1 //===- CallPromotionUtils.cpp - Utilities for call promotion ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements utilities useful for promoting indirect call sites to
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
15 #include "llvm/Analysis/Loads.h"
16 #include "llvm/Analysis/TypeMetadataUtils.h"
17 #include "llvm/IR/AttributeMask.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 #define DEBUG_TYPE "call-promotion-utils"
26 /// Fix-up phi nodes in an invoke instruction's normal destination.
28 /// After versioning an invoke instruction, values coming from the original
29 /// block will now be coming from the "merge" block. For example, in the code
33 /// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
36 /// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
39 /// %t2 = phi i32 [ %t0, %then_bb ], [ %t1, %else_bb ]
43 /// %t3 = phi i32 [ %x, %orig_bb ], ...
45 /// "orig_bb" is no longer a predecessor of "normal_dst", so the phi nodes in
46 /// "normal_dst" must be fixed to refer to "merge_bb":
49 /// %t3 = phi i32 [ %x, %merge_bb ], ...
51 static void fixupPHINodeForNormalDest(InvokeInst
*Invoke
, BasicBlock
*OrigBlock
,
52 BasicBlock
*MergeBlock
) {
53 for (PHINode
&Phi
: Invoke
->getNormalDest()->phis()) {
54 int Idx
= Phi
.getBasicBlockIndex(OrigBlock
);
57 Phi
.setIncomingBlock(Idx
, MergeBlock
);
61 /// Fix-up phi nodes in an invoke instruction's unwind destination.
63 /// After versioning an invoke instruction, values coming from the original
64 /// block will now be coming from either the "then" block or the "else" block.
65 /// For example, in the code below:
68 /// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
71 /// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
74 /// %t3 = phi i32 [ %x, %orig_bb ], ...
76 /// "orig_bb" is no longer a predecessor of "unwind_dst", so the phi nodes in
77 /// "unwind_dst" must be fixed to refer to "then_bb" and "else_bb":
80 /// %t3 = phi i32 [ %x, %then_bb ], [ %x, %else_bb ], ...
82 static void fixupPHINodeForUnwindDest(InvokeInst
*Invoke
, BasicBlock
*OrigBlock
,
83 BasicBlock
*ThenBlock
,
84 BasicBlock
*ElseBlock
) {
85 for (PHINode
&Phi
: Invoke
->getUnwindDest()->phis()) {
86 int Idx
= Phi
.getBasicBlockIndex(OrigBlock
);
89 auto *V
= Phi
.getIncomingValue(Idx
);
90 Phi
.setIncomingBlock(Idx
, ThenBlock
);
91 Phi
.addIncoming(V
, ElseBlock
);
95 /// Create a phi node for the returned value of a call or invoke instruction.
97 /// After versioning a call or invoke instruction that returns a value, we have
98 /// to merge the value of the original and new instructions. We do this by
99 /// creating a phi node and replacing uses of the original instruction with this
102 /// For example, if \p OrigInst is defined in "else_bb" and \p NewInst is
103 /// defined in "then_bb", we create the following phi node:
105 /// ; Uses of the original instruction are replaced by uses of the phi node.
106 /// %t0 = phi i32 [ %orig_inst, %else_bb ], [ %new_inst, %then_bb ],
108 static void createRetPHINode(Instruction
*OrigInst
, Instruction
*NewInst
,
109 BasicBlock
*MergeBlock
, IRBuilder
<> &Builder
) {
111 if (OrigInst
->getType()->isVoidTy() || OrigInst
->use_empty())
114 Builder
.SetInsertPoint(MergeBlock
, MergeBlock
->begin());
115 PHINode
*Phi
= Builder
.CreatePHI(OrigInst
->getType(), 0);
116 SmallVector
<User
*, 16> UsersToUpdate(OrigInst
->users());
117 for (User
*U
: UsersToUpdate
)
118 U
->replaceUsesOfWith(OrigInst
, Phi
);
119 Phi
->addIncoming(OrigInst
, OrigInst
->getParent());
120 Phi
->addIncoming(NewInst
, NewInst
->getParent());
123 /// Cast a call or invoke instruction to the given type.
125 /// When promoting a call site, the return type of the call site might not match
126 /// that of the callee. If this is the case, we have to cast the returned value
127 /// to the correct type. The location of the cast depends on if we have a call
128 /// or invoke instruction.
130 /// For example, if the call instruction below requires a bitcast after
134 /// %t0 = call i32 @func()
137 /// The bitcast is placed after the call instruction:
140 /// ; Uses of the original return value are replaced by uses of the bitcast.
141 /// %t0 = call i32 @func()
142 /// %t1 = bitcast i32 %t0 to ...
145 /// A similar transformation is performed for invoke instructions. However,
146 /// since invokes are terminating, a new block is created for the bitcast. For
147 /// example, if the invoke instruction below requires a bitcast after promotion:
150 /// %t0 = invoke i32 @func() to label %normal_dst unwind label %unwind_dst
152 /// The edge between the original block and the invoke's normal destination is
153 /// split, and the bitcast is placed there:
156 /// %t0 = invoke i32 @func() to label %split_bb unwind label %unwind_dst
159 /// ; Uses of the original return value are replaced by uses of the bitcast.
160 /// %t1 = bitcast i32 %t0 to ...
161 /// br label %normal_dst
163 static void createRetBitCast(CallBase
&CB
, Type
*RetTy
, CastInst
**RetBitCast
) {
165 // Save the users of the calling instruction. These uses will be changed to
166 // use the bitcast after we create it.
167 SmallVector
<User
*, 16> UsersToUpdate(CB
.users());
169 // Determine an appropriate location to create the bitcast for the return
170 // value. The location depends on if we have a call or invoke instruction.
171 Instruction
*InsertBefore
= nullptr;
172 if (auto *Invoke
= dyn_cast
<InvokeInst
>(&CB
))
174 &SplitEdge(Invoke
->getParent(), Invoke
->getNormalDest())->front();
176 InsertBefore
= &*std::next(CB
.getIterator());
178 // Bitcast the return value to the correct type.
179 auto *Cast
= CastInst::CreateBitOrPointerCast(&CB
, RetTy
, "", InsertBefore
);
183 // Replace all the original uses of the calling instruction with the bitcast.
184 for (User
*U
: UsersToUpdate
)
185 U
->replaceUsesOfWith(&CB
, Cast
);
188 /// Predicate and clone the given call site.
190 /// This function creates an if-then-else structure at the location of the call
191 /// site. The "if" condition compares the call site's called value to the given
192 /// callee. The original call site is moved into the "else" block, and a clone
193 /// of the call site is placed in the "then" block. The cloned instruction is
196 /// For example, the call instruction below:
199 /// %t0 = call i32 %ptr()
202 /// Is replace by the following:
205 /// %cond = icmp eq i32 ()* %ptr, @func
206 /// br i1 %cond, %then_bb, %else_bb
209 /// ; The clone of the original call instruction is placed in the "then"
210 /// ; block. It is not yet promoted.
211 /// %t1 = call i32 %ptr()
215 /// ; The original call instruction is moved to the "else" block.
216 /// %t0 = call i32 %ptr()
220 /// ; Uses of the original call instruction are replaced by uses of the phi
222 /// %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
225 /// A similar transformation is performed for invoke instructions. However,
226 /// since invokes are terminating, more work is required. For example, the
227 /// invoke instruction below:
230 /// %t0 = invoke %ptr() to label %normal_dst unwind label %unwind_dst
232 /// Is replace by the following:
235 /// %cond = icmp eq i32 ()* %ptr, @func
236 /// br i1 %cond, %then_bb, %else_bb
239 /// ; The clone of the original invoke instruction is placed in the "then"
240 /// ; block, and its normal destination is set to the "merge" block. It is
241 /// ; not yet promoted.
242 /// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
245 /// ; The original invoke instruction is moved into the "else" block, and
246 /// ; its normal destination is set to the "merge" block.
247 /// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
250 /// ; Uses of the original invoke instruction are replaced by uses of the
251 /// ; phi node, and the merge block branches to the normal destination.
252 /// %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
255 /// An indirect musttail call is processed slightly differently in that:
256 /// 1. No merge block needed for the orginal and the cloned callsite, since
257 /// either one ends the flow. No phi node is needed either.
258 /// 2. The return statement following the original call site is duplicated too
259 /// and placed immediately after the cloned call site per the IR convention.
261 /// For example, the musttail call instruction below:
264 /// %t0 = musttail call i32 %ptr()
267 /// Is replaced by the following:
270 /// %cond = icmp eq i32 ()* %ptr, @func
271 /// br i1 %cond, %then_bb, %orig_bb
274 /// ; The clone of the original call instruction is placed in the "then"
275 /// ; block. It is not yet promoted.
276 /// %t1 = musttail call i32 %ptr()
280 /// ; The original call instruction stays in its original block.
281 /// %t0 = musttail call i32 %ptr()
283 CallBase
&llvm::versionCallSite(CallBase
&CB
, Value
*Callee
,
284 MDNode
*BranchWeights
) {
286 IRBuilder
<> Builder(&CB
);
287 CallBase
*OrigInst
= &CB
;
288 BasicBlock
*OrigBlock
= OrigInst
->getParent();
290 // Create the compare. The called value and callee must have the same type to
292 if (CB
.getCalledOperand()->getType() != Callee
->getType())
293 Callee
= Builder
.CreateBitCast(Callee
, CB
.getCalledOperand()->getType());
294 auto *Cond
= Builder
.CreateICmpEQ(CB
.getCalledOperand(), Callee
);
296 if (OrigInst
->isMustTailCall()) {
297 // Create an if-then structure. The original instruction stays in its block,
298 // and a clone of the original instruction is placed in the "then" block.
299 Instruction
*ThenTerm
=
300 SplitBlockAndInsertIfThen(Cond
, &CB
, false, BranchWeights
);
301 BasicBlock
*ThenBlock
= ThenTerm
->getParent();
302 ThenBlock
->setName("if.true.direct_targ");
303 CallBase
*NewInst
= cast
<CallBase
>(OrigInst
->clone());
304 NewInst
->insertBefore(ThenTerm
);
306 // Place a clone of the optional bitcast after the new call site.
307 Value
*NewRetVal
= NewInst
;
308 auto Next
= OrigInst
->getNextNode();
309 if (auto *BitCast
= dyn_cast_or_null
<BitCastInst
>(Next
)) {
310 assert(BitCast
->getOperand(0) == OrigInst
&&
311 "bitcast following musttail call must use the call");
312 auto NewBitCast
= BitCast
->clone();
313 NewBitCast
->replaceUsesOfWith(OrigInst
, NewInst
);
314 NewBitCast
->insertBefore(ThenTerm
);
315 NewRetVal
= NewBitCast
;
316 Next
= BitCast
->getNextNode();
319 // Place a clone of the return instruction after the new call site.
320 ReturnInst
*Ret
= dyn_cast_or_null
<ReturnInst
>(Next
);
321 assert(Ret
&& "musttail call must precede a ret with an optional bitcast");
322 auto NewRet
= Ret
->clone();
323 if (Ret
->getReturnValue())
324 NewRet
->replaceUsesOfWith(Ret
->getReturnValue(), NewRetVal
);
325 NewRet
->insertBefore(ThenTerm
);
327 // A return instructions is terminating, so we don't need the terminator
328 // instruction just created.
329 ThenTerm
->eraseFromParent();
334 // Create an if-then-else structure. The original instruction is moved into
335 // the "else" block, and a clone of the original instruction is placed in the
337 Instruction
*ThenTerm
= nullptr;
338 Instruction
*ElseTerm
= nullptr;
339 SplitBlockAndInsertIfThenElse(Cond
, &CB
, &ThenTerm
, &ElseTerm
, BranchWeights
);
340 BasicBlock
*ThenBlock
= ThenTerm
->getParent();
341 BasicBlock
*ElseBlock
= ElseTerm
->getParent();
342 BasicBlock
*MergeBlock
= OrigInst
->getParent();
344 ThenBlock
->setName("if.true.direct_targ");
345 ElseBlock
->setName("if.false.orig_indirect");
346 MergeBlock
->setName("if.end.icp");
348 CallBase
*NewInst
= cast
<CallBase
>(OrigInst
->clone());
349 OrigInst
->moveBefore(ElseTerm
);
350 NewInst
->insertBefore(ThenTerm
);
352 // If the original call site is an invoke instruction, we have extra work to
353 // do since invoke instructions are terminating. We have to fix-up phi nodes
354 // in the invoke's normal and unwind destinations.
355 if (auto *OrigInvoke
= dyn_cast
<InvokeInst
>(OrigInst
)) {
356 auto *NewInvoke
= cast
<InvokeInst
>(NewInst
);
358 // Invoke instructions are terminating, so we don't need the terminator
359 // instructions that were just created.
360 ThenTerm
->eraseFromParent();
361 ElseTerm
->eraseFromParent();
363 // Branch from the "merge" block to the original normal destination.
364 Builder
.SetInsertPoint(MergeBlock
);
365 Builder
.CreateBr(OrigInvoke
->getNormalDest());
367 // Fix-up phi nodes in the original invoke's normal and unwind destinations.
368 fixupPHINodeForNormalDest(OrigInvoke
, OrigBlock
, MergeBlock
);
369 fixupPHINodeForUnwindDest(OrigInvoke
, MergeBlock
, ThenBlock
, ElseBlock
);
371 // Now set the normal destinations of the invoke instructions to be the
373 OrigInvoke
->setNormalDest(MergeBlock
);
374 NewInvoke
->setNormalDest(MergeBlock
);
377 // Create a phi node for the returned value of the call site.
378 createRetPHINode(OrigInst
, NewInst
, MergeBlock
, Builder
);
383 bool llvm::isLegalToPromote(const CallBase
&CB
, Function
*Callee
,
384 const char **FailureReason
) {
385 assert(!CB
.getCalledFunction() && "Only indirect call sites can be promoted");
387 auto &DL
= Callee
->getParent()->getDataLayout();
389 // Check the return type. The callee's return value type must be bitcast
390 // compatible with the call site's type.
391 Type
*CallRetTy
= CB
.getType();
392 Type
*FuncRetTy
= Callee
->getReturnType();
393 if (CallRetTy
!= FuncRetTy
)
394 if (!CastInst::isBitOrNoopPointerCastable(FuncRetTy
, CallRetTy
, DL
)) {
396 *FailureReason
= "Return type mismatch";
400 // The number of formal arguments of the callee.
401 unsigned NumParams
= Callee
->getFunctionType()->getNumParams();
403 // The number of actual arguments in the call.
404 unsigned NumArgs
= CB
.arg_size();
406 // Check the number of arguments. The callee and call site must agree on the
407 // number of arguments.
408 if (NumArgs
!= NumParams
&& !Callee
->isVarArg()) {
410 *FailureReason
= "The number of arguments mismatch";
414 // Check the argument types. The callee's formal argument types must be
415 // bitcast compatible with the corresponding actual argument types of the call
418 for (; I
< NumParams
; ++I
) {
419 // Make sure that the callee and call agree on byval/inalloca. The types do
420 // not have to match.
421 if (Callee
->hasParamAttribute(I
, Attribute::ByVal
) !=
422 CB
.getAttributes().hasParamAttr(I
, Attribute::ByVal
)) {
424 *FailureReason
= "byval mismatch";
427 if (Callee
->hasParamAttribute(I
, Attribute::InAlloca
) !=
428 CB
.getAttributes().hasParamAttr(I
, Attribute::InAlloca
)) {
430 *FailureReason
= "inalloca mismatch";
434 Type
*FormalTy
= Callee
->getFunctionType()->getFunctionParamType(I
);
435 Type
*ActualTy
= CB
.getArgOperand(I
)->getType();
436 if (FormalTy
== ActualTy
)
438 if (!CastInst::isBitOrNoopPointerCastable(ActualTy
, FormalTy
, DL
)) {
440 *FailureReason
= "Argument type mismatch";
444 // MustTail call needs stricter type match. See
445 // Verifier::verifyMustTailCall().
446 if (CB
.isMustTailCall()) {
447 PointerType
*PF
= dyn_cast
<PointerType
>(FormalTy
);
448 PointerType
*PA
= dyn_cast
<PointerType
>(ActualTy
);
449 if (!PF
|| !PA
|| PF
->getAddressSpace() != PA
->getAddressSpace()) {
451 *FailureReason
= "Musttail call Argument type mismatch";
456 for (; I
< NumArgs
; I
++) {
457 // Vararg functions can have more arguments than parameters.
458 assert(Callee
->isVarArg());
459 if (CB
.paramHasAttr(I
, Attribute::StructRet
)) {
461 *FailureReason
= "SRet arg to vararg function";
469 CallBase
&llvm::promoteCall(CallBase
&CB
, Function
*Callee
,
470 CastInst
**RetBitCast
) {
471 assert(!CB
.getCalledFunction() && "Only indirect call sites can be promoted");
473 // Set the called function of the call site to be the given callee (but don't
475 CB
.setCalledOperand(Callee
);
477 // Since the call site will no longer be direct, we must clear metadata that
478 // is only appropriate for indirect calls. This includes !prof and !callees
480 CB
.setMetadata(LLVMContext::MD_prof
, nullptr);
481 CB
.setMetadata(LLVMContext::MD_callees
, nullptr);
483 // If the function type of the call site matches that of the callee, no
484 // additional work is required.
485 if (CB
.getFunctionType() == Callee
->getFunctionType())
488 // Save the return types of the call site and callee.
489 Type
*CallSiteRetTy
= CB
.getType();
490 Type
*CalleeRetTy
= Callee
->getReturnType();
492 // Change the function type of the call site the match that of the callee.
493 CB
.mutateFunctionType(Callee
->getFunctionType());
495 // Inspect the arguments of the call site. If an argument's type doesn't
496 // match the corresponding formal argument's type in the callee, bitcast it
497 // to the correct type.
498 auto CalleeType
= Callee
->getFunctionType();
499 auto CalleeParamNum
= CalleeType
->getNumParams();
501 LLVMContext
&Ctx
= Callee
->getContext();
502 const AttributeList
&CallerPAL
= CB
.getAttributes();
503 // The new list of argument attributes.
504 SmallVector
<AttributeSet
, 4> NewArgAttrs
;
505 bool AttributeChanged
= false;
507 for (unsigned ArgNo
= 0; ArgNo
< CalleeParamNum
; ++ArgNo
) {
508 auto *Arg
= CB
.getArgOperand(ArgNo
);
509 Type
*FormalTy
= CalleeType
->getParamType(ArgNo
);
510 Type
*ActualTy
= Arg
->getType();
511 if (FormalTy
!= ActualTy
) {
512 auto *Cast
= CastInst::CreateBitOrPointerCast(Arg
, FormalTy
, "", &CB
);
513 CB
.setArgOperand(ArgNo
, Cast
);
515 // Remove any incompatible attributes for the argument.
516 AttrBuilder
ArgAttrs(Ctx
, CallerPAL
.getParamAttrs(ArgNo
));
517 ArgAttrs
.remove(AttributeFuncs::typeIncompatible(FormalTy
));
519 // We may have a different byval/inalloca type.
520 if (ArgAttrs
.getByValType())
521 ArgAttrs
.addByValAttr(Callee
->getParamByValType(ArgNo
));
522 if (ArgAttrs
.getInAllocaType())
523 ArgAttrs
.addInAllocaAttr(Callee
->getParamInAllocaType(ArgNo
));
525 NewArgAttrs
.push_back(AttributeSet::get(Ctx
, ArgAttrs
));
526 AttributeChanged
= true;
528 NewArgAttrs
.push_back(CallerPAL
.getParamAttrs(ArgNo
));
531 // If the return type of the call site doesn't match that of the callee, cast
532 // the returned value to the appropriate type.
533 // Remove any incompatible return value attribute.
534 AttrBuilder
RAttrs(Ctx
, CallerPAL
.getRetAttrs());
535 if (!CallSiteRetTy
->isVoidTy() && CallSiteRetTy
!= CalleeRetTy
) {
536 createRetBitCast(CB
, CallSiteRetTy
, RetBitCast
);
537 RAttrs
.remove(AttributeFuncs::typeIncompatible(CalleeRetTy
));
538 AttributeChanged
= true;
541 // Set the new callsite attribute.
542 if (AttributeChanged
)
543 CB
.setAttributes(AttributeList::get(Ctx
, CallerPAL
.getFnAttrs(),
544 AttributeSet::get(Ctx
, RAttrs
),
550 CallBase
&llvm::promoteCallWithIfThenElse(CallBase
&CB
, Function
*Callee
,
551 MDNode
*BranchWeights
) {
553 // Version the indirect call site. If the called value is equal to the given
554 // callee, 'NewInst' will be executed, otherwise the original call site will
556 CallBase
&NewInst
= versionCallSite(CB
, Callee
, BranchWeights
);
558 // Promote 'NewInst' so that it directly calls the desired function.
559 return promoteCall(NewInst
, Callee
);
562 bool llvm::tryPromoteCall(CallBase
&CB
) {
563 assert(!CB
.getCalledFunction());
564 Module
*M
= CB
.getCaller()->getParent();
565 const DataLayout
&DL
= M
->getDataLayout();
566 Value
*Callee
= CB
.getCalledOperand();
568 LoadInst
*VTableEntryLoad
= dyn_cast
<LoadInst
>(Callee
);
569 if (!VTableEntryLoad
)
570 return false; // Not a vtable entry load.
571 Value
*VTableEntryPtr
= VTableEntryLoad
->getPointerOperand();
572 APInt
VTableOffset(DL
.getTypeSizeInBits(VTableEntryPtr
->getType()), 0);
573 Value
*VTableBasePtr
= VTableEntryPtr
->stripAndAccumulateConstantOffsets(
574 DL
, VTableOffset
, /* AllowNonInbounds */ true);
575 LoadInst
*VTablePtrLoad
= dyn_cast
<LoadInst
>(VTableBasePtr
);
577 return false; // Not a vtable load.
578 Value
*Object
= VTablePtrLoad
->getPointerOperand();
579 APInt
ObjectOffset(DL
.getTypeSizeInBits(Object
->getType()), 0);
580 Value
*ObjectBase
= Object
->stripAndAccumulateConstantOffsets(
581 DL
, ObjectOffset
, /* AllowNonInbounds */ true);
582 if (!(isa
<AllocaInst
>(ObjectBase
) && ObjectOffset
== 0))
583 // Not an Alloca or the offset isn't zero.
586 // Look for the vtable pointer store into the object by the ctor.
587 BasicBlock::iterator
BBI(VTablePtrLoad
);
588 Value
*VTablePtr
= FindAvailableLoadedValue(
589 VTablePtrLoad
, VTablePtrLoad
->getParent(), BBI
, 0, nullptr, nullptr);
591 return false; // No vtable found.
592 APInt
VTableOffsetGVBase(DL
.getTypeSizeInBits(VTablePtr
->getType()), 0);
593 Value
*VTableGVBase
= VTablePtr
->stripAndAccumulateConstantOffsets(
594 DL
, VTableOffsetGVBase
, /* AllowNonInbounds */ true);
595 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(VTableGVBase
);
596 if (!(GV
&& GV
->isConstant() && GV
->hasDefinitiveInitializer()))
597 // Not in the form of a global constant variable with an initializer.
600 Constant
*VTableGVInitializer
= GV
->getInitializer();
601 APInt VTableGVOffset
= VTableOffsetGVBase
+ VTableOffset
;
602 if (!(VTableGVOffset
.getActiveBits() <= 64))
603 return false; // Out of range.
604 Constant
*Ptr
= getPointerAtOffset(VTableGVInitializer
,
605 VTableGVOffset
.getZExtValue(),
608 return false; // No constant (function) pointer found.
609 Function
*DirectCallee
= dyn_cast
<Function
>(Ptr
->stripPointerCasts());
611 return false; // No function pointer found.
613 if (!isLegalToPromote(CB
, DirectCallee
))
617 promoteCall(CB
, DirectCallee
);