,
655 int64_t &DeadStart
, uint64_t &DeadSize
) {
656 if (IntervalMap
.empty() || !isShortenableAtTheEnd(DeadI
))
659 OverlapIntervalsTy::iterator OII
= --IntervalMap
.end();
660 int64_t KillingStart
= OII
->second
;
661 uint64_t KillingSize
= OII
->first
- KillingStart
;
663 assert(OII
->first
- KillingStart
>= 0 && "Size expected to be positive");
665 if (KillingStart
> DeadStart
&&
666 // Note: "KillingStart - KillingStart" is known to be positive due to
668 (uint64_t)(KillingStart
- DeadStart
) < DeadSize
&&
669 // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to
670 // be non negative due to preceding checks.
671 KillingSize
>= DeadSize
- (uint64_t)(KillingStart
- DeadStart
)) {
672 if (tryToShorten(DeadI
, DeadStart
, DeadSize
, KillingStart
, KillingSize
,
674 IntervalMap
.erase(OII
);
681 static bool tryToShortenBegin(Instruction
*DeadI
,
682 OverlapIntervalsTy
&IntervalMap
,
683 int64_t &DeadStart
, uint64_t &DeadSize
) {
684 if (IntervalMap
.empty() || !isShortenableAtTheBeginning(DeadI
))
687 OverlapIntervalsTy::iterator OII
= IntervalMap
.begin();
688 int64_t KillingStart
= OII
->second
;
689 uint64_t KillingSize
= OII
->first
- KillingStart
;
691 assert(OII
->first
- KillingStart
>= 0 && "Size expected to be positive");
693 if (KillingStart
<= DeadStart
&&
694 // Note: "DeadStart - KillingStart" is known to be non negative due to
696 KillingSize
> (uint64_t)(DeadStart
- KillingStart
)) {
697 // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to
698 // be positive due to preceding checks.
699 assert(KillingSize
- (uint64_t)(DeadStart
- KillingStart
) < DeadSize
&&
700 "Should have been handled as OW_Complete");
701 if (tryToShorten(DeadI
, DeadStart
, DeadSize
, KillingStart
, KillingSize
,
703 IntervalMap
.erase(OII
);
711 tryToMergePartialOverlappingStores(StoreInst
*KillingI
, StoreInst
*DeadI
,
712 int64_t KillingOffset
, int64_t DeadOffset
,
713 const DataLayout
&DL
, BatchAAResults
&AA
,
716 if (DeadI
&& isa
<ConstantInt
>(DeadI
->getValueOperand()) &&
717 DL
.typeSizeEqualsStoreSize(DeadI
->getValueOperand()->getType()) &&
718 KillingI
&& isa
<ConstantInt
>(KillingI
->getValueOperand()) &&
719 DL
.typeSizeEqualsStoreSize(KillingI
->getValueOperand()->getType()) &&
720 memoryIsNotModifiedBetween(DeadI
, KillingI
, AA
, DL
, DT
)) {
721 // If the store we find is:
722 // a) partially overwritten by the store to 'Loc'
723 // b) the killing store is fully contained in the dead one and
724 // c) they both have a constant value
725 // d) none of the two stores need padding
726 // Merge the two stores, replacing the dead store's value with a
727 // merge of both values.
728 // TODO: Deal with other constant types (vectors, etc), and probably
729 // some mem intrinsics (if needed)
731 APInt DeadValue
= cast
<ConstantInt
>(DeadI
->getValueOperand())->getValue();
733 cast
<ConstantInt
>(KillingI
->getValueOperand())->getValue();
734 unsigned KillingBits
= KillingValue
.getBitWidth();
735 assert(DeadValue
.getBitWidth() > KillingValue
.getBitWidth());
736 KillingValue
= KillingValue
.zext(DeadValue
.getBitWidth());
738 // Offset of the smaller store inside the larger store
739 unsigned BitOffsetDiff
= (KillingOffset
- DeadOffset
) * 8;
740 unsigned LShiftAmount
=
741 DL
.isBigEndian() ? DeadValue
.getBitWidth() - BitOffsetDiff
- KillingBits
743 APInt Mask
= APInt::getBitsSet(DeadValue
.getBitWidth(), LShiftAmount
,
744 LShiftAmount
+ KillingBits
);
745 // Clear the bits we'll be replacing, then OR with the smaller
746 // store, shifted appropriately.
747 APInt Merged
= (DeadValue
& ~Mask
) | (KillingValue
<< LShiftAmount
);
748 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI
749 << "\n Killing: " << *KillingI
750 << "\n Merged Value: " << Merged
<< '\n');
751 return ConstantInt::get(DeadI
->getValueOperand()->getType(), Merged
);
757 // Returns true if \p I is an intrinsic that does not read or write memory.
758 bool isNoopIntrinsic(Instruction
*I
) {
759 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
760 switch (II
->getIntrinsicID()) {
761 case Intrinsic::lifetime_start
:
762 case Intrinsic::lifetime_end
:
763 case Intrinsic::invariant_end
:
764 case Intrinsic::launder_invariant_group
:
765 case Intrinsic::assume
:
767 case Intrinsic::dbg_declare
:
768 case Intrinsic::dbg_label
:
769 case Intrinsic::dbg_value
:
770 llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
778 // Check if we can ignore \p D for DSE.
779 bool canSkipDef(MemoryDef
*D
, bool DefVisibleToCaller
) {
780 Instruction
*DI
= D
->getMemoryInst();
781 // Calls that only access inaccessible memory cannot read or write any memory
782 // locations we consider for elimination.
783 if (auto *CB
= dyn_cast
<CallBase
>(DI
))
784 if (CB
->onlyAccessesInaccessibleMemory())
787 // We can eliminate stores to locations not visible to the caller across
788 // throwing instructions.
789 if (DI
->mayThrow() && !DefVisibleToCaller
)
792 // We can remove the dead stores, irrespective of the fence and its ordering
793 // (release/acquire/seq_cst). Fences only constraints the ordering of
794 // already visible stores, it does not make a store visible to other
795 // threads. So, skipping over a fence does not change a store from being
797 if (isa
<FenceInst
>(DI
))
800 // Skip intrinsics that do not really read or modify memory.
801 if (isNoopIntrinsic(DI
))
810 EarliestEscapeInfo EI
;
812 /// The single BatchAA instance that is used to cache AA queries. It will
813 /// not be invalidated over the whole run. This is safe, because:
814 /// 1. Only memory writes are removed, so the alias cache for memory
815 /// locations remains valid.
816 /// 2. No new instructions are added (only instructions removed), so cached
817 /// information for a deleted value cannot be accessed by a re-used new
819 BatchAAResults BatchAA
;
823 PostDominatorTree
&PDT
;
824 const TargetLibraryInfo
&TLI
;
825 const DataLayout
&DL
;
828 // Whether the function contains any irreducible control flow, useful for
829 // being accurately able to detect loops.
830 bool ContainsIrreducibleLoops
;
832 // All MemoryDefs that potentially could kill other MemDefs.
833 SmallVector
<MemoryDef
*, 64> MemDefs
;
834 // Any that should be skipped as they are already deleted
835 SmallPtrSet
<MemoryAccess
*, 4> SkipStores
;
836 // Keep track whether a given object is captured before return or not.
837 DenseMap
<const Value
*, bool> CapturedBeforeReturn
;
838 // Keep track of all of the objects that are invisible to the caller after
839 // the function returns.
840 DenseMap
<const Value
*, bool> InvisibleToCallerAfterRet
;
841 // Keep track of blocks with throwing instructions not modeled in MemorySSA.
842 SmallPtrSet
<BasicBlock
*, 16> ThrowingBlocks
;
843 // Post-order numbers for each basic block. Used to figure out if memory
844 // accesses are executed before another access.
845 DenseMap
<BasicBlock
*, unsigned> PostOrderNumbers
;
847 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
849 MapVector
<BasicBlock
*, InstOverlapIntervalsTy
> IOLs
;
850 // Check if there are root nodes that are terminated by UnreachableInst.
851 // Those roots pessimize post-dominance queries. If there are such roots,
852 // fall back to CFG scan starting from all non-unreachable roots.
853 bool AnyUnreachableExit
;
855 // Whether or not we should iterate on removing dead stores at the end of the
856 // function due to removing a store causing a previously captured pointer to
857 // no longer be captured.
858 bool ShouldIterateEndOfFunctionDSE
;
860 /// Dead instructions to be removed at the end of DSE.
861 SmallVector
<Instruction
*> ToRemove
;
863 // Class contains self-reference, make sure it's not copied/moved.
864 DSEState(const DSEState
&) = delete;
865 DSEState
&operator=(const DSEState
&) = delete;
867 DSEState(Function
&F
, AliasAnalysis
&AA
, MemorySSA
&MSSA
, DominatorTree
&DT
,
868 PostDominatorTree
&PDT
, const TargetLibraryInfo
&TLI
,
870 : F(F
), AA(AA
), EI(DT
, &LI
), BatchAA(AA
, &EI
), MSSA(MSSA
), DT(DT
),
871 PDT(PDT
), TLI(TLI
), DL(F
.getParent()->getDataLayout()), LI(LI
) {
872 // Collect blocks with throwing instructions not modeled in MemorySSA and
873 // alloc-like objects.
875 for (BasicBlock
*BB
: post_order(&F
)) {
876 PostOrderNumbers
[BB
] = PO
++;
877 for (Instruction
&I
: *BB
) {
878 MemoryAccess
*MA
= MSSA
.getMemoryAccess(&I
);
879 if (I
.mayThrow() && !MA
)
880 ThrowingBlocks
.insert(I
.getParent());
882 auto *MD
= dyn_cast_or_null
<MemoryDef
>(MA
);
883 if (MD
&& MemDefs
.size() < MemorySSADefsPerBlockLimit
&&
884 (getLocForWrite(&I
) || isMemTerminatorInst(&I
)))
885 MemDefs
.push_back(MD
);
889 // Treat byval or inalloca arguments the same as Allocas, stores to them are
890 // dead at the end of the function.
891 for (Argument
&AI
: F
.args())
892 if (AI
.hasPassPointeeByValueCopyAttr())
893 InvisibleToCallerAfterRet
.insert({&AI
, true});
895 // Collect whether there is any irreducible control flow in the function.
896 ContainsIrreducibleLoops
= mayContainIrreducibleControl(F
, &LI
);
898 AnyUnreachableExit
= any_of(PDT
.roots(), [](const BasicBlock
*E
) {
899 return isa
<UnreachableInst
>(E
->getTerminator());
903 LocationSize
strengthenLocationSize(const Instruction
*I
,
904 LocationSize Size
) const {
905 if (auto *CB
= dyn_cast
<CallBase
>(I
)) {
907 if (TLI
.getLibFunc(*CB
, F
) && TLI
.has(F
) &&
908 (F
== LibFunc_memset_chk
|| F
== LibFunc_memcpy_chk
)) {
909 // Use the precise location size specified by the 3rd argument
910 // for determining KillingI overwrites DeadLoc if it is a memset_chk
911 // instruction. memset_chk will write either the amount specified as 3rd
912 // argument or the function will immediately abort and exit the program.
913 // NOTE: AA may determine NoAlias if it can prove that the access size
914 // is larger than the allocation size due to that being UB. To avoid
915 // returning potentially invalid NoAlias results by AA, limit the use of
916 // the precise location size to isOverwrite.
917 if (const auto *Len
= dyn_cast
<ConstantInt
>(CB
->getArgOperand(2)))
918 return LocationSize::precise(Len
->getZExtValue());
924 /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p
925 /// KillingI instruction) completely overwrites a store to the 'DeadLoc'
926 /// location (by \p DeadI instruction).
927 /// Return OW_MaybePartial if \p KillingI does not completely overwrite
928 /// \p DeadI, but they both write to the same underlying object. In that
929 /// case, use isPartialOverwrite to check if \p KillingI partially overwrites
930 /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the
931 /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined.
932 OverwriteResult
isOverwrite(const Instruction
*KillingI
,
933 const Instruction
*DeadI
,
934 const MemoryLocation
&KillingLoc
,
935 const MemoryLocation
&DeadLoc
,
936 int64_t &KillingOff
, int64_t &DeadOff
) {
937 // AliasAnalysis does not always account for loops. Limit overwrite checks
938 // to dependencies for which we can guarantee they are independent of any
939 // loops they are in.
940 if (!isGuaranteedLoopIndependent(DeadI
, KillingI
, DeadLoc
))
943 LocationSize KillingLocSize
=
944 strengthenLocationSize(KillingI
, KillingLoc
.Size
);
945 const Value
*DeadPtr
= DeadLoc
.Ptr
->stripPointerCasts();
946 const Value
*KillingPtr
= KillingLoc
.Ptr
->stripPointerCasts();
947 const Value
*DeadUndObj
= getUnderlyingObject(DeadPtr
);
948 const Value
*KillingUndObj
= getUnderlyingObject(KillingPtr
);
950 // Check whether the killing store overwrites the whole object, in which
951 // case the size/offset of the dead store does not matter.
952 if (DeadUndObj
== KillingUndObj
&& KillingLocSize
.isPrecise() &&
953 isIdentifiedObject(KillingUndObj
)) {
954 std::optional
<TypeSize
> KillingUndObjSize
=
955 getPointerSize(KillingUndObj
, DL
, TLI
, &F
);
956 if (KillingUndObjSize
&& *KillingUndObjSize
== KillingLocSize
.getValue())
960 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
961 // get imprecise values here, though (except for unknown sizes).
962 if (!KillingLocSize
.isPrecise() || !DeadLoc
.Size
.isPrecise()) {
963 // In case no constant size is known, try to an IR values for the number
964 // of bytes written and check if they match.
965 const auto *KillingMemI
= dyn_cast
<MemIntrinsic
>(KillingI
);
966 const auto *DeadMemI
= dyn_cast
<MemIntrinsic
>(DeadI
);
967 if (KillingMemI
&& DeadMemI
) {
968 const Value
*KillingV
= KillingMemI
->getLength();
969 const Value
*DeadV
= DeadMemI
->getLength();
970 if (KillingV
== DeadV
&& BatchAA
.isMustAlias(DeadLoc
, KillingLoc
))
974 // Masked stores have imprecise locations, but we can reason about them
976 return isMaskedStoreOverwrite(KillingI
, DeadI
, BatchAA
);
979 const TypeSize KillingSize
= KillingLocSize
.getValue();
980 const TypeSize DeadSize
= DeadLoc
.Size
.getValue();
981 // Bail on doing Size comparison which depends on AA for now
982 // TODO: Remove AnyScalable once Alias Analysis deal with scalable vectors
983 const bool AnyScalable
=
984 DeadSize
.isScalable() || KillingLocSize
.isScalable();
988 // Query the alias information
989 AliasResult AAR
= BatchAA
.alias(KillingLoc
, DeadLoc
);
991 // If the start pointers are the same, we just have to compare sizes to see if
992 // the killing store was larger than the dead store.
993 if (AAR
== AliasResult::MustAlias
) {
994 // Make sure that the KillingSize size is >= the DeadSize size.
995 if (KillingSize
>= DeadSize
)
999 // If we hit a partial alias we may have a full overwrite
1000 if (AAR
== AliasResult::PartialAlias
&& AAR
.hasOffset()) {
1001 int32_t Off
= AAR
.getOffset();
1002 if (Off
>= 0 && (uint64_t)Off
+ DeadSize
<= KillingSize
)
1006 // If we can't resolve the same pointers to the same object, then we can't
1007 // analyze them at all.
1008 if (DeadUndObj
!= KillingUndObj
) {
1009 // Non aliasing stores to different objects don't overlap. Note that
1010 // if the killing store is known to overwrite whole object (out of
1011 // bounds access overwrites whole object as well) then it is assumed to
1012 // completely overwrite any store to the same object even if they don't
1013 // actually alias (see next check).
1014 if (AAR
== AliasResult::NoAlias
)
1019 // Okay, we have stores to two completely different pointers. Try to
1020 // decompose the pointer into a "base + constant_offset" form. If the base
1021 // pointers are equal, then we can reason about the two stores.
1024 const Value
*DeadBasePtr
=
1025 GetPointerBaseWithConstantOffset(DeadPtr
, DeadOff
, DL
);
1026 const Value
*KillingBasePtr
=
1027 GetPointerBaseWithConstantOffset(KillingPtr
, KillingOff
, DL
);
1029 // If the base pointers still differ, we have two completely different
1031 if (DeadBasePtr
!= KillingBasePtr
)
1034 // The killing access completely overlaps the dead store if and only if
1035 // both start and end of the dead one is "inside" the killing one:
1036 // |<->|--dead--|<->|
1037 // |-----killing------|
1038 // Accesses may overlap if and only if start of one of them is "inside"
1040 // |<->|--dead--|<-------->|
1041 // |-------killing--------|
1043 // |-------dead-------|
1044 // |<->|---killing---|<----->|
1046 // We have to be careful here as *Off is signed while *.Size is unsigned.
1048 // Check if the dead access starts "not before" the killing one.
1049 if (DeadOff
>= KillingOff
) {
1050 // If the dead access ends "not after" the killing access then the
1051 // dead one is completely overwritten by the killing one.
1052 if (uint64_t(DeadOff
- KillingOff
) + DeadSize
<= KillingSize
)
1054 // If start of the dead access is "before" end of the killing access
1055 // then accesses overlap.
1056 else if ((uint64_t)(DeadOff
- KillingOff
) < KillingSize
)
1057 return OW_MaybePartial
;
1059 // If start of the killing access is "before" end of the dead access then
1060 // accesses overlap.
1061 else if ((uint64_t)(KillingOff
- DeadOff
) < DeadSize
) {
1062 return OW_MaybePartial
;
1065 // Can reach here only if accesses are known not to overlap.
1069 bool isInvisibleToCallerAfterRet(const Value
*V
) {
1070 if (isa
<AllocaInst
>(V
))
1072 auto I
= InvisibleToCallerAfterRet
.insert({V
, false});
1074 if (!isInvisibleToCallerOnUnwind(V
)) {
1075 I
.first
->second
= false;
1076 } else if (isNoAliasCall(V
)) {
1077 I
.first
->second
= !PointerMayBeCaptured(V
, true, false);
1080 return I
.first
->second
;
1083 bool isInvisibleToCallerOnUnwind(const Value
*V
) {
1084 bool RequiresNoCaptureBeforeUnwind
;
1085 if (!isNotVisibleOnUnwind(V
, RequiresNoCaptureBeforeUnwind
))
1087 if (!RequiresNoCaptureBeforeUnwind
)
1090 auto I
= CapturedBeforeReturn
.insert({V
, true});
1092 // NOTE: This could be made more precise by PointerMayBeCapturedBefore
1093 // with the killing MemoryDef. But we refrain from doing so for now to
1094 // limit compile-time and this does not cause any changes to the number
1095 // of stores removed on a large test set in practice.
1096 I
.first
->second
= PointerMayBeCaptured(V
, false, true);
1097 return !I
.first
->second
;
1100 std::optional
<MemoryLocation
> getLocForWrite(Instruction
*I
) const {
1101 if (!I
->mayWriteToMemory())
1102 return std::nullopt
;
1104 if (auto *CB
= dyn_cast
<CallBase
>(I
))
1105 return MemoryLocation::getForDest(CB
, TLI
);
1107 return MemoryLocation::getOrNone(I
);
1110 /// Assuming this instruction has a dead analyzable write, can we delete
1111 /// this instruction?
1112 bool isRemovable(Instruction
*I
) {
1113 assert(getLocForWrite(I
) && "Must have analyzable write");
1115 // Don't remove volatile/atomic stores.
1116 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
1117 return SI
->isUnordered();
1119 if (auto *CB
= dyn_cast
<CallBase
>(I
)) {
1120 // Don't remove volatile memory intrinsics.
1121 if (auto *MI
= dyn_cast
<MemIntrinsic
>(CB
))
1122 return !MI
->isVolatile();
1124 // Never remove dead lifetime intrinsics, e.g. because they are followed
1126 if (CB
->isLifetimeStartOrEnd())
1129 return CB
->use_empty() && CB
->willReturn() && CB
->doesNotThrow() &&
1130 !CB
->isTerminator();
1136 /// Returns true if \p UseInst completely overwrites \p DefLoc
1137 /// (stored by \p DefInst).
1138 bool isCompleteOverwrite(const MemoryLocation
&DefLoc
, Instruction
*DefInst
,
1139 Instruction
*UseInst
) {
1140 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
1141 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
1143 if (!UseInst
->mayWriteToMemory())
1146 if (auto *CB
= dyn_cast
<CallBase
>(UseInst
))
1147 if (CB
->onlyAccessesInaccessibleMemory())
1150 int64_t InstWriteOffset
, DepWriteOffset
;
1151 if (auto CC
= getLocForWrite(UseInst
))
1152 return isOverwrite(UseInst
, DefInst
, *CC
, DefLoc
, InstWriteOffset
,
1153 DepWriteOffset
) == OW_Complete
;
1157 /// Returns true if \p Def is not read before returning from the function.
1158 bool isWriteAtEndOfFunction(MemoryDef
*Def
) {
1159 LLVM_DEBUG(dbgs() << " Check if def " << *Def
<< " ("
1160 << *Def
->getMemoryInst()
1161 << ") is at the end the function \n");
1163 auto MaybeLoc
= getLocForWrite(Def
->getMemoryInst());
1165 LLVM_DEBUG(dbgs() << " ... could not get location for write.\n");
1169 SmallVector
<MemoryAccess
*, 4> WorkList
;
1170 SmallPtrSet
<MemoryAccess
*, 8> Visited
;
1171 auto PushMemUses
= [&WorkList
, &Visited
](MemoryAccess
*Acc
) {
1172 if (!Visited
.insert(Acc
).second
)
1174 for (Use
&U
: Acc
->uses())
1175 WorkList
.push_back(cast
<MemoryAccess
>(U
.getUser()));
1178 for (unsigned I
= 0; I
< WorkList
.size(); I
++) {
1179 if (WorkList
.size() >= MemorySSAScanLimit
) {
1180 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n");
1184 MemoryAccess
*UseAccess
= WorkList
[I
];
1185 if (isa
<MemoryPhi
>(UseAccess
)) {
1186 // AliasAnalysis does not account for loops. Limit elimination to
1187 // candidates for which we can guarantee they always store to the same
1189 if (!isGuaranteedLoopInvariant(MaybeLoc
->Ptr
))
1192 PushMemUses(cast
<MemoryPhi
>(UseAccess
));
1195 // TODO: Checking for aliasing is expensive. Consider reducing the amount
1196 // of times this is called and/or caching it.
1197 Instruction
*UseInst
= cast
<MemoryUseOrDef
>(UseAccess
)->getMemoryInst();
1198 if (isReadClobber(*MaybeLoc
, UseInst
)) {
1199 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst
<< ".\n");
1203 if (MemoryDef
*UseDef
= dyn_cast
<MemoryDef
>(UseAccess
))
1204 PushMemUses(UseDef
);
1209 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a
1210 /// pair with the MemoryLocation terminated by \p I and a boolean flag
1211 /// indicating whether \p I is a free-like call.
1212 std::optional
<std::pair
<MemoryLocation
, bool>>
1213 getLocForTerminator(Instruction
*I
) const {
1216 if (match(I
, m_Intrinsic
<Intrinsic::lifetime_end
>(m_ConstantInt(Len
),
1218 return {std::make_pair(MemoryLocation(Ptr
, Len
), false)};
1220 if (auto *CB
= dyn_cast
<CallBase
>(I
)) {
1221 if (Value
*FreedOp
= getFreedOperand(CB
, &TLI
))
1222 return {std::make_pair(MemoryLocation::getAfter(FreedOp
), true)};
1225 return std::nullopt
;
1228 /// Returns true if \p I is a memory terminator instruction like
1229 /// llvm.lifetime.end or free.
1230 bool isMemTerminatorInst(Instruction
*I
) const {
1231 auto *CB
= dyn_cast
<CallBase
>(I
);
1232 return CB
&& (CB
->getIntrinsicID() == Intrinsic::lifetime_end
||
1233 getFreedOperand(CB
, &TLI
) != nullptr);
1236 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
1237 /// instruction \p AccessI.
1238 bool isMemTerminator(const MemoryLocation
&Loc
, Instruction
*AccessI
,
1239 Instruction
*MaybeTerm
) {
1240 std::optional
<std::pair
<MemoryLocation
, bool>> MaybeTermLoc
=
1241 getLocForTerminator(MaybeTerm
);
1246 // If the terminator is a free-like call, all accesses to the underlying
1247 // object can be considered terminated.
1248 if (getUnderlyingObject(Loc
.Ptr
) !=
1249 getUnderlyingObject(MaybeTermLoc
->first
.Ptr
))
1252 auto TermLoc
= MaybeTermLoc
->first
;
1253 if (MaybeTermLoc
->second
) {
1254 const Value
*LocUO
= getUnderlyingObject(Loc
.Ptr
);
1255 return BatchAA
.isMustAlias(TermLoc
.Ptr
, LocUO
);
1257 int64_t InstWriteOffset
= 0;
1258 int64_t DepWriteOffset
= 0;
1259 return isOverwrite(MaybeTerm
, AccessI
, TermLoc
, Loc
, InstWriteOffset
,
1260 DepWriteOffset
) == OW_Complete
;
1263 // Returns true if \p Use may read from \p DefLoc.
1264 bool isReadClobber(const MemoryLocation
&DefLoc
, Instruction
*UseInst
) {
1265 if (isNoopIntrinsic(UseInst
))
1268 // Monotonic or weaker atomic stores can be re-ordered and do not need to be
1269 // treated as read clobber.
1270 if (auto SI
= dyn_cast
<StoreInst
>(UseInst
))
1271 return isStrongerThan(SI
->getOrdering(), AtomicOrdering::Monotonic
);
1273 if (!UseInst
->mayReadFromMemory())
1276 if (auto *CB
= dyn_cast
<CallBase
>(UseInst
))
1277 if (CB
->onlyAccessesInaccessibleMemory())
1280 return isRefSet(BatchAA
.getModRefInfo(UseInst
, DefLoc
));
1283 /// Returns true if a dependency between \p Current and \p KillingDef is
1284 /// guaranteed to be loop invariant for the loops that they are in. Either
1285 /// because they are known to be in the same block, in the same loop level or
1286 /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation
1287 /// during execution of the containing function.
1288 bool isGuaranteedLoopIndependent(const Instruction
*Current
,
1289 const Instruction
*KillingDef
,
1290 const MemoryLocation
&CurrentLoc
) {
1291 // If the dependency is within the same block or loop level (being careful
1292 // of irreducible loops), we know that AA will return a valid result for the
1293 // memory dependency. (Both at the function level, outside of any loop,
1294 // would also be valid but we currently disable that to limit compile time).
1295 if (Current
->getParent() == KillingDef
->getParent())
1297 const Loop
*CurrentLI
= LI
.getLoopFor(Current
->getParent());
1298 if (!ContainsIrreducibleLoops
&& CurrentLI
&&
1299 CurrentLI
== LI
.getLoopFor(KillingDef
->getParent()))
1301 // Otherwise check the memory location is invariant to any loops.
1302 return isGuaranteedLoopInvariant(CurrentLoc
.Ptr
);
1305 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1306 /// loop. In particular, this guarantees that it only references a single
1307 /// MemoryLocation during execution of the containing function.
1308 bool isGuaranteedLoopInvariant(const Value
*Ptr
) {
1309 Ptr
= Ptr
->stripPointerCasts();
1310 if (auto *GEP
= dyn_cast
<GEPOperator
>(Ptr
))
1311 if (GEP
->hasAllConstantIndices())
1312 Ptr
= GEP
->getPointerOperand()->stripPointerCasts();
1314 if (auto *I
= dyn_cast
<Instruction
>(Ptr
)) {
1315 return I
->getParent()->isEntryBlock() ||
1316 (!ContainsIrreducibleLoops
&& !LI
.getLoopFor(I
->getParent()));
1321 // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess,
1322 // with no read access between them or on any other path to a function exit
1323 // block if \p KillingLoc is not accessible after the function returns. If
1324 // there is no such MemoryDef, return std::nullopt. The returned value may not
1325 // (completely) overwrite \p KillingLoc. Currently we bail out when we
1326 // encounter an aliasing MemoryUse (read).
1327 std::optional
<MemoryAccess
*>
1328 getDomMemoryDef(MemoryDef
*KillingDef
, MemoryAccess
*StartAccess
,
1329 const MemoryLocation
&KillingLoc
, const Value
*KillingUndObj
,
1330 unsigned &ScanLimit
, unsigned &WalkerStepLimit
,
1331 bool IsMemTerm
, unsigned &PartialLimit
) {
1332 if (ScanLimit
== 0 || WalkerStepLimit
== 0) {
1333 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n");
1334 return std::nullopt
;
1337 MemoryAccess
*Current
= StartAccess
;
1338 Instruction
*KillingI
= KillingDef
->getMemoryInst();
1339 LLVM_DEBUG(dbgs() << " trying to get dominating access\n");
1341 // Only optimize defining access of KillingDef when directly starting at its
1342 // defining access. The defining access also must only access KillingLoc. At
1343 // the moment we only support instructions with a single write location, so
1344 // it should be sufficient to disable optimizations for instructions that
1345 // also read from memory.
1346 bool CanOptimize
= OptimizeMemorySSA
&&
1347 KillingDef
->getDefiningAccess() == StartAccess
&&
1348 !KillingI
->mayReadFromMemory();
1350 // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
1351 std::optional
<MemoryLocation
> CurrentLoc
;
1352 for (;; Current
= cast
<MemoryDef
>(Current
)->getDefiningAccess()) {
1354 dbgs() << " visiting " << *Current
;
1355 if (!MSSA
.isLiveOnEntryDef(Current
) && isa
<MemoryUseOrDef
>(Current
))
1356 dbgs() << " (" << *cast
<MemoryUseOrDef
>(Current
)->getMemoryInst()
1362 if (MSSA
.isLiveOnEntryDef(Current
)) {
1363 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n");
1364 if (CanOptimize
&& Current
!= KillingDef
->getDefiningAccess())
1365 // The first clobbering def is... none.
1366 KillingDef
->setOptimized(Current
);
1367 return std::nullopt
;
1370 // Cost of a step. Accesses in the same block are more likely to be valid
1371 // candidates for elimination, hence consider them cheaper.
1372 unsigned StepCost
= KillingDef
->getBlock() == Current
->getBlock()
1373 ? MemorySSASameBBStepCost
1374 : MemorySSAOtherBBStepCost
;
1375 if (WalkerStepLimit
<= StepCost
) {
1376 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n");
1377 return std::nullopt
;
1379 WalkerStepLimit
-= StepCost
;
1381 // Return for MemoryPhis. They cannot be eliminated directly and the
1382 // caller is responsible for traversing them.
1383 if (isa
<MemoryPhi
>(Current
)) {
1384 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n");
1388 // Below, check if CurrentDef is a valid candidate to be eliminated by
1389 // KillingDef. If it is not, check the next candidate.
1390 MemoryDef
*CurrentDef
= cast
<MemoryDef
>(Current
);
1391 Instruction
*CurrentI
= CurrentDef
->getMemoryInst();
1393 if (canSkipDef(CurrentDef
, !isInvisibleToCallerOnUnwind(KillingUndObj
))) {
1394 CanOptimize
= false;
1398 // Before we try to remove anything, check for any extra throwing
1399 // instructions that block us from DSEing
1400 if (mayThrowBetween(KillingI
, CurrentI
, KillingUndObj
)) {
1401 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n");
1402 return std::nullopt
;
1405 // Check for anything that looks like it will be a barrier to further
1407 if (isDSEBarrier(KillingUndObj
, CurrentI
)) {
1408 LLVM_DEBUG(dbgs() << " ... skip, barrier\n");
1409 return std::nullopt
;
1412 // If Current is known to be on path that reads DefLoc or is a read
1413 // clobber, bail out, as the path is not profitable. We skip this check
1414 // for intrinsic calls, because the code knows how to handle memcpy
1416 if (!isa
<IntrinsicInst
>(CurrentI
) && isReadClobber(KillingLoc
, CurrentI
))
1417 return std::nullopt
;
1419 // Quick check if there are direct uses that are read-clobbers.
1420 if (any_of(Current
->uses(), [this, &KillingLoc
, StartAccess
](Use
&U
) {
1421 if (auto *UseOrDef
= dyn_cast
<MemoryUseOrDef
>(U
.getUser()))
1422 return !MSSA
.dominates(StartAccess
, UseOrDef
) &&
1423 isReadClobber(KillingLoc
, UseOrDef
->getMemoryInst());
1426 LLVM_DEBUG(dbgs() << " ... found a read clobber\n");
1427 return std::nullopt
;
1430 // If Current does not have an analyzable write location or is not
1431 // removable, skip it.
1432 CurrentLoc
= getLocForWrite(CurrentI
);
1433 if (!CurrentLoc
|| !isRemovable(CurrentI
)) {
1434 CanOptimize
= false;
1438 // AliasAnalysis does not account for loops. Limit elimination to
1439 // candidates for which we can guarantee they always store to the same
1440 // memory location and not located in different loops.
1441 if (!isGuaranteedLoopIndependent(CurrentI
, KillingI
, *CurrentLoc
)) {
1442 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n");
1443 CanOptimize
= false;
1448 // If the killing def is a memory terminator (e.g. lifetime.end), check
1449 // the next candidate if the current Current does not write the same
1450 // underlying object as the terminator.
1451 if (!isMemTerminator(*CurrentLoc
, CurrentI
, KillingI
)) {
1452 CanOptimize
= false;
1456 int64_t KillingOffset
= 0;
1457 int64_t DeadOffset
= 0;
1458 auto OR
= isOverwrite(KillingI
, CurrentI
, KillingLoc
, *CurrentLoc
,
1459 KillingOffset
, DeadOffset
);
1461 // CurrentDef is the earliest write clobber of KillingDef. Use it as
1462 // optimized access. Do not optimize if CurrentDef is already the
1463 // defining access of KillingDef.
1464 if (CurrentDef
!= KillingDef
->getDefiningAccess() &&
1465 (OR
== OW_Complete
|| OR
== OW_MaybePartial
))
1466 KillingDef
->setOptimized(CurrentDef
);
1468 // Once a may-aliasing def is encountered do not set an optimized
1471 CanOptimize
= false;
1474 // If Current does not write to the same object as KillingDef, check
1475 // the next candidate.
1476 if (OR
== OW_Unknown
|| OR
== OW_None
)
1478 else if (OR
== OW_MaybePartial
) {
1479 // If KillingDef only partially overwrites Current, check the next
1480 // candidate if the partial step limit is exceeded. This aggressively
1481 // limits the number of candidates for partial store elimination,
1482 // which are less likely to be removable in the end.
1483 if (PartialLimit
<= 1) {
1484 WalkerStepLimit
-= 1;
1485 LLVM_DEBUG(dbgs() << " ... reached partial limit ... continue with next access\n");
1494 // Accesses to objects accessible after the function returns can only be
1495 // eliminated if the access is dead along all paths to the exit. Collect
1496 // the blocks with killing (=completely overwriting MemoryDefs) and check if
1497 // they cover all paths from MaybeDeadAccess to any function exit.
1498 SmallPtrSet
<Instruction
*, 16> KillingDefs
;
1499 KillingDefs
.insert(KillingDef
->getMemoryInst());
1500 MemoryAccess
*MaybeDeadAccess
= Current
;
1501 MemoryLocation MaybeDeadLoc
= *CurrentLoc
;
1502 Instruction
*MaybeDeadI
= cast
<MemoryDef
>(MaybeDeadAccess
)->getMemoryInst();
1503 LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess
<< " ("
1504 << *MaybeDeadI
<< ")\n");
1506 SmallSetVector
<MemoryAccess
*, 32> WorkList
;
1507 auto PushMemUses
= [&WorkList
](MemoryAccess
*Acc
) {
1508 for (Use
&U
: Acc
->uses())
1509 WorkList
.insert(cast
<MemoryAccess
>(U
.getUser()));
1511 PushMemUses(MaybeDeadAccess
);
1513 // Check if DeadDef may be read.
1514 for (unsigned I
= 0; I
< WorkList
.size(); I
++) {
1515 MemoryAccess
*UseAccess
= WorkList
[I
];
1517 LLVM_DEBUG(dbgs() << " " << *UseAccess
);
1518 // Bail out if the number of accesses to check exceeds the scan limit.
1519 if (ScanLimit
< (WorkList
.size() - I
)) {
1520 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n");
1521 return std::nullopt
;
1524 NumDomMemDefChecks
++;
1526 if (isa
<MemoryPhi
>(UseAccess
)) {
1527 if (any_of(KillingDefs
, [this, UseAccess
](Instruction
*KI
) {
1528 return DT
.properlyDominates(KI
->getParent(),
1529 UseAccess
->getBlock());
1531 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
1534 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n");
1535 PushMemUses(UseAccess
);
1539 Instruction
*UseInst
= cast
<MemoryUseOrDef
>(UseAccess
)->getMemoryInst();
1540 LLVM_DEBUG(dbgs() << " (" << *UseInst
<< ")\n");
1542 if (any_of(KillingDefs
, [this, UseInst
](Instruction
*KI
) {
1543 return DT
.dominates(KI
, UseInst
);
1545 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
1549 // A memory terminator kills all preceeding MemoryDefs and all succeeding
1550 // MemoryAccesses. We do not have to check it's users.
1551 if (isMemTerminator(MaybeDeadLoc
, MaybeDeadI
, UseInst
)) {
1554 << " ... skipping, memterminator invalidates following accesses\n");
1558 if (isNoopIntrinsic(cast
<MemoryUseOrDef
>(UseAccess
)->getMemoryInst())) {
1559 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n");
1560 PushMemUses(UseAccess
);
1564 if (UseInst
->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj
)) {
1565 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n");
1566 return std::nullopt
;
1569 // Uses which may read the original MemoryDef mean we cannot eliminate the
1570 // original MD. Stop walk.
1571 if (isReadClobber(MaybeDeadLoc
, UseInst
)) {
1572 LLVM_DEBUG(dbgs() << " ... found read clobber\n");
1573 return std::nullopt
;
1576 // If this worklist walks back to the original memory access (and the
1577 // pointer is not guarenteed loop invariant) then we cannot assume that a
1578 // store kills itself.
1579 if (MaybeDeadAccess
== UseAccess
&&
1580 !isGuaranteedLoopInvariant(MaybeDeadLoc
.Ptr
)) {
1581 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n");
1582 return std::nullopt
;
1584 // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check
1585 // if it reads the memory location.
1586 // TODO: It would probably be better to check for self-reads before
1587 // calling the function.
1588 if (KillingDef
== UseAccess
|| MaybeDeadAccess
== UseAccess
) {
1589 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n");
1593 // Check all uses for MemoryDefs, except for defs completely overwriting
1594 // the original location. Otherwise we have to check uses of *all*
1595 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
1596 // miss cases like the following
1597 // 1 = Def(LoE) ; <----- DeadDef stores [0,1]
1598 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3]
1599 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3].
1600 // (The Use points to the *first* Def it may alias)
1601 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias,
1603 if (MemoryDef
*UseDef
= dyn_cast
<MemoryDef
>(UseAccess
)) {
1604 if (isCompleteOverwrite(MaybeDeadLoc
, MaybeDeadI
, UseInst
)) {
1605 BasicBlock
*MaybeKillingBlock
= UseInst
->getParent();
1606 if (PostOrderNumbers
.find(MaybeKillingBlock
)->second
<
1607 PostOrderNumbers
.find(MaybeDeadAccess
->getBlock())->second
) {
1608 if (!isInvisibleToCallerAfterRet(KillingUndObj
)) {
1610 << " ... found killing def " << *UseInst
<< "\n");
1611 KillingDefs
.insert(UseInst
);
1615 << " ... found preceeding def " << *UseInst
<< "\n");
1616 return std::nullopt
;
1619 PushMemUses(UseDef
);
1623 // For accesses to locations visible after the function returns, make sure
1624 // that the location is dead (=overwritten) along all paths from
1625 // MaybeDeadAccess to the exit.
1626 if (!isInvisibleToCallerAfterRet(KillingUndObj
)) {
1627 SmallPtrSet
<BasicBlock
*, 16> KillingBlocks
;
1628 for (Instruction
*KD
: KillingDefs
)
1629 KillingBlocks
.insert(KD
->getParent());
1630 assert(!KillingBlocks
.empty() &&
1631 "Expected at least a single killing block");
1633 // Find the common post-dominator of all killing blocks.
1634 BasicBlock
*CommonPred
= *KillingBlocks
.begin();
1635 for (BasicBlock
*BB
: llvm::drop_begin(KillingBlocks
)) {
1638 CommonPred
= PDT
.findNearestCommonDominator(CommonPred
, BB
);
1641 // If the common post-dominator does not post-dominate MaybeDeadAccess,
1642 // there is a path from MaybeDeadAccess to an exit not going through a
1644 if (!PDT
.dominates(CommonPred
, MaybeDeadAccess
->getBlock())) {
1645 if (!AnyUnreachableExit
)
1646 return std::nullopt
;
1648 // Fall back to CFG scan starting at all non-unreachable roots if not
1649 // all paths to the exit go through CommonPred.
1650 CommonPred
= nullptr;
1653 // If CommonPred itself is in the set of killing blocks, we're done.
1654 if (KillingBlocks
.count(CommonPred
))
1655 return {MaybeDeadAccess
};
1657 SetVector
<BasicBlock
*> WorkList
;
1658 // If CommonPred is null, there are multiple exits from the function.
1659 // They all have to be added to the worklist.
1661 WorkList
.insert(CommonPred
);
1663 for (BasicBlock
*R
: PDT
.roots()) {
1664 if (!isa
<UnreachableInst
>(R
->getTerminator()))
1669 // Check if all paths starting from an exit node go through one of the
1670 // killing blocks before reaching MaybeDeadAccess.
1671 for (unsigned I
= 0; I
< WorkList
.size(); I
++) {
1673 BasicBlock
*Current
= WorkList
[I
];
1674 if (KillingBlocks
.count(Current
))
1676 if (Current
== MaybeDeadAccess
->getBlock())
1677 return std::nullopt
;
1679 // MaybeDeadAccess is reachable from the entry, so we don't have to
1680 // explore unreachable blocks further.
1681 if (!DT
.isReachableFromEntry(Current
))
1684 for (BasicBlock
*Pred
: predecessors(Current
))
1685 WorkList
.insert(Pred
);
1687 if (WorkList
.size() >= MemorySSAPathCheckLimit
)
1688 return std::nullopt
;
1693 // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is
1694 // potentially dead.
1695 return {MaybeDeadAccess
};
1698 /// Delete dead memory defs and recursively add their operands to ToRemove if
1699 /// they became dead.
1700 void deleteDeadInstruction(Instruction
*SI
) {
1701 MemorySSAUpdater
Updater(&MSSA
);
1702 SmallVector
<Instruction
*, 32> NowDeadInsts
;
1703 NowDeadInsts
.push_back(SI
);
1706 while (!NowDeadInsts
.empty()) {
1707 Instruction
*DeadInst
= NowDeadInsts
.pop_back_val();
1710 // Try to preserve debug information attached to the dead instruction.
1711 salvageDebugInfo(*DeadInst
);
1712 salvageKnowledge(DeadInst
);
1714 // Remove the Instruction from MSSA.
1715 MemoryAccess
*MA
= MSSA
.getMemoryAccess(DeadInst
);
1716 bool IsMemDef
= MA
&& isa
<MemoryDef
>(MA
);
1719 auto *MD
= cast
<MemoryDef
>(MA
);
1720 SkipStores
.insert(MD
);
1721 if (auto *SI
= dyn_cast
<StoreInst
>(MD
->getMemoryInst())) {
1722 if (SI
->getValueOperand()->getType()->isPointerTy()) {
1723 const Value
*UO
= getUnderlyingObject(SI
->getValueOperand());
1724 if (CapturedBeforeReturn
.erase(UO
))
1725 ShouldIterateEndOfFunctionDSE
= true;
1726 InvisibleToCallerAfterRet
.erase(UO
);
1731 Updater
.removeMemoryAccess(MA
);
1734 auto I
= IOLs
.find(DeadInst
->getParent());
1735 if (I
!= IOLs
.end())
1736 I
->second
.erase(DeadInst
);
1737 // Remove its operands
1738 for (Use
&O
: DeadInst
->operands())
1739 if (Instruction
*OpI
= dyn_cast
<Instruction
>(O
)) {
1740 O
.set(PoisonValue::get(O
->getType()));
1741 if (isInstructionTriviallyDead(OpI
, &TLI
))
1742 NowDeadInsts
.push_back(OpI
);
1745 EI
.removeInstruction(DeadInst
);
1746 // Remove memory defs directly if they don't produce results, but only
1747 // queue other dead instructions for later removal. They may have been
1748 // used as memory locations that have been cached by BatchAA. Removing
1749 // them here may lead to newly created instructions to be allocated at the
1750 // same address, yielding stale cache entries.
1751 if (IsMemDef
&& DeadInst
->getType()->isVoidTy())
1752 DeadInst
->eraseFromParent();
1754 ToRemove
.push_back(DeadInst
);
1758 // Check for any extra throws between \p KillingI and \p DeadI that block
1759 // DSE. This only checks extra maythrows (those that aren't MemoryDef's).
1760 // MemoryDef that may throw are handled during the walk from one def to the
1762 bool mayThrowBetween(Instruction
*KillingI
, Instruction
*DeadI
,
1763 const Value
*KillingUndObj
) {
1764 // First see if we can ignore it by using the fact that KillingI is an
1765 // alloca/alloca like object that is not visible to the caller during
1766 // execution of the function.
1767 if (KillingUndObj
&& isInvisibleToCallerOnUnwind(KillingUndObj
))
1770 if (KillingI
->getParent() == DeadI
->getParent())
1771 return ThrowingBlocks
.count(KillingI
->getParent());
1772 return !ThrowingBlocks
.empty();
1775 // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following
1776 // instructions act as barriers:
1777 // * A memory instruction that may throw and \p KillingI accesses a non-stack
1779 // * Atomic stores stronger that monotonic.
1780 bool isDSEBarrier(const Value
*KillingUndObj
, Instruction
*DeadI
) {
1781 // If DeadI may throw it acts as a barrier, unless we are to an
1782 // alloca/alloca like object that does not escape.
1783 if (DeadI
->mayThrow() && !isInvisibleToCallerOnUnwind(KillingUndObj
))
1786 // If DeadI is an atomic load/store stronger than monotonic, do not try to
1787 // eliminate/reorder it.
1788 if (DeadI
->isAtomic()) {
1789 if (auto *LI
= dyn_cast
<LoadInst
>(DeadI
))
1790 return isStrongerThanMonotonic(LI
->getOrdering());
1791 if (auto *SI
= dyn_cast
<StoreInst
>(DeadI
))
1792 return isStrongerThanMonotonic(SI
->getOrdering());
1793 if (auto *ARMW
= dyn_cast
<AtomicRMWInst
>(DeadI
))
1794 return isStrongerThanMonotonic(ARMW
->getOrdering());
1795 if (auto *CmpXchg
= dyn_cast
<AtomicCmpXchgInst
>(DeadI
))
1796 return isStrongerThanMonotonic(CmpXchg
->getSuccessOrdering()) ||
1797 isStrongerThanMonotonic(CmpXchg
->getFailureOrdering());
1798 llvm_unreachable("other instructions should be skipped in MemorySSA");
1803 /// Eliminate writes to objects that are not visible in the caller and are not
1804 /// accessed before returning from the function.
1805 bool eliminateDeadWritesAtEndOfFunction() {
1806 bool MadeChange
= false;
1809 << "Trying to eliminate MemoryDefs at the end of the function\n");
1811 ShouldIterateEndOfFunctionDSE
= false;
1812 for (MemoryDef
*Def
: llvm::reverse(MemDefs
)) {
1813 if (SkipStores
.contains(Def
))
1816 Instruction
*DefI
= Def
->getMemoryInst();
1817 auto DefLoc
= getLocForWrite(DefI
);
1818 if (!DefLoc
|| !isRemovable(DefI
))
1821 // NOTE: Currently eliminating writes at the end of a function is
1822 // limited to MemoryDefs with a single underlying object, to save
1823 // compile-time. In practice it appears the case with multiple
1824 // underlying objects is very uncommon. If it turns out to be important,
1825 // we can use getUnderlyingObjects here instead.
1826 const Value
*UO
= getUnderlyingObject(DefLoc
->Ptr
);
1827 if (!isInvisibleToCallerAfterRet(UO
))
1830 if (isWriteAtEndOfFunction(Def
)) {
1831 // See through pointer-to-pointer bitcasts
1832 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end "
1833 "of the function\n");
1834 deleteDeadInstruction(DefI
);
1839 } while (ShouldIterateEndOfFunctionDSE
);
1843 /// If we have a zero initializing memset following a call to malloc,
1844 /// try folding it into a call to calloc.
1845 bool tryFoldIntoCalloc(MemoryDef
*Def
, const Value
*DefUO
) {
1846 Instruction
*DefI
= Def
->getMemoryInst();
1847 MemSetInst
*MemSet
= dyn_cast
<MemSetInst
>(DefI
);
1849 // TODO: Could handle zero store to small allocation as well.
1851 Constant
*StoredConstant
= dyn_cast
<Constant
>(MemSet
->getValue());
1852 if (!StoredConstant
|| !StoredConstant
->isNullValue())
1855 if (!isRemovable(DefI
))
1856 // The memset might be volatile..
1859 if (F
.hasFnAttribute(Attribute::SanitizeMemory
) ||
1860 F
.hasFnAttribute(Attribute::SanitizeAddress
) ||
1861 F
.hasFnAttribute(Attribute::SanitizeHWAddress
) ||
1862 F
.getName() == "calloc")
1864 auto *Malloc
= const_cast<CallInst
*>(dyn_cast
<CallInst
>(DefUO
));
1867 auto *InnerCallee
= Malloc
->getCalledFunction();
1871 if (!TLI
.getLibFunc(*InnerCallee
, Func
) || !TLI
.has(Func
) ||
1872 Func
!= LibFunc_malloc
)
1874 // Gracefully handle malloc with unexpected memory attributes.
1875 auto *MallocDef
= dyn_cast_or_null
<MemoryDef
>(MSSA
.getMemoryAccess(Malloc
));
1879 auto shouldCreateCalloc
= [](CallInst
*Malloc
, CallInst
*Memset
) {
1880 // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end
1882 auto *MallocBB
= Malloc
->getParent(),
1883 *MemsetBB
= Memset
->getParent();
1884 if (MallocBB
== MemsetBB
)
1886 auto *Ptr
= Memset
->getArgOperand(0);
1887 auto *TI
= MallocBB
->getTerminator();
1888 ICmpInst::Predicate Pred
;
1889 BasicBlock
*TrueBB
, *FalseBB
;
1890 if (!match(TI
, m_Br(m_ICmp(Pred
, m_Specific(Ptr
), m_Zero()), TrueBB
,
1893 if (Pred
!= ICmpInst::ICMP_EQ
|| MemsetBB
!= FalseBB
)
1898 if (Malloc
->getOperand(0) != MemSet
->getLength())
1900 if (!shouldCreateCalloc(Malloc
, MemSet
) ||
1901 !DT
.dominates(Malloc
, MemSet
) ||
1902 !memoryIsNotModifiedBetween(Malloc
, MemSet
, BatchAA
, DL
, &DT
))
1904 IRBuilder
<> IRB(Malloc
);
1905 Type
*SizeTTy
= Malloc
->getArgOperand(0)->getType();
1906 auto *Calloc
= emitCalloc(ConstantInt::get(SizeTTy
, 1),
1907 Malloc
->getArgOperand(0), IRB
, TLI
);
1911 MemorySSAUpdater
Updater(&MSSA
);
1913 Updater
.createMemoryAccessAfter(cast
<Instruction
>(Calloc
), nullptr,
1915 auto *NewAccessMD
= cast
<MemoryDef
>(NewAccess
);
1916 Updater
.insertDef(NewAccessMD
, /*RenameUses=*/true);
1917 Malloc
->replaceAllUsesWith(Calloc
);
1918 deleteDeadInstruction(Malloc
);
1922 /// \returns true if \p Def is a no-op store, either because it
1923 /// directly stores back a loaded value or stores zero to a calloced object.
1924 bool storeIsNoop(MemoryDef
*Def
, const Value
*DefUO
) {
1925 Instruction
*DefI
= Def
->getMemoryInst();
1926 StoreInst
*Store
= dyn_cast
<StoreInst
>(DefI
);
1927 MemSetInst
*MemSet
= dyn_cast
<MemSetInst
>(DefI
);
1928 Constant
*StoredConstant
= nullptr;
1930 StoredConstant
= dyn_cast
<Constant
>(Store
->getOperand(0));
1932 StoredConstant
= dyn_cast
<Constant
>(MemSet
->getValue());
1936 if (!isRemovable(DefI
))
1939 if (StoredConstant
) {
1941 getInitialValueOfAllocation(DefUO
, &TLI
, StoredConstant
->getType());
1942 // If the clobbering access is LiveOnEntry, no instructions between them
1943 // can modify the memory location.
1944 if (InitC
&& InitC
== StoredConstant
)
1945 return MSSA
.isLiveOnEntryDef(
1946 MSSA
.getSkipSelfWalker()->getClobberingMemoryAccess(Def
, BatchAA
));
1952 if (auto *LoadI
= dyn_cast
<LoadInst
>(Store
->getOperand(0))) {
1953 if (LoadI
->getPointerOperand() == Store
->getOperand(1)) {
1954 // Get the defining access for the load.
1955 auto *LoadAccess
= MSSA
.getMemoryAccess(LoadI
)->getDefiningAccess();
1956 // Fast path: the defining accesses are the same.
1957 if (LoadAccess
== Def
->getDefiningAccess())
1960 // Look through phi accesses. Recursively scan all phi accesses by
1961 // adding them to a worklist. Bail when we run into a memory def that
1962 // does not match LoadAccess.
1963 SetVector
<MemoryAccess
*> ToCheck
;
1964 MemoryAccess
*Current
=
1965 MSSA
.getWalker()->getClobberingMemoryAccess(Def
, BatchAA
);
1966 // We don't want to bail when we run into the store memory def. But,
1967 // the phi access may point to it. So, pretend like we've already
1969 ToCheck
.insert(Def
);
1970 ToCheck
.insert(Current
);
1971 // Start at current (1) to simulate already having checked Def.
1972 for (unsigned I
= 1; I
< ToCheck
.size(); ++I
) {
1973 Current
= ToCheck
[I
];
1974 if (auto PhiAccess
= dyn_cast
<MemoryPhi
>(Current
)) {
1975 // Check all the operands.
1976 for (auto &Use
: PhiAccess
->incoming_values())
1977 ToCheck
.insert(cast
<MemoryAccess
>(&Use
));
1981 // If we found a memory def, bail. This happens when we have an
1982 // unrelated write in between an otherwise noop store.
1983 assert(isa
<MemoryDef
>(Current
) &&
1984 "Only MemoryDefs should reach here.");
1985 // TODO: Skip no alias MemoryDefs that have no aliasing reads.
1986 // We are searching for the definition of the store's destination.
1987 // So, if that is the same definition as the load, then this is a
1988 // noop. Otherwise, fail.
1989 if (LoadAccess
!= Current
)
1999 bool removePartiallyOverlappedStores(InstOverlapIntervalsTy
&IOL
) {
2000 bool Changed
= false;
2001 for (auto OI
: IOL
) {
2002 Instruction
*DeadI
= OI
.first
;
2003 MemoryLocation Loc
= *getLocForWrite(DeadI
);
2004 assert(isRemovable(DeadI
) && "Expect only removable instruction");
2006 const Value
*Ptr
= Loc
.Ptr
->stripPointerCasts();
2007 int64_t DeadStart
= 0;
2008 uint64_t DeadSize
= Loc
.Size
.getValue();
2009 GetPointerBaseWithConstantOffset(Ptr
, DeadStart
, DL
);
2010 OverlapIntervalsTy
&IntervalMap
= OI
.second
;
2011 Changed
|= tryToShortenEnd(DeadI
, IntervalMap
, DeadStart
, DeadSize
);
2012 if (IntervalMap
.empty())
2014 Changed
|= tryToShortenBegin(DeadI
, IntervalMap
, DeadStart
, DeadSize
);
2019 /// Eliminates writes to locations where the value that is being written
2020 /// is already stored at the same location.
2021 bool eliminateRedundantStoresOfExistingValues() {
2022 bool MadeChange
= false;
2023 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the "
2024 "already existing value\n");
2025 for (auto *Def
: MemDefs
) {
2026 if (SkipStores
.contains(Def
) || MSSA
.isLiveOnEntryDef(Def
))
2029 Instruction
*DefInst
= Def
->getMemoryInst();
2030 auto MaybeDefLoc
= getLocForWrite(DefInst
);
2031 if (!MaybeDefLoc
|| !isRemovable(DefInst
))
2034 MemoryDef
*UpperDef
;
2035 // To conserve compile-time, we avoid walking to the next clobbering def.
2036 // Instead, we just try to get the optimized access, if it exists. DSE
2037 // will try to optimize defs during the earlier traversal.
2038 if (Def
->isOptimized())
2039 UpperDef
= dyn_cast
<MemoryDef
>(Def
->getOptimized());
2041 UpperDef
= dyn_cast
<MemoryDef
>(Def
->getDefiningAccess());
2042 if (!UpperDef
|| MSSA
.isLiveOnEntryDef(UpperDef
))
2045 Instruction
*UpperInst
= UpperDef
->getMemoryInst();
2046 auto IsRedundantStore
= [&]() {
2047 if (DefInst
->isIdenticalTo(UpperInst
))
2049 if (auto *MemSetI
= dyn_cast
<MemSetInst
>(UpperInst
)) {
2050 if (auto *SI
= dyn_cast
<StoreInst
>(DefInst
)) {
2051 // MemSetInst must have a write location.
2052 MemoryLocation UpperLoc
= *getLocForWrite(UpperInst
);
2053 int64_t InstWriteOffset
= 0;
2054 int64_t DepWriteOffset
= 0;
2055 auto OR
= isOverwrite(UpperInst
, DefInst
, UpperLoc
, *MaybeDefLoc
,
2056 InstWriteOffset
, DepWriteOffset
);
2057 Value
*StoredByte
= isBytewiseValue(SI
->getValueOperand(), DL
);
2058 return StoredByte
&& StoredByte
== MemSetI
->getOperand(1) &&
2065 if (!IsRedundantStore() || isReadClobber(*MaybeDefLoc
, DefInst
))
2067 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *DefInst
2069 deleteDeadInstruction(DefInst
);
2070 NumRedundantStores
++;
2077 static bool eliminateDeadStores(Function
&F
, AliasAnalysis
&AA
, MemorySSA
&MSSA
,
2078 DominatorTree
&DT
, PostDominatorTree
&PDT
,
2079 const TargetLibraryInfo
&TLI
,
2080 const LoopInfo
&LI
) {
2081 bool MadeChange
= false;
2083 DSEState
State(F
, AA
, MSSA
, DT
, PDT
, TLI
, LI
);
2085 for (unsigned I
= 0; I
< State
.MemDefs
.size(); I
++) {
2086 MemoryDef
*KillingDef
= State
.MemDefs
[I
];
2087 if (State
.SkipStores
.count(KillingDef
))
2089 Instruction
*KillingI
= KillingDef
->getMemoryInst();
2091 std::optional
<MemoryLocation
> MaybeKillingLoc
;
2092 if (State
.isMemTerminatorInst(KillingI
)) {
2093 if (auto KillingLoc
= State
.getLocForTerminator(KillingI
))
2094 MaybeKillingLoc
= KillingLoc
->first
;
2096 MaybeKillingLoc
= State
.getLocForWrite(KillingI
);
2099 if (!MaybeKillingLoc
) {
2100 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
2101 << *KillingI
<< "\n");
2104 MemoryLocation KillingLoc
= *MaybeKillingLoc
;
2105 assert(KillingLoc
.Ptr
&& "KillingLoc should not be null");
2106 const Value
*KillingUndObj
= getUnderlyingObject(KillingLoc
.Ptr
);
2107 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
2108 << *KillingDef
<< " (" << *KillingI
<< ")\n");
2110 unsigned ScanLimit
= MemorySSAScanLimit
;
2111 unsigned WalkerStepLimit
= MemorySSAUpwardsStepLimit
;
2112 unsigned PartialLimit
= MemorySSAPartialStoreLimit
;
2113 // Worklist of MemoryAccesses that may be killed by KillingDef.
2114 SetVector
<MemoryAccess
*> ToCheck
;
2115 ToCheck
.insert(KillingDef
->getDefiningAccess());
2117 bool Shortend
= false;
2118 bool IsMemTerm
= State
.isMemTerminatorInst(KillingI
);
2119 // Check if MemoryAccesses in the worklist are killed by KillingDef.
2120 for (unsigned I
= 0; I
< ToCheck
.size(); I
++) {
2121 MemoryAccess
*Current
= ToCheck
[I
];
2122 if (State
.SkipStores
.count(Current
))
2125 std::optional
<MemoryAccess
*> MaybeDeadAccess
= State
.getDomMemoryDef(
2126 KillingDef
, Current
, KillingLoc
, KillingUndObj
, ScanLimit
,
2127 WalkerStepLimit
, IsMemTerm
, PartialLimit
);
2129 if (!MaybeDeadAccess
) {
2130 LLVM_DEBUG(dbgs() << " finished walk\n");
2134 MemoryAccess
*DeadAccess
= *MaybeDeadAccess
;
2135 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess
);
2136 if (isa
<MemoryPhi
>(DeadAccess
)) {
2137 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n");
2138 for (Value
*V
: cast
<MemoryPhi
>(DeadAccess
)->incoming_values()) {
2139 MemoryAccess
*IncomingAccess
= cast
<MemoryAccess
>(V
);
2140 BasicBlock
*IncomingBlock
= IncomingAccess
->getBlock();
2141 BasicBlock
*PhiBlock
= DeadAccess
->getBlock();
2143 // We only consider incoming MemoryAccesses that come before the
2144 // MemoryPhi. Otherwise we could discover candidates that do not
2145 // strictly dominate our starting def.
2146 if (State
.PostOrderNumbers
[IncomingBlock
] >
2147 State
.PostOrderNumbers
[PhiBlock
])
2148 ToCheck
.insert(IncomingAccess
);
2152 auto *DeadDefAccess
= cast
<MemoryDef
>(DeadAccess
);
2153 Instruction
*DeadI
= DeadDefAccess
->getMemoryInst();
2154 LLVM_DEBUG(dbgs() << " (" << *DeadI
<< ")\n");
2155 ToCheck
.insert(DeadDefAccess
->getDefiningAccess());
2156 NumGetDomMemoryDefPassed
++;
2158 if (!DebugCounter::shouldExecute(MemorySSACounter
))
2161 MemoryLocation DeadLoc
= *State
.getLocForWrite(DeadI
);
2164 const Value
*DeadUndObj
= getUnderlyingObject(DeadLoc
.Ptr
);
2165 if (KillingUndObj
!= DeadUndObj
)
2167 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI
2168 << "\n KILLER: " << *KillingI
<< '\n');
2169 State
.deleteDeadInstruction(DeadI
);
2173 // Check if DeadI overwrites KillingI.
2174 int64_t KillingOffset
= 0;
2175 int64_t DeadOffset
= 0;
2176 OverwriteResult OR
= State
.isOverwrite(
2177 KillingI
, DeadI
, KillingLoc
, DeadLoc
, KillingOffset
, DeadOffset
);
2178 if (OR
== OW_MaybePartial
) {
2179 auto Iter
= State
.IOLs
.insert(
2180 std::make_pair
<BasicBlock
*, InstOverlapIntervalsTy
>(
2181 DeadI
->getParent(), InstOverlapIntervalsTy()));
2182 auto &IOL
= Iter
.first
->second
;
2183 OR
= isPartialOverwrite(KillingLoc
, DeadLoc
, KillingOffset
,
2184 DeadOffset
, DeadI
, IOL
);
2187 if (EnablePartialStoreMerging
&& OR
== OW_PartialEarlierWithFullLater
) {
2188 auto *DeadSI
= dyn_cast
<StoreInst
>(DeadI
);
2189 auto *KillingSI
= dyn_cast
<StoreInst
>(KillingI
);
2190 // We are re-using tryToMergePartialOverlappingStores, which requires
2191 // DeadSI to dominate KillingSI.
2192 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
2193 if (DeadSI
&& KillingSI
&& DT
.dominates(DeadSI
, KillingSI
)) {
2194 if (Constant
*Merged
= tryToMergePartialOverlappingStores(
2195 KillingSI
, DeadSI
, KillingOffset
, DeadOffset
, State
.DL
,
2196 State
.BatchAA
, &DT
)) {
2198 // Update stored value of earlier store to merged constant.
2199 DeadSI
->setOperand(0, Merged
);
2200 ++NumModifiedStores
;
2204 // Remove killing store and remove any outstanding overlap
2205 // intervals for the updated store.
2206 State
.deleteDeadInstruction(KillingSI
);
2207 auto I
= State
.IOLs
.find(DeadSI
->getParent());
2208 if (I
!= State
.IOLs
.end())
2209 I
->second
.erase(DeadSI
);
2215 if (OR
== OW_Complete
) {
2216 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI
2217 << "\n KILLER: " << *KillingI
<< '\n');
2218 State
.deleteDeadInstruction(DeadI
);
2225 // Check if the store is a no-op.
2226 if (!Shortend
&& State
.storeIsNoop(KillingDef
, KillingUndObj
)) {
2227 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *KillingI
2229 State
.deleteDeadInstruction(KillingI
);
2230 NumRedundantStores
++;
2235 // Can we form a calloc from a memset/malloc pair?
2236 if (!Shortend
&& State
.tryFoldIntoCalloc(KillingDef
, KillingUndObj
)) {
2237 LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n"
2238 << " DEAD: " << *KillingI
<< '\n');
2239 State
.deleteDeadInstruction(KillingI
);
2245 if (EnablePartialOverwriteTracking
)
2246 for (auto &KV
: State
.IOLs
)
2247 MadeChange
|= State
.removePartiallyOverlappedStores(KV
.second
);
2249 MadeChange
|= State
.eliminateRedundantStoresOfExistingValues();
2250 MadeChange
|= State
.eliminateDeadWritesAtEndOfFunction();
2252 while (!State
.ToRemove
.empty()) {
2253 Instruction
*DeadInst
= State
.ToRemove
.pop_back_val();
2254 DeadInst
->eraseFromParent();
2259 } // end anonymous namespace
2261 //===----------------------------------------------------------------------===//
2263 //===----------------------------------------------------------------------===//
2264 PreservedAnalyses
DSEPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
2265 AliasAnalysis
&AA
= AM
.getResult
<AAManager
>(F
);
2266 const TargetLibraryInfo
&TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
2267 DominatorTree
&DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
2268 MemorySSA
&MSSA
= AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA();
2269 PostDominatorTree
&PDT
= AM
.getResult
<PostDominatorTreeAnalysis
>(F
);
2270 LoopInfo
&LI
= AM
.getResult
<LoopAnalysis
>(F
);
2272 bool Changed
= eliminateDeadStores(F
, AA
, MSSA
, DT
, PDT
, TLI
, LI
);
2274 #ifdef LLVM_ENABLE_STATS
2275 if (AreStatisticsEnabled())
2276 for (auto &I
: instructions(F
))
2277 NumRemainingStores
+= isa
<StoreInst
>(&I
);
2281 return PreservedAnalyses::all();
2283 PreservedAnalyses PA
;
2284 PA
.preserveSet
<CFGAnalyses
>();
2285 PA
.preserve
<MemorySSAAnalysis
>();
2286 PA
.preserve
<LoopAnalysis
>();