[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Utils / SimplifyIndVar.cpp
blob1b142f14d811393fbe894b83d32cc46d13f66623
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
33 #define DEBUG_TYPE "indvars"
35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
36 STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
37 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
38 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
39 STATISTIC(
40 NumSimplifiedSDiv,
41 "Number of IV signed division operations converted to unsigned division");
42 STATISTIC(
43 NumSimplifiedSRem,
44 "Number of IV signed remainder operations converted to unsigned remainder");
45 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
47 namespace {
48 /// This is a utility for simplifying induction variables
49 /// based on ScalarEvolution. It is the primary instrument of the
50 /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
51 /// other loop passes that preserve SCEV.
52 class SimplifyIndvar {
53 Loop *L;
54 LoopInfo *LI;
55 ScalarEvolution *SE;
56 DominatorTree *DT;
57 const TargetTransformInfo *TTI;
58 SCEVExpander &Rewriter;
59 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
61 bool Changed = false;
63 public:
64 SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
65 LoopInfo *LI, const TargetTransformInfo *TTI,
66 SCEVExpander &Rewriter,
67 SmallVectorImpl<WeakTrackingVH> &Dead)
68 : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
69 DeadInsts(Dead) {
70 assert(LI && "IV simplification requires LoopInfo");
73 bool hasChanged() const { return Changed; }
75 /// Iteratively perform simplification on a worklist of users of the
76 /// specified induction variable. This is the top-level driver that applies
77 /// all simplifications to users of an IV.
78 void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
80 Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
82 bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
83 bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
84 bool replaceFloatIVWithIntegerIV(Instruction *UseInst);
86 bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
87 bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
88 bool eliminateTrunc(TruncInst *TI);
89 bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
90 bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand);
91 void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand);
92 void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand,
93 bool IsSigned);
94 void replaceRemWithNumerator(BinaryOperator *Rem);
95 void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
96 void replaceSRemWithURem(BinaryOperator *Rem);
97 bool eliminateSDiv(BinaryOperator *SDiv);
98 bool strengthenBinaryOp(BinaryOperator *BO, Instruction *IVOperand);
99 bool strengthenOverflowingOperation(BinaryOperator *OBO,
100 Instruction *IVOperand);
101 bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand);
105 /// Find a point in code which dominates all given instructions. We can safely
106 /// assume that, whatever fact we can prove at the found point, this fact is
107 /// also true for each of the given instructions.
108 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
109 DominatorTree &DT) {
110 Instruction *CommonDom = nullptr;
111 for (auto *Insn : Instructions)
112 CommonDom =
113 CommonDom ? DT.findNearestCommonDominator(CommonDom, Insn) : Insn;
114 assert(CommonDom && "Common dominator not found?");
115 return CommonDom;
118 /// Fold an IV operand into its use. This removes increments of an
119 /// aligned IV when used by a instruction that ignores the low bits.
121 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
123 /// Return the operand of IVOperand for this induction variable if IVOperand can
124 /// be folded (in case more folding opportunities have been exposed).
125 /// Otherwise return null.
126 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
127 Value *IVSrc = nullptr;
128 const unsigned OperIdx = 0;
129 const SCEV *FoldedExpr = nullptr;
130 bool MustDropExactFlag = false;
131 switch (UseInst->getOpcode()) {
132 default:
133 return nullptr;
134 case Instruction::UDiv:
135 case Instruction::LShr:
136 // We're only interested in the case where we know something about
137 // the numerator and have a constant denominator.
138 if (IVOperand != UseInst->getOperand(OperIdx) ||
139 !isa<ConstantInt>(UseInst->getOperand(1)))
140 return nullptr;
142 // Attempt to fold a binary operator with constant operand.
143 // e.g. ((I + 1) >> 2) => I >> 2
144 if (!isa<BinaryOperator>(IVOperand)
145 || !isa<ConstantInt>(IVOperand->getOperand(1)))
146 return nullptr;
148 IVSrc = IVOperand->getOperand(0);
149 // IVSrc must be the (SCEVable) IV, since the other operand is const.
150 assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
152 ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
153 if (UseInst->getOpcode() == Instruction::LShr) {
154 // Get a constant for the divisor. See createSCEV.
155 uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
156 if (D->getValue().uge(BitWidth))
157 return nullptr;
159 D = ConstantInt::get(UseInst->getContext(),
160 APInt::getOneBitSet(BitWidth, D->getZExtValue()));
162 const auto *LHS = SE->getSCEV(IVSrc);
163 const auto *RHS = SE->getSCEV(D);
164 FoldedExpr = SE->getUDivExpr(LHS, RHS);
165 // We might have 'exact' flag set at this point which will no longer be
166 // correct after we make the replacement.
167 if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS))
168 MustDropExactFlag = true;
170 // We have something that might fold it's operand. Compare SCEVs.
171 if (!SE->isSCEVable(UseInst->getType()))
172 return nullptr;
174 // Bypass the operand if SCEV can prove it has no effect.
175 if (SE->getSCEV(UseInst) != FoldedExpr)
176 return nullptr;
178 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
179 << " -> " << *UseInst << '\n');
181 UseInst->setOperand(OperIdx, IVSrc);
182 assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
184 if (MustDropExactFlag)
185 UseInst->dropPoisonGeneratingFlags();
187 ++NumElimOperand;
188 Changed = true;
189 if (IVOperand->use_empty())
190 DeadInsts.emplace_back(IVOperand);
191 return IVSrc;
194 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
195 Instruction *IVOperand) {
196 auto *Preheader = L->getLoopPreheader();
197 if (!Preheader)
198 return false;
199 unsigned IVOperIdx = 0;
200 ICmpInst::Predicate Pred = ICmp->getPredicate();
201 if (IVOperand != ICmp->getOperand(0)) {
202 // Swapped
203 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
204 IVOperIdx = 1;
205 Pred = ICmpInst::getSwappedPredicate(Pred);
208 // Get the SCEVs for the ICmp operands (in the specific context of the
209 // current loop)
210 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
211 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
212 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
213 auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L, ICmp);
214 if (!LIP)
215 return false;
216 ICmpInst::Predicate InvariantPredicate = LIP->Pred;
217 const SCEV *InvariantLHS = LIP->LHS;
218 const SCEV *InvariantRHS = LIP->RHS;
220 // Do not generate something ridiculous.
221 auto *PHTerm = Preheader->getTerminator();
222 if (Rewriter.isHighCostExpansion({InvariantLHS, InvariantRHS}, L,
223 2 * SCEVCheapExpansionBudget, TTI, PHTerm) ||
224 !Rewriter.isSafeToExpandAt(InvariantLHS, PHTerm) ||
225 !Rewriter.isSafeToExpandAt(InvariantRHS, PHTerm))
226 return false;
227 auto *NewLHS =
228 Rewriter.expandCodeFor(InvariantLHS, IVOperand->getType(), PHTerm);
229 auto *NewRHS =
230 Rewriter.expandCodeFor(InvariantRHS, IVOperand->getType(), PHTerm);
231 LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
232 ICmp->setPredicate(InvariantPredicate);
233 ICmp->setOperand(0, NewLHS);
234 ICmp->setOperand(1, NewRHS);
235 return true;
238 /// SimplifyIVUsers helper for eliminating useless
239 /// comparisons against an induction variable.
240 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp,
241 Instruction *IVOperand) {
242 unsigned IVOperIdx = 0;
243 ICmpInst::Predicate Pred = ICmp->getPredicate();
244 ICmpInst::Predicate OriginalPred = Pred;
245 if (IVOperand != ICmp->getOperand(0)) {
246 // Swapped
247 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
248 IVOperIdx = 1;
249 Pred = ICmpInst::getSwappedPredicate(Pred);
252 // Get the SCEVs for the ICmp operands (in the specific context of the
253 // current loop)
254 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
255 const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
256 const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
258 // If the condition is always true or always false in the given context,
259 // replace it with a constant value.
260 SmallVector<Instruction *, 4> Users;
261 for (auto *U : ICmp->users())
262 Users.push_back(cast<Instruction>(U));
263 const Instruction *CtxI = findCommonDominator(Users, *DT);
264 if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
265 SE->forgetValue(ICmp);
266 ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
267 DeadInsts.emplace_back(ICmp);
268 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
269 } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
270 // fallthrough to end of function
271 } else if (ICmpInst::isSigned(OriginalPred) &&
272 SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
273 // If we were unable to make anything above, all we can is to canonicalize
274 // the comparison hoping that it will open the doors for other
275 // optimizations. If we find out that we compare two non-negative values,
276 // we turn the instruction's predicate to its unsigned version. Note that
277 // we cannot rely on Pred here unless we check if we have swapped it.
278 assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
279 LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
280 << '\n');
281 ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
282 } else
283 return;
285 ++NumElimCmp;
286 Changed = true;
289 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
290 // Get the SCEVs for the ICmp operands.
291 auto *N = SE->getSCEV(SDiv->getOperand(0));
292 auto *D = SE->getSCEV(SDiv->getOperand(1));
294 // Simplify unnecessary loops away.
295 const Loop *L = LI->getLoopFor(SDiv->getParent());
296 N = SE->getSCEVAtScope(N, L);
297 D = SE->getSCEVAtScope(D, L);
299 // Replace sdiv by udiv if both of the operands are non-negative
300 if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
301 auto *UDiv = BinaryOperator::Create(
302 BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
303 SDiv->getName() + ".udiv", SDiv);
304 UDiv->setIsExact(SDiv->isExact());
305 SDiv->replaceAllUsesWith(UDiv);
306 LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
307 ++NumSimplifiedSDiv;
308 Changed = true;
309 DeadInsts.push_back(SDiv);
310 return true;
313 return false;
316 // i %s n -> i %u n if i >= 0 and n >= 0
317 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
318 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
319 auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
320 Rem->getName() + ".urem", Rem);
321 Rem->replaceAllUsesWith(URem);
322 LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
323 ++NumSimplifiedSRem;
324 Changed = true;
325 DeadInsts.emplace_back(Rem);
328 // i % n --> i if i is in [0,n).
329 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
330 Rem->replaceAllUsesWith(Rem->getOperand(0));
331 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
332 ++NumElimRem;
333 Changed = true;
334 DeadInsts.emplace_back(Rem);
337 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
338 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
339 auto *T = Rem->getType();
340 auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
341 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
342 SelectInst *Sel =
343 SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
344 Rem->replaceAllUsesWith(Sel);
345 LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
346 ++NumElimRem;
347 Changed = true;
348 DeadInsts.emplace_back(Rem);
351 /// SimplifyIVUsers helper for eliminating useless remainder operations
352 /// operating on an induction variable or replacing srem by urem.
353 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem,
354 Instruction *IVOperand,
355 bool IsSigned) {
356 auto *NValue = Rem->getOperand(0);
357 auto *DValue = Rem->getOperand(1);
358 // We're only interested in the case where we know something about
359 // the numerator, unless it is a srem, because we want to replace srem by urem
360 // in general.
361 bool UsedAsNumerator = IVOperand == NValue;
362 if (!UsedAsNumerator && !IsSigned)
363 return;
365 const SCEV *N = SE->getSCEV(NValue);
367 // Simplify unnecessary loops away.
368 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
369 N = SE->getSCEVAtScope(N, ICmpLoop);
371 bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
373 // Do not proceed if the Numerator may be negative
374 if (!IsNumeratorNonNegative)
375 return;
377 const SCEV *D = SE->getSCEV(DValue);
378 D = SE->getSCEVAtScope(D, ICmpLoop);
380 if (UsedAsNumerator) {
381 auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
382 if (SE->isKnownPredicate(LT, N, D)) {
383 replaceRemWithNumerator(Rem);
384 return;
387 auto *T = Rem->getType();
388 const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
389 if (SE->isKnownPredicate(LT, NLessOne, D)) {
390 replaceRemWithNumeratorOrZero(Rem);
391 return;
395 // Try to replace SRem with URem, if both N and D are known non-negative.
396 // Since we had already check N, we only need to check D now
397 if (!IsSigned || !SE->isKnownNonNegative(D))
398 return;
400 replaceSRemWithURem(Rem);
403 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
404 const SCEV *LHS = SE->getSCEV(WO->getLHS());
405 const SCEV *RHS = SE->getSCEV(WO->getRHS());
406 if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
407 return false;
409 // Proved no overflow, nuke the overflow check and, if possible, the overflow
410 // intrinsic as well.
412 BinaryOperator *NewResult = BinaryOperator::Create(
413 WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
415 if (WO->isSigned())
416 NewResult->setHasNoSignedWrap(true);
417 else
418 NewResult->setHasNoUnsignedWrap(true);
420 SmallVector<ExtractValueInst *, 4> ToDelete;
422 for (auto *U : WO->users()) {
423 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
424 if (EVI->getIndices()[0] == 1)
425 EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
426 else {
427 assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
428 EVI->replaceAllUsesWith(NewResult);
430 ToDelete.push_back(EVI);
434 for (auto *EVI : ToDelete)
435 EVI->eraseFromParent();
437 if (WO->use_empty())
438 WO->eraseFromParent();
440 Changed = true;
441 return true;
444 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
445 const SCEV *LHS = SE->getSCEV(SI->getLHS());
446 const SCEV *RHS = SE->getSCEV(SI->getRHS());
447 if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
448 return false;
450 BinaryOperator *BO = BinaryOperator::Create(
451 SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
452 if (SI->isSigned())
453 BO->setHasNoSignedWrap();
454 else
455 BO->setHasNoUnsignedWrap();
457 SI->replaceAllUsesWith(BO);
458 DeadInsts.emplace_back(SI);
459 Changed = true;
460 return true;
463 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
464 // It is always legal to replace
465 // icmp <pred> i32 trunc(iv), n
466 // with
467 // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
468 // Or with
469 // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
470 // Or with either of these if pred is an equality predicate.
472 // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
473 // every comparison which uses trunc, it means that we can replace each of
474 // them with comparison of iv against sext/zext(n). We no longer need trunc
475 // after that.
477 // TODO: Should we do this if we can widen *some* comparisons, but not all
478 // of them? Sometimes it is enough to enable other optimizations, but the
479 // trunc instruction will stay in the loop.
480 Value *IV = TI->getOperand(0);
481 Type *IVTy = IV->getType();
482 const SCEV *IVSCEV = SE->getSCEV(IV);
483 const SCEV *TISCEV = SE->getSCEV(TI);
485 // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
486 // get rid of trunc
487 bool DoesSExtCollapse = false;
488 bool DoesZExtCollapse = false;
489 if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
490 DoesSExtCollapse = true;
491 if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
492 DoesZExtCollapse = true;
494 // If neither sext nor zext does collapse, it is not profitable to do any
495 // transform. Bail.
496 if (!DoesSExtCollapse && !DoesZExtCollapse)
497 return false;
499 // Collect users of the trunc that look like comparisons against invariants.
500 // Bail if we find something different.
501 SmallVector<ICmpInst *, 4> ICmpUsers;
502 for (auto *U : TI->users()) {
503 // We don't care about users in unreachable blocks.
504 if (isa<Instruction>(U) &&
505 !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
506 continue;
507 ICmpInst *ICI = dyn_cast<ICmpInst>(U);
508 if (!ICI) return false;
509 assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
510 if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
511 !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
512 return false;
513 // If we cannot get rid of trunc, bail.
514 if (ICI->isSigned() && !DoesSExtCollapse)
515 return false;
516 if (ICI->isUnsigned() && !DoesZExtCollapse)
517 return false;
518 // For equality, either signed or unsigned works.
519 ICmpUsers.push_back(ICI);
522 auto CanUseZExt = [&](ICmpInst *ICI) {
523 // Unsigned comparison can be widened as unsigned.
524 if (ICI->isUnsigned())
525 return true;
526 // Is it profitable to do zext?
527 if (!DoesZExtCollapse)
528 return false;
529 // For equality, we can safely zext both parts.
530 if (ICI->isEquality())
531 return true;
532 // Otherwise we can only use zext when comparing two non-negative or two
533 // negative values. But in practice, we will never pass DoesZExtCollapse
534 // check for a negative value, because zext(trunc(x)) is non-negative. So
535 // it only make sense to check for non-negativity here.
536 const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
537 const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
538 return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
540 // Replace all comparisons against trunc with comparisons against IV.
541 for (auto *ICI : ICmpUsers) {
542 bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
543 auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
544 IRBuilder<> Builder(ICI);
545 Value *Ext = nullptr;
546 // For signed/unsigned predicate, replace the old comparison with comparison
547 // of immediate IV against sext/zext of the invariant argument. If we can
548 // use either sext or zext (i.e. we are dealing with equality predicate),
549 // then prefer zext as a more canonical form.
550 // TODO: If we see a signed comparison which can be turned into unsigned,
551 // we can do it here for canonicalization purposes.
552 ICmpInst::Predicate Pred = ICI->getPredicate();
553 if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
554 if (CanUseZExt(ICI)) {
555 assert(DoesZExtCollapse && "Unprofitable zext?");
556 Ext = Builder.CreateZExt(Op1, IVTy, "zext");
557 Pred = ICmpInst::getUnsignedPredicate(Pred);
558 } else {
559 assert(DoesSExtCollapse && "Unprofitable sext?");
560 Ext = Builder.CreateSExt(Op1, IVTy, "sext");
561 assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
563 bool Changed;
564 L->makeLoopInvariant(Ext, Changed);
565 (void)Changed;
566 auto *NewCmp = Builder.CreateICmp(Pred, IV, Ext);
567 ICI->replaceAllUsesWith(NewCmp);
568 DeadInsts.emplace_back(ICI);
571 // Trunc no longer needed.
572 TI->replaceAllUsesWith(PoisonValue::get(TI->getType()));
573 DeadInsts.emplace_back(TI);
574 return true;
577 /// Eliminate an operation that consumes a simple IV and has no observable
578 /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable,
579 /// but UseInst may not be.
580 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
581 Instruction *IVOperand) {
582 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
583 eliminateIVComparison(ICmp, IVOperand);
584 return true;
586 if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
587 bool IsSRem = Bin->getOpcode() == Instruction::SRem;
588 if (IsSRem || Bin->getOpcode() == Instruction::URem) {
589 simplifyIVRemainder(Bin, IVOperand, IsSRem);
590 return true;
593 if (Bin->getOpcode() == Instruction::SDiv)
594 return eliminateSDiv(Bin);
597 if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
598 if (eliminateOverflowIntrinsic(WO))
599 return true;
601 if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
602 if (eliminateSaturatingIntrinsic(SI))
603 return true;
605 if (auto *TI = dyn_cast<TruncInst>(UseInst))
606 if (eliminateTrunc(TI))
607 return true;
609 if (eliminateIdentitySCEV(UseInst, IVOperand))
610 return true;
612 return false;
615 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
616 if (auto *BB = L->getLoopPreheader())
617 return BB->getTerminator();
619 return Hint;
622 /// Replace the UseInst with a loop invariant expression if it is safe.
623 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
624 if (!SE->isSCEVable(I->getType()))
625 return false;
627 // Get the symbolic expression for this instruction.
628 const SCEV *S = SE->getSCEV(I);
630 if (!SE->isLoopInvariant(S, L))
631 return false;
633 // Do not generate something ridiculous even if S is loop invariant.
634 if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
635 return false;
637 auto *IP = GetLoopInvariantInsertPosition(L, I);
639 if (!Rewriter.isSafeToExpandAt(S, IP)) {
640 LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
641 << " with non-speculable loop invariant: " << *S << '\n');
642 return false;
645 auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
647 I->replaceAllUsesWith(Invariant);
648 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
649 << " with loop invariant: " << *S << '\n');
650 ++NumFoldedUser;
651 Changed = true;
652 DeadInsts.emplace_back(I);
653 return true;
656 /// Eliminate redundant type cast between integer and float.
657 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) {
658 if (UseInst->getOpcode() != CastInst::SIToFP &&
659 UseInst->getOpcode() != CastInst::UIToFP)
660 return false;
662 Instruction *IVOperand = cast<Instruction>(UseInst->getOperand(0));
663 // Get the symbolic expression for this instruction.
664 const SCEV *IV = SE->getSCEV(IVOperand);
665 int MaskBits;
666 if (UseInst->getOpcode() == CastInst::SIToFP)
667 MaskBits = (int)SE->getSignedRange(IV).getMinSignedBits();
668 else
669 MaskBits = (int)SE->getUnsignedRange(IV).getActiveBits();
670 int DestNumSigBits = UseInst->getType()->getFPMantissaWidth();
671 if (MaskBits <= DestNumSigBits) {
672 for (User *U : UseInst->users()) {
673 // Match for fptosi/fptoui of sitofp and with same type.
674 auto *CI = dyn_cast<CastInst>(U);
675 if (!CI)
676 continue;
678 CastInst::CastOps Opcode = CI->getOpcode();
679 if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI)
680 continue;
682 Value *Conv = nullptr;
683 if (IVOperand->getType() != CI->getType()) {
684 IRBuilder<> Builder(CI);
685 StringRef Name = IVOperand->getName();
686 // To match InstCombine logic, we only need sext if both fptosi and
687 // sitofp are used. If one of them is unsigned, then we can use zext.
688 if (SE->getTypeSizeInBits(IVOperand->getType()) >
689 SE->getTypeSizeInBits(CI->getType())) {
690 Conv = Builder.CreateTrunc(IVOperand, CI->getType(), Name + ".trunc");
691 } else if (Opcode == CastInst::FPToUI ||
692 UseInst->getOpcode() == CastInst::UIToFP) {
693 Conv = Builder.CreateZExt(IVOperand, CI->getType(), Name + ".zext");
694 } else {
695 Conv = Builder.CreateSExt(IVOperand, CI->getType(), Name + ".sext");
697 } else
698 Conv = IVOperand;
700 CI->replaceAllUsesWith(Conv);
701 DeadInsts.push_back(CI);
702 LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI
703 << " with: " << *Conv << '\n');
705 ++NumFoldedUser;
706 Changed = true;
710 return Changed;
713 /// Eliminate any operation that SCEV can prove is an identity function.
714 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
715 Instruction *IVOperand) {
716 if (!SE->isSCEVable(UseInst->getType()) ||
717 UseInst->getType() != IVOperand->getType())
718 return false;
720 const SCEV *UseSCEV = SE->getSCEV(UseInst);
721 if (UseSCEV != SE->getSCEV(IVOperand))
722 return false;
724 // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
725 // dominator tree, even if X is an operand to Y. For instance, in
727 // %iv = phi i32 {0,+,1}
728 // br %cond, label %left, label %merge
730 // left:
731 // %X = add i32 %iv, 0
732 // br label %merge
734 // merge:
735 // %M = phi (%X, %iv)
737 // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
738 // %M.replaceAllUsesWith(%X) would be incorrect.
740 if (isa<PHINode>(UseInst))
741 // If UseInst is not a PHI node then we know that IVOperand dominates
742 // UseInst directly from the legality of SSA.
743 if (!DT || !DT->dominates(IVOperand, UseInst))
744 return false;
746 if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
747 return false;
749 // Make sure the operand is not more poisonous than the instruction.
750 if (!impliesPoison(IVOperand, UseInst)) {
751 SmallVector<Instruction *> DropPoisonGeneratingInsts;
752 if (!SE->canReuseInstruction(UseSCEV, IVOperand, DropPoisonGeneratingInsts))
753 return false;
755 for (Instruction *I : DropPoisonGeneratingInsts)
756 I->dropPoisonGeneratingFlagsAndMetadata();
759 LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
761 SE->forgetValue(UseInst);
762 UseInst->replaceAllUsesWith(IVOperand);
763 ++NumElimIdentity;
764 Changed = true;
765 DeadInsts.emplace_back(UseInst);
766 return true;
769 bool SimplifyIndvar::strengthenBinaryOp(BinaryOperator *BO,
770 Instruction *IVOperand) {
771 return (isa<OverflowingBinaryOperator>(BO) &&
772 strengthenOverflowingOperation(BO, IVOperand)) ||
773 (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand));
776 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
777 /// unsigned-overflow. Returns true if anything changed, false otherwise.
778 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
779 Instruction *IVOperand) {
780 auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp(
781 cast<OverflowingBinaryOperator>(BO));
783 if (!Flags)
784 return false;
786 BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) ==
787 SCEV::FlagNUW);
788 BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) ==
789 SCEV::FlagNSW);
791 // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
792 // flags on addrecs while performing zero/sign extensions. We could call
793 // forgetValue() here to make sure those flags also propagate to any other
794 // SCEV expressions based on the addrec. However, this can have pathological
795 // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
796 return true;
799 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
800 /// information from the IV's range. Returns true if anything changed, false
801 /// otherwise.
802 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
803 Instruction *IVOperand) {
804 if (BO->getOpcode() == Instruction::Shl) {
805 bool Changed = false;
806 ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
807 for (auto *U : BO->users()) {
808 const APInt *C;
809 if (match(U,
810 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
811 match(U,
812 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
813 BinaryOperator *Shr = cast<BinaryOperator>(U);
814 if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
815 Shr->setIsExact(true);
816 Changed = true;
820 return Changed;
823 return false;
826 /// Add all uses of Def to the current IV's worklist.
827 static void pushIVUsers(
828 Instruction *Def, Loop *L,
829 SmallPtrSet<Instruction*,16> &Simplified,
830 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
832 for (User *U : Def->users()) {
833 Instruction *UI = cast<Instruction>(U);
835 // Avoid infinite or exponential worklist processing.
836 // Also ensure unique worklist users.
837 // If Def is a LoopPhi, it may not be in the Simplified set, so check for
838 // self edges first.
839 if (UI == Def)
840 continue;
842 // Only change the current Loop, do not change the other parts (e.g. other
843 // Loops).
844 if (!L->contains(UI))
845 continue;
847 // Do not push the same instruction more than once.
848 if (!Simplified.insert(UI).second)
849 continue;
851 SimpleIVUsers.push_back(std::make_pair(UI, Def));
855 /// Return true if this instruction generates a simple SCEV
856 /// expression in terms of that IV.
858 /// This is similar to IVUsers' isInteresting() but processes each instruction
859 /// non-recursively when the operand is already known to be a simpleIVUser.
861 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
862 if (!SE->isSCEVable(I->getType()))
863 return false;
865 // Get the symbolic expression for this instruction.
866 const SCEV *S = SE->getSCEV(I);
868 // Only consider affine recurrences.
869 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
870 if (AR && AR->getLoop() == L)
871 return true;
873 return false;
876 /// Iteratively perform simplification on a worklist of users
877 /// of the specified induction variable. Each successive simplification may push
878 /// more users which may themselves be candidates for simplification.
880 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
881 /// instructions in-place during analysis. Rather than rewriting induction
882 /// variables bottom-up from their users, it transforms a chain of IVUsers
883 /// top-down, updating the IR only when it encounters a clear optimization
884 /// opportunity.
886 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
888 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
889 if (!SE->isSCEVable(CurrIV->getType()))
890 return;
892 // Instructions processed by SimplifyIndvar for CurrIV.
893 SmallPtrSet<Instruction*,16> Simplified;
895 // Use-def pairs if IV users waiting to be processed for CurrIV.
896 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
898 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
899 // called multiple times for the same LoopPhi. This is the proper thing to
900 // do for loop header phis that use each other.
901 pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
903 while (!SimpleIVUsers.empty()) {
904 std::pair<Instruction*, Instruction*> UseOper =
905 SimpleIVUsers.pop_back_val();
906 Instruction *UseInst = UseOper.first;
908 // If a user of the IndVar is trivially dead, we prefer just to mark it dead
909 // rather than try to do some complex analysis or transformation (such as
910 // widening) basing on it.
911 // TODO: Propagate TLI and pass it here to handle more cases.
912 if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
913 DeadInsts.emplace_back(UseInst);
914 continue;
917 // Bypass back edges to avoid extra work.
918 if (UseInst == CurrIV) continue;
920 // Try to replace UseInst with a loop invariant before any other
921 // simplifications.
922 if (replaceIVUserWithLoopInvariant(UseInst))
923 continue;
925 // Go further for the bitcast 'prtoint ptr to i64' or if the cast is done
926 // by truncation
927 if ((isa<PtrToIntInst>(UseInst)) || (isa<TruncInst>(UseInst)))
928 for (Use &U : UseInst->uses()) {
929 Instruction *User = cast<Instruction>(U.getUser());
930 if (replaceIVUserWithLoopInvariant(User))
931 break; // done replacing
934 Instruction *IVOperand = UseOper.second;
935 for (unsigned N = 0; IVOperand; ++N) {
936 assert(N <= Simplified.size() && "runaway iteration");
937 (void) N;
939 Value *NewOper = foldIVUser(UseInst, IVOperand);
940 if (!NewOper)
941 break; // done folding
942 IVOperand = dyn_cast<Instruction>(NewOper);
944 if (!IVOperand)
945 continue;
947 if (eliminateIVUser(UseInst, IVOperand)) {
948 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
949 continue;
952 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
953 if (strengthenBinaryOp(BO, IVOperand)) {
954 // re-queue uses of the now modified binary operator and fall
955 // through to the checks that remain.
956 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
960 // Try to use integer induction for FPToSI of float induction directly.
961 if (replaceFloatIVWithIntegerIV(UseInst)) {
962 // Re-queue the potentially new direct uses of IVOperand.
963 pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
964 continue;
967 CastInst *Cast = dyn_cast<CastInst>(UseInst);
968 if (V && Cast) {
969 V->visitCast(Cast);
970 continue;
972 if (isSimpleIVUser(UseInst, L, SE)) {
973 pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
978 namespace llvm {
980 void IVVisitor::anchor() { }
982 /// Simplify instructions that use this induction variable
983 /// by using ScalarEvolution to analyze the IV's recurrence.
984 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
985 LoopInfo *LI, const TargetTransformInfo *TTI,
986 SmallVectorImpl<WeakTrackingVH> &Dead,
987 SCEVExpander &Rewriter, IVVisitor *V) {
988 SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
989 Rewriter, Dead);
990 SIV.simplifyUsers(CurrIV, V);
991 return SIV.hasChanged();
994 /// Simplify users of induction variables within this
995 /// loop. This does not actually change or add IVs.
996 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
997 LoopInfo *LI, const TargetTransformInfo *TTI,
998 SmallVectorImpl<WeakTrackingVH> &Dead) {
999 SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
1000 #ifndef NDEBUG
1001 Rewriter.setDebugType(DEBUG_TYPE);
1002 #endif
1003 bool Changed = false;
1004 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1005 Changed |=
1006 simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
1008 return Changed;
1011 } // namespace llvm
1013 namespace {
1014 //===----------------------------------------------------------------------===//
1015 // Widen Induction Variables - Extend the width of an IV to cover its
1016 // widest uses.
1017 //===----------------------------------------------------------------------===//
1019 class WidenIV {
1020 // Parameters
1021 PHINode *OrigPhi;
1022 Type *WideType;
1024 // Context
1025 LoopInfo *LI;
1026 Loop *L;
1027 ScalarEvolution *SE;
1028 DominatorTree *DT;
1030 // Does the module have any calls to the llvm.experimental.guard intrinsic
1031 // at all? If not we can avoid scanning instructions looking for guards.
1032 bool HasGuards;
1034 bool UsePostIncrementRanges;
1036 // Statistics
1037 unsigned NumElimExt = 0;
1038 unsigned NumWidened = 0;
1040 // Result
1041 PHINode *WidePhi = nullptr;
1042 Instruction *WideInc = nullptr;
1043 const SCEV *WideIncExpr = nullptr;
1044 SmallVectorImpl<WeakTrackingVH> &DeadInsts;
1046 SmallPtrSet<Instruction *,16> Widened;
1048 enum class ExtendKind { Zero, Sign, Unknown };
1050 // A map tracking the kind of extension used to widen each narrow IV
1051 // and narrow IV user.
1052 // Key: pointer to a narrow IV or IV user.
1053 // Value: the kind of extension used to widen this Instruction.
1054 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
1056 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
1058 // A map with control-dependent ranges for post increment IV uses. The key is
1059 // a pair of IV def and a use of this def denoting the context. The value is
1060 // a ConstantRange representing possible values of the def at the given
1061 // context.
1062 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
1064 std::optional<ConstantRange> getPostIncRangeInfo(Value *Def,
1065 Instruction *UseI) {
1066 DefUserPair Key(Def, UseI);
1067 auto It = PostIncRangeInfos.find(Key);
1068 return It == PostIncRangeInfos.end()
1069 ? std::optional<ConstantRange>(std::nullopt)
1070 : std::optional<ConstantRange>(It->second);
1073 void calculatePostIncRanges(PHINode *OrigPhi);
1074 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1076 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1077 DefUserPair Key(Def, UseI);
1078 auto It = PostIncRangeInfos.find(Key);
1079 if (It == PostIncRangeInfos.end())
1080 PostIncRangeInfos.insert({Key, R});
1081 else
1082 It->second = R.intersectWith(It->second);
1085 public:
1086 /// Record a link in the Narrow IV def-use chain along with the WideIV that
1087 /// computes the same value as the Narrow IV def. This avoids caching Use*
1088 /// pointers.
1089 struct NarrowIVDefUse {
1090 Instruction *NarrowDef = nullptr;
1091 Instruction *NarrowUse = nullptr;
1092 Instruction *WideDef = nullptr;
1094 // True if the narrow def is never negative. Tracking this information lets
1095 // us use a sign extension instead of a zero extension or vice versa, when
1096 // profitable and legal.
1097 bool NeverNegative = false;
1099 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1100 bool NeverNegative)
1101 : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1102 NeverNegative(NeverNegative) {}
1105 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1106 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1107 bool HasGuards, bool UsePostIncrementRanges = true);
1109 PHINode *createWideIV(SCEVExpander &Rewriter);
1111 unsigned getNumElimExt() { return NumElimExt; };
1112 unsigned getNumWidened() { return NumWidened; };
1114 protected:
1115 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1116 Instruction *Use);
1118 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1119 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1120 const SCEVAddRecExpr *WideAR);
1121 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1123 ExtendKind getExtendKind(Instruction *I);
1125 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1127 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1129 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1131 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1132 unsigned OpCode) const;
1134 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1136 bool widenLoopCompare(NarrowIVDefUse DU);
1137 bool widenWithVariantUse(NarrowIVDefUse DU);
1139 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1141 private:
1142 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1144 } // namespace
1146 /// Determine the insertion point for this user. By default, insert immediately
1147 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1148 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1149 /// common dominator for the incoming blocks. A nullptr can be returned if no
1150 /// viable location is found: it may happen if User is a PHI and Def only comes
1151 /// to this PHI from unreachable blocks.
1152 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1153 DominatorTree *DT, LoopInfo *LI) {
1154 PHINode *PHI = dyn_cast<PHINode>(User);
1155 if (!PHI)
1156 return User;
1158 Instruction *InsertPt = nullptr;
1159 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1160 if (PHI->getIncomingValue(i) != Def)
1161 continue;
1163 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1165 if (!DT->isReachableFromEntry(InsertBB))
1166 continue;
1168 if (!InsertPt) {
1169 InsertPt = InsertBB->getTerminator();
1170 continue;
1172 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1173 InsertPt = InsertBB->getTerminator();
1176 // If we have skipped all inputs, it means that Def only comes to Phi from
1177 // unreachable blocks.
1178 if (!InsertPt)
1179 return nullptr;
1181 auto *DefI = dyn_cast<Instruction>(Def);
1182 if (!DefI)
1183 return InsertPt;
1185 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1187 auto *L = LI->getLoopFor(DefI->getParent());
1188 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1190 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1191 if (LI->getLoopFor(DTN->getBlock()) == L)
1192 return DTN->getBlock()->getTerminator();
1194 llvm_unreachable("DefI dominates InsertPt!");
1197 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1198 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1199 bool HasGuards, bool UsePostIncrementRanges)
1200 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1201 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1202 HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1203 DeadInsts(DI) {
1204 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1205 ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero;
1208 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1209 bool IsSigned, Instruction *Use) {
1210 // Set the debug location and conservative insertion point.
1211 IRBuilder<> Builder(Use);
1212 // Hoist the insertion point into loop preheaders as far as possible.
1213 for (const Loop *L = LI->getLoopFor(Use->getParent());
1214 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1215 L = L->getParentLoop())
1216 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1218 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1219 Builder.CreateZExt(NarrowOper, WideType);
1222 /// Instantiate a wide operation to replace a narrow operation. This only needs
1223 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1224 /// 0 for any operation we decide not to clone.
1225 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1226 const SCEVAddRecExpr *WideAR) {
1227 unsigned Opcode = DU.NarrowUse->getOpcode();
1228 switch (Opcode) {
1229 default:
1230 return nullptr;
1231 case Instruction::Add:
1232 case Instruction::Mul:
1233 case Instruction::UDiv:
1234 case Instruction::Sub:
1235 return cloneArithmeticIVUser(DU, WideAR);
1237 case Instruction::And:
1238 case Instruction::Or:
1239 case Instruction::Xor:
1240 case Instruction::Shl:
1241 case Instruction::LShr:
1242 case Instruction::AShr:
1243 return cloneBitwiseIVUser(DU);
1247 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1248 Instruction *NarrowUse = DU.NarrowUse;
1249 Instruction *NarrowDef = DU.NarrowDef;
1250 Instruction *WideDef = DU.WideDef;
1252 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1254 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1255 // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1256 // invariant and will be folded or hoisted. If it actually comes from a
1257 // widened IV, it should be removed during a future call to widenIVUse.
1258 bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign;
1259 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1260 ? WideDef
1261 : createExtendInst(NarrowUse->getOperand(0), WideType,
1262 IsSigned, NarrowUse);
1263 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1264 ? WideDef
1265 : createExtendInst(NarrowUse->getOperand(1), WideType,
1266 IsSigned, NarrowUse);
1268 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1269 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1270 NarrowBO->getName());
1271 IRBuilder<> Builder(NarrowUse);
1272 Builder.Insert(WideBO);
1273 WideBO->copyIRFlags(NarrowBO);
1274 return WideBO;
1277 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1278 const SCEVAddRecExpr *WideAR) {
1279 Instruction *NarrowUse = DU.NarrowUse;
1280 Instruction *NarrowDef = DU.NarrowDef;
1281 Instruction *WideDef = DU.WideDef;
1283 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1285 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1287 // We're trying to find X such that
1289 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1291 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1292 // and check using SCEV if any of them are correct.
1294 // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1295 // correct solution to X.
1296 auto GuessNonIVOperand = [&](bool SignExt) {
1297 const SCEV *WideLHS;
1298 const SCEV *WideRHS;
1300 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1301 if (SignExt)
1302 return SE->getSignExtendExpr(S, Ty);
1303 return SE->getZeroExtendExpr(S, Ty);
1306 if (IVOpIdx == 0) {
1307 WideLHS = SE->getSCEV(WideDef);
1308 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1309 WideRHS = GetExtend(NarrowRHS, WideType);
1310 } else {
1311 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1312 WideLHS = GetExtend(NarrowLHS, WideType);
1313 WideRHS = SE->getSCEV(WideDef);
1316 // WideUse is "WideDef `op.wide` X" as described in the comment.
1317 const SCEV *WideUse =
1318 getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1320 return WideUse == WideAR;
1323 bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign;
1324 if (!GuessNonIVOperand(SignExtend)) {
1325 SignExtend = !SignExtend;
1326 if (!GuessNonIVOperand(SignExtend))
1327 return nullptr;
1330 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1331 ? WideDef
1332 : createExtendInst(NarrowUse->getOperand(0), WideType,
1333 SignExtend, NarrowUse);
1334 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1335 ? WideDef
1336 : createExtendInst(NarrowUse->getOperand(1), WideType,
1337 SignExtend, NarrowUse);
1339 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1340 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1341 NarrowBO->getName());
1343 IRBuilder<> Builder(NarrowUse);
1344 Builder.Insert(WideBO);
1345 WideBO->copyIRFlags(NarrowBO);
1346 return WideBO;
1349 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1350 auto It = ExtendKindMap.find(I);
1351 assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1352 return It->second;
1355 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1356 unsigned OpCode) const {
1357 switch (OpCode) {
1358 case Instruction::Add:
1359 return SE->getAddExpr(LHS, RHS);
1360 case Instruction::Sub:
1361 return SE->getMinusSCEV(LHS, RHS);
1362 case Instruction::Mul:
1363 return SE->getMulExpr(LHS, RHS);
1364 case Instruction::UDiv:
1365 return SE->getUDivExpr(LHS, RHS);
1366 default:
1367 llvm_unreachable("Unsupported opcode.");
1371 /// No-wrap operations can transfer sign extension of their result to their
1372 /// operands. Generate the SCEV value for the widened operation without
1373 /// actually modifying the IR yet. If the expression after extending the
1374 /// operands is an AddRec for this loop, return the AddRec and the kind of
1375 /// extension used.
1376 WidenIV::WidenedRecTy
1377 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1378 // Handle the common case of add<nsw/nuw>
1379 const unsigned OpCode = DU.NarrowUse->getOpcode();
1380 // Only Add/Sub/Mul instructions supported yet.
1381 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1382 OpCode != Instruction::Mul)
1383 return {nullptr, ExtendKind::Unknown};
1385 // One operand (NarrowDef) has already been extended to WideDef. Now determine
1386 // if extending the other will lead to a recurrence.
1387 const unsigned ExtendOperIdx =
1388 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1389 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1391 const OverflowingBinaryOperator *OBO =
1392 cast<OverflowingBinaryOperator>(DU.NarrowUse);
1393 ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1394 if (!(ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap()) &&
1395 !(ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap())) {
1396 ExtKind = ExtendKind::Unknown;
1398 // For a non-negative NarrowDef, we can choose either type of
1399 // extension. We want to use the current extend kind if legal
1400 // (see above), and we only hit this code if we need to check
1401 // the opposite case.
1402 if (DU.NeverNegative) {
1403 if (OBO->hasNoSignedWrap()) {
1404 ExtKind = ExtendKind::Sign;
1405 } else if (OBO->hasNoUnsignedWrap()) {
1406 ExtKind = ExtendKind::Zero;
1411 const SCEV *ExtendOperExpr =
1412 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx));
1413 if (ExtKind == ExtendKind::Sign)
1414 ExtendOperExpr = SE->getSignExtendExpr(ExtendOperExpr, WideType);
1415 else if (ExtKind == ExtendKind::Zero)
1416 ExtendOperExpr = SE->getZeroExtendExpr(ExtendOperExpr, WideType);
1417 else
1418 return {nullptr, ExtendKind::Unknown};
1420 // When creating this SCEV expr, don't apply the current operations NSW or NUW
1421 // flags. This instruction may be guarded by control flow that the no-wrap
1422 // behavior depends on. Non-control-equivalent instructions can be mapped to
1423 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1424 // semantics to those operations.
1425 const SCEV *lhs = SE->getSCEV(DU.WideDef);
1426 const SCEV *rhs = ExtendOperExpr;
1428 // Let's swap operands to the initial order for the case of non-commutative
1429 // operations, like SUB. See PR21014.
1430 if (ExtendOperIdx == 0)
1431 std::swap(lhs, rhs);
1432 const SCEVAddRecExpr *AddRec =
1433 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1435 if (!AddRec || AddRec->getLoop() != L)
1436 return {nullptr, ExtendKind::Unknown};
1438 return {AddRec, ExtKind};
1441 /// Is this instruction potentially interesting for further simplification after
1442 /// widening it's type? In other words, can the extend be safely hoisted out of
1443 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1444 /// so, return the extended recurrence and the kind of extension used. Otherwise
1445 /// return {nullptr, ExtendKind::Unknown}.
1446 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1447 if (!DU.NarrowUse->getType()->isIntegerTy())
1448 return {nullptr, ExtendKind::Unknown};
1450 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1451 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1452 SE->getTypeSizeInBits(WideType)) {
1453 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1454 // index. So don't follow this use.
1455 return {nullptr, ExtendKind::Unknown};
1458 const SCEV *WideExpr;
1459 ExtendKind ExtKind;
1460 if (DU.NeverNegative) {
1461 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1462 if (isa<SCEVAddRecExpr>(WideExpr))
1463 ExtKind = ExtendKind::Sign;
1464 else {
1465 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1466 ExtKind = ExtendKind::Zero;
1468 } else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) {
1469 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1470 ExtKind = ExtendKind::Sign;
1471 } else {
1472 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1473 ExtKind = ExtendKind::Zero;
1475 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1476 if (!AddRec || AddRec->getLoop() != L)
1477 return {nullptr, ExtendKind::Unknown};
1478 return {AddRec, ExtKind};
1481 /// This IV user cannot be widened. Replace this use of the original narrow IV
1482 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1483 static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
1484 LoopInfo *LI) {
1485 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1486 if (!InsertPt)
1487 return;
1488 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1489 << *DU.NarrowUse << "\n");
1490 IRBuilder<> Builder(InsertPt);
1491 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1492 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1495 /// If the narrow use is a compare instruction, then widen the compare
1496 // (and possibly the other operand). The extend operation is hoisted into the
1497 // loop preheader as far as possible.
1498 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1499 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1500 if (!Cmp)
1501 return false;
1503 // We can legally widen the comparison in the following two cases:
1505 // - The signedness of the IV extension and comparison match
1507 // - The narrow IV is always positive (and thus its sign extension is equal
1508 // to its zero extension). For instance, let's say we're zero extending
1509 // %narrow for the following use
1511 // icmp slt i32 %narrow, %val ... (A)
1513 // and %narrow is always positive. Then
1515 // (A) == icmp slt i32 sext(%narrow), sext(%val)
1516 // == icmp slt i32 zext(%narrow), sext(%val)
1517 bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
1518 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1519 return false;
1521 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1522 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1523 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1524 assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1526 // Widen the compare instruction.
1527 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1529 // Widen the other operand of the compare, if necessary.
1530 if (CastWidth < IVWidth) {
1531 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1532 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1534 return true;
1537 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1538 // will not work when:
1539 // 1) SCEV traces back to an instruction inside the loop that SCEV can not
1540 // expand, eg. add %indvar, (load %addr)
1541 // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1542 // While SCEV fails to avoid trunc, we can still try to use instruction
1543 // combining approach to prove trunc is not required. This can be further
1544 // extended with other instruction combining checks, but for now we handle the
1545 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1547 // Src:
1548 // %c = sub nsw %b, %indvar
1549 // %d = sext %c to i64
1550 // Dst:
1551 // %indvar.ext1 = sext %indvar to i64
1552 // %m = sext %b to i64
1553 // %d = sub nsw i64 %m, %indvar.ext1
1554 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1555 // trunc is required regardless of how %b is generated. This pattern is common
1556 // when calculating address in 64 bit architecture
1557 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1558 Instruction *NarrowUse = DU.NarrowUse;
1559 Instruction *NarrowDef = DU.NarrowDef;
1560 Instruction *WideDef = DU.WideDef;
1562 // Handle the common case of add<nsw/nuw>
1563 const unsigned OpCode = NarrowUse->getOpcode();
1564 // Only Add/Sub/Mul instructions are supported.
1565 if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1566 OpCode != Instruction::Mul)
1567 return false;
1569 // The operand that is not defined by NarrowDef of DU. Let's call it the
1570 // other operand.
1571 assert((NarrowUse->getOperand(0) == NarrowDef ||
1572 NarrowUse->getOperand(1) == NarrowDef) &&
1573 "bad DU");
1575 const OverflowingBinaryOperator *OBO =
1576 cast<OverflowingBinaryOperator>(NarrowUse);
1577 ExtendKind ExtKind = getExtendKind(NarrowDef);
1578 bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap();
1579 bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap();
1580 auto AnotherOpExtKind = ExtKind;
1582 // Check that all uses are either:
1583 // - narrow def (in case of we are widening the IV increment);
1584 // - single-input LCSSA Phis;
1585 // - comparison of the chosen type;
1586 // - extend of the chosen type (raison d'etre).
1587 SmallVector<Instruction *, 4> ExtUsers;
1588 SmallVector<PHINode *, 4> LCSSAPhiUsers;
1589 SmallVector<ICmpInst *, 4> ICmpUsers;
1590 for (Use &U : NarrowUse->uses()) {
1591 Instruction *User = cast<Instruction>(U.getUser());
1592 if (User == NarrowDef)
1593 continue;
1594 if (!L->contains(User)) {
1595 auto *LCSSAPhi = cast<PHINode>(User);
1596 // Make sure there is only 1 input, so that we don't have to split
1597 // critical edges.
1598 if (LCSSAPhi->getNumOperands() != 1)
1599 return false;
1600 LCSSAPhiUsers.push_back(LCSSAPhi);
1601 continue;
1603 if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1604 auto Pred = ICmp->getPredicate();
1605 // We have 3 types of predicates: signed, unsigned and equality
1606 // predicates. For equality, it's legal to widen icmp for either sign and
1607 // zero extend. For sign extend, we can also do so for signed predicates,
1608 // likeweise for zero extend we can widen icmp for unsigned predicates.
1609 if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred))
1610 return false;
1611 if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred))
1612 return false;
1613 ICmpUsers.push_back(ICmp);
1614 continue;
1616 if (ExtKind == ExtendKind::Sign)
1617 User = dyn_cast<SExtInst>(User);
1618 else
1619 User = dyn_cast<ZExtInst>(User);
1620 if (!User || User->getType() != WideType)
1621 return false;
1622 ExtUsers.push_back(User);
1624 if (ExtUsers.empty()) {
1625 DeadInsts.emplace_back(NarrowUse);
1626 return true;
1629 // We'll prove some facts that should be true in the context of ext users. If
1630 // there is no users, we are done now. If there are some, pick their common
1631 // dominator as context.
1632 const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
1634 if (!CanSignExtend && !CanZeroExtend) {
1635 // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1636 // will most likely not see it. Let's try to prove it.
1637 if (OpCode != Instruction::Add)
1638 return false;
1639 if (ExtKind != ExtendKind::Zero)
1640 return false;
1641 const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1642 const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1643 // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1644 if (NarrowUse->getOperand(0) != NarrowDef)
1645 return false;
1646 if (!SE->isKnownNegative(RHS))
1647 return false;
1648 bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
1649 SE->getNegativeSCEV(RHS), CtxI);
1650 if (!ProvedSubNUW)
1651 return false;
1652 // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1653 // neg(zext(neg(op))), which is basically sext(op).
1654 AnotherOpExtKind = ExtendKind::Sign;
1657 // Verifying that Defining operand is an AddRec
1658 const SCEV *Op1 = SE->getSCEV(WideDef);
1659 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1660 if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1661 return false;
1663 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1665 // Generating a widening use instruction.
1666 Value *LHS =
1667 (NarrowUse->getOperand(0) == NarrowDef)
1668 ? WideDef
1669 : createExtendInst(NarrowUse->getOperand(0), WideType,
1670 AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
1671 Value *RHS =
1672 (NarrowUse->getOperand(1) == NarrowDef)
1673 ? WideDef
1674 : createExtendInst(NarrowUse->getOperand(1), WideType,
1675 AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
1677 auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1678 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1679 NarrowBO->getName());
1680 IRBuilder<> Builder(NarrowUse);
1681 Builder.Insert(WideBO);
1682 WideBO->copyIRFlags(NarrowBO);
1683 ExtendKindMap[NarrowUse] = ExtKind;
1685 for (Instruction *User : ExtUsers) {
1686 assert(User->getType() == WideType && "Checked before!");
1687 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1688 << *WideBO << "\n");
1689 ++NumElimExt;
1690 User->replaceAllUsesWith(WideBO);
1691 DeadInsts.emplace_back(User);
1694 for (PHINode *User : LCSSAPhiUsers) {
1695 assert(User->getNumOperands() == 1 && "Checked before!");
1696 Builder.SetInsertPoint(User);
1697 auto *WidePN =
1698 Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1699 BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1700 assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1701 "Not a LCSSA Phi?");
1702 WidePN->addIncoming(WideBO, LoopExitingBlock);
1703 Builder.SetInsertPoint(User->getParent(),
1704 User->getParent()->getFirstInsertionPt());
1705 auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1706 User->replaceAllUsesWith(TruncPN);
1707 DeadInsts.emplace_back(User);
1710 for (ICmpInst *User : ICmpUsers) {
1711 Builder.SetInsertPoint(User);
1712 auto ExtendedOp = [&](Value * V)->Value * {
1713 if (V == NarrowUse)
1714 return WideBO;
1715 if (ExtKind == ExtendKind::Zero)
1716 return Builder.CreateZExt(V, WideBO->getType());
1717 else
1718 return Builder.CreateSExt(V, WideBO->getType());
1720 auto Pred = User->getPredicate();
1721 auto *LHS = ExtendedOp(User->getOperand(0));
1722 auto *RHS = ExtendedOp(User->getOperand(1));
1723 auto *WideCmp =
1724 Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1725 User->replaceAllUsesWith(WideCmp);
1726 DeadInsts.emplace_back(User);
1729 return true;
1732 /// Determine whether an individual user of the narrow IV can be widened. If so,
1733 /// return the wide clone of the user.
1734 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1735 assert(ExtendKindMap.count(DU.NarrowDef) &&
1736 "Should already know the kind of extension used to widen NarrowDef");
1738 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1739 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1740 if (LI->getLoopFor(UsePhi->getParent()) != L) {
1741 // For LCSSA phis, sink the truncate outside the loop.
1742 // After SimplifyCFG most loop exit targets have a single predecessor.
1743 // Otherwise fall back to a truncate within the loop.
1744 if (UsePhi->getNumOperands() != 1)
1745 truncateIVUse(DU, DT, LI);
1746 else {
1747 // Widening the PHI requires us to insert a trunc. The logical place
1748 // for this trunc is in the same BB as the PHI. This is not possible if
1749 // the BB is terminated by a catchswitch.
1750 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1751 return nullptr;
1753 PHINode *WidePhi =
1754 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1755 UsePhi);
1756 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1757 BasicBlock *WidePhiBB = WidePhi->getParent();
1758 IRBuilder<> Builder(WidePhiBB, WidePhiBB->getFirstInsertionPt());
1759 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1760 UsePhi->replaceAllUsesWith(Trunc);
1761 DeadInsts.emplace_back(UsePhi);
1762 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1763 << *WidePhi << "\n");
1765 return nullptr;
1769 // This narrow use can be widened by a sext if it's non-negative or its narrow
1770 // def was widened by a sext. Same for zext.
1771 auto canWidenBySExt = [&]() {
1772 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
1774 auto canWidenByZExt = [&]() {
1775 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero;
1778 // Our raison d'etre! Eliminate sign and zero extension.
1779 if ((match(DU.NarrowUse, m_SExtLike(m_Value())) && canWidenBySExt()) ||
1780 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1781 Value *NewDef = DU.WideDef;
1782 if (DU.NarrowUse->getType() != WideType) {
1783 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1784 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1785 if (CastWidth < IVWidth) {
1786 // The cast isn't as wide as the IV, so insert a Trunc.
1787 IRBuilder<> Builder(DU.NarrowUse);
1788 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1790 else {
1791 // A wider extend was hidden behind a narrower one. This may induce
1792 // another round of IV widening in which the intermediate IV becomes
1793 // dead. It should be very rare.
1794 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1795 << " not wide enough to subsume " << *DU.NarrowUse
1796 << "\n");
1797 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1798 NewDef = DU.NarrowUse;
1801 if (NewDef != DU.NarrowUse) {
1802 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1803 << " replaced by " << *DU.WideDef << "\n");
1804 ++NumElimExt;
1805 DU.NarrowUse->replaceAllUsesWith(NewDef);
1806 DeadInsts.emplace_back(DU.NarrowUse);
1808 // Now that the extend is gone, we want to expose it's uses for potential
1809 // further simplification. We don't need to directly inform SimplifyIVUsers
1810 // of the new users, because their parent IV will be processed later as a
1811 // new loop phi. If we preserved IVUsers analysis, we would also want to
1812 // push the uses of WideDef here.
1814 // No further widening is needed. The deceased [sz]ext had done it for us.
1815 return nullptr;
1818 auto tryAddRecExpansion = [&]() -> Instruction* {
1819 // Does this user itself evaluate to a recurrence after widening?
1820 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1821 if (!WideAddRec.first)
1822 WideAddRec = getWideRecurrence(DU);
1823 assert((WideAddRec.first == nullptr) ==
1824 (WideAddRec.second == ExtendKind::Unknown));
1825 if (!WideAddRec.first)
1826 return nullptr;
1828 // Reuse the IV increment that SCEVExpander created as long as it dominates
1829 // NarrowUse.
1830 Instruction *WideUse = nullptr;
1831 if (WideAddRec.first == WideIncExpr &&
1832 Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1833 WideUse = WideInc;
1834 else {
1835 WideUse = cloneIVUser(DU, WideAddRec.first);
1836 if (!WideUse)
1837 return nullptr;
1839 // Evaluation of WideAddRec ensured that the narrow expression could be
1840 // extended outside the loop without overflow. This suggests that the wide use
1841 // evaluates to the same expression as the extended narrow use, but doesn't
1842 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1843 // where it fails, we simply throw away the newly created wide use.
1844 if (WideAddRec.first != SE->getSCEV(WideUse)) {
1845 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1846 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1847 << "\n");
1848 DeadInsts.emplace_back(WideUse);
1849 return nullptr;
1852 // if we reached this point then we are going to replace
1853 // DU.NarrowUse with WideUse. Reattach DbgValue then.
1854 replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1856 ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1857 // Returning WideUse pushes it on the worklist.
1858 return WideUse;
1861 if (auto *I = tryAddRecExpansion())
1862 return I;
1864 // If use is a loop condition, try to promote the condition instead of
1865 // truncating the IV first.
1866 if (widenLoopCompare(DU))
1867 return nullptr;
1869 // We are here about to generate a truncate instruction that may hurt
1870 // performance because the scalar evolution expression computed earlier
1871 // in WideAddRec.first does not indicate a polynomial induction expression.
1872 // In that case, look at the operands of the use instruction to determine
1873 // if we can still widen the use instead of truncating its operand.
1874 if (widenWithVariantUse(DU))
1875 return nullptr;
1877 // This user does not evaluate to a recurrence after widening, so don't
1878 // follow it. Instead insert a Trunc to kill off the original use,
1879 // eventually isolating the original narrow IV so it can be removed.
1880 truncateIVUse(DU, DT, LI);
1881 return nullptr;
1884 /// Add eligible users of NarrowDef to NarrowIVUsers.
1885 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1886 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1887 bool NonNegativeDef =
1888 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1889 SE->getZero(NarrowSCEV->getType()));
1890 for (User *U : NarrowDef->users()) {
1891 Instruction *NarrowUser = cast<Instruction>(U);
1893 // Handle data flow merges and bizarre phi cycles.
1894 if (!Widened.insert(NarrowUser).second)
1895 continue;
1897 bool NonNegativeUse = false;
1898 if (!NonNegativeDef) {
1899 // We might have a control-dependent range information for this context.
1900 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1901 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1904 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1905 NonNegativeDef || NonNegativeUse);
1909 /// Process a single induction variable. First use the SCEVExpander to create a
1910 /// wide induction variable that evaluates to the same recurrence as the
1911 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1912 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1913 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1915 /// It would be simpler to delete uses as they are processed, but we must avoid
1916 /// invalidating SCEV expressions.
1917 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1918 // Is this phi an induction variable?
1919 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1920 if (!AddRec)
1921 return nullptr;
1923 // Widen the induction variable expression.
1924 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign
1925 ? SE->getSignExtendExpr(AddRec, WideType)
1926 : SE->getZeroExtendExpr(AddRec, WideType);
1928 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1929 "Expect the new IV expression to preserve its type");
1931 // Can the IV be extended outside the loop without overflow?
1932 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1933 if (!AddRec || AddRec->getLoop() != L)
1934 return nullptr;
1936 // An AddRec must have loop-invariant operands. Since this AddRec is
1937 // materialized by a loop header phi, the expression cannot have any post-loop
1938 // operands, so they must dominate the loop header.
1939 assert(
1940 SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1941 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1942 "Loop header phi recurrence inputs do not dominate the loop");
1944 // Iterate over IV uses (including transitive ones) looking for IV increments
1945 // of the form 'add nsw %iv, <const>'. For each increment and each use of
1946 // the increment calculate control-dependent range information basing on
1947 // dominating conditions inside of the loop (e.g. a range check inside of the
1948 // loop). Calculated ranges are stored in PostIncRangeInfos map.
1950 // Control-dependent range information is later used to prove that a narrow
1951 // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1952 // this on demand because when pushNarrowIVUsers needs this information some
1953 // of the dominating conditions might be already widened.
1954 if (UsePostIncrementRanges)
1955 calculatePostIncRanges(OrigPhi);
1957 // The rewriter provides a value for the desired IV expression. This may
1958 // either find an existing phi or materialize a new one. Either way, we
1959 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1960 // of the phi-SCC dominates the loop entry.
1961 Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
1962 Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
1963 // If the wide phi is not a phi node, for example a cast node, like bitcast,
1964 // inttoptr, ptrtoint, just skip for now.
1965 if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
1966 // if the cast node is an inserted instruction without any user, we should
1967 // remove it to make sure the pass don't touch the function as we can not
1968 // wide the phi.
1969 if (ExpandInst->hasNUses(0) &&
1970 Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
1971 DeadInsts.emplace_back(ExpandInst);
1972 return nullptr;
1975 // Remembering the WideIV increment generated by SCEVExpander allows
1976 // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1977 // employ a general reuse mechanism because the call above is the only call to
1978 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1979 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1980 WideInc =
1981 dyn_cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1982 if (WideInc) {
1983 WideIncExpr = SE->getSCEV(WideInc);
1984 // Propagate the debug location associated with the original loop
1985 // increment to the new (widened) increment.
1986 auto *OrigInc =
1987 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1988 WideInc->setDebugLoc(OrigInc->getDebugLoc());
1992 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1993 ++NumWidened;
1995 // Traverse the def-use chain using a worklist starting at the original IV.
1996 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1998 Widened.insert(OrigPhi);
1999 pushNarrowIVUsers(OrigPhi, WidePhi);
2001 while (!NarrowIVUsers.empty()) {
2002 WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
2004 // Process a def-use edge. This may replace the use, so don't hold a
2005 // use_iterator across it.
2006 Instruction *WideUse = widenIVUse(DU, Rewriter);
2008 // Follow all def-use edges from the previous narrow use.
2009 if (WideUse)
2010 pushNarrowIVUsers(DU.NarrowUse, WideUse);
2012 // widenIVUse may have removed the def-use edge.
2013 if (DU.NarrowDef->use_empty())
2014 DeadInsts.emplace_back(DU.NarrowDef);
2017 // Attach any debug information to the new PHI.
2018 replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
2020 return WidePhi;
2023 /// Calculates control-dependent range for the given def at the given context
2024 /// by looking at dominating conditions inside of the loop
2025 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
2026 Instruction *NarrowUser) {
2027 Value *NarrowDefLHS;
2028 const APInt *NarrowDefRHS;
2029 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
2030 m_APInt(NarrowDefRHS))) ||
2031 !NarrowDefRHS->isNonNegative())
2032 return;
2034 auto UpdateRangeFromCondition = [&] (Value *Condition,
2035 bool TrueDest) {
2036 CmpInst::Predicate Pred;
2037 Value *CmpRHS;
2038 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
2039 m_Value(CmpRHS))))
2040 return;
2042 CmpInst::Predicate P =
2043 TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
2045 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
2046 auto CmpConstrainedLHSRange =
2047 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
2048 auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
2049 *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
2051 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
2054 auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
2055 if (!HasGuards)
2056 return;
2058 for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
2059 Ctx->getParent()->rend())) {
2060 Value *C = nullptr;
2061 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
2062 UpdateRangeFromCondition(C, /*TrueDest=*/true);
2066 UpdateRangeFromGuards(NarrowUser);
2068 BasicBlock *NarrowUserBB = NarrowUser->getParent();
2069 // If NarrowUserBB is statically unreachable asking dominator queries may
2070 // yield surprising results. (e.g. the block may not have a dom tree node)
2071 if (!DT->isReachableFromEntry(NarrowUserBB))
2072 return;
2074 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
2075 L->contains(DTB->getBlock());
2076 DTB = DTB->getIDom()) {
2077 auto *BB = DTB->getBlock();
2078 auto *TI = BB->getTerminator();
2079 UpdateRangeFromGuards(TI);
2081 auto *BI = dyn_cast<BranchInst>(TI);
2082 if (!BI || !BI->isConditional())
2083 continue;
2085 auto *TrueSuccessor = BI->getSuccessor(0);
2086 auto *FalseSuccessor = BI->getSuccessor(1);
2088 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2089 return BBE.isSingleEdge() &&
2090 DT->dominates(BBE, NarrowUser->getParent());
2093 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2094 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2096 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2097 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2101 /// Calculates PostIncRangeInfos map for the given IV
2102 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2103 SmallPtrSet<Instruction *, 16> Visited;
2104 SmallVector<Instruction *, 6> Worklist;
2105 Worklist.push_back(OrigPhi);
2106 Visited.insert(OrigPhi);
2108 while (!Worklist.empty()) {
2109 Instruction *NarrowDef = Worklist.pop_back_val();
2111 for (Use &U : NarrowDef->uses()) {
2112 auto *NarrowUser = cast<Instruction>(U.getUser());
2114 // Don't go looking outside the current loop.
2115 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2116 if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2117 continue;
2119 if (!Visited.insert(NarrowUser).second)
2120 continue;
2122 Worklist.push_back(NarrowUser);
2124 calculatePostIncRange(NarrowDef, NarrowUser);
2129 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2130 LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2131 DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2132 unsigned &NumElimExt, unsigned &NumWidened,
2133 bool HasGuards, bool UsePostIncrementRanges) {
2134 WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2135 PHINode *WidePHI = Widener.createWideIV(Rewriter);
2136 NumElimExt = Widener.getNumElimExt();
2137 NumWidened = Widener.getNumWidened();
2138 return WidePHI;