[libc] Add platform independent floating point rounding mode checks.
[llvm-project.git] / libc / src / math / generic / cosf.cpp
blob2e4ca3c4133ff38c2880dc46c1e57eff1a00fcc5
1 //===-- Single-precision cos function -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "src/math/cosf.h"
10 #include "sincosf_utils.h"
11 #include "src/__support/FPUtil/BasicOperations.h"
12 #include "src/__support/FPUtil/FEnvImpl.h"
13 #include "src/__support/FPUtil/FPBits.h"
14 #include "src/__support/FPUtil/except_value_utils.h"
15 #include "src/__support/FPUtil/multiply_add.h"
16 #include "src/__support/common.h"
17 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
18 #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
20 #include <errno.h>
22 namespace __llvm_libc {
24 // Exceptional cases for cosf.
25 static constexpr size_t N_EXCEPTS = 6;
27 static constexpr fputil::ExceptValues<float, N_EXCEPTS> COSF_EXCEPTS{{
28 // (inputs, RZ output, RU offset, RD offset, RN offset)
29 // x = 0x1.64a032p43, cos(x) = 0x1.9d4ba4p-1 (RZ)
30 {0x55325019, 0x3f4ea5d2, 1, 0, 0},
31 // x = 0x1.4555p51, cos(x) = 0x1.115d7cp-1 (RZ)
32 {0x5922aa80, 0x3f08aebe, 1, 0, 1},
33 // x = 0x1.48a858p54, cos(x) = 0x1.f48148p-2 (RZ)
34 {0x5aa4542c, 0x3efa40a4, 1, 0, 0},
35 // x = 0x1.3170fp63, cos(x) = 0x1.fe2976p-1 (RZ)
36 {0x5f18b878, 0x3f7f14bb, 1, 0, 0},
37 // x = 0x1.2b9622p67, cos(x) = 0x1.f0285cp-1 (RZ)
38 {0x6115cb11, 0x3f78142e, 1, 0, 1},
39 // x = 0x1.ddebdep120, cos(x) = 0x1.114438p-1 (RZ)
40 {0x7beef5ef, 0x3f08a21c, 1, 0, 0},
41 }};
43 LLVM_LIBC_FUNCTION(float, cosf, (float x)) {
44 using FPBits = typename fputil::FPBits<float>;
45 FPBits xbits(x);
46 xbits.set_sign(false);
48 uint32_t x_abs = xbits.uintval();
49 double xd = static_cast<double>(xbits.get_val());
51 // Range reduction:
52 // For |x| > pi/16, we perform range reduction as follows:
53 // Find k and y such that:
54 // x = (k + y) * pi/32
55 // k is an integer
56 // |y| < 0.5
57 // For small range (|x| < 2^45 when FMA instructions are available, 2^22
58 // otherwise), this is done by performing:
59 // k = round(x * 32/pi)
60 // y = x * 32/pi - k
61 // For large range, we will omit all the higher parts of 16/pi such that the
62 // least significant bits of their full products with x are larger than 63,
63 // since cos((k + y + 64*i) * pi/32) = cos(x + i * 2pi) = cos(x).
65 // When FMA instructions are not available, we store the digits of 32/pi in
66 // chunks of 28-bit precision. This will make sure that the products:
67 // x * THIRTYTWO_OVER_PI_28[i] are all exact.
68 // When FMA instructions are available, we simply store the digits of 32/pi in
69 // chunks of doubles (53-bit of precision).
70 // So when multiplying by the largest values of single precision, the
71 // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80. By the
72 // worst-case analysis of range reduction, |y| >= 2^-38, so this should give
73 // us more than 40 bits of accuracy. For the worst-case estimation of range
74 // reduction, see for instances:
75 // Elementary Functions by J-M. Muller, Chapter 11,
76 // Handbook of Floating-Point Arithmetic by J-M. Muller et. al.,
77 // Chapter 10.2.
79 // Once k and y are computed, we then deduce the answer by the cosine of sum
80 // formula:
81 // cos(x) = cos((k + y)*pi/32)
82 // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
83 // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed
84 // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are
85 // computed using degree-7 and degree-6 minimax polynomials generated by
86 // Sollya respectively.
88 // |x| < 0x1.0p-12f
89 if (LIBC_UNLIKELY(x_abs < 0x3980'0000U)) {
90 // When |x| < 2^-12, the relative error of the approximation cos(x) ~ 1
91 // is:
92 // |cos(x) - 1| < |x^2 / 2| = 2^-25 < epsilon(1)/2.
93 // So the correctly rounded values of cos(x) are:
94 // = 1 - eps(x) if rounding mode = FE_TOWARDZERO or FE_DOWWARD,
95 // = 1 otherwise.
96 // To simplify the rounding decision and make it more efficient and to
97 // prevent compiler to perform constant folding, we use
98 // fma(x, -2^-25, 1) instead.
99 // Note: to use the formula 1 - 2^-25*x to decide the correct rounding, we
100 // do need fma(x, -2^-25, 1) to prevent underflow caused by -2^-25*x when
101 // |x| < 2^-125. For targets without FMA instructions, we simply use
102 // double for intermediate results as it is more efficient than using an
103 // emulated version of FMA.
104 #if defined(LIBC_TARGET_CPU_HAS_FMA)
105 return fputil::multiply_add(xbits.get_val(), -0x1.0p-25f, 1.0f);
106 #else
107 return static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, 1.0));
108 #endif // LIBC_TARGET_CPU_HAS_FMA
111 if (auto r = COSF_EXCEPTS.lookup(x_abs); LIBC_UNLIKELY(r.has_value()))
112 return r.value();
114 // x is inf or nan.
115 if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) {
116 if (x_abs == 0x7f80'0000U) {
117 fputil::set_errno_if_required(EDOM);
118 fputil::raise_except_if_required(FE_INVALID);
120 return x + FPBits::build_quiet_nan(0);
123 // Combine the results with the sine of sum formula:
124 // cos(x) = cos((k + y)*pi/32)
125 // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
126 // = cosm1_y * cos_k + sin_y * sin_k
127 // = (cosm1_y * cos_k + cos_k) + sin_y * sin_k
128 double sin_k, cos_k, sin_y, cosm1_y;
130 sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y);
132 return static_cast<float>(fputil::multiply_add(
133 sin_y, -sin_k, fputil::multiply_add(cosm1_y, cos_k, cos_k)));
136 } // namespace __llvm_libc