[RISCV] Fix mgather -> riscv.masked.strided.load combine not extending indices (...
[llvm-project.git] / llvm / lib / Transforms / Vectorize / VPlan.cpp
blob3eeb1a6948f27653b4a94d659f8de6ee38d261b5
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
19 #include "VPlan.h"
20 #include "VPlanCFG.h"
21 #include "VPlanDominatorTree.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/GenericDomTreeConstruction.h"
39 #include "llvm/Support/GraphWriter.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/LoopVersioning.h"
43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
44 #include <cassert>
45 #include <string>
46 #include <vector>
48 using namespace llvm;
50 namespace llvm {
51 extern cl::opt<bool> EnableVPlanNativePath;
54 #define DEBUG_TYPE "vplan"
56 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
57 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
58 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
59 VPSlotTracker SlotTracker(
60 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
61 V.print(OS, SlotTracker);
62 return OS;
64 #endif
66 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
67 const ElementCount &VF) const {
68 switch (LaneKind) {
69 case VPLane::Kind::ScalableLast:
70 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
71 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
72 Builder.getInt32(VF.getKnownMinValue() - Lane));
73 case VPLane::Kind::First:
74 return Builder.getInt32(Lane);
76 llvm_unreachable("Unknown lane kind");
79 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
80 : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
81 if (Def)
82 Def->addDefinedValue(this);
85 VPValue::~VPValue() {
86 assert(Users.empty() && "trying to delete a VPValue with remaining users");
87 if (Def)
88 Def->removeDefinedValue(this);
91 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
92 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
93 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
94 R->print(OS, "", SlotTracker);
95 else
96 printAsOperand(OS, SlotTracker);
99 void VPValue::dump() const {
100 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
101 VPSlotTracker SlotTracker(
102 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
103 print(dbgs(), SlotTracker);
104 dbgs() << "\n";
107 void VPDef::dump() const {
108 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
109 VPSlotTracker SlotTracker(
110 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
111 print(dbgs(), "", SlotTracker);
112 dbgs() << "\n";
114 #endif
116 VPRecipeBase *VPValue::getDefiningRecipe() {
117 return cast_or_null<VPRecipeBase>(Def);
120 const VPRecipeBase *VPValue::getDefiningRecipe() const {
121 return cast_or_null<VPRecipeBase>(Def);
124 // Get the top-most entry block of \p Start. This is the entry block of the
125 // containing VPlan. This function is templated to support both const and non-const blocks
126 template <typename T> static T *getPlanEntry(T *Start) {
127 T *Next = Start;
128 T *Current = Start;
129 while ((Next = Next->getParent()))
130 Current = Next;
132 SmallSetVector<T *, 8> WorkList;
133 WorkList.insert(Current);
135 for (unsigned i = 0; i < WorkList.size(); i++) {
136 T *Current = WorkList[i];
137 if (Current->getNumPredecessors() == 0)
138 return Current;
139 auto &Predecessors = Current->getPredecessors();
140 WorkList.insert(Predecessors.begin(), Predecessors.end());
143 llvm_unreachable("VPlan without any entry node without predecessors");
146 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
148 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
150 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
151 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
152 const VPBlockBase *Block = this;
153 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
154 Block = Region->getEntry();
155 return cast<VPBasicBlock>(Block);
158 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
159 VPBlockBase *Block = this;
160 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161 Block = Region->getEntry();
162 return cast<VPBasicBlock>(Block);
165 void VPBlockBase::setPlan(VPlan *ParentPlan) {
166 assert(
167 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
168 "Can only set plan on its entry or preheader block.");
169 Plan = ParentPlan;
172 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
173 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
174 const VPBlockBase *Block = this;
175 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
176 Block = Region->getExiting();
177 return cast<VPBasicBlock>(Block);
180 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
181 VPBlockBase *Block = this;
182 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
183 Block = Region->getExiting();
184 return cast<VPBasicBlock>(Block);
187 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
188 if (!Successors.empty() || !Parent)
189 return this;
190 assert(Parent->getExiting() == this &&
191 "Block w/o successors not the exiting block of its parent.");
192 return Parent->getEnclosingBlockWithSuccessors();
195 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
196 if (!Predecessors.empty() || !Parent)
197 return this;
198 assert(Parent->getEntry() == this &&
199 "Block w/o predecessors not the entry of its parent.");
200 return Parent->getEnclosingBlockWithPredecessors();
203 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
204 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
205 delete Block;
208 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
209 iterator It = begin();
210 while (It != end() && It->isPhi())
211 It++;
212 return It;
215 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
216 if (Def->isLiveIn())
217 return Def->getLiveInIRValue();
219 if (hasScalarValue(Def, Instance)) {
220 return Data
221 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
224 assert(hasVectorValue(Def, Instance.Part));
225 auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
226 if (!VecPart->getType()->isVectorTy()) {
227 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
228 return VecPart;
230 // TODO: Cache created scalar values.
231 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
232 auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
233 // set(Def, Extract, Instance);
234 return Extract;
237 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
238 // If Values have been set for this Def return the one relevant for \p Part.
239 if (hasVectorValue(Def, Part))
240 return Data.PerPartOutput[Def][Part];
242 auto GetBroadcastInstrs = [this, Def](Value *V) {
243 bool SafeToHoist = Def->isDefinedOutsideVectorRegions();
244 if (VF.isScalar())
245 return V;
246 // Place the code for broadcasting invariant variables in the new preheader.
247 IRBuilder<>::InsertPointGuard Guard(Builder);
248 if (SafeToHoist) {
249 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>(
250 Plan->getVectorLoopRegion()->getSinglePredecessor())];
251 if (LoopVectorPreHeader)
252 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
255 // Place the code for broadcasting invariant variables in the new preheader.
256 // Broadcast the scalar into all locations in the vector.
257 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
259 return Shuf;
262 if (!hasScalarValue(Def, {Part, 0})) {
263 assert(Def->isLiveIn() && "expected a live-in");
264 if (Part != 0)
265 return get(Def, 0);
266 Value *IRV = Def->getLiveInIRValue();
267 Value *B = GetBroadcastInstrs(IRV);
268 set(Def, B, Part);
269 return B;
272 Value *ScalarValue = get(Def, {Part, 0});
273 // If we aren't vectorizing, we can just copy the scalar map values over
274 // to the vector map.
275 if (VF.isScalar()) {
276 set(Def, ScalarValue, Part);
277 return ScalarValue;
280 bool IsUniform = vputils::isUniformAfterVectorization(Def);
282 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
283 // Check if there is a scalar value for the selected lane.
284 if (!hasScalarValue(Def, {Part, LastLane})) {
285 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
286 // VPExpandSCEVRecipes can also be uniform.
287 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
288 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
289 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
290 "unexpected recipe found to be invariant");
291 IsUniform = true;
292 LastLane = 0;
295 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
296 // Set the insert point after the last scalarized instruction or after the
297 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
298 // will directly follow the scalar definitions.
299 auto OldIP = Builder.saveIP();
300 auto NewIP =
301 isa<PHINode>(LastInst)
302 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
303 : std::next(BasicBlock::iterator(LastInst));
304 Builder.SetInsertPoint(&*NewIP);
306 // However, if we are vectorizing, we need to construct the vector values.
307 // If the value is known to be uniform after vectorization, we can just
308 // broadcast the scalar value corresponding to lane zero for each unroll
309 // iteration. Otherwise, we construct the vector values using
310 // insertelement instructions. Since the resulting vectors are stored in
311 // State, we will only generate the insertelements once.
312 Value *VectorValue = nullptr;
313 if (IsUniform) {
314 VectorValue = GetBroadcastInstrs(ScalarValue);
315 set(Def, VectorValue, Part);
316 } else {
317 // Initialize packing with insertelements to start from undef.
318 assert(!VF.isScalable() && "VF is assumed to be non scalable.");
319 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
320 set(Def, Undef, Part);
321 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
322 packScalarIntoVectorValue(Def, {Part, Lane});
323 VectorValue = get(Def, Part);
325 Builder.restoreIP(OldIP);
326 return VectorValue;
329 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
330 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
331 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
334 void VPTransformState::addNewMetadata(Instruction *To,
335 const Instruction *Orig) {
336 // If the loop was versioned with memchecks, add the corresponding no-alias
337 // metadata.
338 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
339 LVer->annotateInstWithNoAlias(To, Orig);
342 void VPTransformState::addMetadata(Instruction *To, Instruction *From) {
343 // No source instruction to transfer metadata from?
344 if (!From)
345 return;
347 propagateMetadata(To, From);
348 addNewMetadata(To, From);
351 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) {
352 // No source instruction to transfer metadata from?
353 if (!From)
354 return;
356 for (Value *V : To) {
357 if (Instruction *I = dyn_cast<Instruction>(V))
358 addMetadata(I, From);
362 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
363 const DILocation *DIL = DL;
364 // When a FSDiscriminator is enabled, we don't need to add the multiply
365 // factors to the discriminators.
366 if (DIL &&
367 Builder.GetInsertBlock()
368 ->getParent()
369 ->shouldEmitDebugInfoForProfiling() &&
370 !EnableFSDiscriminator) {
371 // FIXME: For scalable vectors, assume vscale=1.
372 auto NewDIL =
373 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
374 if (NewDIL)
375 Builder.SetCurrentDebugLocation(*NewDIL);
376 else
377 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
378 << DIL->getFilename() << " Line: " << DIL->getLine());
379 } else
380 Builder.SetCurrentDebugLocation(DIL);
383 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
384 const VPIteration &Instance) {
385 Value *ScalarInst = get(Def, Instance);
386 Value *VectorValue = get(Def, Instance.Part);
387 VectorValue = Builder.CreateInsertElement(
388 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF));
389 set(Def, VectorValue, Instance.Part);
392 BasicBlock *
393 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
394 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
395 // Pred stands for Predessor. Prev stands for Previous - last visited/created.
396 BasicBlock *PrevBB = CFG.PrevBB;
397 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
398 PrevBB->getParent(), CFG.ExitBB);
399 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
401 // Hook up the new basic block to its predecessors.
402 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
403 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
404 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
405 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
407 assert(PredBB && "Predecessor basic-block not found building successor.");
408 auto *PredBBTerminator = PredBB->getTerminator();
409 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
411 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
412 if (isa<UnreachableInst>(PredBBTerminator)) {
413 assert(PredVPSuccessors.size() == 1 &&
414 "Predecessor ending w/o branch must have single successor.");
415 DebugLoc DL = PredBBTerminator->getDebugLoc();
416 PredBBTerminator->eraseFromParent();
417 auto *Br = BranchInst::Create(NewBB, PredBB);
418 Br->setDebugLoc(DL);
419 } else if (TermBr && !TermBr->isConditional()) {
420 TermBr->setSuccessor(0, NewBB);
421 } else {
422 // Set each forward successor here when it is created, excluding
423 // backedges. A backward successor is set when the branch is created.
424 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
425 assert(!TermBr->getSuccessor(idx) &&
426 "Trying to reset an existing successor block.");
427 TermBr->setSuccessor(idx, NewBB);
430 return NewBB;
433 void VPBasicBlock::execute(VPTransformState *State) {
434 bool Replica = State->Instance && !State->Instance->isFirstIteration();
435 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
436 VPBlockBase *SingleHPred = nullptr;
437 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
439 auto IsLoopRegion = [](VPBlockBase *BB) {
440 auto *R = dyn_cast<VPRegionBlock>(BB);
441 return R && !R->isReplicator();
444 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible.
445 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) {
446 // ExitBB can be re-used for the exit block of the Plan.
447 NewBB = State->CFG.ExitBB;
448 State->CFG.PrevBB = NewBB;
449 State->Builder.SetInsertPoint(NewBB->getFirstNonPHI());
451 // Update the branch instruction in the predecessor to branch to ExitBB.
452 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor();
453 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock();
454 assert(PredVPB->getSingleSuccessor() == this &&
455 "predecessor must have the current block as only successor");
456 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB];
457 // The Exit block of a loop is always set to be successor 0 of the Exiting
458 // block.
459 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB);
460 } else if (PrevVPBB && /* A */
461 !((SingleHPred = getSingleHierarchicalPredecessor()) &&
462 SingleHPred->getExitingBasicBlock() == PrevVPBB &&
463 PrevVPBB->getSingleHierarchicalSuccessor() &&
464 (SingleHPred->getParent() == getEnclosingLoopRegion() &&
465 !IsLoopRegion(SingleHPred))) && /* B */
466 !(Replica && getPredecessors().empty())) { /* C */
467 // The last IR basic block is reused, as an optimization, in three cases:
468 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
469 // B. when the current VPBB has a single (hierarchical) predecessor which
470 // is PrevVPBB and the latter has a single (hierarchical) successor which
471 // both are in the same non-replicator region; and
472 // C. when the current VPBB is an entry of a region replica - where PrevVPBB
473 // is the exiting VPBB of this region from a previous instance, or the
474 // predecessor of this region.
476 NewBB = createEmptyBasicBlock(State->CFG);
477 State->Builder.SetInsertPoint(NewBB);
478 // Temporarily terminate with unreachable until CFG is rewired.
479 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
480 // Register NewBB in its loop. In innermost loops its the same for all
481 // BB's.
482 if (State->CurrentVectorLoop)
483 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
484 State->Builder.SetInsertPoint(Terminator);
485 State->CFG.PrevBB = NewBB;
488 // 2. Fill the IR basic block with IR instructions.
489 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
490 << " in BB:" << NewBB->getName() << '\n');
492 State->CFG.VPBB2IRBB[this] = NewBB;
493 State->CFG.PrevVPBB = this;
495 for (VPRecipeBase &Recipe : Recipes)
496 Recipe.execute(*State);
498 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
501 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
502 for (VPRecipeBase &R : Recipes) {
503 for (auto *Def : R.definedValues())
504 Def->replaceAllUsesWith(NewValue);
506 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
507 R.setOperand(I, NewValue);
511 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
512 assert((SplitAt == end() || SplitAt->getParent() == this) &&
513 "can only split at a position in the same block");
515 SmallVector<VPBlockBase *, 2> Succs(successors());
516 // First, disconnect the current block from its successors.
517 for (VPBlockBase *Succ : Succs)
518 VPBlockUtils::disconnectBlocks(this, Succ);
520 // Create new empty block after the block to split.
521 auto *SplitBlock = new VPBasicBlock(getName() + ".split");
522 VPBlockUtils::insertBlockAfter(SplitBlock, this);
524 // Add successors for block to split to new block.
525 for (VPBlockBase *Succ : Succs)
526 VPBlockUtils::connectBlocks(SplitBlock, Succ);
528 // Finally, move the recipes starting at SplitAt to new block.
529 for (VPRecipeBase &ToMove :
530 make_early_inc_range(make_range(SplitAt, this->end())))
531 ToMove.moveBefore(*SplitBlock, SplitBlock->end());
533 return SplitBlock;
536 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
537 VPRegionBlock *P = getParent();
538 if (P && P->isReplicator()) {
539 P = P->getParent();
540 assert(!cast<VPRegionBlock>(P)->isReplicator() &&
541 "unexpected nested replicate regions");
543 return P;
546 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
547 if (VPBB->empty()) {
548 assert(
549 VPBB->getNumSuccessors() < 2 &&
550 "block with multiple successors doesn't have a recipe as terminator");
551 return false;
554 const VPRecipeBase *R = &VPBB->back();
555 auto *VPI = dyn_cast<VPInstruction>(R);
556 bool IsCondBranch =
557 isa<VPBranchOnMaskRecipe>(R) ||
558 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond ||
559 VPI->getOpcode() == VPInstruction::BranchOnCount));
560 (void)IsCondBranch;
562 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) {
563 assert(IsCondBranch && "block with multiple successors not terminated by "
564 "conditional branch recipe");
566 return true;
569 assert(
570 !IsCondBranch &&
571 "block with 0 or 1 successors terminated by conditional branch recipe");
572 return false;
575 VPRecipeBase *VPBasicBlock::getTerminator() {
576 if (hasConditionalTerminator(this))
577 return &back();
578 return nullptr;
581 const VPRecipeBase *VPBasicBlock::getTerminator() const {
582 if (hasConditionalTerminator(this))
583 return &back();
584 return nullptr;
587 bool VPBasicBlock::isExiting() const {
588 return getParent()->getExitingBasicBlock() == this;
591 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
592 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
593 if (getSuccessors().empty()) {
594 O << Indent << "No successors\n";
595 } else {
596 O << Indent << "Successor(s): ";
597 ListSeparator LS;
598 for (auto *Succ : getSuccessors())
599 O << LS << Succ->getName();
600 O << '\n';
604 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
605 VPSlotTracker &SlotTracker) const {
606 O << Indent << getName() << ":\n";
608 auto RecipeIndent = Indent + " ";
609 for (const VPRecipeBase &Recipe : *this) {
610 Recipe.print(O, RecipeIndent, SlotTracker);
611 O << '\n';
614 printSuccessors(O, Indent);
616 #endif
618 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
619 for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
620 // Drop all references in VPBasicBlocks and replace all uses with
621 // DummyValue.
622 Block->dropAllReferences(NewValue);
625 void VPRegionBlock::execute(VPTransformState *State) {
626 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
627 RPOT(Entry);
629 if (!isReplicator()) {
630 // Create and register the new vector loop.
631 Loop *PrevLoop = State->CurrentVectorLoop;
632 State->CurrentVectorLoop = State->LI->AllocateLoop();
633 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
634 Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
636 // Insert the new loop into the loop nest and register the new basic blocks
637 // before calling any utilities such as SCEV that require valid LoopInfo.
638 if (ParentLoop)
639 ParentLoop->addChildLoop(State->CurrentVectorLoop);
640 else
641 State->LI->addTopLevelLoop(State->CurrentVectorLoop);
643 // Visit the VPBlocks connected to "this", starting from it.
644 for (VPBlockBase *Block : RPOT) {
645 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
646 Block->execute(State);
649 State->CurrentVectorLoop = PrevLoop;
650 return;
653 assert(!State->Instance && "Replicating a Region with non-null instance.");
655 // Enter replicating mode.
656 State->Instance = VPIteration(0, 0);
658 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
659 State->Instance->Part = Part;
660 assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
661 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
662 ++Lane) {
663 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
664 // Visit the VPBlocks connected to \p this, starting from it.
665 for (VPBlockBase *Block : RPOT) {
666 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
667 Block->execute(State);
672 // Exit replicating mode.
673 State->Instance.reset();
676 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
677 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
678 VPSlotTracker &SlotTracker) const {
679 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
680 auto NewIndent = Indent + " ";
681 for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
682 O << '\n';
683 BlockBase->print(O, NewIndent, SlotTracker);
685 O << Indent << "}\n";
687 printSuccessors(O, Indent);
689 #endif
691 VPlan::~VPlan() {
692 for (auto &KV : LiveOuts)
693 delete KV.second;
694 LiveOuts.clear();
696 if (Entry) {
697 VPValue DummyValue;
698 for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
699 Block->dropAllReferences(&DummyValue);
701 VPBlockBase::deleteCFG(Entry);
703 Preheader->dropAllReferences(&DummyValue);
704 delete Preheader;
706 for (VPValue *VPV : VPLiveInsToFree)
707 delete VPV;
708 if (BackedgeTakenCount)
709 delete BackedgeTakenCount;
712 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) {
713 VPBasicBlock *Preheader = new VPBasicBlock("ph");
714 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
715 auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader);
716 Plan->TripCount =
717 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
718 // Create empty VPRegionBlock, to be filled during processing later.
719 auto *TopRegion = new VPRegionBlock("vector loop", false /*isReplicator*/);
720 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
721 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
722 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
723 return Plan;
726 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
727 Value *CanonicalIVStartValue,
728 VPTransformState &State) {
729 // Check if the backedge taken count is needed, and if so build it.
730 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
731 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
732 auto *TCMO = Builder.CreateSub(TripCountV,
733 ConstantInt::get(TripCountV->getType(), 1),
734 "trip.count.minus.1");
735 auto VF = State.VF;
736 Value *VTCMO =
737 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
738 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
739 State.set(BackedgeTakenCount, VTCMO, Part);
742 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
743 State.set(&VectorTripCount, VectorTripCountV, Part);
745 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
746 // FIXME: Model VF * UF computation completely in VPlan.
747 State.set(&VFxUF,
748 createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF),
751 // When vectorizing the epilogue loop, the canonical induction start value
752 // needs to be changed from zero to the value after the main vector loop.
753 // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
754 if (CanonicalIVStartValue) {
755 VPValue *VPV = getVPValueOrAddLiveIn(CanonicalIVStartValue);
756 auto *IV = getCanonicalIV();
757 assert(all_of(IV->users(),
758 [](const VPUser *U) {
759 return isa<VPScalarIVStepsRecipe>(U) ||
760 isa<VPDerivedIVRecipe>(U) ||
761 cast<VPInstruction>(U)->getOpcode() ==
762 Instruction::Add;
763 }) &&
764 "the canonical IV should only be used by its increment or "
765 "ScalarIVSteps when resetting the start value");
766 IV->setOperand(0, VPV);
770 /// Generate the code inside the preheader and body of the vectorized loop.
771 /// Assumes a single pre-header basic-block was created for this. Introduce
772 /// additional basic-blocks as needed, and fill them all.
773 void VPlan::execute(VPTransformState *State) {
774 // Set the reverse mapping from VPValues to Values for code generation.
775 for (auto &Entry : Value2VPValue)
776 State->VPValue2Value[Entry.second] = Entry.first;
778 // Initialize CFG state.
779 State->CFG.PrevVPBB = nullptr;
780 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
781 BasicBlock *VectorPreHeader = State->CFG.PrevBB;
782 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
784 // Generate code in the loop pre-header and body.
785 for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
786 Block->execute(State);
788 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
789 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
791 // Fix the latch value of canonical, reduction and first-order recurrences
792 // phis in the vector loop.
793 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
794 for (VPRecipeBase &R : Header->phis()) {
795 // Skip phi-like recipes that generate their backedege values themselves.
796 if (isa<VPWidenPHIRecipe>(&R))
797 continue;
799 if (isa<VPWidenPointerInductionRecipe>(&R) ||
800 isa<VPWidenIntOrFpInductionRecipe>(&R)) {
801 PHINode *Phi = nullptr;
802 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
803 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
804 } else {
805 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
806 // TODO: Split off the case that all users of a pointer phi are scalar
807 // from the VPWidenPointerInductionRecipe.
808 if (WidenPhi->onlyScalarsGenerated(State->VF))
809 continue;
811 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
812 Phi = cast<PHINode>(GEP->getPointerOperand());
815 Phi->setIncomingBlock(1, VectorLatchBB);
817 // Move the last step to the end of the latch block. This ensures
818 // consistent placement of all induction updates.
819 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
820 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
821 continue;
824 auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
825 // For canonical IV, first-order recurrences and in-order reduction phis,
826 // only a single part is generated, which provides the last part from the
827 // previous iteration. For non-ordered reductions all UF parts are
828 // generated.
829 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
830 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
831 (isa<VPReductionPHIRecipe>(PhiR) &&
832 cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
833 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
835 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
836 Value *Phi = State->get(PhiR, Part);
837 Value *Val = State->get(PhiR->getBackedgeValue(),
838 SinglePartNeeded ? State->UF - 1 : Part);
839 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
843 // We do not attempt to preserve DT for outer loop vectorization currently.
844 if (!EnableVPlanNativePath) {
845 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header];
846 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader);
847 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
848 State->CFG.ExitBB);
852 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
853 void VPlan::printLiveIns(raw_ostream &O) const {
854 VPSlotTracker SlotTracker(this);
856 if (VFxUF.getNumUsers() > 0) {
857 O << "\nLive-in ";
858 VFxUF.printAsOperand(O, SlotTracker);
859 O << " = VF * UF";
862 if (VectorTripCount.getNumUsers() > 0) {
863 O << "\nLive-in ";
864 VectorTripCount.printAsOperand(O, SlotTracker);
865 O << " = vector-trip-count";
868 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
869 O << "\nLive-in ";
870 BackedgeTakenCount->printAsOperand(O, SlotTracker);
871 O << " = backedge-taken count";
874 O << "\n";
875 if (TripCount->isLiveIn())
876 O << "Live-in ";
877 TripCount->printAsOperand(O, SlotTracker);
878 O << " = original trip-count";
879 O << "\n";
882 LLVM_DUMP_METHOD
883 void VPlan::print(raw_ostream &O) const {
884 VPSlotTracker SlotTracker(this);
886 O << "VPlan '" << getName() << "' {";
888 printLiveIns(O);
890 if (!getPreheader()->empty()) {
891 O << "\n";
892 getPreheader()->print(O, "", SlotTracker);
895 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
896 O << '\n';
897 Block->print(O, "", SlotTracker);
900 if (!LiveOuts.empty())
901 O << "\n";
902 for (const auto &KV : LiveOuts) {
903 KV.second->print(O, SlotTracker);
906 O << "}\n";
909 std::string VPlan::getName() const {
910 std::string Out;
911 raw_string_ostream RSO(Out);
912 RSO << Name << " for ";
913 if (!VFs.empty()) {
914 RSO << "VF={" << VFs[0];
915 for (ElementCount VF : drop_begin(VFs))
916 RSO << "," << VF;
917 RSO << "},";
920 if (UFs.empty()) {
921 RSO << "UF>=1";
922 } else {
923 RSO << "UF={" << UFs[0];
924 for (unsigned UF : drop_begin(UFs))
925 RSO << "," << UF;
926 RSO << "}";
929 return Out;
932 LLVM_DUMP_METHOD
933 void VPlan::printDOT(raw_ostream &O) const {
934 VPlanPrinter Printer(O, *this);
935 Printer.dump();
938 LLVM_DUMP_METHOD
939 void VPlan::dump() const { print(dbgs()); }
940 #endif
942 void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
943 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
944 LiveOuts.insert({PN, new VPLiveOut(PN, V)});
947 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
948 BasicBlock *LoopLatchBB,
949 BasicBlock *LoopExitBB) {
950 // The vector body may be more than a single basic-block by this point.
951 // Update the dominator tree information inside the vector body by propagating
952 // it from header to latch, expecting only triangular control-flow, if any.
953 BasicBlock *PostDomSucc = nullptr;
954 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
955 // Get the list of successors of this block.
956 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
957 assert(Succs.size() <= 2 &&
958 "Basic block in vector loop has more than 2 successors.");
959 PostDomSucc = Succs[0];
960 if (Succs.size() == 1) {
961 assert(PostDomSucc->getSinglePredecessor() &&
962 "PostDom successor has more than one predecessor.");
963 DT->addNewBlock(PostDomSucc, BB);
964 continue;
966 BasicBlock *InterimSucc = Succs[1];
967 if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
968 PostDomSucc = Succs[1];
969 InterimSucc = Succs[0];
971 assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
972 "One successor of a basic block does not lead to the other.");
973 assert(InterimSucc->getSinglePredecessor() &&
974 "Interim successor has more than one predecessor.");
975 assert(PostDomSucc->hasNPredecessors(2) &&
976 "PostDom successor has more than two predecessors.");
977 DT->addNewBlock(InterimSucc, BB);
978 DT->addNewBlock(PostDomSucc, BB);
980 // Latch block is a new dominator for the loop exit.
981 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
982 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
985 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
987 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
988 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
989 Twine(getOrCreateBID(Block));
992 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
993 const std::string &Name = Block->getName();
994 if (!Name.empty())
995 return Name;
996 return "VPB" + Twine(getOrCreateBID(Block));
999 void VPlanPrinter::dump() {
1000 Depth = 1;
1001 bumpIndent(0);
1002 OS << "digraph VPlan {\n";
1003 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1004 if (!Plan.getName().empty())
1005 OS << "\\n" << DOT::EscapeString(Plan.getName());
1008 // Print live-ins.
1009 std::string Str;
1010 raw_string_ostream SS(Str);
1011 Plan.printLiveIns(SS);
1012 SmallVector<StringRef, 0> Lines;
1013 StringRef(Str).rtrim('\n').split(Lines, "\n");
1014 for (auto Line : Lines)
1015 OS << DOT::EscapeString(Line.str()) << "\\n";
1018 OS << "\"]\n";
1019 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1020 OS << "edge [fontname=Courier, fontsize=30]\n";
1021 OS << "compound=true\n";
1023 dumpBlock(Plan.getPreheader());
1025 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1026 dumpBlock(Block);
1028 OS << "}\n";
1031 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1032 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1033 dumpBasicBlock(BasicBlock);
1034 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1035 dumpRegion(Region);
1036 else
1037 llvm_unreachable("Unsupported kind of VPBlock.");
1040 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1041 bool Hidden, const Twine &Label) {
1042 // Due to "dot" we print an edge between two regions as an edge between the
1043 // exiting basic block and the entry basic of the respective regions.
1044 const VPBlockBase *Tail = From->getExitingBasicBlock();
1045 const VPBlockBase *Head = To->getEntryBasicBlock();
1046 OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1047 OS << " [ label=\"" << Label << '\"';
1048 if (Tail != From)
1049 OS << " ltail=" << getUID(From);
1050 if (Head != To)
1051 OS << " lhead=" << getUID(To);
1052 if (Hidden)
1053 OS << "; splines=none";
1054 OS << "]\n";
1057 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1058 auto &Successors = Block->getSuccessors();
1059 if (Successors.size() == 1)
1060 drawEdge(Block, Successors.front(), false, "");
1061 else if (Successors.size() == 2) {
1062 drawEdge(Block, Successors.front(), false, "T");
1063 drawEdge(Block, Successors.back(), false, "F");
1064 } else {
1065 unsigned SuccessorNumber = 0;
1066 for (auto *Successor : Successors)
1067 drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1071 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1072 // Implement dot-formatted dump by performing plain-text dump into the
1073 // temporary storage followed by some post-processing.
1074 OS << Indent << getUID(BasicBlock) << " [label =\n";
1075 bumpIndent(1);
1076 std::string Str;
1077 raw_string_ostream SS(Str);
1078 // Use no indentation as we need to wrap the lines into quotes ourselves.
1079 BasicBlock->print(SS, "", SlotTracker);
1081 // We need to process each line of the output separately, so split
1082 // single-string plain-text dump.
1083 SmallVector<StringRef, 0> Lines;
1084 StringRef(Str).rtrim('\n').split(Lines, "\n");
1086 auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1087 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1090 // Don't need the "+" after the last line.
1091 for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1092 EmitLine(Line, " +\n");
1093 EmitLine(Lines.back(), "\n");
1095 bumpIndent(-1);
1096 OS << Indent << "]\n";
1098 dumpEdges(BasicBlock);
1101 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1102 OS << Indent << "subgraph " << getUID(Region) << " {\n";
1103 bumpIndent(1);
1104 OS << Indent << "fontname=Courier\n"
1105 << Indent << "label=\""
1106 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1107 << DOT::EscapeString(Region->getName()) << "\"\n";
1108 // Dump the blocks of the region.
1109 assert(Region->getEntry() && "Region contains no inner blocks.");
1110 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1111 dumpBlock(Block);
1112 bumpIndent(-1);
1113 OS << Indent << "}\n";
1114 dumpEdges(Region);
1117 void VPlanIngredient::print(raw_ostream &O) const {
1118 if (auto *Inst = dyn_cast<Instruction>(V)) {
1119 if (!Inst->getType()->isVoidTy()) {
1120 Inst->printAsOperand(O, false);
1121 O << " = ";
1123 O << Inst->getOpcodeName() << " ";
1124 unsigned E = Inst->getNumOperands();
1125 if (E > 0) {
1126 Inst->getOperand(0)->printAsOperand(O, false);
1127 for (unsigned I = 1; I < E; ++I)
1128 Inst->getOperand(I)->printAsOperand(O << ", ", false);
1130 } else // !Inst
1131 V->printAsOperand(O, false);
1134 #endif
1136 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1138 void VPValue::replaceAllUsesWith(VPValue *New) {
1139 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1142 void VPValue::replaceUsesWithIf(
1143 VPValue *New,
1144 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1145 // Note that this early exit is required for correctness; the implementation
1146 // below relies on the number of users for this VPValue to decrease, which
1147 // isn't the case if this == New.
1148 if (this == New)
1149 return;
1151 for (unsigned J = 0; J < getNumUsers();) {
1152 VPUser *User = Users[J];
1153 bool RemovedUser = false;
1154 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1155 if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1156 continue;
1158 RemovedUser = true;
1159 User->setOperand(I, New);
1161 // If a user got removed after updating the current user, the next user to
1162 // update will be moved to the current position, so we only need to
1163 // increment the index if the number of users did not change.
1164 if (!RemovedUser)
1165 J++;
1169 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1170 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1171 if (const Value *UV = getUnderlyingValue()) {
1172 OS << "ir<";
1173 UV->printAsOperand(OS, false);
1174 OS << ">";
1175 return;
1178 unsigned Slot = Tracker.getSlot(this);
1179 if (Slot == unsigned(-1))
1180 OS << "<badref>";
1181 else
1182 OS << "vp<%" << Tracker.getSlot(this) << ">";
1185 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1186 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1187 Op->printAsOperand(O, SlotTracker);
1190 #endif
1192 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1193 Old2NewTy &Old2New,
1194 InterleavedAccessInfo &IAI) {
1195 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1196 RPOT(Region->getEntry());
1197 for (VPBlockBase *Base : RPOT) {
1198 visitBlock(Base, Old2New, IAI);
1202 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1203 InterleavedAccessInfo &IAI) {
1204 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1205 for (VPRecipeBase &VPI : *VPBB) {
1206 if (isa<VPHeaderPHIRecipe>(&VPI))
1207 continue;
1208 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1209 auto *VPInst = cast<VPInstruction>(&VPI);
1211 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1212 if (!Inst)
1213 continue;
1214 auto *IG = IAI.getInterleaveGroup(Inst);
1215 if (!IG)
1216 continue;
1218 auto NewIGIter = Old2New.find(IG);
1219 if (NewIGIter == Old2New.end())
1220 Old2New[IG] = new InterleaveGroup<VPInstruction>(
1221 IG->getFactor(), IG->isReverse(), IG->getAlign());
1223 if (Inst == IG->getInsertPos())
1224 Old2New[IG]->setInsertPos(VPInst);
1226 InterleaveGroupMap[VPInst] = Old2New[IG];
1227 InterleaveGroupMap[VPInst]->insertMember(
1228 VPInst, IG->getIndex(Inst),
1229 Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1230 : IG->getFactor()));
1232 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1233 visitRegion(Region, Old2New, IAI);
1234 else
1235 llvm_unreachable("Unsupported kind of VPBlock.");
1238 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1239 InterleavedAccessInfo &IAI) {
1240 Old2NewTy Old2New;
1241 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1244 void VPSlotTracker::assignSlot(const VPValue *V) {
1245 assert(!Slots.contains(V) && "VPValue already has a slot!");
1246 Slots[V] = NextSlot++;
1249 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1250 if (Plan.VFxUF.getNumUsers() > 0)
1251 assignSlot(&Plan.VFxUF);
1252 assignSlot(&Plan.VectorTripCount);
1253 if (Plan.BackedgeTakenCount)
1254 assignSlot(Plan.BackedgeTakenCount);
1255 assignSlots(Plan.getPreheader());
1257 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1258 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1259 for (const VPBasicBlock *VPBB :
1260 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1261 assignSlots(VPBB);
1264 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1265 for (const VPRecipeBase &Recipe : *VPBB)
1266 for (VPValue *Def : Recipe.definedValues())
1267 assignSlot(Def);
1270 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1271 return all_of(Def->users(),
1272 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); });
1275 bool vputils::onlyFirstPartUsed(VPValue *Def) {
1276 return all_of(Def->users(),
1277 [Def](VPUser *U) { return U->onlyFirstPartUsed(Def); });
1280 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
1281 ScalarEvolution &SE) {
1282 if (auto *Expanded = Plan.getSCEVExpansion(Expr))
1283 return Expanded;
1284 VPValue *Expanded = nullptr;
1285 if (auto *E = dyn_cast<SCEVConstant>(Expr))
1286 Expanded = Plan.getVPValueOrAddLiveIn(E->getValue());
1287 else if (auto *E = dyn_cast<SCEVUnknown>(Expr))
1288 Expanded = Plan.getVPValueOrAddLiveIn(E->getValue());
1289 else {
1290 Expanded = new VPExpandSCEVRecipe(Expr, SE);
1291 Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe());
1293 Plan.addSCEVExpansion(Expr, Expanded);
1294 return Expanded;