[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopUnrollPass.cpp
blob7cfeb019af97232ec405ec83c8e7a2fb733cad71
1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/CodeMetrics.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/Transforms/Scalar/LoopPassManager.h"
55 #include "llvm/Transforms/Utils.h"
56 #include "llvm/Transforms/Utils/LoopPeel.h"
57 #include "llvm/Transforms/Utils/LoopSimplify.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include "llvm/Transforms/Utils/SizeOpts.h"
60 #include "llvm/Transforms/Utils/UnrollLoop.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <limits>
65 #include <optional>
66 #include <string>
67 #include <tuple>
68 #include <utility>
70 using namespace llvm;
72 #define DEBUG_TYPE "loop-unroll"
74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll(
75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
77 " the current top-most loop. This is sometimes preferred to reduce"
78 " compile time."));
80 static cl::opt<unsigned>
81 UnrollThreshold("unroll-threshold", cl::Hidden,
82 cl::desc("The cost threshold for loop unrolling"));
84 static cl::opt<unsigned>
85 UnrollOptSizeThreshold(
86 "unroll-optsize-threshold", cl::init(0), cl::Hidden,
87 cl::desc("The cost threshold for loop unrolling when optimizing for "
88 "size"));
90 static cl::opt<unsigned> UnrollPartialThreshold(
91 "unroll-partial-threshold", cl::Hidden,
92 cl::desc("The cost threshold for partial loop unrolling"));
94 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost(
95 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden,
96 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
97 "to the threshold when aggressively unrolling a loop due to the "
98 "dynamic cost savings. If completely unrolling a loop will reduce "
99 "the total runtime from X to Y, we boost the loop unroll "
100 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
101 "X/Y). This limit avoids excessive code bloat."));
103 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
104 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden,
105 cl::desc("Don't allow loop unrolling to simulate more than this number of"
106 "iterations when checking full unroll profitability"));
108 static cl::opt<unsigned> UnrollCount(
109 "unroll-count", cl::Hidden,
110 cl::desc("Use this unroll count for all loops including those with "
111 "unroll_count pragma values, for testing purposes"));
113 static cl::opt<unsigned> UnrollMaxCount(
114 "unroll-max-count", cl::Hidden,
115 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
116 "testing purposes"));
118 static cl::opt<unsigned> UnrollFullMaxCount(
119 "unroll-full-max-count", cl::Hidden,
120 cl::desc(
121 "Set the max unroll count for full unrolling, for testing purposes"));
123 static cl::opt<bool>
124 UnrollAllowPartial("unroll-allow-partial", cl::Hidden,
125 cl::desc("Allows loops to be partially unrolled until "
126 "-unroll-threshold loop size is reached."));
128 static cl::opt<bool> UnrollAllowRemainder(
129 "unroll-allow-remainder", cl::Hidden,
130 cl::desc("Allow generation of a loop remainder (extra iterations) "
131 "when unrolling a loop."));
133 static cl::opt<bool>
134 UnrollRuntime("unroll-runtime", cl::Hidden,
135 cl::desc("Unroll loops with run-time trip counts"));
137 static cl::opt<unsigned> UnrollMaxUpperBound(
138 "unroll-max-upperbound", cl::init(8), cl::Hidden,
139 cl::desc(
140 "The max of trip count upper bound that is considered in unrolling"));
142 static cl::opt<unsigned> PragmaUnrollThreshold(
143 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
144 cl::desc("Unrolled size limit for loops with an unroll(full) or "
145 "unroll_count pragma."));
147 static cl::opt<unsigned> FlatLoopTripCountThreshold(
148 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden,
149 cl::desc("If the runtime tripcount for the loop is lower than the "
150 "threshold, the loop is considered as flat and will be less "
151 "aggressively unrolled."));
153 static cl::opt<bool> UnrollUnrollRemainder(
154 "unroll-remainder", cl::Hidden,
155 cl::desc("Allow the loop remainder to be unrolled."));
157 // This option isn't ever intended to be enabled, it serves to allow
158 // experiments to check the assumptions about when this kind of revisit is
159 // necessary.
160 static cl::opt<bool> UnrollRevisitChildLoops(
161 "unroll-revisit-child-loops", cl::Hidden,
162 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
163 "This shouldn't typically be needed as child loops (or their "
164 "clones) were already visited."));
166 static cl::opt<unsigned> UnrollThresholdAggressive(
167 "unroll-threshold-aggressive", cl::init(300), cl::Hidden,
168 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
169 "optimizations"));
170 static cl::opt<unsigned>
171 UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
172 cl::Hidden,
173 cl::desc("Default threshold (max size of unrolled "
174 "loop), used in all but O3 optimizations"));
176 /// A magic value for use with the Threshold parameter to indicate
177 /// that the loop unroll should be performed regardless of how much
178 /// code expansion would result.
179 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max();
181 /// Gather the various unrolling parameters based on the defaults, compiler
182 /// flags, TTI overrides and user specified parameters.
183 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences(
184 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
185 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
186 OptimizationRemarkEmitter &ORE, int OptLevel,
187 std::optional<unsigned> UserThreshold, std::optional<unsigned> UserCount,
188 std::optional<bool> UserAllowPartial, std::optional<bool> UserRuntime,
189 std::optional<bool> UserUpperBound,
190 std::optional<unsigned> UserFullUnrollMaxCount) {
191 TargetTransformInfo::UnrollingPreferences UP;
193 // Set up the defaults
194 UP.Threshold =
195 OptLevel > 2 ? UnrollThresholdAggressive : UnrollThresholdDefault;
196 UP.MaxPercentThresholdBoost = 400;
197 UP.OptSizeThreshold = UnrollOptSizeThreshold;
198 UP.PartialThreshold = 150;
199 UP.PartialOptSizeThreshold = UnrollOptSizeThreshold;
200 UP.Count = 0;
201 UP.DefaultUnrollRuntimeCount = 8;
202 UP.MaxCount = std::numeric_limits<unsigned>::max();
203 UP.MaxUpperBound = UnrollMaxUpperBound;
204 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max();
205 UP.BEInsns = 2;
206 UP.Partial = false;
207 UP.Runtime = false;
208 UP.AllowRemainder = true;
209 UP.UnrollRemainder = false;
210 UP.AllowExpensiveTripCount = false;
211 UP.Force = false;
212 UP.UpperBound = false;
213 UP.UnrollAndJam = false;
214 UP.UnrollAndJamInnerLoopThreshold = 60;
215 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
217 // Override with any target specific settings
218 TTI.getUnrollingPreferences(L, SE, UP, &ORE);
220 // Apply size attributes
221 bool OptForSize = L->getHeader()->getParent()->hasOptSize() ||
222 // Let unroll hints / pragmas take precedence over PGSO.
223 (hasUnrollTransformation(L) != TM_ForcedByUser &&
224 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
225 PGSOQueryType::IRPass));
226 if (OptForSize) {
227 UP.Threshold = UP.OptSizeThreshold;
228 UP.PartialThreshold = UP.PartialOptSizeThreshold;
229 UP.MaxPercentThresholdBoost = 100;
232 // Apply any user values specified by cl::opt
233 if (UnrollThreshold.getNumOccurrences() > 0)
234 UP.Threshold = UnrollThreshold;
235 if (UnrollPartialThreshold.getNumOccurrences() > 0)
236 UP.PartialThreshold = UnrollPartialThreshold;
237 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0)
238 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost;
239 if (UnrollMaxCount.getNumOccurrences() > 0)
240 UP.MaxCount = UnrollMaxCount;
241 if (UnrollMaxUpperBound.getNumOccurrences() > 0)
242 UP.MaxUpperBound = UnrollMaxUpperBound;
243 if (UnrollFullMaxCount.getNumOccurrences() > 0)
244 UP.FullUnrollMaxCount = UnrollFullMaxCount;
245 if (UnrollAllowPartial.getNumOccurrences() > 0)
246 UP.Partial = UnrollAllowPartial;
247 if (UnrollAllowRemainder.getNumOccurrences() > 0)
248 UP.AllowRemainder = UnrollAllowRemainder;
249 if (UnrollRuntime.getNumOccurrences() > 0)
250 UP.Runtime = UnrollRuntime;
251 if (UnrollMaxUpperBound == 0)
252 UP.UpperBound = false;
253 if (UnrollUnrollRemainder.getNumOccurrences() > 0)
254 UP.UnrollRemainder = UnrollUnrollRemainder;
255 if (UnrollMaxIterationsCountToAnalyze.getNumOccurrences() > 0)
256 UP.MaxIterationsCountToAnalyze = UnrollMaxIterationsCountToAnalyze;
258 // Apply user values provided by argument
259 if (UserThreshold) {
260 UP.Threshold = *UserThreshold;
261 UP.PartialThreshold = *UserThreshold;
263 if (UserCount)
264 UP.Count = *UserCount;
265 if (UserAllowPartial)
266 UP.Partial = *UserAllowPartial;
267 if (UserRuntime)
268 UP.Runtime = *UserRuntime;
269 if (UserUpperBound)
270 UP.UpperBound = *UserUpperBound;
271 if (UserFullUnrollMaxCount)
272 UP.FullUnrollMaxCount = *UserFullUnrollMaxCount;
274 return UP;
277 namespace {
279 /// A struct to densely store the state of an instruction after unrolling at
280 /// each iteration.
282 /// This is designed to work like a tuple of <Instruction *, int> for the
283 /// purposes of hashing and lookup, but to be able to associate two boolean
284 /// states with each key.
285 struct UnrolledInstState {
286 Instruction *I;
287 int Iteration : 30;
288 unsigned IsFree : 1;
289 unsigned IsCounted : 1;
292 /// Hashing and equality testing for a set of the instruction states.
293 struct UnrolledInstStateKeyInfo {
294 using PtrInfo = DenseMapInfo<Instruction *>;
295 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>;
297 static inline UnrolledInstState getEmptyKey() {
298 return {PtrInfo::getEmptyKey(), 0, 0, 0};
301 static inline UnrolledInstState getTombstoneKey() {
302 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
305 static inline unsigned getHashValue(const UnrolledInstState &S) {
306 return PairInfo::getHashValue({S.I, S.Iteration});
309 static inline bool isEqual(const UnrolledInstState &LHS,
310 const UnrolledInstState &RHS) {
311 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration});
315 struct EstimatedUnrollCost {
316 /// The estimated cost after unrolling.
317 unsigned UnrolledCost;
319 /// The estimated dynamic cost of executing the instructions in the
320 /// rolled form.
321 unsigned RolledDynamicCost;
324 struct PragmaInfo {
325 PragmaInfo(bool UUC, bool PFU, unsigned PC, bool PEU)
326 : UserUnrollCount(UUC), PragmaFullUnroll(PFU), PragmaCount(PC),
327 PragmaEnableUnroll(PEU) {}
328 const bool UserUnrollCount;
329 const bool PragmaFullUnroll;
330 const unsigned PragmaCount;
331 const bool PragmaEnableUnroll;
334 } // end anonymous namespace
336 /// Figure out if the loop is worth full unrolling.
338 /// Complete loop unrolling can make some loads constant, and we need to know
339 /// if that would expose any further optimization opportunities. This routine
340 /// estimates this optimization. It computes cost of unrolled loop
341 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
342 /// dynamic cost we mean that we won't count costs of blocks that are known not
343 /// to be executed (i.e. if we have a branch in the loop and we know that at the
344 /// given iteration its condition would be resolved to true, we won't add up the
345 /// cost of the 'false'-block).
346 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
347 /// the analysis failed (no benefits expected from the unrolling, or the loop is
348 /// too big to analyze), the returned value is std::nullopt.
349 static std::optional<EstimatedUnrollCost> analyzeLoopUnrollCost(
350 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE,
351 const SmallPtrSetImpl<const Value *> &EphValues,
352 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize,
353 unsigned MaxIterationsCountToAnalyze) {
354 // We want to be able to scale offsets by the trip count and add more offsets
355 // to them without checking for overflows, and we already don't want to
356 // analyze *massive* trip counts, so we force the max to be reasonably small.
357 assert(MaxIterationsCountToAnalyze <
358 (unsigned)(std::numeric_limits<int>::max() / 2) &&
359 "The unroll iterations max is too large!");
361 // Only analyze inner loops. We can't properly estimate cost of nested loops
362 // and we won't visit inner loops again anyway.
363 if (!L->isInnermost())
364 return std::nullopt;
366 // Don't simulate loops with a big or unknown tripcount
367 if (!TripCount || TripCount > MaxIterationsCountToAnalyze)
368 return std::nullopt;
370 SmallSetVector<BasicBlock *, 16> BBWorklist;
371 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist;
372 DenseMap<Value *, Value *> SimplifiedValues;
373 SmallVector<std::pair<Value *, Value *>, 4> SimplifiedInputValues;
375 // The estimated cost of the unrolled form of the loop. We try to estimate
376 // this by simplifying as much as we can while computing the estimate.
377 InstructionCost UnrolledCost = 0;
379 // We also track the estimated dynamic (that is, actually executed) cost in
380 // the rolled form. This helps identify cases when the savings from unrolling
381 // aren't just exposing dead control flows, but actual reduced dynamic
382 // instructions due to the simplifications which we expect to occur after
383 // unrolling.
384 InstructionCost RolledDynamicCost = 0;
386 // We track the simplification of each instruction in each iteration. We use
387 // this to recursively merge costs into the unrolled cost on-demand so that
388 // we don't count the cost of any dead code. This is essentially a map from
389 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
390 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap;
392 // A small worklist used to accumulate cost of instructions from each
393 // observable and reached root in the loop.
394 SmallVector<Instruction *, 16> CostWorklist;
396 // PHI-used worklist used between iterations while accumulating cost.
397 SmallVector<Instruction *, 4> PHIUsedList;
399 // Helper function to accumulate cost for instructions in the loop.
400 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) {
401 assert(Iteration >= 0 && "Cannot have a negative iteration!");
402 assert(CostWorklist.empty() && "Must start with an empty cost list");
403 assert(PHIUsedList.empty() && "Must start with an empty phi used list");
404 CostWorklist.push_back(&RootI);
405 TargetTransformInfo::TargetCostKind CostKind =
406 RootI.getFunction()->hasMinSize() ?
407 TargetTransformInfo::TCK_CodeSize :
408 TargetTransformInfo::TCK_SizeAndLatency;
409 for (;; --Iteration) {
410 do {
411 Instruction *I = CostWorklist.pop_back_val();
413 // InstCostMap only uses I and Iteration as a key, the other two values
414 // don't matter here.
415 auto CostIter = InstCostMap.find({I, Iteration, 0, 0});
416 if (CostIter == InstCostMap.end())
417 // If an input to a PHI node comes from a dead path through the loop
418 // we may have no cost data for it here. What that actually means is
419 // that it is free.
420 continue;
421 auto &Cost = *CostIter;
422 if (Cost.IsCounted)
423 // Already counted this instruction.
424 continue;
426 // Mark that we are counting the cost of this instruction now.
427 Cost.IsCounted = true;
429 // If this is a PHI node in the loop header, just add it to the PHI set.
430 if (auto *PhiI = dyn_cast<PHINode>(I))
431 if (PhiI->getParent() == L->getHeader()) {
432 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they "
433 "inherently simplify during unrolling.");
434 if (Iteration == 0)
435 continue;
437 // Push the incoming value from the backedge into the PHI used list
438 // if it is an in-loop instruction. We'll use this to populate the
439 // cost worklist for the next iteration (as we count backwards).
440 if (auto *OpI = dyn_cast<Instruction>(
441 PhiI->getIncomingValueForBlock(L->getLoopLatch())))
442 if (L->contains(OpI))
443 PHIUsedList.push_back(OpI);
444 continue;
447 // First accumulate the cost of this instruction.
448 if (!Cost.IsFree) {
449 UnrolledCost += TTI.getInstructionCost(I, CostKind);
450 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
451 << Iteration << "): ");
452 LLVM_DEBUG(I->dump());
455 // We must count the cost of every operand which is not free,
456 // recursively. If we reach a loop PHI node, simply add it to the set
457 // to be considered on the next iteration (backwards!).
458 for (Value *Op : I->operands()) {
459 // Check whether this operand is free due to being a constant or
460 // outside the loop.
461 auto *OpI = dyn_cast<Instruction>(Op);
462 if (!OpI || !L->contains(OpI))
463 continue;
465 // Otherwise accumulate its cost.
466 CostWorklist.push_back(OpI);
468 } while (!CostWorklist.empty());
470 if (PHIUsedList.empty())
471 // We've exhausted the search.
472 break;
474 assert(Iteration > 0 &&
475 "Cannot track PHI-used values past the first iteration!");
476 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end());
477 PHIUsedList.clear();
481 // Ensure that we don't violate the loop structure invariants relied on by
482 // this analysis.
483 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
484 assert(L->isLCSSAForm(DT) &&
485 "Must have loops in LCSSA form to track live-out values.");
487 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
489 TargetTransformInfo::TargetCostKind CostKind =
490 L->getHeader()->getParent()->hasMinSize() ?
491 TargetTransformInfo::TCK_CodeSize : TargetTransformInfo::TCK_SizeAndLatency;
492 // Simulate execution of each iteration of the loop counting instructions,
493 // which would be simplified.
494 // Since the same load will take different values on different iterations,
495 // we literally have to go through all loop's iterations.
496 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
497 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
499 // Prepare for the iteration by collecting any simplified entry or backedge
500 // inputs.
501 for (Instruction &I : *L->getHeader()) {
502 auto *PHI = dyn_cast<PHINode>(&I);
503 if (!PHI)
504 break;
506 // The loop header PHI nodes must have exactly two input: one from the
507 // loop preheader and one from the loop latch.
508 assert(
509 PHI->getNumIncomingValues() == 2 &&
510 "Must have an incoming value only for the preheader and the latch.");
512 Value *V = PHI->getIncomingValueForBlock(
513 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
514 if (Iteration != 0 && SimplifiedValues.count(V))
515 V = SimplifiedValues.lookup(V);
516 SimplifiedInputValues.push_back({PHI, V});
519 // Now clear and re-populate the map for the next iteration.
520 SimplifiedValues.clear();
521 while (!SimplifiedInputValues.empty())
522 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
524 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L);
526 BBWorklist.clear();
527 BBWorklist.insert(L->getHeader());
528 // Note that we *must not* cache the size, this loop grows the worklist.
529 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
530 BasicBlock *BB = BBWorklist[Idx];
532 // Visit all instructions in the given basic block and try to simplify
533 // it. We don't change the actual IR, just count optimization
534 // opportunities.
535 for (Instruction &I : *BB) {
536 // These won't get into the final code - don't even try calculating the
537 // cost for them.
538 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I))
539 continue;
541 // Track this instruction's expected baseline cost when executing the
542 // rolled loop form.
543 RolledDynamicCost += TTI.getInstructionCost(&I, CostKind);
545 // Visit the instruction to analyze its loop cost after unrolling,
546 // and if the visitor returns true, mark the instruction as free after
547 // unrolling and continue.
548 bool IsFree = Analyzer.visit(I);
549 bool Inserted = InstCostMap.insert({&I, (int)Iteration,
550 (unsigned)IsFree,
551 /*IsCounted*/ false}).second;
552 (void)Inserted;
553 assert(Inserted && "Cannot have a state for an unvisited instruction!");
555 if (IsFree)
556 continue;
558 // Can't properly model a cost of a call.
559 // FIXME: With a proper cost model we should be able to do it.
560 if (auto *CI = dyn_cast<CallInst>(&I)) {
561 const Function *Callee = CI->getCalledFunction();
562 if (!Callee || TTI.isLoweredToCall(Callee)) {
563 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
564 return std::nullopt;
568 // If the instruction might have a side-effect recursively account for
569 // the cost of it and all the instructions leading up to it.
570 if (I.mayHaveSideEffects())
571 AddCostRecursively(I, Iteration);
573 // If unrolled body turns out to be too big, bail out.
574 if (UnrolledCost > MaxUnrolledLoopSize) {
575 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
576 << " UnrolledCost: " << UnrolledCost
577 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
578 << "\n");
579 return std::nullopt;
583 Instruction *TI = BB->getTerminator();
585 auto getSimplifiedConstant = [&](Value *V) -> Constant * {
586 if (SimplifiedValues.count(V))
587 V = SimplifiedValues.lookup(V);
588 return dyn_cast<Constant>(V);
591 // Add in the live successors by first checking whether we have terminator
592 // that may be simplified based on the values simplified by this call.
593 BasicBlock *KnownSucc = nullptr;
594 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
595 if (BI->isConditional()) {
596 if (auto *SimpleCond = getSimplifiedConstant(BI->getCondition())) {
597 // Just take the first successor if condition is undef
598 if (isa<UndefValue>(SimpleCond))
599 KnownSucc = BI->getSuccessor(0);
600 else if (ConstantInt *SimpleCondVal =
601 dyn_cast<ConstantInt>(SimpleCond))
602 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0);
605 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
606 if (auto *SimpleCond = getSimplifiedConstant(SI->getCondition())) {
607 // Just take the first successor if condition is undef
608 if (isa<UndefValue>(SimpleCond))
609 KnownSucc = SI->getSuccessor(0);
610 else if (ConstantInt *SimpleCondVal =
611 dyn_cast<ConstantInt>(SimpleCond))
612 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor();
615 if (KnownSucc) {
616 if (L->contains(KnownSucc))
617 BBWorklist.insert(KnownSucc);
618 else
619 ExitWorklist.insert({BB, KnownSucc});
620 continue;
623 // Add BB's successors to the worklist.
624 for (BasicBlock *Succ : successors(BB))
625 if (L->contains(Succ))
626 BBWorklist.insert(Succ);
627 else
628 ExitWorklist.insert({BB, Succ});
629 AddCostRecursively(*TI, Iteration);
632 // If we found no optimization opportunities on the first iteration, we
633 // won't find them on later ones too.
634 if (UnrolledCost == RolledDynamicCost) {
635 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
636 << " UnrolledCost: " << UnrolledCost << "\n");
637 return std::nullopt;
641 while (!ExitWorklist.empty()) {
642 BasicBlock *ExitingBB, *ExitBB;
643 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val();
645 for (Instruction &I : *ExitBB) {
646 auto *PN = dyn_cast<PHINode>(&I);
647 if (!PN)
648 break;
650 Value *Op = PN->getIncomingValueForBlock(ExitingBB);
651 if (auto *OpI = dyn_cast<Instruction>(Op))
652 if (L->contains(OpI))
653 AddCostRecursively(*OpI, TripCount - 1);
657 assert(UnrolledCost.isValid() && RolledDynamicCost.isValid() &&
658 "All instructions must have a valid cost, whether the "
659 "loop is rolled or unrolled.");
661 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
662 << "UnrolledCost: " << UnrolledCost << ", "
663 << "RolledDynamicCost: " << RolledDynamicCost << "\n");
664 return {{unsigned(*UnrolledCost.getValue()),
665 unsigned(*RolledDynamicCost.getValue())}};
668 UnrollCostEstimator::UnrollCostEstimator(
669 const Loop *L, const TargetTransformInfo &TTI,
670 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) {
671 CodeMetrics Metrics;
672 for (BasicBlock *BB : L->blocks())
673 Metrics.analyzeBasicBlock(BB, TTI, EphValues);
674 NumInlineCandidates = Metrics.NumInlineCandidates;
675 NotDuplicatable = Metrics.notDuplicatable;
676 Convergent = Metrics.convergent;
677 LoopSize = Metrics.NumInsts;
679 // Don't allow an estimate of size zero. This would allows unrolling of loops
680 // with huge iteration counts, which is a compile time problem even if it's
681 // not a problem for code quality. Also, the code using this size may assume
682 // that each loop has at least three instructions (likely a conditional
683 // branch, a comparison feeding that branch, and some kind of loop increment
684 // feeding that comparison instruction).
685 if (LoopSize.isValid() && LoopSize < BEInsns + 1)
686 // This is an open coded max() on InstructionCost
687 LoopSize = BEInsns + 1;
690 uint64_t UnrollCostEstimator::getUnrolledLoopSize(
691 const TargetTransformInfo::UnrollingPreferences &UP,
692 unsigned CountOverwrite) const {
693 unsigned LS = *LoopSize.getValue();
694 assert(LS >= UP.BEInsns && "LoopSize should not be less than BEInsns!");
695 if (CountOverwrite)
696 return static_cast<uint64_t>(LS - UP.BEInsns) * CountOverwrite + UP.BEInsns;
697 else
698 return static_cast<uint64_t>(LS - UP.BEInsns) * UP.Count + UP.BEInsns;
701 // Returns the loop hint metadata node with the given name (for example,
702 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
703 // returned.
704 static MDNode *getUnrollMetadataForLoop(const Loop *L, StringRef Name) {
705 if (MDNode *LoopID = L->getLoopID())
706 return GetUnrollMetadata(LoopID, Name);
707 return nullptr;
710 // Returns true if the loop has an unroll(full) pragma.
711 static bool hasUnrollFullPragma(const Loop *L) {
712 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
715 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
716 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
717 static bool hasUnrollEnablePragma(const Loop *L) {
718 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
721 // Returns true if the loop has an runtime unroll(disable) pragma.
722 static bool hasRuntimeUnrollDisablePragma(const Loop *L) {
723 return getUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
726 // If loop has an unroll_count pragma return the (necessarily
727 // positive) value from the pragma. Otherwise return 0.
728 static unsigned unrollCountPragmaValue(const Loop *L) {
729 MDNode *MD = getUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
730 if (MD) {
731 assert(MD->getNumOperands() == 2 &&
732 "Unroll count hint metadata should have two operands.");
733 unsigned Count =
734 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
735 assert(Count >= 1 && "Unroll count must be positive.");
736 return Count;
738 return 0;
741 // Computes the boosting factor for complete unrolling.
742 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
743 // be beneficial to fully unroll the loop even if unrolledcost is large. We
744 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
745 // the unroll threshold.
746 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost,
747 unsigned MaxPercentThresholdBoost) {
748 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100)
749 return 100;
750 else if (Cost.UnrolledCost != 0)
751 // The boosting factor is RolledDynamicCost / UnrolledCost
752 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost,
753 MaxPercentThresholdBoost);
754 else
755 return MaxPercentThresholdBoost;
758 static std::optional<unsigned>
759 shouldPragmaUnroll(Loop *L, const PragmaInfo &PInfo,
760 const unsigned TripMultiple, const unsigned TripCount,
761 unsigned MaxTripCount, const UnrollCostEstimator UCE,
762 const TargetTransformInfo::UnrollingPreferences &UP) {
764 // Using unroll pragma
765 // 1st priority is unroll count set by "unroll-count" option.
767 if (PInfo.UserUnrollCount) {
768 if (UP.AllowRemainder &&
769 UCE.getUnrolledLoopSize(UP, (unsigned)UnrollCount) < UP.Threshold)
770 return (unsigned)UnrollCount;
773 // 2nd priority is unroll count set by pragma.
774 if (PInfo.PragmaCount > 0) {
775 if ((UP.AllowRemainder || (TripMultiple % PInfo.PragmaCount == 0)))
776 return PInfo.PragmaCount;
779 if (PInfo.PragmaFullUnroll && TripCount != 0)
780 return TripCount;
782 if (PInfo.PragmaEnableUnroll && !TripCount && MaxTripCount &&
783 MaxTripCount <= UP.MaxUpperBound)
784 return MaxTripCount;
786 // if didn't return until here, should continue to other priorties
787 return std::nullopt;
790 static std::optional<unsigned> shouldFullUnroll(
791 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT,
792 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues,
793 const unsigned FullUnrollTripCount, const UnrollCostEstimator UCE,
794 const TargetTransformInfo::UnrollingPreferences &UP) {
795 assert(FullUnrollTripCount && "should be non-zero!");
797 if (FullUnrollTripCount > UP.FullUnrollMaxCount)
798 return std::nullopt;
800 // When computing the unrolled size, note that BEInsns are not replicated
801 // like the rest of the loop body.
802 if (UCE.getUnrolledLoopSize(UP) < UP.Threshold)
803 return FullUnrollTripCount;
805 // The loop isn't that small, but we still can fully unroll it if that
806 // helps to remove a significant number of instructions.
807 // To check that, run additional analysis on the loop.
808 if (std::optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost(
809 L, FullUnrollTripCount, DT, SE, EphValues, TTI,
810 UP.Threshold * UP.MaxPercentThresholdBoost / 100,
811 UP.MaxIterationsCountToAnalyze)) {
812 unsigned Boost =
813 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost);
814 if (Cost->UnrolledCost < UP.Threshold * Boost / 100)
815 return FullUnrollTripCount;
817 return std::nullopt;
820 static std::optional<unsigned>
821 shouldPartialUnroll(const unsigned LoopSize, const unsigned TripCount,
822 const UnrollCostEstimator UCE,
823 const TargetTransformInfo::UnrollingPreferences &UP) {
825 if (!TripCount)
826 return std::nullopt;
828 if (!UP.Partial) {
829 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
830 << "-unroll-allow-partial not given\n");
831 return 0;
833 unsigned count = UP.Count;
834 if (count == 0)
835 count = TripCount;
836 if (UP.PartialThreshold != NoThreshold) {
837 // Reduce unroll count to be modulo of TripCount for partial unrolling.
838 if (UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
839 count = (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) /
840 (LoopSize - UP.BEInsns);
841 if (count > UP.MaxCount)
842 count = UP.MaxCount;
843 while (count != 0 && TripCount % count != 0)
844 count--;
845 if (UP.AllowRemainder && count <= 1) {
846 // If there is no Count that is modulo of TripCount, set Count to
847 // largest power-of-two factor that satisfies the threshold limit.
848 // As we'll create fixup loop, do the type of unrolling only if
849 // remainder loop is allowed.
850 count = UP.DefaultUnrollRuntimeCount;
851 while (count != 0 &&
852 UCE.getUnrolledLoopSize(UP, count) > UP.PartialThreshold)
853 count >>= 1;
855 if (count < 2) {
856 count = 0;
858 } else {
859 count = TripCount;
861 if (count > UP.MaxCount)
862 count = UP.MaxCount;
864 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count << "\n");
866 return count;
868 // Returns true if unroll count was set explicitly.
869 // Calculates unroll count and writes it to UP.Count.
870 // Unless IgnoreUser is true, will also use metadata and command-line options
871 // that are specific to to the LoopUnroll pass (which, for instance, are
872 // irrelevant for the LoopUnrollAndJam pass).
873 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
874 // many LoopUnroll-specific options. The shared functionality should be
875 // refactored into it own function.
876 bool llvm::computeUnrollCount(
877 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI,
878 AssumptionCache *AC, ScalarEvolution &SE,
879 const SmallPtrSetImpl<const Value *> &EphValues,
880 OptimizationRemarkEmitter *ORE, unsigned TripCount, unsigned MaxTripCount,
881 bool MaxOrZero, unsigned TripMultiple, const UnrollCostEstimator &UCE,
882 TargetTransformInfo::UnrollingPreferences &UP,
883 TargetTransformInfo::PeelingPreferences &PP, bool &UseUpperBound) {
885 unsigned LoopSize = UCE.getRolledLoopSize();
887 const bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0;
888 const bool PragmaFullUnroll = hasUnrollFullPragma(L);
889 const unsigned PragmaCount = unrollCountPragmaValue(L);
890 const bool PragmaEnableUnroll = hasUnrollEnablePragma(L);
892 const bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll ||
893 PragmaEnableUnroll || UserUnrollCount;
895 PragmaInfo PInfo(UserUnrollCount, PragmaFullUnroll, PragmaCount,
896 PragmaEnableUnroll);
897 // Use an explicit peel count that has been specified for testing. In this
898 // case it's not permitted to also specify an explicit unroll count.
899 if (PP.PeelCount) {
900 if (UnrollCount.getNumOccurrences() > 0) {
901 report_fatal_error("Cannot specify both explicit peel count and "
902 "explicit unroll count", /*GenCrashDiag=*/false);
904 UP.Count = 1;
905 UP.Runtime = false;
906 return true;
908 // Check for explicit Count.
909 // 1st priority is unroll count set by "unroll-count" option.
910 // 2nd priority is unroll count set by pragma.
911 if (auto UnrollFactor = shouldPragmaUnroll(L, PInfo, TripMultiple, TripCount,
912 MaxTripCount, UCE, UP)) {
913 UP.Count = *UnrollFactor;
915 if (UserUnrollCount || (PragmaCount > 0)) {
916 UP.AllowExpensiveTripCount = true;
917 UP.Force = true;
919 UP.Runtime |= (PragmaCount > 0);
920 return ExplicitUnroll;
921 } else {
922 if (ExplicitUnroll && TripCount != 0) {
923 // If the loop has an unrolling pragma, we want to be more aggressive with
924 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
925 // value which is larger than the default limits.
926 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold);
927 UP.PartialThreshold =
928 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold);
932 // 3rd priority is exact full unrolling. This will eliminate all copies
933 // of some exit test.
934 UP.Count = 0;
935 if (TripCount) {
936 UP.Count = TripCount;
937 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
938 TripCount, UCE, UP)) {
939 UP.Count = *UnrollFactor;
940 UseUpperBound = false;
941 return ExplicitUnroll;
945 // 4th priority is bounded unrolling.
946 // We can unroll by the upper bound amount if it's generally allowed or if
947 // we know that the loop is executed either the upper bound or zero times.
948 // (MaxOrZero unrolling keeps only the first loop test, so the number of
949 // loop tests remains the same compared to the non-unrolled version, whereas
950 // the generic upper bound unrolling keeps all but the last loop test so the
951 // number of loop tests goes up which may end up being worse on targets with
952 // constrained branch predictor resources so is controlled by an option.)
953 // In addition we only unroll small upper bounds.
954 // Note that the cost of bounded unrolling is always strictly greater than
955 // cost of exact full unrolling. As such, if we have an exact count and
956 // found it unprofitable, we'll never chose to bounded unroll.
957 if (!TripCount && MaxTripCount && (UP.UpperBound || MaxOrZero) &&
958 MaxTripCount <= UP.MaxUpperBound) {
959 UP.Count = MaxTripCount;
960 if (auto UnrollFactor = shouldFullUnroll(L, TTI, DT, SE, EphValues,
961 MaxTripCount, UCE, UP)) {
962 UP.Count = *UnrollFactor;
963 UseUpperBound = true;
964 return ExplicitUnroll;
968 // 5th priority is loop peeling.
969 computePeelCount(L, LoopSize, PP, TripCount, DT, SE, AC, UP.Threshold);
970 if (PP.PeelCount) {
971 UP.Runtime = false;
972 UP.Count = 1;
973 return ExplicitUnroll;
976 // Before starting partial unrolling, set up.partial to true,
977 // if user explicitly asked for unrolling
978 if (TripCount)
979 UP.Partial |= ExplicitUnroll;
981 // 6th priority is partial unrolling.
982 // Try partial unroll only when TripCount could be statically calculated.
983 if (auto UnrollFactor = shouldPartialUnroll(LoopSize, TripCount, UCE, UP)) {
984 UP.Count = *UnrollFactor;
986 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
987 UP.Count != TripCount)
988 ORE->emit([&]() {
989 return OptimizationRemarkMissed(DEBUG_TYPE,
990 "FullUnrollAsDirectedTooLarge",
991 L->getStartLoc(), L->getHeader())
992 << "Unable to fully unroll loop as directed by unroll pragma "
993 "because "
994 "unrolled size is too large.";
997 if (UP.PartialThreshold != NoThreshold) {
998 if (UP.Count == 0) {
999 if (PragmaEnableUnroll)
1000 ORE->emit([&]() {
1001 return OptimizationRemarkMissed(DEBUG_TYPE,
1002 "UnrollAsDirectedTooLarge",
1003 L->getStartLoc(), L->getHeader())
1004 << "Unable to unroll loop as directed by unroll(enable) "
1005 "pragma "
1006 "because unrolled size is too large.";
1010 return ExplicitUnroll;
1012 assert(TripCount == 0 &&
1013 "All cases when TripCount is constant should be covered here.");
1014 if (PragmaFullUnroll)
1015 ORE->emit([&]() {
1016 return OptimizationRemarkMissed(
1017 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount",
1018 L->getStartLoc(), L->getHeader())
1019 << "Unable to fully unroll loop as directed by unroll(full) "
1020 "pragma "
1021 "because loop has a runtime trip count.";
1024 // 7th priority is runtime unrolling.
1025 // Don't unroll a runtime trip count loop when it is disabled.
1026 if (hasRuntimeUnrollDisablePragma(L)) {
1027 UP.Count = 0;
1028 return false;
1031 // Don't unroll a small upper bound loop unless user or TTI asked to do so.
1032 if (MaxTripCount && !UP.Force && MaxTripCount < UP.MaxUpperBound) {
1033 UP.Count = 0;
1034 return false;
1037 // Check if the runtime trip count is too small when profile is available.
1038 if (L->getHeader()->getParent()->hasProfileData()) {
1039 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) {
1040 if (*ProfileTripCount < FlatLoopTripCountThreshold)
1041 return false;
1042 else
1043 UP.AllowExpensiveTripCount = true;
1046 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount;
1047 if (!UP.Runtime) {
1048 LLVM_DEBUG(
1049 dbgs() << " will not try to unroll loop with runtime trip count "
1050 << "-unroll-runtime not given\n");
1051 UP.Count = 0;
1052 return false;
1054 if (UP.Count == 0)
1055 UP.Count = UP.DefaultUnrollRuntimeCount;
1057 // Reduce unroll count to be the largest power-of-two factor of
1058 // the original count which satisfies the threshold limit.
1059 while (UP.Count != 0 &&
1060 UCE.getUnrolledLoopSize(UP) > UP.PartialThreshold)
1061 UP.Count >>= 1;
1063 #ifndef NDEBUG
1064 unsigned OrigCount = UP.Count;
1065 #endif
1067 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) {
1068 while (UP.Count != 0 && TripMultiple % UP.Count != 0)
1069 UP.Count >>= 1;
1070 LLVM_DEBUG(
1071 dbgs() << "Remainder loop is restricted (that could architecture "
1072 "specific or because the loop contains a convergent "
1073 "instruction), so unroll count must divide the trip "
1074 "multiple, "
1075 << TripMultiple << ". Reducing unroll count from " << OrigCount
1076 << " to " << UP.Count << ".\n");
1078 using namespace ore;
1080 if (unrollCountPragmaValue(L) > 0 && !UP.AllowRemainder)
1081 ORE->emit([&]() {
1082 return OptimizationRemarkMissed(DEBUG_TYPE,
1083 "DifferentUnrollCountFromDirected",
1084 L->getStartLoc(), L->getHeader())
1085 << "Unable to unroll loop the number of times directed by "
1086 "unroll_count pragma because remainder loop is restricted "
1087 "(that could architecture specific or because the loop "
1088 "contains a convergent instruction) and so must have an "
1089 "unroll "
1090 "count that divides the loop trip multiple of "
1091 << NV("TripMultiple", TripMultiple) << ". Unrolling instead "
1092 << NV("UnrollCount", UP.Count) << " time(s).";
1096 if (UP.Count > UP.MaxCount)
1097 UP.Count = UP.MaxCount;
1099 if (MaxTripCount && UP.Count > MaxTripCount)
1100 UP.Count = MaxTripCount;
1102 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP.Count
1103 << "\n");
1104 if (UP.Count < 2)
1105 UP.Count = 0;
1106 return ExplicitUnroll;
1109 static LoopUnrollResult
1110 tryToUnrollLoop(Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE,
1111 const TargetTransformInfo &TTI, AssumptionCache &AC,
1112 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
1113 ProfileSummaryInfo *PSI, bool PreserveLCSSA, int OptLevel,
1114 bool OnlyFullUnroll, bool OnlyWhenForced, bool ForgetAllSCEV,
1115 std::optional<unsigned> ProvidedCount,
1116 std::optional<unsigned> ProvidedThreshold,
1117 std::optional<bool> ProvidedAllowPartial,
1118 std::optional<bool> ProvidedRuntime,
1119 std::optional<bool> ProvidedUpperBound,
1120 std::optional<bool> ProvidedAllowPeeling,
1121 std::optional<bool> ProvidedAllowProfileBasedPeeling,
1122 std::optional<unsigned> ProvidedFullUnrollMaxCount) {
1124 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1125 << L->getHeader()->getParent()->getName() << "] Loop %"
1126 << L->getHeader()->getName() << "\n");
1127 TransformationMode TM = hasUnrollTransformation(L);
1128 if (TM & TM_Disable)
1129 return LoopUnrollResult::Unmodified;
1131 // If this loop isn't forced to be unrolled, avoid unrolling it when the
1132 // parent loop has an explicit unroll-and-jam pragma. This is to prevent
1133 // automatic unrolling from interfering with the user requested
1134 // transformation.
1135 Loop *ParentL = L->getParentLoop();
1136 if (ParentL != nullptr &&
1137 hasUnrollAndJamTransformation(ParentL) == TM_ForcedByUser &&
1138 hasUnrollTransformation(L) != TM_ForcedByUser) {
1139 LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has"
1140 << " llvm.loop.unroll_and_jam.\n");
1141 return LoopUnrollResult::Unmodified;
1144 // If this loop isn't forced to be unrolled, avoid unrolling it when the
1145 // loop has an explicit unroll-and-jam pragma. This is to prevent automatic
1146 // unrolling from interfering with the user requested transformation.
1147 if (hasUnrollAndJamTransformation(L) == TM_ForcedByUser &&
1148 hasUnrollTransformation(L) != TM_ForcedByUser) {
1149 LLVM_DEBUG(
1150 dbgs()
1151 << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n");
1152 return LoopUnrollResult::Unmodified;
1155 if (!L->isLoopSimplifyForm()) {
1156 LLVM_DEBUG(
1157 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
1158 return LoopUnrollResult::Unmodified;
1161 // When automatic unrolling is disabled, do not unroll unless overridden for
1162 // this loop.
1163 if (OnlyWhenForced && !(TM & TM_Enable))
1164 return LoopUnrollResult::Unmodified;
1166 bool OptForSize = L->getHeader()->getParent()->hasOptSize();
1167 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences(
1168 L, SE, TTI, BFI, PSI, ORE, OptLevel, ProvidedThreshold, ProvidedCount,
1169 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound,
1170 ProvidedFullUnrollMaxCount);
1171 TargetTransformInfo::PeelingPreferences PP = gatherPeelingPreferences(
1172 L, SE, TTI, ProvidedAllowPeeling, ProvidedAllowProfileBasedPeeling, true);
1174 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1175 // as threshold later on.
1176 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) &&
1177 !OptForSize)
1178 return LoopUnrollResult::Unmodified;
1180 SmallPtrSet<const Value *, 32> EphValues;
1181 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
1183 UnrollCostEstimator UCE(L, TTI, EphValues, UP.BEInsns);
1184 if (!UCE.canUnroll()) {
1185 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains instructions"
1186 << " which cannot be duplicated or have invalid cost.\n");
1187 return LoopUnrollResult::Unmodified;
1190 unsigned LoopSize = UCE.getRolledLoopSize();
1191 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
1193 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1194 // later), to (fully) unroll loops, if it does not increase code size.
1195 if (OptForSize)
1196 UP.Threshold = std::max(UP.Threshold, LoopSize + 1);
1198 if (UCE.NumInlineCandidates != 0) {
1199 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1200 return LoopUnrollResult::Unmodified;
1203 // Find the smallest exact trip count for any exit. This is an upper bound
1204 // on the loop trip count, but an exit at an earlier iteration is still
1205 // possible. An unroll by the smallest exact trip count guarantees that all
1206 // branches relating to at least one exit can be eliminated. This is unlike
1207 // the max trip count, which only guarantees that the backedge can be broken.
1208 unsigned TripCount = 0;
1209 unsigned TripMultiple = 1;
1210 SmallVector<BasicBlock *, 8> ExitingBlocks;
1211 L->getExitingBlocks(ExitingBlocks);
1212 for (BasicBlock *ExitingBlock : ExitingBlocks)
1213 if (unsigned TC = SE.getSmallConstantTripCount(L, ExitingBlock))
1214 if (!TripCount || TC < TripCount)
1215 TripCount = TripMultiple = TC;
1217 if (!TripCount) {
1218 // If no exact trip count is known, determine the trip multiple of either
1219 // the loop latch or the single exiting block.
1220 // TODO: Relax for multiple exits.
1221 BasicBlock *ExitingBlock = L->getLoopLatch();
1222 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
1223 ExitingBlock = L->getExitingBlock();
1224 if (ExitingBlock)
1225 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock);
1228 // If the loop contains a convergent operation, the prelude we'd add
1229 // to do the first few instructions before we hit the unrolled loop
1230 // is unsafe -- it adds a control-flow dependency to the convergent
1231 // operation. Therefore restrict remainder loop (try unrolling without).
1233 // TODO: This is quite conservative. In practice, convergent_op()
1234 // is likely to be called unconditionally in the loop. In this
1235 // case, the program would be ill-formed (on most architectures)
1236 // unless n were the same on all threads in a thread group.
1237 // Assuming n is the same on all threads, any kind of unrolling is
1238 // safe. But currently llvm's notion of convergence isn't powerful
1239 // enough to express this.
1240 if (UCE.Convergent)
1241 UP.AllowRemainder = false;
1243 // Try to find the trip count upper bound if we cannot find the exact trip
1244 // count.
1245 unsigned MaxTripCount = 0;
1246 bool MaxOrZero = false;
1247 if (!TripCount) {
1248 MaxTripCount = SE.getSmallConstantMaxTripCount(L);
1249 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L);
1252 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1253 // fully unroll the loop.
1254 bool UseUpperBound = false;
1255 bool IsCountSetExplicitly = computeUnrollCount(
1256 L, TTI, DT, LI, &AC, SE, EphValues, &ORE, TripCount, MaxTripCount,
1257 MaxOrZero, TripMultiple, UCE, UP, PP, UseUpperBound);
1258 if (!UP.Count)
1259 return LoopUnrollResult::Unmodified;
1261 if (PP.PeelCount) {
1262 assert(UP.Count == 1 && "Cannot perform peel and unroll in the same step");
1263 LLVM_DEBUG(dbgs() << "PEELING loop %" << L->getHeader()->getName()
1264 << " with iteration count " << PP.PeelCount << "!\n");
1265 ORE.emit([&]() {
1266 return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
1267 L->getHeader())
1268 << " peeled loop by " << ore::NV("PeelCount", PP.PeelCount)
1269 << " iterations";
1272 ValueToValueMapTy VMap;
1273 if (peelLoop(L, PP.PeelCount, LI, &SE, DT, &AC, PreserveLCSSA, VMap)) {
1274 simplifyLoopAfterUnroll(L, true, LI, &SE, &DT, &AC, &TTI);
1275 // If the loop was peeled, we already "used up" the profile information
1276 // we had, so we don't want to unroll or peel again.
1277 if (PP.PeelProfiledIterations)
1278 L->setLoopAlreadyUnrolled();
1279 return LoopUnrollResult::PartiallyUnrolled;
1281 return LoopUnrollResult::Unmodified;
1284 // Do not attempt partial/runtime unrolling in FullLoopUnrolling
1285 if (OnlyFullUnroll && !(UP.Count >= MaxTripCount)) {
1286 LLVM_DEBUG(
1287 dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n");
1288 return LoopUnrollResult::Unmodified;
1291 // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1292 // However, we only want to actually perform it if we don't know the trip
1293 // count and the unroll count doesn't divide the known trip multiple.
1294 // TODO: This decision should probably be pushed up into
1295 // computeUnrollCount().
1296 UP.Runtime &= TripCount == 0 && TripMultiple % UP.Count != 0;
1298 // Save loop properties before it is transformed.
1299 MDNode *OrigLoopID = L->getLoopID();
1301 // Unroll the loop.
1302 Loop *RemainderLoop = nullptr;
1303 LoopUnrollResult UnrollResult = UnrollLoop(
1305 {UP.Count, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount,
1306 UP.UnrollRemainder, ForgetAllSCEV},
1307 LI, &SE, &DT, &AC, &TTI, &ORE, PreserveLCSSA, &RemainderLoop);
1308 if (UnrollResult == LoopUnrollResult::Unmodified)
1309 return LoopUnrollResult::Unmodified;
1311 if (RemainderLoop) {
1312 std::optional<MDNode *> RemainderLoopID =
1313 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1314 LLVMLoopUnrollFollowupRemainder});
1315 if (RemainderLoopID)
1316 RemainderLoop->setLoopID(*RemainderLoopID);
1319 if (UnrollResult != LoopUnrollResult::FullyUnrolled) {
1320 std::optional<MDNode *> NewLoopID =
1321 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll,
1322 LLVMLoopUnrollFollowupUnrolled});
1323 if (NewLoopID) {
1324 L->setLoopID(*NewLoopID);
1326 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1327 // explicitly.
1328 return UnrollResult;
1332 // If loop has an unroll count pragma or unrolled by explicitly set count
1333 // mark loop as unrolled to prevent unrolling beyond that requested.
1334 if (UnrollResult != LoopUnrollResult::FullyUnrolled && IsCountSetExplicitly)
1335 L->setLoopAlreadyUnrolled();
1337 return UnrollResult;
1340 namespace {
1342 class LoopUnroll : public LoopPass {
1343 public:
1344 static char ID; // Pass ID, replacement for typeid
1346 int OptLevel;
1348 /// If false, use a cost model to determine whether unrolling of a loop is
1349 /// profitable. If true, only loops that explicitly request unrolling via
1350 /// metadata are considered. All other loops are skipped.
1351 bool OnlyWhenForced;
1353 /// If false, when SCEV is invalidated, only forget everything in the
1354 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1355 /// Otherwise, forgetAllLoops and rebuild when needed next.
1356 bool ForgetAllSCEV;
1358 std::optional<unsigned> ProvidedCount;
1359 std::optional<unsigned> ProvidedThreshold;
1360 std::optional<bool> ProvidedAllowPartial;
1361 std::optional<bool> ProvidedRuntime;
1362 std::optional<bool> ProvidedUpperBound;
1363 std::optional<bool> ProvidedAllowPeeling;
1364 std::optional<bool> ProvidedAllowProfileBasedPeeling;
1365 std::optional<unsigned> ProvidedFullUnrollMaxCount;
1367 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false,
1368 bool ForgetAllSCEV = false,
1369 std::optional<unsigned> Threshold = std::nullopt,
1370 std::optional<unsigned> Count = std::nullopt,
1371 std::optional<bool> AllowPartial = std::nullopt,
1372 std::optional<bool> Runtime = std::nullopt,
1373 std::optional<bool> UpperBound = std::nullopt,
1374 std::optional<bool> AllowPeeling = std::nullopt,
1375 std::optional<bool> AllowProfileBasedPeeling = std::nullopt,
1376 std::optional<unsigned> ProvidedFullUnrollMaxCount = std::nullopt)
1377 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced),
1378 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)),
1379 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial),
1380 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound),
1381 ProvidedAllowPeeling(AllowPeeling),
1382 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling),
1383 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount) {
1384 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1387 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1388 if (skipLoop(L))
1389 return false;
1391 Function &F = *L->getHeader()->getParent();
1393 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1394 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1395 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1396 const TargetTransformInfo &TTI =
1397 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1398 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1399 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1400 // pass. Function analyses need to be preserved across loop transformations
1401 // but ORE cannot be preserved (see comment before the pass definition).
1402 OptimizationRemarkEmitter ORE(&F);
1403 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1405 LoopUnrollResult Result = tryToUnrollLoop(
1406 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, PreserveLCSSA, OptLevel,
1407 /*OnlyFullUnroll*/ false, OnlyWhenForced, ForgetAllSCEV, ProvidedCount,
1408 ProvidedThreshold, ProvidedAllowPartial, ProvidedRuntime,
1409 ProvidedUpperBound, ProvidedAllowPeeling,
1410 ProvidedAllowProfileBasedPeeling, ProvidedFullUnrollMaxCount);
1412 if (Result == LoopUnrollResult::FullyUnrolled)
1413 LPM.markLoopAsDeleted(*L);
1415 return Result != LoopUnrollResult::Unmodified;
1418 /// This transformation requires natural loop information & requires that
1419 /// loop preheaders be inserted into the CFG...
1420 void getAnalysisUsage(AnalysisUsage &AU) const override {
1421 AU.addRequired<AssumptionCacheTracker>();
1422 AU.addRequired<TargetTransformInfoWrapperPass>();
1423 // FIXME: Loop passes are required to preserve domtree, and for now we just
1424 // recreate dom info if anything gets unrolled.
1425 getLoopAnalysisUsage(AU);
1429 } // end anonymous namespace
1431 char LoopUnroll::ID = 0;
1433 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1434 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1435 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1436 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1437 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
1439 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced,
1440 bool ForgetAllSCEV, int Threshold, int Count,
1441 int AllowPartial, int Runtime, int UpperBound,
1442 int AllowPeeling) {
1443 // TODO: It would make more sense for this function to take the optionals
1444 // directly, but that's dangerous since it would silently break out of tree
1445 // callers.
1446 return new LoopUnroll(
1447 OptLevel, OnlyWhenForced, ForgetAllSCEV,
1448 Threshold == -1 ? std::nullopt : std::optional<unsigned>(Threshold),
1449 Count == -1 ? std::nullopt : std::optional<unsigned>(Count),
1450 AllowPartial == -1 ? std::nullopt : std::optional<bool>(AllowPartial),
1451 Runtime == -1 ? std::nullopt : std::optional<bool>(Runtime),
1452 UpperBound == -1 ? std::nullopt : std::optional<bool>(UpperBound),
1453 AllowPeeling == -1 ? std::nullopt : std::optional<bool>(AllowPeeling));
1456 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM,
1457 LoopStandardAnalysisResults &AR,
1458 LPMUpdater &Updater) {
1459 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1460 // pass. Function analyses need to be preserved across loop transformations
1461 // but ORE cannot be preserved (see comment before the pass definition).
1462 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
1464 // Keep track of the previous loop structure so we can identify new loops
1465 // created by unrolling.
1466 Loop *ParentL = L.getParentLoop();
1467 SmallPtrSet<Loop *, 4> OldLoops;
1468 if (ParentL)
1469 OldLoops.insert(ParentL->begin(), ParentL->end());
1470 else
1471 OldLoops.insert(AR.LI.begin(), AR.LI.end());
1473 std::string LoopName = std::string(L.getName());
1475 bool Changed =
1476 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, ORE,
1477 /*BFI*/ nullptr, /*PSI*/ nullptr,
1478 /*PreserveLCSSA*/ true, OptLevel, /*OnlyFullUnroll*/ true,
1479 OnlyWhenForced, ForgetSCEV, /*Count*/ std::nullopt,
1480 /*Threshold*/ std::nullopt, /*AllowPartial*/ false,
1481 /*Runtime*/ false, /*UpperBound*/ false,
1482 /*AllowPeeling*/ true,
1483 /*AllowProfileBasedPeeling*/ false,
1484 /*FullUnrollMaxCount*/ std::nullopt) !=
1485 LoopUnrollResult::Unmodified;
1486 if (!Changed)
1487 return PreservedAnalyses::all();
1489 // The parent must not be damaged by unrolling!
1490 #ifndef NDEBUG
1491 if (ParentL)
1492 ParentL->verifyLoop();
1493 #endif
1495 // Unrolling can do several things to introduce new loops into a loop nest:
1496 // - Full unrolling clones child loops within the current loop but then
1497 // removes the current loop making all of the children appear to be new
1498 // sibling loops.
1500 // When a new loop appears as a sibling loop after fully unrolling,
1501 // its nesting structure has fundamentally changed and we want to revisit
1502 // it to reflect that.
1504 // When unrolling has removed the current loop, we need to tell the
1505 // infrastructure that it is gone.
1507 // Finally, we support a debugging/testing mode where we revisit child loops
1508 // as well. These are not expected to require further optimizations as either
1509 // they or the loop they were cloned from have been directly visited already.
1510 // But the debugging mode allows us to check this assumption.
1511 bool IsCurrentLoopValid = false;
1512 SmallVector<Loop *, 4> SibLoops;
1513 if (ParentL)
1514 SibLoops.append(ParentL->begin(), ParentL->end());
1515 else
1516 SibLoops.append(AR.LI.begin(), AR.LI.end());
1517 erase_if(SibLoops, [&](Loop *SibLoop) {
1518 if (SibLoop == &L) {
1519 IsCurrentLoopValid = true;
1520 return true;
1523 // Otherwise erase the loop from the list if it was in the old loops.
1524 return OldLoops.contains(SibLoop);
1526 Updater.addSiblingLoops(SibLoops);
1528 if (!IsCurrentLoopValid) {
1529 Updater.markLoopAsDeleted(L, LoopName);
1530 } else {
1531 // We can only walk child loops if the current loop remained valid.
1532 if (UnrollRevisitChildLoops) {
1533 // Walk *all* of the child loops.
1534 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end());
1535 Updater.addChildLoops(ChildLoops);
1539 return getLoopPassPreservedAnalyses();
1542 PreservedAnalyses LoopUnrollPass::run(Function &F,
1543 FunctionAnalysisManager &AM) {
1544 auto &LI = AM.getResult<LoopAnalysis>(F);
1545 // There are no loops in the function. Return before computing other expensive
1546 // analyses.
1547 if (LI.empty())
1548 return PreservedAnalyses::all();
1549 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1550 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1551 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1552 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1553 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1555 LoopAnalysisManager *LAM = nullptr;
1556 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F))
1557 LAM = &LAMProxy->getManager();
1559 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1560 ProfileSummaryInfo *PSI =
1561 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1562 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
1563 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
1565 bool Changed = false;
1567 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1568 // Since simplification may add new inner loops, it has to run before the
1569 // legality and profitability checks. This means running the loop unroller
1570 // will simplify all loops, regardless of whether anything end up being
1571 // unrolled.
1572 for (const auto &L : LI) {
1573 Changed |=
1574 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */);
1575 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1578 // Add the loop nests in the reverse order of LoopInfo. See method
1579 // declaration.
1580 SmallPriorityWorklist<Loop *, 4> Worklist;
1581 appendLoopsToWorklist(LI, Worklist);
1583 while (!Worklist.empty()) {
1584 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1585 // from back to front so that we work forward across the CFG, which
1586 // for unrolling is only needed to get optimization remarks emitted in
1587 // a forward order.
1588 Loop &L = *Worklist.pop_back_val();
1589 #ifndef NDEBUG
1590 Loop *ParentL = L.getParentLoop();
1591 #endif
1593 // Check if the profile summary indicates that the profiled application
1594 // has a huge working set size, in which case we disable peeling to avoid
1595 // bloating it further.
1596 std::optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling;
1597 if (PSI && PSI->hasHugeWorkingSetSize())
1598 LocalAllowPeeling = false;
1599 std::string LoopName = std::string(L.getName());
1600 // The API here is quite complex to call and we allow to select some
1601 // flavors of unrolling during construction time (by setting UnrollOpts).
1602 LoopUnrollResult Result = tryToUnrollLoop(
1603 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI,
1604 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, /*OnlyFullUnroll*/ false,
1605 UnrollOpts.OnlyWhenForced, UnrollOpts.ForgetSCEV,
1606 /*Count*/ std::nullopt,
1607 /*Threshold*/ std::nullopt, UnrollOpts.AllowPartial,
1608 UnrollOpts.AllowRuntime, UnrollOpts.AllowUpperBound, LocalAllowPeeling,
1609 UnrollOpts.AllowProfileBasedPeeling, UnrollOpts.FullUnrollMaxCount);
1610 Changed |= Result != LoopUnrollResult::Unmodified;
1612 // The parent must not be damaged by unrolling!
1613 #ifndef NDEBUG
1614 if (Result != LoopUnrollResult::Unmodified && ParentL)
1615 ParentL->verifyLoop();
1616 #endif
1618 // Clear any cached analysis results for L if we removed it completely.
1619 if (LAM && Result == LoopUnrollResult::FullyUnrolled)
1620 LAM->clear(L, LoopName);
1623 if (!Changed)
1624 return PreservedAnalyses::all();
1626 return getLoopPassPreservedAnalyses();
1629 void LoopUnrollPass::printPipeline(
1630 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1631 static_cast<PassInfoMixin<LoopUnrollPass> *>(this)->printPipeline(
1632 OS, MapClassName2PassName);
1633 OS << '<';
1634 if (UnrollOpts.AllowPartial != std::nullopt)
1635 OS << (*UnrollOpts.AllowPartial ? "" : "no-") << "partial;";
1636 if (UnrollOpts.AllowPeeling != std::nullopt)
1637 OS << (*UnrollOpts.AllowPeeling ? "" : "no-") << "peeling;";
1638 if (UnrollOpts.AllowRuntime != std::nullopt)
1639 OS << (*UnrollOpts.AllowRuntime ? "" : "no-") << "runtime;";
1640 if (UnrollOpts.AllowUpperBound != std::nullopt)
1641 OS << (*UnrollOpts.AllowUpperBound ? "" : "no-") << "upperbound;";
1642 if (UnrollOpts.AllowProfileBasedPeeling != std::nullopt)
1643 OS << (*UnrollOpts.AllowProfileBasedPeeling ? "" : "no-")
1644 << "profile-peeling;";
1645 if (UnrollOpts.FullUnrollMaxCount != std::nullopt)
1646 OS << "full-unroll-max=" << UnrollOpts.FullUnrollMaxCount << ';';
1647 OS << 'O' << UnrollOpts.OptLevel;
1648 OS << '>';