1 //===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
10 // with control-flow edges incident from outside the SCC. This pass converts a
11 // irreducible SCC into a natural loop by applying the following transformation:
13 // 1. Collect the set of headers H of the SCC.
14 // 2. Collect the set of predecessors P of these headers. These may be inside as
15 // well as outside the SCC.
16 // 3. Create block N and redirect every edge from set P to set H through N.
18 // This converts the SCC into a natural loop with N as the header: N is the only
19 // block with edges incident from outside the SCC, and all backedges in the SCC
20 // are incident on N, i.e., for every backedge, the head now dominates the tail.
22 // INPUT CFG: The blocks A and B form an irreducible loop with two headers.
33 // OUTPUT CFG: Edges incident on A and B are now redirected through a
34 // new block N, forming a natural loop consisting of N, A and B.
48 // The transformation is applied to every maximal SCC that is not already
49 // recognized as a loop. The pass operates on all maximal SCCs found in the
50 // function body outside of any loop, as well as those found inside each loop,
51 // including inside any newly created loops. This ensures that any SCC hidden
52 // inside a maximal SCC is also transformed.
54 // The actual transformation is handled by function CreateControlFlowHub, which
55 // takes a set of incoming blocks (the predecessors) and outgoing blocks (the
56 // headers). The function also moves every PHINode in an outgoing block to the
57 // hub. Since the hub dominates all the outgoing blocks, each such PHINode
58 // continues to dominate its uses. Since every header in an SCC has at least two
59 // predecessors, every value used in the header (or later) but defined in a
60 // predecessor (or earlier) is represented by a PHINode in a header. Hence the
61 // above handling of PHINodes is sufficient and no further processing is
62 // required to restore SSA.
64 // Limitation: The pass cannot handle switch statements and indirect
65 // branches. Both must be lowered to plain branches first.
67 //===----------------------------------------------------------------------===//
69 #include "llvm/Transforms/Utils/FixIrreducible.h"
70 #include "llvm/ADT/SCCIterator.h"
71 #include "llvm/Analysis/DomTreeUpdater.h"
72 #include "llvm/Analysis/LoopIterator.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Transforms/Utils.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #define DEBUG_TYPE "fix-irreducible"
83 struct FixIrreducible
: public FunctionPass
{
85 FixIrreducible() : FunctionPass(ID
) {
86 initializeFixIrreduciblePass(*PassRegistry::getPassRegistry());
89 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
90 AU
.addRequired
<DominatorTreeWrapperPass
>();
91 AU
.addRequired
<LoopInfoWrapperPass
>();
92 AU
.addPreserved
<DominatorTreeWrapperPass
>();
93 AU
.addPreserved
<LoopInfoWrapperPass
>();
96 bool runOnFunction(Function
&F
) override
;
100 char FixIrreducible::ID
= 0;
102 FunctionPass
*llvm::createFixIrreduciblePass() { return new FixIrreducible(); }
104 INITIALIZE_PASS_BEGIN(FixIrreducible
, "fix-irreducible",
105 "Convert irreducible control-flow into natural loops",
106 false /* Only looks at CFG */, false /* Analysis Pass */)
107 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
108 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
109 INITIALIZE_PASS_END(FixIrreducible
, "fix-irreducible",
110 "Convert irreducible control-flow into natural loops",
111 false /* Only looks at CFG */, false /* Analysis Pass */)
113 // When a new loop is created, existing children of the parent loop may now be
114 // fully inside the new loop. Reconnect these as children of the new loop.
115 static void reconnectChildLoops(LoopInfo
&LI
, Loop
*ParentLoop
, Loop
*NewLoop
,
116 SetVector
<BasicBlock
*> &Blocks
,
117 SetVector
<BasicBlock
*> &Headers
) {
118 auto &CandidateLoops
= ParentLoop
? ParentLoop
->getSubLoopsVector()
119 : LI
.getTopLevelLoopsVector();
120 // The new loop cannot be its own child, and any candidate is a
121 // child iff its header is owned by the new loop. Move all the
122 // children to a new vector.
123 auto FirstChild
= std::partition(
124 CandidateLoops
.begin(), CandidateLoops
.end(), [&](Loop
*L
) {
125 return L
== NewLoop
|| !Blocks
.contains(L
->getHeader());
127 SmallVector
<Loop
*, 8> ChildLoops(FirstChild
, CandidateLoops
.end());
128 CandidateLoops
.erase(FirstChild
, CandidateLoops
.end());
130 for (Loop
*Child
: ChildLoops
) {
131 LLVM_DEBUG(dbgs() << "child loop: " << Child
->getHeader()->getName()
133 // TODO: A child loop whose header is also a header in the current
134 // SCC gets destroyed since its backedges are removed. That may
135 // not be necessary if we can retain such backedges.
136 if (Headers
.count(Child
->getHeader())) {
137 for (auto *BB
: Child
->blocks()) {
138 if (LI
.getLoopFor(BB
) != Child
)
140 LI
.changeLoopFor(BB
, NewLoop
);
141 LLVM_DEBUG(dbgs() << "moved block from child: " << BB
->getName()
144 std::vector
<Loop
*> GrandChildLoops
;
145 std::swap(GrandChildLoops
, Child
->getSubLoopsVector());
146 for (auto *GrandChildLoop
: GrandChildLoops
) {
147 GrandChildLoop
->setParentLoop(nullptr);
148 NewLoop
->addChildLoop(GrandChildLoop
);
151 LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n");
155 Child
->setParentLoop(nullptr);
156 NewLoop
->addChildLoop(Child
);
157 LLVM_DEBUG(dbgs() << "added child loop to new loop\n");
161 // Given a set of blocks and headers in an irreducible SCC, convert it into a
162 // natural loop. Also insert this new loop at its appropriate place in the
163 // hierarchy of loops.
164 static void createNaturalLoopInternal(LoopInfo
&LI
, DominatorTree
&DT
,
166 SetVector
<BasicBlock
*> &Blocks
,
167 SetVector
<BasicBlock
*> &Headers
) {
169 // All headers are part of the SCC
170 for (auto *H
: Headers
) {
171 assert(Blocks
.count(H
));
175 SetVector
<BasicBlock
*> Predecessors
;
176 for (auto *H
: Headers
) {
177 for (auto *P
: predecessors(H
)) {
178 Predecessors
.insert(P
);
183 dbgs() << "Found predecessors:";
184 for (auto P
: Predecessors
) {
185 dbgs() << " " << P
->getName();
189 // Redirect all the backedges through a "hub" consisting of a series
190 // of guard blocks that manage the flow of control from the
191 // predecessors to the headers.
192 SmallVector
<BasicBlock
*, 8> GuardBlocks
;
193 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
194 CreateControlFlowHub(&DTU
, GuardBlocks
, Predecessors
, Headers
, "irr");
195 #if defined(EXPENSIVE_CHECKS)
196 assert(DT
.verify(DominatorTree::VerificationLevel::Full
));
198 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
201 // Create a new loop from the now-transformed cycle
202 auto NewLoop
= LI
.AllocateLoop();
204 ParentLoop
->addChildLoop(NewLoop
);
206 LI
.addTopLevelLoop(NewLoop
);
209 // Add the guard blocks to the new loop. The first guard block is
210 // the head of all the backedges, and it is the first to be inserted
211 // in the loop. This ensures that it is recognized as the
212 // header. Since the new loop is already in LoopInfo, the new blocks
213 // are also propagated up the chain of parent loops.
214 for (auto *G
: GuardBlocks
) {
215 LLVM_DEBUG(dbgs() << "added guard block: " << G
->getName() << "\n");
216 NewLoop
->addBasicBlockToLoop(G
, LI
);
219 // Add the SCC blocks to the new loop.
220 for (auto *BB
: Blocks
) {
221 NewLoop
->addBlockEntry(BB
);
222 if (LI
.getLoopFor(BB
) == ParentLoop
) {
223 LLVM_DEBUG(dbgs() << "moved block from parent: " << BB
->getName()
225 LI
.changeLoopFor(BB
, NewLoop
);
227 LLVM_DEBUG(dbgs() << "added block from child: " << BB
->getName() << "\n");
230 LLVM_DEBUG(dbgs() << "header for new loop: "
231 << NewLoop
->getHeader()->getName() << "\n");
233 reconnectChildLoops(LI
, ParentLoop
, NewLoop
, Blocks
, Headers
);
235 NewLoop
->verifyLoop();
237 ParentLoop
->verifyLoop();
239 #if defined(EXPENSIVE_CHECKS)
241 #endif // EXPENSIVE_CHECKS
245 // Enable the graph traits required for traversing a Loop body.
246 template <> struct GraphTraits
<Loop
> : LoopBodyTraits
{};
249 // Overloaded wrappers to go with the function template below.
250 static BasicBlock
*unwrapBlock(BasicBlock
*B
) { return B
; }
251 static BasicBlock
*unwrapBlock(LoopBodyTraits::NodeRef
&N
) { return N
.second
; }
253 static void createNaturalLoop(LoopInfo
&LI
, DominatorTree
&DT
, Function
*F
,
254 SetVector
<BasicBlock
*> &Blocks
,
255 SetVector
<BasicBlock
*> &Headers
) {
256 createNaturalLoopInternal(LI
, DT
, nullptr, Blocks
, Headers
);
259 static void createNaturalLoop(LoopInfo
&LI
, DominatorTree
&DT
, Loop
&L
,
260 SetVector
<BasicBlock
*> &Blocks
,
261 SetVector
<BasicBlock
*> &Headers
) {
262 createNaturalLoopInternal(LI
, DT
, &L
, Blocks
, Headers
);
265 // Convert irreducible SCCs; Graph G may be a Function* or a Loop&.
266 template <class Graph
>
267 static bool makeReducible(LoopInfo
&LI
, DominatorTree
&DT
, Graph
&&G
) {
268 bool Changed
= false;
269 for (auto Scc
= scc_begin(G
); !Scc
.isAtEnd(); ++Scc
) {
272 SetVector
<BasicBlock
*> Blocks
;
273 LLVM_DEBUG(dbgs() << "Found SCC:");
274 for (auto N
: *Scc
) {
275 auto BB
= unwrapBlock(N
);
276 LLVM_DEBUG(dbgs() << " " << BB
->getName());
279 LLVM_DEBUG(dbgs() << "\n");
281 // Minor optimization: The SCC blocks are usually discovered in an order
282 // that is the opposite of the order in which these blocks appear as branch
283 // targets. This results in a lot of condition inversions in the control
284 // flow out of the new ControlFlowHub, which can be mitigated if the orders
285 // match. So we discover the headers using the reverse of the block order.
286 SetVector
<BasicBlock
*> Headers
;
287 LLVM_DEBUG(dbgs() << "Found headers:");
288 for (auto *BB
: reverse(Blocks
)) {
289 for (const auto P
: predecessors(BB
)) {
290 // Skip unreachable predecessors.
291 if (!DT
.isReachableFromEntry(P
))
293 if (!Blocks
.count(P
)) {
294 LLVM_DEBUG(dbgs() << " " << BB
->getName());
300 LLVM_DEBUG(dbgs() << "\n");
302 if (Headers
.size() == 1) {
303 assert(LI
.isLoopHeader(Headers
.front()));
304 LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n");
307 createNaturalLoop(LI
, DT
, G
, Blocks
, Headers
);
313 static bool FixIrreducibleImpl(Function
&F
, LoopInfo
&LI
, DominatorTree
&DT
) {
314 LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: "
315 << F
.getName() << "\n");
317 assert(hasOnlySimpleTerminator(F
) && "Unsupported block terminator.");
319 bool Changed
= false;
320 SmallVector
<Loop
*, 8> WorkList
;
322 LLVM_DEBUG(dbgs() << "visiting top-level\n");
323 Changed
|= makeReducible(LI
, DT
, &F
);
325 // Any SCCs reduced are now already in the list of top-level loops, so simply
326 // add them all to the worklist.
327 append_range(WorkList
, LI
);
329 while (!WorkList
.empty()) {
330 auto L
= WorkList
.pop_back_val();
331 LLVM_DEBUG(dbgs() << "visiting loop with header "
332 << L
->getHeader()->getName() << "\n");
333 Changed
|= makeReducible(LI
, DT
, *L
);
334 // Any SCCs reduced are now already in the list of child loops, so simply
335 // add them all to the worklist.
336 WorkList
.append(L
->begin(), L
->end());
342 bool FixIrreducible::runOnFunction(Function
&F
) {
343 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
344 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
345 return FixIrreducibleImpl(F
, LI
, DT
);
348 PreservedAnalyses
FixIrreduciblePass::run(Function
&F
,
349 FunctionAnalysisManager
&AM
) {
350 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
351 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
352 if (!FixIrreducibleImpl(F
, LI
, DT
))
353 return PreservedAnalyses::all();
354 PreservedAnalyses PA
;
355 PA
.preserve
<LoopAnalysis
>();
356 PA
.preserve
<DominatorTreeAnalysis
>();