[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopLoadElimination.cpp
blob5ec387300aac7f2dff7b2a16c0cda8c78a427e59
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implement a loop-aware load elimination pass.
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads. These form the candidates for the
13 // transformation. The source value of each store then propagated to the user
14 // of the corresponding load. This makes the load dead.
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
18 // load.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/BlockFrequencyInfo.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
34 #include "llvm/Analysis/LoopAccessAnalysis.h"
35 #include "llvm/Analysis/LoopAnalysisManager.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Utils.h"
54 #include "llvm/Transforms/Utils/LoopSimplify.h"
55 #include "llvm/Transforms/Utils/LoopVersioning.h"
56 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
57 #include "llvm/Transforms/Utils/SizeOpts.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <forward_list>
61 #include <tuple>
62 #include <utility>
64 using namespace llvm;
66 #define LLE_OPTION "loop-load-elim"
67 #define DEBUG_TYPE LLE_OPTION
69 static cl::opt<unsigned> CheckPerElim(
70 "runtime-check-per-loop-load-elim", cl::Hidden,
71 cl::desc("Max number of memchecks allowed per eliminated load on average"),
72 cl::init(1));
74 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
75 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
76 cl::desc("The maximum number of SCEV checks allowed for Loop "
77 "Load Elimination"));
79 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
81 namespace {
83 /// Represent a store-to-forwarding candidate.
84 struct StoreToLoadForwardingCandidate {
85 LoadInst *Load;
86 StoreInst *Store;
88 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
89 : Load(Load), Store(Store) {}
91 /// Return true if the dependence from the store to the load has an
92 /// absolute distance of one.
93 /// E.g. A[i+1] = A[i] (or A[i-1] = A[i] for descending loop)
94 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
95 Loop *L) const {
96 Value *LoadPtr = Load->getPointerOperand();
97 Value *StorePtr = Store->getPointerOperand();
98 Type *LoadType = getLoadStoreType(Load);
99 auto &DL = Load->getParent()->getModule()->getDataLayout();
101 assert(LoadPtr->getType()->getPointerAddressSpace() ==
102 StorePtr->getType()->getPointerAddressSpace() &&
103 DL.getTypeSizeInBits(LoadType) ==
104 DL.getTypeSizeInBits(getLoadStoreType(Store)) &&
105 "Should be a known dependence");
107 int64_t StrideLoad = getPtrStride(PSE, LoadType, LoadPtr, L).value_or(0);
108 int64_t StrideStore = getPtrStride(PSE, LoadType, StorePtr, L).value_or(0);
109 if (!StrideLoad || !StrideStore || StrideLoad != StrideStore)
110 return false;
112 // TODO: This check for stride values other than 1 and -1 can be eliminated.
113 // However, doing so may cause the LoopAccessAnalysis to overcompensate,
114 // generating numerous non-wrap runtime checks that may undermine the
115 // benefits of load elimination. To safely implement support for non-unit
116 // strides, we would need to ensure either that the processed case does not
117 // require these additional checks, or improve the LAA to handle them more
118 // efficiently, or potentially both.
119 if (std::abs(StrideLoad) != 1)
120 return false;
122 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
124 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
125 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
127 // We don't need to check non-wrapping here because forward/backward
128 // dependence wouldn't be valid if these weren't monotonic accesses.
129 auto *Dist = cast<SCEVConstant>(
130 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
131 const APInt &Val = Dist->getAPInt();
132 return Val == TypeByteSize * StrideLoad;
135 Value *getLoadPtr() const { return Load->getPointerOperand(); }
137 #ifndef NDEBUG
138 friend raw_ostream &operator<<(raw_ostream &OS,
139 const StoreToLoadForwardingCandidate &Cand) {
140 OS << *Cand.Store << " -->\n";
141 OS.indent(2) << *Cand.Load << "\n";
142 return OS;
144 #endif
147 } // end anonymous namespace
149 /// Check if the store dominates all latches, so as long as there is no
150 /// intervening store this value will be loaded in the next iteration.
151 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
152 DominatorTree *DT) {
153 SmallVector<BasicBlock *, 8> Latches;
154 L->getLoopLatches(Latches);
155 return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
156 return DT->dominates(StoreBlock, Latch);
160 /// Return true if the load is not executed on all paths in the loop.
161 static bool isLoadConditional(LoadInst *Load, Loop *L) {
162 return Load->getParent() != L->getHeader();
165 namespace {
167 /// The per-loop class that does most of the work.
168 class LoadEliminationForLoop {
169 public:
170 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
171 DominatorTree *DT, BlockFrequencyInfo *BFI,
172 ProfileSummaryInfo* PSI)
173 : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
175 /// Look through the loop-carried and loop-independent dependences in
176 /// this loop and find store->load dependences.
178 /// Note that no candidate is returned if LAA has failed to analyze the loop
179 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
180 std::forward_list<StoreToLoadForwardingCandidate>
181 findStoreToLoadDependences(const LoopAccessInfo &LAI) {
182 std::forward_list<StoreToLoadForwardingCandidate> Candidates;
184 const auto *Deps = LAI.getDepChecker().getDependences();
185 if (!Deps)
186 return Candidates;
188 // Find store->load dependences (consequently true dep). Both lexically
189 // forward and backward dependences qualify. Disqualify loads that have
190 // other unknown dependences.
192 SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
194 for (const auto &Dep : *Deps) {
195 Instruction *Source = Dep.getSource(LAI);
196 Instruction *Destination = Dep.getDestination(LAI);
198 if (Dep.Type == MemoryDepChecker::Dependence::Unknown ||
199 Dep.Type == MemoryDepChecker::Dependence::IndirectUnsafe) {
200 if (isa<LoadInst>(Source))
201 LoadsWithUnknownDepedence.insert(Source);
202 if (isa<LoadInst>(Destination))
203 LoadsWithUnknownDepedence.insert(Destination);
204 continue;
207 if (Dep.isBackward())
208 // Note that the designations source and destination follow the program
209 // order, i.e. source is always first. (The direction is given by the
210 // DepType.)
211 std::swap(Source, Destination);
212 else
213 assert(Dep.isForward() && "Needs to be a forward dependence");
215 auto *Store = dyn_cast<StoreInst>(Source);
216 if (!Store)
217 continue;
218 auto *Load = dyn_cast<LoadInst>(Destination);
219 if (!Load)
220 continue;
222 // Only propagate if the stored values are bit/pointer castable.
223 if (!CastInst::isBitOrNoopPointerCastable(
224 getLoadStoreType(Store), getLoadStoreType(Load),
225 Store->getParent()->getModule()->getDataLayout()))
226 continue;
228 Candidates.emplace_front(Load, Store);
231 if (!LoadsWithUnknownDepedence.empty())
232 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
233 return LoadsWithUnknownDepedence.count(C.Load);
236 return Candidates;
239 /// Return the index of the instruction according to program order.
240 unsigned getInstrIndex(Instruction *Inst) {
241 auto I = InstOrder.find(Inst);
242 assert(I != InstOrder.end() && "No index for instruction");
243 return I->second;
246 /// If a load has multiple candidates associated (i.e. different
247 /// stores), it means that it could be forwarding from multiple stores
248 /// depending on control flow. Remove these candidates.
250 /// Here, we rely on LAA to include the relevant loop-independent dependences.
251 /// LAA is known to omit these in the very simple case when the read and the
252 /// write within an alias set always takes place using the *same* pointer.
254 /// However, we know that this is not the case here, i.e. we can rely on LAA
255 /// to provide us with loop-independent dependences for the cases we're
256 /// interested. Consider the case for example where a loop-independent
257 /// dependece S1->S2 invalidates the forwarding S3->S2.
259 /// A[i] = ... (S1)
260 /// ... = A[i] (S2)
261 /// A[i+1] = ... (S3)
263 /// LAA will perform dependence analysis here because there are two
264 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
265 void removeDependencesFromMultipleStores(
266 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
267 // If Store is nullptr it means that we have multiple stores forwarding to
268 // this store.
269 using LoadToSingleCandT =
270 DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
271 LoadToSingleCandT LoadToSingleCand;
273 for (const auto &Cand : Candidates) {
274 bool NewElt;
275 LoadToSingleCandT::iterator Iter;
277 std::tie(Iter, NewElt) =
278 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
279 if (!NewElt) {
280 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
281 // Already multiple stores forward to this load.
282 if (OtherCand == nullptr)
283 continue;
285 // Handle the very basic case when the two stores are in the same block
286 // so deciding which one forwards is easy. The later one forwards as
287 // long as they both have a dependence distance of one to the load.
288 if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
289 Cand.isDependenceDistanceOfOne(PSE, L) &&
290 OtherCand->isDependenceDistanceOfOne(PSE, L)) {
291 // They are in the same block, the later one will forward to the load.
292 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
293 OtherCand = &Cand;
294 } else
295 OtherCand = nullptr;
299 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
300 if (LoadToSingleCand[Cand.Load] != &Cand) {
301 LLVM_DEBUG(
302 dbgs() << "Removing from candidates: \n"
303 << Cand
304 << " The load may have multiple stores forwarding to "
305 << "it\n");
306 return true;
308 return false;
312 /// Given two pointers operations by their RuntimePointerChecking
313 /// indices, return true if they require an alias check.
315 /// We need a check if one is a pointer for a candidate load and the other is
316 /// a pointer for a possibly intervening store.
317 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
318 const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath,
319 const SmallPtrSetImpl<Value *> &CandLoadPtrs) {
320 Value *Ptr1 =
321 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
322 Value *Ptr2 =
323 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
324 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
325 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
328 /// Return pointers that are possibly written to on the path from a
329 /// forwarding store to a load.
331 /// These pointers need to be alias-checked against the forwarding candidates.
332 SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
333 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
334 // From FirstStore to LastLoad neither of the elimination candidate loads
335 // should overlap with any of the stores.
337 // E.g.:
339 // st1 C[i]
340 // ld1 B[i] <-------,
341 // ld0 A[i] <----, | * LastLoad
342 // ... | |
343 // st2 E[i] | |
344 // st3 B[i+1] -- | -' * FirstStore
345 // st0 A[i+1] ---'
346 // st4 D[i]
348 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
349 // ld0.
351 LoadInst *LastLoad =
352 std::max_element(Candidates.begin(), Candidates.end(),
353 [&](const StoreToLoadForwardingCandidate &A,
354 const StoreToLoadForwardingCandidate &B) {
355 return getInstrIndex(A.Load) < getInstrIndex(B.Load);
357 ->Load;
358 StoreInst *FirstStore =
359 std::min_element(Candidates.begin(), Candidates.end(),
360 [&](const StoreToLoadForwardingCandidate &A,
361 const StoreToLoadForwardingCandidate &B) {
362 return getInstrIndex(A.Store) <
363 getInstrIndex(B.Store);
365 ->Store;
367 // We're looking for stores after the first forwarding store until the end
368 // of the loop, then from the beginning of the loop until the last
369 // forwarded-to load. Collect the pointer for the stores.
370 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
372 auto InsertStorePtr = [&](Instruction *I) {
373 if (auto *S = dyn_cast<StoreInst>(I))
374 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
376 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
377 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
378 MemInstrs.end(), InsertStorePtr);
379 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
380 InsertStorePtr);
382 return PtrsWrittenOnFwdingPath;
385 /// Determine the pointer alias checks to prove that there are no
386 /// intervening stores.
387 SmallVector<RuntimePointerCheck, 4> collectMemchecks(
388 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
390 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
391 findPointersWrittenOnForwardingPath(Candidates);
393 // Collect the pointers of the candidate loads.
394 SmallPtrSet<Value *, 4> CandLoadPtrs;
395 for (const auto &Candidate : Candidates)
396 CandLoadPtrs.insert(Candidate.getLoadPtr());
398 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
399 SmallVector<RuntimePointerCheck, 4> Checks;
401 copy_if(AllChecks, std::back_inserter(Checks),
402 [&](const RuntimePointerCheck &Check) {
403 for (auto PtrIdx1 : Check.first->Members)
404 for (auto PtrIdx2 : Check.second->Members)
405 if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
406 CandLoadPtrs))
407 return true;
408 return false;
411 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
412 << "):\n");
413 LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
415 return Checks;
418 /// Perform the transformation for a candidate.
419 void
420 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
421 SCEVExpander &SEE) {
422 // loop:
423 // %x = load %gep_i
424 // = ... %x
425 // store %y, %gep_i_plus_1
427 // =>
429 // ph:
430 // %x.initial = load %gep_0
431 // loop:
432 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
433 // %x = load %gep_i <---- now dead
434 // = ... %x.storeforward
435 // store %y, %gep_i_plus_1
437 Value *Ptr = Cand.Load->getPointerOperand();
438 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
439 auto *PH = L->getLoopPreheader();
440 assert(PH && "Preheader should exist!");
441 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
442 PH->getTerminator());
443 Value *Initial = new LoadInst(
444 Cand.Load->getType(), InitialPtr, "load_initial",
445 /* isVolatile */ false, Cand.Load->getAlign(), PH->getTerminator());
447 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded");
448 PHI->insertBefore(L->getHeader()->begin());
449 PHI->addIncoming(Initial, PH);
451 Type *LoadType = Initial->getType();
452 Type *StoreType = Cand.Store->getValueOperand()->getType();
453 auto &DL = Cand.Load->getParent()->getModule()->getDataLayout();
454 (void)DL;
456 assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) &&
457 "The type sizes should match!");
459 Value *StoreValue = Cand.Store->getValueOperand();
460 if (LoadType != StoreType)
461 StoreValue = CastInst::CreateBitOrPointerCast(
462 StoreValue, LoadType, "store_forward_cast", Cand.Store);
464 PHI->addIncoming(StoreValue, L->getLoopLatch());
466 Cand.Load->replaceAllUsesWith(PHI);
469 /// Top-level driver for each loop: find store->load forwarding
470 /// candidates, add run-time checks and perform transformation.
471 bool processLoop() {
472 LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
473 << "\" checking " << *L << "\n");
475 // Look for store-to-load forwarding cases across the
476 // backedge. E.g.:
478 // loop:
479 // %x = load %gep_i
480 // = ... %x
481 // store %y, %gep_i_plus_1
483 // =>
485 // ph:
486 // %x.initial = load %gep_0
487 // loop:
488 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
489 // %x = load %gep_i <---- now dead
490 // = ... %x.storeforward
491 // store %y, %gep_i_plus_1
493 // First start with store->load dependences.
494 auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
495 if (StoreToLoadDependences.empty())
496 return false;
498 // Generate an index for each load and store according to the original
499 // program order. This will be used later.
500 InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
502 // To keep things simple for now, remove those where the load is potentially
503 // fed by multiple stores.
504 removeDependencesFromMultipleStores(StoreToLoadDependences);
505 if (StoreToLoadDependences.empty())
506 return false;
508 // Filter the candidates further.
509 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
510 for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) {
511 LLVM_DEBUG(dbgs() << "Candidate " << Cand);
513 // Make sure that the stored values is available everywhere in the loop in
514 // the next iteration.
515 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
516 continue;
518 // If the load is conditional we can't hoist its 0-iteration instance to
519 // the preheader because that would make it unconditional. Thus we would
520 // access a memory location that the original loop did not access.
521 if (isLoadConditional(Cand.Load, L))
522 continue;
524 // Check whether the SCEV difference is the same as the induction step,
525 // thus we load the value in the next iteration.
526 if (!Cand.isDependenceDistanceOfOne(PSE, L))
527 continue;
529 assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) &&
530 "Loading from something other than indvar?");
531 assert(
532 isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) &&
533 "Storing to something other than indvar?");
535 Candidates.push_back(Cand);
536 LLVM_DEBUG(
537 dbgs()
538 << Candidates.size()
539 << ". Valid store-to-load forwarding across the loop backedge\n");
541 if (Candidates.empty())
542 return false;
544 // Check intervening may-alias stores. These need runtime checks for alias
545 // disambiguation.
546 SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates);
548 // Too many checks are likely to outweigh the benefits of forwarding.
549 if (Checks.size() > Candidates.size() * CheckPerElim) {
550 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
551 return false;
554 if (LAI.getPSE().getPredicate().getComplexity() >
555 LoadElimSCEVCheckThreshold) {
556 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
557 return false;
560 if (!L->isLoopSimplifyForm()) {
561 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
562 return false;
565 if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) {
566 if (LAI.hasConvergentOp()) {
567 LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
568 "convergent calls\n");
569 return false;
572 auto *HeaderBB = L->getHeader();
573 auto *F = HeaderBB->getParent();
574 bool OptForSize = F->hasOptSize() ||
575 llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI,
576 PGSOQueryType::IRPass);
577 if (OptForSize) {
578 LLVM_DEBUG(
579 dbgs() << "Versioning is needed but not allowed when optimizing "
580 "for size.\n");
581 return false;
584 // Point of no-return, start the transformation. First, version the loop
585 // if necessary.
587 LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE());
588 LV.versionLoop();
590 // After versioning, some of the candidates' pointers could stop being
591 // SCEVAddRecs. We need to filter them out.
592 auto NoLongerGoodCandidate = [this](
593 const StoreToLoadForwardingCandidate &Cand) {
594 return !isa<SCEVAddRecExpr>(
595 PSE.getSCEV(Cand.Load->getPointerOperand())) ||
596 !isa<SCEVAddRecExpr>(
597 PSE.getSCEV(Cand.Store->getPointerOperand()));
599 llvm::erase_if(Candidates, NoLongerGoodCandidate);
602 // Next, propagate the value stored by the store to the users of the load.
603 // Also for the first iteration, generate the initial value of the load.
604 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
605 "storeforward");
606 for (const auto &Cand : Candidates)
607 propagateStoredValueToLoadUsers(Cand, SEE);
608 NumLoopLoadEliminted += Candidates.size();
610 return true;
613 private:
614 Loop *L;
616 /// Maps the load/store instructions to their index according to
617 /// program order.
618 DenseMap<Instruction *, unsigned> InstOrder;
620 // Analyses used.
621 LoopInfo *LI;
622 const LoopAccessInfo &LAI;
623 DominatorTree *DT;
624 BlockFrequencyInfo *BFI;
625 ProfileSummaryInfo *PSI;
626 PredicatedScalarEvolution PSE;
629 } // end anonymous namespace
631 static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI,
632 DominatorTree &DT,
633 BlockFrequencyInfo *BFI,
634 ProfileSummaryInfo *PSI,
635 ScalarEvolution *SE, AssumptionCache *AC,
636 LoopAccessInfoManager &LAIs) {
637 // Build up a worklist of inner-loops to transform to avoid iterator
638 // invalidation.
639 // FIXME: This logic comes from other passes that actually change the loop
640 // nest structure. It isn't clear this is necessary (or useful) for a pass
641 // which merely optimizes the use of loads in a loop.
642 SmallVector<Loop *, 8> Worklist;
644 bool Changed = false;
646 for (Loop *TopLevelLoop : LI)
647 for (Loop *L : depth_first(TopLevelLoop)) {
648 Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false);
649 // We only handle inner-most loops.
650 if (L->isInnermost())
651 Worklist.push_back(L);
654 // Now walk the identified inner loops.
655 for (Loop *L : Worklist) {
656 // Match historical behavior
657 if (!L->isRotatedForm() || !L->getExitingBlock())
658 continue;
659 // The actual work is performed by LoadEliminationForLoop.
660 LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(*L), &DT, BFI, PSI);
661 Changed |= LEL.processLoop();
662 if (Changed)
663 LAIs.clear();
665 return Changed;
668 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
669 FunctionAnalysisManager &AM) {
670 auto &LI = AM.getResult<LoopAnalysis>(F);
671 // There are no loops in the function. Return before computing other expensive
672 // analyses.
673 if (LI.empty())
674 return PreservedAnalyses::all();
675 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
676 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
677 auto &AC = AM.getResult<AssumptionAnalysis>(F);
678 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
679 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
680 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
681 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
682 LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
684 bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, &SE, &AC, LAIs);
686 if (!Changed)
687 return PreservedAnalyses::all();
689 PreservedAnalyses PA;
690 PA.preserve<DominatorTreeAnalysis>();
691 PA.preserve<LoopAnalysis>();
692 return PA;