[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Utils / CloneFunction.cpp
blobc0f333364fa58708f77e6776ee58700dbd5c9f79
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner. This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Cloning.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 #include <map>
36 #include <optional>
37 using namespace llvm;
39 #define DEBUG_TYPE "clone-function"
41 /// See comments in Cloning.h.
42 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
43 const Twine &NameSuffix, Function *F,
44 ClonedCodeInfo *CodeInfo,
45 DebugInfoFinder *DIFinder) {
46 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
47 NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat;
48 if (BB->hasName())
49 NewBB->setName(BB->getName() + NameSuffix);
51 bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false;
52 Module *TheModule = F ? F->getParent() : nullptr;
54 // Loop over all instructions, and copy them over.
55 for (const Instruction &I : *BB) {
56 if (DIFinder && TheModule)
57 DIFinder->processInstruction(*TheModule, I);
59 Instruction *NewInst = I.clone();
60 if (I.hasName())
61 NewInst->setName(I.getName() + NameSuffix);
63 NewInst->insertBefore(*NewBB, NewBB->end());
64 NewInst->cloneDebugInfoFrom(&I);
66 VMap[&I] = NewInst; // Add instruction map to value.
68 if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) {
69 hasCalls = true;
70 hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof);
72 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
73 if (!AI->isStaticAlloca()) {
74 hasDynamicAllocas = true;
79 if (CodeInfo) {
80 CodeInfo->ContainsCalls |= hasCalls;
81 CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
82 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
84 return NewBB;
87 // Clone OldFunc into NewFunc, transforming the old arguments into references to
88 // VMap values.
90 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
91 ValueToValueMapTy &VMap,
92 CloneFunctionChangeType Changes,
93 SmallVectorImpl<ReturnInst *> &Returns,
94 const char *NameSuffix, ClonedCodeInfo *CodeInfo,
95 ValueMapTypeRemapper *TypeMapper,
96 ValueMaterializer *Materializer) {
97 NewFunc->setIsNewDbgInfoFormat(OldFunc->IsNewDbgInfoFormat);
98 assert(NameSuffix && "NameSuffix cannot be null!");
100 #ifndef NDEBUG
101 for (const Argument &I : OldFunc->args())
102 assert(VMap.count(&I) && "No mapping from source argument specified!");
103 #endif
105 bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
107 // Copy all attributes other than those stored in the AttributeList. We need
108 // to remap the parameter indices of the AttributeList.
109 AttributeList NewAttrs = NewFunc->getAttributes();
110 NewFunc->copyAttributesFrom(OldFunc);
111 NewFunc->setAttributes(NewAttrs);
113 const RemapFlags FuncGlobalRefFlags =
114 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
116 // Fix up the personality function that got copied over.
117 if (OldFunc->hasPersonalityFn())
118 NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap,
119 FuncGlobalRefFlags, TypeMapper,
120 Materializer));
122 if (OldFunc->hasPrefixData()) {
123 NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap,
124 FuncGlobalRefFlags, TypeMapper,
125 Materializer));
128 if (OldFunc->hasPrologueData()) {
129 NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap,
130 FuncGlobalRefFlags, TypeMapper,
131 Materializer));
134 SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
135 AttributeList OldAttrs = OldFunc->getAttributes();
137 // Clone any argument attributes that are present in the VMap.
138 for (const Argument &OldArg : OldFunc->args()) {
139 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
140 NewArgAttrs[NewArg->getArgNo()] =
141 OldAttrs.getParamAttrs(OldArg.getArgNo());
145 NewFunc->setAttributes(
146 AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(),
147 OldAttrs.getRetAttrs(), NewArgAttrs));
149 // Everything else beyond this point deals with function instructions,
150 // so if we are dealing with a function declaration, we're done.
151 if (OldFunc->isDeclaration())
152 return;
154 // When we remap instructions within the same module, we want to avoid
155 // duplicating inlined DISubprograms, so record all subprograms we find as we
156 // duplicate instructions and then freeze them in the MD map. We also record
157 // information about dbg.value and dbg.declare to avoid duplicating the
158 // types.
159 std::optional<DebugInfoFinder> DIFinder;
161 // Track the subprogram attachment that needs to be cloned to fine-tune the
162 // mapping within the same module.
163 DISubprogram *SPClonedWithinModule = nullptr;
164 if (Changes < CloneFunctionChangeType::DifferentModule) {
165 assert((NewFunc->getParent() == nullptr ||
166 NewFunc->getParent() == OldFunc->getParent()) &&
167 "Expected NewFunc to have the same parent, or no parent");
169 // Need to find subprograms, types, and compile units.
170 DIFinder.emplace();
172 SPClonedWithinModule = OldFunc->getSubprogram();
173 if (SPClonedWithinModule)
174 DIFinder->processSubprogram(SPClonedWithinModule);
175 } else {
176 assert((NewFunc->getParent() == nullptr ||
177 NewFunc->getParent() != OldFunc->getParent()) &&
178 "Expected NewFunc to have different parents, or no parent");
180 if (Changes == CloneFunctionChangeType::DifferentModule) {
181 assert(NewFunc->getParent() &&
182 "Need parent of new function to maintain debug info invariants");
184 // Need to find all the compile units.
185 DIFinder.emplace();
189 // Loop over all of the basic blocks in the function, cloning them as
190 // appropriate. Note that we save BE this way in order to handle cloning of
191 // recursive functions into themselves.
192 for (const BasicBlock &BB : *OldFunc) {
194 // Create a new basic block and copy instructions into it!
195 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
196 DIFinder ? &*DIFinder : nullptr);
198 // Add basic block mapping.
199 VMap[&BB] = CBB;
201 // It is only legal to clone a function if a block address within that
202 // function is never referenced outside of the function. Given that, we
203 // want to map block addresses from the old function to block addresses in
204 // the clone. (This is different from the generic ValueMapper
205 // implementation, which generates an invalid blockaddress when
206 // cloning a function.)
207 if (BB.hasAddressTaken()) {
208 Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
209 const_cast<BasicBlock *>(&BB));
210 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
213 // Note return instructions for the caller.
214 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
215 Returns.push_back(RI);
218 if (Changes < CloneFunctionChangeType::DifferentModule &&
219 DIFinder->subprogram_count() > 0) {
220 // Turn on module-level changes, since we need to clone (some of) the
221 // debug info metadata.
223 // FIXME: Metadata effectively owned by a function should be made
224 // local, and only that local metadata should be cloned.
225 ModuleLevelChanges = true;
227 auto mapToSelfIfNew = [&VMap](MDNode *N) {
228 // Avoid clobbering an existing mapping.
229 (void)VMap.MD().try_emplace(N, N);
232 // Avoid cloning types, compile units, and (other) subprograms.
233 SmallPtrSet<const DISubprogram *, 16> MappedToSelfSPs;
234 for (DISubprogram *ISP : DIFinder->subprograms()) {
235 if (ISP != SPClonedWithinModule) {
236 mapToSelfIfNew(ISP);
237 MappedToSelfSPs.insert(ISP);
241 // If a subprogram isn't going to be cloned skip its lexical blocks as well.
242 for (DIScope *S : DIFinder->scopes()) {
243 auto *LScope = dyn_cast<DILocalScope>(S);
244 if (LScope && MappedToSelfSPs.count(LScope->getSubprogram()))
245 mapToSelfIfNew(S);
248 for (DICompileUnit *CU : DIFinder->compile_units())
249 mapToSelfIfNew(CU);
251 for (DIType *Type : DIFinder->types())
252 mapToSelfIfNew(Type);
253 } else {
254 assert(!SPClonedWithinModule &&
255 "Subprogram should be in DIFinder->subprogram_count()...");
258 const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
259 // Duplicate the metadata that is attached to the cloned function.
260 // Subprograms/CUs/types that were already mapped to themselves won't be
261 // duplicated.
262 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
263 OldFunc->getAllMetadata(MDs);
264 for (auto MD : MDs) {
265 NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag,
266 TypeMapper, Materializer));
269 // Loop over all of the instructions in the new function, fixing up operand
270 // references as we go. This uses VMap to do all the hard work.
271 for (Function::iterator
272 BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
273 BE = NewFunc->end();
274 BB != BE; ++BB)
275 // Loop over all instructions, fixing each one as we find it, and any
276 // attached debug-info records.
277 for (Instruction &II : *BB) {
278 RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer);
279 RemapDPValueRange(II.getModule(), II.getDbgValueRange(), VMap, RemapFlag,
280 TypeMapper, Materializer);
283 // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
284 // same module, the compile unit will already be listed (or not). When
285 // cloning a module, CloneModule() will handle creating the named metadata.
286 if (Changes != CloneFunctionChangeType::DifferentModule)
287 return;
289 // Update !llvm.dbg.cu with compile units added to the new module if this
290 // function is being cloned in isolation.
292 // FIXME: This is making global / module-level changes, which doesn't seem
293 // like the right encapsulation Consider dropping the requirement to update
294 // !llvm.dbg.cu (either obsoleting the node, or restricting it to
295 // non-discardable compile units) instead of discovering compile units by
296 // visiting the metadata attached to global values, which would allow this
297 // code to be deleted. Alternatively, perhaps give responsibility for this
298 // update to CloneFunctionInto's callers.
299 auto *NewModule = NewFunc->getParent();
300 auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
301 // Avoid multiple insertions of the same DICompileUnit to NMD.
302 SmallPtrSet<const void *, 8> Visited;
303 for (auto *Operand : NMD->operands())
304 Visited.insert(Operand);
305 for (auto *Unit : DIFinder->compile_units()) {
306 MDNode *MappedUnit =
307 MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
308 if (Visited.insert(MappedUnit).second)
309 NMD->addOperand(MappedUnit);
313 /// Return a copy of the specified function and add it to that function's
314 /// module. Also, any references specified in the VMap are changed to refer to
315 /// their mapped value instead of the original one. If any of the arguments to
316 /// the function are in the VMap, the arguments are deleted from the resultant
317 /// function. The VMap is updated to include mappings from all of the
318 /// instructions and basicblocks in the function from their old to new values.
320 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
321 ClonedCodeInfo *CodeInfo) {
322 std::vector<Type *> ArgTypes;
324 // The user might be deleting arguments to the function by specifying them in
325 // the VMap. If so, we need to not add the arguments to the arg ty vector
327 for (const Argument &I : F->args())
328 if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
329 ArgTypes.push_back(I.getType());
331 // Create a new function type...
332 FunctionType *FTy =
333 FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
334 F->getFunctionType()->isVarArg());
336 // Create the new function...
337 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
338 F->getName(), F->getParent());
339 NewF->setIsNewDbgInfoFormat(F->IsNewDbgInfoFormat);
341 // Loop over the arguments, copying the names of the mapped arguments over...
342 Function::arg_iterator DestI = NewF->arg_begin();
343 for (const Argument &I : F->args())
344 if (VMap.count(&I) == 0) { // Is this argument preserved?
345 DestI->setName(I.getName()); // Copy the name over...
346 VMap[&I] = &*DestI++; // Add mapping to VMap
349 SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
350 CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
351 Returns, "", CodeInfo);
353 return NewF;
356 namespace {
357 /// This is a private class used to implement CloneAndPruneFunctionInto.
358 struct PruningFunctionCloner {
359 Function *NewFunc;
360 const Function *OldFunc;
361 ValueToValueMapTy &VMap;
362 bool ModuleLevelChanges;
363 const char *NameSuffix;
364 ClonedCodeInfo *CodeInfo;
365 bool HostFuncIsStrictFP;
367 Instruction *cloneInstruction(BasicBlock::const_iterator II);
369 public:
370 PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
371 ValueToValueMapTy &valueMap, bool moduleLevelChanges,
372 const char *nameSuffix, ClonedCodeInfo *codeInfo)
373 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
374 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
375 CodeInfo(codeInfo) {
376 HostFuncIsStrictFP =
377 newFunc->getAttributes().hasFnAttr(Attribute::StrictFP);
380 /// The specified block is found to be reachable, clone it and
381 /// anything that it can reach.
382 void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
383 std::vector<const BasicBlock *> &ToClone);
385 } // namespace
387 static bool hasRoundingModeOperand(Intrinsic::ID CIID) {
388 switch (CIID) {
389 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
390 case Intrinsic::INTRINSIC: \
391 return ROUND_MODE == 1;
392 #define FUNCTION INSTRUCTION
393 #include "llvm/IR/ConstrainedOps.def"
394 default:
395 llvm_unreachable("Unexpected constrained intrinsic id");
399 Instruction *
400 PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) {
401 const Instruction &OldInst = *II;
402 Instruction *NewInst = nullptr;
403 if (HostFuncIsStrictFP) {
404 Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst);
405 if (CIID != Intrinsic::not_intrinsic) {
406 // Instead of cloning the instruction, a call to constrained intrinsic
407 // should be created.
408 // Assume the first arguments of constrained intrinsics are the same as
409 // the operands of original instruction.
411 // Determine overloaded types of the intrinsic.
412 SmallVector<Type *, 2> TParams;
413 SmallVector<Intrinsic::IITDescriptor, 8> Descriptor;
414 getIntrinsicInfoTableEntries(CIID, Descriptor);
415 for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) {
416 Intrinsic::IITDescriptor Operand = Descriptor[I];
417 switch (Operand.Kind) {
418 case Intrinsic::IITDescriptor::Argument:
419 if (Operand.getArgumentKind() !=
420 Intrinsic::IITDescriptor::AK_MatchType) {
421 if (I == 0)
422 TParams.push_back(OldInst.getType());
423 else
424 TParams.push_back(OldInst.getOperand(I - 1)->getType());
426 break;
427 case Intrinsic::IITDescriptor::SameVecWidthArgument:
428 ++I;
429 break;
430 default:
431 break;
435 // Create intrinsic call.
436 LLVMContext &Ctx = NewFunc->getContext();
437 Function *IFn =
438 Intrinsic::getDeclaration(NewFunc->getParent(), CIID, TParams);
439 SmallVector<Value *, 4> Args;
440 unsigned NumOperands = OldInst.getNumOperands();
441 if (isa<CallInst>(OldInst))
442 --NumOperands;
443 for (unsigned I = 0; I < NumOperands; ++I) {
444 Value *Op = OldInst.getOperand(I);
445 Args.push_back(Op);
447 if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) {
448 FCmpInst::Predicate Pred = CmpI->getPredicate();
449 StringRef PredName = FCmpInst::getPredicateName(Pred);
450 Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName)));
453 // The last arguments of a constrained intrinsic are metadata that
454 // represent rounding mode (absents in some intrinsics) and exception
455 // behavior. The inlined function uses default settings.
456 if (hasRoundingModeOperand(CIID))
457 Args.push_back(
458 MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest")));
459 Args.push_back(
460 MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore")));
462 NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict");
465 if (!NewInst)
466 NewInst = II->clone();
467 return NewInst;
470 /// The specified block is found to be reachable, clone it and
471 /// anything that it can reach.
472 void PruningFunctionCloner::CloneBlock(
473 const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
474 std::vector<const BasicBlock *> &ToClone) {
475 WeakTrackingVH &BBEntry = VMap[BB];
477 // Have we already cloned this block?
478 if (BBEntry)
479 return;
481 // Nope, clone it now.
482 BasicBlock *NewBB;
483 Twine NewName(BB->hasName() ? Twine(BB->getName()) + NameSuffix : "");
484 BBEntry = NewBB = BasicBlock::Create(BB->getContext(), NewName, NewFunc);
485 NewBB->IsNewDbgInfoFormat = BB->IsNewDbgInfoFormat;
487 // It is only legal to clone a function if a block address within that
488 // function is never referenced outside of the function. Given that, we
489 // want to map block addresses from the old function to block addresses in
490 // the clone. (This is different from the generic ValueMapper
491 // implementation, which generates an invalid blockaddress when
492 // cloning a function.)
494 // Note that we don't need to fix the mapping for unreachable blocks;
495 // the default mapping there is safe.
496 if (BB->hasAddressTaken()) {
497 Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
498 const_cast<BasicBlock *>(BB));
499 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
502 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
503 bool hasMemProfMetadata = false;
505 // Keep a cursor pointing at the last place we cloned debug-info records from.
506 BasicBlock::const_iterator DbgCursor = StartingInst;
507 auto CloneDbgRecordsToHere =
508 [NewBB, &DbgCursor](Instruction *NewInst, BasicBlock::const_iterator II) {
509 if (!NewBB->IsNewDbgInfoFormat)
510 return;
512 // Clone debug-info records onto this instruction. Iterate through any
513 // source-instructions we've cloned and then subsequently optimised
514 // away, so that their debug-info doesn't go missing.
515 for (; DbgCursor != II; ++DbgCursor)
516 NewInst->cloneDebugInfoFrom(&*DbgCursor, std::nullopt, false);
517 NewInst->cloneDebugInfoFrom(&*II);
518 DbgCursor = std::next(II);
521 // Loop over all instructions, and copy them over, DCE'ing as we go. This
522 // loop doesn't include the terminator.
523 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
524 ++II) {
526 Instruction *NewInst = cloneInstruction(II);
527 NewInst->insertInto(NewBB, NewBB->end());
529 if (HostFuncIsStrictFP) {
530 // All function calls in the inlined function must get 'strictfp'
531 // attribute to prevent undesirable optimizations.
532 if (auto *Call = dyn_cast<CallInst>(NewInst))
533 Call->addFnAttr(Attribute::StrictFP);
536 // Eagerly remap operands to the newly cloned instruction, except for PHI
537 // nodes for which we defer processing until we update the CFG. Also defer
538 // debug intrinsic processing because they may contain use-before-defs.
539 if (!isa<PHINode>(NewInst) && !isa<DbgVariableIntrinsic>(NewInst)) {
540 RemapInstruction(NewInst, VMap,
541 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
543 // If we can simplify this instruction to some other value, simply add
544 // a mapping to that value rather than inserting a new instruction into
545 // the basic block.
546 if (Value *V =
547 simplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
548 // On the off-chance that this simplifies to an instruction in the old
549 // function, map it back into the new function.
550 if (NewFunc != OldFunc)
551 if (Value *MappedV = VMap.lookup(V))
552 V = MappedV;
554 if (!NewInst->mayHaveSideEffects()) {
555 VMap[&*II] = V;
556 NewInst->eraseFromParent();
557 continue;
562 if (II->hasName())
563 NewInst->setName(II->getName() + NameSuffix);
564 VMap[&*II] = NewInst; // Add instruction map to value.
565 if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) {
566 hasCalls = true;
567 hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof);
570 CloneDbgRecordsToHere(NewInst, II);
572 if (CodeInfo) {
573 CodeInfo->OrigVMap[&*II] = NewInst;
574 if (auto *CB = dyn_cast<CallBase>(&*II))
575 if (CB->hasOperandBundles())
576 CodeInfo->OperandBundleCallSites.push_back(NewInst);
579 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
580 if (isa<ConstantInt>(AI->getArraySize()))
581 hasStaticAllocas = true;
582 else
583 hasDynamicAllocas = true;
587 // Finally, clone over the terminator.
588 const Instruction *OldTI = BB->getTerminator();
589 bool TerminatorDone = false;
590 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
591 if (BI->isConditional()) {
592 // If the condition was a known constant in the callee...
593 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
594 // Or is a known constant in the caller...
595 if (!Cond) {
596 Value *V = VMap.lookup(BI->getCondition());
597 Cond = dyn_cast_or_null<ConstantInt>(V);
600 // Constant fold to uncond branch!
601 if (Cond) {
602 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
603 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
604 ToClone.push_back(Dest);
605 TerminatorDone = true;
608 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
609 // If switching on a value known constant in the caller.
610 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
611 if (!Cond) { // Or known constant after constant prop in the callee...
612 Value *V = VMap.lookup(SI->getCondition());
613 Cond = dyn_cast_or_null<ConstantInt>(V);
615 if (Cond) { // Constant fold to uncond branch!
616 SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
617 BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
618 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
619 ToClone.push_back(Dest);
620 TerminatorDone = true;
624 if (!TerminatorDone) {
625 Instruction *NewInst = OldTI->clone();
626 if (OldTI->hasName())
627 NewInst->setName(OldTI->getName() + NameSuffix);
628 NewInst->insertInto(NewBB, NewBB->end());
630 CloneDbgRecordsToHere(NewInst, OldTI->getIterator());
632 VMap[OldTI] = NewInst; // Add instruction map to value.
634 if (CodeInfo) {
635 CodeInfo->OrigVMap[OldTI] = NewInst;
636 if (auto *CB = dyn_cast<CallBase>(OldTI))
637 if (CB->hasOperandBundles())
638 CodeInfo->OperandBundleCallSites.push_back(NewInst);
641 // Recursively clone any reachable successor blocks.
642 append_range(ToClone, successors(BB->getTerminator()));
643 } else {
644 // If we didn't create a new terminator, clone DPValues from the old
645 // terminator onto the new terminator.
646 Instruction *NewInst = NewBB->getTerminator();
647 assert(NewInst);
649 CloneDbgRecordsToHere(NewInst, OldTI->getIterator());
652 if (CodeInfo) {
653 CodeInfo->ContainsCalls |= hasCalls;
654 CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
655 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
656 CodeInfo->ContainsDynamicAllocas |=
657 hasStaticAllocas && BB != &BB->getParent()->front();
661 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
662 /// entire function. Instead it starts at an instruction provided by the caller
663 /// and copies (and prunes) only the code reachable from that instruction.
664 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
665 const Instruction *StartingInst,
666 ValueToValueMapTy &VMap,
667 bool ModuleLevelChanges,
668 SmallVectorImpl<ReturnInst *> &Returns,
669 const char *NameSuffix,
670 ClonedCodeInfo *CodeInfo) {
671 assert(NameSuffix && "NameSuffix cannot be null!");
673 ValueMapTypeRemapper *TypeMapper = nullptr;
674 ValueMaterializer *Materializer = nullptr;
676 #ifndef NDEBUG
677 // If the cloning starts at the beginning of the function, verify that
678 // the function arguments are mapped.
679 if (!StartingInst)
680 for (const Argument &II : OldFunc->args())
681 assert(VMap.count(&II) && "No mapping from source argument specified!");
682 #endif
684 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
685 NameSuffix, CodeInfo);
686 const BasicBlock *StartingBB;
687 if (StartingInst)
688 StartingBB = StartingInst->getParent();
689 else {
690 StartingBB = &OldFunc->getEntryBlock();
691 StartingInst = &StartingBB->front();
694 // Collect debug intrinsics for remapping later.
695 SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics;
696 for (const auto &BB : *OldFunc) {
697 for (const auto &I : BB) {
698 if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I))
699 DbgIntrinsics.push_back(DVI);
703 // Clone the entry block, and anything recursively reachable from it.
704 std::vector<const BasicBlock *> CloneWorklist;
705 PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
706 while (!CloneWorklist.empty()) {
707 const BasicBlock *BB = CloneWorklist.back();
708 CloneWorklist.pop_back();
709 PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
712 // Loop over all of the basic blocks in the old function. If the block was
713 // reachable, we have cloned it and the old block is now in the value map:
714 // insert it into the new function in the right order. If not, ignore it.
716 // Defer PHI resolution until rest of function is resolved.
717 SmallVector<const PHINode *, 16> PHIToResolve;
718 for (const BasicBlock &BI : *OldFunc) {
719 Value *V = VMap.lookup(&BI);
720 BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
721 if (!NewBB)
722 continue; // Dead block.
724 // Move the new block to preserve the order in the original function.
725 NewBB->moveBefore(NewFunc->end());
727 // Handle PHI nodes specially, as we have to remove references to dead
728 // blocks.
729 for (const PHINode &PN : BI.phis()) {
730 // PHI nodes may have been remapped to non-PHI nodes by the caller or
731 // during the cloning process.
732 if (isa<PHINode>(VMap[&PN]))
733 PHIToResolve.push_back(&PN);
734 else
735 break;
738 // Finally, remap the terminator instructions, as those can't be remapped
739 // until all BBs are mapped.
740 RemapInstruction(NewBB->getTerminator(), VMap,
741 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
742 TypeMapper, Materializer);
745 // Defer PHI resolution until rest of function is resolved, PHI resolution
746 // requires the CFG to be up-to-date.
747 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
748 const PHINode *OPN = PHIToResolve[phino];
749 unsigned NumPreds = OPN->getNumIncomingValues();
750 const BasicBlock *OldBB = OPN->getParent();
751 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
753 // Map operands for blocks that are live and remove operands for blocks
754 // that are dead.
755 for (; phino != PHIToResolve.size() &&
756 PHIToResolve[phino]->getParent() == OldBB;
757 ++phino) {
758 OPN = PHIToResolve[phino];
759 PHINode *PN = cast<PHINode>(VMap[OPN]);
760 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
761 Value *V = VMap.lookup(PN->getIncomingBlock(pred));
762 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
763 Value *InVal =
764 MapValue(PN->getIncomingValue(pred), VMap,
765 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
766 assert(InVal && "Unknown input value?");
767 PN->setIncomingValue(pred, InVal);
768 PN->setIncomingBlock(pred, MappedBlock);
769 } else {
770 PN->removeIncomingValue(pred, false);
771 --pred; // Revisit the next entry.
772 --e;
777 // The loop above has removed PHI entries for those blocks that are dead
778 // and has updated others. However, if a block is live (i.e. copied over)
779 // but its terminator has been changed to not go to this block, then our
780 // phi nodes will have invalid entries. Update the PHI nodes in this
781 // case.
782 PHINode *PN = cast<PHINode>(NewBB->begin());
783 NumPreds = pred_size(NewBB);
784 if (NumPreds != PN->getNumIncomingValues()) {
785 assert(NumPreds < PN->getNumIncomingValues());
786 // Count how many times each predecessor comes to this block.
787 std::map<BasicBlock *, unsigned> PredCount;
788 for (BasicBlock *Pred : predecessors(NewBB))
789 --PredCount[Pred];
791 // Figure out how many entries to remove from each PHI.
792 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
793 ++PredCount[PN->getIncomingBlock(i)];
795 // At this point, the excess predecessor entries are positive in the
796 // map. Loop over all of the PHIs and remove excess predecessor
797 // entries.
798 BasicBlock::iterator I = NewBB->begin();
799 for (; (PN = dyn_cast<PHINode>(I)); ++I) {
800 for (const auto &PCI : PredCount) {
801 BasicBlock *Pred = PCI.first;
802 for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
803 PN->removeIncomingValue(Pred, false);
808 // If the loops above have made these phi nodes have 0 or 1 operand,
809 // replace them with poison or the input value. We must do this for
810 // correctness, because 0-operand phis are not valid.
811 PN = cast<PHINode>(NewBB->begin());
812 if (PN->getNumIncomingValues() == 0) {
813 BasicBlock::iterator I = NewBB->begin();
814 BasicBlock::const_iterator OldI = OldBB->begin();
815 while ((PN = dyn_cast<PHINode>(I++))) {
816 Value *NV = PoisonValue::get(PN->getType());
817 PN->replaceAllUsesWith(NV);
818 assert(VMap[&*OldI] == PN && "VMap mismatch");
819 VMap[&*OldI] = NV;
820 PN->eraseFromParent();
821 ++OldI;
826 // Make a second pass over the PHINodes now that all of them have been
827 // remapped into the new function, simplifying the PHINode and performing any
828 // recursive simplifications exposed. This will transparently update the
829 // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
830 // two PHINodes, the iteration over the old PHIs remains valid, and the
831 // mapping will just map us to the new node (which may not even be a PHI
832 // node).
833 const DataLayout &DL = NewFunc->getParent()->getDataLayout();
834 SmallSetVector<const Value *, 8> Worklist;
835 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
836 if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
837 Worklist.insert(PHIToResolve[Idx]);
839 // Note that we must test the size on each iteration, the worklist can grow.
840 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
841 const Value *OrigV = Worklist[Idx];
842 auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
843 if (!I)
844 continue;
846 // Skip over non-intrinsic callsites, we don't want to remove any nodes from
847 // the CGSCC.
848 CallBase *CB = dyn_cast<CallBase>(I);
849 if (CB && CB->getCalledFunction() &&
850 !CB->getCalledFunction()->isIntrinsic())
851 continue;
853 // See if this instruction simplifies.
854 Value *SimpleV = simplifyInstruction(I, DL);
855 if (!SimpleV)
856 continue;
858 // Stash away all the uses of the old instruction so we can check them for
859 // recursive simplifications after a RAUW. This is cheaper than checking all
860 // uses of To on the recursive step in most cases.
861 for (const User *U : OrigV->users())
862 Worklist.insert(cast<Instruction>(U));
864 // Replace the instruction with its simplified value.
865 I->replaceAllUsesWith(SimpleV);
867 // If the original instruction had no side effects, remove it.
868 if (isInstructionTriviallyDead(I))
869 I->eraseFromParent();
870 else
871 VMap[OrigV] = I;
874 // Remap debug intrinsic operands now that all values have been mapped.
875 // Doing this now (late) preserves use-before-defs in debug intrinsics. If
876 // we didn't do this, ValueAsMetadata(use-before-def) operands would be
877 // replaced by empty metadata. This would signal later cleanup passes to
878 // remove the debug intrinsics, potentially causing incorrect locations.
879 for (const auto *DVI : DbgIntrinsics) {
880 if (DbgVariableIntrinsic *NewDVI =
881 cast_or_null<DbgVariableIntrinsic>(VMap.lookup(DVI)))
882 RemapInstruction(NewDVI, VMap,
883 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
884 TypeMapper, Materializer);
887 // Do the same for DPValues, touching all the instructions in the cloned
888 // range of blocks.
889 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
890 for (BasicBlock &BB : make_range(Begin, NewFunc->end())) {
891 for (Instruction &I : BB) {
892 RemapDPValueRange(I.getModule(), I.getDbgValueRange(), VMap,
893 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
894 TypeMapper, Materializer);
898 // Simplify conditional branches and switches with a constant operand. We try
899 // to prune these out when cloning, but if the simplification required
900 // looking through PHI nodes, those are only available after forming the full
901 // basic block. That may leave some here, and we still want to prune the dead
902 // code as early as possible.
903 for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
904 ConstantFoldTerminator(&BB);
906 // Some blocks may have become unreachable as a result. Find and delete them.
908 SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
909 SmallVector<BasicBlock *, 16> Worklist;
910 Worklist.push_back(&*Begin);
911 while (!Worklist.empty()) {
912 BasicBlock *BB = Worklist.pop_back_val();
913 if (ReachableBlocks.insert(BB).second)
914 append_range(Worklist, successors(BB));
917 SmallVector<BasicBlock *, 16> UnreachableBlocks;
918 for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
919 if (!ReachableBlocks.contains(&BB))
920 UnreachableBlocks.push_back(&BB);
921 DeleteDeadBlocks(UnreachableBlocks);
924 // Now that the inlined function body has been fully constructed, go through
925 // and zap unconditional fall-through branches. This happens all the time when
926 // specializing code: code specialization turns conditional branches into
927 // uncond branches, and this code folds them.
928 Function::iterator I = Begin;
929 while (I != NewFunc->end()) {
930 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
931 if (!BI || BI->isConditional()) {
932 ++I;
933 continue;
936 BasicBlock *Dest = BI->getSuccessor(0);
937 if (!Dest->getSinglePredecessor()) {
938 ++I;
939 continue;
942 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
943 // above should have zapped all of them..
944 assert(!isa<PHINode>(Dest->begin()));
946 // We know all single-entry PHI nodes in the inlined function have been
947 // removed, so we just need to splice the blocks.
948 BI->eraseFromParent();
950 // Make all PHI nodes that referred to Dest now refer to I as their source.
951 Dest->replaceAllUsesWith(&*I);
953 // Move all the instructions in the succ to the pred.
954 I->splice(I->end(), Dest);
956 // Remove the dest block.
957 Dest->eraseFromParent();
959 // Do not increment I, iteratively merge all things this block branches to.
962 // Make a final pass over the basic blocks from the old function to gather
963 // any return instructions which survived folding. We have to do this here
964 // because we can iteratively remove and merge returns above.
965 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
966 E = NewFunc->end();
967 I != E; ++I)
968 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
969 Returns.push_back(RI);
972 /// This works exactly like CloneFunctionInto,
973 /// except that it does some simple constant prop and DCE on the fly. The
974 /// effect of this is to copy significantly less code in cases where (for
975 /// example) a function call with constant arguments is inlined, and those
976 /// constant arguments cause a significant amount of code in the callee to be
977 /// dead. Since this doesn't produce an exact copy of the input, it can't be
978 /// used for things like CloneFunction or CloneModule.
979 void llvm::CloneAndPruneFunctionInto(
980 Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
981 bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
982 const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
983 CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
984 ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
987 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
988 void llvm::remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks,
989 ValueToValueMapTy &VMap) {
990 // Rewrite the code to refer to itself.
991 for (auto *BB : Blocks) {
992 for (auto &Inst : *BB) {
993 RemapDPValueRange(Inst.getModule(), Inst.getDbgValueRange(), VMap,
994 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
995 RemapInstruction(&Inst, VMap,
996 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1001 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
1002 /// Blocks.
1004 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
1005 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
1006 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
1007 Loop *OrigLoop, ValueToValueMapTy &VMap,
1008 const Twine &NameSuffix, LoopInfo *LI,
1009 DominatorTree *DT,
1010 SmallVectorImpl<BasicBlock *> &Blocks) {
1011 Function *F = OrigLoop->getHeader()->getParent();
1012 Loop *ParentLoop = OrigLoop->getParentLoop();
1013 DenseMap<Loop *, Loop *> LMap;
1015 Loop *NewLoop = LI->AllocateLoop();
1016 LMap[OrigLoop] = NewLoop;
1017 if (ParentLoop)
1018 ParentLoop->addChildLoop(NewLoop);
1019 else
1020 LI->addTopLevelLoop(NewLoop);
1022 BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
1023 assert(OrigPH && "No preheader");
1024 BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
1025 // To rename the loop PHIs.
1026 VMap[OrigPH] = NewPH;
1027 Blocks.push_back(NewPH);
1029 // Update LoopInfo.
1030 if (ParentLoop)
1031 ParentLoop->addBasicBlockToLoop(NewPH, *LI);
1033 // Update DominatorTree.
1034 DT->addNewBlock(NewPH, LoopDomBB);
1036 for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
1037 Loop *&NewLoop = LMap[CurLoop];
1038 if (!NewLoop) {
1039 NewLoop = LI->AllocateLoop();
1041 // Establish the parent/child relationship.
1042 Loop *OrigParent = CurLoop->getParentLoop();
1043 assert(OrigParent && "Could not find the original parent loop");
1044 Loop *NewParentLoop = LMap[OrigParent];
1045 assert(NewParentLoop && "Could not find the new parent loop");
1047 NewParentLoop->addChildLoop(NewLoop);
1051 for (BasicBlock *BB : OrigLoop->getBlocks()) {
1052 Loop *CurLoop = LI->getLoopFor(BB);
1053 Loop *&NewLoop = LMap[CurLoop];
1054 assert(NewLoop && "Expecting new loop to be allocated");
1056 BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
1057 VMap[BB] = NewBB;
1059 // Update LoopInfo.
1060 NewLoop->addBasicBlockToLoop(NewBB, *LI);
1062 // Add DominatorTree node. After seeing all blocks, update to correct
1063 // IDom.
1064 DT->addNewBlock(NewBB, NewPH);
1066 Blocks.push_back(NewBB);
1069 for (BasicBlock *BB : OrigLoop->getBlocks()) {
1070 // Update loop headers.
1071 Loop *CurLoop = LI->getLoopFor(BB);
1072 if (BB == CurLoop->getHeader())
1073 LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
1075 // Update DominatorTree.
1076 BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
1077 DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
1078 cast<BasicBlock>(VMap[IDomBB]));
1081 // Move them physically from the end of the block list.
1082 F->splice(Before->getIterator(), F, NewPH->getIterator());
1083 F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(),
1084 F->end());
1086 return NewLoop;
1089 /// Duplicate non-Phi instructions from the beginning of block up to
1090 /// StopAt instruction into a split block between BB and its predecessor.
1091 BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
1092 BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
1093 ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
1095 assert(count(successors(PredBB), BB) == 1 &&
1096 "There must be a single edge between PredBB and BB!");
1097 // We are going to have to map operands from the original BB block to the new
1098 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1099 // account for entry from PredBB.
1100 BasicBlock::iterator BI = BB->begin();
1101 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1102 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1104 BasicBlock *NewBB = SplitEdge(PredBB, BB);
1105 NewBB->setName(PredBB->getName() + ".split");
1106 Instruction *NewTerm = NewBB->getTerminator();
1108 // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
1109 // in the update set here.
1110 DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
1111 {DominatorTree::Insert, PredBB, NewBB},
1112 {DominatorTree::Insert, NewBB, BB}});
1114 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1115 // mapping and using it to remap operands in the cloned instructions.
1116 // Stop once we see the terminator too. This covers the case where BB's
1117 // terminator gets replaced and StopAt == BB's terminator.
1118 for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
1119 Instruction *New = BI->clone();
1120 New->setName(BI->getName());
1121 New->insertBefore(NewTerm);
1122 New->cloneDebugInfoFrom(&*BI);
1123 ValueMapping[&*BI] = New;
1125 // Remap operands to patch up intra-block references.
1126 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1127 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1128 auto I = ValueMapping.find(Inst);
1129 if (I != ValueMapping.end())
1130 New->setOperand(i, I->second);
1134 return NewBB;
1137 void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1138 DenseMap<MDNode *, MDNode *> &ClonedScopes,
1139 StringRef Ext, LLVMContext &Context) {
1140 MDBuilder MDB(Context);
1142 for (auto *ScopeList : NoAliasDeclScopes) {
1143 for (const auto &MDOperand : ScopeList->operands()) {
1144 if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
1145 AliasScopeNode SNANode(MD);
1147 std::string Name;
1148 auto ScopeName = SNANode.getName();
1149 if (!ScopeName.empty())
1150 Name = (Twine(ScopeName) + ":" + Ext).str();
1151 else
1152 Name = std::string(Ext);
1154 MDNode *NewScope = MDB.createAnonymousAliasScope(
1155 const_cast<MDNode *>(SNANode.getDomain()), Name);
1156 ClonedScopes.insert(std::make_pair(MD, NewScope));
1162 void llvm::adaptNoAliasScopes(Instruction *I,
1163 const DenseMap<MDNode *, MDNode *> &ClonedScopes,
1164 LLVMContext &Context) {
1165 auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
1166 bool NeedsReplacement = false;
1167 SmallVector<Metadata *, 8> NewScopeList;
1168 for (const auto &MDOp : ScopeList->operands()) {
1169 if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
1170 if (auto *NewMD = ClonedScopes.lookup(MD)) {
1171 NewScopeList.push_back(NewMD);
1172 NeedsReplacement = true;
1173 continue;
1175 NewScopeList.push_back(MD);
1178 if (NeedsReplacement)
1179 return MDNode::get(Context, NewScopeList);
1180 return nullptr;
1183 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
1184 if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
1185 Decl->setScopeList(NewScopeList);
1187 auto replaceWhenNeeded = [&](unsigned MD_ID) {
1188 if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
1189 if (auto *NewScopeList = CloneScopeList(CSNoAlias))
1190 I->setMetadata(MD_ID, NewScopeList);
1192 replaceWhenNeeded(LLVMContext::MD_noalias);
1193 replaceWhenNeeded(LLVMContext::MD_alias_scope);
1196 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1197 ArrayRef<BasicBlock *> NewBlocks,
1198 LLVMContext &Context, StringRef Ext) {
1199 if (NoAliasDeclScopes.empty())
1200 return;
1202 DenseMap<MDNode *, MDNode *> ClonedScopes;
1203 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1204 << NoAliasDeclScopes.size() << " node(s)\n");
1206 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1207 // Identify instructions using metadata that needs adaptation
1208 for (BasicBlock *NewBlock : NewBlocks)
1209 for (Instruction &I : *NewBlock)
1210 adaptNoAliasScopes(&I, ClonedScopes, Context);
1213 void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
1214 Instruction *IStart, Instruction *IEnd,
1215 LLVMContext &Context, StringRef Ext) {
1216 if (NoAliasDeclScopes.empty())
1217 return;
1219 DenseMap<MDNode *, MDNode *> ClonedScopes;
1220 LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
1221 << NoAliasDeclScopes.size() << " node(s)\n");
1223 cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
1224 // Identify instructions using metadata that needs adaptation
1225 assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
1226 auto ItStart = IStart->getIterator();
1227 auto ItEnd = IEnd->getIterator();
1228 ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
1229 for (auto &I : llvm::make_range(ItStart, ItEnd))
1230 adaptNoAliasScopes(&I, ClonedScopes, Context);
1233 void llvm::identifyNoAliasScopesToClone(
1234 ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1235 for (BasicBlock *BB : BBs)
1236 for (Instruction &I : *BB)
1237 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1238 NoAliasDeclScopes.push_back(Decl->getScopeList());
1241 void llvm::identifyNoAliasScopesToClone(
1242 BasicBlock::iterator Start, BasicBlock::iterator End,
1243 SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
1244 for (Instruction &I : make_range(Start, End))
1245 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1246 NoAliasDeclScopes.push_back(Decl->getScopeList());