1 //===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements loop unroll and jam as a routine, much like
10 // LoopUnroll.cpp implements loop unroll.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/DependenceAnalysis.h"
24 #include "llvm/Analysis/DomTreeUpdater.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/MustExecute.h"
28 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/IR/ValueMap.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/GenericDomTree.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Cloning.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/UnrollLoop.h"
52 #include "llvm/Transforms/Utils/ValueMapper.h"
55 #include <type_traits>
60 #define DEBUG_TYPE "loop-unroll-and-jam"
62 STATISTIC(NumUnrolledAndJammed
, "Number of loops unroll and jammed");
63 STATISTIC(NumCompletelyUnrolledAndJammed
, "Number of loops unroll and jammed");
65 typedef SmallPtrSet
<BasicBlock
*, 4> BasicBlockSet
;
67 // Partition blocks in an outer/inner loop pair into blocks before and after
69 static bool partitionLoopBlocks(Loop
&L
, BasicBlockSet
&ForeBlocks
,
70 BasicBlockSet
&AftBlocks
, DominatorTree
&DT
) {
71 Loop
*SubLoop
= L
.getSubLoops()[0];
72 BasicBlock
*SubLoopLatch
= SubLoop
->getLoopLatch();
74 for (BasicBlock
*BB
: L
.blocks()) {
75 if (!SubLoop
->contains(BB
)) {
76 if (DT
.dominates(SubLoopLatch
, BB
))
79 ForeBlocks
.insert(BB
);
83 // Check that all blocks in ForeBlocks together dominate the subloop
84 // TODO: This might ideally be done better with a dominator/postdominators.
85 BasicBlock
*SubLoopPreHeader
= SubLoop
->getLoopPreheader();
86 for (BasicBlock
*BB
: ForeBlocks
) {
87 if (BB
== SubLoopPreHeader
)
89 Instruction
*TI
= BB
->getTerminator();
90 for (BasicBlock
*Succ
: successors(TI
))
91 if (!ForeBlocks
.count(Succ
))
98 /// Partition blocks in a loop nest into blocks before and after each inner
100 static bool partitionOuterLoopBlocks(
101 Loop
&Root
, Loop
&JamLoop
, BasicBlockSet
&JamLoopBlocks
,
102 DenseMap
<Loop
*, BasicBlockSet
> &ForeBlocksMap
,
103 DenseMap
<Loop
*, BasicBlockSet
> &AftBlocksMap
, DominatorTree
&DT
) {
104 JamLoopBlocks
.insert(JamLoop
.block_begin(), JamLoop
.block_end());
106 for (Loop
*L
: Root
.getLoopsInPreorder()) {
110 if (!partitionLoopBlocks(*L
, ForeBlocksMap
[L
], AftBlocksMap
[L
], DT
))
117 // TODO Remove when UnrollAndJamLoop changed to support unroll and jamming more
118 // than 2 levels loop.
119 static bool partitionOuterLoopBlocks(Loop
*L
, Loop
*SubLoop
,
120 BasicBlockSet
&ForeBlocks
,
121 BasicBlockSet
&SubLoopBlocks
,
122 BasicBlockSet
&AftBlocks
,
124 SubLoopBlocks
.insert(SubLoop
->block_begin(), SubLoop
->block_end());
125 return partitionLoopBlocks(*L
, ForeBlocks
, AftBlocks
, *DT
);
128 // Looks at the phi nodes in Header for values coming from Latch. For these
129 // instructions and all their operands calls Visit on them, keeping going for
130 // all the operands in AftBlocks. Returns false if Visit returns false,
131 // otherwise returns true. This is used to process the instructions in the
132 // Aft blocks that need to be moved before the subloop. It is used in two
133 // places. One to check that the required set of instructions can be moved
134 // before the loop. Then to collect the instructions to actually move in
135 // moveHeaderPhiOperandsToForeBlocks.
136 template <typename T
>
137 static bool processHeaderPhiOperands(BasicBlock
*Header
, BasicBlock
*Latch
,
138 BasicBlockSet
&AftBlocks
, T Visit
) {
139 SmallPtrSet
<Instruction
*, 8> VisitedInstr
;
141 std::function
<bool(Instruction
* I
)> ProcessInstr
= [&](Instruction
*I
) {
142 if (VisitedInstr
.count(I
))
145 VisitedInstr
.insert(I
);
147 if (AftBlocks
.count(I
->getParent()))
148 for (auto &U
: I
->operands())
149 if (Instruction
*II
= dyn_cast
<Instruction
>(U
))
150 if (!ProcessInstr(II
))
156 for (auto &Phi
: Header
->phis()) {
157 Value
*V
= Phi
.getIncomingValueForBlock(Latch
);
158 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
159 if (!ProcessInstr(I
))
166 // Move the phi operands of Header from Latch out of AftBlocks to InsertLoc.
167 static void moveHeaderPhiOperandsToForeBlocks(BasicBlock
*Header
,
169 Instruction
*InsertLoc
,
170 BasicBlockSet
&AftBlocks
) {
171 // We need to ensure we move the instructions in the correct order,
172 // starting with the earliest required instruction and moving forward.
173 processHeaderPhiOperands(Header
, Latch
, AftBlocks
,
174 [&AftBlocks
, &InsertLoc
](Instruction
*I
) {
175 if (AftBlocks
.count(I
->getParent()))
176 I
->moveBefore(InsertLoc
);
182 This method performs Unroll and Jam. For a simple loop like:
189 Instead of doing normal inner or outer unrolling, we do:
199 So the outer loop is essetially unrolled and then the inner loops are fused
200 ("jammed") together into a single loop. This can increase speed when there
201 are loads in SubLoop that are invariant to i, as they become shared between
202 the now jammed inner loops.
204 We do this by spliting the blocks in the loop into Fore, Subloop and Aft.
205 Fore blocks are those before the inner loop, Aft are those after. Normal
206 Unroll code is used to copy each of these sets of blocks and the results are
207 combined together into the final form above.
209 isSafeToUnrollAndJam should be used prior to calling this to make sure the
210 unrolling will be valid. Checking profitablility is also advisable.
212 If EpilogueLoop is non-null, it receives the epilogue loop (if it was
213 necessary to create one and not fully unrolled).
216 llvm::UnrollAndJamLoop(Loop
*L
, unsigned Count
, unsigned TripCount
,
217 unsigned TripMultiple
, bool UnrollRemainder
,
218 LoopInfo
*LI
, ScalarEvolution
*SE
, DominatorTree
*DT
,
219 AssumptionCache
*AC
, const TargetTransformInfo
*TTI
,
220 OptimizationRemarkEmitter
*ORE
, Loop
**EpilogueLoop
) {
222 // When we enter here we should have already checked that it is safe
223 BasicBlock
*Header
= L
->getHeader();
224 assert(Header
&& "No header.");
225 assert(L
->getSubLoops().size() == 1);
226 Loop
*SubLoop
= *L
->begin();
228 // Don't enter the unroll code if there is nothing to do.
229 if (TripCount
== 0 && Count
< 2) {
230 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n");
231 return LoopUnrollResult::Unmodified
;
235 assert(TripMultiple
> 0);
236 assert(TripCount
== 0 || TripCount
% TripMultiple
== 0);
238 // Are we eliminating the loop control altogether?
239 bool CompletelyUnroll
= (Count
== TripCount
);
241 // We use the runtime remainder in cases where we don't know trip multiple
242 if (TripMultiple
% Count
!= 0) {
243 if (!UnrollRuntimeLoopRemainder(L
, Count
, /*AllowExpensiveTripCount*/ false,
244 /*UseEpilogRemainder*/ true,
245 UnrollRemainder
, /*ForgetAllSCEV*/ false,
246 LI
, SE
, DT
, AC
, TTI
, true, EpilogueLoop
)) {
247 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be "
248 "generated when assuming runtime trip count\n");
249 return LoopUnrollResult::Unmodified
;
253 // Notify ScalarEvolution that the loop will be substantially changed,
254 // if not outright eliminated.
257 SE
->forgetBlockAndLoopDispositions();
261 // Report the unrolling decision.
262 if (CompletelyUnroll
) {
263 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %"
264 << Header
->getName() << " with trip count " << TripCount
266 ORE
->emit(OptimizationRemark(DEBUG_TYPE
, "FullyUnrolled", L
->getStartLoc(),
268 << "completely unroll and jammed loop with "
269 << NV("UnrollCount", TripCount
) << " iterations");
271 auto DiagBuilder
= [&]() {
272 OptimizationRemark
Diag(DEBUG_TYPE
, "PartialUnrolled", L
->getStartLoc(),
274 return Diag
<< "unroll and jammed loop by a factor of "
275 << NV("UnrollCount", Count
);
278 LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header
->getName()
280 if (TripMultiple
!= 1) {
281 LLVM_DEBUG(dbgs() << " with " << TripMultiple
<< " trips per branch");
283 return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple
)
284 << " trips per branch";
287 LLVM_DEBUG(dbgs() << " with run-time trip count");
288 ORE
->emit([&]() { return DiagBuilder() << " with run-time trip count"; });
290 LLVM_DEBUG(dbgs() << "!\n");
293 BasicBlock
*Preheader
= L
->getLoopPreheader();
294 BasicBlock
*LatchBlock
= L
->getLoopLatch();
295 assert(Preheader
&& "No preheader");
296 assert(LatchBlock
&& "No latch block");
297 BranchInst
*BI
= dyn_cast
<BranchInst
>(LatchBlock
->getTerminator());
298 assert(BI
&& !BI
->isUnconditional());
299 bool ContinueOnTrue
= L
->contains(BI
->getSuccessor(0));
300 BasicBlock
*LoopExit
= BI
->getSuccessor(ContinueOnTrue
);
301 bool SubLoopContinueOnTrue
= SubLoop
->contains(
302 SubLoop
->getLoopLatch()->getTerminator()->getSuccessor(0));
304 // Partition blocks in an outer/inner loop pair into blocks before and after
306 BasicBlockSet SubLoopBlocks
;
307 BasicBlockSet ForeBlocks
;
308 BasicBlockSet AftBlocks
;
309 partitionOuterLoopBlocks(L
, SubLoop
, ForeBlocks
, SubLoopBlocks
, AftBlocks
,
312 // We keep track of the entering/first and exiting/last block of each of
313 // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of
315 std::vector
<BasicBlock
*> ForeBlocksFirst
;
316 std::vector
<BasicBlock
*> ForeBlocksLast
;
317 std::vector
<BasicBlock
*> SubLoopBlocksFirst
;
318 std::vector
<BasicBlock
*> SubLoopBlocksLast
;
319 std::vector
<BasicBlock
*> AftBlocksFirst
;
320 std::vector
<BasicBlock
*> AftBlocksLast
;
321 ForeBlocksFirst
.push_back(Header
);
322 ForeBlocksLast
.push_back(SubLoop
->getLoopPreheader());
323 SubLoopBlocksFirst
.push_back(SubLoop
->getHeader());
324 SubLoopBlocksLast
.push_back(SubLoop
->getExitingBlock());
325 AftBlocksFirst
.push_back(SubLoop
->getExitBlock());
326 AftBlocksLast
.push_back(L
->getExitingBlock());
327 // Maps Blocks[0] -> Blocks[It]
328 ValueToValueMapTy LastValueMap
;
330 // Move any instructions from fore phi operands from AftBlocks into Fore.
331 moveHeaderPhiOperandsToForeBlocks(
332 Header
, LatchBlock
, ForeBlocksLast
[0]->getTerminator(), AftBlocks
);
334 // The current on-the-fly SSA update requires blocks to be processed in
335 // reverse postorder so that LastValueMap contains the correct value at each
337 LoopBlocksDFS
DFS(L
);
339 // Stash the DFS iterators before adding blocks to the loop.
340 LoopBlocksDFS::RPOIterator BlockBegin
= DFS
.beginRPO();
341 LoopBlocksDFS::RPOIterator BlockEnd
= DFS
.endRPO();
343 // When a FSDiscriminator is enabled, we don't need to add the multiply
344 // factors to the discriminators.
345 if (Header
->getParent()->shouldEmitDebugInfoForProfiling() &&
346 !EnableFSDiscriminator
)
347 for (BasicBlock
*BB
: L
->getBlocks())
348 for (Instruction
&I
: *BB
)
349 if (!I
.isDebugOrPseudoInst())
350 if (const DILocation
*DIL
= I
.getDebugLoc()) {
351 auto NewDIL
= DIL
->cloneByMultiplyingDuplicationFactor(Count
);
353 I
.setDebugLoc(*NewDIL
);
356 << "Failed to create new discriminator: "
357 << DIL
->getFilename() << " Line: " << DIL
->getLine());
361 for (unsigned It
= 1; It
!= Count
; ++It
) {
362 SmallVector
<BasicBlock
*, 8> NewBlocks
;
363 // Maps Blocks[It] -> Blocks[It-1]
364 DenseMap
<Value
*, Value
*> PrevItValueMap
;
365 SmallDenseMap
<const Loop
*, Loop
*, 4> NewLoops
;
367 NewLoops
[SubLoop
] = SubLoop
;
369 for (LoopBlocksDFS::RPOIterator BB
= BlockBegin
; BB
!= BlockEnd
; ++BB
) {
370 ValueToValueMapTy VMap
;
371 BasicBlock
*New
= CloneBasicBlock(*BB
, VMap
, "." + Twine(It
));
372 Header
->getParent()->insert(Header
->getParent()->end(), New
);
374 // Tell LI about New.
375 addClonedBlockToLoopInfo(*BB
, New
, LI
, NewLoops
);
377 if (ForeBlocks
.count(*BB
)) {
378 if (*BB
== ForeBlocksFirst
[0])
379 ForeBlocksFirst
.push_back(New
);
380 if (*BB
== ForeBlocksLast
[0])
381 ForeBlocksLast
.push_back(New
);
382 } else if (SubLoopBlocks
.count(*BB
)) {
383 if (*BB
== SubLoopBlocksFirst
[0])
384 SubLoopBlocksFirst
.push_back(New
);
385 if (*BB
== SubLoopBlocksLast
[0])
386 SubLoopBlocksLast
.push_back(New
);
387 } else if (AftBlocks
.count(*BB
)) {
388 if (*BB
== AftBlocksFirst
[0])
389 AftBlocksFirst
.push_back(New
);
390 if (*BB
== AftBlocksLast
[0])
391 AftBlocksLast
.push_back(New
);
393 llvm_unreachable("BB being cloned should be in Fore/Sub/Aft");
396 // Update our running maps of newest clones
397 PrevItValueMap
[New
] = (It
== 1 ? *BB
: LastValueMap
[*BB
]);
398 LastValueMap
[*BB
] = New
;
399 for (ValueToValueMapTy::iterator VI
= VMap
.begin(), VE
= VMap
.end();
401 PrevItValueMap
[VI
->second
] =
402 const_cast<Value
*>(It
== 1 ? VI
->first
: LastValueMap
[VI
->first
]);
403 LastValueMap
[VI
->first
] = VI
->second
;
406 NewBlocks
.push_back(New
);
409 if (*BB
== ForeBlocksFirst
[0])
410 DT
->addNewBlock(New
, ForeBlocksLast
[It
- 1]);
411 else if (*BB
== SubLoopBlocksFirst
[0])
412 DT
->addNewBlock(New
, SubLoopBlocksLast
[It
- 1]);
413 else if (*BB
== AftBlocksFirst
[0])
414 DT
->addNewBlock(New
, AftBlocksLast
[It
- 1]);
416 // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree
418 auto BBDomNode
= DT
->getNode(*BB
);
419 auto BBIDom
= BBDomNode
->getIDom();
420 BasicBlock
*OriginalBBIDom
= BBIDom
->getBlock();
421 assert(OriginalBBIDom
);
422 assert(LastValueMap
[cast
<Value
>(OriginalBBIDom
)]);
424 New
, cast
<BasicBlock
>(LastValueMap
[cast
<Value
>(OriginalBBIDom
)]));
428 // Remap all instructions in the most recent iteration
429 remapInstructionsInBlocks(NewBlocks
, LastValueMap
);
430 for (BasicBlock
*NewBlock
: NewBlocks
) {
431 for (Instruction
&I
: *NewBlock
) {
432 if (auto *II
= dyn_cast
<AssumeInst
>(&I
))
433 AC
->registerAssumption(II
);
437 // Alter the ForeBlocks phi's, pointing them at the latest version of the
438 // value from the previous iteration's phis
439 for (PHINode
&Phi
: ForeBlocksFirst
[It
]->phis()) {
440 Value
*OldValue
= Phi
.getIncomingValueForBlock(AftBlocksLast
[It
]);
441 assert(OldValue
&& "should have incoming edge from Aft[It]");
442 Value
*NewValue
= OldValue
;
443 if (Value
*PrevValue
= PrevItValueMap
[OldValue
])
444 NewValue
= PrevValue
;
446 assert(Phi
.getNumOperands() == 2);
447 Phi
.setIncomingBlock(0, ForeBlocksLast
[It
- 1]);
448 Phi
.setIncomingValue(0, NewValue
);
449 Phi
.removeIncomingValue(1);
453 // Now that all the basic blocks for the unrolled iterations are in place,
454 // finish up connecting the blocks and phi nodes. At this point LastValueMap
455 // is the last unrolled iterations values.
457 // Update Phis in BB from OldBB to point to NewBB and use the latest value
459 auto updatePHIBlocksAndValues
= [](BasicBlock
*BB
, BasicBlock
*OldBB
,
461 ValueToValueMapTy
&LastValueMap
) {
462 for (PHINode
&Phi
: BB
->phis()) {
463 for (unsigned b
= 0; b
< Phi
.getNumIncomingValues(); ++b
) {
464 if (Phi
.getIncomingBlock(b
) == OldBB
) {
465 Value
*OldValue
= Phi
.getIncomingValue(b
);
466 if (Value
*LastValue
= LastValueMap
[OldValue
])
467 Phi
.setIncomingValue(b
, LastValue
);
468 Phi
.setIncomingBlock(b
, NewBB
);
474 // Move all the phis from Src into Dest
475 auto movePHIs
= [](BasicBlock
*Src
, BasicBlock
*Dest
) {
476 Instruction
*insertPoint
= Dest
->getFirstNonPHI();
477 while (PHINode
*Phi
= dyn_cast
<PHINode
>(Src
->begin()))
478 Phi
->moveBefore(insertPoint
);
481 // Update the PHI values outside the loop to point to the last block
482 updatePHIBlocksAndValues(LoopExit
, AftBlocksLast
[0], AftBlocksLast
.back(),
485 // Update ForeBlocks successors and phi nodes
486 BranchInst
*ForeTerm
=
487 cast
<BranchInst
>(ForeBlocksLast
.back()->getTerminator());
488 assert(ForeTerm
->getNumSuccessors() == 1 && "Expecting one successor");
489 ForeTerm
->setSuccessor(0, SubLoopBlocksFirst
[0]);
491 if (CompletelyUnroll
) {
492 while (PHINode
*Phi
= dyn_cast
<PHINode
>(ForeBlocksFirst
[0]->begin())) {
493 Phi
->replaceAllUsesWith(Phi
->getIncomingValueForBlock(Preheader
));
494 Phi
->eraseFromParent();
497 // Update the PHI values to point to the last aft block
498 updatePHIBlocksAndValues(ForeBlocksFirst
[0], AftBlocksLast
[0],
499 AftBlocksLast
.back(), LastValueMap
);
502 for (unsigned It
= 1; It
!= Count
; It
++) {
503 // Remap ForeBlock successors from previous iteration to this
504 BranchInst
*ForeTerm
=
505 cast
<BranchInst
>(ForeBlocksLast
[It
- 1]->getTerminator());
506 assert(ForeTerm
->getNumSuccessors() == 1 && "Expecting one successor");
507 ForeTerm
->setSuccessor(0, ForeBlocksFirst
[It
]);
510 // Subloop successors and phis
511 BranchInst
*SubTerm
=
512 cast
<BranchInst
>(SubLoopBlocksLast
.back()->getTerminator());
513 SubTerm
->setSuccessor(!SubLoopContinueOnTrue
, SubLoopBlocksFirst
[0]);
514 SubTerm
->setSuccessor(SubLoopContinueOnTrue
, AftBlocksFirst
[0]);
515 SubLoopBlocksFirst
[0]->replacePhiUsesWith(ForeBlocksLast
[0],
516 ForeBlocksLast
.back());
517 SubLoopBlocksFirst
[0]->replacePhiUsesWith(SubLoopBlocksLast
[0],
518 SubLoopBlocksLast
.back());
520 for (unsigned It
= 1; It
!= Count
; It
++) {
521 // Replace the conditional branch of the previous iteration subloop with an
522 // unconditional one to this one
523 BranchInst
*SubTerm
=
524 cast
<BranchInst
>(SubLoopBlocksLast
[It
- 1]->getTerminator());
525 BranchInst::Create(SubLoopBlocksFirst
[It
], SubTerm
);
526 SubTerm
->eraseFromParent();
528 SubLoopBlocksFirst
[It
]->replacePhiUsesWith(ForeBlocksLast
[It
],
529 ForeBlocksLast
.back());
530 SubLoopBlocksFirst
[It
]->replacePhiUsesWith(SubLoopBlocksLast
[It
],
531 SubLoopBlocksLast
.back());
532 movePHIs(SubLoopBlocksFirst
[It
], SubLoopBlocksFirst
[0]);
535 // Aft blocks successors and phis
536 BranchInst
*AftTerm
= cast
<BranchInst
>(AftBlocksLast
.back()->getTerminator());
537 if (CompletelyUnroll
) {
538 BranchInst::Create(LoopExit
, AftTerm
);
539 AftTerm
->eraseFromParent();
541 AftTerm
->setSuccessor(!ContinueOnTrue
, ForeBlocksFirst
[0]);
542 assert(AftTerm
->getSuccessor(ContinueOnTrue
) == LoopExit
&&
543 "Expecting the ContinueOnTrue successor of AftTerm to be LoopExit");
545 AftBlocksFirst
[0]->replacePhiUsesWith(SubLoopBlocksLast
[0],
546 SubLoopBlocksLast
.back());
548 for (unsigned It
= 1; It
!= Count
; It
++) {
549 // Replace the conditional branch of the previous iteration subloop with an
550 // unconditional one to this one
551 BranchInst
*AftTerm
=
552 cast
<BranchInst
>(AftBlocksLast
[It
- 1]->getTerminator());
553 BranchInst::Create(AftBlocksFirst
[It
], AftTerm
);
554 AftTerm
->eraseFromParent();
556 AftBlocksFirst
[It
]->replacePhiUsesWith(SubLoopBlocksLast
[It
],
557 SubLoopBlocksLast
.back());
558 movePHIs(AftBlocksFirst
[It
], AftBlocksFirst
[0]);
561 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Lazy
);
562 // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the
563 // new ones required.
565 SmallVector
<DominatorTree::UpdateType
, 4> DTUpdates
;
566 DTUpdates
.emplace_back(DominatorTree::UpdateKind::Delete
, ForeBlocksLast
[0],
567 SubLoopBlocksFirst
[0]);
568 DTUpdates
.emplace_back(DominatorTree::UpdateKind::Delete
,
569 SubLoopBlocksLast
[0], AftBlocksFirst
[0]);
571 DTUpdates
.emplace_back(DominatorTree::UpdateKind::Insert
,
572 ForeBlocksLast
.back(), SubLoopBlocksFirst
[0]);
573 DTUpdates
.emplace_back(DominatorTree::UpdateKind::Insert
,
574 SubLoopBlocksLast
.back(), AftBlocksFirst
[0]);
575 DTU
.applyUpdatesPermissive(DTUpdates
);
578 // Merge adjacent basic blocks, if possible.
579 SmallPtrSet
<BasicBlock
*, 16> MergeBlocks
;
580 MergeBlocks
.insert(ForeBlocksLast
.begin(), ForeBlocksLast
.end());
581 MergeBlocks
.insert(SubLoopBlocksLast
.begin(), SubLoopBlocksLast
.end());
582 MergeBlocks
.insert(AftBlocksLast
.begin(), AftBlocksLast
.end());
584 MergeBlockSuccessorsIntoGivenBlocks(MergeBlocks
, L
, &DTU
, LI
);
586 // Apply updates to the DomTree.
587 DT
= &DTU
.getDomTree();
589 // At this point, the code is well formed. We now do a quick sweep over the
590 // inserted code, doing constant propagation and dead code elimination as we
592 simplifyLoopAfterUnroll(SubLoop
, true, LI
, SE
, DT
, AC
, TTI
);
593 simplifyLoopAfterUnroll(L
, !CompletelyUnroll
&& Count
> 1, LI
, SE
, DT
, AC
,
596 NumCompletelyUnrolledAndJammed
+= CompletelyUnroll
;
597 ++NumUnrolledAndJammed
;
599 // Update LoopInfo if the loop is completely removed.
600 if (CompletelyUnroll
)
604 // We shouldn't have done anything to break loop simplify form or LCSSA.
605 Loop
*OutestLoop
= SubLoop
->getParentLoop()
606 ? SubLoop
->getParentLoop()->getParentLoop()
607 ? SubLoop
->getParentLoop()->getParentLoop()
608 : SubLoop
->getParentLoop()
610 assert(DT
->verify());
612 assert(OutestLoop
->isRecursivelyLCSSAForm(*DT
, *LI
));
613 if (!CompletelyUnroll
)
614 assert(L
->isLoopSimplifyForm());
615 assert(SubLoop
->isLoopSimplifyForm());
619 return CompletelyUnroll
? LoopUnrollResult::FullyUnrolled
620 : LoopUnrollResult::PartiallyUnrolled
;
623 static bool getLoadsAndStores(BasicBlockSet
&Blocks
,
624 SmallVector
<Instruction
*, 4> &MemInstr
) {
625 // Scan the BBs and collect legal loads and stores.
626 // Returns false if non-simple loads/stores are found.
627 for (BasicBlock
*BB
: Blocks
) {
628 for (Instruction
&I
: *BB
) {
629 if (auto *Ld
= dyn_cast
<LoadInst
>(&I
)) {
632 MemInstr
.push_back(&I
);
633 } else if (auto *St
= dyn_cast
<StoreInst
>(&I
)) {
636 MemInstr
.push_back(&I
);
637 } else if (I
.mayReadOrWriteMemory()) {
645 static bool preservesForwardDependence(Instruction
*Src
, Instruction
*Dst
,
646 unsigned UnrollLevel
, unsigned JamLevel
,
647 bool Sequentialized
, Dependence
*D
) {
648 // UnrollLevel might carry the dependency Src --> Dst
649 // Does a different loop after unrolling?
650 for (unsigned CurLoopDepth
= UnrollLevel
+ 1; CurLoopDepth
<= JamLevel
;
652 auto JammedDir
= D
->getDirection(CurLoopDepth
);
653 if (JammedDir
== Dependence::DVEntry::LT
)
656 if (JammedDir
& Dependence::DVEntry::GT
)
663 static bool preservesBackwardDependence(Instruction
*Src
, Instruction
*Dst
,
664 unsigned UnrollLevel
, unsigned JamLevel
,
665 bool Sequentialized
, Dependence
*D
) {
666 // UnrollLevel might carry the dependency Dst --> Src
667 for (unsigned CurLoopDepth
= UnrollLevel
+ 1; CurLoopDepth
<= JamLevel
;
669 auto JammedDir
= D
->getDirection(CurLoopDepth
);
670 if (JammedDir
== Dependence::DVEntry::GT
)
673 if (JammedDir
& Dependence::DVEntry::LT
)
677 // Backward dependencies are only preserved if not interleaved.
678 return Sequentialized
;
681 // Check whether it is semantically safe Src and Dst considering any potential
682 // dependency between them.
684 // @param UnrollLevel The level of the loop being unrolled
685 // @param JamLevel The level of the loop being jammed; if Src and Dst are on
686 // different levels, the outermost common loop counts as jammed level
688 // @return true if is safe and false if there is a dependency violation.
689 static bool checkDependency(Instruction
*Src
, Instruction
*Dst
,
690 unsigned UnrollLevel
, unsigned JamLevel
,
691 bool Sequentialized
, DependenceInfo
&DI
) {
692 assert(UnrollLevel
<= JamLevel
&&
693 "Expecting JamLevel to be at least UnrollLevel");
697 // Ignore Input dependencies.
698 if (isa
<LoadInst
>(Src
) && isa
<LoadInst
>(Dst
))
701 // Check whether unroll-and-jam may violate a dependency.
702 // By construction, every dependency will be lexicographically non-negative
703 // (if it was, it would violate the current execution order), such as
705 // Unroll-and-jam changes the GT execution of two executions to the same
706 // iteration of the chosen unroll level. That is, a GT dependence becomes a GE
707 // dependence (or EQ, if we fully unrolled the loop) at the loop's position:
709 // Now, the dependency is not necessarily non-negative anymore, i.e.
710 // unroll-and-jam may violate correctness.
711 std::unique_ptr
<Dependence
> D
= DI
.depends(Src
, Dst
, true);
714 assert(D
->isOrdered() && "Expected an output, flow or anti dep.");
716 if (D
->isConfused()) {
717 LLVM_DEBUG(dbgs() << " Confused dependency between:\n"
718 << " " << *Src
<< "\n"
719 << " " << *Dst
<< "\n");
723 // If outer levels (levels enclosing the loop being unroll-and-jammed) have a
724 // non-equal direction, then the locations accessed in the inner levels cannot
725 // overlap in memory. We assumes the indexes never overlap into neighboring
727 for (unsigned CurLoopDepth
= 1; CurLoopDepth
< UnrollLevel
; ++CurLoopDepth
)
728 if (!(D
->getDirection(CurLoopDepth
) & Dependence::DVEntry::EQ
))
731 auto UnrollDirection
= D
->getDirection(UnrollLevel
);
733 // If the distance carried by the unrolled loop is 0, then after unrolling
734 // that distance will become non-zero resulting in non-overlapping accesses in
736 if (UnrollDirection
== Dependence::DVEntry::EQ
)
739 if (UnrollDirection
& Dependence::DVEntry::LT
&&
740 !preservesForwardDependence(Src
, Dst
, UnrollLevel
, JamLevel
,
741 Sequentialized
, D
.get()))
744 if (UnrollDirection
& Dependence::DVEntry::GT
&&
745 !preservesBackwardDependence(Src
, Dst
, UnrollLevel
, JamLevel
,
746 Sequentialized
, D
.get()))
753 checkDependencies(Loop
&Root
, const BasicBlockSet
&SubLoopBlocks
,
754 const DenseMap
<Loop
*, BasicBlockSet
> &ForeBlocksMap
,
755 const DenseMap
<Loop
*, BasicBlockSet
> &AftBlocksMap
,
756 DependenceInfo
&DI
, LoopInfo
&LI
) {
757 SmallVector
<BasicBlockSet
, 8> AllBlocks
;
758 for (Loop
*L
: Root
.getLoopsInPreorder())
759 if (ForeBlocksMap
.contains(L
))
760 AllBlocks
.push_back(ForeBlocksMap
.lookup(L
));
761 AllBlocks
.push_back(SubLoopBlocks
);
762 for (Loop
*L
: Root
.getLoopsInPreorder())
763 if (AftBlocksMap
.contains(L
))
764 AllBlocks
.push_back(AftBlocksMap
.lookup(L
));
766 unsigned LoopDepth
= Root
.getLoopDepth();
767 SmallVector
<Instruction
*, 4> EarlierLoadsAndStores
;
768 SmallVector
<Instruction
*, 4> CurrentLoadsAndStores
;
769 for (BasicBlockSet
&Blocks
: AllBlocks
) {
770 CurrentLoadsAndStores
.clear();
771 if (!getLoadsAndStores(Blocks
, CurrentLoadsAndStores
))
774 Loop
*CurLoop
= LI
.getLoopFor((*Blocks
.begin())->front().getParent());
775 unsigned CurLoopDepth
= CurLoop
->getLoopDepth();
777 for (auto *Earlier
: EarlierLoadsAndStores
) {
778 Loop
*EarlierLoop
= LI
.getLoopFor(Earlier
->getParent());
779 unsigned EarlierDepth
= EarlierLoop
->getLoopDepth();
780 unsigned CommonLoopDepth
= std::min(EarlierDepth
, CurLoopDepth
);
781 for (auto *Later
: CurrentLoadsAndStores
) {
782 if (!checkDependency(Earlier
, Later
, LoopDepth
, CommonLoopDepth
, false,
788 size_t NumInsts
= CurrentLoadsAndStores
.size();
789 for (size_t I
= 0; I
< NumInsts
; ++I
) {
790 for (size_t J
= I
; J
< NumInsts
; ++J
) {
791 if (!checkDependency(CurrentLoadsAndStores
[I
], CurrentLoadsAndStores
[J
],
792 LoopDepth
, CurLoopDepth
, true, DI
))
797 EarlierLoadsAndStores
.append(CurrentLoadsAndStores
.begin(),
798 CurrentLoadsAndStores
.end());
803 static bool isEligibleLoopForm(const Loop
&Root
) {
804 // Root must have a child.
805 if (Root
.getSubLoops().size() != 1)
808 const Loop
*L
= &Root
;
810 // All loops in Root need to be in simplify and rotated form.
811 if (!L
->isLoopSimplifyForm())
814 if (!L
->isRotatedForm())
817 if (L
->getHeader()->hasAddressTaken()) {
818 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n");
822 unsigned SubLoopsSize
= L
->getSubLoops().size();
823 if (SubLoopsSize
== 0)
826 // Only one child is allowed.
827 if (SubLoopsSize
!= 1)
830 // Only loops with a single exit block can be unrolled and jammed.
831 // The function getExitBlock() is used for this check, rather than
832 // getUniqueExitBlock() to ensure loops with mulitple exit edges are
834 if (!L
->getExitBlock()) {
835 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single exit "
836 "blocks can be unrolled and jammed.\n");
840 // Only loops with a single exiting block can be unrolled and jammed.
841 if (!L
->getExitingBlock()) {
842 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single "
843 "exiting blocks can be unrolled and jammed.\n");
847 L
= L
->getSubLoops()[0];
853 static Loop
*getInnerMostLoop(Loop
*L
) {
854 while (!L
->getSubLoops().empty())
855 L
= L
->getSubLoops()[0];
859 bool llvm::isSafeToUnrollAndJam(Loop
*L
, ScalarEvolution
&SE
, DominatorTree
&DT
,
860 DependenceInfo
&DI
, LoopInfo
&LI
) {
861 if (!isEligibleLoopForm(*L
)) {
862 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Ineligible loop form\n");
866 /* We currently handle outer loops like this:
869 Blocks | } ForeBlocks of L
875 Blocks | | } ForeBlocks of a inner loop of L
878 JamLoopFirst <\ | | }
879 Blocks | | | } JamLoopBlocks of the innermost loop
883 Blocks | | } AftBlocks of a inner loop of L
889 Blocks | } AftBlocks of L
893 There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks
894 and AftBlocks, providing that there is one edge from Fores to SubLoops,
895 one edge from SubLoops to Afts and a single outer loop exit (from Afts).
896 In practice we currently limit Aft blocks to a single block, and limit
897 things further in the profitablility checks of the unroll and jam pass.
899 Because of the way we rearrange basic blocks, we also require that
900 the Fore blocks of L on all unrolled iterations are safe to move before the
901 blocks of the direct child of L of all iterations. So we require that the
902 phi node looping operands of ForeHeader can be moved to at least the end of
903 ForeEnd, so that we can arrange cloned Fore Blocks before the subloop and
904 match up Phi's correctly.
906 i.e. The old order of blocks used to be
907 (F1)1 (F2)1 J1_1 J1_2 (A2)1 (A1)1 (F1)2 (F2)2 J2_1 J2_2 (A2)2 (A1)2.
908 It needs to be safe to transform this to
909 (F1)1 (F1)2 (F2)1 (F2)2 J1_1 J1_2 J2_1 J2_2 (A2)1 (A2)2 (A1)1 (A1)2.
911 There are then a number of checks along the lines of no calls, no
912 exceptions, inner loop IV is consistent, etc. Note that for loops requiring
913 runtime unrolling, UnrollRuntimeLoopRemainder can also fail in
914 UnrollAndJamLoop if the trip count cannot be easily calculated.
917 // Split blocks into Fore/SubLoop/Aft based on dominators
918 Loop
*JamLoop
= getInnerMostLoop(L
);
919 BasicBlockSet SubLoopBlocks
;
920 DenseMap
<Loop
*, BasicBlockSet
> ForeBlocksMap
;
921 DenseMap
<Loop
*, BasicBlockSet
> AftBlocksMap
;
922 if (!partitionOuterLoopBlocks(*L
, *JamLoop
, SubLoopBlocks
, ForeBlocksMap
,
924 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n");
928 // Aft blocks may need to move instructions to fore blocks, which becomes more
929 // difficult if there are multiple (potentially conditionally executed)
930 // blocks. For now we just exclude loops with multiple aft blocks.
931 if (AftBlocksMap
[L
].size() != 1) {
932 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle "
933 "multiple blocks after the loop\n");
937 // Check inner loop backedge count is consistent on all iterations of the
939 if (any_of(L
->getLoopsInPreorder(), [&SE
](Loop
*SubLoop
) {
940 return !hasIterationCountInvariantInParent(SubLoop
, SE
);
942 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is "
943 "not consistent on each iteration\n");
947 // Check the loop safety info for exceptions.
948 SimpleLoopSafetyInfo LSI
;
949 LSI
.computeLoopSafetyInfo(L
);
950 if (LSI
.anyBlockMayThrow()) {
951 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n");
955 // We've ruled out the easy stuff and now need to check that there are no
956 // interdependencies which may prevent us from moving the:
957 // ForeBlocks before Subloop and AftBlocks.
958 // Subloop before AftBlocks.
959 // ForeBlock phi operands before the subloop
961 // Make sure we can move all instructions we need to before the subloop
962 BasicBlock
*Header
= L
->getHeader();
963 BasicBlock
*Latch
= L
->getLoopLatch();
964 BasicBlockSet AftBlocks
= AftBlocksMap
[L
];
965 Loop
*SubLoop
= L
->getSubLoops()[0];
966 if (!processHeaderPhiOperands(
967 Header
, Latch
, AftBlocks
, [&AftBlocks
, &SubLoop
](Instruction
*I
) {
968 if (SubLoop
->contains(I
->getParent()))
970 if (AftBlocks
.count(I
->getParent())) {
971 // If we hit a phi node in afts we know we are done (probably
975 // Can't move instructions with side effects or memory
977 if (I
->mayHaveSideEffects() || I
->mayReadOrWriteMemory())
983 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required "
984 "instructions after subloop to before it\n");
988 // Check for memory dependencies which prohibit the unrolling we are doing.
989 // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check
990 // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub.
991 if (!checkDependencies(*L
, SubLoopBlocks
, ForeBlocksMap
, AftBlocksMap
, DI
,
993 LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n");