1 //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Loop unrolling may create many similar GEPs for array accesses.
10 // e.g., a 2-level loop
12 // float a[32][32]; // global variable
14 // for (int i = 0; i < 2; ++i) {
15 // for (int j = 0; j < 2; ++j) {
17 // ... = a[x + i][y + j];
22 // will probably be unrolled to:
24 // gep %a, 0, %x, %y; load
25 // gep %a, 0, %x, %y + 1; load
26 // gep %a, 0, %x + 1, %y; load
27 // gep %a, 0, %x + 1, %y + 1; load
29 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
30 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
31 // significant slowdown in targets with limited addressing modes. For instance,
32 // because the PTX target does not support the reg+reg addressing mode, the
33 // NVPTX backend emits PTX code that literally computes the pointer address of
34 // each GEP, wasting tons of registers. It emits the following PTX for the
35 // first load and similar PTX for other loads.
39 // mul.wide.u32 %rl2, %r1, 128;
41 // add.s64 %rl4, %rl3, %rl2;
42 // mul.wide.u32 %rl5, %r2, 4;
43 // add.s64 %rl6, %rl4, %rl5;
44 // ld.global.f32 %f1, [%rl6];
46 // To reduce the register pressure, the optimization implemented in this file
47 // merges the common part of a group of GEPs, so we can compute each pointer
48 // address by adding a simple offset to the common part, saving many registers.
50 // It works by splitting each GEP into a variadic base and a constant offset.
51 // The variadic base can be computed once and reused by multiple GEPs, and the
52 // constant offsets can be nicely folded into the reg+immediate addressing mode
53 // (supported by most targets) without using any extra register.
55 // For instance, we transform the four GEPs and four loads in the above example
58 // base = gep a, 0, x, y
60 // laod base + 1 * sizeof(float)
61 // load base + 32 * sizeof(float)
62 // load base + 33 * sizeof(float)
64 // Given the transformed IR, a backend that supports the reg+immediate
65 // addressing mode can easily fold the pointer arithmetics into the loads. For
66 // example, the NVPTX backend can easily fold the pointer arithmetics into the
67 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
69 // mov.u32 %r1, %tid.x;
70 // mov.u32 %r2, %tid.y;
71 // mul.wide.u32 %rl2, %r1, 128;
73 // add.s64 %rl4, %rl3, %rl2;
74 // mul.wide.u32 %rl5, %r2, 4;
75 // add.s64 %rl6, %rl4, %rl5;
76 // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
77 // ld.global.f32 %f2, [%rl6+4]; // much better
78 // ld.global.f32 %f3, [%rl6+128]; // much better
79 // ld.global.f32 %f4, [%rl6+132]; // much better
81 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
82 // multiple indices to either multiple GEPs with a single index or arithmetic
83 // operations (depending on whether the target uses alias analysis in codegen).
84 // Such transformation can have following benefits:
85 // (1) It can always extract constants in the indices of structure type.
86 // (2) After such Lowering, there are more optimization opportunities such as
89 // E.g. The following GEPs have multiple indices:
91 // %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
95 // %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
99 // We can not do CSE to the common part related to index "i64 %i". Lowering
100 // GEPs can achieve such goals.
101 // If the target does not use alias analysis in codegen, this pass will
102 // lower a GEP with multiple indices into arithmetic operations:
104 // %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
105 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
106 // %3 = add i64 %1, %2 ; CSE opportunity
107 // %4 = mul i64 %j1, length_of_struct
108 // %5 = add i64 %3, %4
109 // %6 = add i64 %3, struct_field_3 ; Constant offset
110 // %p = inttoptr i64 %6 to i32*
114 // %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
115 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
116 // %9 = add i64 %7, %8 ; CSE opportunity
117 // %10 = mul i64 %j2, length_of_struct
118 // %11 = add i64 %9, %10
119 // %12 = add i64 %11, struct_field_2 ; Constant offset
120 // %p = inttoptr i64 %12 to i32*
124 // If the target uses alias analysis in codegen, this pass will lower a GEP
125 // with multiple indices into multiple GEPs with a single index:
127 // %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
128 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
129 // %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
130 // %4 = mul i64 %j1, length_of_struct
131 // %5 = getelementptr i8* %3, i64 %4
132 // %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
133 // %p = bitcast i8* %6 to i32*
137 // %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
138 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
139 // %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
140 // %10 = mul i64 %j2, length_of_struct
141 // %11 = getelementptr i8* %9, i64 %10
142 // %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
143 // %p2 = bitcast i8* %12 to i32*
147 // Lowering GEPs can also benefit other passes such as LICM and CGP.
148 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
149 // indices if one of the index is variant. If we lower such GEP into invariant
150 // parts and variant parts, LICM can hoist/sink those invariant parts.
151 // CGP (CodeGen Prepare) tries to sink address calculations that match the
152 // target's addressing modes. A GEP with multiple indices may not match and will
153 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
154 // them. So we end up with a better addressing mode.
156 //===----------------------------------------------------------------------===//
158 #include "llvm/Transforms/Scalar/SeparateConstOffsetFromGEP.h"
159 #include "llvm/ADT/APInt.h"
160 #include "llvm/ADT/DenseMap.h"
161 #include "llvm/ADT/DepthFirstIterator.h"
162 #include "llvm/ADT/SmallVector.h"
163 #include "llvm/Analysis/LoopInfo.h"
164 #include "llvm/Analysis/MemoryBuiltins.h"
165 #include "llvm/Analysis/TargetLibraryInfo.h"
166 #include "llvm/Analysis/TargetTransformInfo.h"
167 #include "llvm/Analysis/ValueTracking.h"
168 #include "llvm/IR/BasicBlock.h"
169 #include "llvm/IR/Constant.h"
170 #include "llvm/IR/Constants.h"
171 #include "llvm/IR/DataLayout.h"
172 #include "llvm/IR/DerivedTypes.h"
173 #include "llvm/IR/Dominators.h"
174 #include "llvm/IR/Function.h"
175 #include "llvm/IR/GetElementPtrTypeIterator.h"
176 #include "llvm/IR/IRBuilder.h"
177 #include "llvm/IR/Instruction.h"
178 #include "llvm/IR/Instructions.h"
179 #include "llvm/IR/Module.h"
180 #include "llvm/IR/PassManager.h"
181 #include "llvm/IR/PatternMatch.h"
182 #include "llvm/IR/Type.h"
183 #include "llvm/IR/User.h"
184 #include "llvm/IR/Value.h"
185 #include "llvm/InitializePasses.h"
186 #include "llvm/Pass.h"
187 #include "llvm/Support/Casting.h"
188 #include "llvm/Support/CommandLine.h"
189 #include "llvm/Support/ErrorHandling.h"
190 #include "llvm/Support/raw_ostream.h"
191 #include "llvm/Transforms/Scalar.h"
192 #include "llvm/Transforms/Utils/Local.h"
197 using namespace llvm
;
198 using namespace llvm::PatternMatch
;
200 static cl::opt
<bool> DisableSeparateConstOffsetFromGEP(
201 "disable-separate-const-offset-from-gep", cl::init(false),
202 cl::desc("Do not separate the constant offset from a GEP instruction"),
205 // Setting this flag may emit false positives when the input module already
206 // contains dead instructions. Therefore, we set it only in unit tests that are
207 // free of dead code.
209 VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
210 cl::desc("Verify this pass produces no dead code"),
215 /// A helper class for separating a constant offset from a GEP index.
217 /// In real programs, a GEP index may be more complicated than a simple addition
218 /// of something and a constant integer which can be trivially splitted. For
219 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
220 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
222 /// Therefore, this class looks into the expression that computes a given GEP
223 /// index, and tries to find a constant integer that can be hoisted to the
224 /// outermost level of the expression as an addition. Not every constant in an
225 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
226 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
227 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
228 class ConstantOffsetExtractor
{
230 /// Extracts a constant offset from the given GEP index. It returns the
231 /// new index representing the remainder (equal to the original index minus
232 /// the constant offset), or nullptr if we cannot extract a constant offset.
233 /// \p Idx The given GEP index
234 /// \p GEP The given GEP
235 /// \p UserChainTail Outputs the tail of UserChain so that we can
236 /// garbage-collect unused instructions in UserChain.
237 static Value
*Extract(Value
*Idx
, GetElementPtrInst
*GEP
,
238 User
*&UserChainTail
, const DominatorTree
*DT
);
240 /// Looks for a constant offset from the given GEP index without extracting
241 /// it. It returns the numeric value of the extracted constant offset (0 if
242 /// failed). The meaning of the arguments are the same as Extract.
243 static int64_t Find(Value
*Idx
, GetElementPtrInst
*GEP
,
244 const DominatorTree
*DT
);
247 ConstantOffsetExtractor(Instruction
*InsertionPt
, const DominatorTree
*DT
)
248 : IP(InsertionPt
), DL(InsertionPt
->getModule()->getDataLayout()), DT(DT
) {
251 /// Searches the expression that computes V for a non-zero constant C s.t.
252 /// V can be reassociated into the form V' + C. If the searching is
253 /// successful, returns C and update UserChain as a def-use chain from C to V;
254 /// otherwise, UserChain is empty.
256 /// \p V The given expression
257 /// \p SignExtended Whether V will be sign-extended in the computation of the
259 /// \p ZeroExtended Whether V will be zero-extended in the computation of the
261 /// \p NonNegative Whether V is guaranteed to be non-negative. For example,
262 /// an index of an inbounds GEP is guaranteed to be
263 /// non-negative. Levaraging this, we can better split
265 APInt
find(Value
*V
, bool SignExtended
, bool ZeroExtended
, bool NonNegative
);
267 /// A helper function to look into both operands of a binary operator.
268 APInt
findInEitherOperand(BinaryOperator
*BO
, bool SignExtended
,
271 /// After finding the constant offset C from the GEP index I, we build a new
272 /// index I' s.t. I' + C = I. This function builds and returns the new
273 /// index I' according to UserChain produced by function "find".
275 /// The building conceptually takes two steps:
276 /// 1) iteratively distribute s/zext towards the leaves of the expression tree
278 /// 2) reassociate the expression tree to the form I' + C.
280 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
281 /// sext to a, b and 5 so that we have
282 /// sext(a) + (sext(b) + 5).
283 /// Then, we reassociate it to
284 /// (sext(a) + sext(b)) + 5.
285 /// Given this form, we know I' is sext(a) + sext(b).
286 Value
*rebuildWithoutConstOffset();
288 /// After the first step of rebuilding the GEP index without the constant
289 /// offset, distribute s/zext to the operands of all operators in UserChain.
290 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
291 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
293 /// The function also updates UserChain to point to new subexpressions after
294 /// distributing s/zext. e.g., the old UserChain of the above example is
295 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
296 /// and the new UserChain is
297 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
298 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
300 /// \p ChainIndex The index to UserChain. ChainIndex is initially
301 /// UserChain.size() - 1, and is decremented during
303 Value
*distributeExtsAndCloneChain(unsigned ChainIndex
);
305 /// Reassociates the GEP index to the form I' + C and returns I'.
306 Value
*removeConstOffset(unsigned ChainIndex
);
308 /// A helper function to apply ExtInsts, a list of s/zext, to value V.
309 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
310 /// returns "sext i32 (zext i16 V to i32) to i64".
311 Value
*applyExts(Value
*V
);
313 /// A helper function that returns whether we can trace into the operands
314 /// of binary operator BO for a constant offset.
316 /// \p SignExtended Whether BO is surrounded by sext
317 /// \p ZeroExtended Whether BO is surrounded by zext
318 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
320 bool CanTraceInto(bool SignExtended
, bool ZeroExtended
, BinaryOperator
*BO
,
323 /// The path from the constant offset to the old GEP index. e.g., if the GEP
324 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
325 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
326 /// UserChain[2] will be the entire expression "a * b + (c + 5)".
328 /// This path helps to rebuild the new GEP index.
329 SmallVector
<User
*, 8> UserChain
;
331 /// A data structure used in rebuildWithoutConstOffset. Contains all
332 /// sext/zext instructions along UserChain.
333 SmallVector
<CastInst
*, 16> ExtInsts
;
335 /// Insertion position of cloned instructions.
338 const DataLayout
&DL
;
339 const DominatorTree
*DT
;
342 /// A pass that tries to split every GEP in the function into a variadic
343 /// base and a constant offset. It is a FunctionPass because searching for the
344 /// constant offset may inspect other basic blocks.
345 class SeparateConstOffsetFromGEPLegacyPass
: public FunctionPass
{
349 SeparateConstOffsetFromGEPLegacyPass(bool LowerGEP
= false)
350 : FunctionPass(ID
), LowerGEP(LowerGEP
) {
351 initializeSeparateConstOffsetFromGEPLegacyPassPass(
352 *PassRegistry::getPassRegistry());
355 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
356 AU
.addRequired
<DominatorTreeWrapperPass
>();
357 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
358 AU
.addRequired
<LoopInfoWrapperPass
>();
359 AU
.setPreservesCFG();
360 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
363 bool runOnFunction(Function
&F
) override
;
369 /// A pass that tries to split every GEP in the function into a variadic
370 /// base and a constant offset. It is a FunctionPass because searching for the
371 /// constant offset may inspect other basic blocks.
372 class SeparateConstOffsetFromGEP
{
374 SeparateConstOffsetFromGEP(
375 DominatorTree
*DT
, LoopInfo
*LI
, TargetLibraryInfo
*TLI
,
376 function_ref
<TargetTransformInfo
&(Function
&)> GetTTI
, bool LowerGEP
)
377 : DT(DT
), LI(LI
), TLI(TLI
), GetTTI(GetTTI
), LowerGEP(LowerGEP
) {}
379 bool run(Function
&F
);
382 /// Track the operands of an add or sub.
383 using ExprKey
= std::pair
<Value
*, Value
*>;
385 /// Create a pair for use as a map key for a commutable operation.
386 static ExprKey
createNormalizedCommutablePair(Value
*A
, Value
*B
) {
392 /// Tries to split the given GEP into a variadic base and a constant offset,
393 /// and returns true if the splitting succeeds.
394 bool splitGEP(GetElementPtrInst
*GEP
);
396 /// Lower a GEP with multiple indices into multiple GEPs with a single index.
397 /// Function splitGEP already split the original GEP into a variadic part and
398 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
399 /// variadic part into a set of GEPs with a single index and applies
400 /// AccumulativeByteOffset to it.
401 /// \p Variadic The variadic part of the original GEP.
402 /// \p AccumulativeByteOffset The constant offset.
403 void lowerToSingleIndexGEPs(GetElementPtrInst
*Variadic
,
404 int64_t AccumulativeByteOffset
);
406 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
407 /// Function splitGEP already split the original GEP into a variadic part and
408 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
409 /// variadic part into a set of arithmetic operations and applies
410 /// AccumulativeByteOffset to it.
411 /// \p Variadic The variadic part of the original GEP.
412 /// \p AccumulativeByteOffset The constant offset.
413 void lowerToArithmetics(GetElementPtrInst
*Variadic
,
414 int64_t AccumulativeByteOffset
);
416 /// Finds the constant offset within each index and accumulates them. If
417 /// LowerGEP is true, it finds in indices of both sequential and structure
418 /// types, otherwise it only finds in sequential indices. The output
419 /// NeedsExtraction indicates whether we successfully find a non-zero constant
421 int64_t accumulateByteOffset(GetElementPtrInst
*GEP
, bool &NeedsExtraction
);
423 /// Canonicalize array indices to pointer-size integers. This helps to
424 /// simplify the logic of splitting a GEP. For example, if a + b is a
425 /// pointer-size integer, we have
426 /// gep base, a + b = gep (gep base, a), b
427 /// However, this equality may not hold if the size of a + b is smaller than
428 /// the pointer size, because LLVM conceptually sign-extends GEP indices to
429 /// pointer size before computing the address
430 /// (http://llvm.org/docs/LangRef.html#id181).
432 /// This canonicalization is very likely already done in clang and
433 /// instcombine. Therefore, the program will probably remain the same.
435 /// Returns true if the module changes.
437 /// Verified in @i32_add in split-gep.ll
438 bool canonicalizeArrayIndicesToIndexSize(GetElementPtrInst
*GEP
);
440 /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
441 /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
442 /// the constant offset. After extraction, it becomes desirable to reunion the
443 /// distributed sexts. For example,
445 /// &a[sext(i +nsw (j +nsw 5)]
446 /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)]
447 /// => constant extraction &a[sext(i) + sext(j)] + 5
448 /// => reunion &a[sext(i +nsw j)] + 5
449 bool reuniteExts(Function
&F
);
451 /// A helper that reunites sexts in an instruction.
452 bool reuniteExts(Instruction
*I
);
454 /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
455 Instruction
*findClosestMatchingDominator(
456 ExprKey Key
, Instruction
*Dominatee
,
457 DenseMap
<ExprKey
, SmallVector
<Instruction
*, 2>> &DominatingExprs
);
459 /// Verify F is free of dead code.
460 void verifyNoDeadCode(Function
&F
);
462 bool hasMoreThanOneUseInLoop(Value
*v
, Loop
*L
);
464 // Swap the index operand of two GEP.
465 void swapGEPOperand(GetElementPtrInst
*First
, GetElementPtrInst
*Second
);
467 // Check if it is safe to swap operand of two GEP.
468 bool isLegalToSwapOperand(GetElementPtrInst
*First
, GetElementPtrInst
*Second
,
471 const DataLayout
*DL
= nullptr;
472 DominatorTree
*DT
= nullptr;
474 TargetLibraryInfo
*TLI
;
475 // Retrieved lazily since not always used.
476 function_ref
<TargetTransformInfo
&(Function
&)> GetTTI
;
478 /// Whether to lower a GEP with multiple indices into arithmetic operations or
479 /// multiple GEPs with a single index.
482 DenseMap
<ExprKey
, SmallVector
<Instruction
*, 2>> DominatingAdds
;
483 DenseMap
<ExprKey
, SmallVector
<Instruction
*, 2>> DominatingSubs
;
486 } // end anonymous namespace
488 char SeparateConstOffsetFromGEPLegacyPass::ID
= 0;
490 INITIALIZE_PASS_BEGIN(
491 SeparateConstOffsetFromGEPLegacyPass
, "separate-const-offset-from-gep",
492 "Split GEPs to a variadic base and a constant offset for better CSE", false,
494 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
495 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
496 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
497 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
498 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
500 SeparateConstOffsetFromGEPLegacyPass
, "separate-const-offset-from-gep",
501 "Split GEPs to a variadic base and a constant offset for better CSE", false,
504 FunctionPass
*llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP
) {
505 return new SeparateConstOffsetFromGEPLegacyPass(LowerGEP
);
508 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended
,
512 // We only consider ADD, SUB and OR, because a non-zero constant found in
513 // expressions composed of these operations can be easily hoisted as a
514 // constant offset by reassociation.
515 if (BO
->getOpcode() != Instruction::Add
&&
516 BO
->getOpcode() != Instruction::Sub
&&
517 BO
->getOpcode() != Instruction::Or
) {
521 Value
*LHS
= BO
->getOperand(0), *RHS
= BO
->getOperand(1);
522 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
523 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
524 // FIXME: this does not appear to be covered by any tests
525 // (with x86/aarch64 backends at least)
526 if (BO
->getOpcode() == Instruction::Or
&&
527 !haveNoCommonBitsSet(LHS
, RHS
, SimplifyQuery(DL
, DT
, /*AC*/ nullptr, BO
)))
530 // FIXME: We don't currently support constants from the RHS of subs,
531 // when we are zero-extended, because we need a way to zero-extended
532 // them before they are negated.
533 if (ZeroExtended
&& !SignExtended
&& BO
->getOpcode() == Instruction::Sub
)
536 // In addition, tracing into BO requires that its surrounding s/zext (if
537 // any) is distributable to both operands.
539 // Suppose BO = A op B.
540 // SignExtended | ZeroExtended | Distributable?
541 // --------------+--------------+----------------------------------
542 // 0 | 0 | true because no s/zext exists
543 // 0 | 1 | zext(BO) == zext(A) op zext(B)
544 // 1 | 0 | sext(BO) == sext(A) op sext(B)
545 // 1 | 1 | zext(sext(BO)) ==
546 // | | zext(sext(A)) op zext(sext(B))
547 if (BO
->getOpcode() == Instruction::Add
&& !ZeroExtended
&& NonNegative
) {
548 // If a + b >= 0 and (a >= 0 or b >= 0), then
549 // sext(a + b) = sext(a) + sext(b)
550 // even if the addition is not marked nsw.
552 // Leveraging this invariant, we can trace into an sext'ed inbound GEP
553 // index if the constant offset is non-negative.
555 // Verified in @sext_add in split-gep.ll.
556 if (ConstantInt
*ConstLHS
= dyn_cast
<ConstantInt
>(LHS
)) {
557 if (!ConstLHS
->isNegative())
560 if (ConstantInt
*ConstRHS
= dyn_cast
<ConstantInt
>(RHS
)) {
561 if (!ConstRHS
->isNegative())
566 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
567 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
568 if (BO
->getOpcode() == Instruction::Add
||
569 BO
->getOpcode() == Instruction::Sub
) {
570 if (SignExtended
&& !BO
->hasNoSignedWrap())
572 if (ZeroExtended
&& !BO
->hasNoUnsignedWrap())
579 APInt
ConstantOffsetExtractor::findInEitherOperand(BinaryOperator
*BO
,
582 // Save off the current height of the chain, in case we need to restore it.
583 size_t ChainLength
= UserChain
.size();
585 // BO being non-negative does not shed light on whether its operands are
586 // non-negative. Clear the NonNegative flag here.
587 APInt ConstantOffset
= find(BO
->getOperand(0), SignExtended
, ZeroExtended
,
588 /* NonNegative */ false);
589 // If we found a constant offset in the left operand, stop and return that.
590 // This shortcut might cause us to miss opportunities of combining the
591 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
592 // However, such cases are probably already handled by -instcombine,
593 // given this pass runs after the standard optimizations.
594 if (ConstantOffset
!= 0) return ConstantOffset
;
596 // Reset the chain back to where it was when we started exploring this node,
597 // since visiting the LHS didn't pan out.
598 UserChain
.resize(ChainLength
);
600 ConstantOffset
= find(BO
->getOperand(1), SignExtended
, ZeroExtended
,
601 /* NonNegative */ false);
602 // If U is a sub operator, negate the constant offset found in the right
604 if (BO
->getOpcode() == Instruction::Sub
)
605 ConstantOffset
= -ConstantOffset
;
607 // If RHS wasn't a suitable candidate either, reset the chain again.
608 if (ConstantOffset
== 0)
609 UserChain
.resize(ChainLength
);
611 return ConstantOffset
;
614 APInt
ConstantOffsetExtractor::find(Value
*V
, bool SignExtended
,
615 bool ZeroExtended
, bool NonNegative
) {
616 // TODO(jingyue): We could trace into integer/pointer casts, such as
617 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
618 // integers because it gives good enough results for our benchmarks.
619 unsigned BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
621 // We cannot do much with Values that are not a User, such as an Argument.
622 User
*U
= dyn_cast
<User
>(V
);
623 if (U
== nullptr) return APInt(BitWidth
, 0);
625 APInt
ConstantOffset(BitWidth
, 0);
626 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
627 // Hooray, we found it!
628 ConstantOffset
= CI
->getValue();
629 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(V
)) {
630 // Trace into subexpressions for more hoisting opportunities.
631 if (CanTraceInto(SignExtended
, ZeroExtended
, BO
, NonNegative
))
632 ConstantOffset
= findInEitherOperand(BO
, SignExtended
, ZeroExtended
);
633 } else if (isa
<TruncInst
>(V
)) {
635 find(U
->getOperand(0), SignExtended
, ZeroExtended
, NonNegative
)
637 } else if (isa
<SExtInst
>(V
)) {
638 ConstantOffset
= find(U
->getOperand(0), /* SignExtended */ true,
639 ZeroExtended
, NonNegative
).sext(BitWidth
);
640 } else if (isa
<ZExtInst
>(V
)) {
641 // As an optimization, we can clear the SignExtended flag because
642 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
644 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
646 find(U
->getOperand(0), /* SignExtended */ false,
647 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth
);
650 // If we found a non-zero constant offset, add it to the path for
651 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
652 // help this optimization.
653 if (ConstantOffset
!= 0)
654 UserChain
.push_back(U
);
655 return ConstantOffset
;
658 Value
*ConstantOffsetExtractor::applyExts(Value
*V
) {
660 // ExtInsts is built in the use-def order. Therefore, we apply them to V
661 // in the reversed order.
662 for (CastInst
*I
: llvm::reverse(ExtInsts
)) {
663 if (Constant
*C
= dyn_cast
<Constant
>(Current
)) {
664 // Try to constant fold the cast.
665 Current
= ConstantFoldCastOperand(I
->getOpcode(), C
, I
->getType(), DL
);
670 Instruction
*Ext
= I
->clone();
671 Ext
->setOperand(0, Current
);
672 Ext
->insertBefore(IP
);
678 Value
*ConstantOffsetExtractor::rebuildWithoutConstOffset() {
679 distributeExtsAndCloneChain(UserChain
.size() - 1);
680 // Remove all nullptrs (used to be s/zext) from UserChain.
681 unsigned NewSize
= 0;
682 for (User
*I
: UserChain
) {
684 UserChain
[NewSize
] = I
;
688 UserChain
.resize(NewSize
);
689 return removeConstOffset(UserChain
.size() - 1);
693 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex
) {
694 User
*U
= UserChain
[ChainIndex
];
695 if (ChainIndex
== 0) {
696 assert(isa
<ConstantInt
>(U
));
697 // If U is a ConstantInt, applyExts will return a ConstantInt as well.
698 return UserChain
[ChainIndex
] = cast
<ConstantInt
>(applyExts(U
));
701 if (CastInst
*Cast
= dyn_cast
<CastInst
>(U
)) {
703 (isa
<SExtInst
>(Cast
) || isa
<ZExtInst
>(Cast
) || isa
<TruncInst
>(Cast
)) &&
704 "Only following instructions can be traced: sext, zext & trunc");
705 ExtInsts
.push_back(Cast
);
706 UserChain
[ChainIndex
] = nullptr;
707 return distributeExtsAndCloneChain(ChainIndex
- 1);
710 // Function find only trace into BinaryOperator and CastInst.
711 BinaryOperator
*BO
= cast
<BinaryOperator
>(U
);
712 // OpNo = which operand of BO is UserChain[ChainIndex - 1]
713 unsigned OpNo
= (BO
->getOperand(0) == UserChain
[ChainIndex
- 1] ? 0 : 1);
714 Value
*TheOther
= applyExts(BO
->getOperand(1 - OpNo
));
715 Value
*NextInChain
= distributeExtsAndCloneChain(ChainIndex
- 1);
717 BinaryOperator
*NewBO
= nullptr;
719 NewBO
= BinaryOperator::Create(BO
->getOpcode(), NextInChain
, TheOther
,
722 NewBO
= BinaryOperator::Create(BO
->getOpcode(), TheOther
, NextInChain
,
725 return UserChain
[ChainIndex
] = NewBO
;
728 Value
*ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex
) {
729 if (ChainIndex
== 0) {
730 assert(isa
<ConstantInt
>(UserChain
[ChainIndex
]));
731 return ConstantInt::getNullValue(UserChain
[ChainIndex
]->getType());
734 BinaryOperator
*BO
= cast
<BinaryOperator
>(UserChain
[ChainIndex
]);
735 assert((BO
->use_empty() || BO
->hasOneUse()) &&
736 "distributeExtsAndCloneChain clones each BinaryOperator in "
737 "UserChain, so no one should be used more than "
740 unsigned OpNo
= (BO
->getOperand(0) == UserChain
[ChainIndex
- 1] ? 0 : 1);
741 assert(BO
->getOperand(OpNo
) == UserChain
[ChainIndex
- 1]);
742 Value
*NextInChain
= removeConstOffset(ChainIndex
- 1);
743 Value
*TheOther
= BO
->getOperand(1 - OpNo
);
745 // If NextInChain is 0 and not the LHS of a sub, we can simplify the
746 // sub-expression to be just TheOther.
747 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(NextInChain
)) {
748 if (CI
->isZero() && !(BO
->getOpcode() == Instruction::Sub
&& OpNo
== 0))
752 BinaryOperator::BinaryOps NewOp
= BO
->getOpcode();
753 if (BO
->getOpcode() == Instruction::Or
) {
754 // Rebuild "or" as "add", because "or" may be invalid for the new
757 // For instance, given
758 // a | (b + 5) where a and b + 5 have no common bits,
759 // we can extract 5 as the constant offset.
761 // However, reusing the "or" in the new index would give us
763 // which does not equal a | (b + 5).
765 // Replacing the "or" with "add" is fine, because
766 // a | (b + 5) = a + (b + 5) = (a + b) + 5
767 NewOp
= Instruction::Add
;
770 BinaryOperator
*NewBO
;
772 NewBO
= BinaryOperator::Create(NewOp
, NextInChain
, TheOther
, "", IP
);
774 NewBO
= BinaryOperator::Create(NewOp
, TheOther
, NextInChain
, "", IP
);
780 Value
*ConstantOffsetExtractor::Extract(Value
*Idx
, GetElementPtrInst
*GEP
,
781 User
*&UserChainTail
,
782 const DominatorTree
*DT
) {
783 ConstantOffsetExtractor
Extractor(GEP
, DT
);
784 // Find a non-zero constant offset first.
785 APInt ConstantOffset
=
786 Extractor
.find(Idx
, /* SignExtended */ false, /* ZeroExtended */ false,
788 if (ConstantOffset
== 0) {
789 UserChainTail
= nullptr;
792 // Separates the constant offset from the GEP index.
793 Value
*IdxWithoutConstOffset
= Extractor
.rebuildWithoutConstOffset();
794 UserChainTail
= Extractor
.UserChain
.back();
795 return IdxWithoutConstOffset
;
798 int64_t ConstantOffsetExtractor::Find(Value
*Idx
, GetElementPtrInst
*GEP
,
799 const DominatorTree
*DT
) {
800 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
801 return ConstantOffsetExtractor(GEP
, DT
)
802 .find(Idx
, /* SignExtended */ false, /* ZeroExtended */ false,
807 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToIndexSize(
808 GetElementPtrInst
*GEP
) {
809 bool Changed
= false;
810 Type
*PtrIdxTy
= DL
->getIndexType(GEP
->getType());
811 gep_type_iterator GTI
= gep_type_begin(*GEP
);
812 for (User::op_iterator I
= GEP
->op_begin() + 1, E
= GEP
->op_end();
813 I
!= E
; ++I
, ++GTI
) {
814 // Skip struct member indices which must be i32.
815 if (GTI
.isSequential()) {
816 if ((*I
)->getType() != PtrIdxTy
) {
817 *I
= CastInst::CreateIntegerCast(*I
, PtrIdxTy
, true, "idxprom", GEP
);
826 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst
*GEP
,
827 bool &NeedsExtraction
) {
828 NeedsExtraction
= false;
829 int64_t AccumulativeByteOffset
= 0;
830 gep_type_iterator GTI
= gep_type_begin(*GEP
);
831 for (unsigned I
= 1, E
= GEP
->getNumOperands(); I
!= E
; ++I
, ++GTI
) {
832 if (GTI
.isSequential()) {
833 // Constant offsets of scalable types are not really constant.
834 if (GTI
.getIndexedType()->isScalableTy())
837 // Tries to extract a constant offset from this GEP index.
838 int64_t ConstantOffset
=
839 ConstantOffsetExtractor::Find(GEP
->getOperand(I
), GEP
, DT
);
840 if (ConstantOffset
!= 0) {
841 NeedsExtraction
= true;
842 // A GEP may have multiple indices. We accumulate the extracted
843 // constant offset to a byte offset, and later offset the remainder of
844 // the original GEP with this byte offset.
845 AccumulativeByteOffset
+=
846 ConstantOffset
* GTI
.getSequentialElementStride(*DL
);
848 } else if (LowerGEP
) {
849 StructType
*StTy
= GTI
.getStructType();
850 uint64_t Field
= cast
<ConstantInt
>(GEP
->getOperand(I
))->getZExtValue();
851 // Skip field 0 as the offset is always 0.
853 NeedsExtraction
= true;
854 AccumulativeByteOffset
+=
855 DL
->getStructLayout(StTy
)->getElementOffset(Field
);
859 return AccumulativeByteOffset
;
862 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
863 GetElementPtrInst
*Variadic
, int64_t AccumulativeByteOffset
) {
864 IRBuilder
<> Builder(Variadic
);
865 Type
*PtrIndexTy
= DL
->getIndexType(Variadic
->getType());
867 Value
*ResultPtr
= Variadic
->getOperand(0);
868 Loop
*L
= LI
->getLoopFor(Variadic
->getParent());
869 // Check if the base is not loop invariant or used more than once.
870 bool isSwapCandidate
=
871 L
&& L
->isLoopInvariant(ResultPtr
) &&
872 !hasMoreThanOneUseInLoop(ResultPtr
, L
);
873 Value
*FirstResult
= nullptr;
875 gep_type_iterator GTI
= gep_type_begin(*Variadic
);
876 // Create an ugly GEP for each sequential index. We don't create GEPs for
877 // structure indices, as they are accumulated in the constant offset index.
878 for (unsigned I
= 1, E
= Variadic
->getNumOperands(); I
!= E
; ++I
, ++GTI
) {
879 if (GTI
.isSequential()) {
880 Value
*Idx
= Variadic
->getOperand(I
);
881 // Skip zero indices.
882 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
))
886 APInt ElementSize
= APInt(PtrIndexTy
->getIntegerBitWidth(),
887 GTI
.getSequentialElementStride(*DL
));
888 // Scale the index by element size.
889 if (ElementSize
!= 1) {
890 if (ElementSize
.isPowerOf2()) {
891 Idx
= Builder
.CreateShl(
892 Idx
, ConstantInt::get(PtrIndexTy
, ElementSize
.logBase2()));
895 Builder
.CreateMul(Idx
, ConstantInt::get(PtrIndexTy
, ElementSize
));
898 // Create an ugly GEP with a single index for each index.
899 ResultPtr
= Builder
.CreatePtrAdd(ResultPtr
, Idx
, "uglygep");
900 if (FirstResult
== nullptr)
901 FirstResult
= ResultPtr
;
905 // Create a GEP with the constant offset index.
906 if (AccumulativeByteOffset
!= 0) {
907 Value
*Offset
= ConstantInt::get(PtrIndexTy
, AccumulativeByteOffset
);
908 ResultPtr
= Builder
.CreatePtrAdd(ResultPtr
, Offset
, "uglygep");
910 isSwapCandidate
= false;
912 // If we created a GEP with constant index, and the base is loop invariant,
913 // then we swap the first one with it, so LICM can move constant GEP out
915 auto *FirstGEP
= dyn_cast_or_null
<GetElementPtrInst
>(FirstResult
);
916 auto *SecondGEP
= dyn_cast
<GetElementPtrInst
>(ResultPtr
);
917 if (isSwapCandidate
&& isLegalToSwapOperand(FirstGEP
, SecondGEP
, L
))
918 swapGEPOperand(FirstGEP
, SecondGEP
);
920 Variadic
->replaceAllUsesWith(ResultPtr
);
921 Variadic
->eraseFromParent();
925 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst
*Variadic
,
926 int64_t AccumulativeByteOffset
) {
927 IRBuilder
<> Builder(Variadic
);
928 Type
*IntPtrTy
= DL
->getIntPtrType(Variadic
->getType());
929 assert(IntPtrTy
== DL
->getIndexType(Variadic
->getType()) &&
930 "Pointer type must match index type for arithmetic-based lowering of "
933 Value
*ResultPtr
= Builder
.CreatePtrToInt(Variadic
->getOperand(0), IntPtrTy
);
934 gep_type_iterator GTI
= gep_type_begin(*Variadic
);
935 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
936 // don't create arithmetics for structure indices, as they are accumulated
937 // in the constant offset index.
938 for (unsigned I
= 1, E
= Variadic
->getNumOperands(); I
!= E
; ++I
, ++GTI
) {
939 if (GTI
.isSequential()) {
940 Value
*Idx
= Variadic
->getOperand(I
);
941 // Skip zero indices.
942 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx
))
946 APInt ElementSize
= APInt(IntPtrTy
->getIntegerBitWidth(),
947 GTI
.getSequentialElementStride(*DL
));
948 // Scale the index by element size.
949 if (ElementSize
!= 1) {
950 if (ElementSize
.isPowerOf2()) {
951 Idx
= Builder
.CreateShl(
952 Idx
, ConstantInt::get(IntPtrTy
, ElementSize
.logBase2()));
954 Idx
= Builder
.CreateMul(Idx
, ConstantInt::get(IntPtrTy
, ElementSize
));
957 // Create an ADD for each index.
958 ResultPtr
= Builder
.CreateAdd(ResultPtr
, Idx
);
962 // Create an ADD for the constant offset index.
963 if (AccumulativeByteOffset
!= 0) {
964 ResultPtr
= Builder
.CreateAdd(
965 ResultPtr
, ConstantInt::get(IntPtrTy
, AccumulativeByteOffset
));
968 ResultPtr
= Builder
.CreateIntToPtr(ResultPtr
, Variadic
->getType());
969 Variadic
->replaceAllUsesWith(ResultPtr
);
970 Variadic
->eraseFromParent();
973 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst
*GEP
) {
975 if (GEP
->getType()->isVectorTy())
978 // The backend can already nicely handle the case where all indices are
980 if (GEP
->hasAllConstantIndices())
983 bool Changed
= canonicalizeArrayIndicesToIndexSize(GEP
);
985 bool NeedsExtraction
;
986 int64_t AccumulativeByteOffset
= accumulateByteOffset(GEP
, NeedsExtraction
);
988 if (!NeedsExtraction
)
991 TargetTransformInfo
&TTI
= GetTTI(*GEP
->getFunction());
993 // If LowerGEP is disabled, before really splitting the GEP, check whether the
994 // backend supports the addressing mode we are about to produce. If no, this
995 // splitting probably won't be beneficial.
996 // If LowerGEP is enabled, even the extracted constant offset can not match
997 // the addressing mode, we can still do optimizations to other lowered parts
998 // of variable indices. Therefore, we don't check for addressing modes in that
1001 unsigned AddrSpace
= GEP
->getPointerAddressSpace();
1002 if (!TTI
.isLegalAddressingMode(GEP
->getResultElementType(),
1003 /*BaseGV=*/nullptr, AccumulativeByteOffset
,
1004 /*HasBaseReg=*/true, /*Scale=*/0,
1010 // Remove the constant offset in each sequential index. The resultant GEP
1011 // computes the variadic base.
1012 // Notice that we don't remove struct field indices here. If LowerGEP is
1013 // disabled, a structure index is not accumulated and we still use the old
1014 // one. If LowerGEP is enabled, a structure index is accumulated in the
1015 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
1016 // handle the constant offset and won't need a new structure index.
1017 gep_type_iterator GTI
= gep_type_begin(*GEP
);
1018 for (unsigned I
= 1, E
= GEP
->getNumOperands(); I
!= E
; ++I
, ++GTI
) {
1019 if (GTI
.isSequential()) {
1020 // Constant offsets of scalable types are not really constant.
1021 if (GTI
.getIndexedType()->isScalableTy())
1024 // Splits this GEP index into a variadic part and a constant offset, and
1025 // uses the variadic part as the new index.
1026 Value
*OldIdx
= GEP
->getOperand(I
);
1027 User
*UserChainTail
;
1029 ConstantOffsetExtractor::Extract(OldIdx
, GEP
, UserChainTail
, DT
);
1030 if (NewIdx
!= nullptr) {
1031 // Switches to the index with the constant offset removed.
1032 GEP
->setOperand(I
, NewIdx
);
1033 // After switching to the new index, we can garbage-collect UserChain
1034 // and the old index if they are not used.
1035 RecursivelyDeleteTriviallyDeadInstructions(UserChainTail
);
1036 RecursivelyDeleteTriviallyDeadInstructions(OldIdx
);
1041 // Clear the inbounds attribute because the new index may be off-bound.
1045 // addr = gep inbounds float, float* p, i64 b
1047 // is transformed to:
1049 // addr2 = gep float, float* p, i64 a ; inbounds removed
1050 // addr = gep inbounds float, float* addr2, i64 5
1052 // If a is -4, although the old index b is in bounds, the new index a is
1053 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
1054 // inbounds keyword is not present, the offsets are added to the base
1055 // address with silently-wrapping two's complement arithmetic".
1056 // Therefore, the final code will be a semantically equivalent.
1058 // TODO(jingyue): do some range analysis to keep as many inbounds as
1059 // possible. GEPs with inbounds are more friendly to alias analysis.
1060 bool GEPWasInBounds
= GEP
->isInBounds();
1061 GEP
->setIsInBounds(false);
1063 // Lowers a GEP to either GEPs with a single index or arithmetic operations.
1065 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
1066 // arithmetic operations if the target uses alias analysis in codegen.
1067 // Additionally, pointers that aren't integral (and so can't be safely
1068 // converted to integers) or those whose offset size is different from their
1069 // pointer size (which means that doing integer arithmetic on them could
1070 // affect that data) can't be lowered in this way.
1071 unsigned AddrSpace
= GEP
->getPointerAddressSpace();
1072 bool PointerHasExtraData
= DL
->getPointerSizeInBits(AddrSpace
) !=
1073 DL
->getIndexSizeInBits(AddrSpace
);
1074 if (TTI
.useAA() || DL
->isNonIntegralAddressSpace(AddrSpace
) ||
1075 PointerHasExtraData
)
1076 lowerToSingleIndexGEPs(GEP
, AccumulativeByteOffset
);
1078 lowerToArithmetics(GEP
, AccumulativeByteOffset
);
1082 // No need to create another GEP if the accumulative byte offset is 0.
1083 if (AccumulativeByteOffset
== 0)
1086 // Offsets the base with the accumulative byte offset.
1091 // => add the offset
1093 // %gep2 ; clone of %gep
1094 // %new.gep = gep i8, %gep2, %offset
1095 // %gep ; will be removed
1098 // => replace all uses of %gep with %new.gep and remove %gep
1100 // %gep2 ; clone of %gep
1101 // %new.gep = gep i8, %gep2, %offset
1103 Instruction
*NewGEP
= GEP
->clone();
1104 NewGEP
->insertBefore(GEP
);
1106 Type
*PtrIdxTy
= DL
->getIndexType(GEP
->getType());
1107 IRBuilder
<> Builder(GEP
);
1108 NewGEP
= cast
<Instruction
>(Builder
.CreatePtrAdd(
1109 NewGEP
, ConstantInt::get(PtrIdxTy
, AccumulativeByteOffset
, true),
1110 GEP
->getName(), GEPWasInBounds
));
1111 NewGEP
->copyMetadata(*GEP
);
1113 GEP
->replaceAllUsesWith(NewGEP
);
1114 GEP
->eraseFromParent();
1119 bool SeparateConstOffsetFromGEPLegacyPass::runOnFunction(Function
&F
) {
1120 if (skipFunction(F
))
1122 auto *DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1123 auto *LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1124 auto *TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
1125 auto GetTTI
= [this](Function
&F
) -> TargetTransformInfo
& {
1126 return this->getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
1128 SeparateConstOffsetFromGEP
Impl(DT
, LI
, TLI
, GetTTI
, LowerGEP
);
1132 bool SeparateConstOffsetFromGEP::run(Function
&F
) {
1133 if (DisableSeparateConstOffsetFromGEP
)
1136 DL
= &F
.getParent()->getDataLayout();
1137 bool Changed
= false;
1138 for (BasicBlock
&B
: F
) {
1139 if (!DT
->isReachableFromEntry(&B
))
1142 for (Instruction
&I
: llvm::make_early_inc_range(B
))
1143 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(&I
))
1144 Changed
|= splitGEP(GEP
);
1145 // No need to split GEP ConstantExprs because all its indices are constant
1149 Changed
|= reuniteExts(F
);
1151 if (VerifyNoDeadCode
)
1152 verifyNoDeadCode(F
);
1157 Instruction
*SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1158 ExprKey Key
, Instruction
*Dominatee
,
1159 DenseMap
<ExprKey
, SmallVector
<Instruction
*, 2>> &DominatingExprs
) {
1160 auto Pos
= DominatingExprs
.find(Key
);
1161 if (Pos
== DominatingExprs
.end())
1164 auto &Candidates
= Pos
->second
;
1165 // Because we process the basic blocks in pre-order of the dominator tree, a
1166 // candidate that doesn't dominate the current instruction won't dominate any
1167 // future instruction either. Therefore, we pop it out of the stack. This
1168 // optimization makes the algorithm O(n).
1169 while (!Candidates
.empty()) {
1170 Instruction
*Candidate
= Candidates
.back();
1171 if (DT
->dominates(Candidate
, Dominatee
))
1173 Candidates
.pop_back();
1178 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction
*I
) {
1179 if (!I
->getType()->isIntOrIntVectorTy())
1183 // I: sext(LHS)+sext(RHS)
1184 // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1185 // TODO: handle zext
1186 Value
*LHS
= nullptr, *RHS
= nullptr;
1187 if (match(I
, m_Add(m_SExt(m_Value(LHS
)), m_SExt(m_Value(RHS
))))) {
1188 if (LHS
->getType() == RHS
->getType()) {
1189 ExprKey Key
= createNormalizedCommutablePair(LHS
, RHS
);
1190 if (auto *Dom
= findClosestMatchingDominator(Key
, I
, DominatingAdds
)) {
1191 Instruction
*NewSExt
= new SExtInst(Dom
, I
->getType(), "", I
);
1192 NewSExt
->takeName(I
);
1193 I
->replaceAllUsesWith(NewSExt
);
1194 RecursivelyDeleteTriviallyDeadInstructions(I
);
1198 } else if (match(I
, m_Sub(m_SExt(m_Value(LHS
)), m_SExt(m_Value(RHS
))))) {
1199 if (LHS
->getType() == RHS
->getType()) {
1201 findClosestMatchingDominator({LHS
, RHS
}, I
, DominatingSubs
)) {
1202 Instruction
*NewSExt
= new SExtInst(Dom
, I
->getType(), "", I
);
1203 NewSExt
->takeName(I
);
1204 I
->replaceAllUsesWith(NewSExt
);
1205 RecursivelyDeleteTriviallyDeadInstructions(I
);
1211 // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1212 if (match(I
, m_NSWAdd(m_Value(LHS
), m_Value(RHS
)))) {
1213 if (programUndefinedIfPoison(I
)) {
1214 ExprKey Key
= createNormalizedCommutablePair(LHS
, RHS
);
1215 DominatingAdds
[Key
].push_back(I
);
1217 } else if (match(I
, m_NSWSub(m_Value(LHS
), m_Value(RHS
)))) {
1218 if (programUndefinedIfPoison(I
))
1219 DominatingSubs
[{LHS
, RHS
}].push_back(I
);
1224 bool SeparateConstOffsetFromGEP::reuniteExts(Function
&F
) {
1225 bool Changed
= false;
1226 DominatingAdds
.clear();
1227 DominatingSubs
.clear();
1228 for (const auto Node
: depth_first(DT
)) {
1229 BasicBlock
*BB
= Node
->getBlock();
1230 for (Instruction
&I
: llvm::make_early_inc_range(*BB
))
1231 Changed
|= reuniteExts(&I
);
1236 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function
&F
) {
1237 for (BasicBlock
&B
: F
) {
1238 for (Instruction
&I
: B
) {
1239 if (isInstructionTriviallyDead(&I
)) {
1240 std::string ErrMessage
;
1241 raw_string_ostream
RSO(ErrMessage
);
1242 RSO
<< "Dead instruction detected!\n" << I
<< "\n";
1243 llvm_unreachable(RSO
.str().c_str());
1249 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1250 GetElementPtrInst
*FirstGEP
, GetElementPtrInst
*SecondGEP
, Loop
*CurLoop
) {
1251 if (!FirstGEP
|| !FirstGEP
->hasOneUse())
1254 if (!SecondGEP
|| FirstGEP
->getParent() != SecondGEP
->getParent())
1257 if (FirstGEP
== SecondGEP
)
1260 unsigned FirstNum
= FirstGEP
->getNumOperands();
1261 unsigned SecondNum
= SecondGEP
->getNumOperands();
1262 // Give up if the number of operands are not 2.
1263 if (FirstNum
!= SecondNum
|| FirstNum
!= 2)
1266 Value
*FirstBase
= FirstGEP
->getOperand(0);
1267 Value
*SecondBase
= SecondGEP
->getOperand(0);
1268 Value
*FirstOffset
= FirstGEP
->getOperand(1);
1269 // Give up if the index of the first GEP is loop invariant.
1270 if (CurLoop
->isLoopInvariant(FirstOffset
))
1273 // Give up if base doesn't have same type.
1274 if (FirstBase
->getType() != SecondBase
->getType())
1277 Instruction
*FirstOffsetDef
= dyn_cast
<Instruction
>(FirstOffset
);
1279 // Check if the second operand of first GEP has constant coefficient.
1280 // For an example, for the following code, we won't gain anything by
1281 // hoisting the second GEP out because the second GEP can be folded away.
1282 // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1283 // %67 = shl i64 %scevgep.sum.ur159, 2
1284 // %uglygep160 = getelementptr i8* %65, i64 %67
1285 // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1287 // Skip constant shift instruction which may be generated by Splitting GEPs.
1288 if (FirstOffsetDef
&& FirstOffsetDef
->isShift() &&
1289 isa
<ConstantInt
>(FirstOffsetDef
->getOperand(1)))
1290 FirstOffsetDef
= dyn_cast
<Instruction
>(FirstOffsetDef
->getOperand(0));
1292 // Give up if FirstOffsetDef is an Add or Sub with constant.
1293 // Because it may not profitable at all due to constant folding.
1295 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(FirstOffsetDef
)) {
1296 unsigned opc
= BO
->getOpcode();
1297 if ((opc
== Instruction::Add
|| opc
== Instruction::Sub
) &&
1298 (isa
<ConstantInt
>(BO
->getOperand(0)) ||
1299 isa
<ConstantInt
>(BO
->getOperand(1))))
1305 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value
*V
, Loop
*L
) {
1307 for (User
*U
: V
->users()) {
1308 if (Instruction
*User
= dyn_cast
<Instruction
>(U
))
1309 if (L
->contains(User
))
1310 if (++UsesInLoop
> 1)
1316 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst
*First
,
1317 GetElementPtrInst
*Second
) {
1318 Value
*Offset1
= First
->getOperand(1);
1319 Value
*Offset2
= Second
->getOperand(1);
1320 First
->setOperand(1, Offset2
);
1321 Second
->setOperand(1, Offset1
);
1323 // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1324 const DataLayout
&DAL
= First
->getModule()->getDataLayout();
1325 APInt
Offset(DAL
.getIndexSizeInBits(
1326 cast
<PointerType
>(First
->getType())->getAddressSpace()),
1329 First
->stripAndAccumulateInBoundsConstantOffsets(DAL
, Offset
);
1330 uint64_t ObjectSize
;
1331 if (!getObjectSize(NewBase
, ObjectSize
, DAL
, TLI
) ||
1332 Offset
.ugt(ObjectSize
)) {
1333 First
->setIsInBounds(false);
1334 Second
->setIsInBounds(false);
1336 First
->setIsInBounds(true);
1339 void SeparateConstOffsetFromGEPPass::printPipeline(
1340 raw_ostream
&OS
, function_ref
<StringRef(StringRef
)> MapClassName2PassName
) {
1341 static_cast<PassInfoMixin
<SeparateConstOffsetFromGEPPass
> *>(this)
1342 ->printPipeline(OS
, MapClassName2PassName
);
1350 SeparateConstOffsetFromGEPPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
1351 auto *DT
= &AM
.getResult
<DominatorTreeAnalysis
>(F
);
1352 auto *LI
= &AM
.getResult
<LoopAnalysis
>(F
);
1353 auto *TLI
= &AM
.getResult
<TargetLibraryAnalysis
>(F
);
1354 auto GetTTI
= [&AM
](Function
&F
) -> TargetTransformInfo
& {
1355 return AM
.getResult
<TargetIRAnalysis
>(F
);
1357 SeparateConstOffsetFromGEP
Impl(DT
, LI
, TLI
, GetTTI
, LowerGEP
);
1359 return PreservedAnalyses::all();
1360 PreservedAnalyses PA
;
1361 PA
.preserveSet
<CFGAnalyses
>();