[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopFlatten.cpp
blob533cefaf1061331dae6f624d41fa159950d9920a
1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
14 // for (int i = 0; i < N; ++i)
15 // for (int j = 0; j < M; ++j)
16 // f(A[i*M+j]);
18 // into one loop:
20 // for (int i = 0; i < (N*M); ++i)
21 // f(A[i]);
23 // It can also flatten loops where the induction variables are not used in the
24 // loop. This is only worth doing if the induction variables are only used in an
25 // expression like i*M+j. If they had any other uses, we would have to insert a
26 // div/mod to reconstruct the original values, so this wouldn't be profitable.
28 // We also need to prove that N*M will not overflow. The preferred solution is
29 // to widen the IV, which avoids overflow checks, so that is tried first. If
30 // the IV cannot be widened, then we try to determine that this new tripcount
31 // expression won't overflow.
33 // Q: Does LoopFlatten use SCEV?
34 // Short answer: Yes and no.
36 // Long answer:
37 // For this transformation to be valid, we require all uses of the induction
38 // variables to be linear expressions of the form i*M+j. The different Loop
39 // APIs are used to get some loop components like the induction variable,
40 // compare statement, etc. In addition, we do some pattern matching to find the
41 // linear expressions and other loop components like the loop increment. The
42 // latter are examples of expressions that do use the induction variable, but
43 // are safe to ignore when we check all uses to be of the form i*M+j. We keep
44 // track of all of this in bookkeeping struct FlattenInfo.
45 // We assume the loops to be canonical, i.e. starting at 0 and increment with
46 // 1. This makes RHS of the compare the loop tripcount (with the right
47 // predicate). We use SCEV to then sanity check that this tripcount matches
48 // with the tripcount as computed by SCEV.
50 //===----------------------------------------------------------------------===//
52 #include "llvm/Transforms/Scalar/LoopFlatten.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AssumptionCache.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/LoopNestAnalysis.h"
58 #include "llvm/Analysis/MemorySSAUpdater.h"
59 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/Scalar/LoopPassManager.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/LoopUtils.h"
73 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
74 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
75 #include <optional>
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
80 #define DEBUG_TYPE "loop-flatten"
82 STATISTIC(NumFlattened, "Number of loops flattened");
84 static cl::opt<unsigned> RepeatedInstructionThreshold(
85 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
86 cl::desc("Limit on the cost of instructions that can be repeated due to "
87 "loop flattening"));
89 static cl::opt<bool>
90 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
91 cl::init(false),
92 cl::desc("Assume that the product of the two iteration "
93 "trip counts will never overflow"));
95 static cl::opt<bool>
96 WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true),
97 cl::desc("Widen the loop induction variables, if possible, so "
98 "overflow checks won't reject flattening"));
100 namespace {
101 // We require all uses of both induction variables to match this pattern:
103 // (OuterPHI * InnerTripCount) + InnerPHI
105 // I.e., it needs to be a linear expression of the induction variables and the
106 // inner loop trip count. We keep track of all different expressions on which
107 // checks will be performed in this bookkeeping struct.
109 struct FlattenInfo {
110 Loop *OuterLoop = nullptr; // The loop pair to be flattened.
111 Loop *InnerLoop = nullptr;
113 PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop
114 PHINode *OuterInductionPHI = nullptr; // induction variables, which are
115 // expected to start at zero and
116 // increment by one on each loop.
118 Value *InnerTripCount = nullptr; // The product of these two tripcounts
119 Value *OuterTripCount = nullptr; // will be the new flattened loop
120 // tripcount. Also used to recognise a
121 // linear expression that will be replaced.
123 SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions
124 // of the form i*M+j that will be
125 // replaced.
127 BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in
128 BinaryOperator *OuterIncrement = nullptr; // loop control statements that
129 BranchInst *InnerBranch = nullptr; // are safe to ignore.
131 BranchInst *OuterBranch = nullptr; // The instruction that needs to be
132 // updated with new tripcount.
134 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
136 bool Widened = false; // Whether this holds the flatten info before or after
137 // widening.
139 PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction
140 PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV
141 // has been applied. Used to skip
142 // checks on phi nodes.
144 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){};
146 bool isNarrowInductionPhi(PHINode *Phi) {
147 // This can't be the narrow phi if we haven't widened the IV first.
148 if (!Widened)
149 return false;
150 return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi;
152 bool isInnerLoopIncrement(User *U) {
153 return InnerIncrement == U;
155 bool isOuterLoopIncrement(User *U) {
156 return OuterIncrement == U;
158 bool isInnerLoopTest(User *U) {
159 return InnerBranch->getCondition() == U;
162 bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
163 for (User *U : OuterInductionPHI->users()) {
164 if (isOuterLoopIncrement(U))
165 continue;
167 auto IsValidOuterPHIUses = [&] (User *U) -> bool {
168 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
169 if (!ValidOuterPHIUses.count(U)) {
170 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
171 return false;
173 LLVM_DEBUG(dbgs() << "Use is optimisable\n");
174 return true;
177 if (auto *V = dyn_cast<TruncInst>(U)) {
178 for (auto *K : V->users()) {
179 if (!IsValidOuterPHIUses(K))
180 return false;
182 continue;
185 if (!IsValidOuterPHIUses(U))
186 return false;
188 return true;
191 bool matchLinearIVUser(User *U, Value *InnerTripCount,
192 SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
193 LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump());
194 Value *MatchedMul = nullptr;
195 Value *MatchedItCount = nullptr;
197 bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI),
198 m_Value(MatchedMul))) &&
199 match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
200 m_Value(MatchedItCount)));
202 // Matches the same pattern as above, except it also looks for truncs
203 // on the phi, which can be the result of widening the induction variables.
204 bool IsAddTrunc =
205 match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)),
206 m_Value(MatchedMul))) &&
207 match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)),
208 m_Value(MatchedItCount)));
210 // Matches the pattern ptr+i*M+j, with the two additions being done via GEP.
211 bool IsGEP = match(U, m_GEP(m_GEP(m_Value(), m_Value(MatchedMul)),
212 m_Specific(InnerInductionPHI))) &&
213 match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
214 m_Value(MatchedItCount)));
216 if (!MatchedItCount)
217 return false;
219 LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump());
220 LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump());
222 // The mul should not have any other uses. Widening may leave trivially dead
223 // uses, which can be ignored.
224 if (count_if(MatchedMul->users(), [](User *U) {
225 return !isInstructionTriviallyDead(cast<Instruction>(U));
226 }) > 1) {
227 LLVM_DEBUG(dbgs() << "Multiply has more than one use\n");
228 return false;
231 // Look through extends if the IV has been widened. Don't look through
232 // extends if we already looked through a trunc.
233 if (Widened && (IsAdd || IsGEP) &&
234 (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
235 assert(MatchedItCount->getType() == InnerInductionPHI->getType() &&
236 "Unexpected type mismatch in types after widening");
237 MatchedItCount = isa<SExtInst>(MatchedItCount)
238 ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
239 : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
242 LLVM_DEBUG(dbgs() << "Looking for inner trip count: ";
243 InnerTripCount->dump());
245 if ((IsAdd || IsAddTrunc || IsGEP) && MatchedItCount == InnerTripCount) {
246 LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n");
247 ValidOuterPHIUses.insert(MatchedMul);
248 LinearIVUses.insert(U);
249 return true;
252 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
253 return false;
256 bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
257 Value *SExtInnerTripCount = InnerTripCount;
258 if (Widened &&
259 (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
260 SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
262 for (User *U : InnerInductionPHI->users()) {
263 LLVM_DEBUG(dbgs() << "Checking User: "; U->dump());
264 if (isInnerLoopIncrement(U)) {
265 LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n");
266 continue;
269 // After widening the IVs, a trunc instruction might have been introduced,
270 // so look through truncs.
271 if (isa<TruncInst>(U)) {
272 if (!U->hasOneUse())
273 return false;
274 U = *U->user_begin();
277 // If the use is in the compare (which is also the condition of the inner
278 // branch) then the compare has been altered by another transformation e.g
279 // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
280 // a constant. Ignore this use as the compare gets removed later anyway.
281 if (isInnerLoopTest(U)) {
282 LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n");
283 continue;
286 if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) {
287 LLVM_DEBUG(dbgs() << "Not a linear IV user\n");
288 return false;
290 LLVM_DEBUG(dbgs() << "Linear IV users found!\n");
292 return true;
295 } // namespace
297 static bool
298 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
299 SmallPtrSetImpl<Instruction *> &IterationInstructions) {
300 TripCount = TC;
301 IterationInstructions.insert(Increment);
302 LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
303 LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
304 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
305 return true;
308 // Given the RHS of the loop latch compare instruction, verify with SCEV
309 // that this is indeed the loop tripcount.
310 // TODO: This used to be a straightforward check but has grown to be quite
311 // complicated now. It is therefore worth revisiting what the additional
312 // benefits are of this (compared to relying on canonical loops and pattern
313 // matching).
314 static bool verifyTripCount(Value *RHS, Loop *L,
315 SmallPtrSetImpl<Instruction *> &IterationInstructions,
316 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
317 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
318 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
319 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
320 LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
321 return false;
324 // Evaluating in the trip count's type can not overflow here as the overflow
325 // checks are performed in checkOverflow, but are first tried to avoid by
326 // widening the IV.
327 const SCEV *SCEVTripCount =
328 SE->getTripCountFromExitCount(BackedgeTakenCount,
329 BackedgeTakenCount->getType(), L);
331 const SCEV *SCEVRHS = SE->getSCEV(RHS);
332 if (SCEVRHS == SCEVTripCount)
333 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
334 ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
335 if (ConstantRHS) {
336 const SCEV *BackedgeTCExt = nullptr;
337 if (IsWidened) {
338 const SCEV *SCEVTripCountExt;
339 // Find the extended backedge taken count and extended trip count using
340 // SCEV. One of these should now match the RHS of the compare.
341 BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
342 SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt,
343 RHS->getType(), L);
344 if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
345 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
346 return false;
349 // If the RHS of the compare is equal to the backedge taken count we need
350 // to add one to get the trip count.
351 if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
352 Value *NewRHS = ConstantInt::get(ConstantRHS->getContext(),
353 ConstantRHS->getValue() + 1);
354 return setLoopComponents(NewRHS, TripCount, Increment,
355 IterationInstructions);
357 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
359 // If the RHS isn't a constant then check that the reason it doesn't match
360 // the SCEV trip count is because the RHS is a ZExt or SExt instruction
361 // (and take the trip count to be the RHS).
362 if (!IsWidened) {
363 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
364 return false;
366 auto *TripCountInst = dyn_cast<Instruction>(RHS);
367 if (!TripCountInst) {
368 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
369 return false;
371 if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
372 SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
373 LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
374 return false;
376 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
379 // Finds the induction variable, increment and trip count for a simple loop that
380 // we can flatten.
381 static bool findLoopComponents(
382 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
383 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
384 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
385 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
387 if (!L->isLoopSimplifyForm()) {
388 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
389 return false;
392 // Currently, to simplify the implementation, the Loop induction variable must
393 // start at zero and increment with a step size of one.
394 if (!L->isCanonical(*SE)) {
395 LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
396 return false;
399 // There must be exactly one exiting block, and it must be the same at the
400 // latch.
401 BasicBlock *Latch = L->getLoopLatch();
402 if (L->getExitingBlock() != Latch) {
403 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
404 return false;
407 // Find the induction PHI. If there is no induction PHI, we can't do the
408 // transformation. TODO: could other variables trigger this? Do we have to
409 // search for the best one?
410 InductionPHI = L->getInductionVariable(*SE);
411 if (!InductionPHI) {
412 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
413 return false;
415 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
417 bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
418 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
419 if (ContinueOnTrue)
420 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
421 else
422 return Pred == CmpInst::ICMP_EQ;
425 // Find Compare and make sure it is valid. getLatchCmpInst checks that the
426 // back branch of the latch is conditional.
427 ICmpInst *Compare = L->getLatchCmpInst();
428 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
429 Compare->hasNUsesOrMore(2)) {
430 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
431 return false;
433 BackBranch = cast<BranchInst>(Latch->getTerminator());
434 IterationInstructions.insert(BackBranch);
435 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
436 IterationInstructions.insert(Compare);
437 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
439 // Find increment and trip count.
440 // There are exactly 2 incoming values to the induction phi; one from the
441 // pre-header and one from the latch. The incoming latch value is the
442 // increment variable.
443 Increment =
444 cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
445 if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) &&
446 !Increment->hasNUses(1)) {
447 LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
448 return false;
450 // The trip count is the RHS of the compare. If this doesn't match the trip
451 // count computed by SCEV then this is because the trip count variable
452 // has been widened so the types don't match, or because it is a constant and
453 // another transformation has changed the compare (e.g. icmp ult %inc,
454 // tripcount -> icmp ult %j, tripcount-1), or both.
455 Value *RHS = Compare->getOperand(1);
457 return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount,
458 Increment, BackBranch, SE, IsWidened);
461 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
462 // All PHIs in the inner and outer headers must either be:
463 // - The induction PHI, which we are going to rewrite as one induction in
464 // the new loop. This is already checked by findLoopComponents.
465 // - An outer header PHI with all incoming values from outside the loop.
466 // LoopSimplify guarantees we have a pre-header, so we don't need to
467 // worry about that here.
468 // - Pairs of PHIs in the inner and outer headers, which implement a
469 // loop-carried dependency that will still be valid in the new loop. To
470 // be valid, this variable must be modified only in the inner loop.
472 // The set of PHI nodes in the outer loop header that we know will still be
473 // valid after the transformation. These will not need to be modified (with
474 // the exception of the induction variable), but we do need to check that
475 // there are no unsafe PHI nodes.
476 SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
477 SafeOuterPHIs.insert(FI.OuterInductionPHI);
479 // Check that all PHI nodes in the inner loop header match one of the valid
480 // patterns.
481 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
482 // The induction PHIs break these rules, and that's OK because we treat
483 // them specially when doing the transformation.
484 if (&InnerPHI == FI.InnerInductionPHI)
485 continue;
486 if (FI.isNarrowInductionPhi(&InnerPHI))
487 continue;
489 // Each inner loop PHI node must have two incoming values/blocks - one
490 // from the pre-header, and one from the latch.
491 assert(InnerPHI.getNumIncomingValues() == 2);
492 Value *PreHeaderValue =
493 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
494 Value *LatchValue =
495 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
497 // The incoming value from the outer loop must be the PHI node in the
498 // outer loop header, with no modifications made in the top of the outer
499 // loop.
500 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
501 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
502 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
503 return false;
506 // The other incoming value must come from the inner loop, without any
507 // modifications in the tail end of the outer loop. We are in LCSSA form,
508 // so this will actually be a PHI in the inner loop's exit block, which
509 // only uses values from inside the inner loop.
510 PHINode *LCSSAPHI = dyn_cast<PHINode>(
511 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
512 if (!LCSSAPHI) {
513 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
514 return false;
517 // The value used by the LCSSA PHI must be the same one that the inner
518 // loop's PHI uses.
519 if (LCSSAPHI->hasConstantValue() != LatchValue) {
520 LLVM_DEBUG(
521 dbgs() << "LCSSA PHI incoming value does not match latch value\n");
522 return false;
525 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
526 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump());
527 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump());
528 SafeOuterPHIs.insert(OuterPHI);
529 FI.InnerPHIsToTransform.insert(&InnerPHI);
532 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
533 if (FI.isNarrowInductionPhi(&OuterPHI))
534 continue;
535 if (!SafeOuterPHIs.count(&OuterPHI)) {
536 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
537 return false;
541 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
542 return true;
545 static bool
546 checkOuterLoopInsts(FlattenInfo &FI,
547 SmallPtrSetImpl<Instruction *> &IterationInstructions,
548 const TargetTransformInfo *TTI) {
549 // Check for instructions in the outer but not inner loop. If any of these
550 // have side-effects then this transformation is not legal, and if there is
551 // a significant amount of code here which can't be optimised out that it's
552 // not profitable (as these instructions would get executed for each
553 // iteration of the inner loop).
554 InstructionCost RepeatedInstrCost = 0;
555 for (auto *B : FI.OuterLoop->getBlocks()) {
556 if (FI.InnerLoop->contains(B))
557 continue;
559 for (auto &I : *B) {
560 if (!isa<PHINode>(&I) && !I.isTerminator() &&
561 !isSafeToSpeculativelyExecute(&I)) {
562 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
563 "side effects: ";
564 I.dump());
565 return false;
567 // The execution count of the outer loop's iteration instructions
568 // (increment, compare and branch) will be increased, but the
569 // equivalent instructions will be removed from the inner loop, so
570 // they make a net difference of zero.
571 if (IterationInstructions.count(&I))
572 continue;
573 // The unconditional branch to the inner loop's header will turn into
574 // a fall-through, so adds no cost.
575 BranchInst *Br = dyn_cast<BranchInst>(&I);
576 if (Br && Br->isUnconditional() &&
577 Br->getSuccessor(0) == FI.InnerLoop->getHeader())
578 continue;
579 // Multiplies of the outer iteration variable and inner iteration
580 // count will be optimised out.
581 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
582 m_Specific(FI.InnerTripCount))))
583 continue;
584 InstructionCost Cost =
585 TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
586 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
587 RepeatedInstrCost += Cost;
591 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
592 << RepeatedInstrCost << "\n");
593 // Bail out if flattening the loops would cause instructions in the outer
594 // loop but not in the inner loop to be executed extra times.
595 if (RepeatedInstrCost > RepeatedInstructionThreshold) {
596 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
597 return false;
600 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
601 return true;
606 // We require all uses of both induction variables to match this pattern:
608 // (OuterPHI * InnerTripCount) + InnerPHI
610 // Any uses of the induction variables not matching that pattern would
611 // require a div/mod to reconstruct in the flattened loop, so the
612 // transformation wouldn't be profitable.
613 static bool checkIVUsers(FlattenInfo &FI) {
614 // Check that all uses of the inner loop's induction variable match the
615 // expected pattern, recording the uses of the outer IV.
616 SmallPtrSet<Value *, 4> ValidOuterPHIUses;
617 if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses))
618 return false;
620 // Check that there are no uses of the outer IV other than the ones found
621 // as part of the pattern above.
622 if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses))
623 return false;
625 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
626 dbgs() << "Found " << FI.LinearIVUses.size()
627 << " value(s) that can be replaced:\n";
628 for (Value *V : FI.LinearIVUses) {
629 dbgs() << " ";
630 V->dump();
632 return true;
635 // Return an OverflowResult dependant on if overflow of the multiplication of
636 // InnerTripCount and OuterTripCount can be assumed not to happen.
637 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
638 AssumptionCache *AC) {
639 Function *F = FI.OuterLoop->getHeader()->getParent();
640 const DataLayout &DL = F->getParent()->getDataLayout();
642 // For debugging/testing.
643 if (AssumeNoOverflow)
644 return OverflowResult::NeverOverflows;
646 // Check if the multiply could not overflow due to known ranges of the
647 // input values.
648 OverflowResult OR = computeOverflowForUnsignedMul(
649 FI.InnerTripCount, FI.OuterTripCount,
650 SimplifyQuery(DL, DT, AC,
651 FI.OuterLoop->getLoopPreheader()->getTerminator()));
652 if (OR != OverflowResult::MayOverflow)
653 return OR;
655 auto CheckGEP = [&](GetElementPtrInst *GEP, Value *GEPOperand) {
656 for (Value *GEPUser : GEP->users()) {
657 auto *GEPUserInst = cast<Instruction>(GEPUser);
658 if (!isa<LoadInst>(GEPUserInst) &&
659 !(isa<StoreInst>(GEPUserInst) && GEP == GEPUserInst->getOperand(1)))
660 continue;
661 if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, FI.InnerLoop))
662 continue;
663 // The IV is used as the operand of a GEP which dominates the loop
664 // latch, and the IV is at least as wide as the address space of the
665 // GEP. In this case, the GEP would wrap around the address space
666 // before the IV increment wraps, which would be UB.
667 if (GEP->isInBounds() &&
668 GEPOperand->getType()->getIntegerBitWidth() >=
669 DL.getPointerTypeSizeInBits(GEP->getType())) {
670 LLVM_DEBUG(
671 dbgs() << "use of linear IV would be UB if overflow occurred: ";
672 GEP->dump());
673 return true;
676 return false;
679 // Check if any IV user is, or is used by, a GEP that would cause UB if the
680 // multiply overflows.
681 for (Value *V : FI.LinearIVUses) {
682 if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
683 if (GEP->getNumIndices() == 1 && CheckGEP(GEP, GEP->getOperand(1)))
684 return OverflowResult::NeverOverflows;
685 for (Value *U : V->users())
686 if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
687 if (CheckGEP(GEP, V))
688 return OverflowResult::NeverOverflows;
691 return OverflowResult::MayOverflow;
694 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
695 ScalarEvolution *SE, AssumptionCache *AC,
696 const TargetTransformInfo *TTI) {
697 SmallPtrSet<Instruction *, 8> IterationInstructions;
698 if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
699 FI.InnerInductionPHI, FI.InnerTripCount,
700 FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
701 return false;
702 if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
703 FI.OuterInductionPHI, FI.OuterTripCount,
704 FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
705 return false;
707 // Both of the loop trip count values must be invariant in the outer loop
708 // (non-instructions are all inherently invariant).
709 if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
710 LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
711 return false;
713 if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
714 LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
715 return false;
718 if (!checkPHIs(FI, TTI))
719 return false;
721 // FIXME: it should be possible to handle different types correctly.
722 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
723 return false;
725 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
726 return false;
728 // Find the values in the loop that can be replaced with the linearized
729 // induction variable, and check that there are no other uses of the inner
730 // or outer induction variable. If there were, we could still do this
731 // transformation, but we'd have to insert a div/mod to calculate the
732 // original IVs, so it wouldn't be profitable.
733 if (!checkIVUsers(FI))
734 return false;
736 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
737 return true;
740 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
741 ScalarEvolution *SE, AssumptionCache *AC,
742 const TargetTransformInfo *TTI, LPMUpdater *U,
743 MemorySSAUpdater *MSSAU) {
744 Function *F = FI.OuterLoop->getHeader()->getParent();
745 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
747 using namespace ore;
748 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
749 FI.InnerLoop->getHeader());
750 OptimizationRemarkEmitter ORE(F);
751 Remark << "Flattened into outer loop";
752 ORE.emit(Remark);
755 Value *NewTripCount = BinaryOperator::CreateMul(
756 FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
757 FI.OuterLoop->getLoopPreheader()->getTerminator());
758 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
759 NewTripCount->dump());
761 // Fix up PHI nodes that take values from the inner loop back-edge, which
762 // we are about to remove.
763 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
765 // The old Phi will be optimised away later, but for now we can't leave
766 // leave it in an invalid state, so are updating them too.
767 for (PHINode *PHI : FI.InnerPHIsToTransform)
768 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
770 // Modify the trip count of the outer loop to be the product of the two
771 // trip counts.
772 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
774 // Replace the inner loop backedge with an unconditional branch to the exit.
775 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
776 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
777 InnerExitingBlock->getTerminator()->eraseFromParent();
778 BranchInst::Create(InnerExitBlock, InnerExitingBlock);
780 // Update the DomTree and MemorySSA.
781 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
782 if (MSSAU)
783 MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
785 // Replace all uses of the polynomial calculated from the two induction
786 // variables with the one new one.
787 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
788 for (Value *V : FI.LinearIVUses) {
789 Value *OuterValue = FI.OuterInductionPHI;
790 if (FI.Widened)
791 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
792 "flatten.trunciv");
794 if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
795 // Replace the GEP with one that uses OuterValue as the offset.
796 auto *InnerGEP = cast<GetElementPtrInst>(GEP->getOperand(0));
797 Value *Base = InnerGEP->getOperand(0);
798 // When the base of the GEP doesn't dominate the outer induction phi then
799 // we need to insert the new GEP where the old GEP was.
800 if (!DT->dominates(Base, &*Builder.GetInsertPoint()))
801 Builder.SetInsertPoint(cast<Instruction>(V));
802 OuterValue = Builder.CreateGEP(GEP->getSourceElementType(), Base,
803 OuterValue, "flatten." + V->getName());
806 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: ";
807 OuterValue->dump());
808 V->replaceAllUsesWith(OuterValue);
811 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
812 // deleted, and invalidate any outer loop information.
813 SE->forgetLoop(FI.OuterLoop);
814 SE->forgetBlockAndLoopDispositions();
815 if (U)
816 U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName());
817 LI->erase(FI.InnerLoop);
819 // Increment statistic value.
820 NumFlattened++;
822 return true;
825 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
826 ScalarEvolution *SE, AssumptionCache *AC,
827 const TargetTransformInfo *TTI) {
828 if (!WidenIV) {
829 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
830 return false;
833 LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
834 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
835 auto &DL = M->getDataLayout();
836 auto *InnerType = FI.InnerInductionPHI->getType();
837 auto *OuterType = FI.OuterInductionPHI->getType();
838 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
839 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
841 // If both induction types are less than the maximum legal integer width,
842 // promote both to the widest type available so we know calculating
843 // (OuterTripCount * InnerTripCount) as the new trip count is safe.
844 if (InnerType != OuterType ||
845 InnerType->getScalarSizeInBits() >= MaxLegalSize ||
846 MaxLegalType->getScalarSizeInBits() <
847 InnerType->getScalarSizeInBits() * 2) {
848 LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
849 return false;
852 SCEVExpander Rewriter(*SE, DL, "loopflatten");
853 SmallVector<WeakTrackingVH, 4> DeadInsts;
854 unsigned ElimExt = 0;
855 unsigned Widened = 0;
857 auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool {
858 PHINode *WidePhi =
859 createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened,
860 true /* HasGuards */, true /* UsePostIncrementRanges */);
861 if (!WidePhi)
862 return false;
863 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
864 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
865 Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
866 return true;
869 bool Deleted;
870 if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted))
871 return false;
872 // Add the narrow phi to list, so that it will be adjusted later when the
873 // the transformation is performed.
874 if (!Deleted)
875 FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI);
877 if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted))
878 return false;
880 assert(Widened && "Widened IV expected");
881 FI.Widened = true;
883 // Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
884 FI.NarrowInnerInductionPHI = FI.InnerInductionPHI;
885 FI.NarrowOuterInductionPHI = FI.OuterInductionPHI;
887 // After widening, rediscover all the loop components.
888 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
891 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
892 ScalarEvolution *SE, AssumptionCache *AC,
893 const TargetTransformInfo *TTI, LPMUpdater *U,
894 MemorySSAUpdater *MSSAU) {
895 LLVM_DEBUG(
896 dbgs() << "Loop flattening running on outer loop "
897 << FI.OuterLoop->getHeader()->getName() << " and inner loop "
898 << FI.InnerLoop->getHeader()->getName() << " in "
899 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
901 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
902 return false;
904 // Check if we can widen the induction variables to avoid overflow checks.
905 bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI);
907 // It can happen that after widening of the IV, flattening may not be
908 // possible/happening, e.g. when it is deemed unprofitable. So bail here if
909 // that is the case.
910 // TODO: IV widening without performing the actual flattening transformation
911 // is not ideal. While this codegen change should not matter much, it is an
912 // unnecessary change which is better to avoid. It's unlikely this happens
913 // often, because if it's unprofitibale after widening, it should be
914 // unprofitabe before widening as checked in the first round of checks. But
915 // 'RepeatedInstructionThreshold' is set to only 2, which can probably be
916 // relaxed. Because this is making a code change (the IV widening, but not
917 // the flattening), we return true here.
918 if (FI.Widened && !CanFlatten)
919 return true;
921 // If we have widened and can perform the transformation, do that here.
922 if (CanFlatten)
923 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
925 // Otherwise, if we haven't widened the IV, check if the new iteration
926 // variable might overflow. In this case, we need to version the loop, and
927 // select the original version at runtime if the iteration space is too
928 // large.
929 // TODO: We currently don't version the loop.
930 OverflowResult OR = checkOverflow(FI, DT, AC);
931 if (OR == OverflowResult::AlwaysOverflowsHigh ||
932 OR == OverflowResult::AlwaysOverflowsLow) {
933 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
934 return false;
935 } else if (OR == OverflowResult::MayOverflow) {
936 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
937 return false;
940 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
941 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
944 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
945 LoopStandardAnalysisResults &AR,
946 LPMUpdater &U) {
948 bool Changed = false;
950 std::optional<MemorySSAUpdater> MSSAU;
951 if (AR.MSSA) {
952 MSSAU = MemorySSAUpdater(AR.MSSA);
953 if (VerifyMemorySSA)
954 AR.MSSA->verifyMemorySSA();
957 // The loop flattening pass requires loops to be
958 // in simplified form, and also needs LCSSA. Running
959 // this pass will simplify all loops that contain inner loops,
960 // regardless of whether anything ends up being flattened.
961 for (Loop *InnerLoop : LN.getLoops()) {
962 auto *OuterLoop = InnerLoop->getParentLoop();
963 if (!OuterLoop)
964 continue;
965 FlattenInfo FI(OuterLoop, InnerLoop);
966 Changed |= FlattenLoopPair(FI, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U,
967 MSSAU ? &*MSSAU : nullptr);
970 if (!Changed)
971 return PreservedAnalyses::all();
973 if (AR.MSSA && VerifyMemorySSA)
974 AR.MSSA->verifyMemorySSA();
976 auto PA = getLoopPassPreservedAnalyses();
977 if (AR.MSSA)
978 PA.preserve<MemorySSAAnalysis>();
979 return PA;