1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block. This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number). Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly. In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes. The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen. The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
47 /// We also do not perform elimination by using any published algorithm. All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
52 //===----------------------------------------------------------------------===//
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SetOperations.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/IR/Argument.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/Support/Allocator.h"
97 #include "llvm/Support/ArrayRecycler.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/CommandLine.h"
100 #include "llvm/Support/Debug.h"
101 #include "llvm/Support/DebugCounter.h"
102 #include "llvm/Support/ErrorHandling.h"
103 #include "llvm/Support/PointerLikeTypeTraits.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include "llvm/Transforms/Scalar/GVNExpression.h"
106 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
107 #include "llvm/Transforms/Utils/Local.h"
108 #include "llvm/Transforms/Utils/PredicateInfo.h"
109 #include "llvm/Transforms/Utils/VNCoercion.h"
122 using namespace llvm
;
123 using namespace llvm::GVNExpression
;
124 using namespace llvm::VNCoercion
;
125 using namespace llvm::PatternMatch
;
127 #define DEBUG_TYPE "newgvn"
129 STATISTIC(NumGVNInstrDeleted
, "Number of instructions deleted");
130 STATISTIC(NumGVNBlocksDeleted
, "Number of blocks deleted");
131 STATISTIC(NumGVNOpsSimplified
, "Number of Expressions simplified");
132 STATISTIC(NumGVNPhisAllSame
, "Number of PHIs whos arguments are all the same");
133 STATISTIC(NumGVNMaxIterations
,
134 "Maximum Number of iterations it took to converge GVN");
135 STATISTIC(NumGVNLeaderChanges
, "Number of leader changes");
136 STATISTIC(NumGVNSortedLeaderChanges
, "Number of sorted leader changes");
137 STATISTIC(NumGVNAvoidedSortedLeaderChanges
,
138 "Number of avoided sorted leader changes");
139 STATISTIC(NumGVNDeadStores
, "Number of redundant/dead stores eliminated");
140 STATISTIC(NumGVNPHIOfOpsCreated
, "Number of PHI of ops created");
141 STATISTIC(NumGVNPHIOfOpsEliminations
,
142 "Number of things eliminated using PHI of ops");
143 DEBUG_COUNTER(VNCounter
, "newgvn-vn",
144 "Controls which instructions are value numbered");
145 DEBUG_COUNTER(PHIOfOpsCounter
, "newgvn-phi",
146 "Controls which instructions we create phi of ops for");
147 // Currently store defining access refinement is too slow due to basicaa being
148 // egregiously slow. This flag lets us keep it working while we work on this
150 static cl::opt
<bool> EnableStoreRefinement("enable-store-refinement",
151 cl::init(false), cl::Hidden
);
153 /// Currently, the generation "phi of ops" can result in correctness issues.
154 static cl::opt
<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
157 //===----------------------------------------------------------------------===//
159 //===----------------------------------------------------------------------===//
163 namespace GVNExpression
{
165 Expression::~Expression() = default;
166 BasicExpression::~BasicExpression() = default;
167 CallExpression::~CallExpression() = default;
168 LoadExpression::~LoadExpression() = default;
169 StoreExpression::~StoreExpression() = default;
170 AggregateValueExpression::~AggregateValueExpression() = default;
171 PHIExpression::~PHIExpression() = default;
173 } // end namespace GVNExpression
174 } // end namespace llvm
178 // Tarjan's SCC finding algorithm with Nuutila's improvements
179 // SCCIterator is actually fairly complex for the simple thing we want.
180 // It also wants to hand us SCC's that are unrelated to the phi node we ask
181 // about, and have us process them there or risk redoing work.
182 // Graph traits over a filter iterator also doesn't work that well here.
183 // This SCC finder is specialized to walk use-def chains, and only follows
185 // not generic values (arguments, etc).
187 TarjanSCC() : Components(1) {}
189 void Start(const Instruction
*Start
) {
190 if (Root
.lookup(Start
) == 0)
194 const SmallPtrSetImpl
<const Value
*> &getComponentFor(const Value
*V
) const {
195 unsigned ComponentID
= ValueToComponent
.lookup(V
);
197 assert(ComponentID
> 0 &&
198 "Asking for a component for a value we never processed");
199 return Components
[ComponentID
];
203 void FindSCC(const Instruction
*I
) {
205 // Store the DFS Number we had before it possibly gets incremented.
206 unsigned int OurDFS
= DFSNum
;
207 for (const auto &Op
: I
->operands()) {
208 if (auto *InstOp
= dyn_cast
<Instruction
>(Op
)) {
209 if (Root
.lookup(Op
) == 0)
211 if (!InComponent
.count(Op
))
212 Root
[I
] = std::min(Root
.lookup(I
), Root
.lookup(Op
));
215 // See if we really were the root of a component, by seeing if we still have
216 // our DFSNumber. If we do, we are the root of the component, and we have
217 // completed a component. If we do not, we are not the root of a component,
218 // and belong on the component stack.
219 if (Root
.lookup(I
) == OurDFS
) {
220 unsigned ComponentID
= Components
.size();
221 Components
.resize(Components
.size() + 1);
222 auto &Component
= Components
.back();
224 LLVM_DEBUG(dbgs() << "Component root is " << *I
<< "\n");
225 InComponent
.insert(I
);
226 ValueToComponent
[I
] = ComponentID
;
227 // Pop a component off the stack and label it.
228 while (!Stack
.empty() && Root
.lookup(Stack
.back()) >= OurDFS
) {
229 auto *Member
= Stack
.back();
230 LLVM_DEBUG(dbgs() << "Component member is " << *Member
<< "\n");
231 Component
.insert(Member
);
232 InComponent
.insert(Member
);
233 ValueToComponent
[Member
] = ComponentID
;
237 // Part of a component, push to stack
242 unsigned int DFSNum
= 1;
243 SmallPtrSet
<const Value
*, 8> InComponent
;
244 DenseMap
<const Value
*, unsigned int> Root
;
245 SmallVector
<const Value
*, 8> Stack
;
247 // Store the components as vector of ptr sets, because we need the topo order
248 // of SCC's, but not individual member order
249 SmallVector
<SmallPtrSet
<const Value
*, 8>, 8> Components
;
251 DenseMap
<const Value
*, unsigned> ValueToComponent
;
254 // Congruence classes represent the set of expressions/instructions
255 // that are all the same *during some scope in the function*.
256 // That is, because of the way we perform equality propagation, and
257 // because of memory value numbering, it is not correct to assume
258 // you can willy-nilly replace any member with any other at any
259 // point in the function.
261 // For any Value in the Member set, it is valid to replace any dominated member
264 // Every congruence class has a leader, and the leader is used to symbolize
265 // instructions in a canonical way (IE every operand of an instruction that is a
266 // member of the same congruence class will always be replaced with leader
267 // during symbolization). To simplify symbolization, we keep the leader as a
268 // constant if class can be proved to be a constant value. Otherwise, the
269 // leader is the member of the value set with the smallest DFS number. Each
270 // congruence class also has a defining expression, though the expression may be
271 // null. If it exists, it can be used for forward propagation and reassociation
274 // For memory, we also track a representative MemoryAccess, and a set of memory
275 // members for MemoryPhis (which have no real instructions). Note that for
276 // memory, it seems tempting to try to split the memory members into a
277 // MemoryCongruenceClass or something. Unfortunately, this does not work
278 // easily. The value numbering of a given memory expression depends on the
279 // leader of the memory congruence class, and the leader of memory congruence
280 // class depends on the value numbering of a given memory expression. This
281 // leads to wasted propagation, and in some cases, missed optimization. For
282 // example: If we had value numbered two stores together before, but now do not,
283 // we move them to a new value congruence class. This in turn will move at one
284 // of the memorydefs to a new memory congruence class. Which in turn, affects
285 // the value numbering of the stores we just value numbered (because the memory
286 // congruence class is part of the value number). So while theoretically
287 // possible to split them up, it turns out to be *incredibly* complicated to get
288 // it to work right, because of the interdependency. While structurally
289 // slightly messier, it is algorithmically much simpler and faster to do what we
290 // do here, and track them both at once in the same class.
291 // Note: The default iterators for this class iterate over values
292 class CongruenceClass
{
294 using MemberType
= Value
;
295 using MemberSet
= SmallPtrSet
<MemberType
*, 4>;
296 using MemoryMemberType
= MemoryPhi
;
297 using MemoryMemberSet
= SmallPtrSet
<const MemoryMemberType
*, 2>;
299 explicit CongruenceClass(unsigned ID
) : ID(ID
) {}
300 CongruenceClass(unsigned ID
, Value
*Leader
, const Expression
*E
)
301 : ID(ID
), RepLeader(Leader
), DefiningExpr(E
) {}
303 unsigned getID() const { return ID
; }
305 // True if this class has no members left. This is mainly used for assertion
306 // purposes, and for skipping empty classes.
307 bool isDead() const {
308 // If it's both dead from a value perspective, and dead from a memory
309 // perspective, it's really dead.
310 return empty() && memory_empty();
314 Value
*getLeader() const { return RepLeader
; }
315 void setLeader(Value
*Leader
) { RepLeader
= Leader
; }
316 const std::pair
<Value
*, unsigned int> &getNextLeader() const {
319 void resetNextLeader() { NextLeader
= {nullptr, ~0}; }
320 void addPossibleNextLeader(std::pair
<Value
*, unsigned int> LeaderPair
) {
321 if (LeaderPair
.second
< NextLeader
.second
)
322 NextLeader
= LeaderPair
;
325 Value
*getStoredValue() const { return RepStoredValue
; }
326 void setStoredValue(Value
*Leader
) { RepStoredValue
= Leader
; }
327 const MemoryAccess
*getMemoryLeader() const { return RepMemoryAccess
; }
328 void setMemoryLeader(const MemoryAccess
*Leader
) { RepMemoryAccess
= Leader
; }
330 // Forward propagation info
331 const Expression
*getDefiningExpr() const { return DefiningExpr
; }
334 bool empty() const { return Members
.empty(); }
335 unsigned size() const { return Members
.size(); }
336 MemberSet::const_iterator
begin() const { return Members
.begin(); }
337 MemberSet::const_iterator
end() const { return Members
.end(); }
338 void insert(MemberType
*M
) { Members
.insert(M
); }
339 void erase(MemberType
*M
) { Members
.erase(M
); }
340 void swap(MemberSet
&Other
) { Members
.swap(Other
); }
343 bool memory_empty() const { return MemoryMembers
.empty(); }
344 unsigned memory_size() const { return MemoryMembers
.size(); }
345 MemoryMemberSet::const_iterator
memory_begin() const {
346 return MemoryMembers
.begin();
348 MemoryMemberSet::const_iterator
memory_end() const {
349 return MemoryMembers
.end();
351 iterator_range
<MemoryMemberSet::const_iterator
> memory() const {
352 return make_range(memory_begin(), memory_end());
355 void memory_insert(const MemoryMemberType
*M
) { MemoryMembers
.insert(M
); }
356 void memory_erase(const MemoryMemberType
*M
) { MemoryMembers
.erase(M
); }
359 unsigned getStoreCount() const { return StoreCount
; }
360 void incStoreCount() { ++StoreCount
; }
361 void decStoreCount() {
362 assert(StoreCount
!= 0 && "Store count went negative");
366 // True if this class has no memory members.
367 bool definesNoMemory() const { return StoreCount
== 0 && memory_empty(); }
369 // Return true if two congruence classes are equivalent to each other. This
370 // means that every field but the ID number and the dead field are equivalent.
371 bool isEquivalentTo(const CongruenceClass
*Other
) const {
377 if (std::tie(StoreCount
, RepLeader
, RepStoredValue
, RepMemoryAccess
) !=
378 std::tie(Other
->StoreCount
, Other
->RepLeader
, Other
->RepStoredValue
,
379 Other
->RepMemoryAccess
))
381 if (DefiningExpr
!= Other
->DefiningExpr
)
382 if (!DefiningExpr
|| !Other
->DefiningExpr
||
383 *DefiningExpr
!= *Other
->DefiningExpr
)
386 if (Members
.size() != Other
->Members
.size())
389 return llvm::set_is_subset(Members
, Other
->Members
);
395 // Representative leader.
396 Value
*RepLeader
= nullptr;
398 // The most dominating leader after our current leader, because the member set
399 // is not sorted and is expensive to keep sorted all the time.
400 std::pair
<Value
*, unsigned int> NextLeader
= {nullptr, ~0U};
402 // If this is represented by a store, the value of the store.
403 Value
*RepStoredValue
= nullptr;
405 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
407 const MemoryAccess
*RepMemoryAccess
= nullptr;
409 // Defining Expression.
410 const Expression
*DefiningExpr
= nullptr;
412 // Actual members of this class.
415 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
416 // MemoryUses have real instructions representing them, so we only need to
417 // track MemoryPhis here.
418 MemoryMemberSet MemoryMembers
;
420 // Number of stores in this congruence class.
421 // This is used so we can detect store equivalence changes properly.
425 } // end anonymous namespace
429 struct ExactEqualsExpression
{
432 explicit ExactEqualsExpression(const Expression
&E
) : E(E
) {}
434 hash_code
getComputedHash() const { return E
.getComputedHash(); }
436 bool operator==(const Expression
&Other
) const {
437 return E
.exactlyEquals(Other
);
441 template <> struct DenseMapInfo
<const Expression
*> {
442 static const Expression
*getEmptyKey() {
443 auto Val
= static_cast<uintptr_t>(-1);
444 Val
<<= PointerLikeTypeTraits
<const Expression
*>::NumLowBitsAvailable
;
445 return reinterpret_cast<const Expression
*>(Val
);
448 static const Expression
*getTombstoneKey() {
449 auto Val
= static_cast<uintptr_t>(~1U);
450 Val
<<= PointerLikeTypeTraits
<const Expression
*>::NumLowBitsAvailable
;
451 return reinterpret_cast<const Expression
*>(Val
);
454 static unsigned getHashValue(const Expression
*E
) {
455 return E
->getComputedHash();
458 static unsigned getHashValue(const ExactEqualsExpression
&E
) {
459 return E
.getComputedHash();
462 static bool isEqual(const ExactEqualsExpression
&LHS
, const Expression
*RHS
) {
463 if (RHS
== getTombstoneKey() || RHS
== getEmptyKey())
468 static bool isEqual(const Expression
*LHS
, const Expression
*RHS
) {
471 if (LHS
== getTombstoneKey() || RHS
== getTombstoneKey() ||
472 LHS
== getEmptyKey() || RHS
== getEmptyKey())
474 // Compare hashes before equality. This is *not* what the hashtable does,
475 // since it is computing it modulo the number of buckets, whereas we are
476 // using the full hash keyspace. Since the hashes are precomputed, this
477 // check is *much* faster than equality.
478 if (LHS
->getComputedHash() != RHS
->getComputedHash())
484 } // end namespace llvm
490 DominatorTree
*DT
= nullptr;
491 const TargetLibraryInfo
*TLI
= nullptr;
492 AliasAnalysis
*AA
= nullptr;
493 MemorySSA
*MSSA
= nullptr;
494 MemorySSAWalker
*MSSAWalker
= nullptr;
495 AssumptionCache
*AC
= nullptr;
496 const DataLayout
&DL
;
497 std::unique_ptr
<PredicateInfo
> PredInfo
;
499 // These are the only two things the create* functions should have
500 // side-effects on due to allocating memory.
501 mutable BumpPtrAllocator ExpressionAllocator
;
502 mutable ArrayRecycler
<Value
*> ArgRecycler
;
503 mutable TarjanSCC SCCFinder
;
504 const SimplifyQuery SQ
;
506 // Number of function arguments, used by ranking
507 unsigned int NumFuncArgs
= 0;
509 // RPOOrdering of basic blocks
510 DenseMap
<const DomTreeNode
*, unsigned> RPOOrdering
;
512 // Congruence class info.
514 // This class is called INITIAL in the paper. It is the class everything
515 // startsout in, and represents any value. Being an optimistic analysis,
516 // anything in the TOP class has the value TOP, which is indeterminate and
517 // equivalent to everything.
518 CongruenceClass
*TOPClass
= nullptr;
519 std::vector
<CongruenceClass
*> CongruenceClasses
;
520 unsigned NextCongruenceNum
= 0;
523 DenseMap
<Value
*, CongruenceClass
*> ValueToClass
;
524 DenseMap
<Value
*, const Expression
*> ValueToExpression
;
526 // Value PHI handling, used to make equivalence between phi(op, op) and
528 // These mappings just store various data that would normally be part of the
530 SmallPtrSet
<const Instruction
*, 8> PHINodeUses
;
532 DenseMap
<const Value
*, bool> OpSafeForPHIOfOps
;
534 // Map a temporary instruction we created to a parent block.
535 DenseMap
<const Value
*, BasicBlock
*> TempToBlock
;
537 // Map between the already in-program instructions and the temporary phis we
538 // created that they are known equivalent to.
539 DenseMap
<const Value
*, PHINode
*> RealToTemp
;
541 // In order to know when we should re-process instructions that have
542 // phi-of-ops, we track the set of expressions that they needed as
543 // leaders. When we discover new leaders for those expressions, we process the
544 // associated phi-of-op instructions again in case they have changed. The
545 // other way they may change is if they had leaders, and those leaders
546 // disappear. However, at the point they have leaders, there are uses of the
547 // relevant operands in the created phi node, and so they will get reprocessed
548 // through the normal user marking we perform.
549 mutable DenseMap
<const Value
*, SmallPtrSet
<Value
*, 2>> AdditionalUsers
;
550 DenseMap
<const Expression
*, SmallPtrSet
<Instruction
*, 2>>
551 ExpressionToPhiOfOps
;
553 // Map from temporary operation to MemoryAccess.
554 DenseMap
<const Instruction
*, MemoryUseOrDef
*> TempToMemory
;
556 // Set of all temporary instructions we created.
557 // Note: This will include instructions that were just created during value
558 // numbering. The way to test if something is using them is to check
560 DenseSet
<Instruction
*> AllTempInstructions
;
562 // This is the set of instructions to revisit on a reachability change. At
563 // the end of the main iteration loop it will contain at least all the phi of
564 // ops instructions that will be changed to phis, as well as regular phis.
565 // During the iteration loop, it may contain other things, such as phi of ops
566 // instructions that used edge reachability to reach a result, and so need to
567 // be revisited when the edge changes, independent of whether the phi they
568 // depended on changes.
569 DenseMap
<BasicBlock
*, SparseBitVector
<>> RevisitOnReachabilityChange
;
571 // Mapping from predicate info we used to the instructions we used it with.
572 // In order to correctly ensure propagation, we must keep track of what
573 // comparisons we used, so that when the values of the comparisons change, we
574 // propagate the information to the places we used the comparison.
575 mutable DenseMap
<const Value
*, SmallPtrSet
<Instruction
*, 2>>
578 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
579 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
580 mutable DenseMap
<const MemoryAccess
*, SmallPtrSet
<MemoryAccess
*, 2>>
583 // A table storing which memorydefs/phis represent a memory state provably
584 // equivalent to another memory state.
585 // We could use the congruence class machinery, but the MemoryAccess's are
586 // abstract memory states, so they can only ever be equivalent to each other,
587 // and not to constants, etc.
588 DenseMap
<const MemoryAccess
*, CongruenceClass
*> MemoryAccessToClass
;
590 // We could, if we wanted, build MemoryPhiExpressions and
591 // MemoryVariableExpressions, etc, and value number them the same way we value
592 // number phi expressions. For the moment, this seems like overkill. They
593 // can only exist in one of three states: they can be TOP (equal to
594 // everything), Equivalent to something else, or unique. Because we do not
595 // create expressions for them, we need to simulate leader change not just
596 // when they change class, but when they change state. Note: We can do the
597 // same thing for phis, and avoid having phi expressions if we wanted, We
598 // should eventually unify in one direction or the other, so this is a little
599 // bit of an experiment in which turns out easier to maintain.
600 enum MemoryPhiState
{ MPS_Invalid
, MPS_TOP
, MPS_Equivalent
, MPS_Unique
};
601 DenseMap
<const MemoryPhi
*, MemoryPhiState
> MemoryPhiState
;
603 enum InstCycleState
{ ICS_Unknown
, ICS_CycleFree
, ICS_Cycle
};
604 mutable DenseMap
<const Instruction
*, InstCycleState
> InstCycleState
;
606 // Expression to class mapping.
607 using ExpressionClassMap
= DenseMap
<const Expression
*, CongruenceClass
*>;
608 ExpressionClassMap ExpressionToClass
;
610 // We have a single expression that represents currently DeadExpressions.
611 // For dead expressions we can prove will stay dead, we mark them with
612 // DFS number zero. However, it's possible in the case of phi nodes
613 // for us to assume/prove all arguments are dead during fixpointing.
614 // We use DeadExpression for that case.
615 DeadExpression
*SingletonDeadExpression
= nullptr;
617 // Which values have changed as a result of leader changes.
618 SmallPtrSet
<Value
*, 8> LeaderChanges
;
620 // Reachability info.
621 using BlockEdge
= BasicBlockEdge
;
622 DenseSet
<BlockEdge
> ReachableEdges
;
623 SmallPtrSet
<const BasicBlock
*, 8> ReachableBlocks
;
625 // This is a bitvector because, on larger functions, we may have
626 // thousands of touched instructions at once (entire blocks,
627 // instructions with hundreds of uses, etc). Even with optimization
628 // for when we mark whole blocks as touched, when this was a
629 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
630 // the time in GVN just managing this list. The bitvector, on the
631 // other hand, efficiently supports test/set/clear of both
632 // individual and ranges, as well as "find next element" This
633 // enables us to use it as a worklist with essentially 0 cost.
634 BitVector TouchedInstructions
;
636 DenseMap
<const BasicBlock
*, std::pair
<unsigned, unsigned>> BlockInstRange
;
637 mutable DenseMap
<const IntrinsicInst
*, const Value
*> IntrinsicInstPred
;
640 // Debugging for how many times each block and instruction got processed.
641 DenseMap
<const Value
*, unsigned> ProcessedCount
;
645 // This contains a mapping from Instructions to DFS numbers.
646 // The numbering starts at 1. An instruction with DFS number zero
647 // means that the instruction is dead.
648 DenseMap
<const Value
*, unsigned> InstrDFS
;
650 // This contains the mapping DFS numbers to instructions.
651 SmallVector
<Value
*, 32> DFSToInstr
;
654 SmallPtrSet
<Instruction
*, 8> InstructionsToErase
;
657 NewGVN(Function
&F
, DominatorTree
*DT
, AssumptionCache
*AC
,
658 TargetLibraryInfo
*TLI
, AliasAnalysis
*AA
, MemorySSA
*MSSA
,
659 const DataLayout
&DL
)
660 : F(F
), DT(DT
), TLI(TLI
), AA(AA
), MSSA(MSSA
), AC(AC
), DL(DL
),
661 PredInfo(std::make_unique
<PredicateInfo
>(F
, *DT
, *AC
)),
662 SQ(DL
, TLI
, DT
, AC
, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
663 /*CanUseUndef=*/false) {}
668 /// Helper struct return a Expression with an optional extra dependency.
670 const Expression
*Expr
;
672 const PredicateBase
*PredDep
;
674 ExprResult(const Expression
*Expr
, Value
*ExtraDep
= nullptr,
675 const PredicateBase
*PredDep
= nullptr)
676 : Expr(Expr
), ExtraDep(ExtraDep
), PredDep(PredDep
) {}
677 ExprResult(const ExprResult
&) = delete;
678 ExprResult(ExprResult
&&Other
)
679 : Expr(Other
.Expr
), ExtraDep(Other
.ExtraDep
), PredDep(Other
.PredDep
) {
680 Other
.Expr
= nullptr;
681 Other
.ExtraDep
= nullptr;
682 Other
.PredDep
= nullptr;
684 ExprResult
&operator=(const ExprResult
&Other
) = delete;
685 ExprResult
&operator=(ExprResult
&&Other
) = delete;
687 ~ExprResult() { assert(!ExtraDep
&& "unhandled ExtraDep"); }
689 operator bool() const { return Expr
; }
691 static ExprResult
none() { return {nullptr, nullptr, nullptr}; }
692 static ExprResult
some(const Expression
*Expr
, Value
*ExtraDep
= nullptr) {
693 return {Expr
, ExtraDep
, nullptr};
695 static ExprResult
some(const Expression
*Expr
,
696 const PredicateBase
*PredDep
) {
697 return {Expr
, nullptr, PredDep
};
699 static ExprResult
some(const Expression
*Expr
, Value
*ExtraDep
,
700 const PredicateBase
*PredDep
) {
701 return {Expr
, ExtraDep
, PredDep
};
705 // Expression handling.
706 ExprResult
createExpression(Instruction
*) const;
707 const Expression
*createBinaryExpression(unsigned, Type
*, Value
*, Value
*,
708 Instruction
*) const;
710 // Our canonical form for phi arguments is a pair of incoming value, incoming
712 using ValPair
= std::pair
<Value
*, BasicBlock
*>;
714 PHIExpression
*createPHIExpression(ArrayRef
<ValPair
>, const Instruction
*,
715 BasicBlock
*, bool &HasBackEdge
,
716 bool &OriginalOpsConstant
) const;
717 const DeadExpression
*createDeadExpression() const;
718 const VariableExpression
*createVariableExpression(Value
*) const;
719 const ConstantExpression
*createConstantExpression(Constant
*) const;
720 const Expression
*createVariableOrConstant(Value
*V
) const;
721 const UnknownExpression
*createUnknownExpression(Instruction
*) const;
722 const StoreExpression
*createStoreExpression(StoreInst
*,
723 const MemoryAccess
*) const;
724 LoadExpression
*createLoadExpression(Type
*, Value
*, LoadInst
*,
725 const MemoryAccess
*) const;
726 const CallExpression
*createCallExpression(CallInst
*,
727 const MemoryAccess
*) const;
728 const AggregateValueExpression
*
729 createAggregateValueExpression(Instruction
*) const;
730 bool setBasicExpressionInfo(Instruction
*, BasicExpression
*) const;
732 // Congruence class handling.
733 CongruenceClass
*createCongruenceClass(Value
*Leader
, const Expression
*E
) {
734 auto *result
= new CongruenceClass(NextCongruenceNum
++, Leader
, E
);
735 CongruenceClasses
.emplace_back(result
);
739 CongruenceClass
*createMemoryClass(MemoryAccess
*MA
) {
740 auto *CC
= createCongruenceClass(nullptr, nullptr);
741 CC
->setMemoryLeader(MA
);
745 CongruenceClass
*ensureLeaderOfMemoryClass(MemoryAccess
*MA
) {
746 auto *CC
= getMemoryClass(MA
);
747 if (CC
->getMemoryLeader() != MA
)
748 CC
= createMemoryClass(MA
);
752 CongruenceClass
*createSingletonCongruenceClass(Value
*Member
) {
753 CongruenceClass
*CClass
= createCongruenceClass(Member
, nullptr);
754 CClass
->insert(Member
);
755 ValueToClass
[Member
] = CClass
;
759 void initializeCongruenceClasses(Function
&F
);
760 const Expression
*makePossiblePHIOfOps(Instruction
*,
761 SmallPtrSetImpl
<Value
*> &);
762 Value
*findLeaderForInst(Instruction
*ValueOp
,
763 SmallPtrSetImpl
<Value
*> &Visited
,
764 MemoryAccess
*MemAccess
, Instruction
*OrigInst
,
766 bool OpIsSafeForPHIOfOps(Value
*Op
, const BasicBlock
*PHIBlock
,
767 SmallPtrSetImpl
<const Value
*> &);
768 void addPhiOfOps(PHINode
*Op
, BasicBlock
*BB
, Instruction
*ExistingValue
);
769 void removePhiOfOps(Instruction
*I
, PHINode
*PHITemp
);
771 // Value number an Instruction or MemoryPhi.
772 void valueNumberMemoryPhi(MemoryPhi
*);
773 void valueNumberInstruction(Instruction
*);
775 // Symbolic evaluation.
776 ExprResult
checkExprResults(Expression
*, Instruction
*, Value
*) const;
777 ExprResult
performSymbolicEvaluation(Instruction
*,
778 SmallPtrSetImpl
<Value
*> &) const;
779 const Expression
*performSymbolicLoadCoercion(Type
*, Value
*, LoadInst
*,
781 MemoryAccess
*) const;
782 const Expression
*performSymbolicLoadEvaluation(Instruction
*) const;
783 const Expression
*performSymbolicStoreEvaluation(Instruction
*) const;
784 ExprResult
performSymbolicCallEvaluation(Instruction
*) const;
785 void sortPHIOps(MutableArrayRef
<ValPair
> Ops
) const;
786 const Expression
*performSymbolicPHIEvaluation(ArrayRef
<ValPair
>,
788 BasicBlock
*PHIBlock
) const;
789 const Expression
*performSymbolicAggrValueEvaluation(Instruction
*) const;
790 ExprResult
performSymbolicCmpEvaluation(Instruction
*) const;
791 ExprResult
performSymbolicPredicateInfoEvaluation(IntrinsicInst
*) const;
793 // Congruence finding.
794 bool someEquivalentDominates(const Instruction
*, const Instruction
*) const;
795 Value
*lookupOperandLeader(Value
*) const;
796 CongruenceClass
*getClassForExpression(const Expression
*E
) const;
797 void performCongruenceFinding(Instruction
*, const Expression
*);
798 void moveValueToNewCongruenceClass(Instruction
*, const Expression
*,
799 CongruenceClass
*, CongruenceClass
*);
800 void moveMemoryToNewCongruenceClass(Instruction
*, MemoryAccess
*,
801 CongruenceClass
*, CongruenceClass
*);
802 Value
*getNextValueLeader(CongruenceClass
*) const;
803 const MemoryAccess
*getNextMemoryLeader(CongruenceClass
*) const;
804 bool setMemoryClass(const MemoryAccess
*From
, CongruenceClass
*To
);
805 CongruenceClass
*getMemoryClass(const MemoryAccess
*MA
) const;
806 const MemoryAccess
*lookupMemoryLeader(const MemoryAccess
*) const;
807 bool isMemoryAccessTOP(const MemoryAccess
*) const;
810 unsigned int getRank(const Value
*) const;
811 bool shouldSwapOperands(const Value
*, const Value
*) const;
812 bool shouldSwapOperandsForIntrinsic(const Value
*, const Value
*,
813 const IntrinsicInst
*I
) const;
815 // Reachability handling.
816 void updateReachableEdge(BasicBlock
*, BasicBlock
*);
817 void processOutgoingEdges(Instruction
*, BasicBlock
*);
818 Value
*findConditionEquivalence(Value
*) const;
822 void convertClassToDFSOrdered(const CongruenceClass
&,
823 SmallVectorImpl
<ValueDFS
> &,
824 DenseMap
<const Value
*, unsigned int> &,
825 SmallPtrSetImpl
<Instruction
*> &) const;
826 void convertClassToLoadsAndStores(const CongruenceClass
&,
827 SmallVectorImpl
<ValueDFS
> &) const;
829 bool eliminateInstructions(Function
&);
830 void replaceInstruction(Instruction
*, Value
*);
831 void markInstructionForDeletion(Instruction
*);
832 void deleteInstructionsInBlock(BasicBlock
*);
833 Value
*findPHIOfOpsLeader(const Expression
*, const Instruction
*,
834 const BasicBlock
*) const;
836 // Various instruction touch utilities
837 template <typename Map
, typename KeyType
>
838 void touchAndErase(Map
&, const KeyType
&);
839 void markUsersTouched(Value
*);
840 void markMemoryUsersTouched(const MemoryAccess
*);
841 void markMemoryDefTouched(const MemoryAccess
*);
842 void markPredicateUsersTouched(Instruction
*);
843 void markValueLeaderChangeTouched(CongruenceClass
*CC
);
844 void markMemoryLeaderChangeTouched(CongruenceClass
*CC
);
845 void markPhiOfOpsChanged(const Expression
*E
);
846 void addMemoryUsers(const MemoryAccess
*To
, MemoryAccess
*U
) const;
847 void addAdditionalUsers(Value
*To
, Value
*User
) const;
848 void addAdditionalUsers(ExprResult
&Res
, Instruction
*User
) const;
850 // Main loop of value numbering
851 void iterateTouchedInstructions();
854 void cleanupTables();
855 std::pair
<unsigned, unsigned> assignDFSNumbers(BasicBlock
*, unsigned);
856 void updateProcessedCount(const Value
*V
);
857 void verifyMemoryCongruency() const;
858 void verifyIterationSettled(Function
&F
);
859 void verifyStoreExpressions() const;
860 bool singleReachablePHIPath(SmallPtrSet
<const MemoryAccess
*, 8> &,
861 const MemoryAccess
*, const MemoryAccess
*) const;
862 BasicBlock
*getBlockForValue(Value
*V
) const;
863 void deleteExpression(const Expression
*E
) const;
864 MemoryUseOrDef
*getMemoryAccess(const Instruction
*) const;
865 MemoryPhi
*getMemoryAccess(const BasicBlock
*) const;
866 template <class T
, class Range
> T
*getMinDFSOfRange(const Range
&) const;
868 unsigned InstrToDFSNum(const Value
*V
) const {
869 assert(isa
<Instruction
>(V
) && "This should not be used for MemoryAccesses");
870 return InstrDFS
.lookup(V
);
873 unsigned InstrToDFSNum(const MemoryAccess
*MA
) const {
874 return MemoryToDFSNum(MA
);
877 Value
*InstrFromDFSNum(unsigned DFSNum
) { return DFSToInstr
[DFSNum
]; }
879 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
880 // This deliberately takes a value so it can be used with Use's, which will
881 // auto-convert to Value's but not to MemoryAccess's.
882 unsigned MemoryToDFSNum(const Value
*MA
) const {
883 assert(isa
<MemoryAccess
>(MA
) &&
884 "This should not be used with instructions");
885 return isa
<MemoryUseOrDef
>(MA
)
886 ? InstrToDFSNum(cast
<MemoryUseOrDef
>(MA
)->getMemoryInst())
887 : InstrDFS
.lookup(MA
);
890 bool isCycleFree(const Instruction
*) const;
891 bool isBackedge(BasicBlock
*From
, BasicBlock
*To
) const;
893 // Debug counter info. When verifying, we have to reset the value numbering
894 // debug counter to the same state it started in to get the same results.
895 int64_t StartingVNCounter
= 0;
898 } // end anonymous namespace
900 template <typename T
>
901 static bool equalsLoadStoreHelper(const T
&LHS
, const Expression
&RHS
) {
902 if (!isa
<LoadExpression
>(RHS
) && !isa
<StoreExpression
>(RHS
))
904 return LHS
.MemoryExpression::equals(RHS
);
907 bool LoadExpression::equals(const Expression
&Other
) const {
908 return equalsLoadStoreHelper(*this, Other
);
911 bool StoreExpression::equals(const Expression
&Other
) const {
912 if (!equalsLoadStoreHelper(*this, Other
))
914 // Make sure that store vs store includes the value operand.
915 if (const auto *S
= dyn_cast
<StoreExpression
>(&Other
))
916 if (getStoredValue() != S
->getStoredValue())
921 // Determine if the edge From->To is a backedge
922 bool NewGVN::isBackedge(BasicBlock
*From
, BasicBlock
*To
) const {
924 RPOOrdering
.lookup(DT
->getNode(From
)) >=
925 RPOOrdering
.lookup(DT
->getNode(To
));
929 static std::string
getBlockName(const BasicBlock
*B
) {
930 return DOTGraphTraits
<DOTFuncInfo
*>::getSimpleNodeLabel(B
, nullptr);
934 // Get a MemoryAccess for an instruction, fake or real.
935 MemoryUseOrDef
*NewGVN::getMemoryAccess(const Instruction
*I
) const {
936 auto *Result
= MSSA
->getMemoryAccess(I
);
937 return Result
? Result
: TempToMemory
.lookup(I
);
940 // Get a MemoryPhi for a basic block. These are all real.
941 MemoryPhi
*NewGVN::getMemoryAccess(const BasicBlock
*BB
) const {
942 return MSSA
->getMemoryAccess(BB
);
945 // Get the basic block from an instruction/memory value.
946 BasicBlock
*NewGVN::getBlockForValue(Value
*V
) const {
947 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
948 auto *Parent
= I
->getParent();
951 Parent
= TempToBlock
.lookup(V
);
952 assert(Parent
&& "Every fake instruction should have a block");
956 auto *MP
= dyn_cast
<MemoryPhi
>(V
);
957 assert(MP
&& "Should have been an instruction or a MemoryPhi");
958 return MP
->getBlock();
961 // Delete a definitely dead expression, so it can be reused by the expression
962 // allocator. Some of these are not in creation functions, so we have to accept
964 void NewGVN::deleteExpression(const Expression
*E
) const {
965 assert(isa
<BasicExpression
>(E
));
966 auto *BE
= cast
<BasicExpression
>(E
);
967 const_cast<BasicExpression
*>(BE
)->deallocateOperands(ArgRecycler
);
968 ExpressionAllocator
.Deallocate(E
);
971 // If V is a predicateinfo copy, get the thing it is a copy of.
972 static Value
*getCopyOf(const Value
*V
) {
973 if (auto *II
= dyn_cast
<IntrinsicInst
>(V
))
974 if (II
->getIntrinsicID() == Intrinsic::ssa_copy
)
975 return II
->getOperand(0);
979 // Return true if V is really PN, even accounting for predicateinfo copies.
980 static bool isCopyOfPHI(const Value
*V
, const PHINode
*PN
) {
981 return V
== PN
|| getCopyOf(V
) == PN
;
984 static bool isCopyOfAPHI(const Value
*V
) {
985 auto *CO
= getCopyOf(V
);
986 return CO
&& isa
<PHINode
>(CO
);
989 // Sort PHI Operands into a canonical order. What we use here is an RPO
990 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
992 void NewGVN::sortPHIOps(MutableArrayRef
<ValPair
> Ops
) const {
993 llvm::sort(Ops
, [&](const ValPair
&P1
, const ValPair
&P2
) {
994 return BlockInstRange
.lookup(P1
.second
).first
<
995 BlockInstRange
.lookup(P2
.second
).first
;
999 // Return true if V is a value that will always be available (IE can
1000 // be placed anywhere) in the function. We don't do globals here
1001 // because they are often worse to put in place.
1002 static bool alwaysAvailable(Value
*V
) {
1003 return isa
<Constant
>(V
) || isa
<Argument
>(V
);
1006 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is
1007 // the original instruction we are creating a PHIExpression for (but may not be
1008 // a phi node). We require, as an invariant, that all the PHIOperands in the
1009 // same block are sorted the same way. sortPHIOps will sort them into a
1011 PHIExpression
*NewGVN::createPHIExpression(ArrayRef
<ValPair
> PHIOperands
,
1012 const Instruction
*I
,
1013 BasicBlock
*PHIBlock
,
1015 bool &OriginalOpsConstant
) const {
1016 unsigned NumOps
= PHIOperands
.size();
1017 auto *E
= new (ExpressionAllocator
) PHIExpression(NumOps
, PHIBlock
);
1019 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1020 E
->setType(PHIOperands
.begin()->first
->getType());
1021 E
->setOpcode(Instruction::PHI
);
1023 // Filter out unreachable phi operands.
1024 auto Filtered
= make_filter_range(PHIOperands
, [&](const ValPair
&P
) {
1025 auto *BB
= P
.second
;
1026 if (auto *PHIOp
= dyn_cast
<PHINode
>(I
))
1027 if (isCopyOfPHI(P
.first
, PHIOp
))
1029 if (!ReachableEdges
.count({BB
, PHIBlock
}))
1031 // Things in TOPClass are equivalent to everything.
1032 if (ValueToClass
.lookup(P
.first
) == TOPClass
)
1034 OriginalOpsConstant
= OriginalOpsConstant
&& isa
<Constant
>(P
.first
);
1035 HasBackedge
= HasBackedge
|| isBackedge(BB
, PHIBlock
);
1036 return lookupOperandLeader(P
.first
) != I
;
1038 std::transform(Filtered
.begin(), Filtered
.end(), op_inserter(E
),
1039 [&](const ValPair
&P
) -> Value
* {
1040 return lookupOperandLeader(P
.first
);
1045 // Set basic expression info (Arguments, type, opcode) for Expression
1046 // E from Instruction I in block B.
1047 bool NewGVN::setBasicExpressionInfo(Instruction
*I
, BasicExpression
*E
) const {
1048 bool AllConstant
= true;
1049 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
))
1050 E
->setType(GEP
->getSourceElementType());
1052 E
->setType(I
->getType());
1053 E
->setOpcode(I
->getOpcode());
1054 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1056 // Transform the operand array into an operand leader array, and keep track of
1057 // whether all members are constant.
1058 std::transform(I
->op_begin(), I
->op_end(), op_inserter(E
), [&](Value
*O
) {
1059 auto Operand
= lookupOperandLeader(O
);
1060 AllConstant
= AllConstant
&& isa
<Constant
>(Operand
);
1067 const Expression
*NewGVN::createBinaryExpression(unsigned Opcode
, Type
*T
,
1068 Value
*Arg1
, Value
*Arg2
,
1069 Instruction
*I
) const {
1070 auto *E
= new (ExpressionAllocator
) BasicExpression(2);
1071 // TODO: we need to remove context instruction after Value Tracking
1072 // can run without context instruction
1073 const SimplifyQuery Q
= SQ
.getWithInstruction(I
);
1076 E
->setOpcode(Opcode
);
1077 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1078 if (Instruction::isCommutative(Opcode
)) {
1079 // Ensure that commutative instructions that only differ by a permutation
1080 // of their operands get the same value number by sorting the operand value
1081 // numbers. Since all commutative instructions have two operands it is more
1082 // efficient to sort by hand rather than using, say, std::sort.
1083 if (shouldSwapOperands(Arg1
, Arg2
))
1084 std::swap(Arg1
, Arg2
);
1086 E
->op_push_back(lookupOperandLeader(Arg1
));
1087 E
->op_push_back(lookupOperandLeader(Arg2
));
1089 Value
*V
= simplifyBinOp(Opcode
, E
->getOperand(0), E
->getOperand(1), Q
);
1090 if (auto Simplified
= checkExprResults(E
, I
, V
)) {
1091 addAdditionalUsers(Simplified
, I
);
1092 return Simplified
.Expr
;
1097 // Take a Value returned by simplification of Expression E/Instruction
1098 // I, and see if it resulted in a simpler expression. If so, return
1100 NewGVN::ExprResult
NewGVN::checkExprResults(Expression
*E
, Instruction
*I
,
1103 return ExprResult::none();
1105 if (auto *C
= dyn_cast
<Constant
>(V
)) {
1107 LLVM_DEBUG(dbgs() << "Simplified " << *I
<< " to "
1108 << " constant " << *C
<< "\n");
1109 NumGVNOpsSimplified
++;
1110 assert(isa
<BasicExpression
>(E
) &&
1111 "We should always have had a basic expression here");
1112 deleteExpression(E
);
1113 return ExprResult::some(createConstantExpression(C
));
1114 } else if (isa
<Argument
>(V
) || isa
<GlobalVariable
>(V
)) {
1116 LLVM_DEBUG(dbgs() << "Simplified " << *I
<< " to "
1117 << " variable " << *V
<< "\n");
1118 deleteExpression(E
);
1119 return ExprResult::some(createVariableExpression(V
));
1122 CongruenceClass
*CC
= ValueToClass
.lookup(V
);
1124 if (CC
->getLeader() && CC
->getLeader() != I
) {
1125 return ExprResult::some(createVariableOrConstant(CC
->getLeader()), V
);
1127 if (CC
->getDefiningExpr()) {
1129 LLVM_DEBUG(dbgs() << "Simplified " << *I
<< " to "
1130 << " expression " << *CC
->getDefiningExpr() << "\n");
1131 NumGVNOpsSimplified
++;
1132 deleteExpression(E
);
1133 return ExprResult::some(CC
->getDefiningExpr(), V
);
1137 return ExprResult::none();
1140 // Create a value expression from the instruction I, replacing operands with
1143 NewGVN::ExprResult
NewGVN::createExpression(Instruction
*I
) const {
1144 auto *E
= new (ExpressionAllocator
) BasicExpression(I
->getNumOperands());
1145 // TODO: we need to remove context instruction after Value Tracking
1146 // can run without context instruction
1147 const SimplifyQuery Q
= SQ
.getWithInstruction(I
);
1149 bool AllConstant
= setBasicExpressionInfo(I
, E
);
1151 if (I
->isCommutative()) {
1152 // Ensure that commutative instructions that only differ by a permutation
1153 // of their operands get the same value number by sorting the operand value
1154 // numbers. Since all commutative instructions have two operands it is more
1155 // efficient to sort by hand rather than using, say, std::sort.
1156 assert(I
->getNumOperands() == 2 && "Unsupported commutative instruction!");
1157 if (shouldSwapOperands(E
->getOperand(0), E
->getOperand(1)))
1158 E
->swapOperands(0, 1);
1160 // Perform simplification.
1161 if (auto *CI
= dyn_cast
<CmpInst
>(I
)) {
1162 // Sort the operand value numbers so x<y and y>x get the same value
1164 CmpInst::Predicate Predicate
= CI
->getPredicate();
1165 if (shouldSwapOperands(E
->getOperand(0), E
->getOperand(1))) {
1166 E
->swapOperands(0, 1);
1167 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
1169 E
->setOpcode((CI
->getOpcode() << 8) | Predicate
);
1170 // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands
1171 assert(I
->getOperand(0)->getType() == I
->getOperand(1)->getType() &&
1172 "Wrong types on cmp instruction");
1173 assert((E
->getOperand(0)->getType() == I
->getOperand(0)->getType() &&
1174 E
->getOperand(1)->getType() == I
->getOperand(1)->getType()));
1176 simplifyCmpInst(Predicate
, E
->getOperand(0), E
->getOperand(1), Q
);
1177 if (auto Simplified
= checkExprResults(E
, I
, V
))
1179 } else if (isa
<SelectInst
>(I
)) {
1180 if (isa
<Constant
>(E
->getOperand(0)) ||
1181 E
->getOperand(1) == E
->getOperand(2)) {
1182 assert(E
->getOperand(1)->getType() == I
->getOperand(1)->getType() &&
1183 E
->getOperand(2)->getType() == I
->getOperand(2)->getType());
1184 Value
*V
= simplifySelectInst(E
->getOperand(0), E
->getOperand(1),
1185 E
->getOperand(2), Q
);
1186 if (auto Simplified
= checkExprResults(E
, I
, V
))
1189 } else if (I
->isBinaryOp()) {
1191 simplifyBinOp(E
->getOpcode(), E
->getOperand(0), E
->getOperand(1), Q
);
1192 if (auto Simplified
= checkExprResults(E
, I
, V
))
1194 } else if (auto *CI
= dyn_cast
<CastInst
>(I
)) {
1196 simplifyCastInst(CI
->getOpcode(), E
->getOperand(0), CI
->getType(), Q
);
1197 if (auto Simplified
= checkExprResults(E
, I
, V
))
1199 } else if (auto *GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
1200 Value
*V
= simplifyGEPInst(GEPI
->getSourceElementType(), *E
->op_begin(),
1201 ArrayRef(std::next(E
->op_begin()), E
->op_end()),
1202 GEPI
->isInBounds(), Q
);
1203 if (auto Simplified
= checkExprResults(E
, I
, V
))
1205 } else if (AllConstant
) {
1206 // We don't bother trying to simplify unless all of the operands
1208 // TODO: There are a lot of Simplify*'s we could call here, if we
1209 // wanted to. The original motivating case for this code was a
1210 // zext i1 false to i8, which we don't have an interface to
1211 // simplify (IE there is no SimplifyZExt).
1213 SmallVector
<Constant
*, 8> C
;
1214 for (Value
*Arg
: E
->operands())
1215 C
.emplace_back(cast
<Constant
>(Arg
));
1217 if (Value
*V
= ConstantFoldInstOperands(I
, C
, DL
, TLI
))
1218 if (auto Simplified
= checkExprResults(E
, I
, V
))
1221 return ExprResult::some(E
);
1224 const AggregateValueExpression
*
1225 NewGVN::createAggregateValueExpression(Instruction
*I
) const {
1226 if (auto *II
= dyn_cast
<InsertValueInst
>(I
)) {
1227 auto *E
= new (ExpressionAllocator
)
1228 AggregateValueExpression(I
->getNumOperands(), II
->getNumIndices());
1229 setBasicExpressionInfo(I
, E
);
1230 E
->allocateIntOperands(ExpressionAllocator
);
1231 std::copy(II
->idx_begin(), II
->idx_end(), int_op_inserter(E
));
1233 } else if (auto *EI
= dyn_cast
<ExtractValueInst
>(I
)) {
1234 auto *E
= new (ExpressionAllocator
)
1235 AggregateValueExpression(I
->getNumOperands(), EI
->getNumIndices());
1236 setBasicExpressionInfo(EI
, E
);
1237 E
->allocateIntOperands(ExpressionAllocator
);
1238 std::copy(EI
->idx_begin(), EI
->idx_end(), int_op_inserter(E
));
1241 llvm_unreachable("Unhandled type of aggregate value operation");
1244 const DeadExpression
*NewGVN::createDeadExpression() const {
1245 // DeadExpression has no arguments and all DeadExpression's are the same,
1246 // so we only need one of them.
1247 return SingletonDeadExpression
;
1250 const VariableExpression
*NewGVN::createVariableExpression(Value
*V
) const {
1251 auto *E
= new (ExpressionAllocator
) VariableExpression(V
);
1252 E
->setOpcode(V
->getValueID());
1256 const Expression
*NewGVN::createVariableOrConstant(Value
*V
) const {
1257 if (auto *C
= dyn_cast
<Constant
>(V
))
1258 return createConstantExpression(C
);
1259 return createVariableExpression(V
);
1262 const ConstantExpression
*NewGVN::createConstantExpression(Constant
*C
) const {
1263 auto *E
= new (ExpressionAllocator
) ConstantExpression(C
);
1264 E
->setOpcode(C
->getValueID());
1268 const UnknownExpression
*NewGVN::createUnknownExpression(Instruction
*I
) const {
1269 auto *E
= new (ExpressionAllocator
) UnknownExpression(I
);
1270 E
->setOpcode(I
->getOpcode());
1274 const CallExpression
*
1275 NewGVN::createCallExpression(CallInst
*CI
, const MemoryAccess
*MA
) const {
1276 // FIXME: Add operand bundles for calls.
1278 new (ExpressionAllocator
) CallExpression(CI
->getNumOperands(), CI
, MA
);
1279 setBasicExpressionInfo(CI
, E
);
1280 if (CI
->isCommutative()) {
1281 // Ensure that commutative intrinsics that only differ by a permutation
1282 // of their operands get the same value number by sorting the operand value
1284 assert(CI
->getNumOperands() >= 2 && "Unsupported commutative intrinsic!");
1285 if (shouldSwapOperands(E
->getOperand(0), E
->getOperand(1)))
1286 E
->swapOperands(0, 1);
1291 // Return true if some equivalent of instruction Inst dominates instruction U.
1292 bool NewGVN::someEquivalentDominates(const Instruction
*Inst
,
1293 const Instruction
*U
) const {
1294 auto *CC
= ValueToClass
.lookup(Inst
);
1295 // This must be an instruction because we are only called from phi nodes
1296 // in the case that the value it needs to check against is an instruction.
1298 // The most likely candidates for dominance are the leader and the next leader.
1299 // The leader or nextleader will dominate in all cases where there is an
1300 // equivalent that is higher up in the dom tree.
1301 // We can't *only* check them, however, because the
1302 // dominator tree could have an infinite number of non-dominating siblings
1303 // with instructions that are in the right congruence class.
1308 // Instruction U could be in H, with equivalents in every other sibling.
1309 // Depending on the rpo order picked, the leader could be the equivalent in
1310 // any of these siblings.
1313 if (alwaysAvailable(CC
->getLeader()))
1315 if (DT
->dominates(cast
<Instruction
>(CC
->getLeader()), U
))
1317 if (CC
->getNextLeader().first
&&
1318 DT
->dominates(cast
<Instruction
>(CC
->getNextLeader().first
), U
))
1320 return llvm::any_of(*CC
, [&](const Value
*Member
) {
1321 return Member
!= CC
->getLeader() &&
1322 DT
->dominates(cast
<Instruction
>(Member
), U
);
1326 // See if we have a congruence class and leader for this operand, and if so,
1327 // return it. Otherwise, return the operand itself.
1328 Value
*NewGVN::lookupOperandLeader(Value
*V
) const {
1329 CongruenceClass
*CC
= ValueToClass
.lookup(V
);
1331 // Everything in TOP is represented by poison, as it can be any value.
1332 // We do have to make sure we get the type right though, so we can't set the
1333 // RepLeader to poison.
1335 return PoisonValue::get(V
->getType());
1336 return CC
->getStoredValue() ? CC
->getStoredValue() : CC
->getLeader();
1342 const MemoryAccess
*NewGVN::lookupMemoryLeader(const MemoryAccess
*MA
) const {
1343 auto *CC
= getMemoryClass(MA
);
1344 assert(CC
->getMemoryLeader() &&
1345 "Every MemoryAccess should be mapped to a congruence class with a "
1346 "representative memory access");
1347 return CC
->getMemoryLeader();
1350 // Return true if the MemoryAccess is really equivalent to everything. This is
1351 // equivalent to the lattice value "TOP" in most lattices. This is the initial
1352 // state of all MemoryAccesses.
1353 bool NewGVN::isMemoryAccessTOP(const MemoryAccess
*MA
) const {
1354 return getMemoryClass(MA
) == TOPClass
;
1357 LoadExpression
*NewGVN::createLoadExpression(Type
*LoadType
, Value
*PointerOp
,
1359 const MemoryAccess
*MA
) const {
1361 new (ExpressionAllocator
) LoadExpression(1, LI
, lookupMemoryLeader(MA
));
1362 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1363 E
->setType(LoadType
);
1365 // Give store and loads same opcode so they value number together.
1367 E
->op_push_back(PointerOp
);
1369 // TODO: Value number heap versions. We may be able to discover
1370 // things alias analysis can't on it's own (IE that a store and a
1371 // load have the same value, and thus, it isn't clobbering the load).
1375 const StoreExpression
*
1376 NewGVN::createStoreExpression(StoreInst
*SI
, const MemoryAccess
*MA
) const {
1377 auto *StoredValueLeader
= lookupOperandLeader(SI
->getValueOperand());
1378 auto *E
= new (ExpressionAllocator
)
1379 StoreExpression(SI
->getNumOperands(), SI
, StoredValueLeader
, MA
);
1380 E
->allocateOperands(ArgRecycler
, ExpressionAllocator
);
1381 E
->setType(SI
->getValueOperand()->getType());
1383 // Give store and loads same opcode so they value number together.
1385 E
->op_push_back(lookupOperandLeader(SI
->getPointerOperand()));
1387 // TODO: Value number heap versions. We may be able to discover
1388 // things alias analysis can't on it's own (IE that a store and a
1389 // load have the same value, and thus, it isn't clobbering the load).
1393 const Expression
*NewGVN::performSymbolicStoreEvaluation(Instruction
*I
) const {
1394 // Unlike loads, we never try to eliminate stores, so we do not check if they
1395 // are simple and avoid value numbering them.
1396 auto *SI
= cast
<StoreInst
>(I
);
1397 auto *StoreAccess
= getMemoryAccess(SI
);
1398 // Get the expression, if any, for the RHS of the MemoryDef.
1399 const MemoryAccess
*StoreRHS
= StoreAccess
->getDefiningAccess();
1400 if (EnableStoreRefinement
)
1401 StoreRHS
= MSSAWalker
->getClobberingMemoryAccess(StoreAccess
);
1402 // If we bypassed the use-def chains, make sure we add a use.
1403 StoreRHS
= lookupMemoryLeader(StoreRHS
);
1404 if (StoreRHS
!= StoreAccess
->getDefiningAccess())
1405 addMemoryUsers(StoreRHS
, StoreAccess
);
1406 // If we are defined by ourselves, use the live on entry def.
1407 if (StoreRHS
== StoreAccess
)
1408 StoreRHS
= MSSA
->getLiveOnEntryDef();
1410 if (SI
->isSimple()) {
1411 // See if we are defined by a previous store expression, it already has a
1412 // value, and it's the same value as our current store. FIXME: Right now, we
1413 // only do this for simple stores, we should expand to cover memcpys, etc.
1414 const auto *LastStore
= createStoreExpression(SI
, StoreRHS
);
1415 const auto *LastCC
= ExpressionToClass
.lookup(LastStore
);
1416 // We really want to check whether the expression we matched was a store. No
1417 // easy way to do that. However, we can check that the class we found has a
1418 // store, which, assuming the value numbering state is not corrupt, is
1419 // sufficient, because we must also be equivalent to that store's expression
1420 // for it to be in the same class as the load.
1421 if (LastCC
&& LastCC
->getStoredValue() == LastStore
->getStoredValue())
1423 // Also check if our value operand is defined by a load of the same memory
1424 // location, and the memory state is the same as it was then (otherwise, it
1425 // could have been overwritten later. See test32 in
1426 // transforms/DeadStoreElimination/simple.ll).
1427 if (auto *LI
= dyn_cast
<LoadInst
>(LastStore
->getStoredValue()))
1428 if ((lookupOperandLeader(LI
->getPointerOperand()) ==
1429 LastStore
->getOperand(0)) &&
1430 (lookupMemoryLeader(getMemoryAccess(LI
)->getDefiningAccess()) ==
1433 deleteExpression(LastStore
);
1436 // If the store is not equivalent to anything, value number it as a store that
1437 // produces a unique memory state (instead of using it's MemoryUse, we use
1439 return createStoreExpression(SI
, StoreAccess
);
1442 // See if we can extract the value of a loaded pointer from a load, a store, or
1443 // a memory instruction.
1445 NewGVN::performSymbolicLoadCoercion(Type
*LoadType
, Value
*LoadPtr
,
1446 LoadInst
*LI
, Instruction
*DepInst
,
1447 MemoryAccess
*DefiningAccess
) const {
1448 assert((!LI
|| LI
->isSimple()) && "Not a simple load");
1449 if (auto *DepSI
= dyn_cast
<StoreInst
>(DepInst
)) {
1450 // Can't forward from non-atomic to atomic without violating memory model.
1451 // Also don't need to coerce if they are the same type, we will just
1453 if (LI
->isAtomic() > DepSI
->isAtomic() ||
1454 LoadType
== DepSI
->getValueOperand()->getType())
1456 int Offset
= analyzeLoadFromClobberingStore(LoadType
, LoadPtr
, DepSI
, DL
);
1458 if (auto *C
= dyn_cast
<Constant
>(
1459 lookupOperandLeader(DepSI
->getValueOperand()))) {
1460 if (Constant
*Res
= getConstantValueForLoad(C
, Offset
, LoadType
, DL
)) {
1461 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1462 << " to constant " << *Res
<< "\n");
1463 return createConstantExpression(Res
);
1467 } else if (auto *DepLI
= dyn_cast
<LoadInst
>(DepInst
)) {
1468 // Can't forward from non-atomic to atomic without violating memory model.
1469 if (LI
->isAtomic() > DepLI
->isAtomic())
1471 int Offset
= analyzeLoadFromClobberingLoad(LoadType
, LoadPtr
, DepLI
, DL
);
1473 // We can coerce a constant load into a load.
1474 if (auto *C
= dyn_cast
<Constant
>(lookupOperandLeader(DepLI
)))
1475 if (auto *PossibleConstant
=
1476 getConstantValueForLoad(C
, Offset
, LoadType
, DL
)) {
1477 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1478 << " to constant " << *PossibleConstant
<< "\n");
1479 return createConstantExpression(PossibleConstant
);
1482 } else if (auto *DepMI
= dyn_cast
<MemIntrinsic
>(DepInst
)) {
1483 int Offset
= analyzeLoadFromClobberingMemInst(LoadType
, LoadPtr
, DepMI
, DL
);
1485 if (auto *PossibleConstant
=
1486 getConstantMemInstValueForLoad(DepMI
, Offset
, LoadType
, DL
)) {
1487 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1488 << " to constant " << *PossibleConstant
<< "\n");
1489 return createConstantExpression(PossibleConstant
);
1494 // All of the below are only true if the loaded pointer is produced
1495 // by the dependent instruction.
1496 if (LoadPtr
!= lookupOperandLeader(DepInst
) &&
1497 !AA
->isMustAlias(LoadPtr
, DepInst
))
1499 // If this load really doesn't depend on anything, then we must be loading an
1500 // undef value. This can happen when loading for a fresh allocation with no
1501 // intervening stores, for example. Note that this is only true in the case
1502 // that the result of the allocation is pointer equal to the load ptr.
1503 if (isa
<AllocaInst
>(DepInst
)) {
1504 return createConstantExpression(UndefValue::get(LoadType
));
1506 // If this load occurs either right after a lifetime begin,
1507 // then the loaded value is undefined.
1508 else if (auto *II
= dyn_cast
<IntrinsicInst
>(DepInst
)) {
1509 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
)
1510 return createConstantExpression(UndefValue::get(LoadType
));
1511 } else if (auto *InitVal
=
1512 getInitialValueOfAllocation(DepInst
, TLI
, LoadType
))
1513 return createConstantExpression(InitVal
);
1518 const Expression
*NewGVN::performSymbolicLoadEvaluation(Instruction
*I
) const {
1519 auto *LI
= cast
<LoadInst
>(I
);
1521 // We can eliminate in favor of non-simple loads, but we won't be able to
1522 // eliminate the loads themselves.
1523 if (!LI
->isSimple())
1526 Value
*LoadAddressLeader
= lookupOperandLeader(LI
->getPointerOperand());
1527 // Load of undef is UB.
1528 if (isa
<UndefValue
>(LoadAddressLeader
))
1529 return createConstantExpression(PoisonValue::get(LI
->getType()));
1530 MemoryAccess
*OriginalAccess
= getMemoryAccess(I
);
1531 MemoryAccess
*DefiningAccess
=
1532 MSSAWalker
->getClobberingMemoryAccess(OriginalAccess
);
1534 if (!MSSA
->isLiveOnEntryDef(DefiningAccess
)) {
1535 if (auto *MD
= dyn_cast
<MemoryDef
>(DefiningAccess
)) {
1536 Instruction
*DefiningInst
= MD
->getMemoryInst();
1537 // If the defining instruction is not reachable, replace with poison.
1538 if (!ReachableBlocks
.count(DefiningInst
->getParent()))
1539 return createConstantExpression(PoisonValue::get(LI
->getType()));
1540 // This will handle stores and memory insts. We only do if it the
1541 // defining access has a different type, or it is a pointer produced by
1542 // certain memory operations that cause the memory to have a fixed value
1543 // (IE things like calloc).
1544 if (const auto *CoercionResult
=
1545 performSymbolicLoadCoercion(LI
->getType(), LoadAddressLeader
, LI
,
1546 DefiningInst
, DefiningAccess
))
1547 return CoercionResult
;
1551 const auto *LE
= createLoadExpression(LI
->getType(), LoadAddressLeader
, LI
,
1553 // If our MemoryLeader is not our defining access, add a use to the
1554 // MemoryLeader, so that we get reprocessed when it changes.
1555 if (LE
->getMemoryLeader() != DefiningAccess
)
1556 addMemoryUsers(LE
->getMemoryLeader(), OriginalAccess
);
1561 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst
*I
) const {
1562 auto *PI
= PredInfo
->getPredicateInfoFor(I
);
1564 return ExprResult::none();
1566 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1568 const std::optional
<PredicateConstraint
> &Constraint
= PI
->getConstraint();
1570 return ExprResult::none();
1572 CmpInst::Predicate Predicate
= Constraint
->Predicate
;
1573 Value
*CmpOp0
= I
->getOperand(0);
1574 Value
*CmpOp1
= Constraint
->OtherOp
;
1576 Value
*FirstOp
= lookupOperandLeader(CmpOp0
);
1577 Value
*SecondOp
= lookupOperandLeader(CmpOp1
);
1578 Value
*AdditionallyUsedValue
= CmpOp0
;
1581 if (shouldSwapOperandsForIntrinsic(FirstOp
, SecondOp
, I
)) {
1582 std::swap(FirstOp
, SecondOp
);
1583 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
1584 AdditionallyUsedValue
= CmpOp1
;
1587 if (Predicate
== CmpInst::ICMP_EQ
)
1588 return ExprResult::some(createVariableOrConstant(FirstOp
),
1589 AdditionallyUsedValue
, PI
);
1591 // Handle the special case of floating point.
1592 if (Predicate
== CmpInst::FCMP_OEQ
&& isa
<ConstantFP
>(FirstOp
) &&
1593 !cast
<ConstantFP
>(FirstOp
)->isZero())
1594 return ExprResult::some(createConstantExpression(cast
<Constant
>(FirstOp
)),
1595 AdditionallyUsedValue
, PI
);
1597 return ExprResult::none();
1600 // Evaluate read only and pure calls, and create an expression result.
1601 NewGVN::ExprResult
NewGVN::performSymbolicCallEvaluation(Instruction
*I
) const {
1602 auto *CI
= cast
<CallInst
>(I
);
1603 if (auto *II
= dyn_cast
<IntrinsicInst
>(I
)) {
1604 // Intrinsics with the returned attribute are copies of arguments.
1605 if (auto *ReturnedValue
= II
->getReturnedArgOperand()) {
1606 if (II
->getIntrinsicID() == Intrinsic::ssa_copy
)
1607 if (auto Res
= performSymbolicPredicateInfoEvaluation(II
))
1609 return ExprResult::some(createVariableOrConstant(ReturnedValue
));
1613 // FIXME: Currently the calls which may access the thread id may
1614 // be considered as not accessing the memory. But this is
1615 // problematic for coroutines, since coroutines may resume in a
1616 // different thread. So we disable the optimization here for the
1617 // correctness. However, it may block many other correct
1618 // optimizations. Revert this one when we detect the memory
1619 // accessing kind more precisely.
1620 if (CI
->getFunction()->isPresplitCoroutine())
1621 return ExprResult::none();
1623 // Do not combine convergent calls since they implicitly depend on the set of
1624 // threads that is currently executing, and they might be in different basic
1626 if (CI
->isConvergent())
1627 return ExprResult::none();
1629 if (AA
->doesNotAccessMemory(CI
)) {
1630 return ExprResult::some(
1631 createCallExpression(CI
, TOPClass
->getMemoryLeader()));
1632 } else if (AA
->onlyReadsMemory(CI
)) {
1633 if (auto *MA
= MSSA
->getMemoryAccess(CI
)) {
1634 auto *DefiningAccess
= MSSAWalker
->getClobberingMemoryAccess(MA
);
1635 return ExprResult::some(createCallExpression(CI
, DefiningAccess
));
1636 } else // MSSA determined that CI does not access memory.
1637 return ExprResult::some(
1638 createCallExpression(CI
, TOPClass
->getMemoryLeader()));
1640 return ExprResult::none();
1643 // Retrieve the memory class for a given MemoryAccess.
1644 CongruenceClass
*NewGVN::getMemoryClass(const MemoryAccess
*MA
) const {
1645 auto *Result
= MemoryAccessToClass
.lookup(MA
);
1646 assert(Result
&& "Should have found memory class");
1650 // Update the MemoryAccess equivalence table to say that From is equal to To,
1651 // and return true if this is different from what already existed in the table.
1652 bool NewGVN::setMemoryClass(const MemoryAccess
*From
,
1653 CongruenceClass
*NewClass
) {
1655 "Every MemoryAccess should be getting mapped to a non-null class");
1656 LLVM_DEBUG(dbgs() << "Setting " << *From
);
1657 LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1658 LLVM_DEBUG(dbgs() << NewClass
->getID()
1659 << " with current MemoryAccess leader ");
1660 LLVM_DEBUG(dbgs() << *NewClass
->getMemoryLeader() << "\n");
1662 auto LookupResult
= MemoryAccessToClass
.find(From
);
1663 bool Changed
= false;
1664 // If it's already in the table, see if the value changed.
1665 if (LookupResult
!= MemoryAccessToClass
.end()) {
1666 auto *OldClass
= LookupResult
->second
;
1667 if (OldClass
!= NewClass
) {
1668 // If this is a phi, we have to handle memory member updates.
1669 if (auto *MP
= dyn_cast
<MemoryPhi
>(From
)) {
1670 OldClass
->memory_erase(MP
);
1671 NewClass
->memory_insert(MP
);
1672 // This may have killed the class if it had no non-memory members
1673 if (OldClass
->getMemoryLeader() == From
) {
1674 if (OldClass
->definesNoMemory()) {
1675 OldClass
->setMemoryLeader(nullptr);
1677 OldClass
->setMemoryLeader(getNextMemoryLeader(OldClass
));
1678 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1679 << OldClass
->getID() << " to "
1680 << *OldClass
->getMemoryLeader()
1681 << " due to removal of a memory member " << *From
1683 markMemoryLeaderChangeTouched(OldClass
);
1687 // It wasn't equivalent before, and now it is.
1688 LookupResult
->second
= NewClass
;
1696 // Determine if a instruction is cycle-free. That means the values in the
1697 // instruction don't depend on any expressions that can change value as a result
1698 // of the instruction. For example, a non-cycle free instruction would be v =
1700 bool NewGVN::isCycleFree(const Instruction
*I
) const {
1701 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1702 // and see what kind of SCC it ends up in. If it is a singleton, it is
1703 // cycle-free. If it is not in a singleton, it is only cycle free if the
1704 // other members are all phi nodes (as they do not compute anything, they are
1706 auto ICS
= InstCycleState
.lookup(I
);
1707 if (ICS
== ICS_Unknown
) {
1709 auto &SCC
= SCCFinder
.getComponentFor(I
);
1710 // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1711 if (SCC
.size() == 1)
1712 InstCycleState
.insert({I
, ICS_CycleFree
});
1714 bool AllPhis
= llvm::all_of(SCC
, [](const Value
*V
) {
1715 return isa
<PHINode
>(V
) || isCopyOfAPHI(V
);
1717 ICS
= AllPhis
? ICS_CycleFree
: ICS_Cycle
;
1718 for (const auto *Member
: SCC
)
1719 if (auto *MemberPhi
= dyn_cast
<PHINode
>(Member
))
1720 InstCycleState
.insert({MemberPhi
, ICS
});
1723 if (ICS
== ICS_Cycle
)
1728 // Evaluate PHI nodes symbolically and create an expression result.
1730 NewGVN::performSymbolicPHIEvaluation(ArrayRef
<ValPair
> PHIOps
,
1732 BasicBlock
*PHIBlock
) const {
1733 // True if one of the incoming phi edges is a backedge.
1734 bool HasBackedge
= false;
1735 // All constant tracks the state of whether all the *original* phi operands
1736 // This is really shorthand for "this phi cannot cycle due to forward
1737 // change in value of the phi is guaranteed not to later change the value of
1738 // the phi. IE it can't be v = phi(undef, v+1)
1739 bool OriginalOpsConstant
= true;
1740 auto *E
= cast
<PHIExpression
>(createPHIExpression(
1741 PHIOps
, I
, PHIBlock
, HasBackedge
, OriginalOpsConstant
));
1742 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1743 // See if all arguments are the same.
1744 // We track if any were undef because they need special handling.
1745 bool HasUndef
= false, HasPoison
= false;
1746 auto Filtered
= make_filter_range(E
->operands(), [&](Value
*Arg
) {
1747 if (isa
<PoisonValue
>(Arg
)) {
1751 if (isa
<UndefValue
>(Arg
)) {
1757 // If we are left with no operands, it's dead.
1758 if (Filtered
.empty()) {
1759 // If it has undef or poison at this point, it means there are no-non-undef
1760 // arguments, and thus, the value of the phi node must be undef.
1763 dbgs() << "PHI Node " << *I
1764 << " has no non-undef arguments, valuing it as undef\n");
1765 return createConstantExpression(UndefValue::get(I
->getType()));
1769 dbgs() << "PHI Node " << *I
1770 << " has no non-poison arguments, valuing it as poison\n");
1771 return createConstantExpression(PoisonValue::get(I
->getType()));
1774 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I
<< " are live\n");
1775 deleteExpression(E
);
1776 return createDeadExpression();
1778 Value
*AllSameValue
= *(Filtered
.begin());
1780 // Can't use std::equal here, sadly, because filter.begin moves.
1781 if (llvm::all_of(Filtered
, [&](Value
*Arg
) { return Arg
== AllSameValue
; })) {
1782 // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef
1783 // in the worst case).
1784 if (HasUndef
&& !isGuaranteedNotToBePoison(AllSameValue
, AC
, nullptr, DT
))
1787 // In LLVM's non-standard representation of phi nodes, it's possible to have
1788 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1789 // on the original phi node), especially in weird CFG's where some arguments
1790 // are unreachable, or uninitialized along certain paths. This can cause
1791 // infinite loops during evaluation. We work around this by not trying to
1792 // really evaluate them independently, but instead using a variable
1793 // expression to say if one is equivalent to the other.
1794 // We also special case undef/poison, so that if we have an undef, we can't
1795 // use the common value unless it dominates the phi block.
1796 if (HasPoison
|| HasUndef
) {
1797 // If we have undef and at least one other value, this is really a
1798 // multivalued phi, and we need to know if it's cycle free in order to
1799 // evaluate whether we can ignore the undef. The other parts of this are
1800 // just shortcuts. If there is no backedge, or all operands are
1801 // constants, it also must be cycle free.
1802 if (HasBackedge
&& !OriginalOpsConstant
&&
1803 !isa
<UndefValue
>(AllSameValue
) && !isCycleFree(I
))
1806 // Only have to check for instructions
1807 if (auto *AllSameInst
= dyn_cast
<Instruction
>(AllSameValue
))
1808 if (!someEquivalentDominates(AllSameInst
, I
))
1811 // Can't simplify to something that comes later in the iteration.
1812 // Otherwise, when and if it changes congruence class, we will never catch
1813 // up. We will always be a class behind it.
1814 if (isa
<Instruction
>(AllSameValue
) &&
1815 InstrToDFSNum(AllSameValue
) > InstrToDFSNum(I
))
1817 NumGVNPhisAllSame
++;
1818 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I
<< " to " << *AllSameValue
1820 deleteExpression(E
);
1821 return createVariableOrConstant(AllSameValue
);
1827 NewGVN::performSymbolicAggrValueEvaluation(Instruction
*I
) const {
1828 if (auto *EI
= dyn_cast
<ExtractValueInst
>(I
)) {
1829 auto *WO
= dyn_cast
<WithOverflowInst
>(EI
->getAggregateOperand());
1830 if (WO
&& EI
->getNumIndices() == 1 && *EI
->idx_begin() == 0)
1831 // EI is an extract from one of our with.overflow intrinsics. Synthesize
1832 // a semantically equivalent expression instead of an extract value
1834 return createBinaryExpression(WO
->getBinaryOp(), EI
->getType(),
1835 WO
->getLHS(), WO
->getRHS(), I
);
1838 return createAggregateValueExpression(I
);
1841 NewGVN::ExprResult
NewGVN::performSymbolicCmpEvaluation(Instruction
*I
) const {
1842 assert(isa
<CmpInst
>(I
) && "Expected a cmp instruction.");
1844 auto *CI
= cast
<CmpInst
>(I
);
1845 // See if our operands are equal to those of a previous predicate, and if so,
1846 // if it implies true or false.
1847 auto Op0
= lookupOperandLeader(CI
->getOperand(0));
1848 auto Op1
= lookupOperandLeader(CI
->getOperand(1));
1849 auto OurPredicate
= CI
->getPredicate();
1850 if (shouldSwapOperands(Op0
, Op1
)) {
1851 std::swap(Op0
, Op1
);
1852 OurPredicate
= CI
->getSwappedPredicate();
1855 // Avoid processing the same info twice.
1856 const PredicateBase
*LastPredInfo
= nullptr;
1857 // See if we know something about the comparison itself, like it is the target
1859 auto *CmpPI
= PredInfo
->getPredicateInfoFor(I
);
1860 if (isa_and_nonnull
<PredicateAssume
>(CmpPI
))
1861 return ExprResult::some(
1862 createConstantExpression(ConstantInt::getTrue(CI
->getType())));
1865 // This condition does not depend on predicates, no need to add users
1866 if (CI
->isTrueWhenEqual())
1867 return ExprResult::some(
1868 createConstantExpression(ConstantInt::getTrue(CI
->getType())));
1869 else if (CI
->isFalseWhenEqual())
1870 return ExprResult::some(
1871 createConstantExpression(ConstantInt::getFalse(CI
->getType())));
1874 // NOTE: Because we are comparing both operands here and below, and using
1875 // previous comparisons, we rely on fact that predicateinfo knows to mark
1876 // comparisons that use renamed operands as users of the earlier comparisons.
1877 // It is *not* enough to just mark predicateinfo renamed operands as users of
1878 // the earlier comparisons, because the *other* operand may have changed in a
1879 // previous iteration.
1882 // %b.0 = ssa.copy(%b)
1884 // icmp slt %c, %b.0
1886 // %c and %a may start out equal, and thus, the code below will say the second
1887 // %icmp is false. c may become equal to something else, and in that case the
1888 // %second icmp *must* be reexamined, but would not if only the renamed
1889 // %operands are considered users of the icmp.
1891 // *Currently* we only check one level of comparisons back, and only mark one
1892 // level back as touched when changes happen. If you modify this code to look
1893 // back farther through comparisons, you *must* mark the appropriate
1894 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1895 // we know something just from the operands themselves
1897 // See if our operands have predicate info, so that we may be able to derive
1898 // something from a previous comparison.
1899 for (const auto &Op
: CI
->operands()) {
1900 auto *PI
= PredInfo
->getPredicateInfoFor(Op
);
1901 if (const auto *PBranch
= dyn_cast_or_null
<PredicateBranch
>(PI
)) {
1902 if (PI
== LastPredInfo
)
1905 // In phi of ops cases, we may have predicate info that we are evaluating
1906 // in a different context.
1907 if (!DT
->dominates(PBranch
->To
, I
->getParent()))
1909 // TODO: Along the false edge, we may know more things too, like
1911 // same operands is false.
1912 // TODO: We only handle actual comparison conditions below, not
1914 auto *BranchCond
= dyn_cast
<CmpInst
>(PBranch
->Condition
);
1917 auto *BranchOp0
= lookupOperandLeader(BranchCond
->getOperand(0));
1918 auto *BranchOp1
= lookupOperandLeader(BranchCond
->getOperand(1));
1919 auto BranchPredicate
= BranchCond
->getPredicate();
1920 if (shouldSwapOperands(BranchOp0
, BranchOp1
)) {
1921 std::swap(BranchOp0
, BranchOp1
);
1922 BranchPredicate
= BranchCond
->getSwappedPredicate();
1924 if (BranchOp0
== Op0
&& BranchOp1
== Op1
) {
1925 if (PBranch
->TrueEdge
) {
1926 // If we know the previous predicate is true and we are in the true
1927 // edge then we may be implied true or false.
1928 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate
,
1930 return ExprResult::some(
1931 createConstantExpression(ConstantInt::getTrue(CI
->getType())),
1935 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate
,
1937 return ExprResult::some(
1938 createConstantExpression(ConstantInt::getFalse(CI
->getType())),
1942 // Just handle the ne and eq cases, where if we have the same
1943 // operands, we may know something.
1944 if (BranchPredicate
== OurPredicate
) {
1945 // Same predicate, same ops,we know it was false, so this is false.
1946 return ExprResult::some(
1947 createConstantExpression(ConstantInt::getFalse(CI
->getType())),
1949 } else if (BranchPredicate
==
1950 CmpInst::getInversePredicate(OurPredicate
)) {
1951 // Inverse predicate, we know the other was false, so this is true.
1952 return ExprResult::some(
1953 createConstantExpression(ConstantInt::getTrue(CI
->getType())),
1960 // Create expression will take care of simplifyCmpInst
1961 return createExpression(I
);
1964 // Substitute and symbolize the instruction before value numbering.
1966 NewGVN::performSymbolicEvaluation(Instruction
*I
,
1967 SmallPtrSetImpl
<Value
*> &Visited
) const {
1969 const Expression
*E
= nullptr;
1970 // TODO: memory intrinsics.
1971 // TODO: Some day, we should do the forward propagation and reassociation
1972 // parts of the algorithm.
1973 switch (I
->getOpcode()) {
1974 case Instruction::ExtractValue
:
1975 case Instruction::InsertValue
:
1976 E
= performSymbolicAggrValueEvaluation(I
);
1978 case Instruction::PHI
: {
1979 SmallVector
<ValPair
, 3> Ops
;
1980 auto *PN
= cast
<PHINode
>(I
);
1981 for (unsigned i
= 0; i
< PN
->getNumOperands(); ++i
)
1982 Ops
.push_back({PN
->getIncomingValue(i
), PN
->getIncomingBlock(i
)});
1983 // Sort to ensure the invariant createPHIExpression requires is met.
1985 E
= performSymbolicPHIEvaluation(Ops
, I
, getBlockForValue(I
));
1987 case Instruction::Call
:
1988 return performSymbolicCallEvaluation(I
);
1990 case Instruction::Store
:
1991 E
= performSymbolicStoreEvaluation(I
);
1993 case Instruction::Load
:
1994 E
= performSymbolicLoadEvaluation(I
);
1996 case Instruction::BitCast
:
1997 case Instruction::AddrSpaceCast
:
1998 case Instruction::Freeze
:
1999 return createExpression(I
);
2001 case Instruction::ICmp
:
2002 case Instruction::FCmp
:
2003 return performSymbolicCmpEvaluation(I
);
2005 case Instruction::FNeg
:
2006 case Instruction::Add
:
2007 case Instruction::FAdd
:
2008 case Instruction::Sub
:
2009 case Instruction::FSub
:
2010 case Instruction::Mul
:
2011 case Instruction::FMul
:
2012 case Instruction::UDiv
:
2013 case Instruction::SDiv
:
2014 case Instruction::FDiv
:
2015 case Instruction::URem
:
2016 case Instruction::SRem
:
2017 case Instruction::FRem
:
2018 case Instruction::Shl
:
2019 case Instruction::LShr
:
2020 case Instruction::AShr
:
2021 case Instruction::And
:
2022 case Instruction::Or
:
2023 case Instruction::Xor
:
2024 case Instruction::Trunc
:
2025 case Instruction::ZExt
:
2026 case Instruction::SExt
:
2027 case Instruction::FPToUI
:
2028 case Instruction::FPToSI
:
2029 case Instruction::UIToFP
:
2030 case Instruction::SIToFP
:
2031 case Instruction::FPTrunc
:
2032 case Instruction::FPExt
:
2033 case Instruction::PtrToInt
:
2034 case Instruction::IntToPtr
:
2035 case Instruction::Select
:
2036 case Instruction::ExtractElement
:
2037 case Instruction::InsertElement
:
2038 case Instruction::GetElementPtr
:
2039 return createExpression(I
);
2041 case Instruction::ShuffleVector
:
2042 // FIXME: Add support for shufflevector to createExpression.
2043 return ExprResult::none();
2045 return ExprResult::none();
2047 return ExprResult::some(E
);
2050 // Look up a container of values/instructions in a map, and touch all the
2051 // instructions in the container. Then erase value from the map.
2052 template <typename Map
, typename KeyType
>
2053 void NewGVN::touchAndErase(Map
&M
, const KeyType
&Key
) {
2054 const auto Result
= M
.find_as(Key
);
2055 if (Result
!= M
.end()) {
2056 for (const typename
Map::mapped_type::value_type Mapped
: Result
->second
)
2057 TouchedInstructions
.set(InstrToDFSNum(Mapped
));
2062 void NewGVN::addAdditionalUsers(Value
*To
, Value
*User
) const {
2063 assert(User
&& To
!= User
);
2064 if (isa
<Instruction
>(To
))
2065 AdditionalUsers
[To
].insert(User
);
2068 void NewGVN::addAdditionalUsers(ExprResult
&Res
, Instruction
*User
) const {
2069 if (Res
.ExtraDep
&& Res
.ExtraDep
!= User
)
2070 addAdditionalUsers(Res
.ExtraDep
, User
);
2071 Res
.ExtraDep
= nullptr;
2074 if (const auto *PBranch
= dyn_cast
<PredicateBranch
>(Res
.PredDep
))
2075 PredicateToUsers
[PBranch
->Condition
].insert(User
);
2076 else if (const auto *PAssume
= dyn_cast
<PredicateAssume
>(Res
.PredDep
))
2077 PredicateToUsers
[PAssume
->Condition
].insert(User
);
2079 Res
.PredDep
= nullptr;
2082 void NewGVN::markUsersTouched(Value
*V
) {
2083 // Now mark the users as touched.
2084 for (auto *User
: V
->users()) {
2085 assert(isa
<Instruction
>(User
) && "Use of value not within an instruction?");
2086 TouchedInstructions
.set(InstrToDFSNum(User
));
2088 touchAndErase(AdditionalUsers
, V
);
2091 void NewGVN::addMemoryUsers(const MemoryAccess
*To
, MemoryAccess
*U
) const {
2092 LLVM_DEBUG(dbgs() << "Adding memory user " << *U
<< " to " << *To
<< "\n");
2093 MemoryToUsers
[To
].insert(U
);
2096 void NewGVN::markMemoryDefTouched(const MemoryAccess
*MA
) {
2097 TouchedInstructions
.set(MemoryToDFSNum(MA
));
2100 void NewGVN::markMemoryUsersTouched(const MemoryAccess
*MA
) {
2101 if (isa
<MemoryUse
>(MA
))
2103 for (const auto *U
: MA
->users())
2104 TouchedInstructions
.set(MemoryToDFSNum(U
));
2105 touchAndErase(MemoryToUsers
, MA
);
2108 // Touch all the predicates that depend on this instruction.
2109 void NewGVN::markPredicateUsersTouched(Instruction
*I
) {
2110 touchAndErase(PredicateToUsers
, I
);
2113 // Mark users affected by a memory leader change.
2114 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass
*CC
) {
2115 for (const auto *M
: CC
->memory())
2116 markMemoryDefTouched(M
);
2119 // Touch the instructions that need to be updated after a congruence class has a
2120 // leader change, and mark changed values.
2121 void NewGVN::markValueLeaderChangeTouched(CongruenceClass
*CC
) {
2122 for (auto *M
: *CC
) {
2123 if (auto *I
= dyn_cast
<Instruction
>(M
))
2124 TouchedInstructions
.set(InstrToDFSNum(I
));
2125 LeaderChanges
.insert(M
);
2129 // Give a range of things that have instruction DFS numbers, this will return
2130 // the member of the range with the smallest dfs number.
2131 template <class T
, class Range
>
2132 T
*NewGVN::getMinDFSOfRange(const Range
&R
) const {
2133 std::pair
<T
*, unsigned> MinDFS
= {nullptr, ~0U};
2134 for (const auto X
: R
) {
2135 auto DFSNum
= InstrToDFSNum(X
);
2136 if (DFSNum
< MinDFS
.second
)
2137 MinDFS
= {X
, DFSNum
};
2139 return MinDFS
.first
;
2142 // This function returns the MemoryAccess that should be the next leader of
2143 // congruence class CC, under the assumption that the current leader is going to
2145 const MemoryAccess
*NewGVN::getNextMemoryLeader(CongruenceClass
*CC
) const {
2146 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2147 // do for regular leaders.
2148 // Make sure there will be a leader to find.
2149 assert(!CC
->definesNoMemory() && "Can't get next leader if there is none");
2150 if (CC
->getStoreCount() > 0) {
2151 if (auto *NL
= dyn_cast_or_null
<StoreInst
>(CC
->getNextLeader().first
))
2152 return getMemoryAccess(NL
);
2153 // Find the store with the minimum DFS number.
2154 auto *V
= getMinDFSOfRange
<Value
>(make_filter_range(
2155 *CC
, [&](const Value
*V
) { return isa
<StoreInst
>(V
); }));
2156 return getMemoryAccess(cast
<StoreInst
>(V
));
2158 assert(CC
->getStoreCount() == 0);
2160 // Given our assertion, hitting this part must mean
2161 // !OldClass->memory_empty()
2162 if (CC
->memory_size() == 1)
2163 return *CC
->memory_begin();
2164 return getMinDFSOfRange
<const MemoryPhi
>(CC
->memory());
2167 // This function returns the next value leader of a congruence class, under the
2168 // assumption that the current leader is going away. This should end up being
2169 // the next most dominating member.
2170 Value
*NewGVN::getNextValueLeader(CongruenceClass
*CC
) const {
2171 // We don't need to sort members if there is only 1, and we don't care about
2172 // sorting the TOP class because everything either gets out of it or is
2175 if (CC
->size() == 1 || CC
== TOPClass
) {
2176 return *(CC
->begin());
2177 } else if (CC
->getNextLeader().first
) {
2178 ++NumGVNAvoidedSortedLeaderChanges
;
2179 return CC
->getNextLeader().first
;
2181 ++NumGVNSortedLeaderChanges
;
2182 // NOTE: If this ends up to slow, we can maintain a dual structure for
2183 // member testing/insertion, or keep things mostly sorted, and sort only
2184 // here, or use SparseBitVector or ....
2185 return getMinDFSOfRange
<Value
>(*CC
);
2189 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2190 // the memory members, etc for the move.
2192 // The invariants of this function are:
2194 // - I must be moving to NewClass from OldClass
2195 // - The StoreCount of OldClass and NewClass is expected to have been updated
2196 // for I already if it is a store.
2197 // - The OldClass memory leader has not been updated yet if I was the leader.
2198 void NewGVN::moveMemoryToNewCongruenceClass(Instruction
*I
,
2199 MemoryAccess
*InstMA
,
2200 CongruenceClass
*OldClass
,
2201 CongruenceClass
*NewClass
) {
2202 // If the leader is I, and we had a representative MemoryAccess, it should
2203 // be the MemoryAccess of OldClass.
2204 assert((!InstMA
|| !OldClass
->getMemoryLeader() ||
2205 OldClass
->getLeader() != I
||
2206 MemoryAccessToClass
.lookup(OldClass
->getMemoryLeader()) ==
2207 MemoryAccessToClass
.lookup(InstMA
)) &&
2208 "Representative MemoryAccess mismatch");
2209 // First, see what happens to the new class
2210 if (!NewClass
->getMemoryLeader()) {
2211 // Should be a new class, or a store becoming a leader of a new class.
2212 assert(NewClass
->size() == 1 ||
2213 (isa
<StoreInst
>(I
) && NewClass
->getStoreCount() == 1));
2214 NewClass
->setMemoryLeader(InstMA
);
2215 // Mark it touched if we didn't just create a singleton
2216 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2217 << NewClass
->getID()
2218 << " due to new memory instruction becoming leader\n");
2219 markMemoryLeaderChangeTouched(NewClass
);
2221 setMemoryClass(InstMA
, NewClass
);
2222 // Now, fixup the old class if necessary
2223 if (OldClass
->getMemoryLeader() == InstMA
) {
2224 if (!OldClass
->definesNoMemory()) {
2225 OldClass
->setMemoryLeader(getNextMemoryLeader(OldClass
));
2226 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2227 << OldClass
->getID() << " to "
2228 << *OldClass
->getMemoryLeader()
2229 << " due to removal of old leader " << *InstMA
<< "\n");
2230 markMemoryLeaderChangeTouched(OldClass
);
2232 OldClass
->setMemoryLeader(nullptr);
2236 // Move a value, currently in OldClass, to be part of NewClass
2237 // Update OldClass and NewClass for the move (including changing leaders, etc).
2238 void NewGVN::moveValueToNewCongruenceClass(Instruction
*I
, const Expression
*E
,
2239 CongruenceClass
*OldClass
,
2240 CongruenceClass
*NewClass
) {
2241 if (I
== OldClass
->getNextLeader().first
)
2242 OldClass
->resetNextLeader();
2245 NewClass
->insert(I
);
2247 if (NewClass
->getLeader() != I
)
2248 NewClass
->addPossibleNextLeader({I
, InstrToDFSNum(I
)});
2249 // Handle our special casing of stores.
2250 if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
2251 OldClass
->decStoreCount();
2252 // Okay, so when do we want to make a store a leader of a class?
2253 // If we have a store defined by an earlier load, we want the earlier load
2254 // to lead the class.
2255 // If we have a store defined by something else, we want the store to lead
2256 // the class so everything else gets the "something else" as a value.
2257 // If we have a store as the single member of the class, we want the store
2259 if (NewClass
->getStoreCount() == 0 && !NewClass
->getStoredValue()) {
2260 // If it's a store expression we are using, it means we are not equivalent
2261 // to something earlier.
2262 if (auto *SE
= dyn_cast
<StoreExpression
>(E
)) {
2263 NewClass
->setStoredValue(SE
->getStoredValue());
2264 markValueLeaderChangeTouched(NewClass
);
2265 // Shift the new class leader to be the store
2266 LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2267 << NewClass
->getID() << " from "
2268 << *NewClass
->getLeader() << " to " << *SI
2269 << " because store joined class\n");
2270 // If we changed the leader, we have to mark it changed because we don't
2271 // know what it will do to symbolic evaluation.
2272 NewClass
->setLeader(SI
);
2274 // We rely on the code below handling the MemoryAccess change.
2276 NewClass
->incStoreCount();
2278 // True if there is no memory instructions left in a class that had memory
2279 // instructions before.
2281 // If it's not a memory use, set the MemoryAccess equivalence
2282 auto *InstMA
= dyn_cast_or_null
<MemoryDef
>(getMemoryAccess(I
));
2284 moveMemoryToNewCongruenceClass(I
, InstMA
, OldClass
, NewClass
);
2285 ValueToClass
[I
] = NewClass
;
2286 // See if we destroyed the class or need to swap leaders.
2287 if (OldClass
->empty() && OldClass
!= TOPClass
) {
2288 if (OldClass
->getDefiningExpr()) {
2289 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass
->getDefiningExpr()
2290 << " from table\n");
2291 // We erase it as an exact expression to make sure we don't just erase an
2293 auto Iter
= ExpressionToClass
.find_as(
2294 ExactEqualsExpression(*OldClass
->getDefiningExpr()));
2295 if (Iter
!= ExpressionToClass
.end())
2296 ExpressionToClass
.erase(Iter
);
2297 #ifdef EXPENSIVE_CHECKS
2299 (*OldClass
->getDefiningExpr() != *E
|| ExpressionToClass
.lookup(E
)) &&
2300 "We erased the expression we just inserted, which should not happen");
2303 } else if (OldClass
->getLeader() == I
) {
2304 // When the leader changes, the value numbering of
2305 // everything may change due to symbolization changes, so we need to
2307 LLVM_DEBUG(dbgs() << "Value class leader change for class "
2308 << OldClass
->getID() << "\n");
2309 ++NumGVNLeaderChanges
;
2310 // Destroy the stored value if there are no more stores to represent it.
2311 // Note that this is basically clean up for the expression removal that
2312 // happens below. If we remove stores from a class, we may leave it as a
2313 // class of equivalent memory phis.
2314 if (OldClass
->getStoreCount() == 0) {
2315 if (OldClass
->getStoredValue())
2316 OldClass
->setStoredValue(nullptr);
2318 OldClass
->setLeader(getNextValueLeader(OldClass
));
2319 OldClass
->resetNextLeader();
2320 markValueLeaderChangeTouched(OldClass
);
2324 // For a given expression, mark the phi of ops instructions that could have
2325 // changed as a result.
2326 void NewGVN::markPhiOfOpsChanged(const Expression
*E
) {
2327 touchAndErase(ExpressionToPhiOfOps
, E
);
2330 // Perform congruence finding on a given value numbering expression.
2331 void NewGVN::performCongruenceFinding(Instruction
*I
, const Expression
*E
) {
2332 // This is guaranteed to return something, since it will at least find
2335 CongruenceClass
*IClass
= ValueToClass
.lookup(I
);
2336 assert(IClass
&& "Should have found a IClass");
2337 // Dead classes should have been eliminated from the mapping.
2338 assert(!IClass
->isDead() && "Found a dead class");
2340 CongruenceClass
*EClass
= nullptr;
2341 if (const auto *VE
= dyn_cast
<VariableExpression
>(E
)) {
2342 EClass
= ValueToClass
.lookup(VE
->getVariableValue());
2343 } else if (isa
<DeadExpression
>(E
)) {
2347 auto lookupResult
= ExpressionToClass
.insert({E
, nullptr});
2349 // If it's not in the value table, create a new congruence class.
2350 if (lookupResult
.second
) {
2351 CongruenceClass
*NewClass
= createCongruenceClass(nullptr, E
);
2352 auto place
= lookupResult
.first
;
2353 place
->second
= NewClass
;
2355 // Constants and variables should always be made the leader.
2356 if (const auto *CE
= dyn_cast
<ConstantExpression
>(E
)) {
2357 NewClass
->setLeader(CE
->getConstantValue());
2358 } else if (const auto *SE
= dyn_cast
<StoreExpression
>(E
)) {
2359 StoreInst
*SI
= SE
->getStoreInst();
2360 NewClass
->setLeader(SI
);
2361 NewClass
->setStoredValue(SE
->getStoredValue());
2362 // The RepMemoryAccess field will be filled in properly by the
2363 // moveValueToNewCongruenceClass call.
2365 NewClass
->setLeader(I
);
2367 assert(!isa
<VariableExpression
>(E
) &&
2368 "VariableExpression should have been handled already");
2371 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2372 << " using expression " << *E
<< " at "
2373 << NewClass
->getID() << " and leader "
2374 << *(NewClass
->getLeader()));
2375 if (NewClass
->getStoredValue())
2376 LLVM_DEBUG(dbgs() << " and stored value "
2377 << *(NewClass
->getStoredValue()));
2378 LLVM_DEBUG(dbgs() << "\n");
2380 EClass
= lookupResult
.first
->second
;
2381 if (isa
<ConstantExpression
>(E
))
2382 assert((isa
<Constant
>(EClass
->getLeader()) ||
2383 (EClass
->getStoredValue() &&
2384 isa
<Constant
>(EClass
->getStoredValue()))) &&
2385 "Any class with a constant expression should have a "
2388 assert(EClass
&& "Somehow don't have an eclass");
2390 assert(!EClass
->isDead() && "We accidentally looked up a dead class");
2393 bool ClassChanged
= IClass
!= EClass
;
2394 bool LeaderChanged
= LeaderChanges
.erase(I
);
2395 if (ClassChanged
|| LeaderChanged
) {
2396 LLVM_DEBUG(dbgs() << "New class " << EClass
->getID() << " for expression "
2399 moveValueToNewCongruenceClass(I
, E
, IClass
, EClass
);
2400 markPhiOfOpsChanged(E
);
2403 markUsersTouched(I
);
2404 if (MemoryAccess
*MA
= getMemoryAccess(I
))
2405 markMemoryUsersTouched(MA
);
2406 if (auto *CI
= dyn_cast
<CmpInst
>(I
))
2407 markPredicateUsersTouched(CI
);
2409 // If we changed the class of the store, we want to ensure nothing finds the
2410 // old store expression. In particular, loads do not compare against stored
2411 // value, so they will find old store expressions (and associated class
2412 // mappings) if we leave them in the table.
2413 if (ClassChanged
&& isa
<StoreInst
>(I
)) {
2414 auto *OldE
= ValueToExpression
.lookup(I
);
2415 // It could just be that the old class died. We don't want to erase it if we
2416 // just moved classes.
2417 if (OldE
&& isa
<StoreExpression
>(OldE
) && *E
!= *OldE
) {
2418 // Erase this as an exact expression to ensure we don't erase expressions
2419 // equivalent to it.
2420 auto Iter
= ExpressionToClass
.find_as(ExactEqualsExpression(*OldE
));
2421 if (Iter
!= ExpressionToClass
.end())
2422 ExpressionToClass
.erase(Iter
);
2425 ValueToExpression
[I
] = E
;
2428 // Process the fact that Edge (from, to) is reachable, including marking
2429 // any newly reachable blocks and instructions for processing.
2430 void NewGVN::updateReachableEdge(BasicBlock
*From
, BasicBlock
*To
) {
2431 // Check if the Edge was reachable before.
2432 if (ReachableEdges
.insert({From
, To
}).second
) {
2433 // If this block wasn't reachable before, all instructions are touched.
2434 if (ReachableBlocks
.insert(To
).second
) {
2435 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To
)
2436 << " marked reachable\n");
2437 const auto &InstRange
= BlockInstRange
.lookup(To
);
2438 TouchedInstructions
.set(InstRange
.first
, InstRange
.second
);
2440 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To
)
2441 << " was reachable, but new edge {"
2442 << getBlockName(From
) << "," << getBlockName(To
)
2443 << "} to it found\n");
2445 // We've made an edge reachable to an existing block, which may
2446 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2447 // they are the only thing that depend on new edges. Anything using their
2448 // values will get propagated to if necessary.
2449 if (MemoryAccess
*MemPhi
= getMemoryAccess(To
))
2450 TouchedInstructions
.set(InstrToDFSNum(MemPhi
));
2452 // FIXME: We should just add a union op on a Bitvector and
2453 // SparseBitVector. We can do it word by word faster than we are doing it
2455 for (auto InstNum
: RevisitOnReachabilityChange
[To
])
2456 TouchedInstructions
.set(InstNum
);
2461 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2462 // see if we know some constant value for it already.
2463 Value
*NewGVN::findConditionEquivalence(Value
*Cond
) const {
2464 auto Result
= lookupOperandLeader(Cond
);
2465 return isa
<Constant
>(Result
) ? Result
: nullptr;
2468 // Process the outgoing edges of a block for reachability.
2469 void NewGVN::processOutgoingEdges(Instruction
*TI
, BasicBlock
*B
) {
2470 // Evaluate reachability of terminator instruction.
2472 BasicBlock
*TrueSucc
, *FalseSucc
;
2473 if (match(TI
, m_Br(m_Value(Cond
), TrueSucc
, FalseSucc
))) {
2474 Value
*CondEvaluated
= findConditionEquivalence(Cond
);
2475 if (!CondEvaluated
) {
2476 if (auto *I
= dyn_cast
<Instruction
>(Cond
)) {
2477 SmallPtrSet
<Value
*, 4> Visited
;
2478 auto Res
= performSymbolicEvaluation(I
, Visited
);
2479 if (const auto *CE
= dyn_cast_or_null
<ConstantExpression
>(Res
.Expr
)) {
2480 CondEvaluated
= CE
->getConstantValue();
2481 addAdditionalUsers(Res
, I
);
2483 // Did not use simplification result, no need to add the extra
2485 Res
.ExtraDep
= nullptr;
2487 } else if (isa
<ConstantInt
>(Cond
)) {
2488 CondEvaluated
= Cond
;
2492 if (CondEvaluated
&& (CI
= dyn_cast
<ConstantInt
>(CondEvaluated
))) {
2494 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2495 << " evaluated to true\n");
2496 updateReachableEdge(B
, TrueSucc
);
2497 } else if (CI
->isZero()) {
2498 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2499 << " evaluated to false\n");
2500 updateReachableEdge(B
, FalseSucc
);
2503 updateReachableEdge(B
, TrueSucc
);
2504 updateReachableEdge(B
, FalseSucc
);
2506 } else if (auto *SI
= dyn_cast
<SwitchInst
>(TI
)) {
2507 // For switches, propagate the case values into the case
2510 Value
*SwitchCond
= SI
->getCondition();
2511 Value
*CondEvaluated
= findConditionEquivalence(SwitchCond
);
2512 // See if we were able to turn this switch statement into a constant.
2513 if (CondEvaluated
&& isa
<ConstantInt
>(CondEvaluated
)) {
2514 auto *CondVal
= cast
<ConstantInt
>(CondEvaluated
);
2515 // We should be able to get case value for this.
2516 auto Case
= *SI
->findCaseValue(CondVal
);
2517 if (Case
.getCaseSuccessor() == SI
->getDefaultDest()) {
2518 // We proved the value is outside of the range of the case.
2519 // We can't do anything other than mark the default dest as reachable,
2521 updateReachableEdge(B
, SI
->getDefaultDest());
2524 // Now get where it goes and mark it reachable.
2525 BasicBlock
*TargetBlock
= Case
.getCaseSuccessor();
2526 updateReachableEdge(B
, TargetBlock
);
2528 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
!= e
; ++i
) {
2529 BasicBlock
*TargetBlock
= SI
->getSuccessor(i
);
2530 updateReachableEdge(B
, TargetBlock
);
2534 // Otherwise this is either unconditional, or a type we have no
2535 // idea about. Just mark successors as reachable.
2536 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
2537 BasicBlock
*TargetBlock
= TI
->getSuccessor(i
);
2538 updateReachableEdge(B
, TargetBlock
);
2541 // This also may be a memory defining terminator, in which case, set it
2542 // equivalent only to itself.
2544 auto *MA
= getMemoryAccess(TI
);
2545 if (MA
&& !isa
<MemoryUse
>(MA
)) {
2546 auto *CC
= ensureLeaderOfMemoryClass(MA
);
2547 if (setMemoryClass(MA
, CC
))
2548 markMemoryUsersTouched(MA
);
2553 // Remove the PHI of Ops PHI for I
2554 void NewGVN::removePhiOfOps(Instruction
*I
, PHINode
*PHITemp
) {
2555 InstrDFS
.erase(PHITemp
);
2556 // It's still a temp instruction. We keep it in the array so it gets erased.
2557 // However, it's no longer used by I, or in the block
2558 TempToBlock
.erase(PHITemp
);
2559 RealToTemp
.erase(I
);
2560 // We don't remove the users from the phi node uses. This wastes a little
2561 // time, but such is life. We could use two sets to track which were there
2562 // are the start of NewGVN, and which were added, but right nowt he cost of
2563 // tracking is more than the cost of checking for more phi of ops.
2566 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2567 void NewGVN::addPhiOfOps(PHINode
*Op
, BasicBlock
*BB
,
2568 Instruction
*ExistingValue
) {
2569 InstrDFS
[Op
] = InstrToDFSNum(ExistingValue
);
2570 AllTempInstructions
.insert(Op
);
2571 TempToBlock
[Op
] = BB
;
2572 RealToTemp
[ExistingValue
] = Op
;
2573 // Add all users to phi node use, as they are now uses of the phi of ops phis
2574 // and may themselves be phi of ops.
2575 for (auto *U
: ExistingValue
->users())
2576 if (auto *UI
= dyn_cast
<Instruction
>(U
))
2577 PHINodeUses
.insert(UI
);
2580 static bool okayForPHIOfOps(const Instruction
*I
) {
2581 if (!EnablePhiOfOps
)
2583 return isa
<BinaryOperator
>(I
) || isa
<SelectInst
>(I
) || isa
<CmpInst
>(I
) ||
2587 // Return true if this operand will be safe to use for phi of ops.
2589 // The reason some operands are unsafe is that we are not trying to recursively
2590 // translate everything back through phi nodes. We actually expect some lookups
2591 // of expressions to fail. In particular, a lookup where the expression cannot
2592 // exist in the predecessor. This is true even if the expression, as shown, can
2593 // be determined to be constant.
2594 bool NewGVN::OpIsSafeForPHIOfOps(Value
*V
, const BasicBlock
*PHIBlock
,
2595 SmallPtrSetImpl
<const Value
*> &Visited
) {
2596 SmallVector
<Value
*, 4> Worklist
;
2597 Worklist
.push_back(V
);
2598 while (!Worklist
.empty()) {
2599 auto *I
= Worklist
.pop_back_val();
2600 if (!isa
<Instruction
>(I
))
2603 auto OISIt
= OpSafeForPHIOfOps
.find(I
);
2604 if (OISIt
!= OpSafeForPHIOfOps
.end())
2605 return OISIt
->second
;
2607 // Keep walking until we either dominate the phi block, or hit a phi, or run
2608 // out of things to check.
2609 if (DT
->properlyDominates(getBlockForValue(I
), PHIBlock
)) {
2610 OpSafeForPHIOfOps
.insert({I
, true});
2613 // PHI in the same block.
2614 if (isa
<PHINode
>(I
) && getBlockForValue(I
) == PHIBlock
) {
2615 OpSafeForPHIOfOps
.insert({I
, false});
2619 auto *OrigI
= cast
<Instruction
>(I
);
2620 // When we hit an instruction that reads memory (load, call, etc), we must
2621 // consider any store that may happen in the loop. For now, we assume the
2622 // worst: there is a store in the loop that alias with this read.
2623 // The case where the load is outside the loop is already covered by the
2624 // dominator check above.
2625 // TODO: relax this condition
2626 if (OrigI
->mayReadFromMemory())
2629 // Check the operands of the current instruction.
2630 for (auto *Op
: OrigI
->operand_values()) {
2631 if (!isa
<Instruction
>(Op
))
2633 // Stop now if we find an unsafe operand.
2634 auto OISIt
= OpSafeForPHIOfOps
.find(OrigI
);
2635 if (OISIt
!= OpSafeForPHIOfOps
.end()) {
2636 if (!OISIt
->second
) {
2637 OpSafeForPHIOfOps
.insert({I
, false});
2642 if (!Visited
.insert(Op
).second
)
2644 Worklist
.push_back(cast
<Instruction
>(Op
));
2647 OpSafeForPHIOfOps
.insert({V
, true});
2651 // Try to find a leader for instruction TransInst, which is a phi translated
2652 // version of something in our original program. Visited is used to ensure we
2653 // don't infinite loop during translations of cycles. OrigInst is the
2654 // instruction in the original program, and PredBB is the predecessor we
2655 // translated it through.
2656 Value
*NewGVN::findLeaderForInst(Instruction
*TransInst
,
2657 SmallPtrSetImpl
<Value
*> &Visited
,
2658 MemoryAccess
*MemAccess
, Instruction
*OrigInst
,
2659 BasicBlock
*PredBB
) {
2660 unsigned IDFSNum
= InstrToDFSNum(OrigInst
);
2661 // Make sure it's marked as a temporary instruction.
2662 AllTempInstructions
.insert(TransInst
);
2663 // and make sure anything that tries to add it's DFS number is
2664 // redirected to the instruction we are making a phi of ops
2666 TempToBlock
.insert({TransInst
, PredBB
});
2667 InstrDFS
.insert({TransInst
, IDFSNum
});
2669 auto Res
= performSymbolicEvaluation(TransInst
, Visited
);
2670 const Expression
*E
= Res
.Expr
;
2671 addAdditionalUsers(Res
, OrigInst
);
2672 InstrDFS
.erase(TransInst
);
2673 AllTempInstructions
.erase(TransInst
);
2674 TempToBlock
.erase(TransInst
);
2676 TempToMemory
.erase(TransInst
);
2679 auto *FoundVal
= findPHIOfOpsLeader(E
, OrigInst
, PredBB
);
2681 ExpressionToPhiOfOps
[E
].insert(OrigInst
);
2682 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2683 << " in block " << getBlockName(PredBB
) << "\n");
2686 if (auto *SI
= dyn_cast
<StoreInst
>(FoundVal
))
2687 FoundVal
= SI
->getValueOperand();
2691 // When we see an instruction that is an op of phis, generate the equivalent phi
2694 NewGVN::makePossiblePHIOfOps(Instruction
*I
,
2695 SmallPtrSetImpl
<Value
*> &Visited
) {
2696 if (!okayForPHIOfOps(I
))
2699 if (!Visited
.insert(I
).second
)
2701 // For now, we require the instruction be cycle free because we don't
2702 // *always* create a phi of ops for instructions that could be done as phi
2703 // of ops, we only do it if we think it is useful. If we did do it all the
2704 // time, we could remove the cycle free check.
2705 if (!isCycleFree(I
))
2708 SmallPtrSet
<const Value
*, 8> ProcessedPHIs
;
2709 // TODO: We don't do phi translation on memory accesses because it's
2710 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2711 // which we don't have a good way of doing ATM.
2712 auto *MemAccess
= getMemoryAccess(I
);
2713 // If the memory operation is defined by a memory operation this block that
2714 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2715 // can't help, as it would still be killed by that memory operation.
2716 if (MemAccess
&& !isa
<MemoryPhi
>(MemAccess
->getDefiningAccess()) &&
2717 MemAccess
->getDefiningAccess()->getBlock() == I
->getParent())
2720 // Convert op of phis to phi of ops
2721 SmallPtrSet
<const Value
*, 10> VisitedOps
;
2722 SmallVector
<Value
*, 4> Ops(I
->operand_values());
2723 BasicBlock
*SamePHIBlock
= nullptr;
2724 PHINode
*OpPHI
= nullptr;
2725 if (!DebugCounter::shouldExecute(PHIOfOpsCounter
))
2727 for (auto *Op
: Ops
) {
2728 if (!isa
<PHINode
>(Op
)) {
2729 auto *ValuePHI
= RealToTemp
.lookup(Op
);
2732 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2735 OpPHI
= cast
<PHINode
>(Op
);
2736 if (!SamePHIBlock
) {
2737 SamePHIBlock
= getBlockForValue(OpPHI
);
2738 } else if (SamePHIBlock
!= getBlockForValue(OpPHI
)) {
2741 << "PHIs for operands are not all in the same block, aborting\n");
2744 // No point in doing this for one-operand phis.
2745 // Since all PHIs for operands must be in the same block, then they must
2746 // have the same number of operands so we can just abort.
2747 if (OpPHI
->getNumOperands() == 1)
2754 SmallVector
<ValPair
, 4> PHIOps
;
2755 SmallPtrSet
<Value
*, 4> Deps
;
2756 auto *PHIBlock
= getBlockForValue(OpPHI
);
2757 RevisitOnReachabilityChange
[PHIBlock
].reset(InstrToDFSNum(I
));
2758 for (unsigned PredNum
= 0; PredNum
< OpPHI
->getNumOperands(); ++PredNum
) {
2759 auto *PredBB
= OpPHI
->getIncomingBlock(PredNum
);
2760 Value
*FoundVal
= nullptr;
2761 SmallPtrSet
<Value
*, 4> CurrentDeps
;
2762 // We could just skip unreachable edges entirely but it's tricky to do
2763 // with rewriting existing phi nodes.
2764 if (ReachableEdges
.count({PredBB
, PHIBlock
})) {
2765 // Clone the instruction, create an expression from it that is
2766 // translated back into the predecessor, and see if we have a leader.
2767 Instruction
*ValueOp
= I
->clone();
2768 // Emit the temporal instruction in the predecessor basic block where the
2769 // corresponding value is defined.
2770 ValueOp
->insertBefore(PredBB
->getTerminator());
2772 TempToMemory
.insert({ValueOp
, MemAccess
});
2773 bool SafeForPHIOfOps
= true;
2775 for (auto &Op
: ValueOp
->operands()) {
2776 auto *OrigOp
= &*Op
;
2777 // When these operand changes, it could change whether there is a
2778 // leader for us or not, so we have to add additional users.
2779 if (isa
<PHINode
>(Op
)) {
2780 Op
= Op
->DoPHITranslation(PHIBlock
, PredBB
);
2781 if (Op
!= OrigOp
&& Op
!= I
)
2782 CurrentDeps
.insert(Op
);
2783 } else if (auto *ValuePHI
= RealToTemp
.lookup(Op
)) {
2784 if (getBlockForValue(ValuePHI
) == PHIBlock
)
2785 Op
= ValuePHI
->getIncomingValueForBlock(PredBB
);
2787 // If we phi-translated the op, it must be safe.
2790 (Op
!= OrigOp
|| OpIsSafeForPHIOfOps(Op
, PHIBlock
, VisitedOps
));
2792 // FIXME: For those things that are not safe we could generate
2793 // expressions all the way down, and see if this comes out to a
2794 // constant. For anything where that is true, and unsafe, we should
2795 // have made a phi-of-ops (or value numbered it equivalent to something)
2796 // for the pieces already.
2797 FoundVal
= !SafeForPHIOfOps
? nullptr
2798 : findLeaderForInst(ValueOp
, Visited
,
2799 MemAccess
, I
, PredBB
);
2800 ValueOp
->eraseFromParent();
2802 // We failed to find a leader for the current ValueOp, but this might
2803 // change in case of the translated operands change.
2804 if (SafeForPHIOfOps
)
2805 for (auto *Dep
: CurrentDeps
)
2806 addAdditionalUsers(Dep
, I
);
2810 Deps
.insert(CurrentDeps
.begin(), CurrentDeps
.end());
2812 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2813 << getBlockName(PredBB
)
2814 << " because the block is unreachable\n");
2815 FoundVal
= PoisonValue::get(I
->getType());
2816 RevisitOnReachabilityChange
[PHIBlock
].set(InstrToDFSNum(I
));
2819 PHIOps
.push_back({FoundVal
, PredBB
});
2820 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal
<< " in "
2821 << getBlockName(PredBB
) << "\n");
2823 for (auto *Dep
: Deps
)
2824 addAdditionalUsers(Dep
, I
);
2826 auto *E
= performSymbolicPHIEvaluation(PHIOps
, I
, PHIBlock
);
2827 if (isa
<ConstantExpression
>(E
) || isa
<VariableExpression
>(E
)) {
2830 << "Not creating real PHI of ops because it simplified to existing "
2831 "value or constant\n");
2832 // We have leaders for all operands, but do not create a real PHI node with
2833 // those leaders as operands, so the link between the operands and the
2834 // PHI-of-ops is not materialized in the IR. If any of those leaders
2835 // changes, the PHI-of-op may change also, so we need to add the operands as
2836 // additional users.
2837 for (auto &O
: PHIOps
)
2838 addAdditionalUsers(O
.first
, I
);
2842 auto *ValuePHI
= RealToTemp
.lookup(I
);
2843 bool NewPHI
= false;
2846 PHINode::Create(I
->getType(), OpPHI
->getNumOperands(), "phiofops");
2847 addPhiOfOps(ValuePHI
, PHIBlock
, I
);
2849 NumGVNPHIOfOpsCreated
++;
2852 for (auto PHIOp
: PHIOps
)
2853 ValuePHI
->addIncoming(PHIOp
.first
, PHIOp
.second
);
2855 TempToBlock
[ValuePHI
] = PHIBlock
;
2857 for (auto PHIOp
: PHIOps
) {
2858 ValuePHI
->setIncomingValue(i
, PHIOp
.first
);
2859 ValuePHI
->setIncomingBlock(i
, PHIOp
.second
);
2863 RevisitOnReachabilityChange
[PHIBlock
].set(InstrToDFSNum(I
));
2864 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI
<< " for " << *I
2870 // The algorithm initially places the values of the routine in the TOP
2871 // congruence class. The leader of TOP is the undetermined value `poison`.
2872 // When the algorithm has finished, values still in TOP are unreachable.
2873 void NewGVN::initializeCongruenceClasses(Function
&F
) {
2874 NextCongruenceNum
= 0;
2876 // Note that even though we use the live on entry def as a representative
2877 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2878 // have no real equivalent to poison for MemoryAccesses, and so we really
2879 // should be checking whether the MemoryAccess is top if we want to know if it
2880 // is equivalent to everything. Otherwise, what this really signifies is that
2881 // the access "it reaches all the way back to the beginning of the function"
2883 // Initialize all other instructions to be in TOP class.
2884 TOPClass
= createCongruenceClass(nullptr, nullptr);
2885 TOPClass
->setMemoryLeader(MSSA
->getLiveOnEntryDef());
2886 // The live on entry def gets put into it's own class
2887 MemoryAccessToClass
[MSSA
->getLiveOnEntryDef()] =
2888 createMemoryClass(MSSA
->getLiveOnEntryDef());
2890 for (auto *DTN
: nodes(DT
)) {
2891 BasicBlock
*BB
= DTN
->getBlock();
2892 // All MemoryAccesses are equivalent to live on entry to start. They must
2893 // be initialized to something so that initial changes are noticed. For
2894 // the maximal answer, we initialize them all to be the same as
2896 auto *MemoryBlockDefs
= MSSA
->getBlockDefs(BB
);
2897 if (MemoryBlockDefs
)
2898 for (const auto &Def
: *MemoryBlockDefs
) {
2899 MemoryAccessToClass
[&Def
] = TOPClass
;
2900 auto *MD
= dyn_cast
<MemoryDef
>(&Def
);
2901 // Insert the memory phis into the member list.
2903 const MemoryPhi
*MP
= cast
<MemoryPhi
>(&Def
);
2904 TOPClass
->memory_insert(MP
);
2905 MemoryPhiState
.insert({MP
, MPS_TOP
});
2908 if (MD
&& isa
<StoreInst
>(MD
->getMemoryInst()))
2909 TOPClass
->incStoreCount();
2912 // FIXME: This is trying to discover which instructions are uses of phi
2913 // nodes. We should move this into one of the myriad of places that walk
2914 // all the operands already.
2915 for (auto &I
: *BB
) {
2916 if (isa
<PHINode
>(&I
))
2917 for (auto *U
: I
.users())
2918 if (auto *UInst
= dyn_cast
<Instruction
>(U
))
2919 if (InstrToDFSNum(UInst
) != 0 && okayForPHIOfOps(UInst
))
2920 PHINodeUses
.insert(UInst
);
2921 // Don't insert void terminators into the class. We don't value number
2922 // them, and they just end up sitting in TOP.
2923 if (I
.isTerminator() && I
.getType()->isVoidTy())
2925 TOPClass
->insert(&I
);
2926 ValueToClass
[&I
] = TOPClass
;
2930 // Initialize arguments to be in their own unique congruence classes
2931 for (auto &FA
: F
.args())
2932 createSingletonCongruenceClass(&FA
);
2935 void NewGVN::cleanupTables() {
2936 for (CongruenceClass
*&CC
: CongruenceClasses
) {
2937 LLVM_DEBUG(dbgs() << "Congruence class " << CC
->getID() << " has "
2938 << CC
->size() << " members\n");
2939 // Make sure we delete the congruence class (probably worth switching to
2940 // a unique_ptr at some point.
2945 // Destroy the value expressions
2946 SmallVector
<Instruction
*, 8> TempInst(AllTempInstructions
.begin(),
2947 AllTempInstructions
.end());
2948 AllTempInstructions
.clear();
2950 // We have to drop all references for everything first, so there are no uses
2951 // left as we delete them.
2952 for (auto *I
: TempInst
) {
2953 I
->dropAllReferences();
2956 while (!TempInst
.empty()) {
2957 auto *I
= TempInst
.pop_back_val();
2961 ValueToClass
.clear();
2962 ArgRecycler
.clear(ExpressionAllocator
);
2963 ExpressionAllocator
.Reset();
2964 CongruenceClasses
.clear();
2965 ExpressionToClass
.clear();
2966 ValueToExpression
.clear();
2968 AdditionalUsers
.clear();
2969 ExpressionToPhiOfOps
.clear();
2970 TempToBlock
.clear();
2971 TempToMemory
.clear();
2972 PHINodeUses
.clear();
2973 OpSafeForPHIOfOps
.clear();
2974 ReachableBlocks
.clear();
2975 ReachableEdges
.clear();
2977 ProcessedCount
.clear();
2980 InstructionsToErase
.clear();
2982 BlockInstRange
.clear();
2983 TouchedInstructions
.clear();
2984 MemoryAccessToClass
.clear();
2985 PredicateToUsers
.clear();
2986 MemoryToUsers
.clear();
2987 RevisitOnReachabilityChange
.clear();
2988 IntrinsicInstPred
.clear();
2991 // Assign local DFS number mapping to instructions, and leave space for Value
2993 std::pair
<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock
*B
,
2995 unsigned End
= Start
;
2996 if (MemoryAccess
*MemPhi
= getMemoryAccess(B
)) {
2997 InstrDFS
[MemPhi
] = End
++;
2998 DFSToInstr
.emplace_back(MemPhi
);
3001 // Then the real block goes next.
3002 for (auto &I
: *B
) {
3003 // There's no need to call isInstructionTriviallyDead more than once on
3004 // an instruction. Therefore, once we know that an instruction is dead
3005 // we change its DFS number so that it doesn't get value numbered.
3006 if (isInstructionTriviallyDead(&I
, TLI
)) {
3008 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I
<< "\n");
3009 markInstructionForDeletion(&I
);
3012 if (isa
<PHINode
>(&I
))
3013 RevisitOnReachabilityChange
[B
].set(End
);
3014 InstrDFS
[&I
] = End
++;
3015 DFSToInstr
.emplace_back(&I
);
3018 // All of the range functions taken half-open ranges (open on the end side).
3019 // So we do not subtract one from count, because at this point it is one
3020 // greater than the last instruction.
3021 return std::make_pair(Start
, End
);
3024 void NewGVN::updateProcessedCount(const Value
*V
) {
3026 if (ProcessedCount
.count(V
) == 0) {
3027 ProcessedCount
.insert({V
, 1});
3029 ++ProcessedCount
[V
];
3030 assert(ProcessedCount
[V
] < 100 &&
3031 "Seem to have processed the same Value a lot");
3036 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3037 void NewGVN::valueNumberMemoryPhi(MemoryPhi
*MP
) {
3038 // If all the arguments are the same, the MemoryPhi has the same value as the
3039 // argument. Filter out unreachable blocks and self phis from our operands.
3040 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3041 // self-phi checking.
3042 const BasicBlock
*PHIBlock
= MP
->getBlock();
3043 auto Filtered
= make_filter_range(MP
->operands(), [&](const Use
&U
) {
3044 return cast
<MemoryAccess
>(U
) != MP
&&
3045 !isMemoryAccessTOP(cast
<MemoryAccess
>(U
)) &&
3046 ReachableEdges
.count({MP
->getIncomingBlock(U
), PHIBlock
});
3048 // If all that is left is nothing, our memoryphi is poison. We keep it as
3049 // InitialClass. Note: The only case this should happen is if we have at
3050 // least one self-argument.
3051 if (Filtered
.begin() == Filtered
.end()) {
3052 if (setMemoryClass(MP
, TOPClass
))
3053 markMemoryUsersTouched(MP
);
3057 // Transform the remaining operands into operand leaders.
3058 // FIXME: mapped_iterator should have a range version.
3059 auto LookupFunc
= [&](const Use
&U
) {
3060 return lookupMemoryLeader(cast
<MemoryAccess
>(U
));
3062 auto MappedBegin
= map_iterator(Filtered
.begin(), LookupFunc
);
3063 auto MappedEnd
= map_iterator(Filtered
.end(), LookupFunc
);
3065 // and now check if all the elements are equal.
3066 // Sadly, we can't use std::equals since these are random access iterators.
3067 const auto *AllSameValue
= *MappedBegin
;
3069 bool AllEqual
= std::all_of(
3070 MappedBegin
, MappedEnd
,
3071 [&AllSameValue
](const MemoryAccess
*V
) { return V
== AllSameValue
; });
3074 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3077 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3078 // If it's equal to something, it's in that class. Otherwise, it has to be in
3079 // a class where it is the leader (other things may be equivalent to it, but
3080 // it needs to start off in its own class, which means it must have been the
3081 // leader, and it can't have stopped being the leader because it was never
3083 CongruenceClass
*CC
=
3084 AllEqual
? getMemoryClass(AllSameValue
) : ensureLeaderOfMemoryClass(MP
);
3085 auto OldState
= MemoryPhiState
.lookup(MP
);
3086 assert(OldState
!= MPS_Invalid
&& "Invalid memory phi state");
3087 auto NewState
= AllEqual
? MPS_Equivalent
: MPS_Unique
;
3088 MemoryPhiState
[MP
] = NewState
;
3089 if (setMemoryClass(MP
, CC
) || OldState
!= NewState
)
3090 markMemoryUsersTouched(MP
);
3093 // Value number a single instruction, symbolically evaluating, performing
3094 // congruence finding, and updating mappings.
3095 void NewGVN::valueNumberInstruction(Instruction
*I
) {
3096 LLVM_DEBUG(dbgs() << "Processing instruction " << *I
<< "\n");
3097 if (!I
->isTerminator()) {
3098 const Expression
*Symbolized
= nullptr;
3099 SmallPtrSet
<Value
*, 2> Visited
;
3100 if (DebugCounter::shouldExecute(VNCounter
)) {
3101 auto Res
= performSymbolicEvaluation(I
, Visited
);
3102 Symbolized
= Res
.Expr
;
3103 addAdditionalUsers(Res
, I
);
3105 // Make a phi of ops if necessary
3106 if (Symbolized
&& !isa
<ConstantExpression
>(Symbolized
) &&
3107 !isa
<VariableExpression
>(Symbolized
) && PHINodeUses
.count(I
)) {
3108 auto *PHIE
= makePossiblePHIOfOps(I
, Visited
);
3109 // If we created a phi of ops, use it.
3110 // If we couldn't create one, make sure we don't leave one lying around
3113 } else if (auto *Op
= RealToTemp
.lookup(I
)) {
3114 removePhiOfOps(I
, Op
);
3118 // Mark the instruction as unused so we don't value number it again.
3121 // If we couldn't come up with a symbolic expression, use the unknown
3123 if (Symbolized
== nullptr)
3124 Symbolized
= createUnknownExpression(I
);
3125 performCongruenceFinding(I
, Symbolized
);
3127 // Handle terminators that return values. All of them produce values we
3128 // don't currently understand. We don't place non-value producing
3129 // terminators in a class.
3130 if (!I
->getType()->isVoidTy()) {
3131 auto *Symbolized
= createUnknownExpression(I
);
3132 performCongruenceFinding(I
, Symbolized
);
3134 processOutgoingEdges(I
, I
->getParent());
3138 // Check if there is a path, using single or equal argument phi nodes, from
3140 bool NewGVN::singleReachablePHIPath(
3141 SmallPtrSet
<const MemoryAccess
*, 8> &Visited
, const MemoryAccess
*First
,
3142 const MemoryAccess
*Second
) const {
3143 if (First
== Second
)
3145 if (MSSA
->isLiveOnEntryDef(First
))
3148 // This is not perfect, but as we're just verifying here, we can live with
3149 // the loss of precision. The real solution would be that of doing strongly
3150 // connected component finding in this routine, and it's probably not worth
3151 // the complexity for the time being. So, we just keep a set of visited
3152 // MemoryAccess and return true when we hit a cycle.
3153 if (!Visited
.insert(First
).second
)
3156 const auto *EndDef
= First
;
3157 for (const auto *ChainDef
: optimized_def_chain(First
)) {
3158 if (ChainDef
== Second
)
3160 if (MSSA
->isLiveOnEntryDef(ChainDef
))
3164 auto *MP
= cast
<MemoryPhi
>(EndDef
);
3165 auto ReachableOperandPred
= [&](const Use
&U
) {
3166 return ReachableEdges
.count({MP
->getIncomingBlock(U
), MP
->getBlock()});
3168 auto FilteredPhiArgs
=
3169 make_filter_range(MP
->operands(), ReachableOperandPred
);
3170 SmallVector
<const Value
*, 32> OperandList
;
3171 llvm::copy(FilteredPhiArgs
, std::back_inserter(OperandList
));
3172 bool Okay
= all_equal(OperandList
);
3174 return singleReachablePHIPath(Visited
, cast
<MemoryAccess
>(OperandList
[0]),
3179 // Verify the that the memory equivalence table makes sense relative to the
3180 // congruence classes. Note that this checking is not perfect, and is currently
3181 // subject to very rare false negatives. It is only useful for
3182 // testing/debugging.
3183 void NewGVN::verifyMemoryCongruency() const {
3185 // Verify that the memory table equivalence and memory member set match
3186 for (const auto *CC
: CongruenceClasses
) {
3187 if (CC
== TOPClass
|| CC
->isDead())
3189 if (CC
->getStoreCount() != 0) {
3190 assert((CC
->getStoredValue() || !isa
<StoreInst
>(CC
->getLeader())) &&
3191 "Any class with a store as a leader should have a "
3192 "representative stored value");
3193 assert(CC
->getMemoryLeader() &&
3194 "Any congruence class with a store should have a "
3195 "representative access");
3198 if (CC
->getMemoryLeader())
3199 assert(MemoryAccessToClass
.lookup(CC
->getMemoryLeader()) == CC
&&
3200 "Representative MemoryAccess does not appear to be reverse "
3202 for (const auto *M
: CC
->memory())
3203 assert(MemoryAccessToClass
.lookup(M
) == CC
&&
3204 "Memory member does not appear to be reverse mapped properly");
3207 // Anything equivalent in the MemoryAccess table should be in the same
3208 // congruence class.
3210 // Filter out the unreachable and trivially dead entries, because they may
3211 // never have been updated if the instructions were not processed.
3212 auto ReachableAccessPred
=
3213 [&](const std::pair
<const MemoryAccess
*, CongruenceClass
*> Pair
) {
3214 bool Result
= ReachableBlocks
.count(Pair
.first
->getBlock());
3215 if (!Result
|| MSSA
->isLiveOnEntryDef(Pair
.first
) ||
3216 MemoryToDFSNum(Pair
.first
) == 0)
3218 if (auto *MemDef
= dyn_cast
<MemoryDef
>(Pair
.first
))
3219 return !isInstructionTriviallyDead(MemDef
->getMemoryInst());
3221 // We could have phi nodes which operands are all trivially dead,
3222 // so we don't process them.
3223 if (auto *MemPHI
= dyn_cast
<MemoryPhi
>(Pair
.first
)) {
3224 for (const auto &U
: MemPHI
->incoming_values()) {
3225 if (auto *I
= dyn_cast
<Instruction
>(&*U
)) {
3226 if (!isInstructionTriviallyDead(I
))
3236 auto Filtered
= make_filter_range(MemoryAccessToClass
, ReachableAccessPred
);
3237 for (auto KV
: Filtered
) {
3238 if (auto *FirstMUD
= dyn_cast
<MemoryUseOrDef
>(KV
.first
)) {
3239 auto *SecondMUD
= dyn_cast
<MemoryUseOrDef
>(KV
.second
->getMemoryLeader());
3240 if (FirstMUD
&& SecondMUD
) {
3241 SmallPtrSet
<const MemoryAccess
*, 8> VisitedMAS
;
3242 assert((singleReachablePHIPath(VisitedMAS
, FirstMUD
, SecondMUD
) ||
3243 ValueToClass
.lookup(FirstMUD
->getMemoryInst()) ==
3244 ValueToClass
.lookup(SecondMUD
->getMemoryInst())) &&
3245 "The instructions for these memory operations should have "
3246 "been in the same congruence class or reachable through"
3247 "a single argument phi");
3249 } else if (auto *FirstMP
= dyn_cast
<MemoryPhi
>(KV
.first
)) {
3250 // We can only sanely verify that MemoryDefs in the operand list all have
3252 auto ReachableOperandPred
= [&](const Use
&U
) {
3253 return ReachableEdges
.count(
3254 {FirstMP
->getIncomingBlock(U
), FirstMP
->getBlock()}) &&
3258 // All arguments should in the same class, ignoring unreachable arguments
3259 auto FilteredPhiArgs
=
3260 make_filter_range(FirstMP
->operands(), ReachableOperandPred
);
3261 SmallVector
<const CongruenceClass
*, 16> PhiOpClasses
;
3262 std::transform(FilteredPhiArgs
.begin(), FilteredPhiArgs
.end(),
3263 std::back_inserter(PhiOpClasses
), [&](const Use
&U
) {
3264 const MemoryDef
*MD
= cast
<MemoryDef
>(U
);
3265 return ValueToClass
.lookup(MD
->getMemoryInst());
3267 assert(all_equal(PhiOpClasses
) &&
3268 "All MemoryPhi arguments should be in the same class");
3274 // Verify that the sparse propagation we did actually found the maximal fixpoint
3275 // We do this by storing the value to class mapping, touching all instructions,
3276 // and redoing the iteration to see if anything changed.
3277 void NewGVN::verifyIterationSettled(Function
&F
) {
3279 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3280 if (DebugCounter::isCounterSet(VNCounter
))
3281 DebugCounter::setCounterValue(VNCounter
, StartingVNCounter
);
3283 // Note that we have to store the actual classes, as we may change existing
3284 // classes during iteration. This is because our memory iteration propagation
3285 // is not perfect, and so may waste a little work. But it should generate
3286 // exactly the same congruence classes we have now, with different IDs.
3287 std::map
<const Value
*, CongruenceClass
> BeforeIteration
;
3289 for (auto &KV
: ValueToClass
) {
3290 if (auto *I
= dyn_cast
<Instruction
>(KV
.first
))
3291 // Skip unused/dead instructions.
3292 if (InstrToDFSNum(I
) == 0)
3294 BeforeIteration
.insert({KV
.first
, *KV
.second
});
3297 TouchedInstructions
.set();
3298 TouchedInstructions
.reset(0);
3299 OpSafeForPHIOfOps
.clear();
3300 iterateTouchedInstructions();
3301 DenseSet
<std::pair
<const CongruenceClass
*, const CongruenceClass
*>>
3303 for (const auto &KV
: ValueToClass
) {
3304 if (auto *I
= dyn_cast
<Instruction
>(KV
.first
))
3305 // Skip unused/dead instructions.
3306 if (InstrToDFSNum(I
) == 0)
3308 // We could sink these uses, but i think this adds a bit of clarity here as
3309 // to what we are comparing.
3310 auto *BeforeCC
= &BeforeIteration
.find(KV
.first
)->second
;
3311 auto *AfterCC
= KV
.second
;
3312 // Note that the classes can't change at this point, so we memoize the set
3314 if (!EqualClasses
.count({BeforeCC
, AfterCC
})) {
3315 assert(BeforeCC
->isEquivalentTo(AfterCC
) &&
3316 "Value number changed after main loop completed!");
3317 EqualClasses
.insert({BeforeCC
, AfterCC
});
3323 // Verify that for each store expression in the expression to class mapping,
3324 // only the latest appears, and multiple ones do not appear.
3325 // Because loads do not use the stored value when doing equality with stores,
3326 // if we don't erase the old store expressions from the table, a load can find
3327 // a no-longer valid StoreExpression.
3328 void NewGVN::verifyStoreExpressions() const {
3330 // This is the only use of this, and it's not worth defining a complicated
3331 // densemapinfo hash/equality function for it.
3333 std::pair
<const Value
*,
3334 std::tuple
<const Value
*, const CongruenceClass
*, Value
*>>>
3336 for (const auto &KV
: ExpressionToClass
) {
3337 if (auto *SE
= dyn_cast
<StoreExpression
>(KV
.first
)) {
3338 // Make sure a version that will conflict with loads is not already there
3339 auto Res
= StoreExpressionSet
.insert(
3340 {SE
->getOperand(0), std::make_tuple(SE
->getMemoryLeader(), KV
.second
,
3341 SE
->getStoredValue())});
3342 bool Okay
= Res
.second
;
3343 // It's okay to have the same expression already in there if it is
3344 // identical in nature.
3345 // This can happen when the leader of the stored value changes over time.
3347 Okay
= (std::get
<1>(Res
.first
->second
) == KV
.second
) &&
3348 (lookupOperandLeader(std::get
<2>(Res
.first
->second
)) ==
3349 lookupOperandLeader(SE
->getStoredValue()));
3350 assert(Okay
&& "Stored expression conflict exists in expression table");
3351 auto *ValueExpr
= ValueToExpression
.lookup(SE
->getStoreInst());
3352 assert(ValueExpr
&& ValueExpr
->equals(*SE
) &&
3353 "StoreExpression in ExpressionToClass is not latest "
3354 "StoreExpression for value");
3360 // This is the main value numbering loop, it iterates over the initial touched
3361 // instruction set, propagating value numbers, marking things touched, etc,
3362 // until the set of touched instructions is completely empty.
3363 void NewGVN::iterateTouchedInstructions() {
3364 uint64_t Iterations
= 0;
3365 // Figure out where touchedinstructions starts
3366 int FirstInstr
= TouchedInstructions
.find_first();
3367 // Nothing set, nothing to iterate, just return.
3368 if (FirstInstr
== -1)
3370 const BasicBlock
*LastBlock
= getBlockForValue(InstrFromDFSNum(FirstInstr
));
3371 while (TouchedInstructions
.any()) {
3373 // Walk through all the instructions in all the blocks in RPO.
3374 // TODO: As we hit a new block, we should push and pop equalities into a
3375 // table lookupOperandLeader can use, to catch things PredicateInfo
3376 // might miss, like edge-only equivalences.
3377 for (unsigned InstrNum
: TouchedInstructions
.set_bits()) {
3379 // This instruction was found to be dead. We don't bother looking
3381 if (InstrNum
== 0) {
3382 TouchedInstructions
.reset(InstrNum
);
3386 Value
*V
= InstrFromDFSNum(InstrNum
);
3387 const BasicBlock
*CurrBlock
= getBlockForValue(V
);
3389 // If we hit a new block, do reachability processing.
3390 if (CurrBlock
!= LastBlock
) {
3391 LastBlock
= CurrBlock
;
3392 bool BlockReachable
= ReachableBlocks
.count(CurrBlock
);
3393 const auto &CurrInstRange
= BlockInstRange
.lookup(CurrBlock
);
3395 // If it's not reachable, erase any touched instructions and move on.
3396 if (!BlockReachable
) {
3397 TouchedInstructions
.reset(CurrInstRange
.first
, CurrInstRange
.second
);
3398 LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3399 << getBlockName(CurrBlock
)
3400 << " because it is unreachable\n");
3403 updateProcessedCount(CurrBlock
);
3405 // Reset after processing (because we may mark ourselves as touched when
3406 // we propagate equalities).
3407 TouchedInstructions
.reset(InstrNum
);
3409 if (auto *MP
= dyn_cast
<MemoryPhi
>(V
)) {
3410 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP
<< "\n");
3411 valueNumberMemoryPhi(MP
);
3412 } else if (auto *I
= dyn_cast
<Instruction
>(V
)) {
3413 valueNumberInstruction(I
);
3415 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3417 updateProcessedCount(V
);
3420 NumGVNMaxIterations
= std::max(NumGVNMaxIterations
.getValue(), Iterations
);
3423 // This is the main transformation entry point.
3424 bool NewGVN::runGVN() {
3425 if (DebugCounter::isCounterSet(VNCounter
))
3426 StartingVNCounter
= DebugCounter::getCounterValue(VNCounter
);
3427 bool Changed
= false;
3428 NumFuncArgs
= F
.arg_size();
3429 MSSAWalker
= MSSA
->getWalker();
3430 SingletonDeadExpression
= new (ExpressionAllocator
) DeadExpression();
3432 // Count number of instructions for sizing of hash tables, and come
3433 // up with a global dfs numbering for instructions.
3434 unsigned ICount
= 1;
3435 // Add an empty instruction to account for the fact that we start at 1
3436 DFSToInstr
.emplace_back(nullptr);
3437 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3438 // same as dominator tree order, particularly with regard whether backedges
3439 // get visited first or second, given a block with multiple successors.
3440 // If we visit in the wrong order, we will end up performing N times as many
3442 // The dominator tree does guarantee that, for a given dom tree node, it's
3443 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3445 ReversePostOrderTraversal
<Function
*> RPOT(&F
);
3446 unsigned Counter
= 0;
3447 for (auto &B
: RPOT
) {
3448 auto *Node
= DT
->getNode(B
);
3449 assert(Node
&& "RPO and Dominator tree should have same reachability");
3450 RPOOrdering
[Node
] = ++Counter
;
3452 // Sort dominator tree children arrays into RPO.
3453 for (auto &B
: RPOT
) {
3454 auto *Node
= DT
->getNode(B
);
3455 if (Node
->getNumChildren() > 1)
3456 llvm::sort(*Node
, [&](const DomTreeNode
*A
, const DomTreeNode
*B
) {
3457 return RPOOrdering
[A
] < RPOOrdering
[B
];
3461 // Now a standard depth first ordering of the domtree is equivalent to RPO.
3462 for (auto *DTN
: depth_first(DT
->getRootNode())) {
3463 BasicBlock
*B
= DTN
->getBlock();
3464 const auto &BlockRange
= assignDFSNumbers(B
, ICount
);
3465 BlockInstRange
.insert({B
, BlockRange
});
3466 ICount
+= BlockRange
.second
- BlockRange
.first
;
3468 initializeCongruenceClasses(F
);
3470 TouchedInstructions
.resize(ICount
);
3471 // Ensure we don't end up resizing the expressionToClass map, as
3472 // that can be quite expensive. At most, we have one expression per
3474 ExpressionToClass
.reserve(ICount
);
3476 // Initialize the touched instructions to include the entry block.
3477 const auto &InstRange
= BlockInstRange
.lookup(&F
.getEntryBlock());
3478 TouchedInstructions
.set(InstRange
.first
, InstRange
.second
);
3479 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F
.getEntryBlock())
3480 << " marked reachable\n");
3481 ReachableBlocks
.insert(&F
.getEntryBlock());
3483 iterateTouchedInstructions();
3484 verifyMemoryCongruency();
3485 verifyIterationSettled(F
);
3486 verifyStoreExpressions();
3488 Changed
|= eliminateInstructions(F
);
3490 // Delete all instructions marked for deletion.
3491 for (Instruction
*ToErase
: InstructionsToErase
) {
3492 if (!ToErase
->use_empty())
3493 ToErase
->replaceAllUsesWith(PoisonValue::get(ToErase
->getType()));
3495 assert(ToErase
->getParent() &&
3496 "BB containing ToErase deleted unexpectedly!");
3497 ToErase
->eraseFromParent();
3499 Changed
|= !InstructionsToErase
.empty();
3501 // Delete all unreachable blocks.
3502 auto UnreachableBlockPred
= [&](const BasicBlock
&BB
) {
3503 return !ReachableBlocks
.count(&BB
);
3506 for (auto &BB
: make_filter_range(F
, UnreachableBlockPred
)) {
3507 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB
)
3508 << " is unreachable\n");
3509 deleteInstructionsInBlock(&BB
);
3517 struct NewGVN::ValueDFS
{
3522 // Only one of Def and U will be set.
3523 // The bool in the Def tells us whether the Def is the stored value of a
3525 PointerIntPair
<Value
*, 1, bool> Def
;
3528 bool operator<(const ValueDFS
&Other
) const {
3529 // It's not enough that any given field be less than - we have sets
3530 // of fields that need to be evaluated together to give a proper ordering.
3531 // For example, if you have;
3536 // We want the second to be less than the first, but if we just go field
3537 // by field, we will get to Val 0 < Val 50 and say the first is less than
3538 // the second. We only want it to be less than if the DFS orders are equal.
3540 // Each LLVM instruction only produces one value, and thus the lowest-level
3541 // differentiator that really matters for the stack (and what we use as a
3542 // replacement) is the local dfs number.
3543 // Everything else in the structure is instruction level, and only affects
3544 // the order in which we will replace operands of a given instruction.
3546 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3547 // the order of replacement of uses does not matter.
3551 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3553 // The .val will be the same as well.
3554 // The .u's will be different.
3555 // You will replace both, and it does not matter what order you replace them
3556 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3558 // Similarly for the case of same dfsin, dfsout, localnum, but different
3563 // in c, we will a valuedfs for a, and one for b,with everything the same
3565 // It does not matter what order we replace these operands in.
3566 // You will always end up with the same IR, and this is guaranteed.
3567 return std::tie(DFSIn
, DFSOut
, LocalNum
, Def
, U
) <
3568 std::tie(Other
.DFSIn
, Other
.DFSOut
, Other
.LocalNum
, Other
.Def
,
3573 // This function converts the set of members for a congruence class from values,
3574 // to sets of defs and uses with associated DFS info. The total number of
3575 // reachable uses for each value is stored in UseCount, and instructions that
3577 // dead (have no non-dead uses) are stored in ProbablyDead.
3578 void NewGVN::convertClassToDFSOrdered(
3579 const CongruenceClass
&Dense
, SmallVectorImpl
<ValueDFS
> &DFSOrderedSet
,
3580 DenseMap
<const Value
*, unsigned int> &UseCounts
,
3581 SmallPtrSetImpl
<Instruction
*> &ProbablyDead
) const {
3582 for (auto *D
: Dense
) {
3583 // First add the value.
3584 BasicBlock
*BB
= getBlockForValue(D
);
3585 // Constants are handled prior to ever calling this function, so
3586 // we should only be left with instructions as members.
3587 assert(BB
&& "Should have figured out a basic block for value");
3589 DomTreeNode
*DomNode
= DT
->getNode(BB
);
3590 VDDef
.DFSIn
= DomNode
->getDFSNumIn();
3591 VDDef
.DFSOut
= DomNode
->getDFSNumOut();
3592 // If it's a store, use the leader of the value operand, if it's always
3593 // available, or the value operand. TODO: We could do dominance checks to
3594 // find a dominating leader, but not worth it ATM.
3595 if (auto *SI
= dyn_cast
<StoreInst
>(D
)) {
3596 auto Leader
= lookupOperandLeader(SI
->getValueOperand());
3597 if (alwaysAvailable(Leader
)) {
3598 VDDef
.Def
.setPointer(Leader
);
3600 VDDef
.Def
.setPointer(SI
->getValueOperand());
3601 VDDef
.Def
.setInt(true);
3604 VDDef
.Def
.setPointer(D
);
3606 assert(isa
<Instruction
>(D
) &&
3607 "The dense set member should always be an instruction");
3608 Instruction
*Def
= cast
<Instruction
>(D
);
3609 VDDef
.LocalNum
= InstrToDFSNum(D
);
3610 DFSOrderedSet
.push_back(VDDef
);
3611 // If there is a phi node equivalent, add it
3612 if (auto *PN
= RealToTemp
.lookup(Def
)) {
3614 dyn_cast_or_null
<PHIExpression
>(ValueToExpression
.lookup(Def
));
3616 VDDef
.Def
.setInt(false);
3617 VDDef
.Def
.setPointer(PN
);
3619 DFSOrderedSet
.push_back(VDDef
);
3623 unsigned int UseCount
= 0;
3624 // Now add the uses.
3625 for (auto &U
: Def
->uses()) {
3626 if (auto *I
= dyn_cast
<Instruction
>(U
.getUser())) {
3627 // Don't try to replace into dead uses
3628 if (InstructionsToErase
.count(I
))
3631 // Put the phi node uses in the incoming block.
3633 if (auto *P
= dyn_cast
<PHINode
>(I
)) {
3634 IBlock
= P
->getIncomingBlock(U
);
3635 // Make phi node users appear last in the incoming block
3637 VDUse
.LocalNum
= InstrDFS
.size() + 1;
3639 IBlock
= getBlockForValue(I
);
3640 VDUse
.LocalNum
= InstrToDFSNum(I
);
3643 // Skip uses in unreachable blocks, as we're going
3645 if (!ReachableBlocks
.contains(IBlock
))
3648 DomTreeNode
*DomNode
= DT
->getNode(IBlock
);
3649 VDUse
.DFSIn
= DomNode
->getDFSNumIn();
3650 VDUse
.DFSOut
= DomNode
->getDFSNumOut();
3653 DFSOrderedSet
.emplace_back(VDUse
);
3657 // If there are no uses, it's probably dead (but it may have side-effects,
3658 // so not definitely dead. Otherwise, store the number of uses so we can
3659 // track if it becomes dead later).
3661 ProbablyDead
.insert(Def
);
3663 UseCounts
[Def
] = UseCount
;
3667 // This function converts the set of members for a congruence class from values,
3668 // to the set of defs for loads and stores, with associated DFS info.
3669 void NewGVN::convertClassToLoadsAndStores(
3670 const CongruenceClass
&Dense
,
3671 SmallVectorImpl
<ValueDFS
> &LoadsAndStores
) const {
3672 for (auto *D
: Dense
) {
3673 if (!isa
<LoadInst
>(D
) && !isa
<StoreInst
>(D
))
3676 BasicBlock
*BB
= getBlockForValue(D
);
3678 DomTreeNode
*DomNode
= DT
->getNode(BB
);
3679 VD
.DFSIn
= DomNode
->getDFSNumIn();
3680 VD
.DFSOut
= DomNode
->getDFSNumOut();
3681 VD
.Def
.setPointer(D
);
3683 // If it's an instruction, use the real local dfs number.
3684 if (auto *I
= dyn_cast
<Instruction
>(D
))
3685 VD
.LocalNum
= InstrToDFSNum(I
);
3687 llvm_unreachable("Should have been an instruction");
3689 LoadsAndStores
.emplace_back(VD
);
3693 static void patchAndReplaceAllUsesWith(Instruction
*I
, Value
*Repl
) {
3694 patchReplacementInstruction(I
, Repl
);
3695 I
->replaceAllUsesWith(Repl
);
3698 void NewGVN::deleteInstructionsInBlock(BasicBlock
*BB
) {
3699 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB
);
3700 ++NumGVNBlocksDeleted
;
3702 // Delete the instructions backwards, as it has a reduced likelihood of having
3703 // to update as many def-use and use-def chains. Start after the terminator.
3704 auto StartPoint
= BB
->rbegin();
3706 // Note that we explicitly recalculate BB->rend() on each iteration,
3707 // as it may change when we remove the first instruction.
3708 for (BasicBlock::reverse_iterator
I(StartPoint
); I
!= BB
->rend();) {
3709 Instruction
&Inst
= *I
++;
3710 if (!Inst
.use_empty())
3711 Inst
.replaceAllUsesWith(PoisonValue::get(Inst
.getType()));
3712 if (isa
<LandingPadInst
>(Inst
))
3714 salvageKnowledge(&Inst
, AC
);
3716 Inst
.eraseFromParent();
3717 ++NumGVNInstrDeleted
;
3719 // Now insert something that simplifycfg will turn into an unreachable.
3720 Type
*Int8Ty
= Type::getInt8Ty(BB
->getContext());
3722 PoisonValue::get(Int8Ty
),
3723 Constant::getNullValue(PointerType::getUnqual(BB
->getContext())),
3724 BB
->getTerminator());
3727 void NewGVN::markInstructionForDeletion(Instruction
*I
) {
3728 LLVM_DEBUG(dbgs() << "Marking " << *I
<< " for deletion\n");
3729 InstructionsToErase
.insert(I
);
3732 void NewGVN::replaceInstruction(Instruction
*I
, Value
*V
) {
3733 LLVM_DEBUG(dbgs() << "Replacing " << *I
<< " with " << *V
<< "\n");
3734 patchAndReplaceAllUsesWith(I
, V
);
3735 // We save the actual erasing to avoid invalidating memory
3736 // dependencies until we are done with everything.
3737 markInstructionForDeletion(I
);
3742 // This is a stack that contains both the value and dfs info of where
3743 // that value is valid.
3744 class ValueDFSStack
{
3746 Value
*back() const { return ValueStack
.back(); }
3747 std::pair
<int, int> dfs_back() const { return DFSStack
.back(); }
3749 void push_back(Value
*V
, int DFSIn
, int DFSOut
) {
3750 ValueStack
.emplace_back(V
);
3751 DFSStack
.emplace_back(DFSIn
, DFSOut
);
3754 bool empty() const { return DFSStack
.empty(); }
3756 bool isInScope(int DFSIn
, int DFSOut
) const {
3759 return DFSIn
>= DFSStack
.back().first
&& DFSOut
<= DFSStack
.back().second
;
3762 void popUntilDFSScope(int DFSIn
, int DFSOut
) {
3764 // These two should always be in sync at this point.
3765 assert(ValueStack
.size() == DFSStack
.size() &&
3766 "Mismatch between ValueStack and DFSStack");
3768 !DFSStack
.empty() &&
3769 !(DFSIn
>= DFSStack
.back().first
&& DFSOut
<= DFSStack
.back().second
)) {
3770 DFSStack
.pop_back();
3771 ValueStack
.pop_back();
3776 SmallVector
<Value
*, 8> ValueStack
;
3777 SmallVector
<std::pair
<int, int>, 8> DFSStack
;
3780 } // end anonymous namespace
3782 // Given an expression, get the congruence class for it.
3783 CongruenceClass
*NewGVN::getClassForExpression(const Expression
*E
) const {
3784 if (auto *VE
= dyn_cast
<VariableExpression
>(E
))
3785 return ValueToClass
.lookup(VE
->getVariableValue());
3786 else if (isa
<DeadExpression
>(E
))
3788 return ExpressionToClass
.lookup(E
);
3791 // Given a value and a basic block we are trying to see if it is available in,
3792 // see if the value has a leader available in that block.
3793 Value
*NewGVN::findPHIOfOpsLeader(const Expression
*E
,
3794 const Instruction
*OrigInst
,
3795 const BasicBlock
*BB
) const {
3796 // It would already be constant if we could make it constant
3797 if (auto *CE
= dyn_cast
<ConstantExpression
>(E
))
3798 return CE
->getConstantValue();
3799 if (auto *VE
= dyn_cast
<VariableExpression
>(E
)) {
3800 auto *V
= VE
->getVariableValue();
3801 if (alwaysAvailable(V
) || DT
->dominates(getBlockForValue(V
), BB
))
3802 return VE
->getVariableValue();
3805 auto *CC
= getClassForExpression(E
);
3808 if (alwaysAvailable(CC
->getLeader()))
3809 return CC
->getLeader();
3811 for (auto *Member
: *CC
) {
3812 auto *MemberInst
= dyn_cast
<Instruction
>(Member
);
3813 if (MemberInst
== OrigInst
)
3815 // Anything that isn't an instruction is always available.
3818 if (DT
->dominates(getBlockForValue(MemberInst
), BB
))
3824 bool NewGVN::eliminateInstructions(Function
&F
) {
3825 // This is a non-standard eliminator. The normal way to eliminate is
3826 // to walk the dominator tree in order, keeping track of available
3827 // values, and eliminating them. However, this is mildly
3828 // pointless. It requires doing lookups on every instruction,
3829 // regardless of whether we will ever eliminate it. For
3830 // instructions part of most singleton congruence classes, we know we
3831 // will never eliminate them.
3833 // Instead, this eliminator looks at the congruence classes directly, sorts
3834 // them into a DFS ordering of the dominator tree, and then we just
3835 // perform elimination straight on the sets by walking the congruence
3836 // class member uses in order, and eliminate the ones dominated by the
3837 // last member. This is worst case O(E log E) where E = number of
3838 // instructions in a single congruence class. In theory, this is all
3839 // instructions. In practice, it is much faster, as most instructions are
3840 // either in singleton congruence classes or can't possibly be eliminated
3841 // anyway (if there are no overlapping DFS ranges in class).
3842 // When we find something not dominated, it becomes the new leader
3843 // for elimination purposes.
3844 // TODO: If we wanted to be faster, We could remove any members with no
3845 // overlapping ranges while sorting, as we will never eliminate anything
3846 // with those members, as they don't dominate anything else in our set.
3848 bool AnythingReplaced
= false;
3850 // Since we are going to walk the domtree anyway, and we can't guarantee the
3851 // DFS numbers are updated, we compute some ourselves.
3852 DT
->updateDFSNumbers();
3854 // Go through all of our phi nodes, and kill the arguments associated with
3855 // unreachable edges.
3856 auto ReplaceUnreachablePHIArgs
= [&](PHINode
*PHI
, BasicBlock
*BB
) {
3857 for (auto &Operand
: PHI
->incoming_values())
3858 if (!ReachableEdges
.count({PHI
->getIncomingBlock(Operand
), BB
})) {
3859 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3861 << getBlockName(PHI
->getIncomingBlock(Operand
))
3862 << " with poison due to it being unreachable\n");
3863 Operand
.set(PoisonValue::get(PHI
->getType()));
3866 // Replace unreachable phi arguments.
3867 // At this point, RevisitOnReachabilityChange only contains:
3870 // 2. Temporaries that will convert to PHIs
3871 // 3. Operations that are affected by an unreachable edge but do not fit into
3873 // So it is a slight overshoot of what we want. We could make it exact by
3874 // using two SparseBitVectors per block.
3875 DenseMap
<const BasicBlock
*, unsigned> ReachablePredCount
;
3876 for (auto &KV
: ReachableEdges
)
3877 ReachablePredCount
[KV
.getEnd()]++;
3878 for (auto &BBPair
: RevisitOnReachabilityChange
) {
3879 for (auto InstNum
: BBPair
.second
) {
3880 auto *Inst
= InstrFromDFSNum(InstNum
);
3881 auto *PHI
= dyn_cast
<PHINode
>(Inst
);
3882 PHI
= PHI
? PHI
: dyn_cast_or_null
<PHINode
>(RealToTemp
.lookup(Inst
));
3885 auto *BB
= BBPair
.first
;
3886 if (ReachablePredCount
.lookup(BB
) != PHI
->getNumIncomingValues())
3887 ReplaceUnreachablePHIArgs(PHI
, BB
);
3891 // Map to store the use counts
3892 DenseMap
<const Value
*, unsigned int> UseCounts
;
3893 for (auto *CC
: reverse(CongruenceClasses
)) {
3894 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC
->getID()
3896 // Track the equivalent store info so we can decide whether to try
3897 // dead store elimination.
3898 SmallVector
<ValueDFS
, 8> PossibleDeadStores
;
3899 SmallPtrSet
<Instruction
*, 8> ProbablyDead
;
3900 if (CC
->isDead() || CC
->empty())
3902 // Everything still in the TOP class is unreachable or dead.
3903 if (CC
== TOPClass
) {
3904 for (auto *M
: *CC
) {
3905 auto *VTE
= ValueToExpression
.lookup(M
);
3906 if (VTE
&& isa
<DeadExpression
>(VTE
))
3907 markInstructionForDeletion(cast
<Instruction
>(M
));
3908 assert((!ReachableBlocks
.count(cast
<Instruction
>(M
)->getParent()) ||
3909 InstructionsToErase
.count(cast
<Instruction
>(M
))) &&
3910 "Everything in TOP should be unreachable or dead at this "
3916 assert(CC
->getLeader() && "We should have had a leader");
3917 // If this is a leader that is always available, and it's a
3918 // constant or has no equivalences, just replace everything with
3919 // it. We then update the congruence class with whatever members
3922 CC
->getStoredValue() ? CC
->getStoredValue() : CC
->getLeader();
3923 if (alwaysAvailable(Leader
)) {
3924 CongruenceClass::MemberSet MembersLeft
;
3925 for (auto *M
: *CC
) {
3927 // Void things have no uses we can replace.
3928 if (Member
== Leader
|| !isa
<Instruction
>(Member
) ||
3929 Member
->getType()->isVoidTy()) {
3930 MembersLeft
.insert(Member
);
3933 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader
) << " for "
3934 << *Member
<< "\n");
3935 auto *I
= cast
<Instruction
>(Member
);
3936 assert(Leader
!= I
&& "About to accidentally remove our leader");
3937 replaceInstruction(I
, Leader
);
3938 AnythingReplaced
= true;
3940 CC
->swap(MembersLeft
);
3942 // If this is a singleton, we can skip it.
3943 if (CC
->size() != 1 || RealToTemp
.count(Leader
)) {
3944 // This is a stack because equality replacement/etc may place
3945 // constants in the middle of the member list, and we want to use
3946 // those constant values in preference to the current leader, over
3947 // the scope of those constants.
3948 ValueDFSStack EliminationStack
;
3950 // Convert the members to DFS ordered sets and then merge them.
3951 SmallVector
<ValueDFS
, 8> DFSOrderedSet
;
3952 convertClassToDFSOrdered(*CC
, DFSOrderedSet
, UseCounts
, ProbablyDead
);
3954 // Sort the whole thing.
3955 llvm::sort(DFSOrderedSet
);
3956 for (auto &VD
: DFSOrderedSet
) {
3957 int MemberDFSIn
= VD
.DFSIn
;
3958 int MemberDFSOut
= VD
.DFSOut
;
3959 Value
*Def
= VD
.Def
.getPointer();
3960 bool FromStore
= VD
.Def
.getInt();
3962 // We ignore void things because we can't get a value from them.
3963 if (Def
&& Def
->getType()->isVoidTy())
3965 auto *DefInst
= dyn_cast_or_null
<Instruction
>(Def
);
3966 if (DefInst
&& AllTempInstructions
.count(DefInst
)) {
3967 auto *PN
= cast
<PHINode
>(DefInst
);
3969 // If this is a value phi and that's the expression we used, insert
3970 // it into the program
3971 // remove from temp instruction list.
3972 AllTempInstructions
.erase(PN
);
3973 auto *DefBlock
= getBlockForValue(Def
);
3974 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3976 << getBlockName(getBlockForValue(Def
)) << "\n");
3977 PN
->insertBefore(&DefBlock
->front());
3979 NumGVNPHIOfOpsEliminations
++;
3982 if (EliminationStack
.empty()) {
3983 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3985 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3986 << EliminationStack
.dfs_back().first
<< ","
3987 << EliminationStack
.dfs_back().second
<< ")\n");
3990 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn
<< ","
3991 << MemberDFSOut
<< ")\n");
3992 // First, we see if we are out of scope or empty. If so,
3993 // and there equivalences, we try to replace the top of
3994 // stack with equivalences (if it's on the stack, it must
3995 // not have been eliminated yet).
3996 // Then we synchronize to our current scope, by
3997 // popping until we are back within a DFS scope that
3998 // dominates the current member.
3999 // Then, what happens depends on a few factors
4000 // If the stack is now empty, we need to push
4001 // If we have a constant or a local equivalence we want to
4002 // start using, we also push.
4003 // Otherwise, we walk along, processing members who are
4004 // dominated by this scope, and eliminate them.
4005 bool ShouldPush
= Def
&& EliminationStack
.empty();
4007 !EliminationStack
.isInScope(MemberDFSIn
, MemberDFSOut
);
4009 if (OutOfScope
|| ShouldPush
) {
4010 // Sync to our current scope.
4011 EliminationStack
.popUntilDFSScope(MemberDFSIn
, MemberDFSOut
);
4012 bool ShouldPush
= Def
&& EliminationStack
.empty();
4014 EliminationStack
.push_back(Def
, MemberDFSIn
, MemberDFSOut
);
4018 // Skip the Def's, we only want to eliminate on their uses. But mark
4019 // dominated defs as dead.
4021 // For anything in this case, what and how we value number
4022 // guarantees that any side-effets that would have occurred (ie
4023 // throwing, etc) can be proven to either still occur (because it's
4024 // dominated by something that has the same side-effects), or never
4025 // occur. Otherwise, we would not have been able to prove it value
4026 // equivalent to something else. For these things, we can just mark
4027 // it all dead. Note that this is different from the "ProbablyDead"
4028 // set, which may not be dominated by anything, and thus, are only
4029 // easy to prove dead if they are also side-effect free. Note that
4030 // because stores are put in terms of the stored value, we skip
4031 // stored values here. If the stored value is really dead, it will
4032 // still be marked for deletion when we process it in its own class.
4033 auto *DefI
= dyn_cast
<Instruction
>(Def
);
4034 if (!EliminationStack
.empty() && DefI
&& !FromStore
) {
4035 Value
*DominatingLeader
= EliminationStack
.back();
4036 if (DominatingLeader
!= Def
) {
4037 // Even if the instruction is removed, we still need to update
4038 // flags/metadata due to downstreams users of the leader.
4039 if (!match(DefI
, m_Intrinsic
<Intrinsic::ssa_copy
>()))
4040 patchReplacementInstruction(DefI
, DominatingLeader
);
4042 markInstructionForDeletion(DefI
);
4047 // At this point, we know it is a Use we are trying to possibly
4050 assert(isa
<Instruction
>(U
->get()) &&
4051 "Current def should have been an instruction");
4052 assert(isa
<Instruction
>(U
->getUser()) &&
4053 "Current user should have been an instruction");
4055 // If the thing we are replacing into is already marked to be dead,
4056 // this use is dead. Note that this is true regardless of whether
4057 // we have anything dominating the use or not. We do this here
4058 // because we are already walking all the uses anyway.
4059 Instruction
*InstUse
= cast
<Instruction
>(U
->getUser());
4060 if (InstructionsToErase
.count(InstUse
)) {
4061 auto &UseCount
= UseCounts
[U
->get()];
4062 if (--UseCount
== 0) {
4063 ProbablyDead
.insert(cast
<Instruction
>(U
->get()));
4067 // If we get to this point, and the stack is empty we must have a use
4068 // with nothing we can use to eliminate this use, so just skip it.
4069 if (EliminationStack
.empty())
4072 Value
*DominatingLeader
= EliminationStack
.back();
4074 auto *II
= dyn_cast
<IntrinsicInst
>(DominatingLeader
);
4075 bool isSSACopy
= II
&& II
->getIntrinsicID() == Intrinsic::ssa_copy
;
4077 DominatingLeader
= II
->getOperand(0);
4079 // Don't replace our existing users with ourselves.
4080 if (U
->get() == DominatingLeader
)
4083 << "Found replacement " << *DominatingLeader
<< " for "
4084 << *U
->get() << " in " << *(U
->getUser()) << "\n");
4086 // If we replaced something in an instruction, handle the patching of
4087 // metadata. Skip this if we are replacing predicateinfo with its
4088 // original operand, as we already know we can just drop it.
4089 auto *ReplacedInst
= cast
<Instruction
>(U
->get());
4090 auto *PI
= PredInfo
->getPredicateInfoFor(ReplacedInst
);
4091 if (!PI
|| DominatingLeader
!= PI
->OriginalOp
)
4092 patchReplacementInstruction(ReplacedInst
, DominatingLeader
);
4093 U
->set(DominatingLeader
);
4094 // This is now a use of the dominating leader, which means if the
4095 // dominating leader was dead, it's now live!
4096 auto &LeaderUseCount
= UseCounts
[DominatingLeader
];
4097 // It's about to be alive again.
4098 if (LeaderUseCount
== 0 && isa
<Instruction
>(DominatingLeader
))
4099 ProbablyDead
.erase(cast
<Instruction
>(DominatingLeader
));
4100 // For copy instructions, we use their operand as a leader,
4101 // which means we remove a user of the copy and it may become dead.
4103 auto It
= UseCounts
.find(II
);
4104 if (It
!= UseCounts
.end()) {
4105 unsigned &IIUseCount
= It
->second
;
4106 if (--IIUseCount
== 0)
4107 ProbablyDead
.insert(II
);
4111 AnythingReplaced
= true;
4116 // At this point, anything still in the ProbablyDead set is actually dead if
4117 // would be trivially dead.
4118 for (auto *I
: ProbablyDead
)
4119 if (wouldInstructionBeTriviallyDead(I
))
4120 markInstructionForDeletion(I
);
4122 // Cleanup the congruence class.
4123 CongruenceClass::MemberSet MembersLeft
;
4124 for (auto *Member
: *CC
)
4125 if (!isa
<Instruction
>(Member
) ||
4126 !InstructionsToErase
.count(cast
<Instruction
>(Member
)))
4127 MembersLeft
.insert(Member
);
4128 CC
->swap(MembersLeft
);
4130 // If we have possible dead stores to look at, try to eliminate them.
4131 if (CC
->getStoreCount() > 0) {
4132 convertClassToLoadsAndStores(*CC
, PossibleDeadStores
);
4133 llvm::sort(PossibleDeadStores
);
4134 ValueDFSStack EliminationStack
;
4135 for (auto &VD
: PossibleDeadStores
) {
4136 int MemberDFSIn
= VD
.DFSIn
;
4137 int MemberDFSOut
= VD
.DFSOut
;
4138 Instruction
*Member
= cast
<Instruction
>(VD
.Def
.getPointer());
4139 if (EliminationStack
.empty() ||
4140 !EliminationStack
.isInScope(MemberDFSIn
, MemberDFSOut
)) {
4141 // Sync to our current scope.
4142 EliminationStack
.popUntilDFSScope(MemberDFSIn
, MemberDFSOut
);
4143 if (EliminationStack
.empty()) {
4144 EliminationStack
.push_back(Member
, MemberDFSIn
, MemberDFSOut
);
4148 // We already did load elimination, so nothing to do here.
4149 if (isa
<LoadInst
>(Member
))
4151 assert(!EliminationStack
.empty());
4152 Instruction
*Leader
= cast
<Instruction
>(EliminationStack
.back());
4154 assert(DT
->dominates(Leader
->getParent(), Member
->getParent()));
4155 // Member is dominater by Leader, and thus dead
4156 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4157 << " that is dominated by " << *Leader
<< "\n");
4158 markInstructionForDeletion(Member
);
4164 return AnythingReplaced
;
4167 // This function provides global ranking of operations so that we can place them
4168 // in a canonical order. Note that rank alone is not necessarily enough for a
4169 // complete ordering, as constants all have the same rank. However, generally,
4170 // we will simplify an operation with all constants so that it doesn't matter
4171 // what order they appear in.
4172 unsigned int NewGVN::getRank(const Value
*V
) const {
4173 // Prefer constants to undef to anything else
4174 // Undef is a constant, have to check it first.
4175 // Prefer poison to undef as it's less defined.
4176 // Prefer smaller constants to constantexprs
4177 // Note that the order here matters because of class inheritance
4178 if (isa
<ConstantExpr
>(V
))
4180 if (isa
<PoisonValue
>(V
))
4182 if (isa
<UndefValue
>(V
))
4184 if (isa
<Constant
>(V
))
4186 if (auto *A
= dyn_cast
<Argument
>(V
))
4187 return 4 + A
->getArgNo();
4189 // Need to shift the instruction DFS by number of arguments + 5 to account for
4190 // the constant and argument ranking above.
4191 unsigned Result
= InstrToDFSNum(V
);
4193 return 5 + NumFuncArgs
+ Result
;
4194 // Unreachable or something else, just return a really large number.
4198 // This is a function that says whether two commutative operations should
4199 // have their order swapped when canonicalizing.
4200 bool NewGVN::shouldSwapOperands(const Value
*A
, const Value
*B
) const {
4201 // Because we only care about a total ordering, and don't rewrite expressions
4202 // in this order, we order by rank, which will give a strict weak ordering to
4203 // everything but constants, and then we order by pointer address.
4204 return std::make_pair(getRank(A
), A
) > std::make_pair(getRank(B
), B
);
4207 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value
*A
, const Value
*B
,
4208 const IntrinsicInst
*I
) const {
4209 auto LookupResult
= IntrinsicInstPred
.find(I
);
4210 if (shouldSwapOperands(A
, B
)) {
4211 if (LookupResult
== IntrinsicInstPred
.end())
4212 IntrinsicInstPred
.insert({I
, B
});
4214 LookupResult
->second
= B
;
4218 if (LookupResult
!= IntrinsicInstPred
.end()) {
4219 auto *SeenPredicate
= LookupResult
->second
;
4220 if (SeenPredicate
) {
4221 if (SeenPredicate
== B
)
4224 LookupResult
->second
= nullptr;
4230 PreservedAnalyses
NewGVNPass::run(Function
&F
, AnalysisManager
<Function
> &AM
) {
4231 // Apparently the order in which we get these results matter for
4232 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4233 // the same order here, just in case.
4234 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
4235 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
4236 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
4237 auto &AA
= AM
.getResult
<AAManager
>(F
);
4238 auto &MSSA
= AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA();
4240 NewGVN(F
, &DT
, &AC
, &TLI
, &AA
, &MSSA
, F
.getParent()->getDataLayout())
4243 return PreservedAnalyses::all();
4244 PreservedAnalyses PA
;
4245 PA
.preserve
<DominatorTreeAnalysis
>();