1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Float2Int pass, which aims to demote floating
10 // point operations to work on integers, where that is losslessly possible.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/Float2Int.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
28 #define DEBUG_TYPE "float2int"
32 // The algorithm is simple. Start at instructions that convert from the
33 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
34 // graph, using an equivalence datastructure to unify graphs that interfere.
36 // Mappable instructions are those with an integer corrollary that, given
37 // integer domain inputs, produce an integer output; fadd, for example.
39 // If a non-mappable instruction is seen, this entire def-use graph is marked
40 // as non-transformable. If we see an instruction that converts from the
41 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
43 /// The largest integer type worth dealing with.
44 static cl::opt
<unsigned>
45 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden
,
46 cl::desc("Max integer bitwidth to consider in float2int"
49 // Given a FCmp predicate, return a matching ICmp predicate if one
50 // exists, otherwise return BAD_ICMP_PREDICATE.
51 static CmpInst::Predicate
mapFCmpPred(CmpInst::Predicate P
) {
53 case CmpInst::FCMP_OEQ
:
54 case CmpInst::FCMP_UEQ
:
55 return CmpInst::ICMP_EQ
;
56 case CmpInst::FCMP_OGT
:
57 case CmpInst::FCMP_UGT
:
58 return CmpInst::ICMP_SGT
;
59 case CmpInst::FCMP_OGE
:
60 case CmpInst::FCMP_UGE
:
61 return CmpInst::ICMP_SGE
;
62 case CmpInst::FCMP_OLT
:
63 case CmpInst::FCMP_ULT
:
64 return CmpInst::ICMP_SLT
;
65 case CmpInst::FCMP_OLE
:
66 case CmpInst::FCMP_ULE
:
67 return CmpInst::ICMP_SLE
;
68 case CmpInst::FCMP_ONE
:
69 case CmpInst::FCMP_UNE
:
70 return CmpInst::ICMP_NE
;
72 return CmpInst::BAD_ICMP_PREDICATE
;
76 // Given a floating point binary operator, return the matching
78 static Instruction::BinaryOps
mapBinOpcode(unsigned Opcode
) {
80 default: llvm_unreachable("Unhandled opcode!");
81 case Instruction::FAdd
: return Instruction::Add
;
82 case Instruction::FSub
: return Instruction::Sub
;
83 case Instruction::FMul
: return Instruction::Mul
;
87 // Find the roots - instructions that convert from the FP domain to
89 void Float2IntPass::findRoots(Function
&F
, const DominatorTree
&DT
) {
90 for (BasicBlock
&BB
: F
) {
91 // Unreachable code can take on strange forms that we are not prepared to
92 // handle. For example, an instruction may have itself as an operand.
93 if (!DT
.isReachableFromEntry(&BB
))
96 for (Instruction
&I
: BB
) {
97 if (isa
<VectorType
>(I
.getType()))
99 switch (I
.getOpcode()) {
101 case Instruction::FPToUI
:
102 case Instruction::FPToSI
:
105 case Instruction::FCmp
:
106 if (mapFCmpPred(cast
<CmpInst
>(&I
)->getPredicate()) !=
107 CmpInst::BAD_ICMP_PREDICATE
)
115 // Helper - mark I as having been traversed, having range R.
116 void Float2IntPass::seen(Instruction
*I
, ConstantRange R
) {
117 LLVM_DEBUG(dbgs() << "F2I: " << *I
<< ":" << R
<< "\n");
118 auto IT
= SeenInsts
.find(I
);
119 if (IT
!= SeenInsts
.end())
120 IT
->second
= std::move(R
);
122 SeenInsts
.insert(std::make_pair(I
, std::move(R
)));
125 // Helper - get a range representing a poison value.
126 ConstantRange
Float2IntPass::badRange() {
127 return ConstantRange::getFull(MaxIntegerBW
+ 1);
129 ConstantRange
Float2IntPass::unknownRange() {
130 return ConstantRange::getEmpty(MaxIntegerBW
+ 1);
132 ConstantRange
Float2IntPass::validateRange(ConstantRange R
) {
133 if (R
.getBitWidth() > MaxIntegerBW
+ 1)
138 // The most obvious way to structure the search is a depth-first, eager
139 // search from each root. However, that require direct recursion and so
140 // can only handle small instruction sequences. Instead, we split the search
141 // up into two phases:
142 // - walkBackwards: A breadth-first walk of the use-def graph starting from
143 // the roots. Populate "SeenInsts" with interesting
144 // instructions and poison values if they're obvious and
145 // cheap to compute. Calculate the equivalance set structure
146 // while we're here too.
147 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit
148 // defs before their uses. Calculate the real range info.
150 // Breadth-first walk of the use-def graph; determine the set of nodes
151 // we care about and eagerly determine if some of them are poisonous.
152 void Float2IntPass::walkBackwards() {
153 std::deque
<Instruction
*> Worklist(Roots
.begin(), Roots
.end());
154 while (!Worklist
.empty()) {
155 Instruction
*I
= Worklist
.back();
158 if (SeenInsts
.contains(I
))
162 switch (I
->getOpcode()) {
163 // FIXME: Handle select and phi nodes.
165 // Path terminated uncleanly.
169 case Instruction::UIToFP
:
170 case Instruction::SIToFP
: {
171 // Path terminated cleanly - use the type of the integer input to seed
173 unsigned BW
= I
->getOperand(0)->getType()->getPrimitiveSizeInBits();
174 auto Input
= ConstantRange::getFull(BW
);
175 auto CastOp
= (Instruction::CastOps
)I
->getOpcode();
176 seen(I
, validateRange(Input
.castOp(CastOp
, MaxIntegerBW
+1)));
180 case Instruction::FNeg
:
181 case Instruction::FAdd
:
182 case Instruction::FSub
:
183 case Instruction::FMul
:
184 case Instruction::FPToUI
:
185 case Instruction::FPToSI
:
186 case Instruction::FCmp
:
187 seen(I
, unknownRange());
191 for (Value
*O
: I
->operands()) {
192 if (Instruction
*OI
= dyn_cast
<Instruction
>(O
)) {
193 // Unify def-use chains if they interfere.
194 ECs
.unionSets(I
, OI
);
195 if (SeenInsts
.find(I
)->second
!= badRange())
196 Worklist
.push_back(OI
);
197 } else if (!isa
<ConstantFP
>(O
)) {
198 // Not an instruction or ConstantFP? we can't do anything.
205 // Calculate result range from operand ranges.
206 // Return std::nullopt if the range cannot be calculated yet.
207 std::optional
<ConstantRange
> Float2IntPass::calcRange(Instruction
*I
) {
208 SmallVector
<ConstantRange
, 4> OpRanges
;
209 for (Value
*O
: I
->operands()) {
210 if (Instruction
*OI
= dyn_cast
<Instruction
>(O
)) {
211 auto OpIt
= SeenInsts
.find(OI
);
212 assert(OpIt
!= SeenInsts
.end() && "def not seen before use!");
213 if (OpIt
->second
== unknownRange())
214 return std::nullopt
; // Wait until operand range has been calculated.
215 OpRanges
.push_back(OpIt
->second
);
216 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(O
)) {
217 // Work out if the floating point number can be losslessly represented
219 // APFloat::convertToInteger(&Exact) purports to do what we want, but
220 // the exactness can be too precise. For example, negative zero can
221 // never be exactly converted to an integer.
223 // Instead, we ask APFloat to round itself to an integral value - this
224 // preserves sign-of-zero - then compare the result with the original.
226 const APFloat
&F
= CF
->getValueAPF();
228 // First, weed out obviously incorrect values. Non-finite numbers
229 // can't be represented and neither can negative zero, unless
230 // we're in fast math mode.
232 (F
.isZero() && F
.isNegative() && isa
<FPMathOperator
>(I
) &&
233 !I
->hasNoSignedZeros()))
237 auto Res
= NewF
.roundToIntegral(APFloat::rmNearestTiesToEven
);
238 if (Res
!= APFloat::opOK
|| NewF
!= F
)
241 // OK, it's representable. Now get it.
242 APSInt
Int(MaxIntegerBW
+1, false);
244 CF
->getValueAPF().convertToInteger(Int
,
245 APFloat::rmNearestTiesToEven
,
247 OpRanges
.push_back(ConstantRange(Int
));
249 llvm_unreachable("Should have already marked this as badRange!");
253 switch (I
->getOpcode()) {
254 // FIXME: Handle select and phi nodes.
256 case Instruction::UIToFP
:
257 case Instruction::SIToFP
:
258 llvm_unreachable("Should have been handled in walkForwards!");
260 case Instruction::FNeg
: {
261 assert(OpRanges
.size() == 1 && "FNeg is a unary operator!");
262 unsigned Size
= OpRanges
[0].getBitWidth();
263 auto Zero
= ConstantRange(APInt::getZero(Size
));
264 return Zero
.sub(OpRanges
[0]);
267 case Instruction::FAdd
:
268 case Instruction::FSub
:
269 case Instruction::FMul
: {
270 assert(OpRanges
.size() == 2 && "its a binary operator!");
271 auto BinOp
= (Instruction::BinaryOps
) I
->getOpcode();
272 return OpRanges
[0].binaryOp(BinOp
, OpRanges
[1]);
276 // Root-only instructions - we'll only see these if they're the
277 // first node in a walk.
279 case Instruction::FPToUI
:
280 case Instruction::FPToSI
: {
281 assert(OpRanges
.size() == 1 && "FPTo[US]I is a unary operator!");
282 // Note: We're ignoring the casts output size here as that's what the
284 auto CastOp
= (Instruction::CastOps
)I
->getOpcode();
285 return OpRanges
[0].castOp(CastOp
, MaxIntegerBW
+1);
288 case Instruction::FCmp
:
289 assert(OpRanges
.size() == 2 && "FCmp is a binary operator!");
290 return OpRanges
[0].unionWith(OpRanges
[1]);
294 // Walk forwards down the list of seen instructions, so we visit defs before
296 void Float2IntPass::walkForwards() {
297 std::deque
<Instruction
*> Worklist
;
298 for (const auto &Pair
: SeenInsts
)
299 if (Pair
.second
== unknownRange())
300 Worklist
.push_back(Pair
.first
);
302 while (!Worklist
.empty()) {
303 Instruction
*I
= Worklist
.back();
306 if (std::optional
<ConstantRange
> Range
= calcRange(I
))
309 Worklist
.push_front(I
); // Reprocess later.
313 // If there is a valid transform to be done, do it.
314 bool Float2IntPass::validateAndTransform() {
315 bool MadeChange
= false;
317 // Iterate over every disjoint partition of the def-use graph.
318 for (auto It
= ECs
.begin(), E
= ECs
.end(); It
!= E
; ++It
) {
319 ConstantRange
R(MaxIntegerBW
+ 1, false);
321 Type
*ConvertedToTy
= nullptr;
323 // For every member of the partition, union all the ranges together.
324 for (auto MI
= ECs
.member_begin(It
), ME
= ECs
.member_end();
326 Instruction
*I
= *MI
;
327 auto SeenI
= SeenInsts
.find(I
);
328 if (SeenI
== SeenInsts
.end())
331 R
= R
.unionWith(SeenI
->second
);
332 // We need to ensure I has no users that have not been seen.
333 // If it does, transformation would be illegal.
335 // Don't count the roots, as they terminate the graphs.
336 if (!Roots
.contains(I
)) {
337 // Set the type of the conversion while we're here.
339 ConvertedToTy
= I
->getType();
340 for (User
*U
: I
->users()) {
341 Instruction
*UI
= dyn_cast
<Instruction
>(U
);
342 if (!UI
|| !SeenInsts
.contains(UI
)) {
343 LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U
<< "\n");
353 // If the set was empty, or we failed, or the range is poisonous,
355 if (ECs
.member_begin(It
) == ECs
.member_end() || Fail
||
356 R
.isFullSet() || R
.isSignWrappedSet())
358 assert(ConvertedToTy
&& "Must have set the convertedtoty by this point!");
360 // The number of bits required is the maximum of the upper and
361 // lower limits, plus one so it can be signed.
362 unsigned MinBW
= std::max(R
.getLower().getSignificantBits(),
363 R
.getUpper().getSignificantBits()) +
365 LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW
<< ", R: " << R
<< "\n");
367 // If we've run off the realms of the exactly representable integers,
368 // the floating point result will differ from an integer approximation.
370 // Do we need more bits than are in the mantissa of the type we converted
371 // to? semanticsPrecision returns the number of mantissa bits plus one
373 unsigned MaxRepresentableBits
374 = APFloat::semanticsPrecision(ConvertedToTy
->getFltSemantics()) - 1;
375 if (MinBW
> MaxRepresentableBits
) {
376 LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
381 dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
385 // OK, R is known to be representable. Now pick a type for it.
386 // FIXME: Pick the smallest legal type that will fit.
387 Type
*Ty
= (MinBW
> 32) ? Type::getInt64Ty(*Ctx
) : Type::getInt32Ty(*Ctx
);
389 for (auto MI
= ECs
.member_begin(It
), ME
= ECs
.member_end();
398 Value
*Float2IntPass::convert(Instruction
*I
, Type
*ToTy
) {
399 if (ConvertedInsts
.contains(I
))
400 // Already converted this instruction.
401 return ConvertedInsts
[I
];
403 SmallVector
<Value
*,4> NewOperands
;
404 for (Value
*V
: I
->operands()) {
405 // Don't recurse if we're an instruction that terminates the path.
406 if (I
->getOpcode() == Instruction::UIToFP
||
407 I
->getOpcode() == Instruction::SIToFP
) {
408 NewOperands
.push_back(V
);
409 } else if (Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
410 NewOperands
.push_back(convert(VI
, ToTy
));
411 } else if (ConstantFP
*CF
= dyn_cast
<ConstantFP
>(V
)) {
412 APSInt
Val(ToTy
->getPrimitiveSizeInBits(), /*isUnsigned=*/false);
414 CF
->getValueAPF().convertToInteger(Val
,
415 APFloat::rmNearestTiesToEven
,
417 NewOperands
.push_back(ConstantInt::get(ToTy
, Val
));
419 llvm_unreachable("Unhandled operand type?");
423 // Now create a new instruction.
425 Value
*NewV
= nullptr;
426 switch (I
->getOpcode()) {
427 default: llvm_unreachable("Unhandled instruction!");
429 case Instruction::FPToUI
:
430 NewV
= IRB
.CreateZExtOrTrunc(NewOperands
[0], I
->getType());
433 case Instruction::FPToSI
:
434 NewV
= IRB
.CreateSExtOrTrunc(NewOperands
[0], I
->getType());
437 case Instruction::FCmp
: {
438 CmpInst::Predicate P
= mapFCmpPred(cast
<CmpInst
>(I
)->getPredicate());
439 assert(P
!= CmpInst::BAD_ICMP_PREDICATE
&& "Unhandled predicate!");
440 NewV
= IRB
.CreateICmp(P
, NewOperands
[0], NewOperands
[1], I
->getName());
444 case Instruction::UIToFP
:
445 NewV
= IRB
.CreateZExtOrTrunc(NewOperands
[0], ToTy
);
448 case Instruction::SIToFP
:
449 NewV
= IRB
.CreateSExtOrTrunc(NewOperands
[0], ToTy
);
452 case Instruction::FNeg
:
453 NewV
= IRB
.CreateNeg(NewOperands
[0], I
->getName());
456 case Instruction::FAdd
:
457 case Instruction::FSub
:
458 case Instruction::FMul
:
459 NewV
= IRB
.CreateBinOp(mapBinOpcode(I
->getOpcode()),
460 NewOperands
[0], NewOperands
[1],
465 // If we're a root instruction, RAUW.
467 I
->replaceAllUsesWith(NewV
);
469 ConvertedInsts
[I
] = NewV
;
473 // Perform dead code elimination on the instructions we just modified.
474 void Float2IntPass::cleanup() {
475 for (auto &I
: reverse(ConvertedInsts
))
476 I
.first
->eraseFromParent();
479 bool Float2IntPass::runImpl(Function
&F
, const DominatorTree
&DT
) {
480 LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F
.getName() << "\n");
481 // Clear out all state.
482 ECs
= EquivalenceClasses
<Instruction
*>();
484 ConvertedInsts
.clear();
487 Ctx
= &F
.getParent()->getContext();
494 bool Modified
= validateAndTransform();
500 PreservedAnalyses
Float2IntPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
501 const DominatorTree
&DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
503 return PreservedAnalyses::all();
505 PreservedAnalyses PA
;
506 PA
.preserveSet
<CFGAnalyses
>();