1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Jump Threading pass.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/PostDominators.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/ProfDataUtils.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/BlockFrequency.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SSAUpdater.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
80 using namespace jumpthreading
;
82 #define DEBUG_TYPE "jump-threading"
84 STATISTIC(NumThreads
, "Number of jumps threaded");
85 STATISTIC(NumFolds
, "Number of terminators folded");
86 STATISTIC(NumDupes
, "Number of branch blocks duplicated to eliminate phi");
88 static cl::opt
<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90 cl::desc("Max block size to duplicate for jump threading"),
91 cl::init(6), cl::Hidden
);
93 static cl::opt
<unsigned>
94 ImplicationSearchThreshold(
95 "jump-threading-implication-search-threshold",
96 cl::desc("The number of predecessors to search for a stronger "
97 "condition to use to thread over a weaker condition"),
98 cl::init(3), cl::Hidden
);
100 static cl::opt
<unsigned> PhiDuplicateThreshold(
101 "jump-threading-phi-threshold",
102 cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
105 static cl::opt
<bool> ThreadAcrossLoopHeaders(
106 "jump-threading-across-loop-headers",
107 cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
108 cl::init(false), cl::Hidden
);
110 JumpThreadingPass::JumpThreadingPass(int T
) {
111 DefaultBBDupThreshold
= (T
== -1) ? BBDuplicateThreshold
: unsigned(T
);
114 // Update branch probability information according to conditional
115 // branch probability. This is usually made possible for cloned branches
116 // in inline instances by the context specific profile in the caller.
128 // cond = PN([true, %A], [..., %B]); // PHI node
131 // ... // P(cond == true) = 1%
134 // Here we know that when block A is taken, cond must be true, which means
135 // P(cond == true | A) = 1
137 // Given that P(cond == true) = P(cond == true | A) * P(A) +
138 // P(cond == true | B) * P(B)
140 // P(cond == true ) = P(A) + P(cond == true | B) * P(B)
143 // P(A) is less than P(cond == true), i.e.
144 // P(t == true) <= P(cond == true)
146 // In other words, if we know P(cond == true) is unlikely, we know
147 // that P(t == true) is also unlikely.
149 static void updatePredecessorProfileMetadata(PHINode
*PN
, BasicBlock
*BB
) {
150 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
154 uint64_t TrueWeight
, FalseWeight
;
155 if (!extractBranchWeights(*CondBr
, TrueWeight
, FalseWeight
))
158 if (TrueWeight
+ FalseWeight
== 0)
159 // Zero branch_weights do not give a hint for getting branch probabilities.
160 // Technically it would result in division by zero denominator, which is
161 // TrueWeight + FalseWeight.
164 // Returns the outgoing edge of the dominating predecessor block
165 // that leads to the PhiNode's incoming block:
166 auto GetPredOutEdge
=
167 [](BasicBlock
*IncomingBB
,
168 BasicBlock
*PhiBB
) -> std::pair
<BasicBlock
*, BasicBlock
*> {
169 auto *PredBB
= IncomingBB
;
170 auto *SuccBB
= PhiBB
;
171 SmallPtrSet
<BasicBlock
*, 16> Visited
;
173 BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
174 if (PredBr
&& PredBr
->isConditional())
175 return {PredBB
, SuccBB
};
176 Visited
.insert(PredBB
);
177 auto *SinglePredBB
= PredBB
->getSinglePredecessor();
179 return {nullptr, nullptr};
181 // Stop searching when SinglePredBB has been visited. It means we see
182 // an unreachable loop.
183 if (Visited
.count(SinglePredBB
))
184 return {nullptr, nullptr};
187 PredBB
= SinglePredBB
;
191 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
192 Value
*PhiOpnd
= PN
->getIncomingValue(i
);
193 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(PhiOpnd
);
195 if (!CI
|| !CI
->getType()->isIntegerTy(1))
198 BranchProbability BP
=
199 (CI
->isOne() ? BranchProbability::getBranchProbability(
200 TrueWeight
, TrueWeight
+ FalseWeight
)
201 : BranchProbability::getBranchProbability(
202 FalseWeight
, TrueWeight
+ FalseWeight
));
204 auto PredOutEdge
= GetPredOutEdge(PN
->getIncomingBlock(i
), BB
);
205 if (!PredOutEdge
.first
)
208 BasicBlock
*PredBB
= PredOutEdge
.first
;
209 BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
213 uint64_t PredTrueWeight
, PredFalseWeight
;
214 // FIXME: We currently only set the profile data when it is missing.
215 // With PGO, this can be used to refine even existing profile data with
216 // context information. This needs to be done after more performance
218 if (extractBranchWeights(*PredBr
, PredTrueWeight
, PredFalseWeight
))
221 // We can not infer anything useful when BP >= 50%, because BP is the
222 // upper bound probability value.
223 if (BP
>= BranchProbability(50, 100))
227 if (PredBr
->getSuccessor(0) == PredOutEdge
.second
) {
228 Weights
[0] = BP
.getNumerator();
229 Weights
[1] = BP
.getCompl().getNumerator();
231 Weights
[0] = BP
.getCompl().getNumerator();
232 Weights
[1] = BP
.getNumerator();
234 setBranchWeights(*PredBr
, Weights
);
238 PreservedAnalyses
JumpThreadingPass::run(Function
&F
,
239 FunctionAnalysisManager
&AM
) {
240 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
241 // Jump Threading has no sense for the targets with divergent CF
242 if (TTI
.hasBranchDivergence(&F
))
243 return PreservedAnalyses::all();
244 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
245 auto &LVI
= AM
.getResult
<LazyValueAnalysis
>(F
);
246 auto &AA
= AM
.getResult
<AAManager
>(F
);
247 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
250 runImpl(F
, &AM
, &TLI
, &TTI
, &LVI
, &AA
,
251 std::make_unique
<DomTreeUpdater
>(
252 &DT
, nullptr, DomTreeUpdater::UpdateStrategy::Lazy
),
253 std::nullopt
, std::nullopt
);
256 return PreservedAnalyses::all();
259 getDomTreeUpdater()->flush();
261 #if defined(EXPENSIVE_CHECKS)
262 assert(getDomTreeUpdater()->getDomTree().verify(
263 DominatorTree::VerificationLevel::Full
) &&
264 "DT broken after JumpThreading");
265 assert((!getDomTreeUpdater()->hasPostDomTree() ||
266 getDomTreeUpdater()->getPostDomTree().verify(
267 PostDominatorTree::VerificationLevel::Full
)) &&
268 "PDT broken after JumpThreading");
270 assert(getDomTreeUpdater()->getDomTree().verify(
271 DominatorTree::VerificationLevel::Fast
) &&
272 "DT broken after JumpThreading");
273 assert((!getDomTreeUpdater()->hasPostDomTree() ||
274 getDomTreeUpdater()->getPostDomTree().verify(
275 PostDominatorTree::VerificationLevel::Fast
)) &&
276 "PDT broken after JumpThreading");
279 return getPreservedAnalysis();
282 bool JumpThreadingPass::runImpl(Function
&F_
, FunctionAnalysisManager
*FAM_
,
283 TargetLibraryInfo
*TLI_
,
284 TargetTransformInfo
*TTI_
, LazyValueInfo
*LVI_
,
286 std::unique_ptr
<DomTreeUpdater
> DTU_
,
287 std::optional
<BlockFrequencyInfo
*> BFI_
,
288 std::optional
<BranchProbabilityInfo
*> BPI_
) {
289 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_
.getName() << "'\n");
296 DTU
= std::move(DTU_
);
299 auto *GuardDecl
= F
->getParent()->getFunction(
300 Intrinsic::getName(Intrinsic::experimental_guard
));
301 HasGuards
= GuardDecl
&& !GuardDecl
->use_empty();
303 // Reduce the number of instructions duplicated when optimizing strictly for
305 if (BBDuplicateThreshold
.getNumOccurrences())
306 BBDupThreshold
= BBDuplicateThreshold
;
307 else if (F
->hasFnAttribute(Attribute::MinSize
))
310 BBDupThreshold
= DefaultBBDupThreshold
;
312 // JumpThreading must not processes blocks unreachable from entry. It's a
313 // waste of compute time and can potentially lead to hangs.
314 SmallPtrSet
<BasicBlock
*, 16> Unreachable
;
315 assert(DTU
&& "DTU isn't passed into JumpThreading before using it.");
316 assert(DTU
->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
317 DominatorTree
&DT
= DTU
->getDomTree();
319 if (!DT
.isReachableFromEntry(&BB
))
320 Unreachable
.insert(&BB
);
322 if (!ThreadAcrossLoopHeaders
)
325 bool EverChanged
= false;
329 for (auto &BB
: *F
) {
330 if (Unreachable
.count(&BB
))
332 while (processBlock(&BB
)) // Thread all of the branches we can over BB.
333 Changed
= ChangedSinceLastAnalysisUpdate
= true;
335 // Jump threading may have introduced redundant debug values into BB
336 // which should be removed.
338 RemoveRedundantDbgInstrs(&BB
);
340 // Stop processing BB if it's the entry or is now deleted. The following
341 // routines attempt to eliminate BB and locating a suitable replacement
342 // for the entry is non-trivial.
343 if (&BB
== &F
->getEntryBlock() || DTU
->isBBPendingDeletion(&BB
))
346 if (pred_empty(&BB
)) {
347 // When processBlock makes BB unreachable it doesn't bother to fix up
348 // the instructions in it. We must remove BB to prevent invalid IR.
349 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB
.getName()
350 << "' with terminator: " << *BB
.getTerminator()
352 LoopHeaders
.erase(&BB
);
353 LVI
->eraseBlock(&BB
);
354 DeleteDeadBlock(&BB
, DTU
.get());
355 Changed
= ChangedSinceLastAnalysisUpdate
= true;
359 // processBlock doesn't thread BBs with unconditional TIs. However, if BB
360 // is "almost empty", we attempt to merge BB with its sole successor.
361 auto *BI
= dyn_cast
<BranchInst
>(BB
.getTerminator());
362 if (BI
&& BI
->isUnconditional()) {
363 BasicBlock
*Succ
= BI
->getSuccessor(0);
365 // The terminator must be the only non-phi instruction in BB.
366 BB
.getFirstNonPHIOrDbg(true)->isTerminator() &&
367 // Don't alter Loop headers and latches to ensure another pass can
368 // detect and transform nested loops later.
369 !LoopHeaders
.count(&BB
) && !LoopHeaders
.count(Succ
) &&
370 TryToSimplifyUncondBranchFromEmptyBlock(&BB
, DTU
.get())) {
371 RemoveRedundantDbgInstrs(Succ
);
372 // BB is valid for cleanup here because we passed in DTU. F remains
373 // BB's parent until a DTU->getDomTree() event.
374 LVI
->eraseBlock(&BB
);
375 Changed
= ChangedSinceLastAnalysisUpdate
= true;
379 EverChanged
|= Changed
;
386 // Replace uses of Cond with ToVal when safe to do so. If all uses are
387 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
388 // because we may incorrectly replace uses when guards/assumes are uses of
389 // of `Cond` and we used the guards/assume to reason about the `Cond` value
390 // at the end of block. RAUW unconditionally replaces all uses
391 // including the guards/assumes themselves and the uses before the
393 static bool replaceFoldableUses(Instruction
*Cond
, Value
*ToVal
,
394 BasicBlock
*KnownAtEndOfBB
) {
395 bool Changed
= false;
396 assert(Cond
->getType() == ToVal
->getType());
397 // We can unconditionally replace all uses in non-local blocks (i.e. uses
398 // strictly dominated by BB), since LVI information is true from the
400 if (Cond
->getParent() == KnownAtEndOfBB
)
401 Changed
|= replaceNonLocalUsesWith(Cond
, ToVal
);
402 for (Instruction
&I
: reverse(*KnownAtEndOfBB
)) {
403 // Replace any debug-info record users of Cond with ToVal.
404 for (DPValue
&DPV
: I
.getDbgValueRange())
405 DPV
.replaceVariableLocationOp(Cond
, ToVal
, true);
407 // Reached the Cond whose uses we are trying to replace, so there are no
411 // We only replace uses in instructions that are guaranteed to reach the end
412 // of BB, where we know Cond is ToVal.
413 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
415 Changed
|= I
.replaceUsesOfWith(Cond
, ToVal
);
417 if (Cond
->use_empty() && !Cond
->mayHaveSideEffects()) {
418 Cond
->eraseFromParent();
424 /// Return the cost of duplicating a piece of this block from first non-phi
425 /// and before StopAt instruction to thread across it. Stop scanning the block
426 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
427 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo
*TTI
,
430 unsigned Threshold
) {
431 assert(StopAt
->getParent() == BB
&& "Not an instruction from proper BB?");
433 // Do not duplicate the BB if it has a lot of PHI nodes.
434 // If a threadable chain is too long then the number of PHI nodes can add up,
435 // leading to a substantial increase in compile time when rewriting the SSA.
436 unsigned PhiCount
= 0;
437 Instruction
*FirstNonPHI
= nullptr;
438 for (Instruction
&I
: *BB
) {
439 if (!isa
<PHINode
>(&I
)) {
443 if (++PhiCount
> PhiDuplicateThreshold
)
447 /// Ignore PHI nodes, these will be flattened when duplication happens.
448 BasicBlock::const_iterator
I(FirstNonPHI
);
450 // FIXME: THREADING will delete values that are just used to compute the
451 // branch, so they shouldn't count against the duplication cost.
454 if (BB
->getTerminator() == StopAt
) {
455 // Threading through a switch statement is particularly profitable. If this
456 // block ends in a switch, decrease its cost to make it more likely to
458 if (isa
<SwitchInst
>(StopAt
))
461 // The same holds for indirect branches, but slightly more so.
462 if (isa
<IndirectBrInst
>(StopAt
))
466 // Bump the threshold up so the early exit from the loop doesn't skip the
467 // terminator-based Size adjustment at the end.
470 // Sum up the cost of each instruction until we get to the terminator. Don't
471 // include the terminator because the copy won't include it.
473 for (; &*I
!= StopAt
; ++I
) {
475 // Stop scanning the block if we've reached the threshold.
476 if (Size
> Threshold
)
479 // Bail out if this instruction gives back a token type, it is not possible
480 // to duplicate it if it is used outside this BB.
481 if (I
->getType()->isTokenTy() && I
->isUsedOutsideOfBlock(BB
))
484 // Blocks with NoDuplicate are modelled as having infinite cost, so they
485 // are never duplicated.
486 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
487 if (CI
->cannotDuplicate() || CI
->isConvergent())
490 if (TTI
->getInstructionCost(&*I
, TargetTransformInfo::TCK_SizeAndLatency
) ==
491 TargetTransformInfo::TCC_Free
)
494 // All other instructions count for at least one unit.
497 // Calls are more expensive. If they are non-intrinsic calls, we model them
498 // as having cost of 4. If they are a non-vector intrinsic, we model them
499 // as having cost of 2 total, and if they are a vector intrinsic, we model
500 // them as having cost 1.
501 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
502 if (!isa
<IntrinsicInst
>(CI
))
504 else if (!CI
->getType()->isVectorTy())
509 return Size
> Bonus
? Size
- Bonus
: 0;
512 /// findLoopHeaders - We do not want jump threading to turn proper loop
513 /// structures into irreducible loops. Doing this breaks up the loop nesting
514 /// hierarchy and pessimizes later transformations. To prevent this from
515 /// happening, we first have to find the loop headers. Here we approximate this
516 /// by finding targets of backedges in the CFG.
518 /// Note that there definitely are cases when we want to allow threading of
519 /// edges across a loop header. For example, threading a jump from outside the
520 /// loop (the preheader) to an exit block of the loop is definitely profitable.
521 /// It is also almost always profitable to thread backedges from within the loop
522 /// to exit blocks, and is often profitable to thread backedges to other blocks
523 /// within the loop (forming a nested loop). This simple analysis is not rich
524 /// enough to track all of these properties and keep it up-to-date as the CFG
525 /// mutates, so we don't allow any of these transformations.
526 void JumpThreadingPass::findLoopHeaders(Function
&F
) {
527 SmallVector
<std::pair
<const BasicBlock
*,const BasicBlock
*>, 32> Edges
;
528 FindFunctionBackedges(F
, Edges
);
530 for (const auto &Edge
: Edges
)
531 LoopHeaders
.insert(Edge
.second
);
534 /// getKnownConstant - Helper method to determine if we can thread over a
535 /// terminator with the given value as its condition, and if so what value to
536 /// use for that. What kind of value this is depends on whether we want an
537 /// integer or a block address, but an undef is always accepted.
538 /// Returns null if Val is null or not an appropriate constant.
539 static Constant
*getKnownConstant(Value
*Val
, ConstantPreference Preference
) {
543 // Undef is "known" enough.
544 if (UndefValue
*U
= dyn_cast
<UndefValue
>(Val
))
547 if (Preference
== WantBlockAddress
)
548 return dyn_cast
<BlockAddress
>(Val
->stripPointerCasts());
550 return dyn_cast
<ConstantInt
>(Val
);
553 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
554 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
555 /// in any of our predecessors. If so, return the known list of value and pred
556 /// BB in the result vector.
558 /// This returns true if there were any known values.
559 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
560 Value
*V
, BasicBlock
*BB
, PredValueInfo
&Result
,
561 ConstantPreference Preference
, DenseSet
<Value
*> &RecursionSet
,
563 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
565 // This method walks up use-def chains recursively. Because of this, we could
566 // get into an infinite loop going around loops in the use-def chain. To
567 // prevent this, keep track of what (value, block) pairs we've already visited
568 // and terminate the search if we loop back to them
569 if (!RecursionSet
.insert(V
).second
)
572 // If V is a constant, then it is known in all predecessors.
573 if (Constant
*KC
= getKnownConstant(V
, Preference
)) {
574 for (BasicBlock
*Pred
: predecessors(BB
))
575 Result
.emplace_back(KC
, Pred
);
577 return !Result
.empty();
580 // If V is a non-instruction value, or an instruction in a different block,
581 // then it can't be derived from a PHI.
582 Instruction
*I
= dyn_cast
<Instruction
>(V
);
583 if (!I
|| I
->getParent() != BB
) {
585 // Okay, if this is a live-in value, see if it has a known value at the any
586 // edge from our predecessors.
587 for (BasicBlock
*P
: predecessors(BB
)) {
588 using namespace PatternMatch
;
589 // If the value is known by LazyValueInfo to be a constant in a
590 // predecessor, use that information to try to thread this block.
591 Constant
*PredCst
= LVI
->getConstantOnEdge(V
, P
, BB
, CxtI
);
592 // If I is a non-local compare-with-constant instruction, use more-rich
593 // 'getPredicateOnEdge' method. This would be able to handle value
594 // inequalities better, for example if the compare is "X < 4" and "X < 3"
595 // is known true but "X < 4" itself is not available.
596 CmpInst::Predicate Pred
;
599 if (!PredCst
&& match(V
, m_Cmp(Pred
, m_Value(Val
), m_Constant(Cst
)))) {
600 auto Res
= LVI
->getPredicateOnEdge(Pred
, Val
, Cst
, P
, BB
, CxtI
);
601 if (Res
!= LazyValueInfo::Unknown
)
602 PredCst
= ConstantInt::getBool(V
->getContext(), Res
);
604 if (Constant
*KC
= getKnownConstant(PredCst
, Preference
))
605 Result
.emplace_back(KC
, P
);
608 return !Result
.empty();
611 /// If I is a PHI node, then we know the incoming values for any constants.
612 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
613 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
614 Value
*InVal
= PN
->getIncomingValue(i
);
615 if (Constant
*KC
= getKnownConstant(InVal
, Preference
)) {
616 Result
.emplace_back(KC
, PN
->getIncomingBlock(i
));
618 Constant
*CI
= LVI
->getConstantOnEdge(InVal
,
619 PN
->getIncomingBlock(i
),
621 if (Constant
*KC
= getKnownConstant(CI
, Preference
))
622 Result
.emplace_back(KC
, PN
->getIncomingBlock(i
));
626 return !Result
.empty();
629 // Handle Cast instructions.
630 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
631 Value
*Source
= CI
->getOperand(0);
632 PredValueInfoTy Vals
;
633 computeValueKnownInPredecessorsImpl(Source
, BB
, Vals
, Preference
,
638 // Convert the known values.
639 for (auto &Val
: Vals
)
640 if (Constant
*Folded
= ConstantFoldCastOperand(CI
->getOpcode(), Val
.first
,
642 Result
.emplace_back(Folded
, Val
.second
);
644 return !Result
.empty();
647 if (FreezeInst
*FI
= dyn_cast
<FreezeInst
>(I
)) {
648 Value
*Source
= FI
->getOperand(0);
649 computeValueKnownInPredecessorsImpl(Source
, BB
, Result
, Preference
,
652 erase_if(Result
, [](auto &Pair
) {
653 return !isGuaranteedNotToBeUndefOrPoison(Pair
.first
);
656 return !Result
.empty();
659 // Handle some boolean conditions.
660 if (I
->getType()->getPrimitiveSizeInBits() == 1) {
661 using namespace PatternMatch
;
662 if (Preference
!= WantInteger
)
665 // X & false -> false
667 if (match(I
, m_LogicalOr(m_Value(Op0
), m_Value(Op1
))) ||
668 match(I
, m_LogicalAnd(m_Value(Op0
), m_Value(Op1
)))) {
669 PredValueInfoTy LHSVals
, RHSVals
;
671 computeValueKnownInPredecessorsImpl(Op0
, BB
, LHSVals
, WantInteger
,
673 computeValueKnownInPredecessorsImpl(Op1
, BB
, RHSVals
, WantInteger
,
676 if (LHSVals
.empty() && RHSVals
.empty())
679 ConstantInt
*InterestingVal
;
680 if (match(I
, m_LogicalOr()))
681 InterestingVal
= ConstantInt::getTrue(I
->getContext());
683 InterestingVal
= ConstantInt::getFalse(I
->getContext());
685 SmallPtrSet
<BasicBlock
*, 4> LHSKnownBBs
;
687 // Scan for the sentinel. If we find an undef, force it to the
688 // interesting value: x|undef -> true and x&undef -> false.
689 for (const auto &LHSVal
: LHSVals
)
690 if (LHSVal
.first
== InterestingVal
|| isa
<UndefValue
>(LHSVal
.first
)) {
691 Result
.emplace_back(InterestingVal
, LHSVal
.second
);
692 LHSKnownBBs
.insert(LHSVal
.second
);
694 for (const auto &RHSVal
: RHSVals
)
695 if (RHSVal
.first
== InterestingVal
|| isa
<UndefValue
>(RHSVal
.first
)) {
696 // If we already inferred a value for this block on the LHS, don't
698 if (!LHSKnownBBs
.count(RHSVal
.second
))
699 Result
.emplace_back(InterestingVal
, RHSVal
.second
);
702 return !Result
.empty();
705 // Handle the NOT form of XOR.
706 if (I
->getOpcode() == Instruction::Xor
&&
707 isa
<ConstantInt
>(I
->getOperand(1)) &&
708 cast
<ConstantInt
>(I
->getOperand(1))->isOne()) {
709 computeValueKnownInPredecessorsImpl(I
->getOperand(0), BB
, Result
,
710 WantInteger
, RecursionSet
, CxtI
);
714 // Invert the known values.
715 for (auto &R
: Result
)
716 R
.first
= ConstantExpr::getNot(R
.first
);
721 // Try to simplify some other binary operator values.
722 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
723 if (Preference
!= WantInteger
)
725 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
726 PredValueInfoTy LHSVals
;
727 computeValueKnownInPredecessorsImpl(BO
->getOperand(0), BB
, LHSVals
,
728 WantInteger
, RecursionSet
, CxtI
);
730 // Try to use constant folding to simplify the binary operator.
731 for (const auto &LHSVal
: LHSVals
) {
732 Constant
*V
= LHSVal
.first
;
734 ConstantFoldBinaryOpOperands(BO
->getOpcode(), V
, CI
, DL
);
736 if (Constant
*KC
= getKnownConstant(Folded
, WantInteger
))
737 Result
.emplace_back(KC
, LHSVal
.second
);
741 return !Result
.empty();
744 // Handle compare with phi operand, where the PHI is defined in this block.
745 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(I
)) {
746 if (Preference
!= WantInteger
)
748 Type
*CmpType
= Cmp
->getType();
749 Value
*CmpLHS
= Cmp
->getOperand(0);
750 Value
*CmpRHS
= Cmp
->getOperand(1);
751 CmpInst::Predicate Pred
= Cmp
->getPredicate();
753 PHINode
*PN
= dyn_cast
<PHINode
>(CmpLHS
);
755 PN
= dyn_cast
<PHINode
>(CmpRHS
);
756 // Do not perform phi translation across a loop header phi, because this
757 // may result in comparison of values from two different loop iterations.
758 // FIXME: This check is broken if LoopHeaders is not populated.
759 if (PN
&& PN
->getParent() == BB
&& !LoopHeaders
.contains(BB
)) {
760 const DataLayout
&DL
= PN
->getModule()->getDataLayout();
761 // We can do this simplification if any comparisons fold to true or false.
763 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
764 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
767 LHS
= PN
->getIncomingValue(i
);
768 RHS
= CmpRHS
->DoPHITranslation(BB
, PredBB
);
770 LHS
= CmpLHS
->DoPHITranslation(BB
, PredBB
);
771 RHS
= PN
->getIncomingValue(i
);
773 Value
*Res
= simplifyCmpInst(Pred
, LHS
, RHS
, {DL
});
775 if (!isa
<Constant
>(RHS
))
778 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
779 auto LHSInst
= dyn_cast
<Instruction
>(LHS
);
780 if (LHSInst
&& LHSInst
->getParent() == BB
)
783 LazyValueInfo::Tristate
784 ResT
= LVI
->getPredicateOnEdge(Pred
, LHS
,
785 cast
<Constant
>(RHS
), PredBB
, BB
,
787 if (ResT
== LazyValueInfo::Unknown
)
789 Res
= ConstantInt::get(Type::getInt1Ty(LHS
->getContext()), ResT
);
792 if (Constant
*KC
= getKnownConstant(Res
, WantInteger
))
793 Result
.emplace_back(KC
, PredBB
);
796 return !Result
.empty();
799 // If comparing a live-in value against a constant, see if we know the
800 // live-in value on any predecessors.
801 if (isa
<Constant
>(CmpRHS
) && !CmpType
->isVectorTy()) {
802 Constant
*CmpConst
= cast
<Constant
>(CmpRHS
);
804 if (!isa
<Instruction
>(CmpLHS
) ||
805 cast
<Instruction
>(CmpLHS
)->getParent() != BB
) {
806 for (BasicBlock
*P
: predecessors(BB
)) {
807 // If the value is known by LazyValueInfo to be a constant in a
808 // predecessor, use that information to try to thread this block.
809 LazyValueInfo::Tristate Res
=
810 LVI
->getPredicateOnEdge(Pred
, CmpLHS
,
811 CmpConst
, P
, BB
, CxtI
? CxtI
: Cmp
);
812 if (Res
== LazyValueInfo::Unknown
)
815 Constant
*ResC
= ConstantInt::get(CmpType
, Res
);
816 Result
.emplace_back(ResC
, P
);
819 return !Result
.empty();
822 // InstCombine can fold some forms of constant range checks into
823 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
826 using namespace PatternMatch
;
829 ConstantInt
*AddConst
;
830 if (isa
<ConstantInt
>(CmpConst
) &&
831 match(CmpLHS
, m_Add(m_Value(AddLHS
), m_ConstantInt(AddConst
)))) {
832 if (!isa
<Instruction
>(AddLHS
) ||
833 cast
<Instruction
>(AddLHS
)->getParent() != BB
) {
834 for (BasicBlock
*P
: predecessors(BB
)) {
835 // If the value is known by LazyValueInfo to be a ConstantRange in
836 // a predecessor, use that information to try to thread this
838 ConstantRange CR
= LVI
->getConstantRangeOnEdge(
839 AddLHS
, P
, BB
, CxtI
? CxtI
: cast
<Instruction
>(CmpLHS
));
840 // Propagate the range through the addition.
841 CR
= CR
.add(AddConst
->getValue());
843 // Get the range where the compare returns true.
844 ConstantRange CmpRange
= ConstantRange::makeExactICmpRegion(
845 Pred
, cast
<ConstantInt
>(CmpConst
)->getValue());
848 if (CmpRange
.contains(CR
))
849 ResC
= ConstantInt::getTrue(CmpType
);
850 else if (CmpRange
.inverse().contains(CR
))
851 ResC
= ConstantInt::getFalse(CmpType
);
855 Result
.emplace_back(ResC
, P
);
858 return !Result
.empty();
863 // Try to find a constant value for the LHS of a comparison,
864 // and evaluate it statically if we can.
865 PredValueInfoTy LHSVals
;
866 computeValueKnownInPredecessorsImpl(I
->getOperand(0), BB
, LHSVals
,
867 WantInteger
, RecursionSet
, CxtI
);
869 for (const auto &LHSVal
: LHSVals
) {
870 Constant
*V
= LHSVal
.first
;
871 Constant
*Folded
= ConstantExpr::getCompare(Pred
, V
, CmpConst
);
872 if (Constant
*KC
= getKnownConstant(Folded
, WantInteger
))
873 Result
.emplace_back(KC
, LHSVal
.second
);
876 return !Result
.empty();
880 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
)) {
881 // Handle select instructions where at least one operand is a known constant
882 // and we can figure out the condition value for any predecessor block.
883 Constant
*TrueVal
= getKnownConstant(SI
->getTrueValue(), Preference
);
884 Constant
*FalseVal
= getKnownConstant(SI
->getFalseValue(), Preference
);
885 PredValueInfoTy Conds
;
886 if ((TrueVal
|| FalseVal
) &&
887 computeValueKnownInPredecessorsImpl(SI
->getCondition(), BB
, Conds
,
888 WantInteger
, RecursionSet
, CxtI
)) {
889 for (auto &C
: Conds
) {
890 Constant
*Cond
= C
.first
;
892 // Figure out what value to use for the condition.
894 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Cond
)) {
896 KnownCond
= CI
->isOne();
898 assert(isa
<UndefValue
>(Cond
) && "Unexpected condition value");
899 // Either operand will do, so be sure to pick the one that's a known
901 // FIXME: Do this more cleverly if both values are known constants?
902 KnownCond
= (TrueVal
!= nullptr);
905 // See if the select has a known constant value for this predecessor.
906 if (Constant
*Val
= KnownCond
? TrueVal
: FalseVal
)
907 Result
.emplace_back(Val
, C
.second
);
910 return !Result
.empty();
914 // If all else fails, see if LVI can figure out a constant value for us.
915 assert(CxtI
->getParent() == BB
&& "CxtI should be in BB");
916 Constant
*CI
= LVI
->getConstant(V
, CxtI
);
917 if (Constant
*KC
= getKnownConstant(CI
, Preference
)) {
918 for (BasicBlock
*Pred
: predecessors(BB
))
919 Result
.emplace_back(KC
, Pred
);
922 return !Result
.empty();
925 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
926 /// in an undefined jump, decide which block is best to revector to.
928 /// Since we can pick an arbitrary destination, we pick the successor with the
929 /// fewest predecessors. This should reduce the in-degree of the others.
930 static unsigned getBestDestForJumpOnUndef(BasicBlock
*BB
) {
931 Instruction
*BBTerm
= BB
->getTerminator();
932 unsigned MinSucc
= 0;
933 BasicBlock
*TestBB
= BBTerm
->getSuccessor(MinSucc
);
934 // Compute the successor with the minimum number of predecessors.
935 unsigned MinNumPreds
= pred_size(TestBB
);
936 for (unsigned i
= 1, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
937 TestBB
= BBTerm
->getSuccessor(i
);
938 unsigned NumPreds
= pred_size(TestBB
);
939 if (NumPreds
< MinNumPreds
) {
941 MinNumPreds
= NumPreds
;
948 static bool hasAddressTakenAndUsed(BasicBlock
*BB
) {
949 if (!BB
->hasAddressTaken()) return false;
951 // If the block has its address taken, it may be a tree of dead constants
952 // hanging off of it. These shouldn't keep the block alive.
953 BlockAddress
*BA
= BlockAddress::get(BB
);
954 BA
->removeDeadConstantUsers();
955 return !BA
->use_empty();
958 /// processBlock - If there are any predecessors whose control can be threaded
959 /// through to a successor, transform them now.
960 bool JumpThreadingPass::processBlock(BasicBlock
*BB
) {
961 // If the block is trivially dead, just return and let the caller nuke it.
962 // This simplifies other transformations.
963 if (DTU
->isBBPendingDeletion(BB
) ||
964 (pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()))
967 // If this block has a single predecessor, and if that pred has a single
968 // successor, merge the blocks. This encourages recursive jump threading
969 // because now the condition in this block can be threaded through
970 // predecessors of our predecessor block.
971 if (maybeMergeBasicBlockIntoOnlyPred(BB
))
974 if (tryToUnfoldSelectInCurrBB(BB
))
977 // Look if we can propagate guards to predecessors.
978 if (HasGuards
&& processGuards(BB
))
981 // What kind of constant we're looking for.
982 ConstantPreference Preference
= WantInteger
;
984 // Look to see if the terminator is a conditional branch, switch or indirect
985 // branch, if not we can't thread it.
987 Instruction
*Terminator
= BB
->getTerminator();
988 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Terminator
)) {
989 // Can't thread an unconditional jump.
990 if (BI
->isUnconditional()) return false;
991 Condition
= BI
->getCondition();
992 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(Terminator
)) {
993 Condition
= SI
->getCondition();
994 } else if (IndirectBrInst
*IB
= dyn_cast
<IndirectBrInst
>(Terminator
)) {
995 // Can't thread indirect branch with no successors.
996 if (IB
->getNumSuccessors() == 0) return false;
997 Condition
= IB
->getAddress()->stripPointerCasts();
998 Preference
= WantBlockAddress
;
1000 return false; // Must be an invoke or callbr.
1003 // Keep track if we constant folded the condition in this invocation.
1004 bool ConstantFolded
= false;
1006 // Run constant folding to see if we can reduce the condition to a simple
1008 if (Instruction
*I
= dyn_cast
<Instruction
>(Condition
)) {
1010 ConstantFoldInstruction(I
, BB
->getModule()->getDataLayout(), TLI
);
1012 I
->replaceAllUsesWith(SimpleVal
);
1013 if (isInstructionTriviallyDead(I
, TLI
))
1014 I
->eraseFromParent();
1015 Condition
= SimpleVal
;
1016 ConstantFolded
= true;
1020 // If the terminator is branching on an undef or freeze undef, we can pick any
1021 // of the successors to branch to. Let getBestDestForJumpOnUndef decide.
1022 auto *FI
= dyn_cast
<FreezeInst
>(Condition
);
1023 if (isa
<UndefValue
>(Condition
) ||
1024 (FI
&& isa
<UndefValue
>(FI
->getOperand(0)) && FI
->hasOneUse())) {
1025 unsigned BestSucc
= getBestDestForJumpOnUndef(BB
);
1026 std::vector
<DominatorTree::UpdateType
> Updates
;
1028 // Fold the branch/switch.
1029 Instruction
*BBTerm
= BB
->getTerminator();
1030 Updates
.reserve(BBTerm
->getNumSuccessors());
1031 for (unsigned i
= 0, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
1032 if (i
== BestSucc
) continue;
1033 BasicBlock
*Succ
= BBTerm
->getSuccessor(i
);
1034 Succ
->removePredecessor(BB
, true);
1035 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
1038 LLVM_DEBUG(dbgs() << " In block '" << BB
->getName()
1039 << "' folding undef terminator: " << *BBTerm
<< '\n');
1040 BranchInst::Create(BBTerm
->getSuccessor(BestSucc
), BBTerm
);
1042 BBTerm
->eraseFromParent();
1043 DTU
->applyUpdatesPermissive(Updates
);
1045 FI
->eraseFromParent();
1049 // If the terminator of this block is branching on a constant, simplify the
1050 // terminator to an unconditional branch. This can occur due to threading in
1052 if (getKnownConstant(Condition
, Preference
)) {
1053 LLVM_DEBUG(dbgs() << " In block '" << BB
->getName()
1054 << "' folding terminator: " << *BB
->getTerminator()
1057 ConstantFoldTerminator(BB
, true, nullptr, DTU
.get());
1058 if (auto *BPI
= getBPI())
1059 BPI
->eraseBlock(BB
);
1063 Instruction
*CondInst
= dyn_cast
<Instruction
>(Condition
);
1065 // All the rest of our checks depend on the condition being an instruction.
1067 // FIXME: Unify this with code below.
1068 if (processThreadableEdges(Condition
, BB
, Preference
, Terminator
))
1070 return ConstantFolded
;
1073 // Some of the following optimization can safely work on the unfrozen cond.
1074 Value
*CondWithoutFreeze
= CondInst
;
1075 if (auto *FI
= dyn_cast
<FreezeInst
>(CondInst
))
1076 CondWithoutFreeze
= FI
->getOperand(0);
1078 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(CondWithoutFreeze
)) {
1079 // If we're branching on a conditional, LVI might be able to determine
1080 // it's value at the branch instruction. We only handle comparisons
1081 // against a constant at this time.
1082 if (Constant
*CondConst
= dyn_cast
<Constant
>(CondCmp
->getOperand(1))) {
1083 LazyValueInfo::Tristate Ret
=
1084 LVI
->getPredicateAt(CondCmp
->getPredicate(), CondCmp
->getOperand(0),
1085 CondConst
, BB
->getTerminator(),
1086 /*UseBlockValue=*/false);
1087 if (Ret
!= LazyValueInfo::Unknown
) {
1088 // We can safely replace *some* uses of the CondInst if it has
1089 // exactly one value as returned by LVI. RAUW is incorrect in the
1090 // presence of guards and assumes, that have the `Cond` as the use. This
1091 // is because we use the guards/assume to reason about the `Cond` value
1092 // at the end of block, but RAUW unconditionally replaces all uses
1093 // including the guards/assumes themselves and the uses before the
1095 auto *CI
= Ret
== LazyValueInfo::True
?
1096 ConstantInt::getTrue(CondCmp
->getType()) :
1097 ConstantInt::getFalse(CondCmp
->getType());
1098 if (replaceFoldableUses(CondCmp
, CI
, BB
))
1102 // We did not manage to simplify this branch, try to see whether
1103 // CondCmp depends on a known phi-select pattern.
1104 if (tryToUnfoldSelect(CondCmp
, BB
))
1109 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator()))
1110 if (tryToUnfoldSelect(SI
, BB
))
1113 // Check for some cases that are worth simplifying. Right now we want to look
1114 // for loads that are used by a switch or by the condition for the branch. If
1115 // we see one, check to see if it's partially redundant. If so, insert a PHI
1116 // which can then be used to thread the values.
1117 Value
*SimplifyValue
= CondWithoutFreeze
;
1119 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(SimplifyValue
))
1120 if (isa
<Constant
>(CondCmp
->getOperand(1)))
1121 SimplifyValue
= CondCmp
->getOperand(0);
1123 // TODO: There are other places where load PRE would be profitable, such as
1124 // more complex comparisons.
1125 if (LoadInst
*LoadI
= dyn_cast
<LoadInst
>(SimplifyValue
))
1126 if (simplifyPartiallyRedundantLoad(LoadI
))
1129 // Before threading, try to propagate profile data backwards:
1130 if (PHINode
*PN
= dyn_cast
<PHINode
>(CondInst
))
1131 if (PN
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
1132 updatePredecessorProfileMetadata(PN
, BB
);
1134 // Handle a variety of cases where we are branching on something derived from
1135 // a PHI node in the current block. If we can prove that any predecessors
1136 // compute a predictable value based on a PHI node, thread those predecessors.
1137 if (processThreadableEdges(CondInst
, BB
, Preference
, Terminator
))
1140 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1141 // the current block, see if we can simplify.
1142 PHINode
*PN
= dyn_cast
<PHINode
>(CondWithoutFreeze
);
1143 if (PN
&& PN
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
1144 return processBranchOnPHI(PN
);
1146 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1147 if (CondInst
->getOpcode() == Instruction::Xor
&&
1148 CondInst
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
1149 return processBranchOnXOR(cast
<BinaryOperator
>(CondInst
));
1151 // Search for a stronger dominating condition that can be used to simplify a
1152 // conditional branch leaving BB.
1153 if (processImpliedCondition(BB
))
1159 bool JumpThreadingPass::processImpliedCondition(BasicBlock
*BB
) {
1160 auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
1161 if (!BI
|| !BI
->isConditional())
1164 Value
*Cond
= BI
->getCondition();
1165 // Assuming that predecessor's branch was taken, if pred's branch condition
1166 // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1167 // freeze(Cond) is either true or a nondeterministic value.
1168 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1169 // without affecting other instructions.
1170 auto *FICond
= dyn_cast
<FreezeInst
>(Cond
);
1171 if (FICond
&& FICond
->hasOneUse())
1172 Cond
= FICond
->getOperand(0);
1176 BasicBlock
*CurrentBB
= BB
;
1177 BasicBlock
*CurrentPred
= BB
->getSinglePredecessor();
1180 auto &DL
= BB
->getModule()->getDataLayout();
1182 while (CurrentPred
&& Iter
++ < ImplicationSearchThreshold
) {
1183 auto *PBI
= dyn_cast
<BranchInst
>(CurrentPred
->getTerminator());
1184 if (!PBI
|| !PBI
->isConditional())
1186 if (PBI
->getSuccessor(0) != CurrentBB
&& PBI
->getSuccessor(1) != CurrentBB
)
1189 bool CondIsTrue
= PBI
->getSuccessor(0) == CurrentBB
;
1190 std::optional
<bool> Implication
=
1191 isImpliedCondition(PBI
->getCondition(), Cond
, DL
, CondIsTrue
);
1193 // If the branch condition of BB (which is Cond) and CurrentPred are
1194 // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1195 if (!Implication
&& FICond
&& isa
<FreezeInst
>(PBI
->getCondition())) {
1196 if (cast
<FreezeInst
>(PBI
->getCondition())->getOperand(0) ==
1197 FICond
->getOperand(0))
1198 Implication
= CondIsTrue
;
1202 BasicBlock
*KeepSucc
= BI
->getSuccessor(*Implication
? 0 : 1);
1203 BasicBlock
*RemoveSucc
= BI
->getSuccessor(*Implication
? 1 : 0);
1204 RemoveSucc
->removePredecessor(BB
);
1205 BranchInst
*UncondBI
= BranchInst::Create(KeepSucc
, BI
);
1206 UncondBI
->setDebugLoc(BI
->getDebugLoc());
1208 BI
->eraseFromParent();
1210 FICond
->eraseFromParent();
1212 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, BB
, RemoveSucc
}});
1213 if (auto *BPI
= getBPI())
1214 BPI
->eraseBlock(BB
);
1217 CurrentBB
= CurrentPred
;
1218 CurrentPred
= CurrentBB
->getSinglePredecessor();
1224 /// Return true if Op is an instruction defined in the given block.
1225 static bool isOpDefinedInBlock(Value
*Op
, BasicBlock
*BB
) {
1226 if (Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
))
1227 if (OpInst
->getParent() == BB
)
1232 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1233 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1234 /// This is an important optimization that encourages jump threading, and needs
1235 /// to be run interlaced with other jump threading tasks.
1236 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst
*LoadI
) {
1237 // Don't hack volatile and ordered loads.
1238 if (!LoadI
->isUnordered()) return false;
1240 // If the load is defined in a block with exactly one predecessor, it can't be
1241 // partially redundant.
1242 BasicBlock
*LoadBB
= LoadI
->getParent();
1243 if (LoadBB
->getSinglePredecessor())
1246 // If the load is defined in an EH pad, it can't be partially redundant,
1247 // because the edges between the invoke and the EH pad cannot have other
1248 // instructions between them.
1249 if (LoadBB
->isEHPad())
1252 Value
*LoadedPtr
= LoadI
->getOperand(0);
1254 // If the loaded operand is defined in the LoadBB and its not a phi,
1255 // it can't be available in predecessors.
1256 if (isOpDefinedInBlock(LoadedPtr
, LoadBB
) && !isa
<PHINode
>(LoadedPtr
))
1259 // Scan a few instructions up from the load, to see if it is obviously live at
1260 // the entry to its block.
1261 BasicBlock::iterator
BBIt(LoadI
);
1263 BatchAAResults
BatchAA(*AA
);
1264 // The dominator tree is updated lazily and may not be valid at this point.
1265 BatchAA
.disableDominatorTree();
1266 if (Value
*AvailableVal
= FindAvailableLoadedValue(
1267 LoadI
, LoadBB
, BBIt
, DefMaxInstsToScan
, &BatchAA
, &IsLoadCSE
)) {
1268 // If the value of the load is locally available within the block, just use
1269 // it. This frequently occurs for reg2mem'd allocas.
1272 LoadInst
*NLoadI
= cast
<LoadInst
>(AvailableVal
);
1273 combineMetadataForCSE(NLoadI
, LoadI
, false);
1274 LVI
->forgetValue(NLoadI
);
1277 // If the returned value is the load itself, replace with poison. This can
1278 // only happen in dead loops.
1279 if (AvailableVal
== LoadI
)
1280 AvailableVal
= PoisonValue::get(LoadI
->getType());
1281 if (AvailableVal
->getType() != LoadI
->getType())
1282 AvailableVal
= CastInst::CreateBitOrPointerCast(
1283 AvailableVal
, LoadI
->getType(), "", LoadI
);
1284 LoadI
->replaceAllUsesWith(AvailableVal
);
1285 LoadI
->eraseFromParent();
1289 // Otherwise, if we scanned the whole block and got to the top of the block,
1290 // we know the block is locally transparent to the load. If not, something
1291 // might clobber its value.
1292 if (BBIt
!= LoadBB
->begin())
1295 // If all of the loads and stores that feed the value have the same AA tags,
1296 // then we can propagate them onto any newly inserted loads.
1297 AAMDNodes AATags
= LoadI
->getAAMetadata();
1299 SmallPtrSet
<BasicBlock
*, 8> PredsScanned
;
1301 using AvailablePredsTy
= SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8>;
1303 AvailablePredsTy AvailablePreds
;
1304 BasicBlock
*OneUnavailablePred
= nullptr;
1305 SmallVector
<LoadInst
*, 8> CSELoads
;
1307 // If we got here, the loaded value is transparent through to the start of the
1308 // block. Check to see if it is available in any of the predecessor blocks.
1309 for (BasicBlock
*PredBB
: predecessors(LoadBB
)) {
1310 // If we already scanned this predecessor, skip it.
1311 if (!PredsScanned
.insert(PredBB
).second
)
1314 BBIt
= PredBB
->end();
1315 unsigned NumScanedInst
= 0;
1316 Value
*PredAvailable
= nullptr;
1317 // NOTE: We don't CSE load that is volatile or anything stronger than
1318 // unordered, that should have been checked when we entered the function.
1319 assert(LoadI
->isUnordered() &&
1320 "Attempting to CSE volatile or atomic loads");
1321 // If this is a load on a phi pointer, phi-translate it and search
1322 // for available load/store to the pointer in predecessors.
1323 Type
*AccessTy
= LoadI
->getType();
1324 const auto &DL
= LoadI
->getModule()->getDataLayout();
1325 MemoryLocation
Loc(LoadedPtr
->DoPHITranslation(LoadBB
, PredBB
),
1326 LocationSize::precise(DL
.getTypeStoreSize(AccessTy
)),
1328 PredAvailable
= findAvailablePtrLoadStore(
1329 Loc
, AccessTy
, LoadI
->isAtomic(), PredBB
, BBIt
, DefMaxInstsToScan
,
1330 &BatchAA
, &IsLoadCSE
, &NumScanedInst
);
1332 // If PredBB has a single predecessor, continue scanning through the
1333 // single predecessor.
1334 BasicBlock
*SinglePredBB
= PredBB
;
1335 while (!PredAvailable
&& SinglePredBB
&& BBIt
== SinglePredBB
->begin() &&
1336 NumScanedInst
< DefMaxInstsToScan
) {
1337 SinglePredBB
= SinglePredBB
->getSinglePredecessor();
1339 BBIt
= SinglePredBB
->end();
1340 PredAvailable
= findAvailablePtrLoadStore(
1341 Loc
, AccessTy
, LoadI
->isAtomic(), SinglePredBB
, BBIt
,
1342 (DefMaxInstsToScan
- NumScanedInst
), &BatchAA
, &IsLoadCSE
,
1347 if (!PredAvailable
) {
1348 OneUnavailablePred
= PredBB
;
1353 CSELoads
.push_back(cast
<LoadInst
>(PredAvailable
));
1355 // If so, this load is partially redundant. Remember this info so that we
1356 // can create a PHI node.
1357 AvailablePreds
.emplace_back(PredBB
, PredAvailable
);
1360 // If the loaded value isn't available in any predecessor, it isn't partially
1362 if (AvailablePreds
.empty()) return false;
1364 // Okay, the loaded value is available in at least one (and maybe all!)
1365 // predecessors. If the value is unavailable in more than one unique
1366 // predecessor, we want to insert a merge block for those common predecessors.
1367 // This ensures that we only have to insert one reload, thus not increasing
1369 BasicBlock
*UnavailablePred
= nullptr;
1371 // If the value is unavailable in one of predecessors, we will end up
1372 // inserting a new instruction into them. It is only valid if all the
1373 // instructions before LoadI are guaranteed to pass execution to its
1374 // successor, or if LoadI is safe to speculate.
1375 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1376 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1377 // It requires domination tree analysis, so for this simple case it is an
1379 if (PredsScanned
.size() != AvailablePreds
.size() &&
1380 !isSafeToSpeculativelyExecute(LoadI
))
1381 for (auto I
= LoadBB
->begin(); &*I
!= LoadI
; ++I
)
1382 if (!isGuaranteedToTransferExecutionToSuccessor(&*I
))
1385 // If there is exactly one predecessor where the value is unavailable, the
1386 // already computed 'OneUnavailablePred' block is it. If it ends in an
1387 // unconditional branch, we know that it isn't a critical edge.
1388 if (PredsScanned
.size() == AvailablePreds
.size()+1 &&
1389 OneUnavailablePred
->getTerminator()->getNumSuccessors() == 1) {
1390 UnavailablePred
= OneUnavailablePred
;
1391 } else if (PredsScanned
.size() != AvailablePreds
.size()) {
1392 // Otherwise, we had multiple unavailable predecessors or we had a critical
1393 // edge from the one.
1394 SmallVector
<BasicBlock
*, 8> PredsToSplit
;
1395 SmallPtrSet
<BasicBlock
*, 8> AvailablePredSet
;
1397 for (const auto &AvailablePred
: AvailablePreds
)
1398 AvailablePredSet
.insert(AvailablePred
.first
);
1400 // Add all the unavailable predecessors to the PredsToSplit list.
1401 for (BasicBlock
*P
: predecessors(LoadBB
)) {
1402 // If the predecessor is an indirect goto, we can't split the edge.
1403 if (isa
<IndirectBrInst
>(P
->getTerminator()))
1406 if (!AvailablePredSet
.count(P
))
1407 PredsToSplit
.push_back(P
);
1410 // Split them out to their own block.
1411 UnavailablePred
= splitBlockPreds(LoadBB
, PredsToSplit
, "thread-pre-split");
1414 // If the value isn't available in all predecessors, then there will be
1415 // exactly one where it isn't available. Insert a load on that edge and add
1416 // it to the AvailablePreds list.
1417 if (UnavailablePred
) {
1418 assert(UnavailablePred
->getTerminator()->getNumSuccessors() == 1 &&
1419 "Can't handle critical edge here!");
1420 LoadInst
*NewVal
= new LoadInst(
1421 LoadI
->getType(), LoadedPtr
->DoPHITranslation(LoadBB
, UnavailablePred
),
1422 LoadI
->getName() + ".pr", false, LoadI
->getAlign(),
1423 LoadI
->getOrdering(), LoadI
->getSyncScopeID(),
1424 UnavailablePred
->getTerminator());
1425 NewVal
->setDebugLoc(LoadI
->getDebugLoc());
1427 NewVal
->setAAMetadata(AATags
);
1429 AvailablePreds
.emplace_back(UnavailablePred
, NewVal
);
1432 // Now we know that each predecessor of this block has a value in
1433 // AvailablePreds, sort them for efficient access as we're walking the preds.
1434 array_pod_sort(AvailablePreds
.begin(), AvailablePreds
.end());
1436 // Create a PHI node at the start of the block for the PRE'd load value.
1437 pred_iterator PB
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
1438 PHINode
*PN
= PHINode::Create(LoadI
->getType(), std::distance(PB
, PE
), "");
1439 PN
->insertBefore(LoadBB
->begin());
1440 PN
->takeName(LoadI
);
1441 PN
->setDebugLoc(LoadI
->getDebugLoc());
1443 // Insert new entries into the PHI for each predecessor. A single block may
1444 // have multiple entries here.
1445 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
1446 BasicBlock
*P
= *PI
;
1447 AvailablePredsTy::iterator I
=
1448 llvm::lower_bound(AvailablePreds
, std::make_pair(P
, (Value
*)nullptr));
1450 assert(I
!= AvailablePreds
.end() && I
->first
== P
&&
1451 "Didn't find entry for predecessor!");
1453 // If we have an available predecessor but it requires casting, insert the
1454 // cast in the predecessor and use the cast. Note that we have to update the
1455 // AvailablePreds vector as we go so that all of the PHI entries for this
1456 // predecessor use the same bitcast.
1457 Value
*&PredV
= I
->second
;
1458 if (PredV
->getType() != LoadI
->getType())
1459 PredV
= CastInst::CreateBitOrPointerCast(PredV
, LoadI
->getType(), "",
1460 P
->getTerminator());
1462 PN
->addIncoming(PredV
, I
->first
);
1465 for (LoadInst
*PredLoadI
: CSELoads
) {
1466 combineMetadataForCSE(PredLoadI
, LoadI
, true);
1467 LVI
->forgetValue(PredLoadI
);
1470 LoadI
->replaceAllUsesWith(PN
);
1471 LoadI
->eraseFromParent();
1476 /// findMostPopularDest - The specified list contains multiple possible
1477 /// threadable destinations. Pick the one that occurs the most frequently in
1480 findMostPopularDest(BasicBlock
*BB
,
1481 const SmallVectorImpl
<std::pair
<BasicBlock
*,
1482 BasicBlock
*>> &PredToDestList
) {
1483 assert(!PredToDestList
.empty());
1485 // Determine popularity. If there are multiple possible destinations, we
1486 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1487 // blocks with known and real destinations to threading undef. We'll handle
1488 // them later if interesting.
1489 MapVector
<BasicBlock
*, unsigned> DestPopularity
;
1491 // Populate DestPopularity with the successors in the order they appear in the
1492 // successor list. This way, we ensure determinism by iterating it in the
1493 // same order in std::max_element below. We map nullptr to 0 so that we can
1494 // return nullptr when PredToDestList contains nullptr only.
1495 DestPopularity
[nullptr] = 0;
1496 for (auto *SuccBB
: successors(BB
))
1497 DestPopularity
[SuccBB
] = 0;
1499 for (const auto &PredToDest
: PredToDestList
)
1500 if (PredToDest
.second
)
1501 DestPopularity
[PredToDest
.second
]++;
1503 // Find the most popular dest.
1504 auto MostPopular
= std::max_element(
1505 DestPopularity
.begin(), DestPopularity
.end(), llvm::less_second());
1507 // Okay, we have finally picked the most popular destination.
1508 return MostPopular
->first
;
1511 // Try to evaluate the value of V when the control flows from PredPredBB to
1512 // BB->getSinglePredecessor() and then on to BB.
1513 Constant
*JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock
*BB
,
1514 BasicBlock
*PredPredBB
,
1516 BasicBlock
*PredBB
= BB
->getSinglePredecessor();
1517 assert(PredBB
&& "Expected a single predecessor");
1519 if (Constant
*Cst
= dyn_cast
<Constant
>(V
)) {
1523 // Consult LVI if V is not an instruction in BB or PredBB.
1524 Instruction
*I
= dyn_cast
<Instruction
>(V
);
1525 if (!I
|| (I
->getParent() != BB
&& I
->getParent() != PredBB
)) {
1526 return LVI
->getConstantOnEdge(V
, PredPredBB
, PredBB
, nullptr);
1529 // Look into a PHI argument.
1530 if (PHINode
*PHI
= dyn_cast
<PHINode
>(V
)) {
1531 if (PHI
->getParent() == PredBB
)
1532 return dyn_cast
<Constant
>(PHI
->getIncomingValueForBlock(PredPredBB
));
1536 // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1537 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(V
)) {
1538 if (CondCmp
->getParent() == BB
) {
1540 evaluateOnPredecessorEdge(BB
, PredPredBB
, CondCmp
->getOperand(0));
1542 evaluateOnPredecessorEdge(BB
, PredPredBB
, CondCmp
->getOperand(1));
1544 return ConstantExpr::getCompare(CondCmp
->getPredicate(), Op0
, Op1
);
1553 bool JumpThreadingPass::processThreadableEdges(Value
*Cond
, BasicBlock
*BB
,
1554 ConstantPreference Preference
,
1555 Instruction
*CxtI
) {
1556 // If threading this would thread across a loop header, don't even try to
1558 if (LoopHeaders
.count(BB
))
1561 PredValueInfoTy PredValues
;
1562 if (!computeValueKnownInPredecessors(Cond
, BB
, PredValues
, Preference
,
1564 // We don't have known values in predecessors. See if we can thread through
1565 // BB and its sole predecessor.
1566 return maybethreadThroughTwoBasicBlocks(BB
, Cond
);
1569 assert(!PredValues
.empty() &&
1570 "computeValueKnownInPredecessors returned true with no values");
1572 LLVM_DEBUG(dbgs() << "IN BB: " << *BB
;
1573 for (const auto &PredValue
: PredValues
) {
1574 dbgs() << " BB '" << BB
->getName()
1575 << "': FOUND condition = " << *PredValue
.first
1576 << " for pred '" << PredValue
.second
->getName() << "'.\n";
1579 // Decide what we want to thread through. Convert our list of known values to
1580 // a list of known destinations for each pred. This also discards duplicate
1581 // predecessors and keeps track of the undefined inputs (which are represented
1582 // as a null dest in the PredToDestList).
1583 SmallPtrSet
<BasicBlock
*, 16> SeenPreds
;
1584 SmallVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 16> PredToDestList
;
1586 BasicBlock
*OnlyDest
= nullptr;
1587 BasicBlock
*MultipleDestSentinel
= (BasicBlock
*)(intptr_t)~0ULL;
1588 Constant
*OnlyVal
= nullptr;
1589 Constant
*MultipleVal
= (Constant
*)(intptr_t)~0ULL;
1591 for (const auto &PredValue
: PredValues
) {
1592 BasicBlock
*Pred
= PredValue
.second
;
1593 if (!SeenPreds
.insert(Pred
).second
)
1594 continue; // Duplicate predecessor entry.
1596 Constant
*Val
= PredValue
.first
;
1599 if (isa
<UndefValue
>(Val
))
1601 else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
1602 assert(isa
<ConstantInt
>(Val
) && "Expecting a constant integer");
1603 DestBB
= BI
->getSuccessor(cast
<ConstantInt
>(Val
)->isZero());
1604 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
1605 assert(isa
<ConstantInt
>(Val
) && "Expecting a constant integer");
1606 DestBB
= SI
->findCaseValue(cast
<ConstantInt
>(Val
))->getCaseSuccessor();
1608 assert(isa
<IndirectBrInst
>(BB
->getTerminator())
1609 && "Unexpected terminator");
1610 assert(isa
<BlockAddress
>(Val
) && "Expecting a constant blockaddress");
1611 DestBB
= cast
<BlockAddress
>(Val
)->getBasicBlock();
1614 // If we have exactly one destination, remember it for efficiency below.
1615 if (PredToDestList
.empty()) {
1619 if (OnlyDest
!= DestBB
)
1620 OnlyDest
= MultipleDestSentinel
;
1621 // It possible we have same destination, but different value, e.g. default
1622 // case in switchinst.
1624 OnlyVal
= MultipleVal
;
1627 // If the predecessor ends with an indirect goto, we can't change its
1629 if (isa
<IndirectBrInst
>(Pred
->getTerminator()))
1632 PredToDestList
.emplace_back(Pred
, DestBB
);
1635 // If all edges were unthreadable, we fail.
1636 if (PredToDestList
.empty())
1639 // If all the predecessors go to a single known successor, we want to fold,
1640 // not thread. By doing so, we do not need to duplicate the current block and
1641 // also miss potential opportunities in case we dont/cant duplicate.
1642 if (OnlyDest
&& OnlyDest
!= MultipleDestSentinel
) {
1643 if (BB
->hasNPredecessors(PredToDestList
.size())) {
1644 bool SeenFirstBranchToOnlyDest
= false;
1645 std::vector
<DominatorTree::UpdateType
> Updates
;
1646 Updates
.reserve(BB
->getTerminator()->getNumSuccessors() - 1);
1647 for (BasicBlock
*SuccBB
: successors(BB
)) {
1648 if (SuccBB
== OnlyDest
&& !SeenFirstBranchToOnlyDest
) {
1649 SeenFirstBranchToOnlyDest
= true; // Don't modify the first branch.
1651 SuccBB
->removePredecessor(BB
, true); // This is unreachable successor.
1652 Updates
.push_back({DominatorTree::Delete
, BB
, SuccBB
});
1656 // Finally update the terminator.
1657 Instruction
*Term
= BB
->getTerminator();
1658 BranchInst::Create(OnlyDest
, Term
);
1660 Term
->eraseFromParent();
1661 DTU
->applyUpdatesPermissive(Updates
);
1662 if (auto *BPI
= getBPI())
1663 BPI
->eraseBlock(BB
);
1665 // If the condition is now dead due to the removal of the old terminator,
1667 if (auto *CondInst
= dyn_cast
<Instruction
>(Cond
)) {
1668 if (CondInst
->use_empty() && !CondInst
->mayHaveSideEffects())
1669 CondInst
->eraseFromParent();
1670 // We can safely replace *some* uses of the CondInst if it has
1671 // exactly one value as returned by LVI. RAUW is incorrect in the
1672 // presence of guards and assumes, that have the `Cond` as the use. This
1673 // is because we use the guards/assume to reason about the `Cond` value
1674 // at the end of block, but RAUW unconditionally replaces all uses
1675 // including the guards/assumes themselves and the uses before the
1677 else if (OnlyVal
&& OnlyVal
!= MultipleVal
)
1678 replaceFoldableUses(CondInst
, OnlyVal
, BB
);
1684 // Determine which is the most common successor. If we have many inputs and
1685 // this block is a switch, we want to start by threading the batch that goes
1686 // to the most popular destination first. If we only know about one
1687 // threadable destination (the common case) we can avoid this.
1688 BasicBlock
*MostPopularDest
= OnlyDest
;
1690 if (MostPopularDest
== MultipleDestSentinel
) {
1691 // Remove any loop headers from the Dest list, threadEdge conservatively
1692 // won't process them, but we might have other destination that are eligible
1693 // and we still want to process.
1694 erase_if(PredToDestList
,
1695 [&](const std::pair
<BasicBlock
*, BasicBlock
*> &PredToDest
) {
1696 return LoopHeaders
.contains(PredToDest
.second
);
1699 if (PredToDestList
.empty())
1702 MostPopularDest
= findMostPopularDest(BB
, PredToDestList
);
1705 // Now that we know what the most popular destination is, factor all
1706 // predecessors that will jump to it into a single predecessor.
1707 SmallVector
<BasicBlock
*, 16> PredsToFactor
;
1708 for (const auto &PredToDest
: PredToDestList
)
1709 if (PredToDest
.second
== MostPopularDest
) {
1710 BasicBlock
*Pred
= PredToDest
.first
;
1712 // This predecessor may be a switch or something else that has multiple
1713 // edges to the block. Factor each of these edges by listing them
1714 // according to # occurrences in PredsToFactor.
1715 for (BasicBlock
*Succ
: successors(Pred
))
1717 PredsToFactor
.push_back(Pred
);
1720 // If the threadable edges are branching on an undefined value, we get to pick
1721 // the destination that these predecessors should get to.
1722 if (!MostPopularDest
)
1723 MostPopularDest
= BB
->getTerminator()->
1724 getSuccessor(getBestDestForJumpOnUndef(BB
));
1726 // Ok, try to thread it!
1727 return tryThreadEdge(BB
, PredsToFactor
, MostPopularDest
);
1730 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1731 /// a PHI node (or freeze PHI) in the current block. See if there are any
1732 /// simplifications we can do based on inputs to the phi node.
1733 bool JumpThreadingPass::processBranchOnPHI(PHINode
*PN
) {
1734 BasicBlock
*BB
= PN
->getParent();
1736 // TODO: We could make use of this to do it once for blocks with common PHI
1738 SmallVector
<BasicBlock
*, 1> PredBBs
;
1741 // If any of the predecessor blocks end in an unconditional branch, we can
1742 // *duplicate* the conditional branch into that block in order to further
1743 // encourage jump threading and to eliminate cases where we have branch on a
1744 // phi of an icmp (branch on icmp is much better).
1745 // This is still beneficial when a frozen phi is used as the branch condition
1746 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1747 // to br(icmp(freeze ...)).
1748 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1749 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1750 if (BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator()))
1751 if (PredBr
->isUnconditional()) {
1752 PredBBs
[0] = PredBB
;
1753 // Try to duplicate BB into PredBB.
1754 if (duplicateCondBranchOnPHIIntoPred(BB
, PredBBs
))
1762 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1763 /// a xor instruction in the current block. See if there are any
1764 /// simplifications we can do based on inputs to the xor.
1765 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator
*BO
) {
1766 BasicBlock
*BB
= BO
->getParent();
1768 // If either the LHS or RHS of the xor is a constant, don't do this
1770 if (isa
<ConstantInt
>(BO
->getOperand(0)) ||
1771 isa
<ConstantInt
>(BO
->getOperand(1)))
1774 // If the first instruction in BB isn't a phi, we won't be able to infer
1775 // anything special about any particular predecessor.
1776 if (!isa
<PHINode
>(BB
->front()))
1779 // If this BB is a landing pad, we won't be able to split the edge into it.
1783 // If we have a xor as the branch input to this block, and we know that the
1784 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1785 // the condition into the predecessor and fix that value to true, saving some
1786 // logical ops on that path and encouraging other paths to simplify.
1788 // This copies something like this:
1791 // %X = phi i1 [1], [%X']
1792 // %Y = icmp eq i32 %A, %B
1793 // %Z = xor i1 %X, %Y
1798 // %Y = icmp ne i32 %A, %B
1801 PredValueInfoTy XorOpValues
;
1803 if (!computeValueKnownInPredecessors(BO
->getOperand(0), BB
, XorOpValues
,
1805 assert(XorOpValues
.empty());
1806 if (!computeValueKnownInPredecessors(BO
->getOperand(1), BB
, XorOpValues
,
1812 assert(!XorOpValues
.empty() &&
1813 "computeValueKnownInPredecessors returned true with no values");
1815 // Scan the information to see which is most popular: true or false. The
1816 // predecessors can be of the set true, false, or undef.
1817 unsigned NumTrue
= 0, NumFalse
= 0;
1818 for (const auto &XorOpValue
: XorOpValues
) {
1819 if (isa
<UndefValue
>(XorOpValue
.first
))
1820 // Ignore undefs for the count.
1822 if (cast
<ConstantInt
>(XorOpValue
.first
)->isZero())
1828 // Determine which value to split on, true, false, or undef if neither.
1829 ConstantInt
*SplitVal
= nullptr;
1830 if (NumTrue
> NumFalse
)
1831 SplitVal
= ConstantInt::getTrue(BB
->getContext());
1832 else if (NumTrue
!= 0 || NumFalse
!= 0)
1833 SplitVal
= ConstantInt::getFalse(BB
->getContext());
1835 // Collect all of the blocks that this can be folded into so that we can
1836 // factor this once and clone it once.
1837 SmallVector
<BasicBlock
*, 8> BlocksToFoldInto
;
1838 for (const auto &XorOpValue
: XorOpValues
) {
1839 if (XorOpValue
.first
!= SplitVal
&& !isa
<UndefValue
>(XorOpValue
.first
))
1842 BlocksToFoldInto
.push_back(XorOpValue
.second
);
1845 // If we inferred a value for all of the predecessors, then duplication won't
1846 // help us. However, we can just replace the LHS or RHS with the constant.
1847 if (BlocksToFoldInto
.size() ==
1848 cast
<PHINode
>(BB
->front()).getNumIncomingValues()) {
1850 // If all preds provide undef, just nuke the xor, because it is undef too.
1851 BO
->replaceAllUsesWith(UndefValue::get(BO
->getType()));
1852 BO
->eraseFromParent();
1853 } else if (SplitVal
->isZero() && BO
!= BO
->getOperand(isLHS
)) {
1854 // If all preds provide 0, replace the xor with the other input.
1855 BO
->replaceAllUsesWith(BO
->getOperand(isLHS
));
1856 BO
->eraseFromParent();
1858 // If all preds provide 1, set the computed value to 1.
1859 BO
->setOperand(!isLHS
, SplitVal
);
1865 // If any of predecessors end with an indirect goto, we can't change its
1867 if (any_of(BlocksToFoldInto
, [](BasicBlock
*Pred
) {
1868 return isa
<IndirectBrInst
>(Pred
->getTerminator());
1872 // Try to duplicate BB into PredBB.
1873 return duplicateCondBranchOnPHIIntoPred(BB
, BlocksToFoldInto
);
1876 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1877 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1878 /// NewPred using the entries from OldPred (suitably mapped).
1879 static void addPHINodeEntriesForMappedBlock(BasicBlock
*PHIBB
,
1880 BasicBlock
*OldPred
,
1881 BasicBlock
*NewPred
,
1882 DenseMap
<Instruction
*, Value
*> &ValueMap
) {
1883 for (PHINode
&PN
: PHIBB
->phis()) {
1884 // Ok, we have a PHI node. Figure out what the incoming value was for the
1886 Value
*IV
= PN
.getIncomingValueForBlock(OldPred
);
1888 // Remap the value if necessary.
1889 if (Instruction
*Inst
= dyn_cast
<Instruction
>(IV
)) {
1890 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMap
.find(Inst
);
1891 if (I
!= ValueMap
.end())
1895 PN
.addIncoming(IV
, NewPred
);
1899 /// Merge basic block BB into its sole predecessor if possible.
1900 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock
*BB
) {
1901 BasicBlock
*SinglePred
= BB
->getSinglePredecessor();
1905 const Instruction
*TI
= SinglePred
->getTerminator();
1906 if (TI
->isSpecialTerminator() || TI
->getNumSuccessors() != 1 ||
1907 SinglePred
== BB
|| hasAddressTakenAndUsed(BB
))
1910 // If SinglePred was a loop header, BB becomes one.
1911 if (LoopHeaders
.erase(SinglePred
))
1912 LoopHeaders
.insert(BB
);
1914 LVI
->eraseBlock(SinglePred
);
1915 MergeBasicBlockIntoOnlyPred(BB
, DTU
.get());
1917 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1918 // BB code within one basic block `BB`), we need to invalidate the LVI
1919 // information associated with BB, because the LVI information need not be
1920 // true for all of BB after the merge. For example,
1921 // Before the merge, LVI info and code is as follows:
1922 // SinglePred: <LVI info1 for %p val>
1924 // call @exit() // need not transfer execution to successor.
1925 // assume(%p) // from this point on %p is true
1927 // BB: <LVI info2 for %p val, i.e. %p is true>
1931 // Note that this LVI info for blocks BB and SinglPred is correct for %p
1932 // (info2 and info1 respectively). After the merge and the deletion of the
1933 // LVI info1 for SinglePred. We have the following code:
1934 // BB: <LVI info2 for %p val>
1938 // %x = use of %p <-- LVI info2 is correct from here onwards.
1940 // LVI info2 for BB is incorrect at the beginning of BB.
1942 // Invalidate LVI information for BB if the LVI is not provably true for
1944 if (!isGuaranteedToTransferExecutionToSuccessor(BB
))
1945 LVI
->eraseBlock(BB
);
1949 /// Update the SSA form. NewBB contains instructions that are copied from BB.
1950 /// ValueMapping maps old values in BB to new ones in NewBB.
1951 void JumpThreadingPass::updateSSA(
1952 BasicBlock
*BB
, BasicBlock
*NewBB
,
1953 DenseMap
<Instruction
*, Value
*> &ValueMapping
) {
1954 // If there were values defined in BB that are used outside the block, then we
1955 // now have to update all uses of the value to use either the original value,
1956 // the cloned value, or some PHI derived value. This can require arbitrary
1957 // PHI insertion, of which we are prepared to do, clean these up now.
1958 SSAUpdater SSAUpdate
;
1959 SmallVector
<Use
*, 16> UsesToRename
;
1960 SmallVector
<DbgValueInst
*, 4> DbgValues
;
1961 SmallVector
<DPValue
*, 4> DPValues
;
1963 for (Instruction
&I
: *BB
) {
1964 // Scan all uses of this instruction to see if it is used outside of its
1965 // block, and if so, record them in UsesToRename.
1966 for (Use
&U
: I
.uses()) {
1967 Instruction
*User
= cast
<Instruction
>(U
.getUser());
1968 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
1969 if (UserPN
->getIncomingBlock(U
) == BB
)
1971 } else if (User
->getParent() == BB
)
1974 UsesToRename
.push_back(&U
);
1977 // Find debug values outside of the block
1978 findDbgValues(DbgValues
, &I
, &DPValues
);
1979 llvm::erase_if(DbgValues
, [&](const DbgValueInst
*DbgVal
) {
1980 return DbgVal
->getParent() == BB
;
1982 llvm::erase_if(DPValues
, [&](const DPValue
*DPVal
) {
1983 return DPVal
->getParent() == BB
;
1986 // If there are no uses outside the block, we're done with this instruction.
1987 if (UsesToRename
.empty() && DbgValues
.empty() && DPValues
.empty())
1989 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I
<< "\n");
1991 // We found a use of I outside of BB. Rename all uses of I that are outside
1992 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1993 // with the two values we know.
1994 SSAUpdate
.Initialize(I
.getType(), I
.getName());
1995 SSAUpdate
.AddAvailableValue(BB
, &I
);
1996 SSAUpdate
.AddAvailableValue(NewBB
, ValueMapping
[&I
]);
1998 while (!UsesToRename
.empty())
1999 SSAUpdate
.RewriteUse(*UsesToRename
.pop_back_val());
2000 if (!DbgValues
.empty() || !DPValues
.empty()) {
2001 SSAUpdate
.UpdateDebugValues(&I
, DbgValues
);
2002 SSAUpdate
.UpdateDebugValues(&I
, DPValues
);
2007 LLVM_DEBUG(dbgs() << "\n");
2011 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone
2012 /// arguments that come from PredBB. Return the map from the variables in the
2013 /// source basic block to the variables in the newly created basic block.
2014 DenseMap
<Instruction
*, Value
*>
2015 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI
,
2016 BasicBlock::iterator BE
, BasicBlock
*NewBB
,
2017 BasicBlock
*PredBB
) {
2018 // We are going to have to map operands from the source basic block to the new
2019 // copy of the block 'NewBB'. If there are PHI nodes in the source basic
2020 // block, evaluate them to account for entry from PredBB.
2021 DenseMap
<Instruction
*, Value
*> ValueMapping
;
2023 // Retargets llvm.dbg.value to any renamed variables.
2024 auto RetargetDbgValueIfPossible
= [&](Instruction
*NewInst
) -> bool {
2025 auto DbgInstruction
= dyn_cast
<DbgValueInst
>(NewInst
);
2026 if (!DbgInstruction
)
2029 SmallSet
<std::pair
<Value
*, Value
*>, 16> OperandsToRemap
;
2030 for (auto DbgOperand
: DbgInstruction
->location_ops()) {
2031 auto DbgOperandInstruction
= dyn_cast
<Instruction
>(DbgOperand
);
2032 if (!DbgOperandInstruction
)
2035 auto I
= ValueMapping
.find(DbgOperandInstruction
);
2036 if (I
!= ValueMapping
.end()) {
2037 OperandsToRemap
.insert(
2038 std::pair
<Value
*, Value
*>(DbgOperand
, I
->second
));
2042 for (auto &[OldOp
, MappedOp
] : OperandsToRemap
)
2043 DbgInstruction
->replaceVariableLocationOp(OldOp
, MappedOp
);
2047 // Duplicate implementation of the above dbg.value code, using DPValues
2049 auto RetargetDPValueIfPossible
= [&](DPValue
*DPV
) {
2050 SmallSet
<std::pair
<Value
*, Value
*>, 16> OperandsToRemap
;
2051 for (auto *Op
: DPV
->location_ops()) {
2052 Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
);
2056 auto I
= ValueMapping
.find(OpInst
);
2057 if (I
!= ValueMapping
.end())
2058 OperandsToRemap
.insert({OpInst
, I
->second
});
2061 for (auto &[OldOp
, MappedOp
] : OperandsToRemap
)
2062 DPV
->replaceVariableLocationOp(OldOp
, MappedOp
);
2065 BasicBlock
*RangeBB
= BI
->getParent();
2067 // Clone the phi nodes of the source basic block into NewBB. The resulting
2068 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2069 // might need to rewrite the operand of the cloned phi.
2070 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
) {
2071 PHINode
*NewPN
= PHINode::Create(PN
->getType(), 1, PN
->getName(), NewBB
);
2072 NewPN
->addIncoming(PN
->getIncomingValueForBlock(PredBB
), PredBB
);
2073 ValueMapping
[PN
] = NewPN
;
2076 // Clone noalias scope declarations in the threaded block. When threading a
2077 // loop exit, we would otherwise end up with two idential scope declarations
2078 // visible at the same time.
2079 SmallVector
<MDNode
*> NoAliasScopes
;
2080 DenseMap
<MDNode
*, MDNode
*> ClonedScopes
;
2081 LLVMContext
&Context
= PredBB
->getContext();
2082 identifyNoAliasScopesToClone(BI
, BE
, NoAliasScopes
);
2083 cloneNoAliasScopes(NoAliasScopes
, ClonedScopes
, "thread", Context
);
2085 auto CloneAndRemapDbgInfo
= [&](Instruction
*NewInst
, Instruction
*From
) {
2086 auto DPVRange
= NewInst
->cloneDebugInfoFrom(From
);
2087 for (DPValue
&DPV
: DPVRange
)
2088 RetargetDPValueIfPossible(&DPV
);
2091 // Clone the non-phi instructions of the source basic block into NewBB,
2092 // keeping track of the mapping and using it to remap operands in the cloned
2094 for (; BI
!= BE
; ++BI
) {
2095 Instruction
*New
= BI
->clone();
2096 New
->setName(BI
->getName());
2097 New
->insertInto(NewBB
, NewBB
->end());
2098 ValueMapping
[&*BI
] = New
;
2099 adaptNoAliasScopes(New
, ClonedScopes
, Context
);
2101 CloneAndRemapDbgInfo(New
, &*BI
);
2103 if (RetargetDbgValueIfPossible(New
))
2106 // Remap operands to patch up intra-block references.
2107 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
2108 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
2109 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
2110 if (I
!= ValueMapping
.end())
2111 New
->setOperand(i
, I
->second
);
2115 // There may be DPValues on the terminator, clone directly from marker
2116 // to marker as there isn't an instruction there.
2117 if (BE
!= RangeBB
->end() && BE
->hasDbgValues()) {
2118 // Dump them at the end.
2119 DPMarker
*Marker
= RangeBB
->getMarker(BE
);
2120 DPMarker
*EndMarker
= NewBB
->createMarker(NewBB
->end());
2121 auto DPVRange
= EndMarker
->cloneDebugInfoFrom(Marker
, std::nullopt
);
2122 for (DPValue
&DPV
: DPVRange
)
2123 RetargetDPValueIfPossible(&DPV
);
2126 return ValueMapping
;
2129 /// Attempt to thread through two successive basic blocks.
2130 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock
*BB
,
2135 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2136 // %tobool = icmp eq i32 %cond, 0
2137 // br i1 %tobool, label %BB, label ...
2140 // %cmp = icmp eq i32* %var, null
2141 // br i1 %cmp, label ..., label ...
2143 // We don't know the value of %var at BB even if we know which incoming edge
2144 // we take to BB. However, once we duplicate PredBB for each of its incoming
2145 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2146 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2148 // Require that BB end with a Branch for simplicity.
2149 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
2153 // BB must have exactly one predecessor.
2154 BasicBlock
*PredBB
= BB
->getSinglePredecessor();
2158 // Require that PredBB end with a conditional Branch. If PredBB ends with an
2159 // unconditional branch, we should be merging PredBB and BB instead. For
2160 // simplicity, we don't deal with a switch.
2161 BranchInst
*PredBBBranch
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
2162 if (!PredBBBranch
|| PredBBBranch
->isUnconditional())
2165 // If PredBB has exactly one incoming edge, we don't gain anything by copying
2167 if (PredBB
->getSinglePredecessor())
2170 // Don't thread through PredBB if it contains a successor edge to itself, in
2171 // which case we would infinite loop. Suppose we are threading an edge from
2172 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2173 // successor edge to itself. If we allowed jump threading in this case, we
2174 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since
2175 // PredBB.thread has a successor edge to PredBB, we would immediately come up
2176 // with another jump threading opportunity from PredBB.thread through PredBB
2177 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we
2178 // would keep peeling one iteration from PredBB.
2179 if (llvm::is_contained(successors(PredBB
), PredBB
))
2182 // Don't thread across a loop header.
2183 if (LoopHeaders
.count(PredBB
))
2186 // Avoid complication with duplicating EH pads.
2187 if (PredBB
->isEHPad())
2190 // Find a predecessor that we can thread. For simplicity, we only consider a
2191 // successor edge out of BB to which we thread exactly one incoming edge into
2193 unsigned ZeroCount
= 0;
2194 unsigned OneCount
= 0;
2195 BasicBlock
*ZeroPred
= nullptr;
2196 BasicBlock
*OnePred
= nullptr;
2197 for (BasicBlock
*P
: predecessors(PredBB
)) {
2198 // If PredPred ends with IndirectBrInst, we can't handle it.
2199 if (isa
<IndirectBrInst
>(P
->getTerminator()))
2201 if (ConstantInt
*CI
= dyn_cast_or_null
<ConstantInt
>(
2202 evaluateOnPredecessorEdge(BB
, P
, Cond
))) {
2206 } else if (CI
->isOne()) {
2213 // Disregard complicated cases where we have to thread multiple edges.
2214 BasicBlock
*PredPredBB
;
2215 if (ZeroCount
== 1) {
2216 PredPredBB
= ZeroPred
;
2217 } else if (OneCount
== 1) {
2218 PredPredBB
= OnePred
;
2223 BasicBlock
*SuccBB
= CondBr
->getSuccessor(PredPredBB
== ZeroPred
);
2225 // If threading to the same block as we come from, we would infinite loop.
2227 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB
->getName()
2228 << "' - would thread to self!\n");
2232 // If threading this would thread across a loop header, don't thread the edge.
2233 // See the comments above findLoopHeaders for justifications and caveats.
2234 if (LoopHeaders
.count(BB
) || LoopHeaders
.count(SuccBB
)) {
2236 bool BBIsHeader
= LoopHeaders
.count(BB
);
2237 bool SuccIsHeader
= LoopHeaders
.count(SuccBB
);
2238 dbgs() << " Not threading across "
2239 << (BBIsHeader
? "loop header BB '" : "block BB '")
2240 << BB
->getName() << "' to dest "
2241 << (SuccIsHeader
? "loop header BB '" : "block BB '")
2242 << SuccBB
->getName()
2243 << "' - it might create an irreducible loop!\n";
2248 // Compute the cost of duplicating BB and PredBB.
2249 unsigned BBCost
= getJumpThreadDuplicationCost(
2250 TTI
, BB
, BB
->getTerminator(), BBDupThreshold
);
2251 unsigned PredBBCost
= getJumpThreadDuplicationCost(
2252 TTI
, PredBB
, PredBB
->getTerminator(), BBDupThreshold
);
2254 // Give up if costs are too high. We need to check BBCost and PredBBCost
2255 // individually before checking their sum because getJumpThreadDuplicationCost
2256 // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2257 if (BBCost
> BBDupThreshold
|| PredBBCost
> BBDupThreshold
||
2258 BBCost
+ PredBBCost
> BBDupThreshold
) {
2259 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB
->getName()
2260 << "' - Cost is too high: " << PredBBCost
2261 << " for PredBB, " << BBCost
<< "for BB\n");
2265 // Now we are ready to duplicate PredBB.
2266 threadThroughTwoBasicBlocks(PredPredBB
, PredBB
, BB
, SuccBB
);
2270 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock
*PredPredBB
,
2273 BasicBlock
*SuccBB
) {
2274 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB
->getName() << "' and '"
2275 << BB
->getName() << "'\n");
2277 // Build BPI/BFI before any changes are made to IR.
2278 bool HasProfile
= doesBlockHaveProfileData(BB
);
2279 auto *BFI
= getOrCreateBFI(HasProfile
);
2280 auto *BPI
= getOrCreateBPI(BFI
!= nullptr);
2282 BranchInst
*CondBr
= cast
<BranchInst
>(BB
->getTerminator());
2283 BranchInst
*PredBBBranch
= cast
<BranchInst
>(PredBB
->getTerminator());
2286 BasicBlock::Create(PredBB
->getContext(), PredBB
->getName() + ".thread",
2287 PredBB
->getParent(), PredBB
);
2288 NewBB
->moveAfter(PredBB
);
2290 // Set the block frequency of NewBB.
2292 assert(BPI
&& "It's expected BPI to exist along with BFI");
2293 auto NewBBFreq
= BFI
->getBlockFreq(PredPredBB
) *
2294 BPI
->getEdgeProbability(PredPredBB
, PredBB
);
2295 BFI
->setBlockFreq(NewBB
, NewBBFreq
);
2298 // We are going to have to map operands from the original BB block to the new
2299 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them
2300 // to account for entry from PredPredBB.
2301 DenseMap
<Instruction
*, Value
*> ValueMapping
=
2302 cloneInstructions(PredBB
->begin(), PredBB
->end(), NewBB
, PredPredBB
);
2304 // Copy the edge probabilities from PredBB to NewBB.
2306 BPI
->copyEdgeProbabilities(PredBB
, NewBB
);
2308 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2309 // This eliminates predecessors from PredPredBB, which requires us to simplify
2310 // any PHI nodes in PredBB.
2311 Instruction
*PredPredTerm
= PredPredBB
->getTerminator();
2312 for (unsigned i
= 0, e
= PredPredTerm
->getNumSuccessors(); i
!= e
; ++i
)
2313 if (PredPredTerm
->getSuccessor(i
) == PredBB
) {
2314 PredBB
->removePredecessor(PredPredBB
, true);
2315 PredPredTerm
->setSuccessor(i
, NewBB
);
2318 addPHINodeEntriesForMappedBlock(PredBBBranch
->getSuccessor(0), PredBB
, NewBB
,
2320 addPHINodeEntriesForMappedBlock(PredBBBranch
->getSuccessor(1), PredBB
, NewBB
,
2323 DTU
->applyUpdatesPermissive(
2324 {{DominatorTree::Insert
, NewBB
, CondBr
->getSuccessor(0)},
2325 {DominatorTree::Insert
, NewBB
, CondBr
->getSuccessor(1)},
2326 {DominatorTree::Insert
, PredPredBB
, NewBB
},
2327 {DominatorTree::Delete
, PredPredBB
, PredBB
}});
2329 updateSSA(PredBB
, NewBB
, ValueMapping
);
2331 // Clean up things like PHI nodes with single operands, dead instructions,
2333 SimplifyInstructionsInBlock(NewBB
, TLI
);
2334 SimplifyInstructionsInBlock(PredBB
, TLI
);
2336 SmallVector
<BasicBlock
*, 1> PredsToFactor
;
2337 PredsToFactor
.push_back(NewBB
);
2338 threadEdge(BB
, PredsToFactor
, SuccBB
);
2341 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2342 bool JumpThreadingPass::tryThreadEdge(
2343 BasicBlock
*BB
, const SmallVectorImpl
<BasicBlock
*> &PredBBs
,
2344 BasicBlock
*SuccBB
) {
2345 // If threading to the same block as we come from, we would infinite loop.
2347 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB
->getName()
2348 << "' - would thread to self!\n");
2352 // If threading this would thread across a loop header, don't thread the edge.
2353 // See the comments above findLoopHeaders for justifications and caveats.
2354 if (LoopHeaders
.count(BB
) || LoopHeaders
.count(SuccBB
)) {
2356 bool BBIsHeader
= LoopHeaders
.count(BB
);
2357 bool SuccIsHeader
= LoopHeaders
.count(SuccBB
);
2358 dbgs() << " Not threading across "
2359 << (BBIsHeader
? "loop header BB '" : "block BB '") << BB
->getName()
2360 << "' to dest " << (SuccIsHeader
? "loop header BB '" : "block BB '")
2361 << SuccBB
->getName() << "' - it might create an irreducible loop!\n";
2366 unsigned JumpThreadCost
= getJumpThreadDuplicationCost(
2367 TTI
, BB
, BB
->getTerminator(), BBDupThreshold
);
2368 if (JumpThreadCost
> BBDupThreshold
) {
2369 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB
->getName()
2370 << "' - Cost is too high: " << JumpThreadCost
<< "\n");
2374 threadEdge(BB
, PredBBs
, SuccBB
);
2378 /// threadEdge - We have decided that it is safe and profitable to factor the
2379 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2380 /// across BB. Transform the IR to reflect this change.
2381 void JumpThreadingPass::threadEdge(BasicBlock
*BB
,
2382 const SmallVectorImpl
<BasicBlock
*> &PredBBs
,
2383 BasicBlock
*SuccBB
) {
2384 assert(SuccBB
!= BB
&& "Don't create an infinite loop");
2386 assert(!LoopHeaders
.count(BB
) && !LoopHeaders
.count(SuccBB
) &&
2387 "Don't thread across loop headers");
2389 // Build BPI/BFI before any changes are made to IR.
2390 bool HasProfile
= doesBlockHaveProfileData(BB
);
2391 auto *BFI
= getOrCreateBFI(HasProfile
);
2392 auto *BPI
= getOrCreateBPI(BFI
!= nullptr);
2394 // And finally, do it! Start by factoring the predecessors if needed.
2396 if (PredBBs
.size() == 1)
2397 PredBB
= PredBBs
[0];
2399 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
2400 << " common predecessors.\n");
2401 PredBB
= splitBlockPreds(BB
, PredBBs
, ".thr_comm");
2404 // And finally, do it!
2405 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB
->getName()
2406 << "' to '" << SuccBB
->getName()
2407 << ", across block:\n " << *BB
<< "\n");
2409 LVI
->threadEdge(PredBB
, BB
, SuccBB
);
2411 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(),
2412 BB
->getName()+".thread",
2413 BB
->getParent(), BB
);
2414 NewBB
->moveAfter(PredBB
);
2416 // Set the block frequency of NewBB.
2418 assert(BPI
&& "It's expected BPI to exist along with BFI");
2420 BFI
->getBlockFreq(PredBB
) * BPI
->getEdgeProbability(PredBB
, BB
);
2421 BFI
->setBlockFreq(NewBB
, NewBBFreq
);
2424 // Copy all the instructions from BB to NewBB except the terminator.
2425 DenseMap
<Instruction
*, Value
*> ValueMapping
=
2426 cloneInstructions(BB
->begin(), std::prev(BB
->end()), NewBB
, PredBB
);
2428 // We didn't copy the terminator from BB over to NewBB, because there is now
2429 // an unconditional jump to SuccBB. Insert the unconditional jump.
2430 BranchInst
*NewBI
= BranchInst::Create(SuccBB
, NewBB
);
2431 NewBI
->setDebugLoc(BB
->getTerminator()->getDebugLoc());
2433 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2434 // PHI nodes for NewBB now.
2435 addPHINodeEntriesForMappedBlock(SuccBB
, BB
, NewBB
, ValueMapping
);
2437 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2438 // eliminates predecessors from BB, which requires us to simplify any PHI
2440 Instruction
*PredTerm
= PredBB
->getTerminator();
2441 for (unsigned i
= 0, e
= PredTerm
->getNumSuccessors(); i
!= e
; ++i
)
2442 if (PredTerm
->getSuccessor(i
) == BB
) {
2443 BB
->removePredecessor(PredBB
, true);
2444 PredTerm
->setSuccessor(i
, NewBB
);
2447 // Enqueue required DT updates.
2448 DTU
->applyUpdatesPermissive({{DominatorTree::Insert
, NewBB
, SuccBB
},
2449 {DominatorTree::Insert
, PredBB
, NewBB
},
2450 {DominatorTree::Delete
, PredBB
, BB
}});
2452 updateSSA(BB
, NewBB
, ValueMapping
);
2454 // At this point, the IR is fully up to date and consistent. Do a quick scan
2455 // over the new instructions and zap any that are constants or dead. This
2456 // frequently happens because of phi translation.
2457 SimplifyInstructionsInBlock(NewBB
, TLI
);
2459 // Update the edge weight from BB to SuccBB, which should be less than before.
2460 updateBlockFreqAndEdgeWeight(PredBB
, BB
, NewBB
, SuccBB
, BFI
, BPI
, HasProfile
);
2462 // Threaded an edge!
2466 /// Create a new basic block that will be the predecessor of BB and successor of
2467 /// all blocks in Preds. When profile data is available, update the frequency of
2469 BasicBlock
*JumpThreadingPass::splitBlockPreds(BasicBlock
*BB
,
2470 ArrayRef
<BasicBlock
*> Preds
,
2471 const char *Suffix
) {
2472 SmallVector
<BasicBlock
*, 2> NewBBs
;
2474 // Collect the frequencies of all predecessors of BB, which will be used to
2475 // update the edge weight of the result of splitting predecessors.
2476 DenseMap
<BasicBlock
*, BlockFrequency
> FreqMap
;
2477 auto *BFI
= getBFI();
2479 auto *BPI
= getOrCreateBPI(true);
2480 for (auto *Pred
: Preds
)
2481 FreqMap
.insert(std::make_pair(
2482 Pred
, BFI
->getBlockFreq(Pred
) * BPI
->getEdgeProbability(Pred
, BB
)));
2485 // In the case when BB is a LandingPad block we create 2 new predecessors
2486 // instead of just one.
2487 if (BB
->isLandingPad()) {
2488 std::string NewName
= std::string(Suffix
) + ".split-lp";
2489 SplitLandingPadPredecessors(BB
, Preds
, Suffix
, NewName
.c_str(), NewBBs
);
2491 NewBBs
.push_back(SplitBlockPredecessors(BB
, Preds
, Suffix
));
2494 std::vector
<DominatorTree::UpdateType
> Updates
;
2495 Updates
.reserve((2 * Preds
.size()) + NewBBs
.size());
2496 for (auto *NewBB
: NewBBs
) {
2497 BlockFrequency
NewBBFreq(0);
2498 Updates
.push_back({DominatorTree::Insert
, NewBB
, BB
});
2499 for (auto *Pred
: predecessors(NewBB
)) {
2500 Updates
.push_back({DominatorTree::Delete
, Pred
, BB
});
2501 Updates
.push_back({DominatorTree::Insert
, Pred
, NewBB
});
2502 if (BFI
) // Update frequencies between Pred -> NewBB.
2503 NewBBFreq
+= FreqMap
.lookup(Pred
);
2505 if (BFI
) // Apply the summed frequency to NewBB.
2506 BFI
->setBlockFreq(NewBB
, NewBBFreq
);
2509 DTU
->applyUpdatesPermissive(Updates
);
2513 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock
*BB
) {
2514 const Instruction
*TI
= BB
->getTerminator();
2515 if (!TI
|| TI
->getNumSuccessors() < 2)
2518 return hasValidBranchWeightMD(*TI
);
2521 /// Update the block frequency of BB and branch weight and the metadata on the
2522 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2523 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2524 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock
*PredBB
,
2528 BlockFrequencyInfo
*BFI
,
2529 BranchProbabilityInfo
*BPI
,
2531 assert(((BFI
&& BPI
) || (!BFI
&& !BFI
)) &&
2532 "Both BFI & BPI should either be set or unset");
2535 assert(!HasProfile
&&
2536 "It's expected to have BFI/BPI when profile info exists");
2540 // As the edge from PredBB to BB is deleted, we have to update the block
2542 auto BBOrigFreq
= BFI
->getBlockFreq(BB
);
2543 auto NewBBFreq
= BFI
->getBlockFreq(NewBB
);
2544 auto BB2SuccBBFreq
= BBOrigFreq
* BPI
->getEdgeProbability(BB
, SuccBB
);
2545 auto BBNewFreq
= BBOrigFreq
- NewBBFreq
;
2546 BFI
->setBlockFreq(BB
, BBNewFreq
);
2548 // Collect updated outgoing edges' frequencies from BB and use them to update
2549 // edge probabilities.
2550 SmallVector
<uint64_t, 4> BBSuccFreq
;
2551 for (BasicBlock
*Succ
: successors(BB
)) {
2552 auto SuccFreq
= (Succ
== SuccBB
)
2553 ? BB2SuccBBFreq
- NewBBFreq
2554 : BBOrigFreq
* BPI
->getEdgeProbability(BB
, Succ
);
2555 BBSuccFreq
.push_back(SuccFreq
.getFrequency());
2558 uint64_t MaxBBSuccFreq
=
2559 *std::max_element(BBSuccFreq
.begin(), BBSuccFreq
.end());
2561 SmallVector
<BranchProbability
, 4> BBSuccProbs
;
2562 if (MaxBBSuccFreq
== 0)
2563 BBSuccProbs
.assign(BBSuccFreq
.size(),
2564 {1, static_cast<unsigned>(BBSuccFreq
.size())});
2566 for (uint64_t Freq
: BBSuccFreq
)
2567 BBSuccProbs
.push_back(
2568 BranchProbability::getBranchProbability(Freq
, MaxBBSuccFreq
));
2569 // Normalize edge probabilities so that they sum up to one.
2570 BranchProbability::normalizeProbabilities(BBSuccProbs
.begin(),
2574 // Update edge probabilities in BPI.
2575 BPI
->setEdgeProbability(BB
, BBSuccProbs
);
2577 // Update the profile metadata as well.
2579 // Don't do this if the profile of the transformed blocks was statically
2580 // estimated. (This could occur despite the function having an entry
2581 // frequency in completely cold parts of the CFG.)
2583 // In this case we don't want to suggest to subsequent passes that the
2584 // calculated weights are fully consistent. Consider this graph:
2599 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2600 // the overall probabilities are inconsistent; the total probability that the
2601 // value is either 1, 2 or 3 is 150%.
2603 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2604 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2605 // the loop exit edge. Then based solely on static estimation we would assume
2606 // the loop was extremely hot.
2608 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2609 // shouldn't make edges extremely likely or unlikely based solely on static
2611 if (BBSuccProbs
.size() >= 2 && HasProfile
) {
2612 SmallVector
<uint32_t, 4> Weights
;
2613 for (auto Prob
: BBSuccProbs
)
2614 Weights
.push_back(Prob
.getNumerator());
2616 auto TI
= BB
->getTerminator();
2617 setBranchWeights(*TI
, Weights
);
2621 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2622 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2623 /// If we can duplicate the contents of BB up into PredBB do so now, this
2624 /// improves the odds that the branch will be on an analyzable instruction like
2626 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2627 BasicBlock
*BB
, const SmallVectorImpl
<BasicBlock
*> &PredBBs
) {
2628 assert(!PredBBs
.empty() && "Can't handle an empty set");
2630 // If BB is a loop header, then duplicating this block outside the loop would
2631 // cause us to transform this into an irreducible loop, don't do this.
2632 // See the comments above findLoopHeaders for justifications and caveats.
2633 if (LoopHeaders
.count(BB
)) {
2634 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB
->getName()
2635 << "' into predecessor block '" << PredBBs
[0]->getName()
2636 << "' - it might create an irreducible loop!\n");
2640 unsigned DuplicationCost
= getJumpThreadDuplicationCost(
2641 TTI
, BB
, BB
->getTerminator(), BBDupThreshold
);
2642 if (DuplicationCost
> BBDupThreshold
) {
2643 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB
->getName()
2644 << "' - Cost is too high: " << DuplicationCost
<< "\n");
2648 // And finally, do it! Start by factoring the predecessors if needed.
2649 std::vector
<DominatorTree::UpdateType
> Updates
;
2651 if (PredBBs
.size() == 1)
2652 PredBB
= PredBBs
[0];
2654 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
2655 << " common predecessors.\n");
2656 PredBB
= splitBlockPreds(BB
, PredBBs
, ".thr_comm");
2658 Updates
.push_back({DominatorTree::Delete
, PredBB
, BB
});
2660 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2662 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB
->getName()
2663 << "' into end of '" << PredBB
->getName()
2664 << "' to eliminate branch on phi. Cost: "
2665 << DuplicationCost
<< " block is:" << *BB
<< "\n");
2667 // Unless PredBB ends with an unconditional branch, split the edge so that we
2668 // can just clone the bits from BB into the end of the new PredBB.
2669 BranchInst
*OldPredBranch
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
2671 if (!OldPredBranch
|| !OldPredBranch
->isUnconditional()) {
2672 BasicBlock
*OldPredBB
= PredBB
;
2673 PredBB
= SplitEdge(OldPredBB
, BB
);
2674 Updates
.push_back({DominatorTree::Insert
, OldPredBB
, PredBB
});
2675 Updates
.push_back({DominatorTree::Insert
, PredBB
, BB
});
2676 Updates
.push_back({DominatorTree::Delete
, OldPredBB
, BB
});
2677 OldPredBranch
= cast
<BranchInst
>(PredBB
->getTerminator());
2680 // We are going to have to map operands from the original BB block into the
2681 // PredBB block. Evaluate PHI nodes in BB.
2682 DenseMap
<Instruction
*, Value
*> ValueMapping
;
2684 BasicBlock::iterator BI
= BB
->begin();
2685 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
2686 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
2687 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2688 // mapping and using it to remap operands in the cloned instructions.
2689 for (; BI
!= BB
->end(); ++BI
) {
2690 Instruction
*New
= BI
->clone();
2691 New
->insertInto(PredBB
, OldPredBranch
->getIterator());
2693 // Remap operands to patch up intra-block references.
2694 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
2695 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
2696 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
2697 if (I
!= ValueMapping
.end())
2698 New
->setOperand(i
, I
->second
);
2701 // If this instruction can be simplified after the operands are updated,
2702 // just use the simplified value instead. This frequently happens due to
2704 if (Value
*IV
= simplifyInstruction(
2706 {BB
->getModule()->getDataLayout(), TLI
, nullptr, nullptr, New
})) {
2707 ValueMapping
[&*BI
] = IV
;
2708 if (!New
->mayHaveSideEffects()) {
2709 New
->eraseFromParent();
2711 // Clone debug-info on the elided instruction to the destination
2713 OldPredBranch
->cloneDebugInfoFrom(&*BI
, std::nullopt
, true);
2716 ValueMapping
[&*BI
] = New
;
2719 // Otherwise, insert the new instruction into the block.
2720 New
->setName(BI
->getName());
2721 // Clone across any debug-info attached to the old instruction.
2722 New
->cloneDebugInfoFrom(&*BI
);
2723 // Update Dominance from simplified New instruction operands.
2724 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
2725 if (BasicBlock
*SuccBB
= dyn_cast
<BasicBlock
>(New
->getOperand(i
)))
2726 Updates
.push_back({DominatorTree::Insert
, PredBB
, SuccBB
});
2730 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2731 // add entries to the PHI nodes for branch from PredBB now.
2732 BranchInst
*BBBranch
= cast
<BranchInst
>(BB
->getTerminator());
2733 addPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(0), BB
, PredBB
,
2735 addPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(1), BB
, PredBB
,
2738 updateSSA(BB
, PredBB
, ValueMapping
);
2740 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2742 BB
->removePredecessor(PredBB
, true);
2744 // Remove the unconditional branch at the end of the PredBB block.
2745 OldPredBranch
->eraseFromParent();
2746 if (auto *BPI
= getBPI())
2747 BPI
->copyEdgeProbabilities(BB
, PredBB
);
2748 DTU
->applyUpdatesPermissive(Updates
);
2754 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2755 // a Select instruction in Pred. BB has other predecessors and SI is used in
2756 // a PHI node in BB. SI has no other use.
2757 // A new basic block, NewBB, is created and SI is converted to compare and
2758 // conditional branch. SI is erased from parent.
2759 void JumpThreadingPass::unfoldSelectInstr(BasicBlock
*Pred
, BasicBlock
*BB
,
2760 SelectInst
*SI
, PHINode
*SIUse
,
2762 // Expand the select.
2771 BranchInst
*PredTerm
= cast
<BranchInst
>(Pred
->getTerminator());
2772 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(), "select.unfold",
2773 BB
->getParent(), BB
);
2774 // Move the unconditional branch to NewBB.
2775 PredTerm
->removeFromParent();
2776 PredTerm
->insertInto(NewBB
, NewBB
->end());
2777 // Create a conditional branch and update PHI nodes.
2778 auto *BI
= BranchInst::Create(NewBB
, BB
, SI
->getCondition(), Pred
);
2779 BI
->applyMergedLocation(PredTerm
->getDebugLoc(), SI
->getDebugLoc());
2780 BI
->copyMetadata(*SI
, {LLVMContext::MD_prof
});
2781 SIUse
->setIncomingValue(Idx
, SI
->getFalseValue());
2782 SIUse
->addIncoming(SI
->getTrueValue(), NewBB
);
2784 uint64_t TrueWeight
= 1;
2785 uint64_t FalseWeight
= 1;
2786 // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2787 if (extractBranchWeights(*SI
, TrueWeight
, FalseWeight
) &&
2788 (TrueWeight
+ FalseWeight
) != 0) {
2789 SmallVector
<BranchProbability
, 2> BP
;
2790 BP
.emplace_back(BranchProbability::getBranchProbability(
2791 TrueWeight
, TrueWeight
+ FalseWeight
));
2792 BP
.emplace_back(BranchProbability::getBranchProbability(
2793 FalseWeight
, TrueWeight
+ FalseWeight
));
2794 // Update BPI if exists.
2795 if (auto *BPI
= getBPI())
2796 BPI
->setEdgeProbability(Pred
, BP
);
2798 // Set the block frequency of NewBB.
2799 if (auto *BFI
= getBFI()) {
2800 if ((TrueWeight
+ FalseWeight
) == 0) {
2804 BranchProbability PredToNewBBProb
= BranchProbability::getBranchProbability(
2805 TrueWeight
, TrueWeight
+ FalseWeight
);
2806 auto NewBBFreq
= BFI
->getBlockFreq(Pred
) * PredToNewBBProb
;
2807 BFI
->setBlockFreq(NewBB
, NewBBFreq
);
2810 // The select is now dead.
2811 SI
->eraseFromParent();
2812 DTU
->applyUpdatesPermissive({{DominatorTree::Insert
, NewBB
, BB
},
2813 {DominatorTree::Insert
, Pred
, NewBB
}});
2815 // Update any other PHI nodes in BB.
2816 for (BasicBlock::iterator BI
= BB
->begin();
2817 PHINode
*Phi
= dyn_cast
<PHINode
>(BI
); ++BI
)
2819 Phi
->addIncoming(Phi
->getIncomingValueForBlock(Pred
), NewBB
);
2822 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst
*SI
, BasicBlock
*BB
) {
2823 PHINode
*CondPHI
= dyn_cast
<PHINode
>(SI
->getCondition());
2825 if (!CondPHI
|| CondPHI
->getParent() != BB
)
2828 for (unsigned I
= 0, E
= CondPHI
->getNumIncomingValues(); I
!= E
; ++I
) {
2829 BasicBlock
*Pred
= CondPHI
->getIncomingBlock(I
);
2830 SelectInst
*PredSI
= dyn_cast
<SelectInst
>(CondPHI
->getIncomingValue(I
));
2832 // The second and third condition can be potentially relaxed. Currently
2833 // the conditions help to simplify the code and allow us to reuse existing
2834 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2835 if (!PredSI
|| PredSI
->getParent() != Pred
|| !PredSI
->hasOneUse())
2838 BranchInst
*PredTerm
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
2839 if (!PredTerm
|| !PredTerm
->isUnconditional())
2842 unfoldSelectInstr(Pred
, BB
, PredSI
, CondPHI
, I
);
2848 /// tryToUnfoldSelect - Look for blocks of the form
2854 /// %p = phi [%a, %bb1] ...
2858 /// And expand the select into a branch structure if one of its arms allows %c
2859 /// to be folded. This later enables threading from bb1 over bb2.
2860 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst
*CondCmp
, BasicBlock
*BB
) {
2861 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
2862 PHINode
*CondLHS
= dyn_cast
<PHINode
>(CondCmp
->getOperand(0));
2863 Constant
*CondRHS
= cast
<Constant
>(CondCmp
->getOperand(1));
2865 if (!CondBr
|| !CondBr
->isConditional() || !CondLHS
||
2866 CondLHS
->getParent() != BB
)
2869 for (unsigned I
= 0, E
= CondLHS
->getNumIncomingValues(); I
!= E
; ++I
) {
2870 BasicBlock
*Pred
= CondLHS
->getIncomingBlock(I
);
2871 SelectInst
*SI
= dyn_cast
<SelectInst
>(CondLHS
->getIncomingValue(I
));
2873 // Look if one of the incoming values is a select in the corresponding
2875 if (!SI
|| SI
->getParent() != Pred
|| !SI
->hasOneUse())
2878 BranchInst
*PredTerm
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
2879 if (!PredTerm
|| !PredTerm
->isUnconditional())
2882 // Now check if one of the select values would allow us to constant fold the
2883 // terminator in BB. We don't do the transform if both sides fold, those
2884 // cases will be threaded in any case.
2885 LazyValueInfo::Tristate LHSFolds
=
2886 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(), SI
->getOperand(1),
2887 CondRHS
, Pred
, BB
, CondCmp
);
2888 LazyValueInfo::Tristate RHSFolds
=
2889 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(), SI
->getOperand(2),
2890 CondRHS
, Pred
, BB
, CondCmp
);
2891 if ((LHSFolds
!= LazyValueInfo::Unknown
||
2892 RHSFolds
!= LazyValueInfo::Unknown
) &&
2893 LHSFolds
!= RHSFolds
) {
2894 unfoldSelectInstr(Pred
, BB
, SI
, CondLHS
, I
);
2901 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2902 /// same BB in the form
2904 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2905 /// %s = select %p, trueval, falseval
2910 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2912 /// %s = select %c, trueval, falseval
2914 /// And expand the select into a branch structure. This later enables
2915 /// jump-threading over bb in this pass.
2917 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2918 /// select if the associated PHI has at least one constant. If the unfolded
2919 /// select is not jump-threaded, it will be folded again in the later
2921 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock
*BB
) {
2922 // This transform would reduce the quality of msan diagnostics.
2923 // Disable this transform under MemorySanitizer.
2924 if (BB
->getParent()->hasFnAttribute(Attribute::SanitizeMemory
))
2927 // If threading this would thread across a loop header, don't thread the edge.
2928 // See the comments above findLoopHeaders for justifications and caveats.
2929 if (LoopHeaders
.count(BB
))
2932 for (BasicBlock::iterator BI
= BB
->begin();
2933 PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
) {
2934 // Look for a Phi having at least one constant incoming value.
2935 if (llvm::all_of(PN
->incoming_values(),
2936 [](Value
*V
) { return !isa
<ConstantInt
>(V
); }))
2939 auto isUnfoldCandidate
= [BB
](SelectInst
*SI
, Value
*V
) {
2940 using namespace PatternMatch
;
2942 // Check if SI is in BB and use V as condition.
2943 if (SI
->getParent() != BB
)
2945 Value
*Cond
= SI
->getCondition();
2946 bool IsAndOr
= match(SI
, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2947 return Cond
&& Cond
== V
&& Cond
->getType()->isIntegerTy(1) && !IsAndOr
;
2950 SelectInst
*SI
= nullptr;
2951 for (Use
&U
: PN
->uses()) {
2952 if (ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(U
.getUser())) {
2953 // Look for a ICmp in BB that compares PN with a constant and is the
2954 // condition of a Select.
2955 if (Cmp
->getParent() == BB
&& Cmp
->hasOneUse() &&
2956 isa
<ConstantInt
>(Cmp
->getOperand(1 - U
.getOperandNo())))
2957 if (SelectInst
*SelectI
= dyn_cast
<SelectInst
>(Cmp
->user_back()))
2958 if (isUnfoldCandidate(SelectI
, Cmp
->use_begin()->get())) {
2962 } else if (SelectInst
*SelectI
= dyn_cast
<SelectInst
>(U
.getUser())) {
2963 // Look for a Select in BB that uses PN as condition.
2964 if (isUnfoldCandidate(SelectI
, U
.get())) {
2973 // Expand the select.
2974 Value
*Cond
= SI
->getCondition();
2975 if (!isGuaranteedNotToBeUndefOrPoison(Cond
, nullptr, SI
))
2976 Cond
= new FreezeInst(Cond
, "cond.fr", SI
);
2977 MDNode
*BranchWeights
= getBranchWeightMDNode(*SI
);
2979 SplitBlockAndInsertIfThen(Cond
, SI
, false, BranchWeights
);
2980 BasicBlock
*SplitBB
= SI
->getParent();
2981 BasicBlock
*NewBB
= Term
->getParent();
2982 PHINode
*NewPN
= PHINode::Create(SI
->getType(), 2, "", SI
);
2983 NewPN
->addIncoming(SI
->getTrueValue(), Term
->getParent());
2984 NewPN
->addIncoming(SI
->getFalseValue(), BB
);
2985 SI
->replaceAllUsesWith(NewPN
);
2986 SI
->eraseFromParent();
2987 // NewBB and SplitBB are newly created blocks which require insertion.
2988 std::vector
<DominatorTree::UpdateType
> Updates
;
2989 Updates
.reserve((2 * SplitBB
->getTerminator()->getNumSuccessors()) + 3);
2990 Updates
.push_back({DominatorTree::Insert
, BB
, SplitBB
});
2991 Updates
.push_back({DominatorTree::Insert
, BB
, NewBB
});
2992 Updates
.push_back({DominatorTree::Insert
, NewBB
, SplitBB
});
2993 // BB's successors were moved to SplitBB, update DTU accordingly.
2994 for (auto *Succ
: successors(SplitBB
)) {
2995 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
2996 Updates
.push_back({DominatorTree::Insert
, SplitBB
, Succ
});
2998 DTU
->applyUpdatesPermissive(Updates
);
3004 /// Try to propagate a guard from the current BB into one of its predecessors
3005 /// in case if another branch of execution implies that the condition of this
3006 /// guard is always true. Currently we only process the simplest case that
3011 /// br i1 %cond, label %T1, label %F1
3017 /// %condGuard = ...
3018 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
3020 /// And cond either implies condGuard or !condGuard. In this case all the
3021 /// instructions before the guard can be duplicated in both branches, and the
3022 /// guard is then threaded to one of them.
3023 bool JumpThreadingPass::processGuards(BasicBlock
*BB
) {
3024 using namespace PatternMatch
;
3026 // We only want to deal with two predecessors.
3027 BasicBlock
*Pred1
, *Pred2
;
3028 auto PI
= pred_begin(BB
), PE
= pred_end(BB
);
3040 // Try to thread one of the guards of the block.
3041 // TODO: Look up deeper than to immediate predecessor?
3042 auto *Parent
= Pred1
->getSinglePredecessor();
3043 if (!Parent
|| Parent
!= Pred2
->getSinglePredecessor())
3046 if (auto *BI
= dyn_cast
<BranchInst
>(Parent
->getTerminator()))
3048 if (isGuard(&I
) && threadGuard(BB
, cast
<IntrinsicInst
>(&I
), BI
))
3054 /// Try to propagate the guard from BB which is the lower block of a diamond
3055 /// to one of its branches, in case if diamond's condition implies guard's
3057 bool JumpThreadingPass::threadGuard(BasicBlock
*BB
, IntrinsicInst
*Guard
,
3059 assert(BI
->getNumSuccessors() == 2 && "Wrong number of successors?");
3060 assert(BI
->isConditional() && "Unconditional branch has 2 successors?");
3061 Value
*GuardCond
= Guard
->getArgOperand(0);
3062 Value
*BranchCond
= BI
->getCondition();
3063 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
3064 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
3066 auto &DL
= BB
->getModule()->getDataLayout();
3067 bool TrueDestIsSafe
= false;
3068 bool FalseDestIsSafe
= false;
3070 // True dest is safe if BranchCond => GuardCond.
3071 auto Impl
= isImpliedCondition(BranchCond
, GuardCond
, DL
);
3073 TrueDestIsSafe
= true;
3075 // False dest is safe if !BranchCond => GuardCond.
3076 Impl
= isImpliedCondition(BranchCond
, GuardCond
, DL
, /* LHSIsTrue */ false);
3078 FalseDestIsSafe
= true;
3081 if (!TrueDestIsSafe
&& !FalseDestIsSafe
)
3084 BasicBlock
*PredUnguardedBlock
= TrueDestIsSafe
? TrueDest
: FalseDest
;
3085 BasicBlock
*PredGuardedBlock
= FalseDestIsSafe
? TrueDest
: FalseDest
;
3087 ValueToValueMapTy UnguardedMapping
, GuardedMapping
;
3088 Instruction
*AfterGuard
= Guard
->getNextNode();
3090 getJumpThreadDuplicationCost(TTI
, BB
, AfterGuard
, BBDupThreshold
);
3091 if (Cost
> BBDupThreshold
)
3093 // Duplicate all instructions before the guard and the guard itself to the
3094 // branch where implication is not proved.
3095 BasicBlock
*GuardedBlock
= DuplicateInstructionsInSplitBetween(
3096 BB
, PredGuardedBlock
, AfterGuard
, GuardedMapping
, *DTU
);
3097 assert(GuardedBlock
&& "Could not create the guarded block?");
3098 // Duplicate all instructions before the guard in the unguarded branch.
3099 // Since we have successfully duplicated the guarded block and this block
3100 // has fewer instructions, we expect it to succeed.
3101 BasicBlock
*UnguardedBlock
= DuplicateInstructionsInSplitBetween(
3102 BB
, PredUnguardedBlock
, Guard
, UnguardedMapping
, *DTU
);
3103 assert(UnguardedBlock
&& "Could not create the unguarded block?");
3104 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard
<< " to block "
3105 << GuardedBlock
->getName() << "\n");
3106 // Some instructions before the guard may still have uses. For them, we need
3107 // to create Phi nodes merging their copies in both guarded and unguarded
3108 // branches. Those instructions that have no uses can be just removed.
3109 SmallVector
<Instruction
*, 4> ToRemove
;
3110 for (auto BI
= BB
->begin(); &*BI
!= AfterGuard
; ++BI
)
3111 if (!isa
<PHINode
>(&*BI
))
3112 ToRemove
.push_back(&*BI
);
3114 BasicBlock::iterator InsertionPoint
= BB
->getFirstInsertionPt();
3115 assert(InsertionPoint
!= BB
->end() && "Empty block?");
3116 // Substitute with Phis & remove.
3117 for (auto *Inst
: reverse(ToRemove
)) {
3118 if (!Inst
->use_empty()) {
3119 PHINode
*NewPN
= PHINode::Create(Inst
->getType(), 2);
3120 NewPN
->addIncoming(UnguardedMapping
[Inst
], UnguardedBlock
);
3121 NewPN
->addIncoming(GuardedMapping
[Inst
], GuardedBlock
);
3122 NewPN
->insertBefore(InsertionPoint
);
3123 Inst
->replaceAllUsesWith(NewPN
);
3125 Inst
->dropDbgValues();
3126 Inst
->eraseFromParent();
3131 PreservedAnalyses
JumpThreadingPass::getPreservedAnalysis() const {
3132 PreservedAnalyses PA
;
3133 PA
.preserve
<LazyValueAnalysis
>();
3134 PA
.preserve
<DominatorTreeAnalysis
>();
3136 // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
3137 // TODO: Would be nice to verify BPI/BFI consistency as well.
3141 template <typename AnalysisT
>
3142 typename
AnalysisT::Result
*JumpThreadingPass::runExternalAnalysis() {
3143 assert(FAM
&& "Can't run external analysis without FunctionAnalysisManager");
3145 // If there were no changes since last call to 'runExternalAnalysis' then all
3146 // analysis is either up to date or explicitly invalidated. Just go ahead and
3147 // run the "external" analysis.
3148 if (!ChangedSinceLastAnalysisUpdate
) {
3149 assert(!DTU
->hasPendingUpdates() &&
3150 "Lost update of 'ChangedSinceLastAnalysisUpdate'?");
3151 // Run the "external" analysis.
3152 return &FAM
->getResult
<AnalysisT
>(*F
);
3154 ChangedSinceLastAnalysisUpdate
= false;
3156 auto PA
= getPreservedAnalysis();
3157 // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
3159 PA
.preserve
<BranchProbabilityAnalysis
>();
3160 PA
.preserve
<BlockFrequencyAnalysis
>();
3161 // Report everything except explicitly preserved as invalid.
3162 FAM
->invalidate(*F
, PA
);
3165 // Make sure DT/PDT are valid before running "external" analysis.
3166 assert(DTU
->getDomTree().verify(DominatorTree::VerificationLevel::Fast
));
3167 assert((!DTU
->hasPostDomTree() ||
3168 DTU
->getPostDomTree().verify(
3169 PostDominatorTree::VerificationLevel::Fast
)));
3170 // Run the "external" analysis.
3171 auto *Result
= &FAM
->getResult
<AnalysisT
>(*F
);
3172 // Update analysis JumpThreading depends on and not explicitly preserved.
3173 TTI
= &FAM
->getResult
<TargetIRAnalysis
>(*F
);
3174 TLI
= &FAM
->getResult
<TargetLibraryAnalysis
>(*F
);
3175 AA
= &FAM
->getResult
<AAManager
>(*F
);
3180 BranchProbabilityInfo
*JumpThreadingPass::getBPI() {
3182 assert(FAM
&& "Can't create BPI without FunctionAnalysisManager");
3183 BPI
= FAM
->getCachedResult
<BranchProbabilityAnalysis
>(*F
);
3188 BlockFrequencyInfo
*JumpThreadingPass::getBFI() {
3190 assert(FAM
&& "Can't create BFI without FunctionAnalysisManager");
3191 BFI
= FAM
->getCachedResult
<BlockFrequencyAnalysis
>(*F
);
3196 // Important note on validity of BPI/BFI. JumpThreading tries to preserve
3197 // BPI/BFI as it goes. Thus if cached instance exists it will be updated.
3198 // Otherwise, new instance of BPI/BFI is created (up to date by definition).
3199 BranchProbabilityInfo
*JumpThreadingPass::getOrCreateBPI(bool Force
) {
3200 auto *Res
= getBPI();
3205 BPI
= runExternalAnalysis
<BranchProbabilityAnalysis
>();
3210 BlockFrequencyInfo
*JumpThreadingPass::getOrCreateBFI(bool Force
) {
3211 auto *Res
= getBFI();
3216 BFI
= runExternalAnalysis
<BlockFrequencyAnalysis
>();