1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements a simple loop unroller. It works best when loops have
10 // been canonicalized by the -indvars pass, allowing it to determine the trip
11 // counts of loops easily.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/CodeMetrics.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Metadata.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/Transforms/Scalar/LoopPassManager.h"
55 #include "llvm/Transforms/Utils.h"
56 #include "llvm/Transforms/Utils/LoopPeel.h"
57 #include "llvm/Transforms/Utils/LoopSimplify.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include "llvm/Transforms/Utils/SizeOpts.h"
60 #include "llvm/Transforms/Utils/UnrollLoop.h"
72 #define DEBUG_TYPE "loop-unroll"
74 cl::opt
<bool> llvm::ForgetSCEVInLoopUnroll(
75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden
,
76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
77 " the current top-most loop. This is sometimes preferred to reduce"
80 static cl::opt
<unsigned>
81 UnrollThreshold("unroll-threshold", cl::Hidden
,
82 cl::desc("The cost threshold for loop unrolling"));
84 static cl::opt
<unsigned>
85 UnrollOptSizeThreshold(
86 "unroll-optsize-threshold", cl::init(0), cl::Hidden
,
87 cl::desc("The cost threshold for loop unrolling when optimizing for "
90 static cl::opt
<unsigned> UnrollPartialThreshold(
91 "unroll-partial-threshold", cl::Hidden
,
92 cl::desc("The cost threshold for partial loop unrolling"));
94 static cl::opt
<unsigned> UnrollMaxPercentThresholdBoost(
95 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden
,
96 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied "
97 "to the threshold when aggressively unrolling a loop due to the "
98 "dynamic cost savings. If completely unrolling a loop will reduce "
99 "the total runtime from X to Y, we boost the loop unroll "
100 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, "
101 "X/Y). This limit avoids excessive code bloat."));
103 static cl::opt
<unsigned> UnrollMaxIterationsCountToAnalyze(
104 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden
,
105 cl::desc("Don't allow loop unrolling to simulate more than this number of"
106 "iterations when checking full unroll profitability"));
108 static cl::opt
<unsigned> UnrollCount(
109 "unroll-count", cl::Hidden
,
110 cl::desc("Use this unroll count for all loops including those with "
111 "unroll_count pragma values, for testing purposes"));
113 static cl::opt
<unsigned> UnrollMaxCount(
114 "unroll-max-count", cl::Hidden
,
115 cl::desc("Set the max unroll count for partial and runtime unrolling, for"
116 "testing purposes"));
118 static cl::opt
<unsigned> UnrollFullMaxCount(
119 "unroll-full-max-count", cl::Hidden
,
121 "Set the max unroll count for full unrolling, for testing purposes"));
124 UnrollAllowPartial("unroll-allow-partial", cl::Hidden
,
125 cl::desc("Allows loops to be partially unrolled until "
126 "-unroll-threshold loop size is reached."));
128 static cl::opt
<bool> UnrollAllowRemainder(
129 "unroll-allow-remainder", cl::Hidden
,
130 cl::desc("Allow generation of a loop remainder (extra iterations) "
131 "when unrolling a loop."));
134 UnrollRuntime("unroll-runtime", cl::Hidden
,
135 cl::desc("Unroll loops with run-time trip counts"));
137 static cl::opt
<unsigned> UnrollMaxUpperBound(
138 "unroll-max-upperbound", cl::init(8), cl::Hidden
,
140 "The max of trip count upper bound that is considered in unrolling"));
142 static cl::opt
<unsigned> PragmaUnrollThreshold(
143 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden
,
144 cl::desc("Unrolled size limit for loops with an unroll(full) or "
145 "unroll_count pragma."));
147 static cl::opt
<unsigned> FlatLoopTripCountThreshold(
148 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden
,
149 cl::desc("If the runtime tripcount for the loop is lower than the "
150 "threshold, the loop is considered as flat and will be less "
151 "aggressively unrolled."));
153 static cl::opt
<bool> UnrollUnrollRemainder(
154 "unroll-remainder", cl::Hidden
,
155 cl::desc("Allow the loop remainder to be unrolled."));
157 // This option isn't ever intended to be enabled, it serves to allow
158 // experiments to check the assumptions about when this kind of revisit is
160 static cl::opt
<bool> UnrollRevisitChildLoops(
161 "unroll-revisit-child-loops", cl::Hidden
,
162 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. "
163 "This shouldn't typically be needed as child loops (or their "
164 "clones) were already visited."));
166 static cl::opt
<unsigned> UnrollThresholdAggressive(
167 "unroll-threshold-aggressive", cl::init(300), cl::Hidden
,
168 cl::desc("Threshold (max size of unrolled loop) to use in aggressive (O3) "
170 static cl::opt
<unsigned>
171 UnrollThresholdDefault("unroll-threshold-default", cl::init(150),
173 cl::desc("Default threshold (max size of unrolled "
174 "loop), used in all but O3 optimizations"));
176 /// A magic value for use with the Threshold parameter to indicate
177 /// that the loop unroll should be performed regardless of how much
178 /// code expansion would result.
179 static const unsigned NoThreshold
= std::numeric_limits
<unsigned>::max();
181 /// Gather the various unrolling parameters based on the defaults, compiler
182 /// flags, TTI overrides and user specified parameters.
183 TargetTransformInfo::UnrollingPreferences
llvm::gatherUnrollingPreferences(
184 Loop
*L
, ScalarEvolution
&SE
, const TargetTransformInfo
&TTI
,
185 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
,
186 OptimizationRemarkEmitter
&ORE
, int OptLevel
,
187 std::optional
<unsigned> UserThreshold
, std::optional
<unsigned> UserCount
,
188 std::optional
<bool> UserAllowPartial
, std::optional
<bool> UserRuntime
,
189 std::optional
<bool> UserUpperBound
,
190 std::optional
<unsigned> UserFullUnrollMaxCount
) {
191 TargetTransformInfo::UnrollingPreferences UP
;
193 // Set up the defaults
195 OptLevel
> 2 ? UnrollThresholdAggressive
: UnrollThresholdDefault
;
196 UP
.MaxPercentThresholdBoost
= 400;
197 UP
.OptSizeThreshold
= UnrollOptSizeThreshold
;
198 UP
.PartialThreshold
= 150;
199 UP
.PartialOptSizeThreshold
= UnrollOptSizeThreshold
;
201 UP
.DefaultUnrollRuntimeCount
= 8;
202 UP
.MaxCount
= std::numeric_limits
<unsigned>::max();
203 UP
.MaxUpperBound
= UnrollMaxUpperBound
;
204 UP
.FullUnrollMaxCount
= std::numeric_limits
<unsigned>::max();
208 UP
.AllowRemainder
= true;
209 UP
.UnrollRemainder
= false;
210 UP
.AllowExpensiveTripCount
= false;
212 UP
.UpperBound
= false;
213 UP
.UnrollAndJam
= false;
214 UP
.UnrollAndJamInnerLoopThreshold
= 60;
215 UP
.MaxIterationsCountToAnalyze
= UnrollMaxIterationsCountToAnalyze
;
217 // Override with any target specific settings
218 TTI
.getUnrollingPreferences(L
, SE
, UP
, &ORE
);
220 // Apply size attributes
221 bool OptForSize
= L
->getHeader()->getParent()->hasOptSize() ||
222 // Let unroll hints / pragmas take precedence over PGSO.
223 (hasUnrollTransformation(L
) != TM_ForcedByUser
&&
224 llvm::shouldOptimizeForSize(L
->getHeader(), PSI
, BFI
,
225 PGSOQueryType::IRPass
));
227 UP
.Threshold
= UP
.OptSizeThreshold
;
228 UP
.PartialThreshold
= UP
.PartialOptSizeThreshold
;
229 UP
.MaxPercentThresholdBoost
= 100;
232 // Apply any user values specified by cl::opt
233 if (UnrollThreshold
.getNumOccurrences() > 0)
234 UP
.Threshold
= UnrollThreshold
;
235 if (UnrollPartialThreshold
.getNumOccurrences() > 0)
236 UP
.PartialThreshold
= UnrollPartialThreshold
;
237 if (UnrollMaxPercentThresholdBoost
.getNumOccurrences() > 0)
238 UP
.MaxPercentThresholdBoost
= UnrollMaxPercentThresholdBoost
;
239 if (UnrollMaxCount
.getNumOccurrences() > 0)
240 UP
.MaxCount
= UnrollMaxCount
;
241 if (UnrollMaxUpperBound
.getNumOccurrences() > 0)
242 UP
.MaxUpperBound
= UnrollMaxUpperBound
;
243 if (UnrollFullMaxCount
.getNumOccurrences() > 0)
244 UP
.FullUnrollMaxCount
= UnrollFullMaxCount
;
245 if (UnrollAllowPartial
.getNumOccurrences() > 0)
246 UP
.Partial
= UnrollAllowPartial
;
247 if (UnrollAllowRemainder
.getNumOccurrences() > 0)
248 UP
.AllowRemainder
= UnrollAllowRemainder
;
249 if (UnrollRuntime
.getNumOccurrences() > 0)
250 UP
.Runtime
= UnrollRuntime
;
251 if (UnrollMaxUpperBound
== 0)
252 UP
.UpperBound
= false;
253 if (UnrollUnrollRemainder
.getNumOccurrences() > 0)
254 UP
.UnrollRemainder
= UnrollUnrollRemainder
;
255 if (UnrollMaxIterationsCountToAnalyze
.getNumOccurrences() > 0)
256 UP
.MaxIterationsCountToAnalyze
= UnrollMaxIterationsCountToAnalyze
;
258 // Apply user values provided by argument
260 UP
.Threshold
= *UserThreshold
;
261 UP
.PartialThreshold
= *UserThreshold
;
264 UP
.Count
= *UserCount
;
265 if (UserAllowPartial
)
266 UP
.Partial
= *UserAllowPartial
;
268 UP
.Runtime
= *UserRuntime
;
270 UP
.UpperBound
= *UserUpperBound
;
271 if (UserFullUnrollMaxCount
)
272 UP
.FullUnrollMaxCount
= *UserFullUnrollMaxCount
;
279 /// A struct to densely store the state of an instruction after unrolling at
282 /// This is designed to work like a tuple of <Instruction *, int> for the
283 /// purposes of hashing and lookup, but to be able to associate two boolean
284 /// states with each key.
285 struct UnrolledInstState
{
289 unsigned IsCounted
: 1;
292 /// Hashing and equality testing for a set of the instruction states.
293 struct UnrolledInstStateKeyInfo
{
294 using PtrInfo
= DenseMapInfo
<Instruction
*>;
295 using PairInfo
= DenseMapInfo
<std::pair
<Instruction
*, int>>;
297 static inline UnrolledInstState
getEmptyKey() {
298 return {PtrInfo::getEmptyKey(), 0, 0, 0};
301 static inline UnrolledInstState
getTombstoneKey() {
302 return {PtrInfo::getTombstoneKey(), 0, 0, 0};
305 static inline unsigned getHashValue(const UnrolledInstState
&S
) {
306 return PairInfo::getHashValue({S
.I
, S
.Iteration
});
309 static inline bool isEqual(const UnrolledInstState
&LHS
,
310 const UnrolledInstState
&RHS
) {
311 return PairInfo::isEqual({LHS
.I
, LHS
.Iteration
}, {RHS
.I
, RHS
.Iteration
});
315 struct EstimatedUnrollCost
{
316 /// The estimated cost after unrolling.
317 unsigned UnrolledCost
;
319 /// The estimated dynamic cost of executing the instructions in the
321 unsigned RolledDynamicCost
;
325 PragmaInfo(bool UUC
, bool PFU
, unsigned PC
, bool PEU
)
326 : UserUnrollCount(UUC
), PragmaFullUnroll(PFU
), PragmaCount(PC
),
327 PragmaEnableUnroll(PEU
) {}
328 const bool UserUnrollCount
;
329 const bool PragmaFullUnroll
;
330 const unsigned PragmaCount
;
331 const bool PragmaEnableUnroll
;
334 } // end anonymous namespace
336 /// Figure out if the loop is worth full unrolling.
338 /// Complete loop unrolling can make some loads constant, and we need to know
339 /// if that would expose any further optimization opportunities. This routine
340 /// estimates this optimization. It computes cost of unrolled loop
341 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
342 /// dynamic cost we mean that we won't count costs of blocks that are known not
343 /// to be executed (i.e. if we have a branch in the loop and we know that at the
344 /// given iteration its condition would be resolved to true, we won't add up the
345 /// cost of the 'false'-block).
346 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
347 /// the analysis failed (no benefits expected from the unrolling, or the loop is
348 /// too big to analyze), the returned value is std::nullopt.
349 static std::optional
<EstimatedUnrollCost
> analyzeLoopUnrollCost(
350 const Loop
*L
, unsigned TripCount
, DominatorTree
&DT
, ScalarEvolution
&SE
,
351 const SmallPtrSetImpl
<const Value
*> &EphValues
,
352 const TargetTransformInfo
&TTI
, unsigned MaxUnrolledLoopSize
,
353 unsigned MaxIterationsCountToAnalyze
) {
354 // We want to be able to scale offsets by the trip count and add more offsets
355 // to them without checking for overflows, and we already don't want to
356 // analyze *massive* trip counts, so we force the max to be reasonably small.
357 assert(MaxIterationsCountToAnalyze
<
358 (unsigned)(std::numeric_limits
<int>::max() / 2) &&
359 "The unroll iterations max is too large!");
361 // Only analyze inner loops. We can't properly estimate cost of nested loops
362 // and we won't visit inner loops again anyway.
363 if (!L
->isInnermost())
366 // Don't simulate loops with a big or unknown tripcount
367 if (!TripCount
|| TripCount
> MaxIterationsCountToAnalyze
)
370 SmallSetVector
<BasicBlock
*, 16> BBWorklist
;
371 SmallSetVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 4> ExitWorklist
;
372 DenseMap
<Value
*, Value
*> SimplifiedValues
;
373 SmallVector
<std::pair
<Value
*, Value
*>, 4> SimplifiedInputValues
;
375 // The estimated cost of the unrolled form of the loop. We try to estimate
376 // this by simplifying as much as we can while computing the estimate.
377 InstructionCost UnrolledCost
= 0;
379 // We also track the estimated dynamic (that is, actually executed) cost in
380 // the rolled form. This helps identify cases when the savings from unrolling
381 // aren't just exposing dead control flows, but actual reduced dynamic
382 // instructions due to the simplifications which we expect to occur after
384 InstructionCost RolledDynamicCost
= 0;
386 // We track the simplification of each instruction in each iteration. We use
387 // this to recursively merge costs into the unrolled cost on-demand so that
388 // we don't count the cost of any dead code. This is essentially a map from
389 // <instruction, int> to <bool, bool>, but stored as a densely packed struct.
390 DenseSet
<UnrolledInstState
, UnrolledInstStateKeyInfo
> InstCostMap
;
392 // A small worklist used to accumulate cost of instructions from each
393 // observable and reached root in the loop.
394 SmallVector
<Instruction
*, 16> CostWorklist
;
396 // PHI-used worklist used between iterations while accumulating cost.
397 SmallVector
<Instruction
*, 4> PHIUsedList
;
399 // Helper function to accumulate cost for instructions in the loop.
400 auto AddCostRecursively
= [&](Instruction
&RootI
, int Iteration
) {
401 assert(Iteration
>= 0 && "Cannot have a negative iteration!");
402 assert(CostWorklist
.empty() && "Must start with an empty cost list");
403 assert(PHIUsedList
.empty() && "Must start with an empty phi used list");
404 CostWorklist
.push_back(&RootI
);
405 TargetTransformInfo::TargetCostKind CostKind
=
406 RootI
.getFunction()->hasMinSize() ?
407 TargetTransformInfo::TCK_CodeSize
:
408 TargetTransformInfo::TCK_SizeAndLatency
;
409 for (;; --Iteration
) {
411 Instruction
*I
= CostWorklist
.pop_back_val();
413 // InstCostMap only uses I and Iteration as a key, the other two values
414 // don't matter here.
415 auto CostIter
= InstCostMap
.find({I
, Iteration
, 0, 0});
416 if (CostIter
== InstCostMap
.end())
417 // If an input to a PHI node comes from a dead path through the loop
418 // we may have no cost data for it here. What that actually means is
421 auto &Cost
= *CostIter
;
423 // Already counted this instruction.
426 // Mark that we are counting the cost of this instruction now.
427 Cost
.IsCounted
= true;
429 // If this is a PHI node in the loop header, just add it to the PHI set.
430 if (auto *PhiI
= dyn_cast
<PHINode
>(I
))
431 if (PhiI
->getParent() == L
->getHeader()) {
432 assert(Cost
.IsFree
&& "Loop PHIs shouldn't be evaluated as they "
433 "inherently simplify during unrolling.");
437 // Push the incoming value from the backedge into the PHI used list
438 // if it is an in-loop instruction. We'll use this to populate the
439 // cost worklist for the next iteration (as we count backwards).
440 if (auto *OpI
= dyn_cast
<Instruction
>(
441 PhiI
->getIncomingValueForBlock(L
->getLoopLatch())))
442 if (L
->contains(OpI
))
443 PHIUsedList
.push_back(OpI
);
447 // First accumulate the cost of this instruction.
449 UnrolledCost
+= TTI
.getInstructionCost(I
, CostKind
);
450 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration "
451 << Iteration
<< "): ");
452 LLVM_DEBUG(I
->dump());
455 // We must count the cost of every operand which is not free,
456 // recursively. If we reach a loop PHI node, simply add it to the set
457 // to be considered on the next iteration (backwards!).
458 for (Value
*Op
: I
->operands()) {
459 // Check whether this operand is free due to being a constant or
461 auto *OpI
= dyn_cast
<Instruction
>(Op
);
462 if (!OpI
|| !L
->contains(OpI
))
465 // Otherwise accumulate its cost.
466 CostWorklist
.push_back(OpI
);
468 } while (!CostWorklist
.empty());
470 if (PHIUsedList
.empty())
471 // We've exhausted the search.
474 assert(Iteration
> 0 &&
475 "Cannot track PHI-used values past the first iteration!");
476 CostWorklist
.append(PHIUsedList
.begin(), PHIUsedList
.end());
481 // Ensure that we don't violate the loop structure invariants relied on by
483 assert(L
->isLoopSimplifyForm() && "Must put loop into normal form first.");
484 assert(L
->isLCSSAForm(DT
) &&
485 "Must have loops in LCSSA form to track live-out values.");
487 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
489 TargetTransformInfo::TargetCostKind CostKind
=
490 L
->getHeader()->getParent()->hasMinSize() ?
491 TargetTransformInfo::TCK_CodeSize
: TargetTransformInfo::TCK_SizeAndLatency
;
492 // Simulate execution of each iteration of the loop counting instructions,
493 // which would be simplified.
494 // Since the same load will take different values on different iterations,
495 // we literally have to go through all loop's iterations.
496 for (unsigned Iteration
= 0; Iteration
< TripCount
; ++Iteration
) {
497 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration
<< "\n");
499 // Prepare for the iteration by collecting any simplified entry or backedge
501 for (Instruction
&I
: *L
->getHeader()) {
502 auto *PHI
= dyn_cast
<PHINode
>(&I
);
506 // The loop header PHI nodes must have exactly two input: one from the
507 // loop preheader and one from the loop latch.
509 PHI
->getNumIncomingValues() == 2 &&
510 "Must have an incoming value only for the preheader and the latch.");
512 Value
*V
= PHI
->getIncomingValueForBlock(
513 Iteration
== 0 ? L
->getLoopPreheader() : L
->getLoopLatch());
514 if (Iteration
!= 0 && SimplifiedValues
.count(V
))
515 V
= SimplifiedValues
.lookup(V
);
516 SimplifiedInputValues
.push_back({PHI
, V
});
519 // Now clear and re-populate the map for the next iteration.
520 SimplifiedValues
.clear();
521 while (!SimplifiedInputValues
.empty())
522 SimplifiedValues
.insert(SimplifiedInputValues
.pop_back_val());
524 UnrolledInstAnalyzer
Analyzer(Iteration
, SimplifiedValues
, SE
, L
);
527 BBWorklist
.insert(L
->getHeader());
528 // Note that we *must not* cache the size, this loop grows the worklist.
529 for (unsigned Idx
= 0; Idx
!= BBWorklist
.size(); ++Idx
) {
530 BasicBlock
*BB
= BBWorklist
[Idx
];
532 // Visit all instructions in the given basic block and try to simplify
533 // it. We don't change the actual IR, just count optimization
535 for (Instruction
&I
: *BB
) {
536 // These won't get into the final code - don't even try calculating the
538 if (isa
<DbgInfoIntrinsic
>(I
) || EphValues
.count(&I
))
541 // Track this instruction's expected baseline cost when executing the
543 RolledDynamicCost
+= TTI
.getInstructionCost(&I
, CostKind
);
545 // Visit the instruction to analyze its loop cost after unrolling,
546 // and if the visitor returns true, mark the instruction as free after
547 // unrolling and continue.
548 bool IsFree
= Analyzer
.visit(I
);
549 bool Inserted
= InstCostMap
.insert({&I
, (int)Iteration
,
551 /*IsCounted*/ false}).second
;
553 assert(Inserted
&& "Cannot have a state for an unvisited instruction!");
558 // Can't properly model a cost of a call.
559 // FIXME: With a proper cost model we should be able to do it.
560 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
561 const Function
*Callee
= CI
->getCalledFunction();
562 if (!Callee
|| TTI
.isLoweredToCall(Callee
)) {
563 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n");
568 // If the instruction might have a side-effect recursively account for
569 // the cost of it and all the instructions leading up to it.
570 if (I
.mayHaveSideEffects())
571 AddCostRecursively(I
, Iteration
);
573 // If unrolled body turns out to be too big, bail out.
574 if (UnrolledCost
> MaxUnrolledLoopSize
) {
575 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
576 << " UnrolledCost: " << UnrolledCost
577 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
583 Instruction
*TI
= BB
->getTerminator();
585 auto getSimplifiedConstant
= [&](Value
*V
) -> Constant
* {
586 if (SimplifiedValues
.count(V
))
587 V
= SimplifiedValues
.lookup(V
);
588 return dyn_cast
<Constant
>(V
);
591 // Add in the live successors by first checking whether we have terminator
592 // that may be simplified based on the values simplified by this call.
593 BasicBlock
*KnownSucc
= nullptr;
594 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
595 if (BI
->isConditional()) {
596 if (auto *SimpleCond
= getSimplifiedConstant(BI
->getCondition())) {
597 // Just take the first successor if condition is undef
598 if (isa
<UndefValue
>(SimpleCond
))
599 KnownSucc
= BI
->getSuccessor(0);
600 else if (ConstantInt
*SimpleCondVal
=
601 dyn_cast
<ConstantInt
>(SimpleCond
))
602 KnownSucc
= BI
->getSuccessor(SimpleCondVal
->isZero() ? 1 : 0);
605 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
606 if (auto *SimpleCond
= getSimplifiedConstant(SI
->getCondition())) {
607 // Just take the first successor if condition is undef
608 if (isa
<UndefValue
>(SimpleCond
))
609 KnownSucc
= SI
->getSuccessor(0);
610 else if (ConstantInt
*SimpleCondVal
=
611 dyn_cast
<ConstantInt
>(SimpleCond
))
612 KnownSucc
= SI
->findCaseValue(SimpleCondVal
)->getCaseSuccessor();
616 if (L
->contains(KnownSucc
))
617 BBWorklist
.insert(KnownSucc
);
619 ExitWorklist
.insert({BB
, KnownSucc
});
623 // Add BB's successors to the worklist.
624 for (BasicBlock
*Succ
: successors(BB
))
625 if (L
->contains(Succ
))
626 BBWorklist
.insert(Succ
);
628 ExitWorklist
.insert({BB
, Succ
});
629 AddCostRecursively(*TI
, Iteration
);
632 // If we found no optimization opportunities on the first iteration, we
633 // won't find them on later ones too.
634 if (UnrolledCost
== RolledDynamicCost
) {
635 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n"
636 << " UnrolledCost: " << UnrolledCost
<< "\n");
641 while (!ExitWorklist
.empty()) {
642 BasicBlock
*ExitingBB
, *ExitBB
;
643 std::tie(ExitingBB
, ExitBB
) = ExitWorklist
.pop_back_val();
645 for (Instruction
&I
: *ExitBB
) {
646 auto *PN
= dyn_cast
<PHINode
>(&I
);
650 Value
*Op
= PN
->getIncomingValueForBlock(ExitingBB
);
651 if (auto *OpI
= dyn_cast
<Instruction
>(Op
))
652 if (L
->contains(OpI
))
653 AddCostRecursively(*OpI
, TripCount
- 1);
657 assert(UnrolledCost
.isValid() && RolledDynamicCost
.isValid() &&
658 "All instructions must have a valid cost, whether the "
659 "loop is rolled or unrolled.");
661 LLVM_DEBUG(dbgs() << "Analysis finished:\n"
662 << "UnrolledCost: " << UnrolledCost
<< ", "
663 << "RolledDynamicCost: " << RolledDynamicCost
<< "\n");
664 return {{unsigned(*UnrolledCost
.getValue()),
665 unsigned(*RolledDynamicCost
.getValue())}};
668 UnrollCostEstimator::UnrollCostEstimator(
669 const Loop
*L
, const TargetTransformInfo
&TTI
,
670 const SmallPtrSetImpl
<const Value
*> &EphValues
, unsigned BEInsns
) {
672 for (BasicBlock
*BB
: L
->blocks())
673 Metrics
.analyzeBasicBlock(BB
, TTI
, EphValues
);
674 NumInlineCandidates
= Metrics
.NumInlineCandidates
;
675 NotDuplicatable
= Metrics
.notDuplicatable
;
676 Convergent
= Metrics
.convergent
;
677 LoopSize
= Metrics
.NumInsts
;
679 // Don't allow an estimate of size zero. This would allows unrolling of loops
680 // with huge iteration counts, which is a compile time problem even if it's
681 // not a problem for code quality. Also, the code using this size may assume
682 // that each loop has at least three instructions (likely a conditional
683 // branch, a comparison feeding that branch, and some kind of loop increment
684 // feeding that comparison instruction).
685 if (LoopSize
.isValid() && LoopSize
< BEInsns
+ 1)
686 // This is an open coded max() on InstructionCost
687 LoopSize
= BEInsns
+ 1;
690 uint64_t UnrollCostEstimator::getUnrolledLoopSize(
691 const TargetTransformInfo::UnrollingPreferences
&UP
,
692 unsigned CountOverwrite
) const {
693 unsigned LS
= *LoopSize
.getValue();
694 assert(LS
>= UP
.BEInsns
&& "LoopSize should not be less than BEInsns!");
696 return static_cast<uint64_t>(LS
- UP
.BEInsns
) * CountOverwrite
+ UP
.BEInsns
;
698 return static_cast<uint64_t>(LS
- UP
.BEInsns
) * UP
.Count
+ UP
.BEInsns
;
701 // Returns the loop hint metadata node with the given name (for example,
702 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
704 static MDNode
*getUnrollMetadataForLoop(const Loop
*L
, StringRef Name
) {
705 if (MDNode
*LoopID
= L
->getLoopID())
706 return GetUnrollMetadata(LoopID
, Name
);
710 // Returns true if the loop has an unroll(full) pragma.
711 static bool hasUnrollFullPragma(const Loop
*L
) {
712 return getUnrollMetadataForLoop(L
, "llvm.loop.unroll.full");
715 // Returns true if the loop has an unroll(enable) pragma. This metadata is used
716 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
717 static bool hasUnrollEnablePragma(const Loop
*L
) {
718 return getUnrollMetadataForLoop(L
, "llvm.loop.unroll.enable");
721 // Returns true if the loop has an runtime unroll(disable) pragma.
722 static bool hasRuntimeUnrollDisablePragma(const Loop
*L
) {
723 return getUnrollMetadataForLoop(L
, "llvm.loop.unroll.runtime.disable");
726 // If loop has an unroll_count pragma return the (necessarily
727 // positive) value from the pragma. Otherwise return 0.
728 static unsigned unrollCountPragmaValue(const Loop
*L
) {
729 MDNode
*MD
= getUnrollMetadataForLoop(L
, "llvm.loop.unroll.count");
731 assert(MD
->getNumOperands() == 2 &&
732 "Unroll count hint metadata should have two operands.");
734 mdconst::extract
<ConstantInt
>(MD
->getOperand(1))->getZExtValue();
735 assert(Count
>= 1 && "Unroll count must be positive.");
741 // Computes the boosting factor for complete unrolling.
742 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would
743 // be beneficial to fully unroll the loop even if unrolledcost is large. We
744 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust
745 // the unroll threshold.
746 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost
&Cost
,
747 unsigned MaxPercentThresholdBoost
) {
748 if (Cost
.RolledDynamicCost
>= std::numeric_limits
<unsigned>::max() / 100)
750 else if (Cost
.UnrolledCost
!= 0)
751 // The boosting factor is RolledDynamicCost / UnrolledCost
752 return std::min(100 * Cost
.RolledDynamicCost
/ Cost
.UnrolledCost
,
753 MaxPercentThresholdBoost
);
755 return MaxPercentThresholdBoost
;
758 static std::optional
<unsigned>
759 shouldPragmaUnroll(Loop
*L
, const PragmaInfo
&PInfo
,
760 const unsigned TripMultiple
, const unsigned TripCount
,
761 unsigned MaxTripCount
, const UnrollCostEstimator UCE
,
762 const TargetTransformInfo::UnrollingPreferences
&UP
) {
764 // Using unroll pragma
765 // 1st priority is unroll count set by "unroll-count" option.
767 if (PInfo
.UserUnrollCount
) {
768 if (UP
.AllowRemainder
&&
769 UCE
.getUnrolledLoopSize(UP
, (unsigned)UnrollCount
) < UP
.Threshold
)
770 return (unsigned)UnrollCount
;
773 // 2nd priority is unroll count set by pragma.
774 if (PInfo
.PragmaCount
> 0) {
775 if ((UP
.AllowRemainder
|| (TripMultiple
% PInfo
.PragmaCount
== 0)))
776 return PInfo
.PragmaCount
;
779 if (PInfo
.PragmaFullUnroll
&& TripCount
!= 0)
782 if (PInfo
.PragmaEnableUnroll
&& !TripCount
&& MaxTripCount
&&
783 MaxTripCount
<= UP
.MaxUpperBound
)
786 // if didn't return until here, should continue to other priorties
790 static std::optional
<unsigned> shouldFullUnroll(
791 Loop
*L
, const TargetTransformInfo
&TTI
, DominatorTree
&DT
,
792 ScalarEvolution
&SE
, const SmallPtrSetImpl
<const Value
*> &EphValues
,
793 const unsigned FullUnrollTripCount
, const UnrollCostEstimator UCE
,
794 const TargetTransformInfo::UnrollingPreferences
&UP
) {
795 assert(FullUnrollTripCount
&& "should be non-zero!");
797 if (FullUnrollTripCount
> UP
.FullUnrollMaxCount
)
800 // When computing the unrolled size, note that BEInsns are not replicated
801 // like the rest of the loop body.
802 if (UCE
.getUnrolledLoopSize(UP
) < UP
.Threshold
)
803 return FullUnrollTripCount
;
805 // The loop isn't that small, but we still can fully unroll it if that
806 // helps to remove a significant number of instructions.
807 // To check that, run additional analysis on the loop.
808 if (std::optional
<EstimatedUnrollCost
> Cost
= analyzeLoopUnrollCost(
809 L
, FullUnrollTripCount
, DT
, SE
, EphValues
, TTI
,
810 UP
.Threshold
* UP
.MaxPercentThresholdBoost
/ 100,
811 UP
.MaxIterationsCountToAnalyze
)) {
813 getFullUnrollBoostingFactor(*Cost
, UP
.MaxPercentThresholdBoost
);
814 if (Cost
->UnrolledCost
< UP
.Threshold
* Boost
/ 100)
815 return FullUnrollTripCount
;
820 static std::optional
<unsigned>
821 shouldPartialUnroll(const unsigned LoopSize
, const unsigned TripCount
,
822 const UnrollCostEstimator UCE
,
823 const TargetTransformInfo::UnrollingPreferences
&UP
) {
829 LLVM_DEBUG(dbgs() << " will not try to unroll partially because "
830 << "-unroll-allow-partial not given\n");
833 unsigned count
= UP
.Count
;
836 if (UP
.PartialThreshold
!= NoThreshold
) {
837 // Reduce unroll count to be modulo of TripCount for partial unrolling.
838 if (UCE
.getUnrolledLoopSize(UP
, count
) > UP
.PartialThreshold
)
839 count
= (std::max(UP
.PartialThreshold
, UP
.BEInsns
+ 1) - UP
.BEInsns
) /
840 (LoopSize
- UP
.BEInsns
);
841 if (count
> UP
.MaxCount
)
843 while (count
!= 0 && TripCount
% count
!= 0)
845 if (UP
.AllowRemainder
&& count
<= 1) {
846 // If there is no Count that is modulo of TripCount, set Count to
847 // largest power-of-two factor that satisfies the threshold limit.
848 // As we'll create fixup loop, do the type of unrolling only if
849 // remainder loop is allowed.
850 count
= UP
.DefaultUnrollRuntimeCount
;
852 UCE
.getUnrolledLoopSize(UP
, count
) > UP
.PartialThreshold
)
861 if (count
> UP
.MaxCount
)
864 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << count
<< "\n");
868 // Returns true if unroll count was set explicitly.
869 // Calculates unroll count and writes it to UP.Count.
870 // Unless IgnoreUser is true, will also use metadata and command-line options
871 // that are specific to to the LoopUnroll pass (which, for instance, are
872 // irrelevant for the LoopUnrollAndJam pass).
873 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes
874 // many LoopUnroll-specific options. The shared functionality should be
875 // refactored into it own function.
876 bool llvm::computeUnrollCount(
877 Loop
*L
, const TargetTransformInfo
&TTI
, DominatorTree
&DT
, LoopInfo
*LI
,
878 AssumptionCache
*AC
, ScalarEvolution
&SE
,
879 const SmallPtrSetImpl
<const Value
*> &EphValues
,
880 OptimizationRemarkEmitter
*ORE
, unsigned TripCount
, unsigned MaxTripCount
,
881 bool MaxOrZero
, unsigned TripMultiple
, const UnrollCostEstimator
&UCE
,
882 TargetTransformInfo::UnrollingPreferences
&UP
,
883 TargetTransformInfo::PeelingPreferences
&PP
, bool &UseUpperBound
) {
885 unsigned LoopSize
= UCE
.getRolledLoopSize();
887 const bool UserUnrollCount
= UnrollCount
.getNumOccurrences() > 0;
888 const bool PragmaFullUnroll
= hasUnrollFullPragma(L
);
889 const unsigned PragmaCount
= unrollCountPragmaValue(L
);
890 const bool PragmaEnableUnroll
= hasUnrollEnablePragma(L
);
892 const bool ExplicitUnroll
= PragmaCount
> 0 || PragmaFullUnroll
||
893 PragmaEnableUnroll
|| UserUnrollCount
;
895 PragmaInfo
PInfo(UserUnrollCount
, PragmaFullUnroll
, PragmaCount
,
897 // Use an explicit peel count that has been specified for testing. In this
898 // case it's not permitted to also specify an explicit unroll count.
900 if (UnrollCount
.getNumOccurrences() > 0) {
901 report_fatal_error("Cannot specify both explicit peel count and "
902 "explicit unroll count", /*GenCrashDiag=*/false);
908 // Check for explicit Count.
909 // 1st priority is unroll count set by "unroll-count" option.
910 // 2nd priority is unroll count set by pragma.
911 if (auto UnrollFactor
= shouldPragmaUnroll(L
, PInfo
, TripMultiple
, TripCount
,
912 MaxTripCount
, UCE
, UP
)) {
913 UP
.Count
= *UnrollFactor
;
915 if (UserUnrollCount
|| (PragmaCount
> 0)) {
916 UP
.AllowExpensiveTripCount
= true;
919 UP
.Runtime
|= (PragmaCount
> 0);
920 return ExplicitUnroll
;
922 if (ExplicitUnroll
&& TripCount
!= 0) {
923 // If the loop has an unrolling pragma, we want to be more aggressive with
924 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold
925 // value which is larger than the default limits.
926 UP
.Threshold
= std::max
<unsigned>(UP
.Threshold
, PragmaUnrollThreshold
);
927 UP
.PartialThreshold
=
928 std::max
<unsigned>(UP
.PartialThreshold
, PragmaUnrollThreshold
);
932 // 3rd priority is exact full unrolling. This will eliminate all copies
933 // of some exit test.
936 UP
.Count
= TripCount
;
937 if (auto UnrollFactor
= shouldFullUnroll(L
, TTI
, DT
, SE
, EphValues
,
938 TripCount
, UCE
, UP
)) {
939 UP
.Count
= *UnrollFactor
;
940 UseUpperBound
= false;
941 return ExplicitUnroll
;
945 // 4th priority is bounded unrolling.
946 // We can unroll by the upper bound amount if it's generally allowed or if
947 // we know that the loop is executed either the upper bound or zero times.
948 // (MaxOrZero unrolling keeps only the first loop test, so the number of
949 // loop tests remains the same compared to the non-unrolled version, whereas
950 // the generic upper bound unrolling keeps all but the last loop test so the
951 // number of loop tests goes up which may end up being worse on targets with
952 // constrained branch predictor resources so is controlled by an option.)
953 // In addition we only unroll small upper bounds.
954 // Note that the cost of bounded unrolling is always strictly greater than
955 // cost of exact full unrolling. As such, if we have an exact count and
956 // found it unprofitable, we'll never chose to bounded unroll.
957 if (!TripCount
&& MaxTripCount
&& (UP
.UpperBound
|| MaxOrZero
) &&
958 MaxTripCount
<= UP
.MaxUpperBound
) {
959 UP
.Count
= MaxTripCount
;
960 if (auto UnrollFactor
= shouldFullUnroll(L
, TTI
, DT
, SE
, EphValues
,
961 MaxTripCount
, UCE
, UP
)) {
962 UP
.Count
= *UnrollFactor
;
963 UseUpperBound
= true;
964 return ExplicitUnroll
;
968 // 5th priority is loop peeling.
969 computePeelCount(L
, LoopSize
, PP
, TripCount
, DT
, SE
, AC
, UP
.Threshold
);
973 return ExplicitUnroll
;
976 // Before starting partial unrolling, set up.partial to true,
977 // if user explicitly asked for unrolling
979 UP
.Partial
|= ExplicitUnroll
;
981 // 6th priority is partial unrolling.
982 // Try partial unroll only when TripCount could be statically calculated.
983 if (auto UnrollFactor
= shouldPartialUnroll(LoopSize
, TripCount
, UCE
, UP
)) {
984 UP
.Count
= *UnrollFactor
;
986 if ((PragmaFullUnroll
|| PragmaEnableUnroll
) && TripCount
&&
987 UP
.Count
!= TripCount
)
989 return OptimizationRemarkMissed(DEBUG_TYPE
,
990 "FullUnrollAsDirectedTooLarge",
991 L
->getStartLoc(), L
->getHeader())
992 << "Unable to fully unroll loop as directed by unroll pragma "
994 "unrolled size is too large.";
997 if (UP
.PartialThreshold
!= NoThreshold
) {
999 if (PragmaEnableUnroll
)
1001 return OptimizationRemarkMissed(DEBUG_TYPE
,
1002 "UnrollAsDirectedTooLarge",
1003 L
->getStartLoc(), L
->getHeader())
1004 << "Unable to unroll loop as directed by unroll(enable) "
1006 "because unrolled size is too large.";
1010 return ExplicitUnroll
;
1012 assert(TripCount
== 0 &&
1013 "All cases when TripCount is constant should be covered here.");
1014 if (PragmaFullUnroll
)
1016 return OptimizationRemarkMissed(
1017 DEBUG_TYPE
, "CantFullUnrollAsDirectedRuntimeTripCount",
1018 L
->getStartLoc(), L
->getHeader())
1019 << "Unable to fully unroll loop as directed by unroll(full) "
1021 "because loop has a runtime trip count.";
1024 // 7th priority is runtime unrolling.
1025 // Don't unroll a runtime trip count loop when it is disabled.
1026 if (hasRuntimeUnrollDisablePragma(L
)) {
1031 // Don't unroll a small upper bound loop unless user or TTI asked to do so.
1032 if (MaxTripCount
&& !UP
.Force
&& MaxTripCount
< UP
.MaxUpperBound
) {
1037 // Check if the runtime trip count is too small when profile is available.
1038 if (L
->getHeader()->getParent()->hasProfileData()) {
1039 if (auto ProfileTripCount
= getLoopEstimatedTripCount(L
)) {
1040 if (*ProfileTripCount
< FlatLoopTripCountThreshold
)
1043 UP
.AllowExpensiveTripCount
= true;
1046 UP
.Runtime
|= PragmaEnableUnroll
|| PragmaCount
> 0 || UserUnrollCount
;
1049 dbgs() << " will not try to unroll loop with runtime trip count "
1050 << "-unroll-runtime not given\n");
1055 UP
.Count
= UP
.DefaultUnrollRuntimeCount
;
1057 // Reduce unroll count to be the largest power-of-two factor of
1058 // the original count which satisfies the threshold limit.
1059 while (UP
.Count
!= 0 &&
1060 UCE
.getUnrolledLoopSize(UP
) > UP
.PartialThreshold
)
1064 unsigned OrigCount
= UP
.Count
;
1067 if (!UP
.AllowRemainder
&& UP
.Count
!= 0 && (TripMultiple
% UP
.Count
) != 0) {
1068 while (UP
.Count
!= 0 && TripMultiple
% UP
.Count
!= 0)
1071 dbgs() << "Remainder loop is restricted (that could architecture "
1072 "specific or because the loop contains a convergent "
1073 "instruction), so unroll count must divide the trip "
1075 << TripMultiple
<< ". Reducing unroll count from " << OrigCount
1076 << " to " << UP
.Count
<< ".\n");
1078 using namespace ore
;
1080 if (unrollCountPragmaValue(L
) > 0 && !UP
.AllowRemainder
)
1082 return OptimizationRemarkMissed(DEBUG_TYPE
,
1083 "DifferentUnrollCountFromDirected",
1084 L
->getStartLoc(), L
->getHeader())
1085 << "Unable to unroll loop the number of times directed by "
1086 "unroll_count pragma because remainder loop is restricted "
1087 "(that could architecture specific or because the loop "
1088 "contains a convergent instruction) and so must have an "
1090 "count that divides the loop trip multiple of "
1091 << NV("TripMultiple", TripMultiple
) << ". Unrolling instead "
1092 << NV("UnrollCount", UP
.Count
) << " time(s).";
1096 if (UP
.Count
> UP
.MaxCount
)
1097 UP
.Count
= UP
.MaxCount
;
1099 if (MaxTripCount
&& UP
.Count
> MaxTripCount
)
1100 UP
.Count
= MaxTripCount
;
1102 LLVM_DEBUG(dbgs() << " runtime unrolling with count: " << UP
.Count
1106 return ExplicitUnroll
;
1109 static LoopUnrollResult
1110 tryToUnrollLoop(Loop
*L
, DominatorTree
&DT
, LoopInfo
*LI
, ScalarEvolution
&SE
,
1111 const TargetTransformInfo
&TTI
, AssumptionCache
&AC
,
1112 OptimizationRemarkEmitter
&ORE
, BlockFrequencyInfo
*BFI
,
1113 ProfileSummaryInfo
*PSI
, bool PreserveLCSSA
, int OptLevel
,
1114 bool OnlyFullUnroll
, bool OnlyWhenForced
, bool ForgetAllSCEV
,
1115 std::optional
<unsigned> ProvidedCount
,
1116 std::optional
<unsigned> ProvidedThreshold
,
1117 std::optional
<bool> ProvidedAllowPartial
,
1118 std::optional
<bool> ProvidedRuntime
,
1119 std::optional
<bool> ProvidedUpperBound
,
1120 std::optional
<bool> ProvidedAllowPeeling
,
1121 std::optional
<bool> ProvidedAllowProfileBasedPeeling
,
1122 std::optional
<unsigned> ProvidedFullUnrollMaxCount
) {
1124 LLVM_DEBUG(dbgs() << "Loop Unroll: F["
1125 << L
->getHeader()->getParent()->getName() << "] Loop %"
1126 << L
->getHeader()->getName() << "\n");
1127 TransformationMode TM
= hasUnrollTransformation(L
);
1128 if (TM
& TM_Disable
)
1129 return LoopUnrollResult::Unmodified
;
1131 // If this loop isn't forced to be unrolled, avoid unrolling it when the
1132 // parent loop has an explicit unroll-and-jam pragma. This is to prevent
1133 // automatic unrolling from interfering with the user requested
1135 Loop
*ParentL
= L
->getParentLoop();
1136 if (ParentL
!= nullptr &&
1137 hasUnrollAndJamTransformation(ParentL
) == TM_ForcedByUser
&&
1138 hasUnrollTransformation(L
) != TM_ForcedByUser
) {
1139 LLVM_DEBUG(dbgs() << "Not unrolling loop since parent loop has"
1140 << " llvm.loop.unroll_and_jam.\n");
1141 return LoopUnrollResult::Unmodified
;
1144 // If this loop isn't forced to be unrolled, avoid unrolling it when the
1145 // loop has an explicit unroll-and-jam pragma. This is to prevent automatic
1146 // unrolling from interfering with the user requested transformation.
1147 if (hasUnrollAndJamTransformation(L
) == TM_ForcedByUser
&&
1148 hasUnrollTransformation(L
) != TM_ForcedByUser
) {
1151 << " Not unrolling loop since it has llvm.loop.unroll_and_jam.\n");
1152 return LoopUnrollResult::Unmodified
;
1155 if (!L
->isLoopSimplifyForm()) {
1157 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n");
1158 return LoopUnrollResult::Unmodified
;
1161 // When automatic unrolling is disabled, do not unroll unless overridden for
1163 if (OnlyWhenForced
&& !(TM
& TM_Enable
))
1164 return LoopUnrollResult::Unmodified
;
1166 bool OptForSize
= L
->getHeader()->getParent()->hasOptSize();
1167 TargetTransformInfo::UnrollingPreferences UP
= gatherUnrollingPreferences(
1168 L
, SE
, TTI
, BFI
, PSI
, ORE
, OptLevel
, ProvidedThreshold
, ProvidedCount
,
1169 ProvidedAllowPartial
, ProvidedRuntime
, ProvidedUpperBound
,
1170 ProvidedFullUnrollMaxCount
);
1171 TargetTransformInfo::PeelingPreferences PP
= gatherPeelingPreferences(
1172 L
, SE
, TTI
, ProvidedAllowPeeling
, ProvidedAllowProfileBasedPeeling
, true);
1174 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size
1175 // as threshold later on.
1176 if (UP
.Threshold
== 0 && (!UP
.Partial
|| UP
.PartialThreshold
== 0) &&
1178 return LoopUnrollResult::Unmodified
;
1180 SmallPtrSet
<const Value
*, 32> EphValues
;
1181 CodeMetrics::collectEphemeralValues(L
, &AC
, EphValues
);
1183 UnrollCostEstimator
UCE(L
, TTI
, EphValues
, UP
.BEInsns
);
1184 if (!UCE
.canUnroll()) {
1185 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains instructions"
1186 << " which cannot be duplicated or have invalid cost.\n");
1187 return LoopUnrollResult::Unmodified
;
1190 unsigned LoopSize
= UCE
.getRolledLoopSize();
1191 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize
<< "\n");
1193 // When optimizing for size, use LoopSize + 1 as threshold (we use < Threshold
1194 // later), to (fully) unroll loops, if it does not increase code size.
1196 UP
.Threshold
= std::max(UP
.Threshold
, LoopSize
+ 1);
1198 if (UCE
.NumInlineCandidates
!= 0) {
1199 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
1200 return LoopUnrollResult::Unmodified
;
1203 // Find the smallest exact trip count for any exit. This is an upper bound
1204 // on the loop trip count, but an exit at an earlier iteration is still
1205 // possible. An unroll by the smallest exact trip count guarantees that all
1206 // branches relating to at least one exit can be eliminated. This is unlike
1207 // the max trip count, which only guarantees that the backedge can be broken.
1208 unsigned TripCount
= 0;
1209 unsigned TripMultiple
= 1;
1210 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
1211 L
->getExitingBlocks(ExitingBlocks
);
1212 for (BasicBlock
*ExitingBlock
: ExitingBlocks
)
1213 if (unsigned TC
= SE
.getSmallConstantTripCount(L
, ExitingBlock
))
1214 if (!TripCount
|| TC
< TripCount
)
1215 TripCount
= TripMultiple
= TC
;
1218 // If no exact trip count is known, determine the trip multiple of either
1219 // the loop latch or the single exiting block.
1220 // TODO: Relax for multiple exits.
1221 BasicBlock
*ExitingBlock
= L
->getLoopLatch();
1222 if (!ExitingBlock
|| !L
->isLoopExiting(ExitingBlock
))
1223 ExitingBlock
= L
->getExitingBlock();
1225 TripMultiple
= SE
.getSmallConstantTripMultiple(L
, ExitingBlock
);
1228 // If the loop contains a convergent operation, the prelude we'd add
1229 // to do the first few instructions before we hit the unrolled loop
1230 // is unsafe -- it adds a control-flow dependency to the convergent
1231 // operation. Therefore restrict remainder loop (try unrolling without).
1233 // TODO: This is quite conservative. In practice, convergent_op()
1234 // is likely to be called unconditionally in the loop. In this
1235 // case, the program would be ill-formed (on most architectures)
1236 // unless n were the same on all threads in a thread group.
1237 // Assuming n is the same on all threads, any kind of unrolling is
1238 // safe. But currently llvm's notion of convergence isn't powerful
1239 // enough to express this.
1241 UP
.AllowRemainder
= false;
1243 // Try to find the trip count upper bound if we cannot find the exact trip
1245 unsigned MaxTripCount
= 0;
1246 bool MaxOrZero
= false;
1248 MaxTripCount
= SE
.getSmallConstantMaxTripCount(L
);
1249 MaxOrZero
= SE
.isBackedgeTakenCountMaxOrZero(L
);
1252 // computeUnrollCount() decides whether it is beneficial to use upper bound to
1253 // fully unroll the loop.
1254 bool UseUpperBound
= false;
1255 bool IsCountSetExplicitly
= computeUnrollCount(
1256 L
, TTI
, DT
, LI
, &AC
, SE
, EphValues
, &ORE
, TripCount
, MaxTripCount
,
1257 MaxOrZero
, TripMultiple
, UCE
, UP
, PP
, UseUpperBound
);
1259 return LoopUnrollResult::Unmodified
;
1262 assert(UP
.Count
== 1 && "Cannot perform peel and unroll in the same step");
1263 LLVM_DEBUG(dbgs() << "PEELING loop %" << L
->getHeader()->getName()
1264 << " with iteration count " << PP
.PeelCount
<< "!\n");
1266 return OptimizationRemark(DEBUG_TYPE
, "Peeled", L
->getStartLoc(),
1268 << " peeled loop by " << ore::NV("PeelCount", PP
.PeelCount
)
1272 ValueToValueMapTy VMap
;
1273 if (peelLoop(L
, PP
.PeelCount
, LI
, &SE
, DT
, &AC
, PreserveLCSSA
, VMap
)) {
1274 simplifyLoopAfterUnroll(L
, true, LI
, &SE
, &DT
, &AC
, &TTI
);
1275 // If the loop was peeled, we already "used up" the profile information
1276 // we had, so we don't want to unroll or peel again.
1277 if (PP
.PeelProfiledIterations
)
1278 L
->setLoopAlreadyUnrolled();
1279 return LoopUnrollResult::PartiallyUnrolled
;
1281 return LoopUnrollResult::Unmodified
;
1284 // Do not attempt partial/runtime unrolling in FullLoopUnrolling
1285 if (OnlyFullUnroll
&& !(UP
.Count
>= MaxTripCount
)) {
1287 dbgs() << "Not attempting partial/runtime unroll in FullLoopUnroll.\n");
1288 return LoopUnrollResult::Unmodified
;
1291 // At this point, UP.Runtime indicates that run-time unrolling is allowed.
1292 // However, we only want to actually perform it if we don't know the trip
1293 // count and the unroll count doesn't divide the known trip multiple.
1294 // TODO: This decision should probably be pushed up into
1295 // computeUnrollCount().
1296 UP
.Runtime
&= TripCount
== 0 && TripMultiple
% UP
.Count
!= 0;
1298 // Save loop properties before it is transformed.
1299 MDNode
*OrigLoopID
= L
->getLoopID();
1302 Loop
*RemainderLoop
= nullptr;
1303 LoopUnrollResult UnrollResult
= UnrollLoop(
1305 {UP
.Count
, UP
.Force
, UP
.Runtime
, UP
.AllowExpensiveTripCount
,
1306 UP
.UnrollRemainder
, ForgetAllSCEV
},
1307 LI
, &SE
, &DT
, &AC
, &TTI
, &ORE
, PreserveLCSSA
, &RemainderLoop
);
1308 if (UnrollResult
== LoopUnrollResult::Unmodified
)
1309 return LoopUnrollResult::Unmodified
;
1311 if (RemainderLoop
) {
1312 std::optional
<MDNode
*> RemainderLoopID
=
1313 makeFollowupLoopID(OrigLoopID
, {LLVMLoopUnrollFollowupAll
,
1314 LLVMLoopUnrollFollowupRemainder
});
1315 if (RemainderLoopID
)
1316 RemainderLoop
->setLoopID(*RemainderLoopID
);
1319 if (UnrollResult
!= LoopUnrollResult::FullyUnrolled
) {
1320 std::optional
<MDNode
*> NewLoopID
=
1321 makeFollowupLoopID(OrigLoopID
, {LLVMLoopUnrollFollowupAll
,
1322 LLVMLoopUnrollFollowupUnrolled
});
1324 L
->setLoopID(*NewLoopID
);
1326 // Do not setLoopAlreadyUnrolled if loop attributes have been specified
1328 return UnrollResult
;
1332 // If loop has an unroll count pragma or unrolled by explicitly set count
1333 // mark loop as unrolled to prevent unrolling beyond that requested.
1334 if (UnrollResult
!= LoopUnrollResult::FullyUnrolled
&& IsCountSetExplicitly
)
1335 L
->setLoopAlreadyUnrolled();
1337 return UnrollResult
;
1342 class LoopUnroll
: public LoopPass
{
1344 static char ID
; // Pass ID, replacement for typeid
1348 /// If false, use a cost model to determine whether unrolling of a loop is
1349 /// profitable. If true, only loops that explicitly request unrolling via
1350 /// metadata are considered. All other loops are skipped.
1351 bool OnlyWhenForced
;
1353 /// If false, when SCEV is invalidated, only forget everything in the
1354 /// top-most loop (call forgetTopMostLoop), of the loop being processed.
1355 /// Otherwise, forgetAllLoops and rebuild when needed next.
1358 std::optional
<unsigned> ProvidedCount
;
1359 std::optional
<unsigned> ProvidedThreshold
;
1360 std::optional
<bool> ProvidedAllowPartial
;
1361 std::optional
<bool> ProvidedRuntime
;
1362 std::optional
<bool> ProvidedUpperBound
;
1363 std::optional
<bool> ProvidedAllowPeeling
;
1364 std::optional
<bool> ProvidedAllowProfileBasedPeeling
;
1365 std::optional
<unsigned> ProvidedFullUnrollMaxCount
;
1367 LoopUnroll(int OptLevel
= 2, bool OnlyWhenForced
= false,
1368 bool ForgetAllSCEV
= false,
1369 std::optional
<unsigned> Threshold
= std::nullopt
,
1370 std::optional
<unsigned> Count
= std::nullopt
,
1371 std::optional
<bool> AllowPartial
= std::nullopt
,
1372 std::optional
<bool> Runtime
= std::nullopt
,
1373 std::optional
<bool> UpperBound
= std::nullopt
,
1374 std::optional
<bool> AllowPeeling
= std::nullopt
,
1375 std::optional
<bool> AllowProfileBasedPeeling
= std::nullopt
,
1376 std::optional
<unsigned> ProvidedFullUnrollMaxCount
= std::nullopt
)
1377 : LoopPass(ID
), OptLevel(OptLevel
), OnlyWhenForced(OnlyWhenForced
),
1378 ForgetAllSCEV(ForgetAllSCEV
), ProvidedCount(std::move(Count
)),
1379 ProvidedThreshold(Threshold
), ProvidedAllowPartial(AllowPartial
),
1380 ProvidedRuntime(Runtime
), ProvidedUpperBound(UpperBound
),
1381 ProvidedAllowPeeling(AllowPeeling
),
1382 ProvidedAllowProfileBasedPeeling(AllowProfileBasedPeeling
),
1383 ProvidedFullUnrollMaxCount(ProvidedFullUnrollMaxCount
) {
1384 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
1387 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
1391 Function
&F
= *L
->getHeader()->getParent();
1393 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1394 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1395 ScalarEvolution
&SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
1396 const TargetTransformInfo
&TTI
=
1397 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
1398 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
1399 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
1400 // pass. Function analyses need to be preserved across loop transformations
1401 // but ORE cannot be preserved (see comment before the pass definition).
1402 OptimizationRemarkEmitter
ORE(&F
);
1403 bool PreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
1405 LoopUnrollResult Result
= tryToUnrollLoop(
1406 L
, DT
, LI
, SE
, TTI
, AC
, ORE
, nullptr, nullptr, PreserveLCSSA
, OptLevel
,
1407 /*OnlyFullUnroll*/ false, OnlyWhenForced
, ForgetAllSCEV
, ProvidedCount
,
1408 ProvidedThreshold
, ProvidedAllowPartial
, ProvidedRuntime
,
1409 ProvidedUpperBound
, ProvidedAllowPeeling
,
1410 ProvidedAllowProfileBasedPeeling
, ProvidedFullUnrollMaxCount
);
1412 if (Result
== LoopUnrollResult::FullyUnrolled
)
1413 LPM
.markLoopAsDeleted(*L
);
1415 return Result
!= LoopUnrollResult::Unmodified
;
1418 /// This transformation requires natural loop information & requires that
1419 /// loop preheaders be inserted into the CFG...
1420 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1421 AU
.addRequired
<AssumptionCacheTracker
>();
1422 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
1423 // FIXME: Loop passes are required to preserve domtree, and for now we just
1424 // recreate dom info if anything gets unrolled.
1425 getLoopAnalysisUsage(AU
);
1429 } // end anonymous namespace
1431 char LoopUnroll::ID
= 0;
1433 INITIALIZE_PASS_BEGIN(LoopUnroll
, "loop-unroll", "Unroll loops", false, false)
1434 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
1435 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
1436 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
1437 INITIALIZE_PASS_END(LoopUnroll
, "loop-unroll", "Unroll loops", false, false)
1439 Pass
*llvm::createLoopUnrollPass(int OptLevel
, bool OnlyWhenForced
,
1440 bool ForgetAllSCEV
, int Threshold
, int Count
,
1441 int AllowPartial
, int Runtime
, int UpperBound
,
1443 // TODO: It would make more sense for this function to take the optionals
1444 // directly, but that's dangerous since it would silently break out of tree
1446 return new LoopUnroll(
1447 OptLevel
, OnlyWhenForced
, ForgetAllSCEV
,
1448 Threshold
== -1 ? std::nullopt
: std::optional
<unsigned>(Threshold
),
1449 Count
== -1 ? std::nullopt
: std::optional
<unsigned>(Count
),
1450 AllowPartial
== -1 ? std::nullopt
: std::optional
<bool>(AllowPartial
),
1451 Runtime
== -1 ? std::nullopt
: std::optional
<bool>(Runtime
),
1452 UpperBound
== -1 ? std::nullopt
: std::optional
<bool>(UpperBound
),
1453 AllowPeeling
== -1 ? std::nullopt
: std::optional
<bool>(AllowPeeling
));
1456 PreservedAnalyses
LoopFullUnrollPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
1457 LoopStandardAnalysisResults
&AR
,
1458 LPMUpdater
&Updater
) {
1459 // For the new PM, we can't use OptimizationRemarkEmitter as an analysis
1460 // pass. Function analyses need to be preserved across loop transformations
1461 // but ORE cannot be preserved (see comment before the pass definition).
1462 OptimizationRemarkEmitter
ORE(L
.getHeader()->getParent());
1464 // Keep track of the previous loop structure so we can identify new loops
1465 // created by unrolling.
1466 Loop
*ParentL
= L
.getParentLoop();
1467 SmallPtrSet
<Loop
*, 4> OldLoops
;
1469 OldLoops
.insert(ParentL
->begin(), ParentL
->end());
1471 OldLoops
.insert(AR
.LI
.begin(), AR
.LI
.end());
1473 std::string LoopName
= std::string(L
.getName());
1476 tryToUnrollLoop(&L
, AR
.DT
, &AR
.LI
, AR
.SE
, AR
.TTI
, AR
.AC
, ORE
,
1477 /*BFI*/ nullptr, /*PSI*/ nullptr,
1478 /*PreserveLCSSA*/ true, OptLevel
, /*OnlyFullUnroll*/ true,
1479 OnlyWhenForced
, ForgetSCEV
, /*Count*/ std::nullopt
,
1480 /*Threshold*/ std::nullopt
, /*AllowPartial*/ false,
1481 /*Runtime*/ false, /*UpperBound*/ false,
1482 /*AllowPeeling*/ true,
1483 /*AllowProfileBasedPeeling*/ false,
1484 /*FullUnrollMaxCount*/ std::nullopt
) !=
1485 LoopUnrollResult::Unmodified
;
1487 return PreservedAnalyses::all();
1489 // The parent must not be damaged by unrolling!
1492 ParentL
->verifyLoop();
1495 // Unrolling can do several things to introduce new loops into a loop nest:
1496 // - Full unrolling clones child loops within the current loop but then
1497 // removes the current loop making all of the children appear to be new
1500 // When a new loop appears as a sibling loop after fully unrolling,
1501 // its nesting structure has fundamentally changed and we want to revisit
1502 // it to reflect that.
1504 // When unrolling has removed the current loop, we need to tell the
1505 // infrastructure that it is gone.
1507 // Finally, we support a debugging/testing mode where we revisit child loops
1508 // as well. These are not expected to require further optimizations as either
1509 // they or the loop they were cloned from have been directly visited already.
1510 // But the debugging mode allows us to check this assumption.
1511 bool IsCurrentLoopValid
= false;
1512 SmallVector
<Loop
*, 4> SibLoops
;
1514 SibLoops
.append(ParentL
->begin(), ParentL
->end());
1516 SibLoops
.append(AR
.LI
.begin(), AR
.LI
.end());
1517 erase_if(SibLoops
, [&](Loop
*SibLoop
) {
1518 if (SibLoop
== &L
) {
1519 IsCurrentLoopValid
= true;
1523 // Otherwise erase the loop from the list if it was in the old loops.
1524 return OldLoops
.contains(SibLoop
);
1526 Updater
.addSiblingLoops(SibLoops
);
1528 if (!IsCurrentLoopValid
) {
1529 Updater
.markLoopAsDeleted(L
, LoopName
);
1531 // We can only walk child loops if the current loop remained valid.
1532 if (UnrollRevisitChildLoops
) {
1533 // Walk *all* of the child loops.
1534 SmallVector
<Loop
*, 4> ChildLoops(L
.begin(), L
.end());
1535 Updater
.addChildLoops(ChildLoops
);
1539 return getLoopPassPreservedAnalyses();
1542 PreservedAnalyses
LoopUnrollPass::run(Function
&F
,
1543 FunctionAnalysisManager
&AM
) {
1544 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
1545 // There are no loops in the function. Return before computing other expensive
1548 return PreservedAnalyses::all();
1549 auto &SE
= AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
1550 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
1551 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
1552 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
1553 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1555 LoopAnalysisManager
*LAM
= nullptr;
1556 if (auto *LAMProxy
= AM
.getCachedResult
<LoopAnalysisManagerFunctionProxy
>(F
))
1557 LAM
= &LAMProxy
->getManager();
1559 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
1560 ProfileSummaryInfo
*PSI
=
1561 MAMProxy
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
1562 auto *BFI
= (PSI
&& PSI
->hasProfileSummary()) ?
1563 &AM
.getResult
<BlockFrequencyAnalysis
>(F
) : nullptr;
1565 bool Changed
= false;
1567 // The unroller requires loops to be in simplified form, and also needs LCSSA.
1568 // Since simplification may add new inner loops, it has to run before the
1569 // legality and profitability checks. This means running the loop unroller
1570 // will simplify all loops, regardless of whether anything end up being
1572 for (const auto &L
: LI
) {
1574 simplifyLoop(L
, &DT
, &LI
, &SE
, &AC
, nullptr, false /* PreserveLCSSA */);
1575 Changed
|= formLCSSARecursively(*L
, DT
, &LI
, &SE
);
1578 // Add the loop nests in the reverse order of LoopInfo. See method
1580 SmallPriorityWorklist
<Loop
*, 4> Worklist
;
1581 appendLoopsToWorklist(LI
, Worklist
);
1583 while (!Worklist
.empty()) {
1584 // Because the LoopInfo stores the loops in RPO, we walk the worklist
1585 // from back to front so that we work forward across the CFG, which
1586 // for unrolling is only needed to get optimization remarks emitted in
1588 Loop
&L
= *Worklist
.pop_back_val();
1590 Loop
*ParentL
= L
.getParentLoop();
1593 // Check if the profile summary indicates that the profiled application
1594 // has a huge working set size, in which case we disable peeling to avoid
1595 // bloating it further.
1596 std::optional
<bool> LocalAllowPeeling
= UnrollOpts
.AllowPeeling
;
1597 if (PSI
&& PSI
->hasHugeWorkingSetSize())
1598 LocalAllowPeeling
= false;
1599 std::string LoopName
= std::string(L
.getName());
1600 // The API here is quite complex to call and we allow to select some
1601 // flavors of unrolling during construction time (by setting UnrollOpts).
1602 LoopUnrollResult Result
= tryToUnrollLoop(
1603 &L
, DT
, &LI
, SE
, TTI
, AC
, ORE
, BFI
, PSI
,
1604 /*PreserveLCSSA*/ true, UnrollOpts
.OptLevel
, /*OnlyFullUnroll*/ false,
1605 UnrollOpts
.OnlyWhenForced
, UnrollOpts
.ForgetSCEV
,
1606 /*Count*/ std::nullopt
,
1607 /*Threshold*/ std::nullopt
, UnrollOpts
.AllowPartial
,
1608 UnrollOpts
.AllowRuntime
, UnrollOpts
.AllowUpperBound
, LocalAllowPeeling
,
1609 UnrollOpts
.AllowProfileBasedPeeling
, UnrollOpts
.FullUnrollMaxCount
);
1610 Changed
|= Result
!= LoopUnrollResult::Unmodified
;
1612 // The parent must not be damaged by unrolling!
1614 if (Result
!= LoopUnrollResult::Unmodified
&& ParentL
)
1615 ParentL
->verifyLoop();
1618 // Clear any cached analysis results for L if we removed it completely.
1619 if (LAM
&& Result
== LoopUnrollResult::FullyUnrolled
)
1620 LAM
->clear(L
, LoopName
);
1624 return PreservedAnalyses::all();
1626 return getLoopPassPreservedAnalyses();
1629 void LoopUnrollPass::printPipeline(
1630 raw_ostream
&OS
, function_ref
<StringRef(StringRef
)> MapClassName2PassName
) {
1631 static_cast<PassInfoMixin
<LoopUnrollPass
> *>(this)->printPipeline(
1632 OS
, MapClassName2PassName
);
1634 if (UnrollOpts
.AllowPartial
!= std::nullopt
)
1635 OS
<< (*UnrollOpts
.AllowPartial
? "" : "no-") << "partial;";
1636 if (UnrollOpts
.AllowPeeling
!= std::nullopt
)
1637 OS
<< (*UnrollOpts
.AllowPeeling
? "" : "no-") << "peeling;";
1638 if (UnrollOpts
.AllowRuntime
!= std::nullopt
)
1639 OS
<< (*UnrollOpts
.AllowRuntime
? "" : "no-") << "runtime;";
1640 if (UnrollOpts
.AllowUpperBound
!= std::nullopt
)
1641 OS
<< (*UnrollOpts
.AllowUpperBound
? "" : "no-") << "upperbound;";
1642 if (UnrollOpts
.AllowProfileBasedPeeling
!= std::nullopt
)
1643 OS
<< (*UnrollOpts
.AllowProfileBasedPeeling
? "" : "no-")
1644 << "profile-peeling;";
1645 if (UnrollOpts
.FullUnrollMaxCount
!= std::nullopt
)
1646 OS
<< "full-unroll-max=" << UnrollOpts
.FullUnrollMaxCount
<< ';';
1647 OS
<< 'O' << UnrollOpts
.OptLevel
;