1 //===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This header defines the implementation of the LLVM difference
10 // engine, which structurally compares global values within a module.
12 //===----------------------------------------------------------------------===//
14 #include "DifferenceEngine.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringSet.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Support/type_traits.h"
35 /// A priority queue, implemented as a heap.
36 template <class T
, class Sorter
, unsigned InlineCapacity
>
39 llvm::SmallVector
<T
, InlineCapacity
> Storage
;
42 PriorityQueue(const Sorter
&Precedes
) : Precedes(Precedes
) {}
44 /// Checks whether the heap is empty.
45 bool empty() const { return Storage
.empty(); }
47 /// Insert a new value on the heap.
48 void insert(const T
&V
) {
49 unsigned Index
= Storage
.size();
51 if (Index
== 0) return;
53 T
*data
= Storage
.data();
55 unsigned Target
= (Index
+ 1) / 2 - 1;
56 if (!Precedes(data
[Index
], data
[Target
])) return;
57 std::swap(data
[Index
], data
[Target
]);
58 if (Target
== 0) return;
63 /// Remove the minimum value in the heap. Only valid on a non-empty heap.
68 unsigned NewSize
= Storage
.size() - 1;
70 // Move the slot at the end to the beginning.
71 if (std::is_trivially_copyable
<T
>::value
)
72 Storage
[0] = Storage
[NewSize
];
74 std::swap(Storage
[0], Storage
[NewSize
]);
76 // Bubble the root up as necessary.
79 // With a 1-based index, the children would be Index*2 and Index*2+1.
80 unsigned R
= (Index
+ 1) * 2;
83 // If R is out of bounds, we're done after this in any case.
85 // If L is also out of bounds, we're done immediately.
86 if (L
>= NewSize
) break;
88 // Otherwise, test whether we should swap L and Index.
89 if (Precedes(Storage
[L
], Storage
[Index
]))
90 std::swap(Storage
[L
], Storage
[Index
]);
94 // Otherwise, we need to compare with the smaller of L and R.
95 // Prefer R because it's closer to the end of the array.
96 unsigned IndexToTest
= (Precedes(Storage
[L
], Storage
[R
]) ? L
: R
);
98 // If Index is >= the min of L and R, then heap ordering is restored.
99 if (!Precedes(Storage
[IndexToTest
], Storage
[Index
]))
102 // Otherwise, keep bubbling up.
103 std::swap(Storage
[IndexToTest
], Storage
[Index
]);
113 /// A function-scope difference engine.
114 class FunctionDifferenceEngine
{
115 DifferenceEngine
&Engine
;
117 // Some initializers may reference the variable we're currently checking. This
118 // can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
120 const Value
*SavedLHS
;
121 const Value
*SavedRHS
;
123 // The current mapping from old local values to new local values.
124 DenseMap
<const Value
*, const Value
*> Values
;
126 // The current mapping from old blocks to new blocks.
127 DenseMap
<const BasicBlock
*, const BasicBlock
*> Blocks
;
129 // The tentative mapping from old local values while comparing a pair of
130 // basic blocks. Once the pair has been processed, the tentative mapping is
131 // committed to the Values map.
132 DenseSet
<std::pair
<const Value
*, const Value
*>> TentativeValues
;
134 // Equivalence Assumptions
136 // For basic blocks in loops, some values in phi nodes may depend on
137 // values from not yet processed basic blocks in the loop. When encountering
138 // such values, we optimistically asssume their equivalence and store this
139 // assumption in a BlockDiffCandidate for the pair of compared BBs.
141 // Once we have diffed all BBs, for every BlockDiffCandidate, we check all
142 // stored assumptions using the Values map that stores proven equivalences
143 // between the old and new values, and report a diff if an assumption cannot
144 // be proven to be true.
146 // Note that after having made an assumption, all further determined
147 // equivalences implicitly depend on that assumption. These will not be
148 // reverted or reported if the assumption proves to be false, because these
149 // are considered indirect diffs caused by earlier direct diffs.
151 // We aim to avoid false negatives in llvm-diff, that is, ensure that
152 // whenever no diff is reported, the functions are indeed equal. If
153 // assumptions were made, this is not entirely clear, because in principle we
154 // could end up with a circular proof where the proof of equivalence of two
155 // nodes is depending on the assumption of their equivalence.
157 // To see that assumptions do not add false negatives, note that if we do not
158 // report a diff, this means that there is an equivalence mapping between old
159 // and new values that is consistent with all assumptions made. The circular
160 // dependency that exists on an IR value level does not exist at run time,
161 // because the values selected by the phi nodes must always already have been
162 // computed. Hence, we can prove equivalence of the old and new functions by
163 // considering step-wise parallel execution, and incrementally proving
164 // equivalence of every new computed value. Another way to think about it is
165 // to imagine cloning the loop BBs for every iteration, turning the loops
166 // into (possibly infinite) DAGs, and proving equivalence by induction on the
167 // iteration, using the computed value mapping.
169 // The class BlockDiffCandidate stores pairs which either have already been
170 // proven to differ, or pairs whose equivalence depends on assumptions to be
172 struct BlockDiffCandidate
{
173 const BasicBlock
*LBB
;
174 const BasicBlock
*RBB
;
175 // Maps old values to assumed-to-be-equivalent new values
176 SmallDenseMap
<const Value
*, const Value
*> EquivalenceAssumptions
;
177 // If set, we already know the blocks differ.
181 // List of block diff candidates in the order found by processing.
182 // We generate reports in this order.
183 // For every LBB, there may only be one corresponding RBB.
184 SmallVector
<BlockDiffCandidate
> BlockDiffCandidates
;
185 // Maps LBB to the index of its BlockDiffCandidate, if existing.
186 DenseMap
<const BasicBlock
*, uint64_t> BlockDiffCandidateIndices
;
188 // Note: Every LBB must always be queried together with the same RBB.
189 // The returned reference is not permanently valid and should not be stored.
190 BlockDiffCandidate
&getOrCreateBlockDiffCandidate(const BasicBlock
*LBB
,
191 const BasicBlock
*RBB
) {
192 auto [It
, Inserted
] =
193 BlockDiffCandidateIndices
.try_emplace(LBB
, BlockDiffCandidates
.size());
194 // Check if LBB already has a diff candidate
197 BlockDiffCandidates
.push_back(
198 {LBB
, RBB
, SmallDenseMap
<const Value
*, const Value
*>(), false});
199 return BlockDiffCandidates
.back();
202 BlockDiffCandidate
&Result
= BlockDiffCandidates
[It
->second
];
203 assert(Result
.RBB
== RBB
&& "Inconsistent basic block pairing!");
207 // Optionally passed to equivalence checker functions, so these can add
208 // assumptions in BlockDiffCandidates. Its presence controls whether
209 // assumptions are generated.
210 struct AssumptionContext
{
211 // The two basic blocks that need the two compared values to be equivalent.
212 const BasicBlock
*LBB
;
213 const BasicBlock
*RBB
;
216 unsigned getUnprocPredCount(const BasicBlock
*Block
) const {
217 return llvm::count_if(predecessors(Block
), [&](const BasicBlock
*Pred
) {
218 return !Blocks
.contains(Pred
);
222 typedef std::pair
<const BasicBlock
*, const BasicBlock
*> BlockPair
;
224 /// A type which sorts a priority queue by the number of unprocessed
225 /// predecessor blocks it has remaining.
227 /// This is actually really expensive to calculate.
229 const FunctionDifferenceEngine
&fde
;
230 explicit QueueSorter(const FunctionDifferenceEngine
&fde
) : fde(fde
) {}
232 bool operator()(BlockPair
&Old
, BlockPair
&New
) {
233 return fde
.getUnprocPredCount(Old
.first
)
234 < fde
.getUnprocPredCount(New
.first
);
238 /// A queue of unified blocks to process.
239 PriorityQueue
<BlockPair
, QueueSorter
, 20> Queue
;
241 /// Try to unify the given two blocks. Enqueues them for processing
242 /// if they haven't already been processed.
244 /// Returns true if there was a problem unifying them.
245 bool tryUnify(const BasicBlock
*L
, const BasicBlock
*R
) {
246 const BasicBlock
*&Ref
= Blocks
[L
];
249 if (Ref
== R
) return false;
251 Engine
.logf("successor %l cannot be equivalent to %r; "
252 "it's already equivalent to %r")
258 Queue
.insert(BlockPair(L
, R
));
262 /// Unifies two instructions, given that they're known not to have
263 /// structural differences.
264 void unify(const Instruction
*L
, const Instruction
*R
) {
265 DifferenceEngine::Context
C(Engine
, L
, R
);
267 bool Result
= diff(L
, R
, true, true, true);
268 assert(!Result
&& "structural differences second time around?");
274 void processQueue() {
275 while (!Queue
.empty()) {
276 BlockPair Pair
= Queue
.remove_min();
277 diff(Pair
.first
, Pair
.second
);
281 void checkAndReportDiffCandidates() {
282 for (BlockDiffCandidate
&BDC
: BlockDiffCandidates
) {
285 for (const auto &[L
, R
] : BDC
.EquivalenceAssumptions
) {
286 auto It
= Values
.find(L
);
287 if (It
== Values
.end() || It
->second
!= R
) {
288 BDC
.KnownToDiffer
= true;
293 // Run block diff if the BBs differ
294 if (BDC
.KnownToDiffer
) {
295 DifferenceEngine::Context
C(Engine
, BDC
.LBB
, BDC
.RBB
);
296 runBlockDiff(BDC
.LBB
->begin(), BDC
.RBB
->begin());
301 void diff(const BasicBlock
*L
, const BasicBlock
*R
) {
302 DifferenceEngine::Context
C(Engine
, L
, R
);
304 BasicBlock::const_iterator LI
= L
->begin(), LE
= L
->end();
305 BasicBlock::const_iterator RI
= R
->begin();
308 assert(LI
!= LE
&& RI
!= R
->end());
309 const Instruction
*LeftI
= &*LI
, *RightI
= &*RI
;
311 // If the instructions differ, start the more sophisticated diff
312 // algorithm at the start of the block.
313 if (diff(LeftI
, RightI
, false, false, true)) {
314 TentativeValues
.clear();
315 // Register (L, R) as diffing pair. Note that we could directly emit a
316 // block diff here, but this way we ensure all diffs are emitted in one
317 // consistent order, independent of whether the diffs were detected
318 // immediately or via invalid assumptions.
319 getOrCreateBlockDiffCandidate(L
, R
).KnownToDiffer
= true;
323 // Otherwise, tentatively unify them.
324 if (!LeftI
->use_empty())
325 TentativeValues
.insert(std::make_pair(LeftI
, RightI
));
329 } while (LI
!= LE
); // This is sufficient: we can't get equality of
330 // terminators if there are residual instructions.
332 // Unify everything in the block, non-tentatively this time.
333 TentativeValues
.clear();
334 for (LI
= L
->begin(), RI
= R
->begin(); LI
!= LE
; ++LI
, ++RI
)
338 bool matchForBlockDiff(const Instruction
*L
, const Instruction
*R
);
339 void runBlockDiff(BasicBlock::const_iterator LI
,
340 BasicBlock::const_iterator RI
);
342 bool diffCallSites(const CallBase
&L
, const CallBase
&R
, bool Complain
) {
343 // FIXME: call attributes
344 AssumptionContext AC
= {L
.getParent(), R
.getParent()};
345 if (!equivalentAsOperands(L
.getCalledOperand(), R
.getCalledOperand(),
347 if (Complain
) Engine
.log("called functions differ");
350 if (L
.arg_size() != R
.arg_size()) {
351 if (Complain
) Engine
.log("argument counts differ");
354 for (unsigned I
= 0, E
= L
.arg_size(); I
!= E
; ++I
)
355 if (!equivalentAsOperands(L
.getArgOperand(I
), R
.getArgOperand(I
), &AC
)) {
357 Engine
.logf("arguments %l and %r differ")
358 << L
.getArgOperand(I
) << R
.getArgOperand(I
);
364 // If AllowAssumptions is enabled, whenever we encounter a pair of values
365 // that we cannot prove to be equivalent, we assume equivalence and store that
366 // assumption to be checked later in BlockDiffCandidates.
367 bool diff(const Instruction
*L
, const Instruction
*R
, bool Complain
,
368 bool TryUnify
, bool AllowAssumptions
) {
369 // FIXME: metadata (if Complain is set)
370 AssumptionContext ACValue
= {L
->getParent(), R
->getParent()};
371 // nullptr AssumptionContext disables assumption generation.
372 const AssumptionContext
*AC
= AllowAssumptions
? &ACValue
: nullptr;
374 // Different opcodes always imply different operations.
375 if (L
->getOpcode() != R
->getOpcode()) {
376 if (Complain
) Engine
.log("different instruction types");
380 if (isa
<CmpInst
>(L
)) {
381 if (cast
<CmpInst
>(L
)->getPredicate()
382 != cast
<CmpInst
>(R
)->getPredicate()) {
383 if (Complain
) Engine
.log("different predicates");
386 } else if (isa
<CallInst
>(L
)) {
387 return diffCallSites(cast
<CallInst
>(*L
), cast
<CallInst
>(*R
), Complain
);
388 } else if (isa
<PHINode
>(L
)) {
389 const PHINode
&LI
= cast
<PHINode
>(*L
);
390 const PHINode
&RI
= cast
<PHINode
>(*R
);
392 // This is really weird; type uniquing is broken?
393 if (LI
.getType() != RI
.getType()) {
394 if (!LI
.getType()->isPointerTy() || !RI
.getType()->isPointerTy()) {
395 if (Complain
) Engine
.log("different phi types");
400 if (LI
.getNumIncomingValues() != RI
.getNumIncomingValues()) {
402 Engine
.log("PHI node # of incoming values differ");
406 for (unsigned I
= 0; I
< LI
.getNumIncomingValues(); ++I
) {
408 tryUnify(LI
.getIncomingBlock(I
), RI
.getIncomingBlock(I
));
410 if (!equivalentAsOperands(LI
.getIncomingValue(I
),
411 RI
.getIncomingValue(I
), AC
)) {
413 Engine
.log("PHI node incoming values differ");
421 } else if (isa
<InvokeInst
>(L
)) {
422 const InvokeInst
&LI
= cast
<InvokeInst
>(*L
);
423 const InvokeInst
&RI
= cast
<InvokeInst
>(*R
);
424 if (diffCallSites(LI
, RI
, Complain
))
428 tryUnify(LI
.getNormalDest(), RI
.getNormalDest());
429 tryUnify(LI
.getUnwindDest(), RI
.getUnwindDest());
433 } else if (isa
<CallBrInst
>(L
)) {
434 const CallBrInst
&LI
= cast
<CallBrInst
>(*L
);
435 const CallBrInst
&RI
= cast
<CallBrInst
>(*R
);
436 if (LI
.getNumIndirectDests() != RI
.getNumIndirectDests()) {
438 Engine
.log("callbr # of indirect destinations differ");
442 // Perform the "try unify" step so that we can equate the indirect
443 // destinations before checking the call site.
444 for (unsigned I
= 0; I
< LI
.getNumIndirectDests(); I
++)
445 tryUnify(LI
.getIndirectDest(I
), RI
.getIndirectDest(I
));
447 if (diffCallSites(LI
, RI
, Complain
))
451 tryUnify(LI
.getDefaultDest(), RI
.getDefaultDest());
454 } else if (isa
<BranchInst
>(L
)) {
455 const BranchInst
*LI
= cast
<BranchInst
>(L
);
456 const BranchInst
*RI
= cast
<BranchInst
>(R
);
457 if (LI
->isConditional() != RI
->isConditional()) {
458 if (Complain
) Engine
.log("branch conditionality differs");
462 if (LI
->isConditional()) {
463 if (!equivalentAsOperands(LI
->getCondition(), RI
->getCondition(), AC
)) {
464 if (Complain
) Engine
.log("branch conditions differ");
467 if (TryUnify
) tryUnify(LI
->getSuccessor(1), RI
->getSuccessor(1));
469 if (TryUnify
) tryUnify(LI
->getSuccessor(0), RI
->getSuccessor(0));
472 } else if (isa
<IndirectBrInst
>(L
)) {
473 const IndirectBrInst
*LI
= cast
<IndirectBrInst
>(L
);
474 const IndirectBrInst
*RI
= cast
<IndirectBrInst
>(R
);
475 if (LI
->getNumDestinations() != RI
->getNumDestinations()) {
476 if (Complain
) Engine
.log("indirectbr # of destinations differ");
480 if (!equivalentAsOperands(LI
->getAddress(), RI
->getAddress(), AC
)) {
481 if (Complain
) Engine
.log("indirectbr addresses differ");
486 for (unsigned i
= 0; i
< LI
->getNumDestinations(); i
++) {
487 tryUnify(LI
->getDestination(i
), RI
->getDestination(i
));
492 } else if (isa
<SwitchInst
>(L
)) {
493 const SwitchInst
*LI
= cast
<SwitchInst
>(L
);
494 const SwitchInst
*RI
= cast
<SwitchInst
>(R
);
495 if (!equivalentAsOperands(LI
->getCondition(), RI
->getCondition(), AC
)) {
496 if (Complain
) Engine
.log("switch conditions differ");
499 if (TryUnify
) tryUnify(LI
->getDefaultDest(), RI
->getDefaultDest());
501 bool Difference
= false;
503 DenseMap
<const ConstantInt
*, const BasicBlock
*> LCases
;
504 for (auto Case
: LI
->cases())
505 LCases
[Case
.getCaseValue()] = Case
.getCaseSuccessor();
507 for (auto Case
: RI
->cases()) {
508 const ConstantInt
*CaseValue
= Case
.getCaseValue();
509 const BasicBlock
*LCase
= LCases
[CaseValue
];
512 tryUnify(LCase
, Case
.getCaseSuccessor());
513 LCases
.erase(CaseValue
);
514 } else if (Complain
|| !Difference
) {
516 Engine
.logf("right switch has extra case %r") << CaseValue
;
521 for (DenseMap
<const ConstantInt
*, const BasicBlock
*>::iterator
526 Engine
.logf("left switch has extra case %l") << I
->first
;
530 } else if (isa
<UnreachableInst
>(L
)) {
534 if (L
->getNumOperands() != R
->getNumOperands()) {
535 if (Complain
) Engine
.log("instructions have different operand counts");
539 for (unsigned I
= 0, E
= L
->getNumOperands(); I
!= E
; ++I
) {
540 Value
*LO
= L
->getOperand(I
), *RO
= R
->getOperand(I
);
541 if (!equivalentAsOperands(LO
, RO
, AC
)) {
542 if (Complain
) Engine
.logf("operands %l and %r differ") << LO
<< RO
;
551 bool equivalentAsOperands(const Constant
*L
, const Constant
*R
,
552 const AssumptionContext
*AC
) {
553 // Use equality as a preliminary filter.
557 if (L
->getValueID() != R
->getValueID())
560 // Ask the engine about global values.
561 if (isa
<GlobalValue
>(L
))
562 return Engine
.equivalentAsOperands(cast
<GlobalValue
>(L
),
563 cast
<GlobalValue
>(R
));
565 // Compare constant expressions structurally.
566 if (isa
<ConstantExpr
>(L
))
567 return equivalentAsOperands(cast
<ConstantExpr
>(L
), cast
<ConstantExpr
>(R
),
570 // Constants of the "same type" don't always actually have the same
571 // type; I don't know why. Just white-list them.
572 if (isa
<ConstantPointerNull
>(L
) || isa
<UndefValue
>(L
) || isa
<ConstantAggregateZero
>(L
))
575 // Block addresses only match if we've already encountered the
576 // block. FIXME: tentative matches?
577 if (isa
<BlockAddress
>(L
))
578 return Blocks
[cast
<BlockAddress
>(L
)->getBasicBlock()]
579 == cast
<BlockAddress
>(R
)->getBasicBlock();
581 // If L and R are ConstantVectors, compare each element
582 if (isa
<ConstantVector
>(L
)) {
583 const ConstantVector
*CVL
= cast
<ConstantVector
>(L
);
584 const ConstantVector
*CVR
= cast
<ConstantVector
>(R
);
585 if (CVL
->getType()->getNumElements() != CVR
->getType()->getNumElements())
587 for (unsigned i
= 0; i
< CVL
->getType()->getNumElements(); i
++) {
588 if (!equivalentAsOperands(CVL
->getOperand(i
), CVR
->getOperand(i
), AC
))
594 // If L and R are ConstantArrays, compare the element count and types.
595 if (isa
<ConstantArray
>(L
)) {
596 const ConstantArray
*CAL
= cast
<ConstantArray
>(L
);
597 const ConstantArray
*CAR
= cast
<ConstantArray
>(R
);
598 // Sometimes a type may be equivalent, but not uniquified---e.g. it may
599 // contain a GEP instruction. Do a deeper comparison of the types.
600 if (CAL
->getType()->getNumElements() != CAR
->getType()->getNumElements())
603 for (unsigned I
= 0; I
< CAL
->getType()->getNumElements(); ++I
) {
604 if (!equivalentAsOperands(CAL
->getAggregateElement(I
),
605 CAR
->getAggregateElement(I
), AC
))
612 // If L and R are ConstantStructs, compare each field and type.
613 if (isa
<ConstantStruct
>(L
)) {
614 const ConstantStruct
*CSL
= cast
<ConstantStruct
>(L
);
615 const ConstantStruct
*CSR
= cast
<ConstantStruct
>(R
);
617 const StructType
*LTy
= cast
<StructType
>(CSL
->getType());
618 const StructType
*RTy
= cast
<StructType
>(CSR
->getType());
620 // The StructTypes should have the same attributes. Don't use
621 // isLayoutIdentical(), because that just checks the element pointers,
622 // which may not work here.
623 if (LTy
->getNumElements() != RTy
->getNumElements() ||
624 LTy
->isPacked() != RTy
->isPacked())
627 for (unsigned I
= 0; I
< LTy
->getNumElements(); I
++) {
628 const Value
*LAgg
= CSL
->getAggregateElement(I
);
629 const Value
*RAgg
= CSR
->getAggregateElement(I
);
631 if (LAgg
== SavedLHS
|| RAgg
== SavedRHS
) {
632 if (LAgg
!= SavedLHS
|| RAgg
!= SavedRHS
)
633 // If the left and right operands aren't both re-analyzing the
634 // variable, then the initialiers don't match, so report "false".
635 // Otherwise, we skip these operands..
641 if (!equivalentAsOperands(LAgg
, RAgg
, AC
)) {
652 bool equivalentAsOperands(const ConstantExpr
*L
, const ConstantExpr
*R
,
653 const AssumptionContext
*AC
) {
657 if (L
->getOpcode() != R
->getOpcode())
660 switch (L
->getOpcode()) {
661 case Instruction::GetElementPtr
:
669 if (L
->getNumOperands() != R
->getNumOperands())
672 for (unsigned I
= 0, E
= L
->getNumOperands(); I
!= E
; ++I
) {
673 const auto *LOp
= L
->getOperand(I
);
674 const auto *ROp
= R
->getOperand(I
);
676 if (LOp
== SavedLHS
|| ROp
== SavedRHS
) {
677 if (LOp
!= SavedLHS
|| ROp
!= SavedRHS
)
678 // If the left and right operands aren't both re-analyzing the
679 // variable, then the initialiers don't match, so report "false".
680 // Otherwise, we skip these operands..
686 if (!equivalentAsOperands(LOp
, ROp
, AC
))
693 // There are cases where we cannot determine whether two values are
694 // equivalent, because it depends on not yet processed basic blocks -- see the
695 // documentation on assumptions.
697 // AC is the context in which we are currently performing a diff.
698 // When we encounter a pair of values for which we can neither prove
699 // equivalence nor the opposite, we do the following:
700 // * If AC is nullptr, we treat the pair as non-equivalent.
701 // * If AC is set, we add an assumption for the basic blocks given by AC,
702 // and treat the pair as equivalent. The assumption is checked later.
703 bool equivalentAsOperands(const Value
*L
, const Value
*R
,
704 const AssumptionContext
*AC
) {
705 // Fall out if the values have different kind.
706 // This possibly shouldn't take priority over oracles.
707 if (L
->getValueID() != R
->getValueID())
710 // Value subtypes: Argument, Constant, Instruction, BasicBlock,
711 // InlineAsm, MDNode, MDString, PseudoSourceValue
713 if (isa
<Constant
>(L
))
714 return equivalentAsOperands(cast
<Constant
>(L
), cast
<Constant
>(R
), AC
);
716 if (isa
<Instruction
>(L
)) {
717 auto It
= Values
.find(L
);
718 if (It
!= Values
.end())
719 return It
->second
== R
;
721 if (TentativeValues
.count(std::make_pair(L
, R
)))
724 // L and R might be equivalent, this could depend on not yet processed
725 // basic blocks, so we cannot decide here.
727 // Add an assumption, unless there is a conflict with an existing one
728 BlockDiffCandidate
&BDC
=
729 getOrCreateBlockDiffCandidate(AC
->LBB
, AC
->RBB
);
730 auto InsertionResult
= BDC
.EquivalenceAssumptions
.insert({L
, R
});
731 if (!InsertionResult
.second
&& InsertionResult
.first
->second
!= R
) {
732 // We already have a conflicting equivalence assumption for L, so at
733 // least one must be wrong, and we know that there is a diff.
734 BDC
.KnownToDiffer
= true;
735 BDC
.EquivalenceAssumptions
.clear();
738 // Optimistically assume equivalence, and check later once all BBs
739 // have been processed.
743 // Assumptions disabled, so pessimistically assume non-equivalence.
747 if (isa
<Argument
>(L
))
748 return Values
[L
] == R
;
750 if (isa
<BasicBlock
>(L
))
751 return Blocks
[cast
<BasicBlock
>(L
)] != R
;
753 // Pretend everything else is identical.
757 // Avoid a gcc warning about accessing 'this' in an initializer.
758 FunctionDifferenceEngine
*this_() { return this; }
761 FunctionDifferenceEngine(DifferenceEngine
&Engine
,
762 const Value
*SavedLHS
= nullptr,
763 const Value
*SavedRHS
= nullptr)
764 : Engine(Engine
), SavedLHS(SavedLHS
), SavedRHS(SavedRHS
),
765 Queue(QueueSorter(*this_())) {}
767 void diff(const Function
*L
, const Function
*R
) {
768 assert(Values
.empty() && "Multiple diffs per engine are not supported!");
770 if (L
->arg_size() != R
->arg_size())
771 Engine
.log("different argument counts");
773 // Map the arguments.
774 for (Function::const_arg_iterator LI
= L
->arg_begin(), LE
= L
->arg_end(),
775 RI
= R
->arg_begin(), RE
= R
->arg_end();
776 LI
!= LE
&& RI
!= RE
; ++LI
, ++RI
)
779 tryUnify(&*L
->begin(), &*R
->begin());
781 checkAndReportDiffCandidates();
786 DiffEntry() = default;
789 llvm::SmallVector
<char, 8> Path
; // actually of DifferenceEngine::DiffChange
792 bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction
*L
,
793 const Instruction
*R
) {
794 return !diff(L
, R
, false, false, false);
797 void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart
,
798 BasicBlock::const_iterator RStart
) {
799 BasicBlock::const_iterator LE
= LStart
->getParent()->end();
800 BasicBlock::const_iterator RE
= RStart
->getParent()->end();
802 unsigned NL
= std::distance(LStart
, LE
);
804 SmallVector
<DiffEntry
, 20> Paths1(NL
+1);
805 SmallVector
<DiffEntry
, 20> Paths2(NL
+1);
807 DiffEntry
*Cur
= Paths1
.data();
808 DiffEntry
*Next
= Paths2
.data();
810 const unsigned LeftCost
= 2;
811 const unsigned RightCost
= 2;
812 const unsigned MatchCost
= 0;
814 assert(TentativeValues
.empty());
816 // Initialize the first column.
817 for (unsigned I
= 0; I
!= NL
+1; ++I
) {
818 Cur
[I
].Cost
= I
* LeftCost
;
819 for (unsigned J
= 0; J
!= I
; ++J
)
820 Cur
[I
].Path
.push_back(DC_left
);
823 for (BasicBlock::const_iterator RI
= RStart
; RI
!= RE
; ++RI
) {
824 // Initialize the first row.
826 Next
[0].Cost
+= RightCost
;
827 Next
[0].Path
.push_back(DC_right
);
830 for (BasicBlock::const_iterator LI
= LStart
; LI
!= LE
; ++LI
, ++Index
) {
831 if (matchForBlockDiff(&*LI
, &*RI
)) {
832 Next
[Index
] = Cur
[Index
-1];
833 Next
[Index
].Cost
+= MatchCost
;
834 Next
[Index
].Path
.push_back(DC_match
);
835 TentativeValues
.insert(std::make_pair(&*LI
, &*RI
));
836 } else if (Next
[Index
-1].Cost
<= Cur
[Index
].Cost
) {
837 Next
[Index
] = Next
[Index
-1];
838 Next
[Index
].Cost
+= LeftCost
;
839 Next
[Index
].Path
.push_back(DC_left
);
841 Next
[Index
] = Cur
[Index
];
842 Next
[Index
].Cost
+= RightCost
;
843 Next
[Index
].Path
.push_back(DC_right
);
847 std::swap(Cur
, Next
);
850 // We don't need the tentative values anymore; everything from here
851 // on out should be non-tentative.
852 TentativeValues
.clear();
854 SmallVectorImpl
<char> &Path
= Cur
[NL
].Path
;
855 BasicBlock::const_iterator LI
= LStart
, RI
= RStart
;
857 DiffLogBuilder
Diff(Engine
.getConsumer());
859 // Drop trailing matches.
860 while (Path
.size() && Path
.back() == DC_match
)
863 // Skip leading matches.
864 SmallVectorImpl
<char>::iterator
865 PI
= Path
.begin(), PE
= Path
.end();
866 while (PI
!= PE
&& *PI
== DC_match
) {
873 for (; PI
!= PE
; ++PI
) {
874 switch (static_cast<DiffChange
>(*PI
)) {
876 assert(LI
!= LE
&& RI
!= RE
);
878 const Instruction
*L
= &*LI
, *R
= &*RI
;
899 // Finishing unifying and complaining about the tails of the block,
900 // which should be matches all the way through.
908 // If the terminators have different kinds, but one is an invoke and the
909 // other is an unconditional branch immediately following a call, unify
910 // the results and the destinations.
911 const Instruction
*LTerm
= LStart
->getParent()->getTerminator();
912 const Instruction
*RTerm
= RStart
->getParent()->getTerminator();
913 if (isa
<BranchInst
>(LTerm
) && isa
<InvokeInst
>(RTerm
)) {
914 if (cast
<BranchInst
>(LTerm
)->isConditional()) return;
915 BasicBlock::const_iterator I
= LTerm
->getIterator();
916 if (I
== LStart
->getParent()->begin()) return;
918 if (!isa
<CallInst
>(*I
)) return;
919 const CallInst
*LCall
= cast
<CallInst
>(&*I
);
920 const InvokeInst
*RInvoke
= cast
<InvokeInst
>(RTerm
);
921 if (!equivalentAsOperands(LCall
->getCalledOperand(),
922 RInvoke
->getCalledOperand(), nullptr))
924 if (!LCall
->use_empty())
925 Values
[LCall
] = RInvoke
;
926 tryUnify(LTerm
->getSuccessor(0), RInvoke
->getNormalDest());
927 } else if (isa
<InvokeInst
>(LTerm
) && isa
<BranchInst
>(RTerm
)) {
928 if (cast
<BranchInst
>(RTerm
)->isConditional()) return;
929 BasicBlock::const_iterator I
= RTerm
->getIterator();
930 if (I
== RStart
->getParent()->begin()) return;
932 if (!isa
<CallInst
>(*I
)) return;
933 const CallInst
*RCall
= cast
<CallInst
>(I
);
934 const InvokeInst
*LInvoke
= cast
<InvokeInst
>(LTerm
);
935 if (!equivalentAsOperands(LInvoke
->getCalledOperand(),
936 RCall
->getCalledOperand(), nullptr))
938 if (!LInvoke
->use_empty())
939 Values
[LInvoke
] = RCall
;
940 tryUnify(LInvoke
->getNormalDest(), RTerm
->getSuccessor(0));
945 void DifferenceEngine::Oracle::anchor() { }
947 void DifferenceEngine::diff(const Function
*L
, const Function
*R
) {
948 Context
C(*this, L
, R
);
951 // FIXME: attributes and CC
952 // FIXME: parameter attributes
954 // If both are declarations, we're done.
955 if (L
->empty() && R
->empty())
958 log("left function is declaration, right function is definition");
960 log("right function is declaration, left function is definition");
962 FunctionDifferenceEngine(*this).diff(L
, R
);
965 void DifferenceEngine::diff(const Module
*L
, const Module
*R
) {
967 SmallVector
<std::pair
<const Function
*, const Function
*>, 20> Queue
;
969 unsigned LeftAnonCount
= 0;
970 unsigned RightAnonCount
= 0;
972 for (Module::const_iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
) {
973 const Function
*LFn
= &*I
;
974 StringRef Name
= LFn
->getName();
982 if (Function
*RFn
= R
->getFunction(LFn
->getName()))
983 Queue
.push_back(std::make_pair(LFn
, RFn
));
985 logf("function %l exists only in left module") << LFn
;
988 for (Module::const_iterator I
= R
->begin(), E
= R
->end(); I
!= E
; ++I
) {
989 const Function
*RFn
= &*I
;
990 StringRef Name
= RFn
->getName();
996 if (!LNames
.count(Name
))
997 logf("function %r exists only in right module") << RFn
;
1000 if (LeftAnonCount
!= 0 || RightAnonCount
!= 0) {
1001 SmallString
<32> Tmp
;
1002 logf(("not comparing " + Twine(LeftAnonCount
) +
1003 " anonymous functions in the left module and " +
1004 Twine(RightAnonCount
) + " in the right module")
1008 for (SmallVectorImpl
<std::pair
<const Function
*, const Function
*>>::iterator
1012 diff(I
->first
, I
->second
);
1015 bool DifferenceEngine::equivalentAsOperands(const GlobalValue
*L
,
1016 const GlobalValue
*R
) {
1017 if (globalValueOracle
) return (*globalValueOracle
)(L
, R
);
1019 if (isa
<GlobalVariable
>(L
) && isa
<GlobalVariable
>(R
)) {
1020 const GlobalVariable
*GVL
= cast
<GlobalVariable
>(L
);
1021 const GlobalVariable
*GVR
= cast
<GlobalVariable
>(R
);
1022 if (GVL
->hasLocalLinkage() && GVL
->hasUniqueInitializer() &&
1023 GVR
->hasLocalLinkage() && GVR
->hasUniqueInitializer())
1024 return FunctionDifferenceEngine(*this, GVL
, GVR
)
1025 .equivalentAsOperands(GVL
->getInitializer(), GVR
->getInitializer(),
1029 return L
->getName() == R
->getName();