1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the ELF-specific dumper for llvm-readobj.
12 //===----------------------------------------------------------------------===//
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
32 #include "llvm/BinaryFormat/ELF.h"
33 #include "llvm/BinaryFormat/MsgPackDocument.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/Archive.h"
36 #include "llvm/Object/ELF.h"
37 #include "llvm/Object/ELFObjectFile.h"
38 #include "llvm/Object/ELFTypes.h"
39 #include "llvm/Object/Error.h"
40 #include "llvm/Object/ObjectFile.h"
41 #include "llvm/Object/RelocationResolver.h"
42 #include "llvm/Object/StackMapParser.h"
43 #include "llvm/Support/AMDGPUMetadata.h"
44 #include "llvm/Support/ARMAttributeParser.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Endian.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LEB128.h"
54 #include "llvm/Support/MSP430AttributeParser.h"
55 #include "llvm/Support/MSP430Attributes.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/MipsABIFlags.h"
58 #include "llvm/Support/RISCVAttributeParser.h"
59 #include "llvm/Support/RISCVAttributes.h"
60 #include "llvm/Support/ScopedPrinter.h"
61 #include "llvm/Support/raw_ostream.h"
71 #include <system_error>
75 using namespace llvm::object
;
78 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
82 #define ENUM_ENT(enum, altName) \
83 { #enum, altName, ELF::enum }
85 #define ENUM_ENT_1(enum) \
86 { #enum, #enum, ELF::enum }
90 template <class ELFT
> struct RelSymbol
{
91 RelSymbol(const typename
ELFT::Sym
*S
, StringRef N
)
92 : Sym(S
), Name(N
.str()) {}
93 const typename
ELFT::Sym
*Sym
;
97 /// Represents a contiguous uniform range in the file. We cannot just create a
98 /// range directly because when creating one of these from the .dynamic table
99 /// the size, entity size and virtual address are different entries in arbitrary
100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101 struct DynRegionInfo
{
102 DynRegionInfo(const Binary
&Owner
, const ObjDumper
&D
)
103 : Obj(&Owner
), Dumper(&D
) {}
104 DynRegionInfo(const Binary
&Owner
, const ObjDumper
&D
, const uint8_t *A
,
105 uint64_t S
, uint64_t ES
)
106 : Addr(A
), Size(S
), EntSize(ES
), Obj(&Owner
), Dumper(&D
) {}
108 /// Address in current address space.
109 const uint8_t *Addr
= nullptr;
110 /// Size in bytes of the region.
112 /// Size of each entity in the region.
113 uint64_t EntSize
= 0;
115 /// Owner object. Used for error reporting.
117 /// Dumper used for error reporting.
118 const ObjDumper
*Dumper
;
119 /// Error prefix. Used for error reporting to provide more information.
121 /// Region size name. Used for error reporting.
122 StringRef SizePrintName
= "size";
123 /// Entry size name. Used for error reporting. If this field is empty, errors
124 /// will not mention the entry size.
125 StringRef EntSizePrintName
= "entry size";
127 template <typename Type
> ArrayRef
<Type
> getAsArrayRef() const {
128 const Type
*Start
= reinterpret_cast<const Type
*>(Addr
);
130 return {Start
, Start
};
132 const uint64_t Offset
=
133 Addr
- (const uint8_t *)Obj
->getMemoryBufferRef().getBufferStart();
134 const uint64_t ObjSize
= Obj
->getMemoryBufferRef().getBufferSize();
136 if (Size
> ObjSize
- Offset
) {
137 Dumper
->reportUniqueWarning(
138 "unable to read data at 0x" + Twine::utohexstr(Offset
) +
139 " of size 0x" + Twine::utohexstr(Size
) + " (" + SizePrintName
+
140 "): it goes past the end of the file of size 0x" +
141 Twine::utohexstr(ObjSize
));
142 return {Start
, Start
};
145 if (EntSize
== sizeof(Type
) && (Size
% EntSize
== 0))
146 return {Start
, Start
+ (Size
/ EntSize
)};
149 if (!Context
.empty())
150 Msg
+= Context
+ " has ";
152 Msg
+= ("invalid " + SizePrintName
+ " (0x" + Twine::utohexstr(Size
) + ")")
154 if (!EntSizePrintName
.empty())
156 (" or " + EntSizePrintName
+ " (0x" + Twine::utohexstr(EntSize
) + ")")
159 Dumper
->reportUniqueWarning(Msg
);
160 return {Start
, Start
};
169 struct GroupSection
{
171 std::string Signature
;
177 std::vector
<GroupMember
> Members
;
189 template <class ELFT
> class Relocation
{
191 Relocation(const typename
ELFT::Rel
&R
, bool IsMips64EL
)
192 : Type(R
.getType(IsMips64EL
)), Symbol(R
.getSymbol(IsMips64EL
)),
193 Offset(R
.r_offset
), Info(R
.r_info
) {}
195 Relocation(const typename
ELFT::Rela
&R
, bool IsMips64EL
)
196 : Relocation((const typename
ELFT::Rel
&)R
, IsMips64EL
) {
202 typename
ELFT::uint Offset
;
203 typename
ELFT::uint Info
;
204 std::optional
<int64_t> Addend
;
207 template <class ELFT
> class MipsGOTParser
;
209 template <typename ELFT
> class ELFDumper
: public ObjDumper
{
210 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
213 ELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
);
215 void printUnwindInfo() override
;
216 void printNeededLibraries() override
;
217 void printHashTable() override
;
218 void printGnuHashTable() override
;
219 void printLoadName() override
;
220 void printVersionInfo() override
;
221 void printArchSpecificInfo() override
;
222 void printStackMap() const override
;
223 void printMemtag() override
;
224 ArrayRef
<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr
);
226 // Hash histogram shows statistics of how efficient the hash was for the
227 // dynamic symbol table. The table shows the number of hash buckets for
228 // different lengths of chains as an absolute number and percentage of the
229 // total buckets, and the cumulative coverage of symbols for each set of
231 void printHashHistograms() override
;
233 const object::ELFObjectFile
<ELFT
> &getElfObject() const { return ObjF
; };
235 std::string
describe(const Elf_Shdr
&Sec
) const;
237 unsigned getHashTableEntSize() const {
238 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
239 // sections. This violates the ELF specification.
240 if (Obj
.getHeader().e_machine
== ELF::EM_S390
||
241 Obj
.getHeader().e_machine
== ELF::EM_ALPHA
)
246 std::vector
<EnumEntry
<unsigned>>
247 getOtherFlagsFromSymbol(const Elf_Ehdr
&Header
, const Elf_Sym
&Symbol
) const;
249 Elf_Dyn_Range
dynamic_table() const {
250 // A valid .dynamic section contains an array of entries terminated
251 // with a DT_NULL entry. However, sometimes the section content may
252 // continue past the DT_NULL entry, so to dump the section correctly,
253 // we first find the end of the entries by iterating over them.
254 Elf_Dyn_Range Table
= DynamicTable
.template getAsArrayRef
<Elf_Dyn
>();
257 while (Size
< Table
.size())
258 if (Table
[Size
++].getTag() == DT_NULL
)
261 return Table
.slice(0, Size
);
264 Elf_Sym_Range
dynamic_symbols() const {
266 return Elf_Sym_Range();
267 return DynSymRegion
->template getAsArrayRef
<Elf_Sym
>();
270 const Elf_Shdr
*findSectionByName(StringRef Name
) const;
272 StringRef
getDynamicStringTable() const { return DynamicStringTable
; }
275 virtual void printVersionSymbolSection(const Elf_Shdr
*Sec
) = 0;
276 virtual void printVersionDefinitionSection(const Elf_Shdr
*Sec
) = 0;
277 virtual void printVersionDependencySection(const Elf_Shdr
*Sec
) = 0;
280 printDependentLibsHelper(function_ref
<void(const Elf_Shdr
&)> OnSectionStart
,
281 function_ref
<void(StringRef
, uint64_t)> OnLibEntry
);
283 virtual void printRelRelaReloc(const Relocation
<ELFT
> &R
,
284 const RelSymbol
<ELFT
> &RelSym
) = 0;
285 virtual void printRelrReloc(const Elf_Relr
&R
) = 0;
286 virtual void printDynamicRelocHeader(unsigned Type
, StringRef Name
,
287 const DynRegionInfo
&Reg
) {}
288 void printReloc(const Relocation
<ELFT
> &R
, unsigned RelIndex
,
289 const Elf_Shdr
&Sec
, const Elf_Shdr
*SymTab
);
290 void printDynamicReloc(const Relocation
<ELFT
> &R
);
291 void printDynamicRelocationsHelper();
292 void printRelocationsHelper(const Elf_Shdr
&Sec
);
293 void forEachRelocationDo(
294 const Elf_Shdr
&Sec
, bool RawRelr
,
295 llvm::function_ref
<void(const Relocation
<ELFT
> &, unsigned,
296 const Elf_Shdr
&, const Elf_Shdr
*)>
298 llvm::function_ref
<void(const Elf_Relr
&)> RelrFn
);
300 virtual void printSymtabMessage(const Elf_Shdr
*Symtab
, size_t Offset
,
301 bool NonVisibilityBitsUsed
) const {};
302 virtual void printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
303 DataRegion
<Elf_Word
> ShndxTable
,
304 std::optional
<StringRef
> StrTable
, bool IsDynamic
,
305 bool NonVisibilityBitsUsed
) const = 0;
307 virtual void printMipsABIFlags() = 0;
308 virtual void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
309 virtual void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
311 virtual void printMemtag(
312 const ArrayRef
<std::pair
<std::string
, std::string
>> DynamicEntries
,
313 const ArrayRef
<uint8_t> AndroidNoteDesc
,
314 const ArrayRef
<std::pair
<uint64_t, uint64_t>> Descriptors
) = 0;
316 virtual void printHashHistogram(const Elf_Hash
&HashTable
) const;
317 virtual void printGnuHashHistogram(const Elf_GnuHash
&GnuHashTable
) const;
318 virtual void printHashHistogramStats(size_t NBucket
, size_t MaxChain
,
319 size_t TotalSyms
, ArrayRef
<size_t> Count
,
320 bool IsGnu
) const = 0;
322 Expected
<ArrayRef
<Elf_Versym
>>
323 getVersionTable(const Elf_Shdr
&Sec
, ArrayRef
<Elf_Sym
> *SymTab
,
324 StringRef
*StrTab
, const Elf_Shdr
**SymTabSec
) const;
325 StringRef
getPrintableSectionName(const Elf_Shdr
&Sec
) const;
327 std::vector
<GroupSection
> getGroups();
329 // Returns the function symbol index for the given address. Matches the
330 // symbol's section with FunctionSec when specified.
331 // Returns std::nullopt if no function symbol can be found for the address or
332 // in case it is not defined in the specified section.
333 SmallVector
<uint32_t> getSymbolIndexesForFunctionAddress(
334 uint64_t SymValue
, std::optional
<const Elf_Shdr
*> FunctionSec
);
335 bool printFunctionStackSize(uint64_t SymValue
,
336 std::optional
<const Elf_Shdr
*> FunctionSec
,
337 const Elf_Shdr
&StackSizeSec
, DataExtractor Data
,
339 void printStackSize(const Relocation
<ELFT
> &R
, const Elf_Shdr
&RelocSec
,
340 unsigned Ndx
, const Elf_Shdr
*SymTab
,
341 const Elf_Shdr
*FunctionSec
, const Elf_Shdr
&StackSizeSec
,
342 const RelocationResolver
&Resolver
, DataExtractor Data
);
343 virtual void printStackSizeEntry(uint64_t Size
,
344 ArrayRef
<std::string
> FuncNames
) = 0;
346 void printRelocatableStackSizes(std::function
<void()> PrintHeader
);
347 void printNonRelocatableStackSizes(std::function
<void()> PrintHeader
);
349 const object::ELFObjectFile
<ELFT
> &ObjF
;
350 const ELFFile
<ELFT
> &Obj
;
353 Expected
<DynRegionInfo
> createDRI(uint64_t Offset
, uint64_t Size
,
355 if (Offset
+ Size
< Offset
|| Offset
+ Size
> Obj
.getBufSize())
356 return createError("offset (0x" + Twine::utohexstr(Offset
) +
357 ") + size (0x" + Twine::utohexstr(Size
) +
358 ") is greater than the file size (0x" +
359 Twine::utohexstr(Obj
.getBufSize()) + ")");
360 return DynRegionInfo(ObjF
, *this, Obj
.base() + Offset
, Size
, EntSize
);
363 void printAttributes(unsigned, std::unique_ptr
<ELFAttributeParser
>,
364 support::endianness
);
365 void printMipsReginfo();
366 void printMipsOptions();
368 std::pair
<const Elf_Phdr
*, const Elf_Shdr
*> findDynamic();
369 void loadDynamicTable();
370 void parseDynamicTable();
372 Expected
<StringRef
> getSymbolVersion(const Elf_Sym
&Sym
,
373 bool &IsDefault
) const;
374 Expected
<SmallVector
<std::optional
<VersionEntry
>, 0> *> getVersionMap() const;
376 DynRegionInfo DynRelRegion
;
377 DynRegionInfo DynRelaRegion
;
378 DynRegionInfo DynRelrRegion
;
379 DynRegionInfo DynPLTRelRegion
;
380 std::optional
<DynRegionInfo
> DynSymRegion
;
381 DynRegionInfo DynSymTabShndxRegion
;
382 DynRegionInfo DynamicTable
;
383 StringRef DynamicStringTable
;
384 const Elf_Hash
*HashTable
= nullptr;
385 const Elf_GnuHash
*GnuHashTable
= nullptr;
386 const Elf_Shdr
*DotSymtabSec
= nullptr;
387 const Elf_Shdr
*DotDynsymSec
= nullptr;
388 const Elf_Shdr
*DotAddrsigSec
= nullptr;
389 DenseMap
<const Elf_Shdr
*, ArrayRef
<Elf_Word
>> ShndxTables
;
390 std::optional
<uint64_t> SONameOffset
;
391 std::optional
<DenseMap
<uint64_t, std::vector
<uint32_t>>> AddressToIndexMap
;
393 const Elf_Shdr
*SymbolVersionSection
= nullptr; // .gnu.version
394 const Elf_Shdr
*SymbolVersionNeedSection
= nullptr; // .gnu.version_r
395 const Elf_Shdr
*SymbolVersionDefSection
= nullptr; // .gnu.version_d
397 std::string
getFullSymbolName(const Elf_Sym
&Symbol
, unsigned SymIndex
,
398 DataRegion
<Elf_Word
> ShndxTable
,
399 std::optional
<StringRef
> StrTable
,
400 bool IsDynamic
) const;
402 getSymbolSectionIndex(const Elf_Sym
&Symbol
, unsigned SymIndex
,
403 DataRegion
<Elf_Word
> ShndxTable
) const;
404 Expected
<StringRef
> getSymbolSectionName(const Elf_Sym
&Symbol
,
405 unsigned SectionIndex
) const;
406 std::string
getStaticSymbolName(uint32_t Index
) const;
407 StringRef
getDynamicString(uint64_t Value
) const;
409 void printSymbolsHelper(bool IsDynamic
) const;
410 std::string
getDynamicEntry(uint64_t Type
, uint64_t Value
) const;
412 Expected
<RelSymbol
<ELFT
>> getRelocationTarget(const Relocation
<ELFT
> &R
,
413 const Elf_Shdr
*SymTab
) const;
415 ArrayRef
<Elf_Word
> getShndxTable(const Elf_Shdr
*Symtab
) const;
418 mutable SmallVector
<std::optional
<VersionEntry
>, 0> VersionMap
;
421 template <class ELFT
>
422 std::string ELFDumper
<ELFT
>::describe(const Elf_Shdr
&Sec
) const {
423 return ::describe(Obj
, Sec
);
428 template <class ELFT
> struct SymtabLink
{
429 typename
ELFT::SymRange Symbols
;
430 StringRef StringTable
;
431 const typename
ELFT::Shdr
*SymTab
;
434 // Returns the linked symbol table, symbols and associated string table for a
436 template <class ELFT
>
437 Expected
<SymtabLink
<ELFT
>> getLinkAsSymtab(const ELFFile
<ELFT
> &Obj
,
438 const typename
ELFT::Shdr
&Sec
,
439 unsigned ExpectedType
) {
440 Expected
<const typename
ELFT::Shdr
*> SymtabOrErr
=
441 Obj
.getSection(Sec
.sh_link
);
443 return createError("invalid section linked to " + describe(Obj
, Sec
) +
444 ": " + toString(SymtabOrErr
.takeError()));
446 if ((*SymtabOrErr
)->sh_type
!= ExpectedType
)
448 "invalid section linked to " + describe(Obj
, Sec
) + ": expected " +
449 object::getELFSectionTypeName(Obj
.getHeader().e_machine
, ExpectedType
) +
451 object::getELFSectionTypeName(Obj
.getHeader().e_machine
,
452 (*SymtabOrErr
)->sh_type
));
454 Expected
<StringRef
> StrTabOrErr
= Obj
.getLinkAsStrtab(**SymtabOrErr
);
457 "can't get a string table for the symbol table linked to " +
458 describe(Obj
, Sec
) + ": " + toString(StrTabOrErr
.takeError()));
460 Expected
<typename
ELFT::SymRange
> SymsOrErr
= Obj
.symbols(*SymtabOrErr
);
462 return createError("unable to read symbols from the " + describe(Obj
, Sec
) +
463 ": " + toString(SymsOrErr
.takeError()));
465 return SymtabLink
<ELFT
>{*SymsOrErr
, *StrTabOrErr
, *SymtabOrErr
};
470 template <class ELFT
>
471 Expected
<ArrayRef
<typename
ELFT::Versym
>>
472 ELFDumper
<ELFT
>::getVersionTable(const Elf_Shdr
&Sec
, ArrayRef
<Elf_Sym
> *SymTab
,
474 const Elf_Shdr
**SymTabSec
) const {
475 assert((!SymTab
&& !StrTab
&& !SymTabSec
) || (SymTab
&& StrTab
&& SymTabSec
));
476 if (reinterpret_cast<uintptr_t>(Obj
.base() + Sec
.sh_offset
) %
479 return createError("the " + describe(Sec
) + " is misaligned");
481 Expected
<ArrayRef
<Elf_Versym
>> VersionsOrErr
=
482 Obj
.template getSectionContentsAsArray
<Elf_Versym
>(Sec
);
484 return createError("cannot read content of " + describe(Sec
) + ": " +
485 toString(VersionsOrErr
.takeError()));
487 Expected
<SymtabLink
<ELFT
>> SymTabOrErr
=
488 getLinkAsSymtab(Obj
, Sec
, SHT_DYNSYM
);
490 reportUniqueWarning(SymTabOrErr
.takeError());
491 return *VersionsOrErr
;
494 if (SymTabOrErr
->Symbols
.size() != VersionsOrErr
->size())
495 reportUniqueWarning(describe(Sec
) + ": the number of entries (" +
496 Twine(VersionsOrErr
->size()) +
497 ") does not match the number of symbols (" +
498 Twine(SymTabOrErr
->Symbols
.size()) +
499 ") in the symbol table with index " +
503 *SymTab
= SymTabOrErr
->Symbols
;
504 *StrTab
= SymTabOrErr
->StringTable
;
505 *SymTabSec
= SymTabOrErr
->SymTab
;
507 return *VersionsOrErr
;
510 template <class ELFT
>
511 void ELFDumper
<ELFT
>::printSymbolsHelper(bool IsDynamic
) const {
512 std::optional
<StringRef
> StrTable
;
514 Elf_Sym_Range
Syms(nullptr, nullptr);
515 const Elf_Shdr
*SymtabSec
= IsDynamic
? DotDynsymSec
: DotSymtabSec
;
518 StrTable
= DynamicStringTable
;
519 Syms
= dynamic_symbols();
520 Entries
= Syms
.size();
521 } else if (DotSymtabSec
) {
522 if (Expected
<StringRef
> StrTableOrErr
=
523 Obj
.getStringTableForSymtab(*DotSymtabSec
))
524 StrTable
= *StrTableOrErr
;
527 "unable to get the string table for the SHT_SYMTAB section: " +
528 toString(StrTableOrErr
.takeError()));
530 if (Expected
<Elf_Sym_Range
> SymsOrErr
= Obj
.symbols(DotSymtabSec
))
534 "unable to read symbols from the SHT_SYMTAB section: " +
535 toString(SymsOrErr
.takeError()));
536 Entries
= DotSymtabSec
->getEntityCount();
541 // The st_other field has 2 logical parts. The first two bits hold the symbol
542 // visibility (STV_*) and the remainder hold other platform-specific values.
543 bool NonVisibilityBitsUsed
=
544 llvm::any_of(Syms
, [](const Elf_Sym
&S
) { return S
.st_other
& ~0x3; });
546 DataRegion
<Elf_Word
> ShndxTable
=
547 IsDynamic
? DataRegion
<Elf_Word
>(
548 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
,
549 this->getElfObject().getELFFile().end())
550 : DataRegion
<Elf_Word
>(this->getShndxTable(SymtabSec
));
552 printSymtabMessage(SymtabSec
, Entries
, NonVisibilityBitsUsed
);
553 for (const Elf_Sym
&Sym
: Syms
)
554 printSymbol(Sym
, &Sym
- Syms
.begin(), ShndxTable
, StrTable
, IsDynamic
,
555 NonVisibilityBitsUsed
);
558 template <typename ELFT
> class GNUELFDumper
: public ELFDumper
<ELFT
> {
559 formatted_raw_ostream
&OS
;
562 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
564 GNUELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
)
565 : ELFDumper
<ELFT
>(ObjF
, Writer
),
566 OS(static_cast<formatted_raw_ostream
&>(Writer
.getOStream())) {
567 assert(&this->W
.getOStream() == &llvm::fouts());
570 void printFileSummary(StringRef FileStr
, ObjectFile
&Obj
,
571 ArrayRef
<std::string
> InputFilenames
,
572 const Archive
*A
) override
;
573 void printFileHeaders() override
;
574 void printGroupSections() override
;
575 void printRelocations() override
;
576 void printSectionHeaders() override
;
577 void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
) override
;
578 void printHashSymbols() override
;
579 void printSectionDetails() override
;
580 void printDependentLibs() override
;
581 void printDynamicTable() override
;
582 void printDynamicRelocations() override
;
583 void printSymtabMessage(const Elf_Shdr
*Symtab
, size_t Offset
,
584 bool NonVisibilityBitsUsed
) const override
;
585 void printProgramHeaders(bool PrintProgramHeaders
,
586 cl::boolOrDefault PrintSectionMapping
) override
;
587 void printVersionSymbolSection(const Elf_Shdr
*Sec
) override
;
588 void printVersionDefinitionSection(const Elf_Shdr
*Sec
) override
;
589 void printVersionDependencySection(const Elf_Shdr
*Sec
) override
;
590 void printCGProfile() override
;
591 void printBBAddrMaps() override
;
592 void printAddrsig() override
;
593 void printNotes() override
;
594 void printELFLinkerOptions() override
;
595 void printStackSizes() override
;
597 const ArrayRef
<std::pair
<std::string
, std::string
>> DynamicEntries
,
598 const ArrayRef
<uint8_t> AndroidNoteDesc
,
599 const ArrayRef
<std::pair
<uint64_t, uint64_t>> Descriptors
) override
;
600 void printHashHistogramStats(size_t NBucket
, size_t MaxChain
,
601 size_t TotalSyms
, ArrayRef
<size_t> Count
,
602 bool IsGnu
) const override
;
605 void printHashTableSymbols(const Elf_Hash
&HashTable
);
606 void printGnuHashTableSymbols(const Elf_GnuHash
&GnuHashTable
);
612 Field(StringRef S
, unsigned Col
) : Str(std::string(S
)), Column(Col
) {}
613 Field(unsigned Col
) : Column(Col
) {}
616 template <typename T
, typename TEnum
>
617 std::string
printFlags(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
,
618 TEnum EnumMask1
= {}, TEnum EnumMask2
= {},
619 TEnum EnumMask3
= {}) const {
621 for (const EnumEntry
<TEnum
> &Flag
: EnumValues
) {
626 if (Flag
.Value
& EnumMask1
)
627 EnumMask
= EnumMask1
;
628 else if (Flag
.Value
& EnumMask2
)
629 EnumMask
= EnumMask2
;
630 else if (Flag
.Value
& EnumMask3
)
631 EnumMask
= EnumMask3
;
632 bool IsEnum
= (Flag
.Value
& EnumMask
) != 0;
633 if ((!IsEnum
&& (Value
& Flag
.Value
) == Flag
.Value
) ||
634 (IsEnum
&& (Value
& EnumMask
) == Flag
.Value
)) {
643 formatted_raw_ostream
&printField(struct Field F
) const {
645 OS
.PadToColumn(F
.Column
);
650 void printHashedSymbol(const Elf_Sym
*Sym
, unsigned SymIndex
,
651 DataRegion
<Elf_Word
> ShndxTable
, StringRef StrTable
,
653 void printRelrReloc(const Elf_Relr
&R
) override
;
654 void printRelRelaReloc(const Relocation
<ELFT
> &R
,
655 const RelSymbol
<ELFT
> &RelSym
) override
;
656 void printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
657 DataRegion
<Elf_Word
> ShndxTable
,
658 std::optional
<StringRef
> StrTable
, bool IsDynamic
,
659 bool NonVisibilityBitsUsed
) const override
;
660 void printDynamicRelocHeader(unsigned Type
, StringRef Name
,
661 const DynRegionInfo
&Reg
) override
;
663 std::string
getSymbolSectionNdx(const Elf_Sym
&Symbol
, unsigned SymIndex
,
664 DataRegion
<Elf_Word
> ShndxTable
) const;
665 void printProgramHeaders() override
;
666 void printSectionMapping() override
;
667 void printGNUVersionSectionProlog(const typename
ELFT::Shdr
&Sec
,
668 const Twine
&Label
, unsigned EntriesNum
);
670 void printStackSizeEntry(uint64_t Size
,
671 ArrayRef
<std::string
> FuncNames
) override
;
673 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
674 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
675 void printMipsABIFlags() override
;
678 template <typename ELFT
> class LLVMELFDumper
: public ELFDumper
<ELFT
> {
680 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
682 LLVMELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
)
683 : ELFDumper
<ELFT
>(ObjF
, Writer
), W(Writer
) {}
685 void printFileHeaders() override
;
686 void printGroupSections() override
;
687 void printRelocations() override
;
688 void printSectionHeaders() override
;
689 void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
) override
;
690 void printDependentLibs() override
;
691 void printDynamicTable() override
;
692 void printDynamicRelocations() override
;
693 void printProgramHeaders(bool PrintProgramHeaders
,
694 cl::boolOrDefault PrintSectionMapping
) override
;
695 void printVersionSymbolSection(const Elf_Shdr
*Sec
) override
;
696 void printVersionDefinitionSection(const Elf_Shdr
*Sec
) override
;
697 void printVersionDependencySection(const Elf_Shdr
*Sec
) override
;
698 void printCGProfile() override
;
699 void printBBAddrMaps() override
;
700 void printAddrsig() override
;
701 void printNotes() override
;
702 void printELFLinkerOptions() override
;
703 void printStackSizes() override
;
705 const ArrayRef
<std::pair
<std::string
, std::string
>> DynamicEntries
,
706 const ArrayRef
<uint8_t> AndroidNoteDesc
,
707 const ArrayRef
<std::pair
<uint64_t, uint64_t>> Descriptors
) override
;
708 void printSymbolSection(const Elf_Sym
&Symbol
, unsigned SymIndex
,
709 DataRegion
<Elf_Word
> ShndxTable
) const;
710 void printHashHistogramStats(size_t NBucket
, size_t MaxChain
,
711 size_t TotalSyms
, ArrayRef
<size_t> Count
,
712 bool IsGnu
) const override
;
715 void printRelrReloc(const Elf_Relr
&R
) override
;
716 void printRelRelaReloc(const Relocation
<ELFT
> &R
,
717 const RelSymbol
<ELFT
> &RelSym
) override
;
719 void printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
720 DataRegion
<Elf_Word
> ShndxTable
,
721 std::optional
<StringRef
> StrTable
, bool IsDynamic
,
722 bool /*NonVisibilityBitsUsed*/) const override
;
723 void printProgramHeaders() override
;
724 void printSectionMapping() override
{}
725 void printStackSizeEntry(uint64_t Size
,
726 ArrayRef
<std::string
> FuncNames
) override
;
728 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
729 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
730 void printMipsABIFlags() override
;
731 virtual void printZeroSymbolOtherField(const Elf_Sym
&Symbol
) const;
734 virtual std::string
getGroupSectionHeaderName() const;
735 void printSymbolOtherField(const Elf_Sym
&Symbol
) const;
736 virtual void printExpandedRelRelaReloc(const Relocation
<ELFT
> &R
,
737 StringRef SymbolName
,
738 StringRef RelocName
);
739 virtual void printDefaultRelRelaReloc(const Relocation
<ELFT
> &R
,
740 StringRef SymbolName
,
741 StringRef RelocName
);
742 virtual void printRelocationSectionInfo(const Elf_Shdr
&Sec
, StringRef Name
,
743 const unsigned SecNdx
);
744 virtual void printSectionGroupMembers(StringRef Name
, uint64_t Idx
) const;
745 virtual void printEmptyGroupMessage() const;
750 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
751 // it uses a JSONScopedPrinter.
752 template <typename ELFT
> class JSONELFDumper
: public LLVMELFDumper
<ELFT
> {
754 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
756 JSONELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
)
757 : LLVMELFDumper
<ELFT
>(ObjF
, Writer
) {}
759 std::string
getGroupSectionHeaderName() const override
;
761 void printFileSummary(StringRef FileStr
, ObjectFile
&Obj
,
762 ArrayRef
<std::string
> InputFilenames
,
763 const Archive
*A
) override
;
764 virtual void printZeroSymbolOtherField(const Elf_Sym
&Symbol
) const override
;
766 void printDefaultRelRelaReloc(const Relocation
<ELFT
> &R
,
767 StringRef SymbolName
,
768 StringRef RelocName
) override
;
770 void printRelocationSectionInfo(const Elf_Shdr
&Sec
, StringRef Name
,
771 const unsigned SecNdx
) override
;
773 void printSectionGroupMembers(StringRef Name
, uint64_t Idx
) const override
;
775 void printEmptyGroupMessage() const override
;
778 std::unique_ptr
<DictScope
> FileScope
;
781 } // end anonymous namespace
785 template <class ELFT
>
786 static std::unique_ptr
<ObjDumper
>
787 createELFDumper(const ELFObjectFile
<ELFT
> &Obj
, ScopedPrinter
&Writer
) {
788 if (opts::Output
== opts::GNU
)
789 return std::make_unique
<GNUELFDumper
<ELFT
>>(Obj
, Writer
);
790 else if (opts::Output
== opts::JSON
)
791 return std::make_unique
<JSONELFDumper
<ELFT
>>(Obj
, Writer
);
792 return std::make_unique
<LLVMELFDumper
<ELFT
>>(Obj
, Writer
);
795 std::unique_ptr
<ObjDumper
> createELFDumper(const object::ELFObjectFileBase
&Obj
,
796 ScopedPrinter
&Writer
) {
797 // Little-endian 32-bit
798 if (const ELF32LEObjectFile
*ELFObj
= dyn_cast
<ELF32LEObjectFile
>(&Obj
))
799 return createELFDumper(*ELFObj
, Writer
);
802 if (const ELF32BEObjectFile
*ELFObj
= dyn_cast
<ELF32BEObjectFile
>(&Obj
))
803 return createELFDumper(*ELFObj
, Writer
);
805 // Little-endian 64-bit
806 if (const ELF64LEObjectFile
*ELFObj
= dyn_cast
<ELF64LEObjectFile
>(&Obj
))
807 return createELFDumper(*ELFObj
, Writer
);
810 return createELFDumper(*cast
<ELF64BEObjectFile
>(&Obj
), Writer
);
813 } // end namespace llvm
815 template <class ELFT
>
816 Expected
<SmallVector
<std::optional
<VersionEntry
>, 0> *>
817 ELFDumper
<ELFT
>::getVersionMap() const {
818 // If the VersionMap has already been loaded or if there is no dynamic symtab
819 // or version table, there is nothing to do.
820 if (!VersionMap
.empty() || !DynSymRegion
|| !SymbolVersionSection
)
823 Expected
<SmallVector
<std::optional
<VersionEntry
>, 0>> MapOrErr
=
824 Obj
.loadVersionMap(SymbolVersionNeedSection
, SymbolVersionDefSection
);
826 VersionMap
= *MapOrErr
;
828 return MapOrErr
.takeError();
833 template <typename ELFT
>
834 Expected
<StringRef
> ELFDumper
<ELFT
>::getSymbolVersion(const Elf_Sym
&Sym
,
835 bool &IsDefault
) const {
836 // This is a dynamic symbol. Look in the GNU symbol version table.
837 if (!SymbolVersionSection
) {
843 assert(DynSymRegion
&& "DynSymRegion has not been initialised");
844 // Determine the position in the symbol table of this entry.
845 size_t EntryIndex
= (reinterpret_cast<uintptr_t>(&Sym
) -
846 reinterpret_cast<uintptr_t>(DynSymRegion
->Addr
)) /
849 // Get the corresponding version index entry.
850 Expected
<const Elf_Versym
*> EntryOrErr
=
851 Obj
.template getEntry
<Elf_Versym
>(*SymbolVersionSection
, EntryIndex
);
853 return EntryOrErr
.takeError();
855 unsigned Version
= (*EntryOrErr
)->vs_index
;
856 if (Version
== VER_NDX_LOCAL
|| Version
== VER_NDX_GLOBAL
) {
861 Expected
<SmallVector
<std::optional
<VersionEntry
>, 0> *> MapOrErr
=
864 return MapOrErr
.takeError();
866 return Obj
.getSymbolVersionByIndex(Version
, IsDefault
, **MapOrErr
,
867 Sym
.st_shndx
== ELF::SHN_UNDEF
);
870 template <typename ELFT
>
871 Expected
<RelSymbol
<ELFT
>>
872 ELFDumper
<ELFT
>::getRelocationTarget(const Relocation
<ELFT
> &R
,
873 const Elf_Shdr
*SymTab
) const {
875 return RelSymbol
<ELFT
>(nullptr, "");
877 Expected
<const Elf_Sym
*> SymOrErr
=
878 Obj
.template getEntry
<Elf_Sym
>(*SymTab
, R
.Symbol
);
880 return createError("unable to read an entry with index " + Twine(R
.Symbol
) +
881 " from " + describe(*SymTab
) + ": " +
882 toString(SymOrErr
.takeError()));
883 const Elf_Sym
*Sym
= *SymOrErr
;
885 return RelSymbol
<ELFT
>(nullptr, "");
887 Expected
<StringRef
> StrTableOrErr
= Obj
.getStringTableForSymtab(*SymTab
);
889 return StrTableOrErr
.takeError();
891 const Elf_Sym
*FirstSym
=
892 cantFail(Obj
.template getEntry
<Elf_Sym
>(*SymTab
, 0));
893 std::string SymbolName
=
894 getFullSymbolName(*Sym
, Sym
- FirstSym
, getShndxTable(SymTab
),
895 *StrTableOrErr
, SymTab
->sh_type
== SHT_DYNSYM
);
896 return RelSymbol
<ELFT
>(Sym
, SymbolName
);
899 template <typename ELFT
>
900 ArrayRef
<typename
ELFT::Word
>
901 ELFDumper
<ELFT
>::getShndxTable(const Elf_Shdr
*Symtab
) const {
903 auto It
= ShndxTables
.find(Symtab
);
904 if (It
!= ShndxTables
.end())
910 static std::string
maybeDemangle(StringRef Name
) {
911 return opts::Demangle
? demangle(std::string(Name
)) : Name
.str();
914 template <typename ELFT
>
915 std::string ELFDumper
<ELFT
>::getStaticSymbolName(uint32_t Index
) const {
916 auto Warn
= [&](Error E
) -> std::string
{
917 reportUniqueWarning("unable to read the name of symbol with index " +
918 Twine(Index
) + ": " + toString(std::move(E
)));
922 Expected
<const typename
ELFT::Sym
*> SymOrErr
=
923 Obj
.getSymbol(DotSymtabSec
, Index
);
925 return Warn(SymOrErr
.takeError());
927 Expected
<StringRef
> StrTabOrErr
= Obj
.getStringTableForSymtab(*DotSymtabSec
);
929 return Warn(StrTabOrErr
.takeError());
931 Expected
<StringRef
> NameOrErr
= (*SymOrErr
)->getName(*StrTabOrErr
);
933 return Warn(NameOrErr
.takeError());
934 return maybeDemangle(*NameOrErr
);
937 template <typename ELFT
>
938 std::string ELFDumper
<ELFT
>::getFullSymbolName(
939 const Elf_Sym
&Symbol
, unsigned SymIndex
, DataRegion
<Elf_Word
> ShndxTable
,
940 std::optional
<StringRef
> StrTable
, bool IsDynamic
) const {
944 std::string SymbolName
;
945 if (Expected
<StringRef
> NameOrErr
= Symbol
.getName(*StrTable
)) {
946 SymbolName
= maybeDemangle(*NameOrErr
);
948 reportUniqueWarning(NameOrErr
.takeError());
952 if (SymbolName
.empty() && Symbol
.getType() == ELF::STT_SECTION
) {
953 Expected
<unsigned> SectionIndex
=
954 getSymbolSectionIndex(Symbol
, SymIndex
, ShndxTable
);
956 reportUniqueWarning(SectionIndex
.takeError());
959 Expected
<StringRef
> NameOrErr
= getSymbolSectionName(Symbol
, *SectionIndex
);
961 reportUniqueWarning(NameOrErr
.takeError());
962 return ("<section " + Twine(*SectionIndex
) + ">").str();
964 return std::string(*NameOrErr
);
971 Expected
<StringRef
> VersionOrErr
= getSymbolVersion(Symbol
, IsDefault
);
973 reportUniqueWarning(VersionOrErr
.takeError());
974 return SymbolName
+ "@<corrupt>";
977 if (!VersionOrErr
->empty()) {
978 SymbolName
+= (IsDefault
? "@@" : "@");
979 SymbolName
+= *VersionOrErr
;
984 template <typename ELFT
>
986 ELFDumper
<ELFT
>::getSymbolSectionIndex(const Elf_Sym
&Symbol
, unsigned SymIndex
,
987 DataRegion
<Elf_Word
> ShndxTable
) const {
988 unsigned Ndx
= Symbol
.st_shndx
;
989 if (Ndx
== SHN_XINDEX
)
990 return object::getExtendedSymbolTableIndex
<ELFT
>(Symbol
, SymIndex
,
992 if (Ndx
!= SHN_UNDEF
&& Ndx
< SHN_LORESERVE
)
995 auto CreateErr
= [&](const Twine
&Name
,
996 std::optional
<unsigned> Offset
= std::nullopt
) {
999 Desc
= (Name
+ "+0x" + Twine::utohexstr(*Offset
)).str();
1003 "unable to get section index for symbol with st_shndx = 0x" +
1004 Twine::utohexstr(Ndx
) + " (" + Desc
+ ")");
1007 if (Ndx
>= ELF::SHN_LOPROC
&& Ndx
<= ELF::SHN_HIPROC
)
1008 return CreateErr("SHN_LOPROC", Ndx
- ELF::SHN_LOPROC
);
1009 if (Ndx
>= ELF::SHN_LOOS
&& Ndx
<= ELF::SHN_HIOS
)
1010 return CreateErr("SHN_LOOS", Ndx
- ELF::SHN_LOOS
);
1011 if (Ndx
== ELF::SHN_UNDEF
)
1012 return CreateErr("SHN_UNDEF");
1013 if (Ndx
== ELF::SHN_ABS
)
1014 return CreateErr("SHN_ABS");
1015 if (Ndx
== ELF::SHN_COMMON
)
1016 return CreateErr("SHN_COMMON");
1017 return CreateErr("SHN_LORESERVE", Ndx
- SHN_LORESERVE
);
1020 template <typename ELFT
>
1022 ELFDumper
<ELFT
>::getSymbolSectionName(const Elf_Sym
&Symbol
,
1023 unsigned SectionIndex
) const {
1024 Expected
<const Elf_Shdr
*> SecOrErr
= Obj
.getSection(SectionIndex
);
1026 return SecOrErr
.takeError();
1027 return Obj
.getSectionName(**SecOrErr
);
1030 template <class ELFO
>
1031 static const typename
ELFO::Elf_Shdr
*
1032 findNotEmptySectionByAddress(const ELFO
&Obj
, StringRef FileName
,
1034 for (const typename
ELFO::Elf_Shdr
&Shdr
: cantFail(Obj
.sections()))
1035 if (Shdr
.sh_addr
== Addr
&& Shdr
.sh_size
> 0)
1040 const EnumEntry
<unsigned> ElfClass
[] = {
1041 {"None", "none", ELF::ELFCLASSNONE
},
1042 {"32-bit", "ELF32", ELF::ELFCLASS32
},
1043 {"64-bit", "ELF64", ELF::ELFCLASS64
},
1046 const EnumEntry
<unsigned> ElfDataEncoding
[] = {
1047 {"None", "none", ELF::ELFDATANONE
},
1048 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB
},
1049 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB
},
1052 const EnumEntry
<unsigned> ElfObjectFileType
[] = {
1053 {"None", "NONE (none)", ELF::ET_NONE
},
1054 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL
},
1055 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC
},
1056 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN
},
1057 {"Core", "CORE (Core file)", ELF::ET_CORE
},
1060 const EnumEntry
<unsigned> ElfOSABI
[] = {
1061 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE
},
1062 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX
},
1063 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD
},
1064 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX
},
1065 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD
},
1066 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS
},
1067 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX
},
1068 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX
},
1069 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD
},
1070 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64
},
1071 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO
},
1072 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD
},
1073 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS
},
1074 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK
},
1075 {"AROS", "AROS", ELF::ELFOSABI_AROS
},
1076 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS
},
1077 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI
},
1078 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE
}
1081 const EnumEntry
<unsigned> AMDGPUElfOSABI
[] = {
1082 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA
},
1083 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL
},
1084 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D
}
1087 const EnumEntry
<unsigned> ARMElfOSABI
[] = {
1088 {"ARM", "ARM", ELF::ELFOSABI_ARM
}
1091 const EnumEntry
<unsigned> C6000ElfOSABI
[] = {
1092 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI
},
1093 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX
}
1096 const EnumEntry
<unsigned> ElfMachineType
[] = {
1097 ENUM_ENT(EM_NONE
, "None"),
1098 ENUM_ENT(EM_M32
, "WE32100"),
1099 ENUM_ENT(EM_SPARC
, "Sparc"),
1100 ENUM_ENT(EM_386
, "Intel 80386"),
1101 ENUM_ENT(EM_68K
, "MC68000"),
1102 ENUM_ENT(EM_88K
, "MC88000"),
1103 ENUM_ENT(EM_IAMCU
, "EM_IAMCU"),
1104 ENUM_ENT(EM_860
, "Intel 80860"),
1105 ENUM_ENT(EM_MIPS
, "MIPS R3000"),
1106 ENUM_ENT(EM_S370
, "IBM System/370"),
1107 ENUM_ENT(EM_MIPS_RS3_LE
, "MIPS R3000 little-endian"),
1108 ENUM_ENT(EM_PARISC
, "HPPA"),
1109 ENUM_ENT(EM_VPP500
, "Fujitsu VPP500"),
1110 ENUM_ENT(EM_SPARC32PLUS
, "Sparc v8+"),
1111 ENUM_ENT(EM_960
, "Intel 80960"),
1112 ENUM_ENT(EM_PPC
, "PowerPC"),
1113 ENUM_ENT(EM_PPC64
, "PowerPC64"),
1114 ENUM_ENT(EM_S390
, "IBM S/390"),
1115 ENUM_ENT(EM_SPU
, "SPU"),
1116 ENUM_ENT(EM_V800
, "NEC V800 series"),
1117 ENUM_ENT(EM_FR20
, "Fujistsu FR20"),
1118 ENUM_ENT(EM_RH32
, "TRW RH-32"),
1119 ENUM_ENT(EM_RCE
, "Motorola RCE"),
1120 ENUM_ENT(EM_ARM
, "ARM"),
1121 ENUM_ENT(EM_ALPHA
, "EM_ALPHA"),
1122 ENUM_ENT(EM_SH
, "Hitachi SH"),
1123 ENUM_ENT(EM_SPARCV9
, "Sparc v9"),
1124 ENUM_ENT(EM_TRICORE
, "Siemens Tricore"),
1125 ENUM_ENT(EM_ARC
, "ARC"),
1126 ENUM_ENT(EM_H8_300
, "Hitachi H8/300"),
1127 ENUM_ENT(EM_H8_300H
, "Hitachi H8/300H"),
1128 ENUM_ENT(EM_H8S
, "Hitachi H8S"),
1129 ENUM_ENT(EM_H8_500
, "Hitachi H8/500"),
1130 ENUM_ENT(EM_IA_64
, "Intel IA-64"),
1131 ENUM_ENT(EM_MIPS_X
, "Stanford MIPS-X"),
1132 ENUM_ENT(EM_COLDFIRE
, "Motorola Coldfire"),
1133 ENUM_ENT(EM_68HC12
, "Motorola MC68HC12 Microcontroller"),
1134 ENUM_ENT(EM_MMA
, "Fujitsu Multimedia Accelerator"),
1135 ENUM_ENT(EM_PCP
, "Siemens PCP"),
1136 ENUM_ENT(EM_NCPU
, "Sony nCPU embedded RISC processor"),
1137 ENUM_ENT(EM_NDR1
, "Denso NDR1 microprocesspr"),
1138 ENUM_ENT(EM_STARCORE
, "Motorola Star*Core processor"),
1139 ENUM_ENT(EM_ME16
, "Toyota ME16 processor"),
1140 ENUM_ENT(EM_ST100
, "STMicroelectronics ST100 processor"),
1141 ENUM_ENT(EM_TINYJ
, "Advanced Logic Corp. TinyJ embedded processor"),
1142 ENUM_ENT(EM_X86_64
, "Advanced Micro Devices X86-64"),
1143 ENUM_ENT(EM_PDSP
, "Sony DSP processor"),
1144 ENUM_ENT(EM_PDP10
, "Digital Equipment Corp. PDP-10"),
1145 ENUM_ENT(EM_PDP11
, "Digital Equipment Corp. PDP-11"),
1146 ENUM_ENT(EM_FX66
, "Siemens FX66 microcontroller"),
1147 ENUM_ENT(EM_ST9PLUS
, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1148 ENUM_ENT(EM_ST7
, "STMicroelectronics ST7 8-bit microcontroller"),
1149 ENUM_ENT(EM_68HC16
, "Motorola MC68HC16 Microcontroller"),
1150 ENUM_ENT(EM_68HC11
, "Motorola MC68HC11 Microcontroller"),
1151 ENUM_ENT(EM_68HC08
, "Motorola MC68HC08 Microcontroller"),
1152 ENUM_ENT(EM_68HC05
, "Motorola MC68HC05 Microcontroller"),
1153 ENUM_ENT(EM_SVX
, "Silicon Graphics SVx"),
1154 ENUM_ENT(EM_ST19
, "STMicroelectronics ST19 8-bit microcontroller"),
1155 ENUM_ENT(EM_VAX
, "Digital VAX"),
1156 ENUM_ENT(EM_CRIS
, "Axis Communications 32-bit embedded processor"),
1157 ENUM_ENT(EM_JAVELIN
, "Infineon Technologies 32-bit embedded cpu"),
1158 ENUM_ENT(EM_FIREPATH
, "Element 14 64-bit DSP processor"),
1159 ENUM_ENT(EM_ZSP
, "LSI Logic's 16-bit DSP processor"),
1160 ENUM_ENT(EM_MMIX
, "Donald Knuth's educational 64-bit processor"),
1161 ENUM_ENT(EM_HUANY
, "Harvard Universitys's machine-independent object format"),
1162 ENUM_ENT(EM_PRISM
, "Vitesse Prism"),
1163 ENUM_ENT(EM_AVR
, "Atmel AVR 8-bit microcontroller"),
1164 ENUM_ENT(EM_FR30
, "Fujitsu FR30"),
1165 ENUM_ENT(EM_D10V
, "Mitsubishi D10V"),
1166 ENUM_ENT(EM_D30V
, "Mitsubishi D30V"),
1167 ENUM_ENT(EM_V850
, "NEC v850"),
1168 ENUM_ENT(EM_M32R
, "Renesas M32R (formerly Mitsubishi M32r)"),
1169 ENUM_ENT(EM_MN10300
, "Matsushita MN10300"),
1170 ENUM_ENT(EM_MN10200
, "Matsushita MN10200"),
1171 ENUM_ENT(EM_PJ
, "picoJava"),
1172 ENUM_ENT(EM_OPENRISC
, "OpenRISC 32-bit embedded processor"),
1173 ENUM_ENT(EM_ARC_COMPACT
, "EM_ARC_COMPACT"),
1174 ENUM_ENT(EM_XTENSA
, "Tensilica Xtensa Processor"),
1175 ENUM_ENT(EM_VIDEOCORE
, "Alphamosaic VideoCore processor"),
1176 ENUM_ENT(EM_TMM_GPP
, "Thompson Multimedia General Purpose Processor"),
1177 ENUM_ENT(EM_NS32K
, "National Semiconductor 32000 series"),
1178 ENUM_ENT(EM_TPC
, "Tenor Network TPC processor"),
1179 ENUM_ENT(EM_SNP1K
, "EM_SNP1K"),
1180 ENUM_ENT(EM_ST200
, "STMicroelectronics ST200 microcontroller"),
1181 ENUM_ENT(EM_IP2K
, "Ubicom IP2xxx 8-bit microcontrollers"),
1182 ENUM_ENT(EM_MAX
, "MAX Processor"),
1183 ENUM_ENT(EM_CR
, "National Semiconductor CompactRISC"),
1184 ENUM_ENT(EM_F2MC16
, "Fujitsu F2MC16"),
1185 ENUM_ENT(EM_MSP430
, "Texas Instruments msp430 microcontroller"),
1186 ENUM_ENT(EM_BLACKFIN
, "Analog Devices Blackfin"),
1187 ENUM_ENT(EM_SE_C33
, "S1C33 Family of Seiko Epson processors"),
1188 ENUM_ENT(EM_SEP
, "Sharp embedded microprocessor"),
1189 ENUM_ENT(EM_ARCA
, "Arca RISC microprocessor"),
1190 ENUM_ENT(EM_UNICORE
, "Unicore"),
1191 ENUM_ENT(EM_EXCESS
, "eXcess 16/32/64-bit configurable embedded CPU"),
1192 ENUM_ENT(EM_DXP
, "Icera Semiconductor Inc. Deep Execution Processor"),
1193 ENUM_ENT(EM_ALTERA_NIOS2
, "Altera Nios"),
1194 ENUM_ENT(EM_CRX
, "National Semiconductor CRX microprocessor"),
1195 ENUM_ENT(EM_XGATE
, "Motorola XGATE embedded processor"),
1196 ENUM_ENT(EM_C166
, "Infineon Technologies xc16x"),
1197 ENUM_ENT(EM_M16C
, "Renesas M16C"),
1198 ENUM_ENT(EM_DSPIC30F
, "Microchip Technology dsPIC30F Digital Signal Controller"),
1199 ENUM_ENT(EM_CE
, "Freescale Communication Engine RISC core"),
1200 ENUM_ENT(EM_M32C
, "Renesas M32C"),
1201 ENUM_ENT(EM_TSK3000
, "Altium TSK3000 core"),
1202 ENUM_ENT(EM_RS08
, "Freescale RS08 embedded processor"),
1203 ENUM_ENT(EM_SHARC
, "EM_SHARC"),
1204 ENUM_ENT(EM_ECOG2
, "Cyan Technology eCOG2 microprocessor"),
1205 ENUM_ENT(EM_SCORE7
, "SUNPLUS S+Core"),
1206 ENUM_ENT(EM_DSP24
, "New Japan Radio (NJR) 24-bit DSP Processor"),
1207 ENUM_ENT(EM_VIDEOCORE3
, "Broadcom VideoCore III processor"),
1208 ENUM_ENT(EM_LATTICEMICO32
, "Lattice Mico32"),
1209 ENUM_ENT(EM_SE_C17
, "Seiko Epson C17 family"),
1210 ENUM_ENT(EM_TI_C6000
, "Texas Instruments TMS320C6000 DSP family"),
1211 ENUM_ENT(EM_TI_C2000
, "Texas Instruments TMS320C2000 DSP family"),
1212 ENUM_ENT(EM_TI_C5500
, "Texas Instruments TMS320C55x DSP family"),
1213 ENUM_ENT(EM_MMDSP_PLUS
, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1214 ENUM_ENT(EM_CYPRESS_M8C
, "Cypress M8C microprocessor"),
1215 ENUM_ENT(EM_R32C
, "Renesas R32C series microprocessors"),
1216 ENUM_ENT(EM_TRIMEDIA
, "NXP Semiconductors TriMedia architecture family"),
1217 ENUM_ENT(EM_HEXAGON
, "Qualcomm Hexagon"),
1218 ENUM_ENT(EM_8051
, "Intel 8051 and variants"),
1219 ENUM_ENT(EM_STXP7X
, "STMicroelectronics STxP7x family"),
1220 ENUM_ENT(EM_NDS32
, "Andes Technology compact code size embedded RISC processor family"),
1221 ENUM_ENT(EM_ECOG1
, "Cyan Technology eCOG1 microprocessor"),
1222 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1223 // an identical number to EM_ECOG1.
1224 ENUM_ENT(EM_ECOG1X
, "Cyan Technology eCOG1X family"),
1225 ENUM_ENT(EM_MAXQ30
, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1226 ENUM_ENT(EM_XIMO16
, "New Japan Radio (NJR) 16-bit DSP Processor"),
1227 ENUM_ENT(EM_MANIK
, "M2000 Reconfigurable RISC Microprocessor"),
1228 ENUM_ENT(EM_CRAYNV2
, "Cray Inc. NV2 vector architecture"),
1229 ENUM_ENT(EM_RX
, "Renesas RX"),
1230 ENUM_ENT(EM_METAG
, "Imagination Technologies Meta processor architecture"),
1231 ENUM_ENT(EM_MCST_ELBRUS
, "MCST Elbrus general purpose hardware architecture"),
1232 ENUM_ENT(EM_ECOG16
, "Cyan Technology eCOG16 family"),
1233 ENUM_ENT(EM_CR16
, "National Semiconductor CompactRISC 16-bit processor"),
1234 ENUM_ENT(EM_ETPU
, "Freescale Extended Time Processing Unit"),
1235 ENUM_ENT(EM_SLE9X
, "Infineon Technologies SLE9X core"),
1236 ENUM_ENT(EM_L10M
, "EM_L10M"),
1237 ENUM_ENT(EM_K10M
, "EM_K10M"),
1238 ENUM_ENT(EM_AARCH64
, "AArch64"),
1239 ENUM_ENT(EM_AVR32
, "Atmel Corporation 32-bit microprocessor family"),
1240 ENUM_ENT(EM_STM8
, "STMicroeletronics STM8 8-bit microcontroller"),
1241 ENUM_ENT(EM_TILE64
, "Tilera TILE64 multicore architecture family"),
1242 ENUM_ENT(EM_TILEPRO
, "Tilera TILEPro multicore architecture family"),
1243 ENUM_ENT(EM_MICROBLAZE
, "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1244 ENUM_ENT(EM_CUDA
, "NVIDIA CUDA architecture"),
1245 ENUM_ENT(EM_TILEGX
, "Tilera TILE-Gx multicore architecture family"),
1246 ENUM_ENT(EM_CLOUDSHIELD
, "EM_CLOUDSHIELD"),
1247 ENUM_ENT(EM_COREA_1ST
, "EM_COREA_1ST"),
1248 ENUM_ENT(EM_COREA_2ND
, "EM_COREA_2ND"),
1249 ENUM_ENT(EM_ARC_COMPACT2
, "EM_ARC_COMPACT2"),
1250 ENUM_ENT(EM_OPEN8
, "EM_OPEN8"),
1251 ENUM_ENT(EM_RL78
, "Renesas RL78"),
1252 ENUM_ENT(EM_VIDEOCORE5
, "Broadcom VideoCore V processor"),
1253 ENUM_ENT(EM_78KOR
, "EM_78KOR"),
1254 ENUM_ENT(EM_56800EX
, "EM_56800EX"),
1255 ENUM_ENT(EM_AMDGPU
, "EM_AMDGPU"),
1256 ENUM_ENT(EM_RISCV
, "RISC-V"),
1257 ENUM_ENT(EM_LANAI
, "EM_LANAI"),
1258 ENUM_ENT(EM_BPF
, "EM_BPF"),
1259 ENUM_ENT(EM_VE
, "NEC SX-Aurora Vector Engine"),
1260 ENUM_ENT(EM_LOONGARCH
, "LoongArch"),
1263 const EnumEntry
<unsigned> ElfSymbolBindings
[] = {
1264 {"Local", "LOCAL", ELF::STB_LOCAL
},
1265 {"Global", "GLOBAL", ELF::STB_GLOBAL
},
1266 {"Weak", "WEAK", ELF::STB_WEAK
},
1267 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE
}};
1269 const EnumEntry
<unsigned> ElfSymbolVisibilities
[] = {
1270 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT
},
1271 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL
},
1272 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN
},
1273 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED
}};
1275 const EnumEntry
<unsigned> AMDGPUSymbolTypes
[] = {
1276 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL
}
1279 static const char *getGroupType(uint32_t Flag
) {
1280 if (Flag
& ELF::GRP_COMDAT
)
1286 const EnumEntry
<unsigned> ElfSectionFlags
[] = {
1287 ENUM_ENT(SHF_WRITE
, "W"),
1288 ENUM_ENT(SHF_ALLOC
, "A"),
1289 ENUM_ENT(SHF_EXECINSTR
, "X"),
1290 ENUM_ENT(SHF_MERGE
, "M"),
1291 ENUM_ENT(SHF_STRINGS
, "S"),
1292 ENUM_ENT(SHF_INFO_LINK
, "I"),
1293 ENUM_ENT(SHF_LINK_ORDER
, "L"),
1294 ENUM_ENT(SHF_OS_NONCONFORMING
, "O"),
1295 ENUM_ENT(SHF_GROUP
, "G"),
1296 ENUM_ENT(SHF_TLS
, "T"),
1297 ENUM_ENT(SHF_COMPRESSED
, "C"),
1298 ENUM_ENT(SHF_EXCLUDE
, "E"),
1301 const EnumEntry
<unsigned> ElfGNUSectionFlags
[] = {
1302 ENUM_ENT(SHF_GNU_RETAIN
, "R")
1305 const EnumEntry
<unsigned> ElfSolarisSectionFlags
[] = {
1306 ENUM_ENT(SHF_SUNW_NODISCARD
, "R")
1309 const EnumEntry
<unsigned> ElfXCoreSectionFlags
[] = {
1310 ENUM_ENT(XCORE_SHF_CP_SECTION
, ""),
1311 ENUM_ENT(XCORE_SHF_DP_SECTION
, "")
1314 const EnumEntry
<unsigned> ElfARMSectionFlags
[] = {
1315 ENUM_ENT(SHF_ARM_PURECODE
, "y")
1318 const EnumEntry
<unsigned> ElfHexagonSectionFlags
[] = {
1319 ENUM_ENT(SHF_HEX_GPREL
, "")
1322 const EnumEntry
<unsigned> ElfMipsSectionFlags
[] = {
1323 ENUM_ENT(SHF_MIPS_NODUPES
, ""),
1324 ENUM_ENT(SHF_MIPS_NAMES
, ""),
1325 ENUM_ENT(SHF_MIPS_LOCAL
, ""),
1326 ENUM_ENT(SHF_MIPS_NOSTRIP
, ""),
1327 ENUM_ENT(SHF_MIPS_GPREL
, ""),
1328 ENUM_ENT(SHF_MIPS_MERGE
, ""),
1329 ENUM_ENT(SHF_MIPS_ADDR
, ""),
1330 ENUM_ENT(SHF_MIPS_STRING
, "")
1333 const EnumEntry
<unsigned> ElfX86_64SectionFlags
[] = {
1334 ENUM_ENT(SHF_X86_64_LARGE
, "l")
1337 static std::vector
<EnumEntry
<unsigned>>
1338 getSectionFlagsForTarget(unsigned EOSAbi
, unsigned EMachine
) {
1339 std::vector
<EnumEntry
<unsigned>> Ret(std::begin(ElfSectionFlags
),
1340 std::end(ElfSectionFlags
));
1342 case ELFOSABI_SOLARIS
:
1343 Ret
.insert(Ret
.end(), std::begin(ElfSolarisSectionFlags
),
1344 std::end(ElfSolarisSectionFlags
));
1347 Ret
.insert(Ret
.end(), std::begin(ElfGNUSectionFlags
),
1348 std::end(ElfGNUSectionFlags
));
1353 Ret
.insert(Ret
.end(), std::begin(ElfARMSectionFlags
),
1354 std::end(ElfARMSectionFlags
));
1357 Ret
.insert(Ret
.end(), std::begin(ElfHexagonSectionFlags
),
1358 std::end(ElfHexagonSectionFlags
));
1361 Ret
.insert(Ret
.end(), std::begin(ElfMipsSectionFlags
),
1362 std::end(ElfMipsSectionFlags
));
1365 Ret
.insert(Ret
.end(), std::begin(ElfX86_64SectionFlags
),
1366 std::end(ElfX86_64SectionFlags
));
1369 Ret
.insert(Ret
.end(), std::begin(ElfXCoreSectionFlags
),
1370 std::end(ElfXCoreSectionFlags
));
1378 static std::string
getGNUFlags(unsigned EOSAbi
, unsigned EMachine
,
1380 // Here we are trying to build the flags string in the same way as GNU does.
1381 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1382 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1383 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1384 // "p". It only will print "E" when no other processor flag is set.
1386 bool HasUnknownFlag
= false;
1387 bool HasOSFlag
= false;
1388 bool HasProcFlag
= false;
1389 std::vector
<EnumEntry
<unsigned>> FlagsList
=
1390 getSectionFlagsForTarget(EOSAbi
, EMachine
);
1392 // Take the least significant bit as a flag.
1393 uint64_t Flag
= Flags
& -Flags
;
1396 // Find the flag in the known flags list.
1397 auto I
= llvm::find_if(FlagsList
, [=](const EnumEntry
<unsigned> &E
) {
1398 // Flags with empty names are not printed in GNU style output.
1399 return E
.Value
== Flag
&& !E
.AltName
.empty();
1401 if (I
!= FlagsList
.end()) {
1406 // If we did not find a matching regular flag, then we deal with an OS
1407 // specific flag, processor specific flag or an unknown flag.
1408 if (Flag
& ELF::SHF_MASKOS
) {
1410 Flags
&= ~ELF::SHF_MASKOS
;
1411 } else if (Flag
& ELF::SHF_MASKPROC
) {
1413 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1414 // bit if set so that it doesn't also get printed.
1415 Flags
&= ~ELF::SHF_MASKPROC
;
1417 HasUnknownFlag
= true;
1421 // "o", "p" and "x" are printed last.
1431 static StringRef
segmentTypeToString(unsigned Arch
, unsigned Type
) {
1432 // Check potentially overlapped processor-specific program header type.
1435 switch (Type
) { LLVM_READOBJ_ENUM_CASE(ELF
, PT_ARM_EXIDX
); }
1438 case ELF::EM_MIPS_RS3_LE
:
1440 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_REGINFO
);
1441 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_RTPROC
);
1442 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_OPTIONS
);
1443 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_ABIFLAGS
);
1447 switch (Type
) { LLVM_READOBJ_ENUM_CASE(ELF
, PT_RISCV_ATTRIBUTES
); }
1451 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NULL
);
1452 LLVM_READOBJ_ENUM_CASE(ELF
, PT_LOAD
);
1453 LLVM_READOBJ_ENUM_CASE(ELF
, PT_DYNAMIC
);
1454 LLVM_READOBJ_ENUM_CASE(ELF
, PT_INTERP
);
1455 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NOTE
);
1456 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SHLIB
);
1457 LLVM_READOBJ_ENUM_CASE(ELF
, PT_PHDR
);
1458 LLVM_READOBJ_ENUM_CASE(ELF
, PT_TLS
);
1460 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_EH_FRAME
);
1461 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SUNW_UNWIND
);
1463 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_STACK
);
1464 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_RELRO
);
1465 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_PROPERTY
);
1467 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_MUTABLE
);
1468 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_RANDOMIZE
);
1469 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_WXNEEDED
);
1470 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_BOOTDATA
);
1476 static std::string
getGNUPtType(unsigned Arch
, unsigned Type
) {
1477 StringRef Seg
= segmentTypeToString(Arch
, Type
);
1479 return std::string("<unknown>: ") + to_string(format_hex(Type
, 1));
1481 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1482 if (Seg
.consume_front("PT_ARM_"))
1485 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1486 if (Seg
.consume_front("PT_MIPS_"))
1489 // E.g. "PT_RISCV_ATTRIBUTES"
1490 if (Seg
.consume_front("PT_RISCV_"))
1493 // E.g. "PT_LOAD" -> "LOAD".
1494 assert(Seg
.startswith("PT_"));
1495 return Seg
.drop_front(3).str();
1498 const EnumEntry
<unsigned> ElfSegmentFlags
[] = {
1499 LLVM_READOBJ_ENUM_ENT(ELF
, PF_X
),
1500 LLVM_READOBJ_ENUM_ENT(ELF
, PF_W
),
1501 LLVM_READOBJ_ENUM_ENT(ELF
, PF_R
)
1504 const EnumEntry
<unsigned> ElfHeaderMipsFlags
[] = {
1505 ENUM_ENT(EF_MIPS_NOREORDER
, "noreorder"),
1506 ENUM_ENT(EF_MIPS_PIC
, "pic"),
1507 ENUM_ENT(EF_MIPS_CPIC
, "cpic"),
1508 ENUM_ENT(EF_MIPS_ABI2
, "abi2"),
1509 ENUM_ENT(EF_MIPS_32BITMODE
, "32bitmode"),
1510 ENUM_ENT(EF_MIPS_FP64
, "fp64"),
1511 ENUM_ENT(EF_MIPS_NAN2008
, "nan2008"),
1512 ENUM_ENT(EF_MIPS_ABI_O32
, "o32"),
1513 ENUM_ENT(EF_MIPS_ABI_O64
, "o64"),
1514 ENUM_ENT(EF_MIPS_ABI_EABI32
, "eabi32"),
1515 ENUM_ENT(EF_MIPS_ABI_EABI64
, "eabi64"),
1516 ENUM_ENT(EF_MIPS_MACH_3900
, "3900"),
1517 ENUM_ENT(EF_MIPS_MACH_4010
, "4010"),
1518 ENUM_ENT(EF_MIPS_MACH_4100
, "4100"),
1519 ENUM_ENT(EF_MIPS_MACH_4650
, "4650"),
1520 ENUM_ENT(EF_MIPS_MACH_4120
, "4120"),
1521 ENUM_ENT(EF_MIPS_MACH_4111
, "4111"),
1522 ENUM_ENT(EF_MIPS_MACH_SB1
, "sb1"),
1523 ENUM_ENT(EF_MIPS_MACH_OCTEON
, "octeon"),
1524 ENUM_ENT(EF_MIPS_MACH_XLR
, "xlr"),
1525 ENUM_ENT(EF_MIPS_MACH_OCTEON2
, "octeon2"),
1526 ENUM_ENT(EF_MIPS_MACH_OCTEON3
, "octeon3"),
1527 ENUM_ENT(EF_MIPS_MACH_5400
, "5400"),
1528 ENUM_ENT(EF_MIPS_MACH_5900
, "5900"),
1529 ENUM_ENT(EF_MIPS_MACH_5500
, "5500"),
1530 ENUM_ENT(EF_MIPS_MACH_9000
, "9000"),
1531 ENUM_ENT(EF_MIPS_MACH_LS2E
, "loongson-2e"),
1532 ENUM_ENT(EF_MIPS_MACH_LS2F
, "loongson-2f"),
1533 ENUM_ENT(EF_MIPS_MACH_LS3A
, "loongson-3a"),
1534 ENUM_ENT(EF_MIPS_MICROMIPS
, "micromips"),
1535 ENUM_ENT(EF_MIPS_ARCH_ASE_M16
, "mips16"),
1536 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX
, "mdmx"),
1537 ENUM_ENT(EF_MIPS_ARCH_1
, "mips1"),
1538 ENUM_ENT(EF_MIPS_ARCH_2
, "mips2"),
1539 ENUM_ENT(EF_MIPS_ARCH_3
, "mips3"),
1540 ENUM_ENT(EF_MIPS_ARCH_4
, "mips4"),
1541 ENUM_ENT(EF_MIPS_ARCH_5
, "mips5"),
1542 ENUM_ENT(EF_MIPS_ARCH_32
, "mips32"),
1543 ENUM_ENT(EF_MIPS_ARCH_64
, "mips64"),
1544 ENUM_ENT(EF_MIPS_ARCH_32R2
, "mips32r2"),
1545 ENUM_ENT(EF_MIPS_ARCH_64R2
, "mips64r2"),
1546 ENUM_ENT(EF_MIPS_ARCH_32R6
, "mips32r6"),
1547 ENUM_ENT(EF_MIPS_ARCH_64R6
, "mips64r6")
1550 const EnumEntry
<unsigned> ElfHeaderAMDGPUFlagsABIVersion3
[] = {
1551 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_NONE
),
1552 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R600
),
1553 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R630
),
1554 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RS880
),
1555 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV670
),
1556 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV710
),
1557 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV730
),
1558 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV770
),
1559 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CEDAR
),
1560 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CYPRESS
),
1561 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_JUNIPER
),
1562 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_REDWOOD
),
1563 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_SUMO
),
1564 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_BARTS
),
1565 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAICOS
),
1566 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAYMAN
),
1567 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_TURKS
),
1568 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX600
),
1569 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX601
),
1570 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX602
),
1571 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX700
),
1572 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX701
),
1573 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX702
),
1574 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX703
),
1575 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX704
),
1576 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX705
),
1577 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX801
),
1578 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX802
),
1579 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX803
),
1580 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX805
),
1581 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX810
),
1582 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX900
),
1583 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX902
),
1584 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX904
),
1585 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX906
),
1586 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX908
),
1587 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX909
),
1588 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX90A
),
1589 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX90C
),
1590 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX940
),
1591 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX941
),
1592 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX942
),
1593 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1010
),
1594 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1011
),
1595 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1012
),
1596 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1013
),
1597 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1030
),
1598 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1031
),
1599 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1032
),
1600 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1033
),
1601 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1034
),
1602 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1035
),
1603 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1036
),
1604 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1100
),
1605 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1101
),
1606 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1102
),
1607 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1103
),
1608 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_XNACK_V3
),
1609 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_SRAMECC_V3
)
1612 const EnumEntry
<unsigned> ElfHeaderAMDGPUFlagsABIVersion4
[] = {
1613 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_NONE
),
1614 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R600
),
1615 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R630
),
1616 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RS880
),
1617 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV670
),
1618 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV710
),
1619 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV730
),
1620 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV770
),
1621 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CEDAR
),
1622 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CYPRESS
),
1623 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_JUNIPER
),
1624 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_REDWOOD
),
1625 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_SUMO
),
1626 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_BARTS
),
1627 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAICOS
),
1628 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAYMAN
),
1629 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_TURKS
),
1630 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX600
),
1631 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX601
),
1632 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX602
),
1633 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX700
),
1634 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX701
),
1635 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX702
),
1636 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX703
),
1637 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX704
),
1638 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX705
),
1639 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX801
),
1640 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX802
),
1641 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX803
),
1642 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX805
),
1643 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX810
),
1644 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX900
),
1645 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX902
),
1646 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX904
),
1647 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX906
),
1648 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX908
),
1649 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX909
),
1650 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX90A
),
1651 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX90C
),
1652 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX940
),
1653 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX941
),
1654 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX942
),
1655 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1010
),
1656 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1011
),
1657 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1012
),
1658 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1013
),
1659 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1030
),
1660 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1031
),
1661 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1032
),
1662 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1033
),
1663 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1034
),
1664 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1035
),
1665 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1036
),
1666 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1100
),
1667 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1101
),
1668 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1102
),
1669 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1103
),
1670 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_XNACK_ANY_V4
),
1671 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_XNACK_OFF_V4
),
1672 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_XNACK_ON_V4
),
1673 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4
),
1674 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4
),
1675 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_FEATURE_SRAMECC_ON_V4
)
1678 const EnumEntry
<unsigned> ElfHeaderRISCVFlags
[] = {
1679 ENUM_ENT(EF_RISCV_RVC
, "RVC"),
1680 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE
, "single-float ABI"),
1681 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE
, "double-float ABI"),
1682 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD
, "quad-float ABI"),
1683 ENUM_ENT(EF_RISCV_RVE
, "RVE"),
1684 ENUM_ENT(EF_RISCV_TSO
, "TSO"),
1687 const EnumEntry
<unsigned> ElfHeaderAVRFlags
[] = {
1688 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR1
),
1689 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR2
),
1690 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR25
),
1691 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR3
),
1692 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR31
),
1693 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR35
),
1694 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR4
),
1695 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR5
),
1696 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR51
),
1697 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVR6
),
1698 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_AVRTINY
),
1699 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA1
),
1700 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA2
),
1701 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA3
),
1702 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA4
),
1703 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA5
),
1704 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA6
),
1705 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AVR_ARCH_XMEGA7
),
1706 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED
, "relaxable"),
1709 const EnumEntry
<unsigned> ElfHeaderLoongArchFlags
[] = {
1710 ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT
, "SOFT-FLOAT"),
1711 ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT
, "SINGLE-FLOAT"),
1712 ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT
, "DOUBLE-FLOAT"),
1713 ENUM_ENT(EF_LOONGARCH_OBJABI_V0
, "OBJ-v0"),
1714 ENUM_ENT(EF_LOONGARCH_OBJABI_V1
, "OBJ-v1"),
1717 static const EnumEntry
<unsigned> ElfHeaderXtensaFlags
[] = {
1718 LLVM_READOBJ_ENUM_ENT(ELF
, EF_XTENSA_MACH_NONE
),
1719 LLVM_READOBJ_ENUM_ENT(ELF
, EF_XTENSA_XT_INSN
),
1720 LLVM_READOBJ_ENUM_ENT(ELF
, EF_XTENSA_XT_LIT
)
1723 const EnumEntry
<unsigned> ElfSymOtherFlags
[] = {
1724 LLVM_READOBJ_ENUM_ENT(ELF
, STV_INTERNAL
),
1725 LLVM_READOBJ_ENUM_ENT(ELF
, STV_HIDDEN
),
1726 LLVM_READOBJ_ENUM_ENT(ELF
, STV_PROTECTED
)
1729 const EnumEntry
<unsigned> ElfMipsSymOtherFlags
[] = {
1730 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1731 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1732 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PIC
),
1733 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MICROMIPS
)
1736 const EnumEntry
<unsigned> ElfAArch64SymOtherFlags
[] = {
1737 LLVM_READOBJ_ENUM_ENT(ELF
, STO_AARCH64_VARIANT_PCS
)
1740 const EnumEntry
<unsigned> ElfMips16SymOtherFlags
[] = {
1741 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1742 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1743 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MIPS16
)
1746 const EnumEntry
<unsigned> ElfRISCVSymOtherFlags
[] = {
1747 LLVM_READOBJ_ENUM_ENT(ELF
, STO_RISCV_VARIANT_CC
)};
1749 static const char *getElfMipsOptionsOdkType(unsigned Odk
) {
1751 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_NULL
);
1752 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_REGINFO
);
1753 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_EXCEPTIONS
);
1754 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAD
);
1755 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWPATCH
);
1756 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_FILL
);
1757 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_TAGS
);
1758 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWAND
);
1759 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWOR
);
1760 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_GP_GROUP
);
1761 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_IDENT
);
1762 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAGESIZE
);
1768 template <typename ELFT
>
1769 std::pair
<const typename
ELFT::Phdr
*, const typename
ELFT::Shdr
*>
1770 ELFDumper
<ELFT
>::findDynamic() {
1771 // Try to locate the PT_DYNAMIC header.
1772 const Elf_Phdr
*DynamicPhdr
= nullptr;
1773 if (Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= Obj
.program_headers()) {
1774 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
1775 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
)
1777 DynamicPhdr
= &Phdr
;
1781 reportUniqueWarning(
1782 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1783 toString(PhdrsOrErr
.takeError()));
1786 // Try to locate the .dynamic section in the sections header table.
1787 const Elf_Shdr
*DynamicSec
= nullptr;
1788 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
1789 if (Sec
.sh_type
!= ELF::SHT_DYNAMIC
)
1795 if (DynamicPhdr
&& ((DynamicPhdr
->p_offset
+ DynamicPhdr
->p_filesz
>
1796 ObjF
.getMemoryBufferRef().getBufferSize()) ||
1797 (DynamicPhdr
->p_offset
+ DynamicPhdr
->p_filesz
<
1798 DynamicPhdr
->p_offset
))) {
1799 reportUniqueWarning(
1800 "PT_DYNAMIC segment offset (0x" +
1801 Twine::utohexstr(DynamicPhdr
->p_offset
) + ") + file size (0x" +
1802 Twine::utohexstr(DynamicPhdr
->p_filesz
) +
1803 ") exceeds the size of the file (0x" +
1804 Twine::utohexstr(ObjF
.getMemoryBufferRef().getBufferSize()) + ")");
1805 // Don't use the broken dynamic header.
1806 DynamicPhdr
= nullptr;
1809 if (DynamicPhdr
&& DynamicSec
) {
1810 if (DynamicSec
->sh_addr
+ DynamicSec
->sh_size
>
1811 DynamicPhdr
->p_vaddr
+ DynamicPhdr
->p_memsz
||
1812 DynamicSec
->sh_addr
< DynamicPhdr
->p_vaddr
)
1813 reportUniqueWarning(describe(*DynamicSec
) +
1814 " is not contained within the "
1815 "PT_DYNAMIC segment");
1817 if (DynamicSec
->sh_addr
!= DynamicPhdr
->p_vaddr
)
1818 reportUniqueWarning(describe(*DynamicSec
) + " is not at the start of "
1819 "PT_DYNAMIC segment");
1822 return std::make_pair(DynamicPhdr
, DynamicSec
);
1825 template <typename ELFT
>
1826 void ELFDumper
<ELFT
>::loadDynamicTable() {
1827 const Elf_Phdr
*DynamicPhdr
;
1828 const Elf_Shdr
*DynamicSec
;
1829 std::tie(DynamicPhdr
, DynamicSec
) = findDynamic();
1830 if (!DynamicPhdr
&& !DynamicSec
)
1833 DynRegionInfo
FromPhdr(ObjF
, *this);
1834 bool IsPhdrTableValid
= false;
1836 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1837 // validated in findDynamic() and so createDRI() is not expected to fail.
1838 FromPhdr
= cantFail(createDRI(DynamicPhdr
->p_offset
, DynamicPhdr
->p_filesz
,
1840 FromPhdr
.SizePrintName
= "PT_DYNAMIC size";
1841 FromPhdr
.EntSizePrintName
= "";
1842 IsPhdrTableValid
= !FromPhdr
.template getAsArrayRef
<Elf_Dyn
>().empty();
1845 // Locate the dynamic table described in a section header.
1846 // Ignore sh_entsize and use the expected value for entry size explicitly.
1847 // This allows us to dump dynamic sections with a broken sh_entsize
1849 DynRegionInfo
FromSec(ObjF
, *this);
1850 bool IsSecTableValid
= false;
1852 Expected
<DynRegionInfo
> RegOrErr
=
1853 createDRI(DynamicSec
->sh_offset
, DynamicSec
->sh_size
, sizeof(Elf_Dyn
));
1855 FromSec
= *RegOrErr
;
1856 FromSec
.Context
= describe(*DynamicSec
);
1857 FromSec
.EntSizePrintName
= "";
1858 IsSecTableValid
= !FromSec
.template getAsArrayRef
<Elf_Dyn
>().empty();
1860 reportUniqueWarning("unable to read the dynamic table from " +
1861 describe(*DynamicSec
) + ": " +
1862 toString(RegOrErr
.takeError()));
1866 // When we only have information from one of the SHT_DYNAMIC section header or
1867 // PT_DYNAMIC program header, just use that.
1868 if (!DynamicPhdr
|| !DynamicSec
) {
1869 if ((DynamicPhdr
&& IsPhdrTableValid
) || (DynamicSec
&& IsSecTableValid
)) {
1870 DynamicTable
= DynamicPhdr
? FromPhdr
: FromSec
;
1871 parseDynamicTable();
1873 reportUniqueWarning("no valid dynamic table was found");
1878 // At this point we have tables found from the section header and from the
1879 // dynamic segment. Usually they match, but we have to do sanity checks to
1882 if (FromPhdr
.Addr
!= FromSec
.Addr
)
1883 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1884 "program header disagree about "
1885 "the location of the dynamic table");
1887 if (!IsPhdrTableValid
&& !IsSecTableValid
) {
1888 reportUniqueWarning("no valid dynamic table was found");
1892 // Information in the PT_DYNAMIC program header has priority over the
1893 // information in a section header.
1894 if (IsPhdrTableValid
) {
1895 if (!IsSecTableValid
)
1896 reportUniqueWarning(
1897 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1898 DynamicTable
= FromPhdr
;
1900 reportUniqueWarning(
1901 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1902 DynamicTable
= FromSec
;
1905 parseDynamicTable();
1908 template <typename ELFT
>
1909 ELFDumper
<ELFT
>::ELFDumper(const object::ELFObjectFile
<ELFT
> &O
,
1910 ScopedPrinter
&Writer
)
1911 : ObjDumper(Writer
, O
.getFileName()), ObjF(O
), Obj(O
.getELFFile()),
1912 FileName(O
.getFileName()), DynRelRegion(O
, *this),
1913 DynRelaRegion(O
, *this), DynRelrRegion(O
, *this),
1914 DynPLTRelRegion(O
, *this), DynSymTabShndxRegion(O
, *this),
1915 DynamicTable(O
, *this) {
1916 if (!O
.IsContentValid())
1919 typename
ELFT::ShdrRange Sections
= cantFail(Obj
.sections());
1920 for (const Elf_Shdr
&Sec
: Sections
) {
1921 switch (Sec
.sh_type
) {
1922 case ELF::SHT_SYMTAB
:
1924 DotSymtabSec
= &Sec
;
1926 case ELF::SHT_DYNSYM
:
1928 DotDynsymSec
= &Sec
;
1930 if (!DynSymRegion
) {
1931 Expected
<DynRegionInfo
> RegOrErr
=
1932 createDRI(Sec
.sh_offset
, Sec
.sh_size
, Sec
.sh_entsize
);
1934 DynSymRegion
= *RegOrErr
;
1935 DynSymRegion
->Context
= describe(Sec
);
1937 if (Expected
<StringRef
> E
= Obj
.getStringTableForSymtab(Sec
))
1938 DynamicStringTable
= *E
;
1940 reportUniqueWarning("unable to get the string table for the " +
1941 describe(Sec
) + ": " + toString(E
.takeError()));
1943 reportUniqueWarning("unable to read dynamic symbols from " +
1944 describe(Sec
) + ": " +
1945 toString(RegOrErr
.takeError()));
1949 case ELF::SHT_SYMTAB_SHNDX
: {
1950 uint32_t SymtabNdx
= Sec
.sh_link
;
1951 if (SymtabNdx
>= Sections
.size()) {
1952 reportUniqueWarning(
1953 "unable to get the associated symbol table for " + describe(Sec
) +
1954 ": sh_link (" + Twine(SymtabNdx
) +
1955 ") is greater than or equal to the total number of sections (" +
1956 Twine(Sections
.size()) + ")");
1960 if (Expected
<ArrayRef
<Elf_Word
>> ShndxTableOrErr
=
1961 Obj
.getSHNDXTable(Sec
)) {
1962 if (!ShndxTables
.insert({&Sections
[SymtabNdx
], *ShndxTableOrErr
})
1964 reportUniqueWarning(
1965 "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1968 reportUniqueWarning(ShndxTableOrErr
.takeError());
1972 case ELF::SHT_GNU_versym
:
1973 if (!SymbolVersionSection
)
1974 SymbolVersionSection
= &Sec
;
1976 case ELF::SHT_GNU_verdef
:
1977 if (!SymbolVersionDefSection
)
1978 SymbolVersionDefSection
= &Sec
;
1980 case ELF::SHT_GNU_verneed
:
1981 if (!SymbolVersionNeedSection
)
1982 SymbolVersionNeedSection
= &Sec
;
1984 case ELF::SHT_LLVM_ADDRSIG
:
1986 DotAddrsigSec
= &Sec
;
1994 template <typename ELFT
> void ELFDumper
<ELFT
>::parseDynamicTable() {
1995 auto toMappedAddr
= [&](uint64_t Tag
, uint64_t VAddr
) -> const uint8_t * {
1996 auto MappedAddrOrError
= Obj
.toMappedAddr(VAddr
, [&](const Twine
&Msg
) {
1997 this->reportUniqueWarning(Msg
);
1998 return Error::success();
2000 if (!MappedAddrOrError
) {
2001 this->reportUniqueWarning("unable to parse DT_" +
2002 Obj
.getDynamicTagAsString(Tag
) + ": " +
2003 llvm::toString(MappedAddrOrError
.takeError()));
2006 return MappedAddrOrError
.get();
2009 const char *StringTableBegin
= nullptr;
2010 uint64_t StringTableSize
= 0;
2011 std::optional
<DynRegionInfo
> DynSymFromTable
;
2012 for (const Elf_Dyn
&Dyn
: dynamic_table()) {
2013 switch (Dyn
.d_tag
) {
2015 HashTable
= reinterpret_cast<const Elf_Hash
*>(
2016 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
2018 case ELF::DT_GNU_HASH
:
2019 GnuHashTable
= reinterpret_cast<const Elf_GnuHash
*>(
2020 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
2022 case ELF::DT_STRTAB
:
2023 StringTableBegin
= reinterpret_cast<const char *>(
2024 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
2027 StringTableSize
= Dyn
.getVal();
2029 case ELF::DT_SYMTAB
: {
2030 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
2031 // no program headers), we ignore its value.
2032 if (const uint8_t *VA
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr())) {
2033 DynSymFromTable
.emplace(ObjF
, *this);
2034 DynSymFromTable
->Addr
= VA
;
2035 DynSymFromTable
->EntSize
= sizeof(Elf_Sym
);
2036 DynSymFromTable
->EntSizePrintName
= "";
2040 case ELF::DT_SYMENT
: {
2041 uint64_t Val
= Dyn
.getVal();
2042 if (Val
!= sizeof(Elf_Sym
))
2043 this->reportUniqueWarning("DT_SYMENT value of 0x" +
2044 Twine::utohexstr(Val
) +
2045 " is not the size of a symbol (0x" +
2046 Twine::utohexstr(sizeof(Elf_Sym
)) + ")");
2050 DynRelaRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2052 case ELF::DT_RELASZ
:
2053 DynRelaRegion
.Size
= Dyn
.getVal();
2054 DynRelaRegion
.SizePrintName
= "DT_RELASZ value";
2056 case ELF::DT_RELAENT
:
2057 DynRelaRegion
.EntSize
= Dyn
.getVal();
2058 DynRelaRegion
.EntSizePrintName
= "DT_RELAENT value";
2060 case ELF::DT_SONAME
:
2061 SONameOffset
= Dyn
.getVal();
2064 DynRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2067 DynRelRegion
.Size
= Dyn
.getVal();
2068 DynRelRegion
.SizePrintName
= "DT_RELSZ value";
2070 case ELF::DT_RELENT
:
2071 DynRelRegion
.EntSize
= Dyn
.getVal();
2072 DynRelRegion
.EntSizePrintName
= "DT_RELENT value";
2075 case ELF::DT_ANDROID_RELR
:
2076 DynRelrRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2078 case ELF::DT_RELRSZ
:
2079 case ELF::DT_ANDROID_RELRSZ
:
2080 DynRelrRegion
.Size
= Dyn
.getVal();
2081 DynRelrRegion
.SizePrintName
= Dyn
.d_tag
== ELF::DT_RELRSZ
2083 : "DT_ANDROID_RELRSZ value";
2085 case ELF::DT_RELRENT
:
2086 case ELF::DT_ANDROID_RELRENT
:
2087 DynRelrRegion
.EntSize
= Dyn
.getVal();
2088 DynRelrRegion
.EntSizePrintName
= Dyn
.d_tag
== ELF::DT_RELRENT
2089 ? "DT_RELRENT value"
2090 : "DT_ANDROID_RELRENT value";
2092 case ELF::DT_PLTREL
:
2093 if (Dyn
.getVal() == DT_REL
)
2094 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rel
);
2095 else if (Dyn
.getVal() == DT_RELA
)
2096 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rela
);
2098 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2099 Twine((uint64_t)Dyn
.getVal()));
2100 DynPLTRelRegion
.EntSizePrintName
= "PLTREL entry size";
2102 case ELF::DT_JMPREL
:
2103 DynPLTRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2105 case ELF::DT_PLTRELSZ
:
2106 DynPLTRelRegion
.Size
= Dyn
.getVal();
2107 DynPLTRelRegion
.SizePrintName
= "DT_PLTRELSZ value";
2109 case ELF::DT_SYMTAB_SHNDX
:
2110 DynSymTabShndxRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2111 DynSymTabShndxRegion
.EntSize
= sizeof(Elf_Word
);
2116 if (StringTableBegin
) {
2117 const uint64_t FileSize
= Obj
.getBufSize();
2118 const uint64_t Offset
= (const uint8_t *)StringTableBegin
- Obj
.base();
2119 if (StringTableSize
> FileSize
- Offset
)
2120 reportUniqueWarning(
2121 "the dynamic string table at 0x" + Twine::utohexstr(Offset
) +
2122 " goes past the end of the file (0x" + Twine::utohexstr(FileSize
) +
2123 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize
));
2125 DynamicStringTable
= StringRef(StringTableBegin
, StringTableSize
);
2128 const bool IsHashTableSupported
= getHashTableEntSize() == 4;
2130 // Often we find the information about the dynamic symbol table
2131 // location in the SHT_DYNSYM section header. However, the value in
2132 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2133 // locate .dynsym at runtime. The location we find in the section header
2134 // and the location we find here should match.
2135 if (DynSymFromTable
&& DynSymFromTable
->Addr
!= DynSymRegion
->Addr
)
2136 reportUniqueWarning(
2137 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2138 "the location of the dynamic symbol table"));
2140 // According to the ELF gABI: "The number of symbol table entries should
2141 // equal nchain". Check to see if the DT_HASH hash table nchain value
2142 // conflicts with the number of symbols in the dynamic symbol table
2143 // according to the section header.
2144 if (HashTable
&& IsHashTableSupported
) {
2145 if (DynSymRegion
->EntSize
== 0)
2146 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2147 else if (HashTable
->nchain
!= DynSymRegion
->Size
/ DynSymRegion
->EntSize
)
2148 reportUniqueWarning(
2149 "hash table nchain (" + Twine(HashTable
->nchain
) +
2150 ") differs from symbol count derived from SHT_DYNSYM section "
2152 Twine(DynSymRegion
->Size
/ DynSymRegion
->EntSize
) + ")");
2156 // Delay the creation of the actual dynamic symbol table until now, so that
2157 // checks can always be made against the section header-based properties,
2158 // without worrying about tag order.
2159 if (DynSymFromTable
) {
2160 if (!DynSymRegion
) {
2161 DynSymRegion
= DynSymFromTable
;
2163 DynSymRegion
->Addr
= DynSymFromTable
->Addr
;
2164 DynSymRegion
->EntSize
= DynSymFromTable
->EntSize
;
2165 DynSymRegion
->EntSizePrintName
= DynSymFromTable
->EntSizePrintName
;
2169 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2171 if (HashTable
&& IsHashTableSupported
&& DynSymRegion
) {
2172 const uint64_t FileSize
= Obj
.getBufSize();
2173 const uint64_t DerivedSize
=
2174 (uint64_t)HashTable
->nchain
* DynSymRegion
->EntSize
;
2175 const uint64_t Offset
= (const uint8_t *)DynSymRegion
->Addr
- Obj
.base();
2176 if (DerivedSize
> FileSize
- Offset
)
2177 reportUniqueWarning(
2178 "the size (0x" + Twine::utohexstr(DerivedSize
) +
2179 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset
) +
2180 ", derived from the hash table, goes past the end of the file (0x" +
2181 Twine::utohexstr(FileSize
) + ") and will be ignored");
2183 DynSymRegion
->Size
= HashTable
->nchain
* DynSymRegion
->EntSize
;
2187 template <typename ELFT
> void ELFDumper
<ELFT
>::printVersionInfo() {
2188 // Dump version symbol section.
2189 printVersionSymbolSection(SymbolVersionSection
);
2191 // Dump version definition section.
2192 printVersionDefinitionSection(SymbolVersionDefSection
);
2194 // Dump version dependency section.
2195 printVersionDependencySection(SymbolVersionNeedSection
);
2198 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2199 { #enum, prefix##_##enum }
2201 const EnumEntry
<unsigned> ElfDynamicDTFlags
[] = {
2202 LLVM_READOBJ_DT_FLAG_ENT(DF
, ORIGIN
),
2203 LLVM_READOBJ_DT_FLAG_ENT(DF
, SYMBOLIC
),
2204 LLVM_READOBJ_DT_FLAG_ENT(DF
, TEXTREL
),
2205 LLVM_READOBJ_DT_FLAG_ENT(DF
, BIND_NOW
),
2206 LLVM_READOBJ_DT_FLAG_ENT(DF
, STATIC_TLS
)
2209 const EnumEntry
<unsigned> ElfDynamicDTFlags1
[] = {
2210 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOW
),
2211 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAL
),
2212 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GROUP
),
2213 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODELETE
),
2214 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, LOADFLTR
),
2215 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INITFIRST
),
2216 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOOPEN
),
2217 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ORIGIN
),
2218 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DIRECT
),
2219 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, TRANS
),
2220 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INTERPOSE
),
2221 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODEFLIB
),
2222 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODUMP
),
2223 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, CONFALT
),
2224 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ENDFILTEE
),
2225 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELDNE
),
2226 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELPND
),
2227 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODIRECT
),
2228 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, IGNMULDEF
),
2229 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOKSYMS
),
2230 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOHDR
),
2231 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, EDITED
),
2232 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NORELOC
),
2233 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SYMINTPOSE
),
2234 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAUDIT
),
2235 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SINGLETON
),
2236 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, PIE
),
2239 const EnumEntry
<unsigned> ElfDynamicDTMipsFlags
[] = {
2240 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NONE
),
2241 LLVM_READOBJ_DT_FLAG_ENT(RHF
, QUICKSTART
),
2242 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NOTPOT
),
2243 LLVM_READOBJ_DT_FLAG_ENT(RHS
, NO_LIBRARY_REPLACEMENT
),
2244 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_MOVE
),
2245 LLVM_READOBJ_DT_FLAG_ENT(RHF
, SGI_ONLY
),
2246 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_INIT
),
2247 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DELTA_C_PLUS_PLUS
),
2248 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_START_INIT
),
2249 LLVM_READOBJ_DT_FLAG_ENT(RHF
, PIXIE
),
2250 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DEFAULT_DELAY_LOAD
),
2251 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTART
),
2252 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTARTED
),
2253 LLVM_READOBJ_DT_FLAG_ENT(RHF
, CORD
),
2254 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_UNRES_UNDEF
),
2255 LLVM_READOBJ_DT_FLAG_ENT(RHF
, RLD_ORDER_SAFE
)
2258 #undef LLVM_READOBJ_DT_FLAG_ENT
2260 template <typename T
, typename TFlag
>
2261 void printFlags(T Value
, ArrayRef
<EnumEntry
<TFlag
>> Flags
, raw_ostream
&OS
) {
2262 SmallVector
<EnumEntry
<TFlag
>, 10> SetFlags
;
2263 for (const EnumEntry
<TFlag
> &Flag
: Flags
)
2264 if (Flag
.Value
!= 0 && (Value
& Flag
.Value
) == Flag
.Value
)
2265 SetFlags
.push_back(Flag
);
2267 for (const EnumEntry
<TFlag
> &Flag
: SetFlags
)
2268 OS
<< Flag
.Name
<< " ";
2271 template <class ELFT
>
2272 const typename
ELFT::Shdr
*
2273 ELFDumper
<ELFT
>::findSectionByName(StringRef Name
) const {
2274 for (const Elf_Shdr
&Shdr
: cantFail(Obj
.sections())) {
2275 if (Expected
<StringRef
> NameOrErr
= Obj
.getSectionName(Shdr
)) {
2276 if (*NameOrErr
== Name
)
2279 reportUniqueWarning("unable to read the name of " + describe(Shdr
) +
2280 ": " + toString(NameOrErr
.takeError()));
2286 template <class ELFT
>
2287 std::string ELFDumper
<ELFT
>::getDynamicEntry(uint64_t Type
,
2288 uint64_t Value
) const {
2289 auto FormatHexValue
= [](uint64_t V
) {
2291 raw_string_ostream
OS(Str
);
2292 const char *ConvChar
=
2293 (opts::Output
== opts::GNU
) ? "0x%" PRIx64
: "0x%" PRIX64
;
2294 OS
<< format(ConvChar
, V
);
2298 auto FormatFlags
= [](uint64_t V
,
2299 llvm::ArrayRef
<llvm::EnumEntry
<unsigned int>> Array
) {
2301 raw_string_ostream
OS(Str
);
2302 printFlags(V
, Array
, OS
);
2306 // Handle custom printing of architecture specific tags
2307 switch (Obj
.getHeader().e_machine
) {
2310 case DT_AARCH64_BTI_PLT
:
2311 case DT_AARCH64_PAC_PLT
:
2312 case DT_AARCH64_VARIANT_PCS
:
2313 case DT_AARCH64_MEMTAG_GLOBALSSZ
:
2314 return std::to_string(Value
);
2315 case DT_AARCH64_MEMTAG_MODE
:
2318 return "Synchronous (0)";
2320 return "Asynchronous (1)";
2322 return (Twine("Unknown (") + Twine(Value
) + ")").str();
2324 case DT_AARCH64_MEMTAG_HEAP
:
2325 case DT_AARCH64_MEMTAG_STACK
:
2328 return "Disabled (0)";
2330 return "Enabled (1)";
2332 return (Twine("Unknown (") + Twine(Value
) + ")").str();
2334 case DT_AARCH64_MEMTAG_GLOBALS
:
2335 return (Twine("0x") + utohexstr(Value
, /*LowerCase=*/true)).str();
2342 case DT_HEXAGON_VER
:
2343 return std::to_string(Value
);
2344 case DT_HEXAGON_SYMSZ
:
2345 case DT_HEXAGON_PLT
:
2346 return FormatHexValue(Value
);
2353 case DT_MIPS_RLD_VERSION
:
2354 case DT_MIPS_LOCAL_GOTNO
:
2355 case DT_MIPS_SYMTABNO
:
2356 case DT_MIPS_UNREFEXTNO
:
2357 return std::to_string(Value
);
2358 case DT_MIPS_TIME_STAMP
:
2359 case DT_MIPS_ICHECKSUM
:
2360 case DT_MIPS_IVERSION
:
2361 case DT_MIPS_BASE_ADDRESS
:
2363 case DT_MIPS_CONFLICT
:
2364 case DT_MIPS_LIBLIST
:
2365 case DT_MIPS_CONFLICTNO
:
2366 case DT_MIPS_LIBLISTNO
:
2367 case DT_MIPS_GOTSYM
:
2368 case DT_MIPS_HIPAGENO
:
2369 case DT_MIPS_RLD_MAP
:
2370 case DT_MIPS_DELTA_CLASS
:
2371 case DT_MIPS_DELTA_CLASS_NO
:
2372 case DT_MIPS_DELTA_INSTANCE
:
2373 case DT_MIPS_DELTA_RELOC
:
2374 case DT_MIPS_DELTA_RELOC_NO
:
2375 case DT_MIPS_DELTA_SYM
:
2376 case DT_MIPS_DELTA_SYM_NO
:
2377 case DT_MIPS_DELTA_CLASSSYM
:
2378 case DT_MIPS_DELTA_CLASSSYM_NO
:
2379 case DT_MIPS_CXX_FLAGS
:
2380 case DT_MIPS_PIXIE_INIT
:
2381 case DT_MIPS_SYMBOL_LIB
:
2382 case DT_MIPS_LOCALPAGE_GOTIDX
:
2383 case DT_MIPS_LOCAL_GOTIDX
:
2384 case DT_MIPS_HIDDEN_GOTIDX
:
2385 case DT_MIPS_PROTECTED_GOTIDX
:
2386 case DT_MIPS_OPTIONS
:
2387 case DT_MIPS_INTERFACE
:
2388 case DT_MIPS_DYNSTR_ALIGN
:
2389 case DT_MIPS_INTERFACE_SIZE
:
2390 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
2391 case DT_MIPS_PERF_SUFFIX
:
2392 case DT_MIPS_COMPACT_SIZE
:
2393 case DT_MIPS_GP_VALUE
:
2394 case DT_MIPS_AUX_DYNAMIC
:
2395 case DT_MIPS_PLTGOT
:
2397 case DT_MIPS_RLD_MAP_REL
:
2399 return FormatHexValue(Value
);
2401 return FormatFlags(Value
, ArrayRef(ElfDynamicDTMipsFlags
));
2412 if (Value
== DT_REL
)
2414 if (Value
== DT_RELA
)
2428 case DT_PREINIT_ARRAY
:
2435 return FormatHexValue(Value
);
2440 return std::to_string(Value
);
2448 case DT_INIT_ARRAYSZ
:
2449 case DT_FINI_ARRAYSZ
:
2450 case DT_PREINIT_ARRAYSZ
:
2453 case DT_ANDROID_RELSZ
:
2454 case DT_ANDROID_RELASZ
:
2455 return std::to_string(Value
) + " (bytes)";
2463 const std::map
<uint64_t, const char *> TagNames
= {
2464 {DT_NEEDED
, "Shared library"}, {DT_SONAME
, "Library soname"},
2465 {DT_AUXILIARY
, "Auxiliary library"}, {DT_USED
, "Not needed object"},
2466 {DT_FILTER
, "Filter library"}, {DT_RPATH
, "Library rpath"},
2467 {DT_RUNPATH
, "Library runpath"},
2470 return (Twine(TagNames
.at(Type
)) + ": [" + getDynamicString(Value
) + "]")
2474 return FormatFlags(Value
, ArrayRef(ElfDynamicDTFlags
));
2476 return FormatFlags(Value
, ArrayRef(ElfDynamicDTFlags1
));
2478 return FormatHexValue(Value
);
2482 template <class ELFT
>
2483 StringRef ELFDumper
<ELFT
>::getDynamicString(uint64_t Value
) const {
2484 if (DynamicStringTable
.empty() && !DynamicStringTable
.data()) {
2485 reportUniqueWarning("string table was not found");
2489 auto WarnAndReturn
= [this](const Twine
&Msg
, uint64_t Offset
) {
2490 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset
) +
2495 const uint64_t FileSize
= Obj
.getBufSize();
2496 const uint64_t Offset
=
2497 (const uint8_t *)DynamicStringTable
.data() - Obj
.base();
2498 if (DynamicStringTable
.size() > FileSize
- Offset
)
2499 return WarnAndReturn(" with size 0x" +
2500 Twine::utohexstr(DynamicStringTable
.size()) +
2501 " goes past the end of the file (0x" +
2502 Twine::utohexstr(FileSize
) + ")",
2505 if (Value
>= DynamicStringTable
.size())
2506 return WarnAndReturn(
2507 ": unable to read the string at 0x" + Twine::utohexstr(Offset
+ Value
) +
2508 ": it goes past the end of the table (0x" +
2509 Twine::utohexstr(Offset
+ DynamicStringTable
.size()) + ")",
2512 if (DynamicStringTable
.back() != '\0')
2513 return WarnAndReturn(": unable to read the string at 0x" +
2514 Twine::utohexstr(Offset
+ Value
) +
2515 ": the string table is not null-terminated",
2518 return DynamicStringTable
.data() + Value
;
2521 template <class ELFT
> void ELFDumper
<ELFT
>::printUnwindInfo() {
2522 DwarfCFIEH::PrinterContext
<ELFT
> Ctx(W
, ObjF
);
2523 Ctx
.printUnwindInformation();
2526 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2528 template <> void ELFDumper
<ELF32LE
>::printUnwindInfo() {
2529 if (Obj
.getHeader().e_machine
== EM_ARM
) {
2530 ARM::EHABI::PrinterContext
<ELF32LE
> Ctx(W
, Obj
, ObjF
.getFileName(),
2532 Ctx
.PrintUnwindInformation();
2534 DwarfCFIEH::PrinterContext
<ELF32LE
> Ctx(W
, ObjF
);
2535 Ctx
.printUnwindInformation();
2539 template <class ELFT
> void ELFDumper
<ELFT
>::printNeededLibraries() {
2540 ListScope
D(W
, "NeededLibraries");
2542 std::vector
<StringRef
> Libs
;
2543 for (const auto &Entry
: dynamic_table())
2544 if (Entry
.d_tag
== ELF::DT_NEEDED
)
2545 Libs
.push_back(getDynamicString(Entry
.d_un
.d_val
));
2549 for (StringRef L
: Libs
)
2550 W
.startLine() << L
<< "\n";
2553 template <class ELFT
>
2554 static Error
checkHashTable(const ELFDumper
<ELFT
> &Dumper
,
2555 const typename
ELFT::Hash
*H
,
2556 bool *IsHeaderValid
= nullptr) {
2557 const ELFFile
<ELFT
> &Obj
= Dumper
.getElfObject().getELFFile();
2558 const uint64_t SecOffset
= (const uint8_t *)H
- Obj
.base();
2559 if (Dumper
.getHashTableEntSize() == 8) {
2560 auto It
= llvm::find_if(ElfMachineType
, [&](const EnumEntry
<unsigned> &E
) {
2561 return E
.Value
== Obj
.getHeader().e_machine
;
2564 *IsHeaderValid
= false;
2565 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset
) +
2566 " is not supported: it contains non-standard 8 "
2567 "byte entries on " +
2568 It
->AltName
+ " platform");
2571 auto MakeError
= [&](const Twine
&Msg
= "") {
2572 return createError("the hash table at offset 0x" +
2573 Twine::utohexstr(SecOffset
) +
2574 " goes past the end of the file (0x" +
2575 Twine::utohexstr(Obj
.getBufSize()) + ")" + Msg
);
2578 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2579 const unsigned HeaderSize
= 2 * sizeof(typename
ELFT::Word
);
2582 *IsHeaderValid
= Obj
.getBufSize() - SecOffset
>= HeaderSize
;
2584 if (Obj
.getBufSize() - SecOffset
< HeaderSize
)
2587 if (Obj
.getBufSize() - SecOffset
- HeaderSize
<
2588 ((uint64_t)H
->nbucket
+ H
->nchain
) * sizeof(typename
ELFT::Word
))
2589 return MakeError(", nbucket = " + Twine(H
->nbucket
) +
2590 ", nchain = " + Twine(H
->nchain
));
2591 return Error::success();
2594 template <class ELFT
>
2595 static Error
checkGNUHashTable(const ELFFile
<ELFT
> &Obj
,
2596 const typename
ELFT::GnuHash
*GnuHashTable
,
2597 bool *IsHeaderValid
= nullptr) {
2598 const uint8_t *TableData
= reinterpret_cast<const uint8_t *>(GnuHashTable
);
2599 assert(TableData
>= Obj
.base() && TableData
< Obj
.base() + Obj
.getBufSize() &&
2600 "GnuHashTable must always point to a location inside the file");
2602 uint64_t TableOffset
= TableData
- Obj
.base();
2604 *IsHeaderValid
= TableOffset
+ /*Header size:*/ 16 < Obj
.getBufSize();
2605 if (TableOffset
+ 16 + (uint64_t)GnuHashTable
->nbuckets
* 4 +
2606 (uint64_t)GnuHashTable
->maskwords
* sizeof(typename
ELFT::Off
) >=
2608 return createError("unable to dump the SHT_GNU_HASH "
2610 Twine::utohexstr(TableOffset
) +
2611 ": it goes past the end of the file");
2612 return Error::success();
2615 template <typename ELFT
> void ELFDumper
<ELFT
>::printHashTable() {
2616 DictScope
D(W
, "HashTable");
2621 Error Err
= checkHashTable(*this, HashTable
, &IsHeaderValid
);
2622 if (IsHeaderValid
) {
2623 W
.printNumber("Num Buckets", HashTable
->nbucket
);
2624 W
.printNumber("Num Chains", HashTable
->nchain
);
2628 reportUniqueWarning(std::move(Err
));
2632 W
.printList("Buckets", HashTable
->buckets());
2633 W
.printList("Chains", HashTable
->chains());
2636 template <class ELFT
>
2637 static Expected
<ArrayRef
<typename
ELFT::Word
>>
2638 getGnuHashTableChains(std::optional
<DynRegionInfo
> DynSymRegion
,
2639 const typename
ELFT::GnuHash
*GnuHashTable
) {
2641 return createError("no dynamic symbol table found");
2643 ArrayRef
<typename
ELFT::Sym
> DynSymTable
=
2644 DynSymRegion
->template getAsArrayRef
<typename
ELFT::Sym
>();
2645 size_t NumSyms
= DynSymTable
.size();
2647 return createError("the dynamic symbol table is empty");
2649 if (GnuHashTable
->symndx
< NumSyms
)
2650 return GnuHashTable
->values(NumSyms
);
2652 // A normal empty GNU hash table section produced by linker might have
2653 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2654 // and have dummy null values in the Bloom filter and in the buckets
2655 // vector (or no values at all). It happens because the value of symndx is not
2656 // important for dynamic loaders when the GNU hash table is empty. They just
2657 // skip the whole object during symbol lookup. In such cases, the symndx value
2658 // is irrelevant and we should not report a warning.
2659 ArrayRef
<typename
ELFT::Word
> Buckets
= GnuHashTable
->buckets();
2660 if (!llvm::all_of(Buckets
, [](typename
ELFT::Word V
) { return V
== 0; }))
2662 "the first hashed symbol index (" + Twine(GnuHashTable
->symndx
) +
2663 ") is greater than or equal to the number of dynamic symbols (" +
2664 Twine(NumSyms
) + ")");
2665 // There is no way to represent an array of (dynamic symbols count - symndx)
2667 return ArrayRef
<typename
ELFT::Word
>();
2670 template <typename ELFT
>
2671 void ELFDumper
<ELFT
>::printGnuHashTable() {
2672 DictScope
D(W
, "GnuHashTable");
2677 Error Err
= checkGNUHashTable
<ELFT
>(Obj
, GnuHashTable
, &IsHeaderValid
);
2678 if (IsHeaderValid
) {
2679 W
.printNumber("Num Buckets", GnuHashTable
->nbuckets
);
2680 W
.printNumber("First Hashed Symbol Index", GnuHashTable
->symndx
);
2681 W
.printNumber("Num Mask Words", GnuHashTable
->maskwords
);
2682 W
.printNumber("Shift Count", GnuHashTable
->shift2
);
2686 reportUniqueWarning(std::move(Err
));
2690 ArrayRef
<typename
ELFT::Off
> BloomFilter
= GnuHashTable
->filter();
2691 W
.printHexList("Bloom Filter", BloomFilter
);
2693 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
->buckets();
2694 W
.printList("Buckets", Buckets
);
2696 Expected
<ArrayRef
<Elf_Word
>> Chains
=
2697 getGnuHashTableChains
<ELFT
>(DynSymRegion
, GnuHashTable
);
2699 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2701 toString(Chains
.takeError()));
2705 W
.printHexList("Values", *Chains
);
2708 template <typename ELFT
> void ELFDumper
<ELFT
>::printHashHistograms() {
2709 // Print histogram for the .hash section.
2710 if (this->HashTable
) {
2711 if (Error E
= checkHashTable
<ELFT
>(*this, this->HashTable
))
2712 this->reportUniqueWarning(std::move(E
));
2714 printHashHistogram(*this->HashTable
);
2717 // Print histogram for the .gnu.hash section.
2718 if (this->GnuHashTable
) {
2719 if (Error E
= checkGNUHashTable
<ELFT
>(this->Obj
, this->GnuHashTable
))
2720 this->reportUniqueWarning(std::move(E
));
2722 printGnuHashHistogram(*this->GnuHashTable
);
2726 template <typename ELFT
>
2727 void ELFDumper
<ELFT
>::printHashHistogram(const Elf_Hash
&HashTable
) const {
2728 size_t NBucket
= HashTable
.nbucket
;
2729 size_t NChain
= HashTable
.nchain
;
2730 ArrayRef
<Elf_Word
> Buckets
= HashTable
.buckets();
2731 ArrayRef
<Elf_Word
> Chains
= HashTable
.chains();
2732 size_t TotalSyms
= 0;
2733 // If hash table is correct, we have at least chains with 0 length.
2734 size_t MaxChain
= 1;
2736 if (NChain
== 0 || NBucket
== 0)
2739 std::vector
<size_t> ChainLen(NBucket
, 0);
2740 // Go over all buckets and and note chain lengths of each bucket (total
2741 // unique chain lengths).
2742 for (size_t B
= 0; B
< NBucket
; ++B
) {
2743 BitVector
Visited(NChain
);
2744 for (size_t C
= Buckets
[B
]; C
< NChain
; C
= Chains
[C
]) {
2745 if (C
== ELF::STN_UNDEF
)
2748 this->reportUniqueWarning(
2749 ".hash section is invalid: bucket " + Twine(C
) +
2750 ": a cycle was detected in the linked chain");
2754 if (MaxChain
<= ++ChainLen
[B
])
2757 TotalSyms
+= ChainLen
[B
];
2763 std::vector
<size_t> Count(MaxChain
, 0);
2764 // Count how long is the chain for each bucket.
2765 for (size_t B
= 0; B
< NBucket
; B
++)
2766 ++Count
[ChainLen
[B
]];
2767 // Print Number of buckets with each chain lengths and their cumulative
2768 // coverage of the symbols.
2769 printHashHistogramStats(NBucket
, MaxChain
, TotalSyms
, Count
, /*IsGnu=*/false);
2772 template <class ELFT
>
2773 void ELFDumper
<ELFT
>::printGnuHashHistogram(
2774 const Elf_GnuHash
&GnuHashTable
) const {
2775 Expected
<ArrayRef
<Elf_Word
>> ChainsOrErr
=
2776 getGnuHashTableChains
<ELFT
>(this->DynSymRegion
, &GnuHashTable
);
2778 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
2779 toString(ChainsOrErr
.takeError()));
2783 ArrayRef
<Elf_Word
> Chains
= *ChainsOrErr
;
2784 size_t Symndx
= GnuHashTable
.symndx
;
2785 size_t TotalSyms
= 0;
2786 size_t MaxChain
= 1;
2788 size_t NBucket
= GnuHashTable
.nbuckets
;
2789 if (Chains
.empty() || NBucket
== 0)
2792 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
.buckets();
2793 std::vector
<size_t> ChainLen(NBucket
, 0);
2794 for (size_t B
= 0; B
< NBucket
; ++B
) {
2798 for (size_t C
= Buckets
[B
] - Symndx
;
2799 C
< Chains
.size() && (Chains
[C
] & 1) == 0; ++C
)
2800 if (MaxChain
< ++Len
)
2810 std::vector
<size_t> Count(MaxChain
, 0);
2811 for (size_t B
= 0; B
< NBucket
; ++B
)
2812 ++Count
[ChainLen
[B
]];
2813 // Print Number of buckets with each chain lengths and their cumulative
2814 // coverage of the symbols.
2815 printHashHistogramStats(NBucket
, MaxChain
, TotalSyms
, Count
, /*IsGnu=*/true);
2818 template <typename ELFT
> void ELFDumper
<ELFT
>::printLoadName() {
2819 StringRef SOName
= "<Not found>";
2821 SOName
= getDynamicString(*SONameOffset
);
2822 W
.printString("LoadName", SOName
);
2825 template <class ELFT
> void ELFDumper
<ELFT
>::printArchSpecificInfo() {
2826 switch (Obj
.getHeader().e_machine
) {
2829 printAttributes(ELF::SHT_ARM_ATTRIBUTES
,
2830 std::make_unique
<ARMAttributeParser
>(&W
),
2833 reportUniqueWarning("attribute printing not implemented for big-endian "
2838 printAttributes(ELF::SHT_RISCV_ATTRIBUTES
,
2839 std::make_unique
<RISCVAttributeParser
>(&W
),
2842 reportUniqueWarning("attribute printing not implemented for big-endian "
2846 printAttributes(ELF::SHT_MSP430_ATTRIBUTES
,
2847 std::make_unique
<MSP430AttributeParser
>(&W
),
2851 printMipsABIFlags();
2854 MipsGOTParser
<ELFT
> Parser(*this);
2855 if (Error E
= Parser
.findGOT(dynamic_table(), dynamic_symbols()))
2856 reportUniqueWarning(std::move(E
));
2857 else if (!Parser
.isGotEmpty())
2858 printMipsGOT(Parser
);
2860 if (Error E
= Parser
.findPLT(dynamic_table()))
2861 reportUniqueWarning(std::move(E
));
2862 else if (!Parser
.isPltEmpty())
2863 printMipsPLT(Parser
);
2871 template <class ELFT
>
2872 void ELFDumper
<ELFT
>::printAttributes(
2873 unsigned AttrShType
, std::unique_ptr
<ELFAttributeParser
> AttrParser
,
2874 support::endianness Endianness
) {
2875 assert((AttrShType
!= ELF::SHT_NULL
) && AttrParser
&&
2876 "Incomplete ELF attribute implementation");
2877 DictScope
BA(W
, "BuildAttributes");
2878 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
2879 if (Sec
.sh_type
!= AttrShType
)
2882 ArrayRef
<uint8_t> Contents
;
2883 if (Expected
<ArrayRef
<uint8_t>> ContentOrErr
=
2884 Obj
.getSectionContents(Sec
)) {
2885 Contents
= *ContentOrErr
;
2886 if (Contents
.empty()) {
2887 reportUniqueWarning("the " + describe(Sec
) + " is empty");
2891 reportUniqueWarning("unable to read the content of the " + describe(Sec
) +
2892 ": " + toString(ContentOrErr
.takeError()));
2896 W
.printHex("FormatVersion", Contents
[0]);
2898 if (Error E
= AttrParser
->parse(Contents
, Endianness
))
2899 reportUniqueWarning("unable to dump attributes from the " +
2900 describe(Sec
) + ": " + toString(std::move(E
)));
2906 template <class ELFT
> class MipsGOTParser
{
2908 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
2909 using Entry
= typename
ELFT::Addr
;
2910 using Entries
= ArrayRef
<Entry
>;
2912 const bool IsStatic
;
2913 const ELFFile
<ELFT
> &Obj
;
2914 const ELFDumper
<ELFT
> &Dumper
;
2916 MipsGOTParser(const ELFDumper
<ELFT
> &D
);
2917 Error
findGOT(Elf_Dyn_Range DynTable
, Elf_Sym_Range DynSyms
);
2918 Error
findPLT(Elf_Dyn_Range DynTable
);
2920 bool isGotEmpty() const { return GotEntries
.empty(); }
2921 bool isPltEmpty() const { return PltEntries
.empty(); }
2923 uint64_t getGp() const;
2925 const Entry
*getGotLazyResolver() const;
2926 const Entry
*getGotModulePointer() const;
2927 const Entry
*getPltLazyResolver() const;
2928 const Entry
*getPltModulePointer() const;
2930 Entries
getLocalEntries() const;
2931 Entries
getGlobalEntries() const;
2932 Entries
getOtherEntries() const;
2933 Entries
getPltEntries() const;
2935 uint64_t getGotAddress(const Entry
* E
) const;
2936 int64_t getGotOffset(const Entry
* E
) const;
2937 const Elf_Sym
*getGotSym(const Entry
*E
) const;
2939 uint64_t getPltAddress(const Entry
* E
) const;
2940 const Elf_Sym
*getPltSym(const Entry
*E
) const;
2942 StringRef
getPltStrTable() const { return PltStrTable
; }
2943 const Elf_Shdr
*getPltSymTable() const { return PltSymTable
; }
2946 const Elf_Shdr
*GotSec
;
2950 const Elf_Shdr
*PltSec
;
2951 const Elf_Shdr
*PltRelSec
;
2952 const Elf_Shdr
*PltSymTable
;
2955 Elf_Sym_Range GotDynSyms
;
2956 StringRef PltStrTable
;
2962 } // end anonymous namespace
2964 template <class ELFT
>
2965 MipsGOTParser
<ELFT
>::MipsGOTParser(const ELFDumper
<ELFT
> &D
)
2966 : IsStatic(D
.dynamic_table().empty()), Obj(D
.getElfObject().getELFFile()),
2967 Dumper(D
), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2968 PltRelSec(nullptr), PltSymTable(nullptr),
2969 FileName(D
.getElfObject().getFileName()) {}
2971 template <class ELFT
>
2972 Error MipsGOTParser
<ELFT
>::findGOT(Elf_Dyn_Range DynTable
,
2973 Elf_Sym_Range DynSyms
) {
2974 // See "Global Offset Table" in Chapter 5 in the following document
2975 // for detailed GOT description.
2976 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2978 // Find static GOT secton.
2980 GotSec
= Dumper
.findSectionByName(".got");
2982 return Error::success();
2984 ArrayRef
<uint8_t> Content
=
2985 unwrapOrError(FileName
, Obj
.getSectionContents(*GotSec
));
2986 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
2987 Content
.size() / sizeof(Entry
));
2988 LocalNum
= GotEntries
.size();
2989 return Error::success();
2992 // Lookup dynamic table tags which define the GOT layout.
2993 std::optional
<uint64_t> DtPltGot
;
2994 std::optional
<uint64_t> DtLocalGotNum
;
2995 std::optional
<uint64_t> DtGotSym
;
2996 for (const auto &Entry
: DynTable
) {
2997 switch (Entry
.getTag()) {
2998 case ELF::DT_PLTGOT
:
2999 DtPltGot
= Entry
.getVal();
3001 case ELF::DT_MIPS_LOCAL_GOTNO
:
3002 DtLocalGotNum
= Entry
.getVal();
3004 case ELF::DT_MIPS_GOTSYM
:
3005 DtGotSym
= Entry
.getVal();
3010 if (!DtPltGot
&& !DtLocalGotNum
&& !DtGotSym
)
3011 return Error::success();
3014 return createError("cannot find PLTGOT dynamic tag");
3016 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
3018 return createError("cannot find MIPS_GOTSYM dynamic tag");
3020 size_t DynSymTotal
= DynSyms
.size();
3021 if (*DtGotSym
> DynSymTotal
)
3022 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym
) +
3023 ") exceeds the number of dynamic symbols (" +
3024 Twine(DynSymTotal
) + ")");
3026 GotSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtPltGot
);
3028 return createError("there is no non-empty GOT section at 0x" +
3029 Twine::utohexstr(*DtPltGot
));
3031 LocalNum
= *DtLocalGotNum
;
3032 GlobalNum
= DynSymTotal
- *DtGotSym
;
3034 ArrayRef
<uint8_t> Content
=
3035 unwrapOrError(FileName
, Obj
.getSectionContents(*GotSec
));
3036 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
3037 Content
.size() / sizeof(Entry
));
3038 GotDynSyms
= DynSyms
.drop_front(*DtGotSym
);
3040 return Error::success();
3043 template <class ELFT
>
3044 Error MipsGOTParser
<ELFT
>::findPLT(Elf_Dyn_Range DynTable
) {
3045 // Lookup dynamic table tags which define the PLT layout.
3046 std::optional
<uint64_t> DtMipsPltGot
;
3047 std::optional
<uint64_t> DtJmpRel
;
3048 for (const auto &Entry
: DynTable
) {
3049 switch (Entry
.getTag()) {
3050 case ELF::DT_MIPS_PLTGOT
:
3051 DtMipsPltGot
= Entry
.getVal();
3053 case ELF::DT_JMPREL
:
3054 DtJmpRel
= Entry
.getVal();
3059 if (!DtMipsPltGot
&& !DtJmpRel
)
3060 return Error::success();
3062 // Find PLT section.
3064 return createError("cannot find MIPS_PLTGOT dynamic tag");
3066 return createError("cannot find JMPREL dynamic tag");
3068 PltSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtMipsPltGot
);
3070 return createError("there is no non-empty PLTGOT section at 0x" +
3071 Twine::utohexstr(*DtMipsPltGot
));
3073 PltRelSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtJmpRel
);
3075 return createError("there is no non-empty RELPLT section at 0x" +
3076 Twine::utohexstr(*DtJmpRel
));
3078 if (Expected
<ArrayRef
<uint8_t>> PltContentOrErr
=
3079 Obj
.getSectionContents(*PltSec
))
3081 Entries(reinterpret_cast<const Entry
*>(PltContentOrErr
->data()),
3082 PltContentOrErr
->size() / sizeof(Entry
));
3084 return createError("unable to read PLTGOT section content: " +
3085 toString(PltContentOrErr
.takeError()));
3087 if (Expected
<const Elf_Shdr
*> PltSymTableOrErr
=
3088 Obj
.getSection(PltRelSec
->sh_link
))
3089 PltSymTable
= *PltSymTableOrErr
;
3091 return createError("unable to get a symbol table linked to the " +
3092 describe(Obj
, *PltRelSec
) + ": " +
3093 toString(PltSymTableOrErr
.takeError()));
3095 if (Expected
<StringRef
> StrTabOrErr
=
3096 Obj
.getStringTableForSymtab(*PltSymTable
))
3097 PltStrTable
= *StrTabOrErr
;
3099 return createError("unable to get a string table for the " +
3100 describe(Obj
, *PltSymTable
) + ": " +
3101 toString(StrTabOrErr
.takeError()));
3103 return Error::success();
3106 template <class ELFT
> uint64_t MipsGOTParser
<ELFT
>::getGp() const {
3107 return GotSec
->sh_addr
+ 0x7ff0;
3110 template <class ELFT
>
3111 const typename MipsGOTParser
<ELFT
>::Entry
*
3112 MipsGOTParser
<ELFT
>::getGotLazyResolver() const {
3113 return LocalNum
> 0 ? &GotEntries
[0] : nullptr;
3116 template <class ELFT
>
3117 const typename MipsGOTParser
<ELFT
>::Entry
*
3118 MipsGOTParser
<ELFT
>::getGotModulePointer() const {
3121 const Entry
&E
= GotEntries
[1];
3122 if ((E
>> (sizeof(Entry
) * 8 - 1)) == 0)
3127 template <class ELFT
>
3128 typename MipsGOTParser
<ELFT
>::Entries
3129 MipsGOTParser
<ELFT
>::getLocalEntries() const {
3130 size_t Skip
= getGotModulePointer() ? 2 : 1;
3131 if (LocalNum
- Skip
<= 0)
3133 return GotEntries
.slice(Skip
, LocalNum
- Skip
);
3136 template <class ELFT
>
3137 typename MipsGOTParser
<ELFT
>::Entries
3138 MipsGOTParser
<ELFT
>::getGlobalEntries() const {
3141 return GotEntries
.slice(LocalNum
, GlobalNum
);
3144 template <class ELFT
>
3145 typename MipsGOTParser
<ELFT
>::Entries
3146 MipsGOTParser
<ELFT
>::getOtherEntries() const {
3147 size_t OtherNum
= GotEntries
.size() - LocalNum
- GlobalNum
;
3150 return GotEntries
.slice(LocalNum
+ GlobalNum
, OtherNum
);
3153 template <class ELFT
>
3154 uint64_t MipsGOTParser
<ELFT
>::getGotAddress(const Entry
*E
) const {
3155 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
3156 return GotSec
->sh_addr
+ Offset
;
3159 template <class ELFT
>
3160 int64_t MipsGOTParser
<ELFT
>::getGotOffset(const Entry
*E
) const {
3161 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
3162 return Offset
- 0x7ff0;
3165 template <class ELFT
>
3166 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
3167 MipsGOTParser
<ELFT
>::getGotSym(const Entry
*E
) const {
3168 int64_t Offset
= std::distance(GotEntries
.data(), E
);
3169 return &GotDynSyms
[Offset
- LocalNum
];
3172 template <class ELFT
>
3173 const typename MipsGOTParser
<ELFT
>::Entry
*
3174 MipsGOTParser
<ELFT
>::getPltLazyResolver() const {
3175 return PltEntries
.empty() ? nullptr : &PltEntries
[0];
3178 template <class ELFT
>
3179 const typename MipsGOTParser
<ELFT
>::Entry
*
3180 MipsGOTParser
<ELFT
>::getPltModulePointer() const {
3181 return PltEntries
.size() < 2 ? nullptr : &PltEntries
[1];
3184 template <class ELFT
>
3185 typename MipsGOTParser
<ELFT
>::Entries
3186 MipsGOTParser
<ELFT
>::getPltEntries() const {
3187 if (PltEntries
.size() <= 2)
3189 return PltEntries
.slice(2, PltEntries
.size() - 2);
3192 template <class ELFT
>
3193 uint64_t MipsGOTParser
<ELFT
>::getPltAddress(const Entry
*E
) const {
3194 int64_t Offset
= std::distance(PltEntries
.data(), E
) * sizeof(Entry
);
3195 return PltSec
->sh_addr
+ Offset
;
3198 template <class ELFT
>
3199 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
3200 MipsGOTParser
<ELFT
>::getPltSym(const Entry
*E
) const {
3201 int64_t Offset
= std::distance(getPltEntries().data(), E
);
3202 if (PltRelSec
->sh_type
== ELF::SHT_REL
) {
3203 Elf_Rel_Range Rels
= unwrapOrError(FileName
, Obj
.rels(*PltRelSec
));
3204 return unwrapOrError(FileName
,
3205 Obj
.getRelocationSymbol(Rels
[Offset
], PltSymTable
));
3207 Elf_Rela_Range Rels
= unwrapOrError(FileName
, Obj
.relas(*PltRelSec
));
3208 return unwrapOrError(FileName
,
3209 Obj
.getRelocationSymbol(Rels
[Offset
], PltSymTable
));
3213 const EnumEntry
<unsigned> ElfMipsISAExtType
[] = {
3214 {"None", Mips::AFL_EXT_NONE
},
3215 {"Broadcom SB-1", Mips::AFL_EXT_SB1
},
3216 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON
},
3217 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2
},
3218 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP
},
3219 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3
},
3220 {"LSI R4010", Mips::AFL_EXT_4010
},
3221 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E
},
3222 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F
},
3223 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A
},
3224 {"MIPS R4650", Mips::AFL_EXT_4650
},
3225 {"MIPS R5900", Mips::AFL_EXT_5900
},
3226 {"MIPS R10000", Mips::AFL_EXT_10000
},
3227 {"NEC VR4100", Mips::AFL_EXT_4100
},
3228 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111
},
3229 {"NEC VR4120", Mips::AFL_EXT_4120
},
3230 {"NEC VR5400", Mips::AFL_EXT_5400
},
3231 {"NEC VR5500", Mips::AFL_EXT_5500
},
3232 {"RMI Xlr", Mips::AFL_EXT_XLR
},
3233 {"Toshiba R3900", Mips::AFL_EXT_3900
}
3236 const EnumEntry
<unsigned> ElfMipsASEFlags
[] = {
3237 {"DSP", Mips::AFL_ASE_DSP
},
3238 {"DSPR2", Mips::AFL_ASE_DSPR2
},
3239 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA
},
3240 {"MCU", Mips::AFL_ASE_MCU
},
3241 {"MDMX", Mips::AFL_ASE_MDMX
},
3242 {"MIPS-3D", Mips::AFL_ASE_MIPS3D
},
3243 {"MT", Mips::AFL_ASE_MT
},
3244 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS
},
3245 {"VZ", Mips::AFL_ASE_VIRT
},
3246 {"MSA", Mips::AFL_ASE_MSA
},
3247 {"MIPS16", Mips::AFL_ASE_MIPS16
},
3248 {"microMIPS", Mips::AFL_ASE_MICROMIPS
},
3249 {"XPA", Mips::AFL_ASE_XPA
},
3250 {"CRC", Mips::AFL_ASE_CRC
},
3251 {"GINV", Mips::AFL_ASE_GINV
},
3254 const EnumEntry
<unsigned> ElfMipsFpABIType
[] = {
3255 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY
},
3256 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE
},
3257 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE
},
3258 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT
},
3259 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3260 Mips::Val_GNU_MIPS_ABI_FP_OLD_64
},
3261 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX
},
3262 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64
},
3263 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3264 Mips::Val_GNU_MIPS_ABI_FP_64A
}
3267 static const EnumEntry
<unsigned> ElfMipsFlags1
[] {
3268 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG
},
3271 static int getMipsRegisterSize(uint8_t Flag
) {
3273 case Mips::AFL_REG_NONE
:
3275 case Mips::AFL_REG_32
:
3277 case Mips::AFL_REG_64
:
3279 case Mips::AFL_REG_128
:
3286 template <class ELFT
>
3287 static void printMipsReginfoData(ScopedPrinter
&W
,
3288 const Elf_Mips_RegInfo
<ELFT
> &Reginfo
) {
3289 W
.printHex("GP", Reginfo
.ri_gp_value
);
3290 W
.printHex("General Mask", Reginfo
.ri_gprmask
);
3291 W
.printHex("Co-Proc Mask0", Reginfo
.ri_cprmask
[0]);
3292 W
.printHex("Co-Proc Mask1", Reginfo
.ri_cprmask
[1]);
3293 W
.printHex("Co-Proc Mask2", Reginfo
.ri_cprmask
[2]);
3294 W
.printHex("Co-Proc Mask3", Reginfo
.ri_cprmask
[3]);
3297 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsReginfo() {
3298 const Elf_Shdr
*RegInfoSec
= findSectionByName(".reginfo");
3300 W
.startLine() << "There is no .reginfo section in the file.\n";
3304 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
=
3305 Obj
.getSectionContents(*RegInfoSec
);
3306 if (!ContentsOrErr
) {
3307 this->reportUniqueWarning(
3308 "unable to read the content of the .reginfo section (" +
3309 describe(*RegInfoSec
) + "): " + toString(ContentsOrErr
.takeError()));
3313 if (ContentsOrErr
->size() < sizeof(Elf_Mips_RegInfo
<ELFT
>)) {
3314 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3315 Twine::utohexstr(ContentsOrErr
->size()) + ")");
3319 DictScope
GS(W
, "MIPS RegInfo");
3320 printMipsReginfoData(W
, *reinterpret_cast<const Elf_Mips_RegInfo
<ELFT
> *>(
3321 ContentsOrErr
->data()));
3324 template <class ELFT
>
3325 static Expected
<const Elf_Mips_Options
<ELFT
> *>
3326 readMipsOptions(const uint8_t *SecBegin
, ArrayRef
<uint8_t> &SecData
,
3327 bool &IsSupported
) {
3328 if (SecData
.size() < sizeof(Elf_Mips_Options
<ELFT
>))
3329 return createError("the .MIPS.options section has an invalid size (0x" +
3330 Twine::utohexstr(SecData
.size()) + ")");
3332 const Elf_Mips_Options
<ELFT
> *O
=
3333 reinterpret_cast<const Elf_Mips_Options
<ELFT
> *>(SecData
.data());
3334 const uint8_t Size
= O
->size
;
3335 if (Size
> SecData
.size()) {
3336 const uint64_t Offset
= SecData
.data() - SecBegin
;
3337 const uint64_t SecSize
= Offset
+ SecData
.size();
3338 return createError("a descriptor of size 0x" + Twine::utohexstr(Size
) +
3339 " at offset 0x" + Twine::utohexstr(Offset
) +
3340 " goes past the end of the .MIPS.options "
3341 "section of size 0x" +
3342 Twine::utohexstr(SecSize
));
3345 IsSupported
= O
->kind
== ODK_REGINFO
;
3346 const size_t ExpectedSize
=
3347 sizeof(Elf_Mips_Options
<ELFT
>) + sizeof(Elf_Mips_RegInfo
<ELFT
>);
3350 if (Size
< ExpectedSize
)
3352 "a .MIPS.options entry of kind " +
3353 Twine(getElfMipsOptionsOdkType(O
->kind
)) +
3354 " has an invalid size (0x" + Twine::utohexstr(Size
) +
3355 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize
));
3357 SecData
= SecData
.drop_front(Size
);
3361 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsOptions() {
3362 const Elf_Shdr
*MipsOpts
= findSectionByName(".MIPS.options");
3364 W
.startLine() << "There is no .MIPS.options section in the file.\n";
3368 DictScope
GS(W
, "MIPS Options");
3370 ArrayRef
<uint8_t> Data
=
3371 unwrapOrError(ObjF
.getFileName(), Obj
.getSectionContents(*MipsOpts
));
3372 const uint8_t *const SecBegin
= Data
.begin();
3373 while (!Data
.empty()) {
3375 Expected
<const Elf_Mips_Options
<ELFT
> *> OptsOrErr
=
3376 readMipsOptions
<ELFT
>(SecBegin
, Data
, IsSupported
);
3378 reportUniqueWarning(OptsOrErr
.takeError());
3382 unsigned Kind
= (*OptsOrErr
)->kind
;
3383 const char *Type
= getElfMipsOptionsOdkType(Kind
);
3385 W
.startLine() << "Unsupported MIPS options tag: " << Type
<< " (" << Kind
3390 DictScope
GS(W
, Type
);
3391 if (Kind
== ODK_REGINFO
)
3392 printMipsReginfoData(W
, (*OptsOrErr
)->getRegInfo());
3394 llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3398 template <class ELFT
> void ELFDumper
<ELFT
>::printStackMap() const {
3399 const Elf_Shdr
*StackMapSection
= findSectionByName(".llvm_stackmaps");
3400 if (!StackMapSection
)
3403 auto Warn
= [&](Error
&&E
) {
3404 this->reportUniqueWarning("unable to read the stack map from " +
3405 describe(*StackMapSection
) + ": " +
3406 toString(std::move(E
)));
3409 Expected
<ArrayRef
<uint8_t>> ContentOrErr
=
3410 Obj
.getSectionContents(*StackMapSection
);
3411 if (!ContentOrErr
) {
3412 Warn(ContentOrErr
.takeError());
3416 if (Error E
= StackMapParser
<ELFT::TargetEndianness
>::validateHeader(
3422 prettyPrintStackMap(W
, StackMapParser
<ELFT::TargetEndianness
>(*ContentOrErr
));
3425 template <class ELFT
>
3426 void ELFDumper
<ELFT
>::printReloc(const Relocation
<ELFT
> &R
, unsigned RelIndex
,
3427 const Elf_Shdr
&Sec
, const Elf_Shdr
*SymTab
) {
3428 Expected
<RelSymbol
<ELFT
>> Target
= getRelocationTarget(R
, SymTab
);
3430 reportUniqueWarning("unable to print relocation " + Twine(RelIndex
) +
3431 " in " + describe(Sec
) + ": " +
3432 toString(Target
.takeError()));
3434 printRelRelaReloc(R
, *Target
);
3437 template <class ELFT
>
3438 std::vector
<EnumEntry
<unsigned>>
3439 ELFDumper
<ELFT
>::getOtherFlagsFromSymbol(const Elf_Ehdr
&Header
,
3440 const Elf_Sym
&Symbol
) const {
3441 std::vector
<EnumEntry
<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags
),
3442 std::end(ElfSymOtherFlags
));
3443 if (Header
.e_machine
== EM_MIPS
) {
3444 // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16
3445 // flag overlap with other ST_MIPS_xxx flags. So consider both
3446 // cases separately.
3447 if ((Symbol
.st_other
& STO_MIPS_MIPS16
) == STO_MIPS_MIPS16
)
3448 SymOtherFlags
.insert(SymOtherFlags
.end(),
3449 std::begin(ElfMips16SymOtherFlags
),
3450 std::end(ElfMips16SymOtherFlags
));
3452 SymOtherFlags
.insert(SymOtherFlags
.end(),
3453 std::begin(ElfMipsSymOtherFlags
),
3454 std::end(ElfMipsSymOtherFlags
));
3455 } else if (Header
.e_machine
== EM_AARCH64
) {
3456 SymOtherFlags
.insert(SymOtherFlags
.end(),
3457 std::begin(ElfAArch64SymOtherFlags
),
3458 std::end(ElfAArch64SymOtherFlags
));
3459 } else if (Header
.e_machine
== EM_RISCV
) {
3460 SymOtherFlags
.insert(SymOtherFlags
.end(), std::begin(ElfRISCVSymOtherFlags
),
3461 std::end(ElfRISCVSymOtherFlags
));
3463 return SymOtherFlags
;
3466 static inline void printFields(formatted_raw_ostream
&OS
, StringRef Str1
,
3470 OS
.PadToColumn(37u);
3475 template <class ELFT
>
3476 static std::string
getSectionHeadersNumString(const ELFFile
<ELFT
> &Obj
,
3477 StringRef FileName
) {
3478 const typename
ELFT::Ehdr
&ElfHeader
= Obj
.getHeader();
3479 if (ElfHeader
.e_shnum
!= 0)
3480 return to_string(ElfHeader
.e_shnum
);
3482 Expected
<ArrayRef
<typename
ELFT::Shdr
>> ArrOrErr
= Obj
.sections();
3484 // In this case we can ignore an error, because we have already reported a
3485 // warning about the broken section header table earlier.
3486 consumeError(ArrOrErr
.takeError());
3490 if (ArrOrErr
->empty())
3492 return "0 (" + to_string((*ArrOrErr
)[0].sh_size
) + ")";
3495 template <class ELFT
>
3496 static std::string
getSectionHeaderTableIndexString(const ELFFile
<ELFT
> &Obj
,
3497 StringRef FileName
) {
3498 const typename
ELFT::Ehdr
&ElfHeader
= Obj
.getHeader();
3499 if (ElfHeader
.e_shstrndx
!= SHN_XINDEX
)
3500 return to_string(ElfHeader
.e_shstrndx
);
3502 Expected
<ArrayRef
<typename
ELFT::Shdr
>> ArrOrErr
= Obj
.sections();
3504 // In this case we can ignore an error, because we have already reported a
3505 // warning about the broken section header table earlier.
3506 consumeError(ArrOrErr
.takeError());
3510 if (ArrOrErr
->empty())
3511 return "65535 (corrupt: out of range)";
3512 return to_string(ElfHeader
.e_shstrndx
) + " (" +
3513 to_string((*ArrOrErr
)[0].sh_link
) + ")";
3516 static const EnumEntry
<unsigned> *getObjectFileEnumEntry(unsigned Type
) {
3517 auto It
= llvm::find_if(ElfObjectFileType
, [&](const EnumEntry
<unsigned> &E
) {
3518 return E
.Value
== Type
;
3520 if (It
!= ArrayRef(ElfObjectFileType
).end())
3525 template <class ELFT
>
3526 void GNUELFDumper
<ELFT
>::printFileSummary(StringRef FileStr
, ObjectFile
&Obj
,
3527 ArrayRef
<std::string
> InputFilenames
,
3529 if (InputFilenames
.size() > 1 || A
) {
3530 this->W
.startLine() << "\n";
3531 this->W
.printString("File", FileStr
);
3535 template <class ELFT
> void GNUELFDumper
<ELFT
>::printFileHeaders() {
3536 const Elf_Ehdr
&e
= this->Obj
.getHeader();
3537 OS
<< "ELF Header:\n";
3540 for (int i
= 0; i
< ELF::EI_NIDENT
; i
++)
3541 OS
<< format(" %02x", static_cast<int>(e
.e_ident
[i
]));
3543 Str
= enumToString(e
.e_ident
[ELF::EI_CLASS
], ArrayRef(ElfClass
));
3544 printFields(OS
, "Class:", Str
);
3545 Str
= enumToString(e
.e_ident
[ELF::EI_DATA
], ArrayRef(ElfDataEncoding
));
3546 printFields(OS
, "Data:", Str
);
3549 OS
.PadToColumn(37u);
3550 OS
<< utohexstr(e
.e_ident
[ELF::EI_VERSION
]);
3551 if (e
.e_version
== ELF::EV_CURRENT
)
3554 Str
= enumToString(e
.e_ident
[ELF::EI_OSABI
], ArrayRef(ElfOSABI
));
3555 printFields(OS
, "OS/ABI:", Str
);
3557 "ABI Version:", std::to_string(e
.e_ident
[ELF::EI_ABIVERSION
]));
3559 if (const EnumEntry
<unsigned> *E
= getObjectFileEnumEntry(e
.e_type
)) {
3560 Str
= E
->AltName
.str();
3562 if (e
.e_type
>= ET_LOPROC
)
3563 Str
= "Processor Specific: (" + utohexstr(e
.e_type
, /*LowerCase=*/true) + ")";
3564 else if (e
.e_type
>= ET_LOOS
)
3565 Str
= "OS Specific: (" + utohexstr(e
.e_type
, /*LowerCase=*/true) + ")";
3567 Str
= "<unknown>: " + utohexstr(e
.e_type
, /*LowerCase=*/true);
3569 printFields(OS
, "Type:", Str
);
3571 Str
= enumToString(e
.e_machine
, ArrayRef(ElfMachineType
));
3572 printFields(OS
, "Machine:", Str
);
3573 Str
= "0x" + utohexstr(e
.e_version
);
3574 printFields(OS
, "Version:", Str
);
3575 Str
= "0x" + utohexstr(e
.e_entry
);
3576 printFields(OS
, "Entry point address:", Str
);
3577 Str
= to_string(e
.e_phoff
) + " (bytes into file)";
3578 printFields(OS
, "Start of program headers:", Str
);
3579 Str
= to_string(e
.e_shoff
) + " (bytes into file)";
3580 printFields(OS
, "Start of section headers:", Str
);
3581 std::string ElfFlags
;
3582 if (e
.e_machine
== EM_MIPS
)
3583 ElfFlags
= printFlags(
3584 e
.e_flags
, ArrayRef(ElfHeaderMipsFlags
), unsigned(ELF::EF_MIPS_ARCH
),
3585 unsigned(ELF::EF_MIPS_ABI
), unsigned(ELF::EF_MIPS_MACH
));
3586 else if (e
.e_machine
== EM_RISCV
)
3587 ElfFlags
= printFlags(e
.e_flags
, ArrayRef(ElfHeaderRISCVFlags
));
3588 else if (e
.e_machine
== EM_AVR
)
3589 ElfFlags
= printFlags(e
.e_flags
, ArrayRef(ElfHeaderAVRFlags
),
3590 unsigned(ELF::EF_AVR_ARCH_MASK
));
3591 else if (e
.e_machine
== EM_LOONGARCH
)
3592 ElfFlags
= printFlags(e
.e_flags
, ArrayRef(ElfHeaderLoongArchFlags
),
3593 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK
),
3594 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK
));
3595 else if (e
.e_machine
== EM_XTENSA
)
3596 ElfFlags
= printFlags(e
.e_flags
, ArrayRef(ElfHeaderXtensaFlags
),
3597 unsigned(ELF::EF_XTENSA_MACH
));
3598 Str
= "0x" + utohexstr(e
.e_flags
);
3599 if (!ElfFlags
.empty())
3600 Str
= Str
+ ", " + ElfFlags
;
3601 printFields(OS
, "Flags:", Str
);
3602 Str
= to_string(e
.e_ehsize
) + " (bytes)";
3603 printFields(OS
, "Size of this header:", Str
);
3604 Str
= to_string(e
.e_phentsize
) + " (bytes)";
3605 printFields(OS
, "Size of program headers:", Str
);
3606 Str
= to_string(e
.e_phnum
);
3607 printFields(OS
, "Number of program headers:", Str
);
3608 Str
= to_string(e
.e_shentsize
) + " (bytes)";
3609 printFields(OS
, "Size of section headers:", Str
);
3610 Str
= getSectionHeadersNumString(this->Obj
, this->FileName
);
3611 printFields(OS
, "Number of section headers:", Str
);
3612 Str
= getSectionHeaderTableIndexString(this->Obj
, this->FileName
);
3613 printFields(OS
, "Section header string table index:", Str
);
3616 template <class ELFT
> std::vector
<GroupSection
> ELFDumper
<ELFT
>::getGroups() {
3617 auto GetSignature
= [&](const Elf_Sym
&Sym
, unsigned SymNdx
,
3618 const Elf_Shdr
&Symtab
) -> StringRef
{
3619 Expected
<StringRef
> StrTableOrErr
= Obj
.getStringTableForSymtab(Symtab
);
3620 if (!StrTableOrErr
) {
3621 reportUniqueWarning("unable to get the string table for " +
3622 describe(Symtab
) + ": " +
3623 toString(StrTableOrErr
.takeError()));
3627 StringRef Strings
= *StrTableOrErr
;
3628 if (Sym
.st_name
>= Strings
.size()) {
3629 reportUniqueWarning("unable to get the name of the symbol with index " +
3630 Twine(SymNdx
) + ": st_name (0x" +
3631 Twine::utohexstr(Sym
.st_name
) +
3632 ") is past the end of the string table of size 0x" +
3633 Twine::utohexstr(Strings
.size()));
3637 return StrTableOrErr
->data() + Sym
.st_name
;
3640 std::vector
<GroupSection
> Ret
;
3642 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
3644 if (Sec
.sh_type
!= ELF::SHT_GROUP
)
3647 StringRef Signature
= "<?>";
3648 if (Expected
<const Elf_Shdr
*> SymtabOrErr
= Obj
.getSection(Sec
.sh_link
)) {
3649 if (Expected
<const Elf_Sym
*> SymOrErr
=
3650 Obj
.template getEntry
<Elf_Sym
>(**SymtabOrErr
, Sec
.sh_info
))
3651 Signature
= GetSignature(**SymOrErr
, Sec
.sh_info
, **SymtabOrErr
);
3653 reportUniqueWarning("unable to get the signature symbol for " +
3654 describe(Sec
) + ": " +
3655 toString(SymOrErr
.takeError()));
3657 reportUniqueWarning("unable to get the symbol table for " +
3658 describe(Sec
) + ": " +
3659 toString(SymtabOrErr
.takeError()));
3662 ArrayRef
<Elf_Word
> Data
;
3663 if (Expected
<ArrayRef
<Elf_Word
>> ContentsOrErr
=
3664 Obj
.template getSectionContentsAsArray
<Elf_Word
>(Sec
)) {
3665 if (ContentsOrErr
->empty())
3666 reportUniqueWarning("unable to read the section group flag from the " +
3667 describe(Sec
) + ": the section is empty");
3669 Data
= *ContentsOrErr
;
3671 reportUniqueWarning("unable to get the content of the " + describe(Sec
) +
3672 ": " + toString(ContentsOrErr
.takeError()));
3675 Ret
.push_back({getPrintableSectionName(Sec
),
3676 maybeDemangle(Signature
),
3681 Data
.empty() ? Elf_Word(0) : Data
[0],
3687 std::vector
<GroupMember
> &GM
= Ret
.back().Members
;
3688 for (uint32_t Ndx
: Data
.slice(1)) {
3689 if (Expected
<const Elf_Shdr
*> SecOrErr
= Obj
.getSection(Ndx
)) {
3690 GM
.push_back({getPrintableSectionName(**SecOrErr
), Ndx
});
3692 reportUniqueWarning("unable to get the section with index " +
3693 Twine(Ndx
) + " when dumping the " + describe(Sec
) +
3694 ": " + toString(SecOrErr
.takeError()));
3695 GM
.push_back({"<?>", Ndx
});
3702 static DenseMap
<uint64_t, const GroupSection
*>
3703 mapSectionsToGroups(ArrayRef
<GroupSection
> Groups
) {
3704 DenseMap
<uint64_t, const GroupSection
*> Ret
;
3705 for (const GroupSection
&G
: Groups
)
3706 for (const GroupMember
&GM
: G
.Members
)
3707 Ret
.insert({GM
.Index
, &G
});
3711 template <class ELFT
> void GNUELFDumper
<ELFT
>::printGroupSections() {
3712 std::vector
<GroupSection
> V
= this->getGroups();
3713 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
3714 for (const GroupSection
&G
: V
) {
3716 << getGroupType(G
.Type
) << " group section ["
3717 << format_decimal(G
.Index
, 5) << "] `" << G
.Name
<< "' [" << G
.Signature
3718 << "] contains " << G
.Members
.size() << " sections:\n"
3719 << " [Index] Name\n";
3720 for (const GroupMember
&GM
: G
.Members
) {
3721 const GroupSection
*MainGroup
= Map
[GM
.Index
];
3722 if (MainGroup
!= &G
)
3723 this->reportUniqueWarning(
3724 "section with index " + Twine(GM
.Index
) +
3725 ", included in the group section with index " +
3726 Twine(MainGroup
->Index
) +
3727 ", was also found in the group section with index " +
3729 OS
<< " [" << format_decimal(GM
.Index
, 5) << "] " << GM
.Name
<< "\n";
3734 OS
<< "There are no section groups in this file.\n";
3737 template <class ELFT
>
3738 void GNUELFDumper
<ELFT
>::printRelrReloc(const Elf_Relr
&R
) {
3739 OS
<< to_string(format_hex_no_prefix(R
, ELFT::Is64Bits
? 16 : 8)) << "\n";
3742 template <class ELFT
>
3743 void GNUELFDumper
<ELFT
>::printRelRelaReloc(const Relocation
<ELFT
> &R
,
3744 const RelSymbol
<ELFT
> &RelSym
) {
3745 // First two fields are bit width dependent. The rest of them are fixed width.
3746 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3747 Field Fields
[5] = {0, 10 + Bias
, 19 + 2 * Bias
, 42 + 2 * Bias
, 53 + 2 * Bias
};
3748 unsigned Width
= ELFT::Is64Bits
? 16 : 8;
3750 Fields
[0].Str
= to_string(format_hex_no_prefix(R
.Offset
, Width
));
3751 Fields
[1].Str
= to_string(format_hex_no_prefix(R
.Info
, Width
));
3753 SmallString
<32> RelocName
;
3754 this->Obj
.getRelocationTypeName(R
.Type
, RelocName
);
3755 Fields
[2].Str
= RelocName
.c_str();
3759 to_string(format_hex_no_prefix(RelSym
.Sym
->getValue(), Width
));
3761 Fields
[4].Str
= std::string(RelSym
.Name
);
3762 for (const Field
&F
: Fields
)
3766 if (std::optional
<int64_t> A
= R
.Addend
) {
3767 int64_t RelAddend
= *A
;
3768 if (!RelSym
.Name
.empty()) {
3769 if (RelAddend
< 0) {
3771 RelAddend
= std::abs(RelAddend
);
3776 Addend
+= utohexstr(RelAddend
, /*LowerCase=*/true);
3778 OS
<< Addend
<< "\n";
3781 template <class ELFT
>
3782 static void printRelocHeaderFields(formatted_raw_ostream
&OS
, unsigned SType
) {
3783 bool IsRela
= SType
== ELF::SHT_RELA
|| SType
== ELF::SHT_ANDROID_RELA
;
3784 bool IsRelr
= SType
== ELF::SHT_RELR
|| SType
== ELF::SHT_ANDROID_RELR
;
3789 if (IsRelr
&& opts::RawRelr
)
3795 << " Symbol's Value Symbol's Name";
3797 OS
<< " Info Type Sym. Value Symbol's Name";
3803 template <class ELFT
>
3804 void GNUELFDumper
<ELFT
>::printDynamicRelocHeader(unsigned Type
, StringRef Name
,
3805 const DynRegionInfo
&Reg
) {
3806 uint64_t Offset
= Reg
.Addr
- this->Obj
.base();
3807 OS
<< "\n'" << Name
.str().c_str() << "' relocation section at offset 0x"
3808 << utohexstr(Offset
, /*LowerCase=*/true) << " contains " << Reg
.Size
<< " bytes:\n";
3809 printRelocHeaderFields
<ELFT
>(OS
, Type
);
3812 template <class ELFT
>
3813 static bool isRelocationSec(const typename
ELFT::Shdr
&Sec
) {
3814 return Sec
.sh_type
== ELF::SHT_REL
|| Sec
.sh_type
== ELF::SHT_RELA
||
3815 Sec
.sh_type
== ELF::SHT_RELR
|| Sec
.sh_type
== ELF::SHT_ANDROID_REL
||
3816 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
||
3817 Sec
.sh_type
== ELF::SHT_ANDROID_RELR
;
3820 template <class ELFT
> void GNUELFDumper
<ELFT
>::printRelocations() {
3821 auto GetEntriesNum
= [&](const Elf_Shdr
&Sec
) -> Expected
<size_t> {
3822 // Android's packed relocation section needs to be unpacked first
3823 // to get the actual number of entries.
3824 if (Sec
.sh_type
== ELF::SHT_ANDROID_REL
||
3825 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
) {
3826 Expected
<std::vector
<typename
ELFT::Rela
>> RelasOrErr
=
3827 this->Obj
.android_relas(Sec
);
3829 return RelasOrErr
.takeError();
3830 return RelasOrErr
->size();
3833 if (!opts::RawRelr
&& (Sec
.sh_type
== ELF::SHT_RELR
||
3834 Sec
.sh_type
== ELF::SHT_ANDROID_RELR
)) {
3835 Expected
<Elf_Relr_Range
> RelrsOrErr
= this->Obj
.relrs(Sec
);
3837 return RelrsOrErr
.takeError();
3838 return this->Obj
.decode_relrs(*RelrsOrErr
).size();
3841 return Sec
.getEntityCount();
3844 bool HasRelocSections
= false;
3845 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
3846 if (!isRelocationSec
<ELFT
>(Sec
))
3848 HasRelocSections
= true;
3850 std::string EntriesNum
= "<?>";
3851 if (Expected
<size_t> NumOrErr
= GetEntriesNum(Sec
))
3852 EntriesNum
= std::to_string(*NumOrErr
);
3854 this->reportUniqueWarning("unable to get the number of relocations in " +
3855 this->describe(Sec
) + ": " +
3856 toString(NumOrErr
.takeError()));
3858 uintX_t Offset
= Sec
.sh_offset
;
3859 StringRef Name
= this->getPrintableSectionName(Sec
);
3860 OS
<< "\nRelocation section '" << Name
<< "' at offset 0x"
3861 << utohexstr(Offset
, /*LowerCase=*/true) << " contains " << EntriesNum
3863 printRelocHeaderFields
<ELFT
>(OS
, Sec
.sh_type
);
3864 this->printRelocationsHelper(Sec
);
3866 if (!HasRelocSections
)
3867 OS
<< "\nThere are no relocations in this file.\n";
3870 // Print the offset of a particular section from anyone of the ranges:
3871 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3872 // If 'Type' does not fall within any of those ranges, then a string is
3873 // returned as '<unknown>' followed by the type value.
3874 static std::string
getSectionTypeOffsetString(unsigned Type
) {
3875 if (Type
>= SHT_LOOS
&& Type
<= SHT_HIOS
)
3876 return "LOOS+0x" + utohexstr(Type
- SHT_LOOS
);
3877 else if (Type
>= SHT_LOPROC
&& Type
<= SHT_HIPROC
)
3878 return "LOPROC+0x" + utohexstr(Type
- SHT_LOPROC
);
3879 else if (Type
>= SHT_LOUSER
&& Type
<= SHT_HIUSER
)
3880 return "LOUSER+0x" + utohexstr(Type
- SHT_LOUSER
);
3881 return "0x" + utohexstr(Type
) + ": <unknown>";
3884 static std::string
getSectionTypeString(unsigned Machine
, unsigned Type
) {
3885 StringRef Name
= getELFSectionTypeName(Machine
, Type
);
3887 // Handle SHT_GNU_* type names.
3888 if (Name
.consume_front("SHT_GNU_")) {
3891 // E.g. SHT_GNU_verneed -> VERNEED.
3892 return Name
.upper();
3895 if (Name
== "SHT_SYMTAB_SHNDX")
3896 return "SYMTAB SECTION INDICES";
3898 if (Name
.consume_front("SHT_"))
3900 return getSectionTypeOffsetString(Type
);
3903 static void printSectionDescription(formatted_raw_ostream
&OS
,
3904 unsigned EMachine
) {
3905 OS
<< "Key to Flags:\n";
3906 OS
<< " W (write), A (alloc), X (execute), M (merge), S (strings), I "
3908 OS
<< " L (link order), O (extra OS processing required), G (group), T "
3910 OS
<< " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3911 OS
<< " R (retain)";
3913 if (EMachine
== EM_X86_64
)
3914 OS
<< ", l (large)";
3915 else if (EMachine
== EM_ARM
)
3916 OS
<< ", y (purecode)";
3918 OS
<< ", p (processor specific)\n";
3921 template <class ELFT
> void GNUELFDumper
<ELFT
>::printSectionHeaders() {
3922 ArrayRef
<Elf_Shdr
> Sections
= cantFail(this->Obj
.sections());
3923 if (Sections
.empty()) {
3924 OS
<< "\nThere are no sections in this file.\n";
3925 Expected
<StringRef
> SecStrTableOrErr
=
3926 this->Obj
.getSectionStringTable(Sections
, this->WarningHandler
);
3927 if (!SecStrTableOrErr
)
3928 this->reportUniqueWarning(SecStrTableOrErr
.takeError());
3931 unsigned Bias
= ELFT::Is64Bits
? 0 : 8;
3932 OS
<< "There are " << to_string(Sections
.size())
3933 << " section headers, starting at offset "
3934 << "0x" << utohexstr(this->Obj
.getHeader().e_shoff
, /*LowerCase=*/true) << ":\n\n";
3935 OS
<< "Section Headers:\n";
3936 Field Fields
[11] = {
3937 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3938 {"Address", 41}, {"Off", 58 - Bias
}, {"Size", 65 - Bias
},
3939 {"ES", 72 - Bias
}, {"Flg", 75 - Bias
}, {"Lk", 79 - Bias
},
3940 {"Inf", 82 - Bias
}, {"Al", 86 - Bias
}};
3941 for (const Field
&F
: Fields
)
3945 StringRef SecStrTable
;
3946 if (Expected
<StringRef
> SecStrTableOrErr
=
3947 this->Obj
.getSectionStringTable(Sections
, this->WarningHandler
))
3948 SecStrTable
= *SecStrTableOrErr
;
3950 this->reportUniqueWarning(SecStrTableOrErr
.takeError());
3952 size_t SectionIndex
= 0;
3953 for (const Elf_Shdr
&Sec
: Sections
) {
3954 Fields
[0].Str
= to_string(SectionIndex
);
3955 if (SecStrTable
.empty())
3956 Fields
[1].Str
= "<no-strings>";
3958 Fields
[1].Str
= std::string(unwrapOrError
<StringRef
>(
3959 this->FileName
, this->Obj
.getSectionName(Sec
, SecStrTable
)));
3961 getSectionTypeString(this->Obj
.getHeader().e_machine
, Sec
.sh_type
);
3963 to_string(format_hex_no_prefix(Sec
.sh_addr
, ELFT::Is64Bits
? 16 : 8));
3964 Fields
[4].Str
= to_string(format_hex_no_prefix(Sec
.sh_offset
, 6));
3965 Fields
[5].Str
= to_string(format_hex_no_prefix(Sec
.sh_size
, 6));
3966 Fields
[6].Str
= to_string(format_hex_no_prefix(Sec
.sh_entsize
, 2));
3967 Fields
[7].Str
= getGNUFlags(this->Obj
.getHeader().e_ident
[ELF::EI_OSABI
],
3968 this->Obj
.getHeader().e_machine
, Sec
.sh_flags
);
3969 Fields
[8].Str
= to_string(Sec
.sh_link
);
3970 Fields
[9].Str
= to_string(Sec
.sh_info
);
3971 Fields
[10].Str
= to_string(Sec
.sh_addralign
);
3973 OS
.PadToColumn(Fields
[0].Column
);
3974 OS
<< "[" << right_justify(Fields
[0].Str
, 2) << "]";
3975 for (int i
= 1; i
< 7; i
++)
3976 printField(Fields
[i
]);
3977 OS
.PadToColumn(Fields
[7].Column
);
3978 OS
<< right_justify(Fields
[7].Str
, 3);
3979 OS
.PadToColumn(Fields
[8].Column
);
3980 OS
<< right_justify(Fields
[8].Str
, 2);
3981 OS
.PadToColumn(Fields
[9].Column
);
3982 OS
<< right_justify(Fields
[9].Str
, 3);
3983 OS
.PadToColumn(Fields
[10].Column
);
3984 OS
<< right_justify(Fields
[10].Str
, 2);
3988 printSectionDescription(OS
, this->Obj
.getHeader().e_machine
);
3991 template <class ELFT
>
3992 void GNUELFDumper
<ELFT
>::printSymtabMessage(const Elf_Shdr
*Symtab
,
3994 bool NonVisibilityBitsUsed
) const {
3997 Name
= this->getPrintableSectionName(*Symtab
);
3999 OS
<< "\nSymbol table '" << Name
<< "'";
4001 OS
<< "\nSymbol table for image";
4002 OS
<< " contains " << Entries
<< " entries:\n";
4005 OS
<< " Num: Value Size Type Bind Vis";
4007 OS
<< " Num: Value Size Type Bind Vis";
4009 if (NonVisibilityBitsUsed
)
4011 OS
<< " Ndx Name\n";
4014 template <class ELFT
>
4016 GNUELFDumper
<ELFT
>::getSymbolSectionNdx(const Elf_Sym
&Symbol
,
4018 DataRegion
<Elf_Word
> ShndxTable
) const {
4019 unsigned SectionIndex
= Symbol
.st_shndx
;
4020 switch (SectionIndex
) {
4021 case ELF::SHN_UNDEF
:
4025 case ELF::SHN_COMMON
:
4027 case ELF::SHN_XINDEX
: {
4028 Expected
<uint32_t> IndexOrErr
=
4029 object::getExtendedSymbolTableIndex
<ELFT
>(Symbol
, SymIndex
, ShndxTable
);
4031 assert(Symbol
.st_shndx
== SHN_XINDEX
&&
4032 "getExtendedSymbolTableIndex should only fail due to an invalid "
4033 "SHT_SYMTAB_SHNDX table/reference");
4034 this->reportUniqueWarning(IndexOrErr
.takeError());
4035 return "RSV[0xffff]";
4037 return to_string(format_decimal(*IndexOrErr
, 3));
4041 // Processor specific
4042 if (SectionIndex
>= ELF::SHN_LOPROC
&& SectionIndex
<= ELF::SHN_HIPROC
)
4043 return std::string("PRC[0x") +
4044 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
4046 if (SectionIndex
>= ELF::SHN_LOOS
&& SectionIndex
<= ELF::SHN_HIOS
)
4047 return std::string("OS[0x") +
4048 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
4049 // Architecture reserved:
4050 if (SectionIndex
>= ELF::SHN_LORESERVE
&&
4051 SectionIndex
<= ELF::SHN_HIRESERVE
)
4052 return std::string("RSV[0x") +
4053 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
4054 // A normal section with an index
4055 return to_string(format_decimal(SectionIndex
, 3));
4059 template <class ELFT
>
4060 void GNUELFDumper
<ELFT
>::printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
4061 DataRegion
<Elf_Word
> ShndxTable
,
4062 std::optional
<StringRef
> StrTable
,
4064 bool NonVisibilityBitsUsed
) const {
4065 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
4066 Field Fields
[8] = {0, 8, 17 + Bias
, 23 + Bias
,
4067 31 + Bias
, 38 + Bias
, 48 + Bias
, 51 + Bias
};
4068 Fields
[0].Str
= to_string(format_decimal(SymIndex
, 6)) + ":";
4070 to_string(format_hex_no_prefix(Symbol
.st_value
, ELFT::Is64Bits
? 16 : 8));
4071 Fields
[2].Str
= to_string(format_decimal(Symbol
.st_size
, 5));
4073 unsigned char SymbolType
= Symbol
.getType();
4074 if (this->Obj
.getHeader().e_machine
== ELF::EM_AMDGPU
&&
4075 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
4076 Fields
[3].Str
= enumToString(SymbolType
, ArrayRef(AMDGPUSymbolTypes
));
4078 Fields
[3].Str
= enumToString(SymbolType
, ArrayRef(ElfSymbolTypes
));
4081 enumToString(Symbol
.getBinding(), ArrayRef(ElfSymbolBindings
));
4083 enumToString(Symbol
.getVisibility(), ArrayRef(ElfSymbolVisibilities
));
4085 if (Symbol
.st_other
& ~0x3) {
4086 if (this->Obj
.getHeader().e_machine
== ELF::EM_AARCH64
) {
4087 uint8_t Other
= Symbol
.st_other
& ~0x3;
4088 if (Other
& STO_AARCH64_VARIANT_PCS
) {
4089 Other
&= ~STO_AARCH64_VARIANT_PCS
;
4090 Fields
[5].Str
+= " [VARIANT_PCS";
4092 Fields
[5].Str
.append(" | " + utohexstr(Other
, /*LowerCase=*/true));
4093 Fields
[5].Str
.append("]");
4095 } else if (this->Obj
.getHeader().e_machine
== ELF::EM_RISCV
) {
4096 uint8_t Other
= Symbol
.st_other
& ~0x3;
4097 if (Other
& STO_RISCV_VARIANT_CC
) {
4098 Other
&= ~STO_RISCV_VARIANT_CC
;
4099 Fields
[5].Str
+= " [VARIANT_CC";
4101 Fields
[5].Str
.append(" | " + utohexstr(Other
, /*LowerCase=*/true));
4102 Fields
[5].Str
.append("]");
4106 " [<other: " + to_string(format_hex(Symbol
.st_other
, 2)) + ">]";
4110 Fields
[6].Column
+= NonVisibilityBitsUsed
? 13 : 0;
4111 Fields
[6].Str
= getSymbolSectionNdx(Symbol
, SymIndex
, ShndxTable
);
4113 Fields
[7].Str
= this->getFullSymbolName(Symbol
, SymIndex
, ShndxTable
,
4114 StrTable
, IsDynamic
);
4115 for (const Field
&Entry
: Fields
)
4120 template <class ELFT
>
4121 void GNUELFDumper
<ELFT
>::printHashedSymbol(const Elf_Sym
*Symbol
,
4123 DataRegion
<Elf_Word
> ShndxTable
,
4126 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
4127 Field Fields
[9] = {0, 6, 11, 20 + Bias
, 25 + Bias
,
4128 34 + Bias
, 41 + Bias
, 49 + Bias
, 53 + Bias
};
4129 Fields
[0].Str
= to_string(format_decimal(SymIndex
, 5));
4130 Fields
[1].Str
= to_string(format_decimal(Bucket
, 3)) + ":";
4132 Fields
[2].Str
= to_string(
4133 format_hex_no_prefix(Symbol
->st_value
, ELFT::Is64Bits
? 16 : 8));
4134 Fields
[3].Str
= to_string(format_decimal(Symbol
->st_size
, 5));
4136 unsigned char SymbolType
= Symbol
->getType();
4137 if (this->Obj
.getHeader().e_machine
== ELF::EM_AMDGPU
&&
4138 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
4139 Fields
[4].Str
= enumToString(SymbolType
, ArrayRef(AMDGPUSymbolTypes
));
4141 Fields
[4].Str
= enumToString(SymbolType
, ArrayRef(ElfSymbolTypes
));
4144 enumToString(Symbol
->getBinding(), ArrayRef(ElfSymbolBindings
));
4146 enumToString(Symbol
->getVisibility(), ArrayRef(ElfSymbolVisibilities
));
4147 Fields
[7].Str
= getSymbolSectionNdx(*Symbol
, SymIndex
, ShndxTable
);
4149 this->getFullSymbolName(*Symbol
, SymIndex
, ShndxTable
, StrTable
, true);
4151 for (const Field
&Entry
: Fields
)
4156 template <class ELFT
>
4157 void GNUELFDumper
<ELFT
>::printSymbols(bool PrintSymbols
,
4158 bool PrintDynamicSymbols
) {
4159 if (!PrintSymbols
&& !PrintDynamicSymbols
)
4161 // GNU readelf prints both the .dynsym and .symtab with --symbols.
4162 this->printSymbolsHelper(true);
4164 this->printSymbolsHelper(false);
4167 template <class ELFT
>
4168 void GNUELFDumper
<ELFT
>::printHashTableSymbols(const Elf_Hash
&SysVHash
) {
4169 if (this->DynamicStringTable
.empty())
4173 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4175 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4178 Elf_Sym_Range DynSyms
= this->dynamic_symbols();
4179 const Elf_Sym
*FirstSym
= DynSyms
.empty() ? nullptr : &DynSyms
[0];
4181 this->reportUniqueWarning(
4182 Twine("unable to print symbols for the .hash table: the "
4183 "dynamic symbol table ") +
4184 (this->DynSymRegion
? "is empty" : "was not found"));
4188 DataRegion
<Elf_Word
> ShndxTable(
4189 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
4190 auto Buckets
= SysVHash
.buckets();
4191 auto Chains
= SysVHash
.chains();
4192 for (uint32_t Buc
= 0; Buc
< SysVHash
.nbucket
; Buc
++) {
4193 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
4195 BitVector
Visited(SysVHash
.nchain
);
4196 for (uint32_t Ch
= Buckets
[Buc
]; Ch
< SysVHash
.nchain
; Ch
= Chains
[Ch
]) {
4197 if (Ch
== ELF::STN_UNDEF
)
4201 this->reportUniqueWarning(".hash section is invalid: bucket " +
4203 ": a cycle was detected in the linked chain");
4207 printHashedSymbol(FirstSym
+ Ch
, Ch
, ShndxTable
, this->DynamicStringTable
,
4214 template <class ELFT
>
4215 void GNUELFDumper
<ELFT
>::printGnuHashTableSymbols(const Elf_GnuHash
&GnuHash
) {
4216 if (this->DynamicStringTable
.empty())
4219 Elf_Sym_Range DynSyms
= this->dynamic_symbols();
4220 const Elf_Sym
*FirstSym
= DynSyms
.empty() ? nullptr : &DynSyms
[0];
4222 this->reportUniqueWarning(
4223 Twine("unable to print symbols for the .gnu.hash table: the "
4224 "dynamic symbol table ") +
4225 (this->DynSymRegion
? "is empty" : "was not found"));
4229 auto GetSymbol
= [&](uint64_t SymIndex
,
4230 uint64_t SymsTotal
) -> const Elf_Sym
* {
4231 if (SymIndex
>= SymsTotal
) {
4232 this->reportUniqueWarning(
4233 "unable to print hashed symbol with index " + Twine(SymIndex
) +
4234 ", which is greater than or equal to the number of dynamic symbols "
4236 Twine::utohexstr(SymsTotal
) + ")");
4239 return FirstSym
+ SymIndex
;
4242 Expected
<ArrayRef
<Elf_Word
>> ValuesOrErr
=
4243 getGnuHashTableChains
<ELFT
>(this->DynSymRegion
, &GnuHash
);
4244 ArrayRef
<Elf_Word
> Values
;
4246 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4248 toString(ValuesOrErr
.takeError()));
4250 Values
= *ValuesOrErr
;
4252 DataRegion
<Elf_Word
> ShndxTable(
4253 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
4254 ArrayRef
<Elf_Word
> Buckets
= GnuHash
.buckets();
4255 for (uint32_t Buc
= 0; Buc
< GnuHash
.nbuckets
; Buc
++) {
4256 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
4258 uint32_t Index
= Buckets
[Buc
];
4259 // Print whole chain.
4261 uint32_t SymIndex
= Index
++;
4262 if (const Elf_Sym
*Sym
= GetSymbol(SymIndex
, DynSyms
.size()))
4263 printHashedSymbol(Sym
, SymIndex
, ShndxTable
, this->DynamicStringTable
,
4268 if (SymIndex
< GnuHash
.symndx
) {
4269 this->reportUniqueWarning(
4270 "unable to read the hash value for symbol with index " +
4272 ", which is less than the index of the first hashed symbol (" +
4273 Twine(GnuHash
.symndx
) + ")");
4277 // Chain ends at symbol with stopper bit.
4278 if ((Values
[SymIndex
- GnuHash
.symndx
] & 1) == 1)
4284 template <class ELFT
> void GNUELFDumper
<ELFT
>::printHashSymbols() {
4285 if (this->HashTable
) {
4286 OS
<< "\n Symbol table of .hash for image:\n";
4287 if (Error E
= checkHashTable
<ELFT
>(*this, this->HashTable
))
4288 this->reportUniqueWarning(std::move(E
));
4290 printHashTableSymbols(*this->HashTable
);
4293 // Try printing the .gnu.hash table.
4294 if (this->GnuHashTable
) {
4295 OS
<< "\n Symbol table of .gnu.hash for image:\n";
4297 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4299 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4302 if (Error E
= checkGNUHashTable
<ELFT
>(this->Obj
, this->GnuHashTable
))
4303 this->reportUniqueWarning(std::move(E
));
4305 printGnuHashTableSymbols(*this->GnuHashTable
);
4309 template <class ELFT
> void GNUELFDumper
<ELFT
>::printSectionDetails() {
4310 ArrayRef
<Elf_Shdr
> Sections
= cantFail(this->Obj
.sections());
4311 if (Sections
.empty()) {
4312 OS
<< "\nThere are no sections in this file.\n";
4313 Expected
<StringRef
> SecStrTableOrErr
=
4314 this->Obj
.getSectionStringTable(Sections
, this->WarningHandler
);
4315 if (!SecStrTableOrErr
)
4316 this->reportUniqueWarning(SecStrTableOrErr
.takeError());
4319 OS
<< "There are " << to_string(Sections
.size())
4320 << " section headers, starting at offset "
4321 << "0x" << utohexstr(this->Obj
.getHeader().e_shoff
, /*LowerCase=*/true) << ":\n\n";
4323 OS
<< "Section Headers:\n";
4325 auto PrintFields
= [&](ArrayRef
<Field
> V
) {
4326 for (const Field
&F
: V
)
4331 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4333 constexpr bool Is64
= ELFT::Is64Bits
;
4334 PrintFields({{"Type", 7},
4335 {Is64
? "Address" : "Addr", 23},
4336 {"Off", Is64
? 40 : 32},
4337 {"Size", Is64
? 47 : 39},
4338 {"ES", Is64
? 54 : 46},
4339 {"Lk", Is64
? 59 : 51},
4340 {"Inf", Is64
? 62 : 54},
4341 {"Al", Is64
? 66 : 57}});
4342 PrintFields({{"Flags", 7}});
4344 StringRef SecStrTable
;
4345 if (Expected
<StringRef
> SecStrTableOrErr
=
4346 this->Obj
.getSectionStringTable(Sections
, this->WarningHandler
))
4347 SecStrTable
= *SecStrTableOrErr
;
4349 this->reportUniqueWarning(SecStrTableOrErr
.takeError());
4351 size_t SectionIndex
= 0;
4352 const unsigned AddrSize
= Is64
? 16 : 8;
4353 for (const Elf_Shdr
&S
: Sections
) {
4354 StringRef Name
= "<?>";
4355 if (Expected
<StringRef
> NameOrErr
=
4356 this->Obj
.getSectionName(S
, SecStrTable
))
4359 this->reportUniqueWarning(NameOrErr
.takeError());
4362 OS
<< "[" << right_justify(to_string(SectionIndex
), 2) << "]";
4363 PrintFields({{Name
, 7}});
4365 {{getSectionTypeString(this->Obj
.getHeader().e_machine
, S
.sh_type
), 7},
4366 {to_string(format_hex_no_prefix(S
.sh_addr
, AddrSize
)), 23},
4367 {to_string(format_hex_no_prefix(S
.sh_offset
, 6)), Is64
? 39 : 32},
4368 {to_string(format_hex_no_prefix(S
.sh_size
, 6)), Is64
? 47 : 39},
4369 {to_string(format_hex_no_prefix(S
.sh_entsize
, 2)), Is64
? 54 : 46},
4370 {to_string(S
.sh_link
), Is64
? 59 : 51},
4371 {to_string(S
.sh_info
), Is64
? 63 : 55},
4372 {to_string(S
.sh_addralign
), Is64
? 66 : 58}});
4375 OS
<< "[" << to_string(format_hex_no_prefix(S
.sh_flags
, AddrSize
)) << "]: ";
4377 DenseMap
<unsigned, StringRef
> FlagToName
= {
4378 {SHF_WRITE
, "WRITE"}, {SHF_ALLOC
, "ALLOC"},
4379 {SHF_EXECINSTR
, "EXEC"}, {SHF_MERGE
, "MERGE"},
4380 {SHF_STRINGS
, "STRINGS"}, {SHF_INFO_LINK
, "INFO LINK"},
4381 {SHF_LINK_ORDER
, "LINK ORDER"}, {SHF_OS_NONCONFORMING
, "OS NONCONF"},
4382 {SHF_GROUP
, "GROUP"}, {SHF_TLS
, "TLS"},
4383 {SHF_COMPRESSED
, "COMPRESSED"}, {SHF_EXCLUDE
, "EXCLUDE"}};
4385 uint64_t Flags
= S
.sh_flags
;
4386 uint64_t UnknownFlags
= 0;
4389 // Take the least significant bit as a flag.
4390 uint64_t Flag
= Flags
& -Flags
;
4393 auto It
= FlagToName
.find(Flag
);
4394 if (It
!= FlagToName
.end())
4395 OS
<< LS
<< It
->second
;
4397 UnknownFlags
|= Flag
;
4400 auto PrintUnknownFlags
= [&](uint64_t Mask
, StringRef Name
) {
4401 uint64_t FlagsToPrint
= UnknownFlags
& Mask
;
4405 OS
<< LS
<< Name
<< " ("
4406 << to_string(format_hex_no_prefix(FlagsToPrint
, AddrSize
)) << ")";
4407 UnknownFlags
&= ~Mask
;
4410 PrintUnknownFlags(SHF_MASKOS
, "OS");
4411 PrintUnknownFlags(SHF_MASKPROC
, "PROC");
4412 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4417 if (!(S
.sh_flags
& SHF_COMPRESSED
))
4419 Expected
<ArrayRef
<uint8_t>> Data
= this->Obj
.getSectionContents(S
);
4420 if (!Data
|| Data
->size() < sizeof(Elf_Chdr
)) {
4421 consumeError(Data
.takeError());
4422 reportWarning(createError("SHF_COMPRESSED section '" + Name
+
4423 "' does not have an Elf_Chdr header"),
4426 OS
<< "[<corrupt>]";
4429 auto *Chdr
= reinterpret_cast<const Elf_Chdr
*>(Data
->data());
4430 if (Chdr
->ch_type
== ELFCOMPRESS_ZLIB
)
4432 else if (Chdr
->ch_type
== ELFCOMPRESS_ZSTD
)
4435 OS
<< format("[<unknown>: 0x%x]", unsigned(Chdr
->ch_type
));
4436 OS
<< ", " << format_hex_no_prefix(Chdr
->ch_size
, ELFT::Is64Bits
? 16 : 8)
4437 << ", " << Chdr
->ch_addralign
;
4443 static inline std::string
printPhdrFlags(unsigned Flag
) {
4445 Str
= (Flag
& PF_R
) ? "R" : " ";
4446 Str
+= (Flag
& PF_W
) ? "W" : " ";
4447 Str
+= (Flag
& PF_X
) ? "E" : " ";
4451 template <class ELFT
>
4452 static bool checkTLSSections(const typename
ELFT::Phdr
&Phdr
,
4453 const typename
ELFT::Shdr
&Sec
) {
4454 if (Sec
.sh_flags
& ELF::SHF_TLS
) {
4455 // .tbss must only be shown in the PT_TLS segment.
4456 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
4457 return Phdr
.p_type
== ELF::PT_TLS
;
4459 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4461 return (Phdr
.p_type
== ELF::PT_TLS
) || (Phdr
.p_type
== ELF::PT_LOAD
) ||
4462 (Phdr
.p_type
== ELF::PT_GNU_RELRO
);
4465 // PT_TLS must only have SHF_TLS sections.
4466 return Phdr
.p_type
!= ELF::PT_TLS
;
4469 template <class ELFT
>
4470 static bool checkOffsets(const typename
ELFT::Phdr
&Phdr
,
4471 const typename
ELFT::Shdr
&Sec
) {
4472 // SHT_NOBITS sections don't need to have an offset inside the segment.
4473 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
4476 if (Sec
.sh_offset
< Phdr
.p_offset
)
4479 // Only non-empty sections can be at the end of a segment.
4480 if (Sec
.sh_size
== 0)
4481 return (Sec
.sh_offset
+ 1 <= Phdr
.p_offset
+ Phdr
.p_filesz
);
4482 return Sec
.sh_offset
+ Sec
.sh_size
<= Phdr
.p_offset
+ Phdr
.p_filesz
;
4485 // Check that an allocatable section belongs to a virtual address
4486 // space of a segment.
4487 template <class ELFT
>
4488 static bool checkVMA(const typename
ELFT::Phdr
&Phdr
,
4489 const typename
ELFT::Shdr
&Sec
) {
4490 if (!(Sec
.sh_flags
& ELF::SHF_ALLOC
))
4493 if (Sec
.sh_addr
< Phdr
.p_vaddr
)
4497 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
4498 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4499 bool IsTbssInNonTLS
= IsTbss
&& Phdr
.p_type
!= ELF::PT_TLS
;
4500 // Only non-empty sections can be at the end of a segment.
4501 if (Sec
.sh_size
== 0 || IsTbssInNonTLS
)
4502 return Sec
.sh_addr
+ 1 <= Phdr
.p_vaddr
+ Phdr
.p_memsz
;
4503 return Sec
.sh_addr
+ Sec
.sh_size
<= Phdr
.p_vaddr
+ Phdr
.p_memsz
;
4506 template <class ELFT
>
4507 static bool checkPTDynamic(const typename
ELFT::Phdr
&Phdr
,
4508 const typename
ELFT::Shdr
&Sec
) {
4509 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
|| Phdr
.p_memsz
== 0 || Sec
.sh_size
!= 0)
4512 // We get here when we have an empty section. Only non-empty sections can be
4513 // at the start or at the end of PT_DYNAMIC.
4514 // Is section within the phdr both based on offset and VMA?
4515 bool CheckOffset
= (Sec
.sh_type
== ELF::SHT_NOBITS
) ||
4516 (Sec
.sh_offset
> Phdr
.p_offset
&&
4517 Sec
.sh_offset
< Phdr
.p_offset
+ Phdr
.p_filesz
);
4518 bool CheckVA
= !(Sec
.sh_flags
& ELF::SHF_ALLOC
) ||
4519 (Sec
.sh_addr
> Phdr
.p_vaddr
&& Sec
.sh_addr
< Phdr
.p_memsz
);
4520 return CheckOffset
&& CheckVA
;
4523 template <class ELFT
>
4524 void GNUELFDumper
<ELFT
>::printProgramHeaders(
4525 bool PrintProgramHeaders
, cl::boolOrDefault PrintSectionMapping
) {
4526 const bool ShouldPrintSectionMapping
= (PrintSectionMapping
!= cl::BOU_FALSE
);
4527 // Exit early if no program header or section mapping details were requested.
4528 if (!PrintProgramHeaders
&& !ShouldPrintSectionMapping
)
4531 if (PrintProgramHeaders
) {
4532 const Elf_Ehdr
&Header
= this->Obj
.getHeader();
4533 if (Header
.e_phnum
== 0) {
4534 OS
<< "\nThere are no program headers in this file.\n";
4536 printProgramHeaders();
4540 if (ShouldPrintSectionMapping
)
4541 printSectionMapping();
4544 template <class ELFT
> void GNUELFDumper
<ELFT
>::printProgramHeaders() {
4545 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
4546 const Elf_Ehdr
&Header
= this->Obj
.getHeader();
4547 Field Fields
[8] = {2, 17, 26, 37 + Bias
,
4548 48 + Bias
, 56 + Bias
, 64 + Bias
, 68 + Bias
};
4549 OS
<< "\nElf file type is "
4550 << enumToString(Header
.e_type
, ArrayRef(ElfObjectFileType
)) << "\n"
4551 << "Entry point " << format_hex(Header
.e_entry
, 3) << "\n"
4552 << "There are " << Header
.e_phnum
<< " program headers,"
4553 << " starting at offset " << Header
.e_phoff
<< "\n\n"
4554 << "Program Headers:\n";
4556 OS
<< " Type Offset VirtAddr PhysAddr "
4557 << " FileSiz MemSiz Flg Align\n";
4559 OS
<< " Type Offset VirtAddr PhysAddr FileSiz "
4560 << "MemSiz Flg Align\n";
4562 unsigned Width
= ELFT::Is64Bits
? 18 : 10;
4563 unsigned SizeWidth
= ELFT::Is64Bits
? 8 : 7;
4565 Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= this->Obj
.program_headers();
4567 this->reportUniqueWarning("unable to dump program headers: " +
4568 toString(PhdrsOrErr
.takeError()));
4572 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
4573 Fields
[0].Str
= getGNUPtType(Header
.e_machine
, Phdr
.p_type
);
4574 Fields
[1].Str
= to_string(format_hex(Phdr
.p_offset
, 8));
4575 Fields
[2].Str
= to_string(format_hex(Phdr
.p_vaddr
, Width
));
4576 Fields
[3].Str
= to_string(format_hex(Phdr
.p_paddr
, Width
));
4577 Fields
[4].Str
= to_string(format_hex(Phdr
.p_filesz
, SizeWidth
));
4578 Fields
[5].Str
= to_string(format_hex(Phdr
.p_memsz
, SizeWidth
));
4579 Fields
[6].Str
= printPhdrFlags(Phdr
.p_flags
);
4580 Fields
[7].Str
= to_string(format_hex(Phdr
.p_align
, 1));
4581 for (const Field
&F
: Fields
)
4583 if (Phdr
.p_type
== ELF::PT_INTERP
) {
4585 auto ReportBadInterp
= [&](const Twine
&Msg
) {
4586 this->reportUniqueWarning(
4587 "unable to read program interpreter name at offset 0x" +
4588 Twine::utohexstr(Phdr
.p_offset
) + ": " + Msg
);
4591 if (Phdr
.p_offset
>= this->Obj
.getBufSize()) {
4592 ReportBadInterp("it goes past the end of the file (0x" +
4593 Twine::utohexstr(this->Obj
.getBufSize()) + ")");
4598 reinterpret_cast<const char *>(this->Obj
.base()) + Phdr
.p_offset
;
4599 size_t MaxSize
= this->Obj
.getBufSize() - Phdr
.p_offset
;
4600 size_t Len
= strnlen(Data
, MaxSize
);
4601 if (Len
== MaxSize
) {
4602 ReportBadInterp("it is not null-terminated");
4606 OS
<< " [Requesting program interpreter: ";
4607 OS
<< StringRef(Data
, Len
) << "]";
4613 template <class ELFT
> void GNUELFDumper
<ELFT
>::printSectionMapping() {
4614 OS
<< "\n Section to Segment mapping:\n Segment Sections...\n";
4615 DenseSet
<const Elf_Shdr
*> BelongsToSegment
;
4618 Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= this->Obj
.program_headers();
4620 this->reportUniqueWarning(
4621 "can't read program headers to build section to segment mapping: " +
4622 toString(PhdrsOrErr
.takeError()));
4626 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
4627 std::string Sections
;
4628 OS
<< format(" %2.2d ", Phnum
++);
4629 // Check if each section is in a segment and then print mapping.
4630 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
4631 if (Sec
.sh_type
== ELF::SHT_NULL
)
4634 // readelf additionally makes sure it does not print zero sized sections
4635 // at end of segments and for PT_DYNAMIC both start and end of section
4636 // .tbss must only be shown in PT_TLS section.
4637 if (checkTLSSections
<ELFT
>(Phdr
, Sec
) && checkOffsets
<ELFT
>(Phdr
, Sec
) &&
4638 checkVMA
<ELFT
>(Phdr
, Sec
) && checkPTDynamic
<ELFT
>(Phdr
, Sec
)) {
4640 unwrapOrError(this->FileName
, this->Obj
.getSectionName(Sec
)).str() +
4642 BelongsToSegment
.insert(&Sec
);
4645 OS
<< Sections
<< "\n";
4649 // Display sections that do not belong to a segment.
4650 std::string Sections
;
4651 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
4652 if (BelongsToSegment
.find(&Sec
) == BelongsToSegment
.end())
4654 unwrapOrError(this->FileName
, this->Obj
.getSectionName(Sec
)).str() +
4657 if (!Sections
.empty()) {
4658 OS
<< " None " << Sections
<< '\n';
4665 template <class ELFT
>
4666 RelSymbol
<ELFT
> getSymbolForReloc(const ELFDumper
<ELFT
> &Dumper
,
4667 const Relocation
<ELFT
> &Reloc
) {
4668 using Elf_Sym
= typename
ELFT::Sym
;
4669 auto WarnAndReturn
= [&](const Elf_Sym
*Sym
,
4670 const Twine
&Reason
) -> RelSymbol
<ELFT
> {
4671 Dumper
.reportUniqueWarning(
4672 "unable to get name of the dynamic symbol with index " +
4673 Twine(Reloc
.Symbol
) + ": " + Reason
);
4674 return {Sym
, "<corrupt>"};
4677 ArrayRef
<Elf_Sym
> Symbols
= Dumper
.dynamic_symbols();
4678 const Elf_Sym
*FirstSym
= Symbols
.begin();
4680 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4682 // We might have an object without a section header. In this case the size of
4683 // Symbols is zero, because there is no way to know the size of the dynamic
4684 // table. We should allow this case and not print a warning.
4685 if (!Symbols
.empty() && Reloc
.Symbol
>= Symbols
.size())
4686 return WarnAndReturn(
4688 "index is greater than or equal to the number of dynamic symbols (" +
4689 Twine(Symbols
.size()) + ")");
4691 const ELFFile
<ELFT
> &Obj
= Dumper
.getElfObject().getELFFile();
4692 const uint64_t FileSize
= Obj
.getBufSize();
4693 const uint64_t SymOffset
= ((const uint8_t *)FirstSym
- Obj
.base()) +
4694 (uint64_t)Reloc
.Symbol
* sizeof(Elf_Sym
);
4695 if (SymOffset
+ sizeof(Elf_Sym
) > FileSize
)
4696 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset
) +
4697 " goes past the end of the file (0x" +
4698 Twine::utohexstr(FileSize
) + ")");
4700 const Elf_Sym
*Sym
= FirstSym
+ Reloc
.Symbol
;
4701 Expected
<StringRef
> ErrOrName
= Sym
->getName(Dumper
.getDynamicStringTable());
4703 return WarnAndReturn(Sym
, toString(ErrOrName
.takeError()));
4705 return {Sym
== FirstSym
? nullptr : Sym
, maybeDemangle(*ErrOrName
)};
4709 template <class ELFT
>
4710 static size_t getMaxDynamicTagSize(const ELFFile
<ELFT
> &Obj
,
4711 typename
ELFT::DynRange Tags
) {
4713 for (const typename
ELFT::Dyn
&Dyn
: Tags
)
4714 Max
= std::max(Max
, Obj
.getDynamicTagAsString(Dyn
.d_tag
).size());
4718 template <class ELFT
> void GNUELFDumper
<ELFT
>::printDynamicTable() {
4719 Elf_Dyn_Range Table
= this->dynamic_table();
4723 OS
<< "Dynamic section at offset "
4724 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable
.Addr
) -
4727 << " contains " << Table
.size() << " entries:\n";
4729 // The type name is surrounded with round brackets, hence add 2.
4730 size_t MaxTagSize
= getMaxDynamicTagSize(this->Obj
, Table
) + 2;
4731 // The "Name/Value" column should be indented from the "Type" column by N
4732 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4734 OS
<< " Tag" + std::string(ELFT::Is64Bits
? 16 : 8, ' ') + "Type"
4735 << std::string(MaxTagSize
- 3, ' ') << "Name/Value\n";
4737 std::string ValueFmt
= " %-" + std::to_string(MaxTagSize
) + "s ";
4738 for (auto Entry
: Table
) {
4739 uintX_t Tag
= Entry
.getTag();
4741 std::string("(") + this->Obj
.getDynamicTagAsString(Tag
) + ")";
4742 std::string Value
= this->getDynamicEntry(Tag
, Entry
.getVal());
4743 OS
<< " " << format_hex(Tag
, ELFT::Is64Bits
? 18 : 10)
4744 << format(ValueFmt
.c_str(), Type
.c_str()) << Value
<< "\n";
4748 template <class ELFT
> void GNUELFDumper
<ELFT
>::printDynamicRelocations() {
4749 this->printDynamicRelocationsHelper();
4752 template <class ELFT
>
4753 void ELFDumper
<ELFT
>::printDynamicReloc(const Relocation
<ELFT
> &R
) {
4754 printRelRelaReloc(R
, getSymbolForReloc(*this, R
));
4757 template <class ELFT
>
4758 void ELFDumper
<ELFT
>::printRelocationsHelper(const Elf_Shdr
&Sec
) {
4759 this->forEachRelocationDo(
4761 [&](const Relocation
<ELFT
> &R
, unsigned Ndx
, const Elf_Shdr
&Sec
,
4762 const Elf_Shdr
*SymTab
) { printReloc(R
, Ndx
, Sec
, SymTab
); },
4763 [&](const Elf_Relr
&R
) { printRelrReloc(R
); });
4766 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicRelocationsHelper() {
4767 const bool IsMips64EL
= this->Obj
.isMips64EL();
4768 if (this->DynRelaRegion
.Size
> 0) {
4769 printDynamicRelocHeader(ELF::SHT_RELA
, "RELA", this->DynRelaRegion
);
4770 for (const Elf_Rela
&Rela
:
4771 this->DynRelaRegion
.template getAsArrayRef
<Elf_Rela
>())
4772 printDynamicReloc(Relocation
<ELFT
>(Rela
, IsMips64EL
));
4775 if (this->DynRelRegion
.Size
> 0) {
4776 printDynamicRelocHeader(ELF::SHT_REL
, "REL", this->DynRelRegion
);
4777 for (const Elf_Rel
&Rel
:
4778 this->DynRelRegion
.template getAsArrayRef
<Elf_Rel
>())
4779 printDynamicReloc(Relocation
<ELFT
>(Rel
, IsMips64EL
));
4782 if (this->DynRelrRegion
.Size
> 0) {
4783 printDynamicRelocHeader(ELF::SHT_REL
, "RELR", this->DynRelrRegion
);
4784 Elf_Relr_Range Relrs
=
4785 this->DynRelrRegion
.template getAsArrayRef
<Elf_Relr
>();
4786 for (const Elf_Rel
&Rel
: Obj
.decode_relrs(Relrs
))
4787 printDynamicReloc(Relocation
<ELFT
>(Rel
, IsMips64EL
));
4790 if (this->DynPLTRelRegion
.Size
) {
4791 if (this->DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
)) {
4792 printDynamicRelocHeader(ELF::SHT_RELA
, "PLT", this->DynPLTRelRegion
);
4793 for (const Elf_Rela
&Rela
:
4794 this->DynPLTRelRegion
.template getAsArrayRef
<Elf_Rela
>())
4795 printDynamicReloc(Relocation
<ELFT
>(Rela
, IsMips64EL
));
4797 printDynamicRelocHeader(ELF::SHT_REL
, "PLT", this->DynPLTRelRegion
);
4798 for (const Elf_Rel
&Rel
:
4799 this->DynPLTRelRegion
.template getAsArrayRef
<Elf_Rel
>())
4800 printDynamicReloc(Relocation
<ELFT
>(Rel
, IsMips64EL
));
4805 template <class ELFT
>
4806 void GNUELFDumper
<ELFT
>::printGNUVersionSectionProlog(
4807 const typename
ELFT::Shdr
&Sec
, const Twine
&Label
, unsigned EntriesNum
) {
4808 // Don't inline the SecName, because it might report a warning to stderr and
4809 // corrupt the output.
4810 StringRef SecName
= this->getPrintableSectionName(Sec
);
4811 OS
<< Label
<< " section '" << SecName
<< "' "
4812 << "contains " << EntriesNum
<< " entries:\n";
4814 StringRef LinkedSecName
= "<corrupt>";
4815 if (Expected
<const typename
ELFT::Shdr
*> LinkedSecOrErr
=
4816 this->Obj
.getSection(Sec
.sh_link
))
4817 LinkedSecName
= this->getPrintableSectionName(**LinkedSecOrErr
);
4819 this->reportUniqueWarning("invalid section linked to " +
4820 this->describe(Sec
) + ": " +
4821 toString(LinkedSecOrErr
.takeError()));
4823 OS
<< " Addr: " << format_hex_no_prefix(Sec
.sh_addr
, 16)
4824 << " Offset: " << format_hex(Sec
.sh_offset
, 8)
4825 << " Link: " << Sec
.sh_link
<< " (" << LinkedSecName
<< ")\n";
4828 template <class ELFT
>
4829 void GNUELFDumper
<ELFT
>::printVersionSymbolSection(const Elf_Shdr
*Sec
) {
4833 printGNUVersionSectionProlog(*Sec
, "Version symbols",
4834 Sec
->sh_size
/ sizeof(Elf_Versym
));
4835 Expected
<ArrayRef
<Elf_Versym
>> VerTableOrErr
=
4836 this->getVersionTable(*Sec
, /*SymTab=*/nullptr,
4837 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4838 if (!VerTableOrErr
) {
4839 this->reportUniqueWarning(VerTableOrErr
.takeError());
4843 SmallVector
<std::optional
<VersionEntry
>, 0> *VersionMap
= nullptr;
4844 if (Expected
<SmallVector
<std::optional
<VersionEntry
>, 0> *> MapOrErr
=
4845 this->getVersionMap())
4846 VersionMap
= *MapOrErr
;
4848 this->reportUniqueWarning(MapOrErr
.takeError());
4850 ArrayRef
<Elf_Versym
> VerTable
= *VerTableOrErr
;
4851 std::vector
<StringRef
> Versions
;
4852 for (size_t I
= 0, E
= VerTable
.size(); I
< E
; ++I
) {
4853 unsigned Ndx
= VerTable
[I
].vs_index
;
4854 if (Ndx
== VER_NDX_LOCAL
|| Ndx
== VER_NDX_GLOBAL
) {
4855 Versions
.emplace_back(Ndx
== VER_NDX_LOCAL
? "*local*" : "*global*");
4860 Versions
.emplace_back("<corrupt>");
4865 Expected
<StringRef
> NameOrErr
= this->Obj
.getSymbolVersionByIndex(
4866 Ndx
, IsDefault
, *VersionMap
, /*IsSymHidden=*/std::nullopt
);
4868 this->reportUniqueWarning("unable to get a version for entry " +
4869 Twine(I
) + " of " + this->describe(*Sec
) +
4870 ": " + toString(NameOrErr
.takeError()));
4871 Versions
.emplace_back("<corrupt>");
4874 Versions
.emplace_back(*NameOrErr
);
4877 // readelf prints 4 entries per line.
4878 uint64_t Entries
= VerTable
.size();
4879 for (uint64_t VersymRow
= 0; VersymRow
< Entries
; VersymRow
+= 4) {
4880 OS
<< " " << format_hex_no_prefix(VersymRow
, 3) << ":";
4881 for (uint64_t I
= 0; (I
< 4) && (I
+ VersymRow
) < Entries
; ++I
) {
4882 unsigned Ndx
= VerTable
[VersymRow
+ I
].vs_index
;
4883 OS
<< format("%4x%c", Ndx
& VERSYM_VERSION
,
4884 Ndx
& VERSYM_HIDDEN
? 'h' : ' ');
4885 OS
<< left_justify("(" + std::string(Versions
[VersymRow
+ I
]) + ")", 13);
4892 static std::string
versionFlagToString(unsigned Flags
) {
4897 auto AddFlag
= [&Ret
, &Flags
](unsigned Flag
, StringRef Name
) {
4898 if (!(Flags
& Flag
))
4906 AddFlag(VER_FLG_BASE
, "BASE");
4907 AddFlag(VER_FLG_WEAK
, "WEAK");
4908 AddFlag(VER_FLG_INFO
, "INFO");
4909 AddFlag(~0, "<unknown>");
4913 template <class ELFT
>
4914 void GNUELFDumper
<ELFT
>::printVersionDefinitionSection(const Elf_Shdr
*Sec
) {
4918 printGNUVersionSectionProlog(*Sec
, "Version definition", Sec
->sh_info
);
4920 Expected
<std::vector
<VerDef
>> V
= this->Obj
.getVersionDefinitions(*Sec
);
4922 this->reportUniqueWarning(V
.takeError());
4926 for (const VerDef
&Def
: *V
) {
4927 OS
<< format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
4928 Def
.Offset
, Def
.Version
,
4929 versionFlagToString(Def
.Flags
).c_str(), Def
.Ndx
, Def
.Cnt
,
4932 for (const VerdAux
&Aux
: Def
.AuxV
)
4933 OS
<< format(" 0x%04x: Parent %u: %s\n", Aux
.Offset
, ++I
,
4940 template <class ELFT
>
4941 void GNUELFDumper
<ELFT
>::printVersionDependencySection(const Elf_Shdr
*Sec
) {
4945 unsigned VerneedNum
= Sec
->sh_info
;
4946 printGNUVersionSectionProlog(*Sec
, "Version needs", VerneedNum
);
4948 Expected
<std::vector
<VerNeed
>> V
=
4949 this->Obj
.getVersionDependencies(*Sec
, this->WarningHandler
);
4951 this->reportUniqueWarning(V
.takeError());
4955 for (const VerNeed
&VN
: *V
) {
4956 OS
<< format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN
.Offset
,
4957 VN
.Version
, VN
.File
.data(), VN
.Cnt
);
4958 for (const VernAux
&Aux
: VN
.AuxV
)
4959 OS
<< format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux
.Offset
,
4960 Aux
.Name
.data(), versionFlagToString(Aux
.Flags
).c_str(),
4966 template <class ELFT
>
4967 void GNUELFDumper
<ELFT
>::printHashHistogramStats(size_t NBucket
,
4970 ArrayRef
<size_t> Count
,
4972 size_t CumulativeNonZero
= 0;
4973 OS
<< "Histogram for" << (IsGnu
? " `.gnu.hash'" : "")
4974 << " bucket list length (total of " << NBucket
<< " buckets)\n"
4975 << " Length Number % of total Coverage\n";
4976 for (size_t I
= 0; I
< MaxChain
; ++I
) {
4977 CumulativeNonZero
+= Count
[I
] * I
;
4978 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
4979 (Count
[I
] * 100.0) / NBucket
,
4980 (CumulativeNonZero
* 100.0) / TotalSyms
);
4984 template <class ELFT
> void GNUELFDumper
<ELFT
>::printCGProfile() {
4985 OS
<< "GNUStyle::printCGProfile not implemented\n";
4988 template <class ELFT
> void GNUELFDumper
<ELFT
>::printBBAddrMaps() {
4989 OS
<< "GNUStyle::printBBAddrMaps not implemented\n";
4992 static Expected
<std::vector
<uint64_t>> toULEB128Array(ArrayRef
<uint8_t> Data
) {
4993 std::vector
<uint64_t> Ret
;
4994 const uint8_t *Cur
= Data
.begin();
4995 const uint8_t *End
= Data
.end();
4996 while (Cur
!= End
) {
4999 Ret
.push_back(decodeULEB128(Cur
, &Size
, End
, &Err
));
5001 return createError(Err
);
5007 template <class ELFT
>
5008 static Expected
<std::vector
<uint64_t>>
5009 decodeAddrsigSection(const ELFFile
<ELFT
> &Obj
, const typename
ELFT::Shdr
&Sec
) {
5010 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
= Obj
.getSectionContents(Sec
);
5012 return ContentsOrErr
.takeError();
5014 if (Expected
<std::vector
<uint64_t>> SymsOrErr
=
5015 toULEB128Array(*ContentsOrErr
))
5018 return createError("unable to decode " + describe(Obj
, Sec
) + ": " +
5019 toString(SymsOrErr
.takeError()));
5022 template <class ELFT
> void GNUELFDumper
<ELFT
>::printAddrsig() {
5023 if (!this->DotAddrsigSec
)
5026 Expected
<std::vector
<uint64_t>> SymsOrErr
=
5027 decodeAddrsigSection(this->Obj
, *this->DotAddrsigSec
);
5029 this->reportUniqueWarning(SymsOrErr
.takeError());
5033 StringRef Name
= this->getPrintableSectionName(*this->DotAddrsigSec
);
5034 OS
<< "\nAddress-significant symbols section '" << Name
<< "'"
5035 << " contains " << SymsOrErr
->size() << " entries:\n";
5036 OS
<< " Num: Name\n";
5038 Field Fields
[2] = {0, 8};
5039 size_t SymIndex
= 0;
5040 for (uint64_t Sym
: *SymsOrErr
) {
5041 Fields
[0].Str
= to_string(format_decimal(++SymIndex
, 6)) + ":";
5042 Fields
[1].Str
= this->getStaticSymbolName(Sym
);
5043 for (const Field
&Entry
: Fields
)
5049 template <typename ELFT
>
5050 static std::string
getGNUProperty(uint32_t Type
, uint32_t DataSize
,
5051 ArrayRef
<uint8_t> Data
) {
5053 raw_string_ostream
OS(str
);
5055 auto DumpBit
= [&](uint32_t Flag
, StringRef Name
) {
5056 if (PrData
& Flag
) {
5066 OS
<< format("<application-specific type 0x%x>", Type
);
5068 case GNU_PROPERTY_STACK_SIZE
: {
5069 OS
<< "stack size: ";
5070 if (DataSize
== sizeof(typename
ELFT::uint
))
5071 OS
<< formatv("{0:x}",
5072 (uint64_t)(*(const typename
ELFT::Addr
*)Data
.data()));
5074 OS
<< format("<corrupt length: 0x%x>", DataSize
);
5077 case GNU_PROPERTY_NO_COPY_ON_PROTECTED
:
5078 OS
<< "no copy on protected";
5080 OS
<< format(" <corrupt length: 0x%x>", DataSize
);
5082 case GNU_PROPERTY_AARCH64_FEATURE_1_AND
:
5083 case GNU_PROPERTY_X86_FEATURE_1_AND
:
5084 OS
<< ((Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) ? "aarch64 feature: "
5086 if (DataSize
!= 4) {
5087 OS
<< format("<corrupt length: 0x%x>", DataSize
);
5090 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
5095 if (Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) {
5096 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI
, "BTI");
5097 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC
, "PAC");
5099 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT
, "IBT");
5100 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK
, "SHSTK");
5103 OS
<< format("<unknown flags: 0x%x>", PrData
);
5105 case GNU_PROPERTY_X86_FEATURE_2_NEEDED
:
5106 case GNU_PROPERTY_X86_FEATURE_2_USED
:
5107 OS
<< "x86 feature "
5108 << (Type
== GNU_PROPERTY_X86_FEATURE_2_NEEDED
? "needed: " : "used: ");
5109 if (DataSize
!= 4) {
5110 OS
<< format("<corrupt length: 0x%x>", DataSize
);
5113 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
5118 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86
, "x86");
5119 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87
, "x87");
5120 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX
, "MMX");
5121 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM
, "XMM");
5122 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM
, "YMM");
5123 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM
, "ZMM");
5124 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR
, "FXSR");
5125 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE
, "XSAVE");
5126 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
, "XSAVEOPT");
5127 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC
, "XSAVEC");
5129 OS
<< format("<unknown flags: 0x%x>", PrData
);
5131 case GNU_PROPERTY_X86_ISA_1_NEEDED
:
5132 case GNU_PROPERTY_X86_ISA_1_USED
:
5134 << (Type
== GNU_PROPERTY_X86_ISA_1_NEEDED
? "needed: " : "used: ");
5135 if (DataSize
!= 4) {
5136 OS
<< format("<corrupt length: 0x%x>", DataSize
);
5139 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
5144 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE
, "x86-64-baseline");
5145 DumpBit(GNU_PROPERTY_X86_ISA_1_V2
, "x86-64-v2");
5146 DumpBit(GNU_PROPERTY_X86_ISA_1_V3
, "x86-64-v3");
5147 DumpBit(GNU_PROPERTY_X86_ISA_1_V4
, "x86-64-v4");
5149 OS
<< format("<unknown flags: 0x%x>", PrData
);
5154 template <typename ELFT
>
5155 static SmallVector
<std::string
, 4> getGNUPropertyList(ArrayRef
<uint8_t> Arr
) {
5156 using Elf_Word
= typename
ELFT::Word
;
5158 SmallVector
<std::string
, 4> Properties
;
5159 while (Arr
.size() >= 8) {
5160 uint32_t Type
= *reinterpret_cast<const Elf_Word
*>(Arr
.data());
5161 uint32_t DataSize
= *reinterpret_cast<const Elf_Word
*>(Arr
.data() + 4);
5162 Arr
= Arr
.drop_front(8);
5164 // Take padding size into account if present.
5165 uint64_t PaddedSize
= alignTo(DataSize
, sizeof(typename
ELFT::uint
));
5167 raw_string_ostream
OS(str
);
5168 if (Arr
.size() < PaddedSize
) {
5169 OS
<< format("<corrupt type (0x%x) datasz: 0x%x>", Type
, DataSize
);
5170 Properties
.push_back(OS
.str());
5173 Properties
.push_back(
5174 getGNUProperty
<ELFT
>(Type
, DataSize
, Arr
.take_front(PaddedSize
)));
5175 Arr
= Arr
.drop_front(PaddedSize
);
5179 Properties
.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5190 template <typename ELFT
> static GNUAbiTag
getGNUAbiTag(ArrayRef
<uint8_t> Desc
) {
5191 typedef typename
ELFT::Word Elf_Word
;
5193 ArrayRef
<Elf_Word
> Words(reinterpret_cast<const Elf_Word
*>(Desc
.begin()),
5194 reinterpret_cast<const Elf_Word
*>(Desc
.end()));
5196 if (Words
.size() < 4)
5197 return {"", "", /*IsValid=*/false};
5199 static const char *OSNames
[] = {
5200 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5202 StringRef OSName
= "Unknown";
5203 if (Words
[0] < std::size(OSNames
))
5204 OSName
= OSNames
[Words
[0]];
5205 uint32_t Major
= Words
[1], Minor
= Words
[2], Patch
= Words
[3];
5207 raw_string_ostream
ABI(str
);
5208 ABI
<< Major
<< "." << Minor
<< "." << Patch
;
5209 return {std::string(OSName
), ABI
.str(), /*IsValid=*/true};
5212 static std::string
getGNUBuildId(ArrayRef
<uint8_t> Desc
) {
5214 raw_string_ostream
OS(str
);
5215 for (uint8_t B
: Desc
)
5216 OS
<< format_hex_no_prefix(B
, 2);
5220 static StringRef
getDescAsStringRef(ArrayRef
<uint8_t> Desc
) {
5221 return StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
5224 template <typename ELFT
>
5225 static bool printGNUNote(raw_ostream
&OS
, uint32_t NoteType
,
5226 ArrayRef
<uint8_t> Desc
) {
5227 // Return true if we were able to pretty-print the note, false otherwise.
5231 case ELF::NT_GNU_ABI_TAG
: {
5232 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
5233 if (!AbiTag
.IsValid
)
5234 OS
<< " <corrupt GNU_ABI_TAG>";
5236 OS
<< " OS: " << AbiTag
.OSName
<< ", ABI: " << AbiTag
.ABI
;
5239 case ELF::NT_GNU_BUILD_ID
: {
5240 OS
<< " Build ID: " << getGNUBuildId(Desc
);
5243 case ELF::NT_GNU_GOLD_VERSION
:
5244 OS
<< " Version: " << getDescAsStringRef(Desc
);
5246 case ELF::NT_GNU_PROPERTY_TYPE_0
:
5247 OS
<< " Properties:";
5248 for (const std::string
&Property
: getGNUPropertyList
<ELFT
>(Desc
))
5249 OS
<< " " << Property
<< "\n";
5256 using AndroidNoteProperties
= std::vector
<std::pair
<StringRef
, std::string
>>;
5257 static AndroidNoteProperties
getAndroidNoteProperties(uint32_t NoteType
,
5258 ArrayRef
<uint8_t> Desc
) {
5259 AndroidNoteProperties Props
;
5261 case ELF::NT_ANDROID_TYPE_MEMTAG
:
5263 Props
.emplace_back("Invalid .note.android.memtag", "");
5267 switch (Desc
[0] & NT_MEMTAG_LEVEL_MASK
) {
5268 case NT_MEMTAG_LEVEL_NONE
:
5269 Props
.emplace_back("Tagging Mode", "NONE");
5271 case NT_MEMTAG_LEVEL_ASYNC
:
5272 Props
.emplace_back("Tagging Mode", "ASYNC");
5274 case NT_MEMTAG_LEVEL_SYNC
:
5275 Props
.emplace_back("Tagging Mode", "SYNC");
5280 ("Unknown (" + Twine::utohexstr(Desc
[0] & NT_MEMTAG_LEVEL_MASK
) + ")")
5284 Props
.emplace_back("Heap",
5285 (Desc
[0] & NT_MEMTAG_HEAP
) ? "Enabled" : "Disabled");
5286 Props
.emplace_back("Stack",
5287 (Desc
[0] & NT_MEMTAG_STACK
) ? "Enabled" : "Disabled");
5295 static bool printAndroidNote(raw_ostream
&OS
, uint32_t NoteType
,
5296 ArrayRef
<uint8_t> Desc
) {
5297 // Return true if we were able to pretty-print the note, false otherwise.
5298 AndroidNoteProperties Props
= getAndroidNoteProperties(NoteType
, Desc
);
5301 for (const auto &KV
: Props
)
5302 OS
<< " " << KV
.first
<< ": " << KV
.second
<< '\n';
5306 template <class ELFT
>
5307 void GNUELFDumper
<ELFT
>::printMemtag(
5308 const ArrayRef
<std::pair
<std::string
, std::string
>> DynamicEntries
,
5309 const ArrayRef
<uint8_t> AndroidNoteDesc
,
5310 const ArrayRef
<std::pair
<uint64_t, uint64_t>> Descriptors
) {
5311 OS
<< "Memtag Dynamic Entries:\n";
5312 if (DynamicEntries
.empty())
5313 OS
<< " < none found >\n";
5314 for (const auto &DynamicEntryKV
: DynamicEntries
)
5315 OS
<< " " << DynamicEntryKV
.first
<< ": " << DynamicEntryKV
.second
5318 if (!AndroidNoteDesc
.empty()) {
5319 OS
<< "Memtag Android Note:\n";
5320 printAndroidNote(OS
, ELF::NT_ANDROID_TYPE_MEMTAG
, AndroidNoteDesc
);
5323 if (Descriptors
.empty())
5326 OS
<< "Memtag Global Descriptors:\n";
5327 for (const auto &[Addr
, BytesToTag
] : Descriptors
) {
5328 OS
<< " 0x" << utohexstr(Addr
, /*LowerCase=*/true) << ": 0x"
5329 << utohexstr(BytesToTag
, /*LowerCase=*/true) << "\n";
5333 template <typename ELFT
>
5334 static bool printLLVMOMPOFFLOADNote(raw_ostream
&OS
, uint32_t NoteType
,
5335 ArrayRef
<uint8_t> Desc
) {
5339 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION
:
5340 OS
<< " Version: " << getDescAsStringRef(Desc
);
5342 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER
:
5343 OS
<< " Producer: " << getDescAsStringRef(Desc
);
5345 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION
:
5346 OS
<< " Producer version: " << getDescAsStringRef(Desc
);
5353 const EnumEntry
<unsigned> FreeBSDFeatureCtlFlags
[] = {
5354 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE
},
5355 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE
},
5356 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE
},
5357 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED
},
5358 {"LA48", NT_FREEBSD_FCTL_LA48
},
5359 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE
},
5362 struct FreeBSDNote
{
5367 template <typename ELFT
>
5368 static std::optional
<FreeBSDNote
>
5369 getFreeBSDNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
, bool IsCore
) {
5371 return std::nullopt
; // No pretty-printing yet.
5373 case ELF::NT_FREEBSD_ABI_TAG
:
5374 if (Desc
.size() != 4)
5375 return std::nullopt
;
5378 utostr(support::endian::read32
<ELFT::TargetEndianness
>(Desc
.data()))};
5379 case ELF::NT_FREEBSD_ARCH_TAG
:
5380 return FreeBSDNote
{"Arch tag", toStringRef(Desc
).str()};
5381 case ELF::NT_FREEBSD_FEATURE_CTL
: {
5382 if (Desc
.size() != 4)
5383 return std::nullopt
;
5385 support::endian::read32
<ELFT::TargetEndianness
>(Desc
.data());
5386 std::string FlagsStr
;
5387 raw_string_ostream
OS(FlagsStr
);
5388 printFlags(Value
, ArrayRef(FreeBSDFeatureCtlFlags
), OS
);
5389 if (OS
.str().empty())
5390 OS
<< "0x" << utohexstr(Value
);
5392 OS
<< "(0x" << utohexstr(Value
) << ")";
5393 return FreeBSDNote
{"Feature flags", OS
.str()};
5396 return std::nullopt
;
5405 template <typename ELFT
>
5406 static AMDNote
getAMDNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
5410 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION
: {
5411 struct CodeObjectVersion
{
5412 uint32_t MajorVersion
;
5413 uint32_t MinorVersion
;
5415 if (Desc
.size() != sizeof(CodeObjectVersion
))
5416 return {"AMD HSA Code Object Version",
5417 "Invalid AMD HSA Code Object Version"};
5418 std::string VersionString
;
5419 raw_string_ostream
StrOS(VersionString
);
5420 auto Version
= reinterpret_cast<const CodeObjectVersion
*>(Desc
.data());
5421 StrOS
<< "[Major: " << Version
->MajorVersion
5422 << ", Minor: " << Version
->MinorVersion
<< "]";
5423 return {"AMD HSA Code Object Version", VersionString
};
5425 case ELF::NT_AMD_HSA_HSAIL
: {
5426 struct HSAILProperties
{
5427 uint32_t HSAILMajorVersion
;
5428 uint32_t HSAILMinorVersion
;
5430 uint8_t MachineModel
;
5431 uint8_t DefaultFloatRound
;
5433 if (Desc
.size() != sizeof(HSAILProperties
))
5434 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5435 auto Properties
= reinterpret_cast<const HSAILProperties
*>(Desc
.data());
5436 std::string HSAILPropetiesString
;
5437 raw_string_ostream
StrOS(HSAILPropetiesString
);
5438 StrOS
<< "[HSAIL Major: " << Properties
->HSAILMajorVersion
5439 << ", HSAIL Minor: " << Properties
->HSAILMinorVersion
5440 << ", Profile: " << uint32_t(Properties
->Profile
)
5441 << ", Machine Model: " << uint32_t(Properties
->MachineModel
)
5442 << ", Default Float Round: "
5443 << uint32_t(Properties
->DefaultFloatRound
) << "]";
5444 return {"AMD HSA HSAIL Properties", HSAILPropetiesString
};
5446 case ELF::NT_AMD_HSA_ISA_VERSION
: {
5448 uint16_t VendorNameSize
;
5449 uint16_t ArchitectureNameSize
;
5454 if (Desc
.size() < sizeof(IsaVersion
))
5455 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5456 auto Isa
= reinterpret_cast<const IsaVersion
*>(Desc
.data());
5457 if (Desc
.size() < sizeof(IsaVersion
) +
5458 Isa
->VendorNameSize
+ Isa
->ArchitectureNameSize
||
5459 Isa
->VendorNameSize
== 0 || Isa
->ArchitectureNameSize
== 0)
5460 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5461 std::string IsaString
;
5462 raw_string_ostream
StrOS(IsaString
);
5463 StrOS
<< "[Vendor: "
5464 << StringRef((const char*)Desc
.data() + sizeof(IsaVersion
), Isa
->VendorNameSize
- 1)
5465 << ", Architecture: "
5466 << StringRef((const char*)Desc
.data() + sizeof(IsaVersion
) + Isa
->VendorNameSize
,
5467 Isa
->ArchitectureNameSize
- 1)
5468 << ", Major: " << Isa
->Major
<< ", Minor: " << Isa
->Minor
5469 << ", Stepping: " << Isa
->Stepping
<< "]";
5470 return {"AMD HSA ISA Version", IsaString
};
5472 case ELF::NT_AMD_HSA_METADATA
: {
5473 if (Desc
.size() == 0)
5474 return {"AMD HSA Metadata", ""};
5477 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size() - 1)};
5479 case ELF::NT_AMD_HSA_ISA_NAME
: {
5480 if (Desc
.size() == 0)
5481 return {"AMD HSA ISA Name", ""};
5484 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size())};
5486 case ELF::NT_AMD_PAL_METADATA
: {
5487 struct PALMetadata
{
5491 if (Desc
.size() % sizeof(PALMetadata
) != 0)
5492 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5493 auto Isa
= reinterpret_cast<const PALMetadata
*>(Desc
.data());
5494 std::string MetadataString
;
5495 raw_string_ostream
StrOS(MetadataString
);
5496 for (size_t I
= 0, E
= Desc
.size() / sizeof(PALMetadata
); I
< E
; ++I
) {
5497 StrOS
<< "[" << Isa
[I
].Key
<< ": " << Isa
[I
].Value
<< "]";
5499 return {"AMD PAL Metadata", MetadataString
};
5509 template <typename ELFT
>
5510 static AMDGPUNote
getAMDGPUNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
5514 case ELF::NT_AMDGPU_METADATA
: {
5515 StringRef MsgPackString
=
5516 StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
5517 msgpack::Document MsgPackDoc
;
5518 if (!MsgPackDoc
.readFromBlob(MsgPackString
, /*Multi=*/false))
5521 std::string MetadataString
;
5523 // FIXME: Metadata Verifier only works with AMDHSA.
5524 // This is an ugly workaround to avoid the verifier for other MD
5525 // formats (e.g. amdpal)
5526 if (MsgPackString
.find("amdhsa.") != StringRef::npos
) {
5527 AMDGPU::HSAMD::V3::MetadataVerifier
Verifier(true);
5528 if (!Verifier
.verify(MsgPackDoc
.getRoot()))
5529 MetadataString
= "Invalid AMDGPU Metadata\n";
5532 raw_string_ostream
StrOS(MetadataString
);
5533 if (MsgPackDoc
.getRoot().isScalar()) {
5534 // TODO: passing a scalar root to toYAML() asserts:
5535 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5536 // "plain scalar documents are not supported")
5537 // To avoid this crash we print the raw data instead.
5540 MsgPackDoc
.toYAML(StrOS
);
5541 return {"AMDGPU Metadata", StrOS
.str()};
5546 struct CoreFileMapping
{
5547 uint64_t Start
, End
, Offset
;
5553 std::vector
<CoreFileMapping
> Mappings
;
5556 static Expected
<CoreNote
> readCoreNote(DataExtractor Desc
) {
5557 // Expected format of the NT_FILE note description:
5558 // 1. # of file mappings (call it N)
5560 // 3. N (start, end, offset) triples
5561 // 4. N packed filenames (null delimited)
5562 // Each field is an Elf_Addr, except for filenames which are char* strings.
5565 const int Bytes
= Desc
.getAddressSize();
5567 if (!Desc
.isValidOffsetForAddress(2))
5568 return createError("the note of size 0x" + Twine::utohexstr(Desc
.size()) +
5569 " is too short, expected at least 0x" +
5570 Twine::utohexstr(Bytes
* 2));
5571 if (Desc
.getData().back() != 0)
5572 return createError("the note is not NUL terminated");
5574 uint64_t DescOffset
= 0;
5575 uint64_t FileCount
= Desc
.getAddress(&DescOffset
);
5576 Ret
.PageSize
= Desc
.getAddress(&DescOffset
);
5578 if (!Desc
.isValidOffsetForAddress(3 * FileCount
* Bytes
))
5579 return createError("unable to read file mappings (found " +
5580 Twine(FileCount
) + "): the note of size 0x" +
5581 Twine::utohexstr(Desc
.size()) + " is too short");
5583 uint64_t FilenamesOffset
= 0;
5584 DataExtractor
Filenames(
5585 Desc
.getData().drop_front(DescOffset
+ 3 * FileCount
* Bytes
),
5586 Desc
.isLittleEndian(), Desc
.getAddressSize());
5588 Ret
.Mappings
.resize(FileCount
);
5590 for (CoreFileMapping
&Mapping
: Ret
.Mappings
) {
5592 if (!Filenames
.isValidOffsetForDataOfSize(FilenamesOffset
, 1))
5594 "unable to read the file name for the mapping with index " +
5595 Twine(I
) + ": the note of size 0x" + Twine::utohexstr(Desc
.size()) +
5597 Mapping
.Start
= Desc
.getAddress(&DescOffset
);
5598 Mapping
.End
= Desc
.getAddress(&DescOffset
);
5599 Mapping
.Offset
= Desc
.getAddress(&DescOffset
);
5600 Mapping
.Filename
= Filenames
.getCStrRef(&FilenamesOffset
);
5606 template <typename ELFT
>
5607 static void printCoreNote(raw_ostream
&OS
, const CoreNote
&Note
) {
5608 // Length of "0x<address>" string.
5609 const int FieldWidth
= ELFT::Is64Bits
? 18 : 10;
5611 OS
<< " Page size: " << format_decimal(Note
.PageSize
, 0) << '\n';
5612 OS
<< " " << right_justify("Start", FieldWidth
) << " "
5613 << right_justify("End", FieldWidth
) << " "
5614 << right_justify("Page Offset", FieldWidth
) << '\n';
5615 for (const CoreFileMapping
&Mapping
: Note
.Mappings
) {
5616 OS
<< " " << format_hex(Mapping
.Start
, FieldWidth
) << " "
5617 << format_hex(Mapping
.End
, FieldWidth
) << " "
5618 << format_hex(Mapping
.Offset
, FieldWidth
) << "\n "
5619 << Mapping
.Filename
<< '\n';
5623 const NoteType GenericNoteTypes
[] = {
5624 {ELF::NT_VERSION
, "NT_VERSION (version)"},
5625 {ELF::NT_ARCH
, "NT_ARCH (architecture)"},
5626 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN
, "OPEN"},
5627 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC
, "func"},
5630 const NoteType GNUNoteTypes
[] = {
5631 {ELF::NT_GNU_ABI_TAG
, "NT_GNU_ABI_TAG (ABI version tag)"},
5632 {ELF::NT_GNU_HWCAP
, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5633 {ELF::NT_GNU_BUILD_ID
, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5634 {ELF::NT_GNU_GOLD_VERSION
, "NT_GNU_GOLD_VERSION (gold version)"},
5635 {ELF::NT_GNU_PROPERTY_TYPE_0
, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5638 const NoteType FreeBSDCoreNoteTypes
[] = {
5639 {ELF::NT_FREEBSD_THRMISC
, "NT_THRMISC (thrmisc structure)"},
5640 {ELF::NT_FREEBSD_PROCSTAT_PROC
, "NT_PROCSTAT_PROC (proc data)"},
5641 {ELF::NT_FREEBSD_PROCSTAT_FILES
, "NT_PROCSTAT_FILES (files data)"},
5642 {ELF::NT_FREEBSD_PROCSTAT_VMMAP
, "NT_PROCSTAT_VMMAP (vmmap data)"},
5643 {ELF::NT_FREEBSD_PROCSTAT_GROUPS
, "NT_PROCSTAT_GROUPS (groups data)"},
5644 {ELF::NT_FREEBSD_PROCSTAT_UMASK
, "NT_PROCSTAT_UMASK (umask data)"},
5645 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT
, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5646 {ELF::NT_FREEBSD_PROCSTAT_OSREL
, "NT_PROCSTAT_OSREL (osreldate data)"},
5647 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS
,
5648 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5649 {ELF::NT_FREEBSD_PROCSTAT_AUXV
, "NT_PROCSTAT_AUXV (auxv data)"},
5652 const NoteType FreeBSDNoteTypes
[] = {
5653 {ELF::NT_FREEBSD_ABI_TAG
, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5654 {ELF::NT_FREEBSD_NOINIT_TAG
, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5655 {ELF::NT_FREEBSD_ARCH_TAG
, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5656 {ELF::NT_FREEBSD_FEATURE_CTL
,
5657 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5660 const NoteType NetBSDCoreNoteTypes
[] = {
5661 {ELF::NT_NETBSDCORE_PROCINFO
,
5662 "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5663 {ELF::NT_NETBSDCORE_AUXV
, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5664 {ELF::NT_NETBSDCORE_LWPSTATUS
, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5667 const NoteType OpenBSDCoreNoteTypes
[] = {
5668 {ELF::NT_OPENBSD_PROCINFO
, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5669 {ELF::NT_OPENBSD_AUXV
, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5670 {ELF::NT_OPENBSD_REGS
, "NT_OPENBSD_REGS (regular registers)"},
5671 {ELF::NT_OPENBSD_FPREGS
, "NT_OPENBSD_FPREGS (floating point registers)"},
5672 {ELF::NT_OPENBSD_WCOOKIE
, "NT_OPENBSD_WCOOKIE (window cookie)"},
5675 const NoteType AMDNoteTypes
[] = {
5676 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION
,
5677 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5678 {ELF::NT_AMD_HSA_HSAIL
, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5679 {ELF::NT_AMD_HSA_ISA_VERSION
, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5680 {ELF::NT_AMD_HSA_METADATA
, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5681 {ELF::NT_AMD_HSA_ISA_NAME
, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5682 {ELF::NT_AMD_PAL_METADATA
, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5685 const NoteType AMDGPUNoteTypes
[] = {
5686 {ELF::NT_AMDGPU_METADATA
, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5689 const NoteType LLVMOMPOFFLOADNoteTypes
[] = {
5690 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION
,
5691 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5692 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER
,
5693 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5694 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION
,
5695 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5698 const NoteType AndroidNoteTypes
[] = {
5699 {ELF::NT_ANDROID_TYPE_IDENT
, "NT_ANDROID_TYPE_IDENT"},
5700 {ELF::NT_ANDROID_TYPE_KUSER
, "NT_ANDROID_TYPE_KUSER"},
5701 {ELF::NT_ANDROID_TYPE_MEMTAG
,
5702 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5705 const NoteType CoreNoteTypes
[] = {
5706 {ELF::NT_PRSTATUS
, "NT_PRSTATUS (prstatus structure)"},
5707 {ELF::NT_FPREGSET
, "NT_FPREGSET (floating point registers)"},
5708 {ELF::NT_PRPSINFO
, "NT_PRPSINFO (prpsinfo structure)"},
5709 {ELF::NT_TASKSTRUCT
, "NT_TASKSTRUCT (task structure)"},
5710 {ELF::NT_AUXV
, "NT_AUXV (auxiliary vector)"},
5711 {ELF::NT_PSTATUS
, "NT_PSTATUS (pstatus structure)"},
5712 {ELF::NT_FPREGS
, "NT_FPREGS (floating point registers)"},
5713 {ELF::NT_PSINFO
, "NT_PSINFO (psinfo structure)"},
5714 {ELF::NT_LWPSTATUS
, "NT_LWPSTATUS (lwpstatus_t structure)"},
5715 {ELF::NT_LWPSINFO
, "NT_LWPSINFO (lwpsinfo_t structure)"},
5716 {ELF::NT_WIN32PSTATUS
, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5718 {ELF::NT_PPC_VMX
, "NT_PPC_VMX (ppc Altivec registers)"},
5719 {ELF::NT_PPC_VSX
, "NT_PPC_VSX (ppc VSX registers)"},
5720 {ELF::NT_PPC_TAR
, "NT_PPC_TAR (ppc TAR register)"},
5721 {ELF::NT_PPC_PPR
, "NT_PPC_PPR (ppc PPR register)"},
5722 {ELF::NT_PPC_DSCR
, "NT_PPC_DSCR (ppc DSCR register)"},
5723 {ELF::NT_PPC_EBB
, "NT_PPC_EBB (ppc EBB registers)"},
5724 {ELF::NT_PPC_PMU
, "NT_PPC_PMU (ppc PMU registers)"},
5725 {ELF::NT_PPC_TM_CGPR
, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5726 {ELF::NT_PPC_TM_CFPR
,
5727 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5728 {ELF::NT_PPC_TM_CVMX
,
5729 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5730 {ELF::NT_PPC_TM_CVSX
, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5731 {ELF::NT_PPC_TM_SPR
, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5732 {ELF::NT_PPC_TM_CTAR
, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5733 {ELF::NT_PPC_TM_CPPR
, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5734 {ELF::NT_PPC_TM_CDSCR
, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5736 {ELF::NT_386_TLS
, "NT_386_TLS (x86 TLS information)"},
5737 {ELF::NT_386_IOPERM
, "NT_386_IOPERM (x86 I/O permissions)"},
5738 {ELF::NT_X86_XSTATE
, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5740 {ELF::NT_S390_HIGH_GPRS
, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5741 {ELF::NT_S390_TIMER
, "NT_S390_TIMER (s390 timer register)"},
5742 {ELF::NT_S390_TODCMP
, "NT_S390_TODCMP (s390 TOD comparator register)"},
5743 {ELF::NT_S390_TODPREG
, "NT_S390_TODPREG (s390 TOD programmable register)"},
5744 {ELF::NT_S390_CTRS
, "NT_S390_CTRS (s390 control registers)"},
5745 {ELF::NT_S390_PREFIX
, "NT_S390_PREFIX (s390 prefix register)"},
5746 {ELF::NT_S390_LAST_BREAK
,
5747 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5748 {ELF::NT_S390_SYSTEM_CALL
,
5749 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5750 {ELF::NT_S390_TDB
, "NT_S390_TDB (s390 transaction diagnostic block)"},
5751 {ELF::NT_S390_VXRS_LOW
,
5752 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5753 {ELF::NT_S390_VXRS_HIGH
, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5754 {ELF::NT_S390_GS_CB
, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5755 {ELF::NT_S390_GS_BC
,
5756 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5758 {ELF::NT_ARM_VFP
, "NT_ARM_VFP (arm VFP registers)"},
5759 {ELF::NT_ARM_TLS
, "NT_ARM_TLS (AArch TLS registers)"},
5760 {ELF::NT_ARM_HW_BREAK
,
5761 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5762 {ELF::NT_ARM_HW_WATCH
,
5763 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5764 {ELF::NT_ARM_SVE
, "NT_ARM_SVE (AArch64 SVE registers)"},
5765 {ELF::NT_ARM_PAC_MASK
,
5766 "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)"},
5767 {ELF::NT_ARM_SSVE
, "NT_ARM_SSVE (AArch64 Streaming SVE registers)"},
5768 {ELF::NT_ARM_ZA
, "NT_ARM_ZA (AArch64 SME ZA registers)"},
5769 {ELF::NT_ARM_ZT
, "NT_ARM_ZT (AArch64 SME ZT registers)"},
5771 {ELF::NT_FILE
, "NT_FILE (mapped files)"},
5772 {ELF::NT_PRXFPREG
, "NT_PRXFPREG (user_xfpregs structure)"},
5773 {ELF::NT_SIGINFO
, "NT_SIGINFO (siginfo_t data)"},
5776 template <class ELFT
>
5777 StringRef
getNoteTypeName(const typename
ELFT::Note
&Note
, unsigned ELFType
) {
5778 uint32_t Type
= Note
.getType();
5779 auto FindNote
= [&](ArrayRef
<NoteType
> V
) -> StringRef
{
5780 for (const NoteType
&N
: V
)
5786 StringRef Name
= Note
.getName();
5788 return FindNote(GNUNoteTypes
);
5789 if (Name
== "FreeBSD") {
5790 if (ELFType
== ELF::ET_CORE
) {
5791 // FreeBSD also places the generic core notes in the FreeBSD namespace.
5792 StringRef Result
= FindNote(FreeBSDCoreNoteTypes
);
5793 if (!Result
.empty())
5795 return FindNote(CoreNoteTypes
);
5797 return FindNote(FreeBSDNoteTypes
);
5800 if (ELFType
== ELF::ET_CORE
&& Name
.startswith("NetBSD-CORE")) {
5801 StringRef Result
= FindNote(NetBSDCoreNoteTypes
);
5802 if (!Result
.empty())
5804 return FindNote(CoreNoteTypes
);
5806 if (ELFType
== ELF::ET_CORE
&& Name
.startswith("OpenBSD")) {
5807 // OpenBSD also places the generic core notes in the OpenBSD namespace.
5808 StringRef Result
= FindNote(OpenBSDCoreNoteTypes
);
5809 if (!Result
.empty())
5811 return FindNote(CoreNoteTypes
);
5814 return FindNote(AMDNoteTypes
);
5815 if (Name
== "AMDGPU")
5816 return FindNote(AMDGPUNoteTypes
);
5817 if (Name
== "LLVMOMPOFFLOAD")
5818 return FindNote(LLVMOMPOFFLOADNoteTypes
);
5819 if (Name
== "Android")
5820 return FindNote(AndroidNoteTypes
);
5822 if (ELFType
== ELF::ET_CORE
)
5823 return FindNote(CoreNoteTypes
);
5824 return FindNote(GenericNoteTypes
);
5827 template <class ELFT
>
5828 static void processNotesHelper(
5829 const ELFDumper
<ELFT
> &Dumper
,
5830 llvm::function_ref
<void(std::optional
<StringRef
>, typename
ELFT::Off
,
5831 typename
ELFT::Addr
, size_t)>
5833 llvm::function_ref
<Error(const typename
ELFT::Note
&, bool)> ProcessNoteFn
,
5834 llvm::function_ref
<void()> FinishNotesFn
) {
5835 const ELFFile
<ELFT
> &Obj
= Dumper
.getElfObject().getELFFile();
5836 bool IsCoreFile
= Obj
.getHeader().e_type
== ELF::ET_CORE
;
5838 ArrayRef
<typename
ELFT::Shdr
> Sections
= cantFail(Obj
.sections());
5839 if (!IsCoreFile
&& !Sections
.empty()) {
5840 for (const typename
ELFT::Shdr
&S
: Sections
) {
5841 if (S
.sh_type
!= SHT_NOTE
)
5843 StartNotesFn(expectedToStdOptional(Obj
.getSectionName(S
)), S
.sh_offset
,
5844 S
.sh_size
, S
.sh_addralign
);
5845 Error Err
= Error::success();
5847 for (const typename
ELFT::Note Note
: Obj
.notes(S
, Err
)) {
5848 if (Error E
= ProcessNoteFn(Note
, IsCoreFile
))
5849 Dumper
.reportUniqueWarning(
5850 "unable to read note with index " + Twine(I
) + " from the " +
5851 describe(Obj
, S
) + ": " + toString(std::move(E
)));
5855 Dumper
.reportUniqueWarning("unable to read notes from the " +
5856 describe(Obj
, S
) + ": " +
5857 toString(std::move(Err
)));
5863 Expected
<ArrayRef
<typename
ELFT::Phdr
>> PhdrsOrErr
= Obj
.program_headers();
5865 Dumper
.reportUniqueWarning(
5866 "unable to read program headers to locate the PT_NOTE segment: " +
5867 toString(PhdrsOrErr
.takeError()));
5871 for (size_t I
= 0, E
= (*PhdrsOrErr
).size(); I
!= E
; ++I
) {
5872 const typename
ELFT::Phdr
&P
= (*PhdrsOrErr
)[I
];
5873 if (P
.p_type
!= PT_NOTE
)
5875 StartNotesFn(/*SecName=*/std::nullopt
, P
.p_offset
, P
.p_filesz
, P
.p_align
);
5876 Error Err
= Error::success();
5878 for (const typename
ELFT::Note Note
: Obj
.notes(P
, Err
)) {
5879 if (Error E
= ProcessNoteFn(Note
, IsCoreFile
))
5880 Dumper
.reportUniqueWarning("unable to read note with index " +
5882 " from the PT_NOTE segment with index " +
5883 Twine(I
) + ": " + toString(std::move(E
)));
5887 Dumper
.reportUniqueWarning(
5888 "unable to read notes from the PT_NOTE segment with index " +
5889 Twine(I
) + ": " + toString(std::move(Err
)));
5894 template <class ELFT
> void GNUELFDumper
<ELFT
>::printNotes() {
5896 bool IsFirstHeader
= true;
5897 auto PrintHeader
= [&](std::optional
<StringRef
> SecName
,
5898 const typename
ELFT::Off Offset
,
5899 const typename
ELFT::Addr Size
, size_t Al
) {
5900 Align
= std::max
<size_t>(Al
, 4);
5901 // Print a newline between notes sections to match GNU readelf.
5902 if (!IsFirstHeader
) {
5905 IsFirstHeader
= false;
5908 OS
<< "Displaying notes found ";
5911 OS
<< "in: " << *SecName
<< "\n";
5913 OS
<< "at file offset " << format_hex(Offset
, 10) << " with length "
5914 << format_hex(Size
, 10) << ":\n";
5916 OS
<< " Owner Data size \tDescription\n";
5919 auto ProcessNote
= [&](const Elf_Note
&Note
, bool IsCore
) -> Error
{
5920 StringRef Name
= Note
.getName();
5921 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc(Align
);
5922 Elf_Word Type
= Note
.getType();
5924 // Print the note owner/type.
5925 OS
<< " " << left_justify(Name
, 20) << ' '
5926 << format_hex(Descriptor
.size(), 10) << '\t';
5928 StringRef NoteType
=
5929 getNoteTypeName
<ELFT
>(Note
, this->Obj
.getHeader().e_type
);
5930 if (!NoteType
.empty())
5931 OS
<< NoteType
<< '\n';
5933 OS
<< "Unknown note type: (" << format_hex(Type
, 10) << ")\n";
5935 // Print the description, or fallback to printing raw bytes for unknown
5936 // owners/if we fail to pretty-print the contents.
5937 if (Name
== "GNU") {
5938 if (printGNUNote
<ELFT
>(OS
, Type
, Descriptor
))
5939 return Error::success();
5940 } else if (Name
== "FreeBSD") {
5941 if (std::optional
<FreeBSDNote
> N
=
5942 getFreeBSDNote
<ELFT
>(Type
, Descriptor
, IsCore
)) {
5943 OS
<< " " << N
->Type
<< ": " << N
->Value
<< '\n';
5944 return Error::success();
5946 } else if (Name
== "AMD") {
5947 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
5948 if (!N
.Type
.empty()) {
5949 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
5950 return Error::success();
5952 } else if (Name
== "AMDGPU") {
5953 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
5954 if (!N
.Type
.empty()) {
5955 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
5956 return Error::success();
5958 } else if (Name
== "LLVMOMPOFFLOAD") {
5959 if (printLLVMOMPOFFLOADNote
<ELFT
>(OS
, Type
, Descriptor
))
5960 return Error::success();
5961 } else if (Name
== "CORE") {
5962 if (Type
== ELF::NT_FILE
) {
5963 DataExtractor
DescExtractor(Descriptor
,
5964 ELFT::TargetEndianness
== support::little
,
5966 if (Expected
<CoreNote
> NoteOrErr
= readCoreNote(DescExtractor
)) {
5967 printCoreNote
<ELFT
>(OS
, *NoteOrErr
);
5968 return Error::success();
5970 return NoteOrErr
.takeError();
5973 } else if (Name
== "Android") {
5974 if (printAndroidNote(OS
, Type
, Descriptor
))
5975 return Error::success();
5977 if (!Descriptor
.empty()) {
5978 OS
<< " description data:";
5979 for (uint8_t B
: Descriptor
)
5980 OS
<< " " << format("%02x", B
);
5983 return Error::success();
5986 processNotesHelper(*this, /*StartNotesFn=*/PrintHeader
,
5987 /*ProcessNoteFn=*/ProcessNote
, /*FinishNotesFn=*/[]() {});
5990 template <class ELFT
>
5992 ELFDumper
<ELFT
>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr
) {
5993 for (const typename
ELFT::Shdr
&Sec
: cantFail(Obj
.sections())) {
5994 if (Sec
.sh_type
!= SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC
)
5996 if (Sec
.sh_addr
!= ExpectedAddr
) {
5997 reportUniqueWarning(
5998 "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" +
5999 Twine::utohexstr(Sec
.sh_addr
) +
6000 ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" +
6001 Twine::utohexstr(ExpectedAddr
));
6002 return ArrayRef
<uint8_t>();
6004 Expected
<ArrayRef
<uint8_t>> Contents
= Obj
.getSectionContents(Sec
);
6005 if (auto E
= Contents
.takeError()) {
6006 reportUniqueWarning(
6007 "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " +
6008 toString(std::move(E
)));
6009 return ArrayRef
<uint8_t>();
6011 return Contents
.get();
6013 return ArrayRef
<uint8_t>();
6016 // Reserve the lower three bits of the first byte of the step distance when
6017 // encoding the memtag descriptors. Found to be the best overall size tradeoff
6018 // when compiling Android T with full MTE globals enabled.
6019 constexpr uint64_t MemtagStepVarintReservedBits
= 3;
6020 constexpr uint64_t MemtagGranuleSize
= 16;
6022 template <typename ELFT
> void ELFDumper
<ELFT
>::printMemtag() {
6023 if (Obj
.getHeader().e_machine
!= EM_AARCH64
) return;
6024 std::vector
<std::pair
<std::string
, std::string
>> DynamicEntries
;
6025 uint64_t MemtagGlobalsSz
= 0;
6026 uint64_t MemtagGlobals
= 0;
6027 for (const typename
ELFT::Dyn
&Entry
: dynamic_table()) {
6028 uintX_t Tag
= Entry
.getTag();
6030 case DT_AARCH64_MEMTAG_GLOBALSSZ
:
6031 MemtagGlobalsSz
= Entry
.getVal();
6032 DynamicEntries
.emplace_back(Obj
.getDynamicTagAsString(Tag
),
6033 getDynamicEntry(Tag
, Entry
.getVal()));
6035 case DT_AARCH64_MEMTAG_GLOBALS
:
6036 MemtagGlobals
= Entry
.getVal();
6037 DynamicEntries
.emplace_back(Obj
.getDynamicTagAsString(Tag
),
6038 getDynamicEntry(Tag
, Entry
.getVal()));
6040 case DT_AARCH64_MEMTAG_MODE
:
6041 case DT_AARCH64_MEMTAG_HEAP
:
6042 case DT_AARCH64_MEMTAG_STACK
:
6043 DynamicEntries
.emplace_back(Obj
.getDynamicTagAsString(Tag
),
6044 getDynamicEntry(Tag
, Entry
.getVal()));
6049 ArrayRef
<uint8_t> AndroidNoteDesc
;
6050 auto FindAndroidNote
= [&](const Elf_Note
&Note
, bool IsCore
) -> Error
{
6051 if (Note
.getName() == "Android" &&
6052 Note
.getType() == ELF::NT_ANDROID_TYPE_MEMTAG
)
6053 AndroidNoteDesc
= Note
.getDesc(4);
6054 return Error::success();
6060 [](std::optional
<StringRef
>, const typename
ELFT::Off
,
6061 const typename
ELFT::Addr
, size_t) {},
6062 /*ProcessNoteFn=*/FindAndroidNote
, /*FinishNotesFn=*/[]() {});
6064 ArrayRef
<uint8_t> Contents
= getMemtagGlobalsSectionContents(MemtagGlobals
);
6065 if (Contents
.size() != MemtagGlobalsSz
) {
6066 reportUniqueWarning(
6067 "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" +
6068 Twine::utohexstr(MemtagGlobalsSz
) +
6069 ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" +
6070 Twine::utohexstr(Contents
.size()) + ")");
6071 Contents
= ArrayRef
<uint8_t>();
6074 std::vector
<std::pair
<uint64_t, uint64_t>> GlobalDescriptors
;
6075 uint64_t Address
= 0;
6076 // See the AArch64 MemtagABI document for a description of encoding scheme:
6077 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
6078 for (size_t I
= 0; I
< Contents
.size();) {
6079 const char *Error
= nullptr;
6080 unsigned DecodedBytes
= 0;
6081 uint64_t Value
= decodeULEB128(Contents
.data() + I
, &DecodedBytes
,
6082 Contents
.end(), &Error
);
6085 reportUniqueWarning(
6086 "error decoding distance uleb, " + Twine(DecodedBytes
) +
6087 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error
));
6088 GlobalDescriptors
.clear();
6091 uint64_t Distance
= Value
>> MemtagStepVarintReservedBits
;
6092 uint64_t GranulesToTag
= Value
& ((1 << MemtagStepVarintReservedBits
) - 1);
6093 if (GranulesToTag
== 0) {
6094 GranulesToTag
= decodeULEB128(Contents
.data() + I
, &DecodedBytes
,
6095 Contents
.end(), &Error
) +
6099 reportUniqueWarning(
6100 "error decoding size-only uleb, " + Twine(DecodedBytes
) +
6101 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error
));
6102 GlobalDescriptors
.clear();
6106 Address
+= Distance
* MemtagGranuleSize
;
6107 GlobalDescriptors
.emplace_back(Address
, GranulesToTag
* MemtagGranuleSize
);
6108 Address
+= GranulesToTag
* MemtagGranuleSize
;
6111 printMemtag(DynamicEntries
, AndroidNoteDesc
, GlobalDescriptors
);
6114 template <class ELFT
> void GNUELFDumper
<ELFT
>::printELFLinkerOptions() {
6115 OS
<< "printELFLinkerOptions not implemented!\n";
6118 template <class ELFT
>
6119 void ELFDumper
<ELFT
>::printDependentLibsHelper(
6120 function_ref
<void(const Elf_Shdr
&)> OnSectionStart
,
6121 function_ref
<void(StringRef
, uint64_t)> OnLibEntry
) {
6122 auto Warn
= [this](unsigned SecNdx
, StringRef Msg
) {
6123 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
6124 Twine(SecNdx
) + " is broken: " + Msg
);
6128 for (const Elf_Shdr
&Shdr
: cantFail(Obj
.sections())) {
6130 if (Shdr
.sh_type
!= ELF::SHT_LLVM_DEPENDENT_LIBRARIES
)
6133 OnSectionStart(Shdr
);
6135 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
= Obj
.getSectionContents(Shdr
);
6136 if (!ContentsOrErr
) {
6137 Warn(I
, toString(ContentsOrErr
.takeError()));
6141 ArrayRef
<uint8_t> Contents
= *ContentsOrErr
;
6142 if (!Contents
.empty() && Contents
.back() != 0) {
6143 Warn(I
, "the content is not null-terminated");
6147 for (const uint8_t *I
= Contents
.begin(), *E
= Contents
.end(); I
< E
;) {
6148 StringRef
Lib((const char *)I
);
6149 OnLibEntry(Lib
, I
- Contents
.begin());
6150 I
+= Lib
.size() + 1;
6155 template <class ELFT
>
6156 void ELFDumper
<ELFT
>::forEachRelocationDo(
6157 const Elf_Shdr
&Sec
, bool RawRelr
,
6158 llvm::function_ref
<void(const Relocation
<ELFT
> &, unsigned,
6159 const Elf_Shdr
&, const Elf_Shdr
*)>
6161 llvm::function_ref
<void(const Elf_Relr
&)> RelrFn
) {
6162 auto Warn
= [&](Error
&&E
,
6163 const Twine
&Prefix
= "unable to read relocations from") {
6164 this->reportUniqueWarning(Prefix
+ " " + describe(Sec
) + ": " +
6165 toString(std::move(E
)));
6168 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
6169 // For them we should not treat the value of the sh_link field as an index of
6171 const Elf_Shdr
*SymTab
;
6172 if (Sec
.sh_type
!= ELF::SHT_RELR
&& Sec
.sh_type
!= ELF::SHT_ANDROID_RELR
) {
6173 Expected
<const Elf_Shdr
*> SymTabOrErr
= Obj
.getSection(Sec
.sh_link
);
6175 Warn(SymTabOrErr
.takeError(), "unable to locate a symbol table for");
6178 SymTab
= *SymTabOrErr
;
6181 unsigned RelNdx
= 0;
6182 const bool IsMips64EL
= this->Obj
.isMips64EL();
6183 switch (Sec
.sh_type
) {
6185 if (Expected
<Elf_Rel_Range
> RangeOrErr
= Obj
.rels(Sec
)) {
6186 for (const Elf_Rel
&R
: *RangeOrErr
)
6187 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), RelNdx
++, Sec
, SymTab
);
6189 Warn(RangeOrErr
.takeError());
6193 if (Expected
<Elf_Rela_Range
> RangeOrErr
= Obj
.relas(Sec
)) {
6194 for (const Elf_Rela
&R
: *RangeOrErr
)
6195 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), RelNdx
++, Sec
, SymTab
);
6197 Warn(RangeOrErr
.takeError());
6201 case ELF::SHT_ANDROID_RELR
: {
6202 Expected
<Elf_Relr_Range
> RangeOrErr
= Obj
.relrs(Sec
);
6204 Warn(RangeOrErr
.takeError());
6208 for (const Elf_Relr
&R
: *RangeOrErr
)
6213 for (const Elf_Rel
&R
: Obj
.decode_relrs(*RangeOrErr
))
6214 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), RelNdx
++, Sec
,
6215 /*SymTab=*/nullptr);
6218 case ELF::SHT_ANDROID_REL
:
6219 case ELF::SHT_ANDROID_RELA
:
6220 if (Expected
<std::vector
<Elf_Rela
>> RelasOrErr
= Obj
.android_relas(Sec
)) {
6221 for (const Elf_Rela
&R
: *RelasOrErr
)
6222 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), RelNdx
++, Sec
, SymTab
);
6224 Warn(RelasOrErr
.takeError());
6230 template <class ELFT
>
6231 StringRef ELFDumper
<ELFT
>::getPrintableSectionName(const Elf_Shdr
&Sec
) const {
6232 StringRef Name
= "<?>";
6233 if (Expected
<StringRef
> SecNameOrErr
=
6234 Obj
.getSectionName(Sec
, this->WarningHandler
))
6235 Name
= *SecNameOrErr
;
6237 this->reportUniqueWarning("unable to get the name of " + describe(Sec
) +
6238 ": " + toString(SecNameOrErr
.takeError()));
6242 template <class ELFT
> void GNUELFDumper
<ELFT
>::printDependentLibs() {
6243 bool SectionStarted
= false;
6248 std::vector
<NameOffset
> SecEntries
;
6250 auto PrintSection
= [&]() {
6251 OS
<< "Dependent libraries section " << Current
.Name
<< " at offset "
6252 << format_hex(Current
.Offset
, 1) << " contains " << SecEntries
.size()
6254 for (NameOffset Entry
: SecEntries
)
6255 OS
<< " [" << format("%6" PRIx64
, Entry
.Offset
) << "] " << Entry
.Name
6261 auto OnSectionStart
= [&](const Elf_Shdr
&Shdr
) {
6264 SectionStarted
= true;
6265 Current
.Offset
= Shdr
.sh_offset
;
6266 Current
.Name
= this->getPrintableSectionName(Shdr
);
6268 auto OnLibEntry
= [&](StringRef Lib
, uint64_t Offset
) {
6269 SecEntries
.push_back(NameOffset
{Lib
, Offset
});
6272 this->printDependentLibsHelper(OnSectionStart
, OnLibEntry
);
6277 template <class ELFT
>
6278 SmallVector
<uint32_t> ELFDumper
<ELFT
>::getSymbolIndexesForFunctionAddress(
6279 uint64_t SymValue
, std::optional
<const Elf_Shdr
*> FunctionSec
) {
6280 SmallVector
<uint32_t> SymbolIndexes
;
6281 if (!this->AddressToIndexMap
) {
6282 // Populate the address to index map upon the first invocation of this
6284 this->AddressToIndexMap
.emplace();
6285 if (this->DotSymtabSec
) {
6286 if (Expected
<Elf_Sym_Range
> SymsOrError
=
6287 Obj
.symbols(this->DotSymtabSec
)) {
6288 uint32_t Index
= (uint32_t)-1;
6289 for (const Elf_Sym
&Sym
: *SymsOrError
) {
6292 if (Sym
.st_shndx
== ELF::SHN_UNDEF
|| Sym
.getType() != ELF::STT_FUNC
)
6295 Expected
<uint64_t> SymAddrOrErr
=
6296 ObjF
.toSymbolRef(this->DotSymtabSec
, Index
).getAddress();
6297 if (!SymAddrOrErr
) {
6298 std::string Name
= this->getStaticSymbolName(Index
);
6299 reportUniqueWarning("unable to get address of symbol '" + Name
+
6300 "': " + toString(SymAddrOrErr
.takeError()));
6301 return SymbolIndexes
;
6304 (*this->AddressToIndexMap
)[*SymAddrOrErr
].push_back(Index
);
6307 reportUniqueWarning("unable to read the symbol table: " +
6308 toString(SymsOrError
.takeError()));
6313 auto Symbols
= this->AddressToIndexMap
->find(SymValue
);
6314 if (Symbols
== this->AddressToIndexMap
->end())
6315 return SymbolIndexes
;
6317 for (uint32_t Index
: Symbols
->second
) {
6318 // Check if the symbol is in the right section. FunctionSec == None
6319 // means "any section".
6321 const Elf_Sym
&Sym
= *cantFail(Obj
.getSymbol(this->DotSymtabSec
, Index
));
6322 if (Expected
<const Elf_Shdr
*> SecOrErr
=
6323 Obj
.getSection(Sym
, this->DotSymtabSec
,
6324 this->getShndxTable(this->DotSymtabSec
))) {
6325 if (*FunctionSec
!= *SecOrErr
)
6328 std::string Name
= this->getStaticSymbolName(Index
);
6329 // Note: it is impossible to trigger this error currently, it is
6331 reportUniqueWarning("unable to get section of symbol '" + Name
+
6332 "': " + toString(SecOrErr
.takeError()));
6333 return SymbolIndexes
;
6337 SymbolIndexes
.push_back(Index
);
6340 return SymbolIndexes
;
6343 template <class ELFT
>
6344 bool ELFDumper
<ELFT
>::printFunctionStackSize(
6345 uint64_t SymValue
, std::optional
<const Elf_Shdr
*> FunctionSec
,
6346 const Elf_Shdr
&StackSizeSec
, DataExtractor Data
, uint64_t *Offset
) {
6347 SmallVector
<uint32_t> FuncSymIndexes
=
6348 this->getSymbolIndexesForFunctionAddress(SymValue
, FunctionSec
);
6349 if (FuncSymIndexes
.empty())
6350 reportUniqueWarning(
6351 "could not identify function symbol for stack size entry in " +
6352 describe(StackSizeSec
));
6354 // Extract the size. The expectation is that Offset is pointing to the right
6355 // place, i.e. past the function address.
6356 Error Err
= Error::success();
6357 uint64_t StackSize
= Data
.getULEB128(Offset
, &Err
);
6359 reportUniqueWarning("could not extract a valid stack size from " +
6360 describe(StackSizeSec
) + ": " +
6361 toString(std::move(Err
)));
6365 if (FuncSymIndexes
.empty()) {
6366 printStackSizeEntry(StackSize
, {"?"});
6368 SmallVector
<std::string
> FuncSymNames
;
6369 for (uint32_t Index
: FuncSymIndexes
)
6370 FuncSymNames
.push_back(this->getStaticSymbolName(Index
));
6371 printStackSizeEntry(StackSize
, FuncSymNames
);
6377 template <class ELFT
>
6378 void GNUELFDumper
<ELFT
>::printStackSizeEntry(uint64_t Size
,
6379 ArrayRef
<std::string
> FuncNames
) {
6381 OS
<< format_decimal(Size
, 11);
6384 OS
<< join(FuncNames
.begin(), FuncNames
.end(), ", ") << "\n";
6387 template <class ELFT
>
6388 void ELFDumper
<ELFT
>::printStackSize(const Relocation
<ELFT
> &R
,
6389 const Elf_Shdr
&RelocSec
, unsigned Ndx
,
6390 const Elf_Shdr
*SymTab
,
6391 const Elf_Shdr
*FunctionSec
,
6392 const Elf_Shdr
&StackSizeSec
,
6393 const RelocationResolver
&Resolver
,
6394 DataExtractor Data
) {
6395 // This function ignores potentially erroneous input, unless it is directly
6396 // related to stack size reporting.
6397 const Elf_Sym
*Sym
= nullptr;
6398 Expected
<RelSymbol
<ELFT
>> TargetOrErr
= this->getRelocationTarget(R
, SymTab
);
6400 reportUniqueWarning("unable to get the target of relocation with index " +
6401 Twine(Ndx
) + " in " + describe(RelocSec
) + ": " +
6402 toString(TargetOrErr
.takeError()));
6404 Sym
= TargetOrErr
->Sym
;
6406 uint64_t RelocSymValue
= 0;
6408 Expected
<const Elf_Shdr
*> SectionOrErr
=
6409 this->Obj
.getSection(*Sym
, SymTab
, this->getShndxTable(SymTab
));
6410 if (!SectionOrErr
) {
6411 reportUniqueWarning(
6412 "cannot identify the section for relocation symbol '" +
6413 (*TargetOrErr
).Name
+ "': " + toString(SectionOrErr
.takeError()));
6414 } else if (*SectionOrErr
!= FunctionSec
) {
6415 reportUniqueWarning("relocation symbol '" + (*TargetOrErr
).Name
+
6416 "' is not in the expected section");
6417 // Pretend that the symbol is in the correct section and report its
6418 // stack size anyway.
6419 FunctionSec
= *SectionOrErr
;
6422 RelocSymValue
= Sym
->st_value
;
6425 uint64_t Offset
= R
.Offset
;
6426 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1)) {
6427 reportUniqueWarning("found invalid relocation offset (0x" +
6428 Twine::utohexstr(Offset
) + ") into " +
6429 describe(StackSizeSec
) +
6430 " while trying to extract a stack size entry");
6434 uint64_t SymValue
= Resolver(R
.Type
, Offset
, RelocSymValue
,
6435 Data
.getAddress(&Offset
), R
.Addend
.value_or(0));
6436 this->printFunctionStackSize(SymValue
, FunctionSec
, StackSizeSec
, Data
,
6440 template <class ELFT
>
6441 void ELFDumper
<ELFT
>::printNonRelocatableStackSizes(
6442 std::function
<void()> PrintHeader
) {
6443 // This function ignores potentially erroneous input, unless it is directly
6444 // related to stack size reporting.
6445 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
6446 if (this->getPrintableSectionName(Sec
) != ".stack_sizes")
6449 ArrayRef
<uint8_t> Contents
=
6450 unwrapOrError(this->FileName
, Obj
.getSectionContents(Sec
));
6451 DataExtractor
Data(Contents
, Obj
.isLE(), sizeof(Elf_Addr
));
6452 uint64_t Offset
= 0;
6453 while (Offset
< Contents
.size()) {
6454 // The function address is followed by a ULEB representing the stack
6455 // size. Check for an extra byte before we try to process the entry.
6456 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1)) {
6457 reportUniqueWarning(
6459 " ended while trying to extract a stack size entry");
6462 uint64_t SymValue
= Data
.getAddress(&Offset
);
6463 if (!printFunctionStackSize(SymValue
, /*FunctionSec=*/std::nullopt
, Sec
,
6470 template <class ELFT
>
6471 void ELFDumper
<ELFT
>::printRelocatableStackSizes(
6472 std::function
<void()> PrintHeader
) {
6473 // Build a map between stack size sections and their corresponding relocation
6475 auto IsMatch
= [&](const Elf_Shdr
&Sec
) -> bool {
6476 StringRef SectionName
;
6477 if (Expected
<StringRef
> NameOrErr
= Obj
.getSectionName(Sec
))
6478 SectionName
= *NameOrErr
;
6480 consumeError(NameOrErr
.takeError());
6482 return SectionName
== ".stack_sizes";
6485 Expected
<MapVector
<const Elf_Shdr
*, const Elf_Shdr
*>>
6486 StackSizeRelocMapOrErr
= Obj
.getSectionAndRelocations(IsMatch
);
6487 if (!StackSizeRelocMapOrErr
) {
6488 reportUniqueWarning("unable to get stack size map section(s): " +
6489 toString(StackSizeRelocMapOrErr
.takeError()));
6493 for (const auto &StackSizeMapEntry
: *StackSizeRelocMapOrErr
) {
6495 const Elf_Shdr
*StackSizesELFSec
= StackSizeMapEntry
.first
;
6496 const Elf_Shdr
*RelocSec
= StackSizeMapEntry
.second
;
6498 // Warn about stack size sections without a relocation section.
6500 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec
) +
6501 ") does not have a corresponding "
6502 "relocation section"),
6507 // A .stack_sizes section header's sh_link field is supposed to point
6508 // to the section that contains the functions whose stack sizes are
6510 const Elf_Shdr
*FunctionSec
= unwrapOrError(
6511 this->FileName
, Obj
.getSection(StackSizesELFSec
->sh_link
));
6513 SupportsRelocation IsSupportedFn
;
6514 RelocationResolver Resolver
;
6515 std::tie(IsSupportedFn
, Resolver
) = getRelocationResolver(this->ObjF
);
6516 ArrayRef
<uint8_t> Contents
=
6517 unwrapOrError(this->FileName
, Obj
.getSectionContents(*StackSizesELFSec
));
6518 DataExtractor
Data(Contents
, Obj
.isLE(), sizeof(Elf_Addr
));
6520 forEachRelocationDo(
6521 *RelocSec
, /*RawRelr=*/false,
6522 [&](const Relocation
<ELFT
> &R
, unsigned Ndx
, const Elf_Shdr
&Sec
,
6523 const Elf_Shdr
*SymTab
) {
6524 if (!IsSupportedFn
|| !IsSupportedFn(R
.Type
)) {
6525 reportUniqueWarning(
6526 describe(*RelocSec
) +
6527 " contains an unsupported relocation with index " + Twine(Ndx
) +
6528 ": " + Obj
.getRelocationTypeName(R
.Type
));
6532 this->printStackSize(R
, *RelocSec
, Ndx
, SymTab
, FunctionSec
,
6533 *StackSizesELFSec
, Resolver
, Data
);
6535 [](const Elf_Relr
&) {
6536 llvm_unreachable("can't get here, because we only support "
6537 "SHT_REL/SHT_RELA sections");
6542 template <class ELFT
>
6543 void GNUELFDumper
<ELFT
>::printStackSizes() {
6544 bool HeaderHasBeenPrinted
= false;
6545 auto PrintHeader
= [&]() {
6546 if (HeaderHasBeenPrinted
)
6548 OS
<< "\nStack Sizes:\n";
6552 OS
<< "Functions\n";
6553 HeaderHasBeenPrinted
= true;
6556 // For non-relocatable objects, look directly for sections whose name starts
6557 // with .stack_sizes and process the contents.
6558 if (this->Obj
.getHeader().e_type
== ELF::ET_REL
)
6559 this->printRelocatableStackSizes(PrintHeader
);
6561 this->printNonRelocatableStackSizes(PrintHeader
);
6564 template <class ELFT
>
6565 void GNUELFDumper
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
6566 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
6567 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
6569 OS
<< format_hex_no_prefix(Parser
.getGotAddress(E
), 8 + Bias
);
6570 OS
.PadToColumn(11 + Bias
);
6571 OS
<< format_decimal(Parser
.getGotOffset(E
), 6) << "(gp)";
6572 OS
.PadToColumn(22 + Bias
);
6573 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
6574 OS
.PadToColumn(31 + 2 * Bias
);
6575 OS
<< Purpose
<< "\n";
6578 OS
<< (Parser
.IsStatic
? "Static GOT:\n" : "Primary GOT:\n");
6579 OS
<< " Canonical gp value: "
6580 << format_hex_no_prefix(Parser
.getGp(), 8 + Bias
) << "\n\n";
6582 OS
<< " Reserved entries:\n";
6584 OS
<< " Address Access Initial Purpose\n";
6586 OS
<< " Address Access Initial Purpose\n";
6587 PrintEntry(Parser
.getGotLazyResolver(), "Lazy resolver");
6588 if (Parser
.getGotModulePointer())
6589 PrintEntry(Parser
.getGotModulePointer(), "Module pointer (GNU extension)");
6591 if (!Parser
.getLocalEntries().empty()) {
6593 OS
<< " Local entries:\n";
6595 OS
<< " Address Access Initial\n";
6597 OS
<< " Address Access Initial\n";
6598 for (auto &E
: Parser
.getLocalEntries())
6602 if (Parser
.IsStatic
)
6605 if (!Parser
.getGlobalEntries().empty()) {
6607 OS
<< " Global entries:\n";
6609 OS
<< " Address Access Initial Sym.Val."
6610 << " Type Ndx Name\n";
6612 OS
<< " Address Access Initial Sym.Val. Type Ndx Name\n";
6614 DataRegion
<Elf_Word
> ShndxTable(
6615 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
6616 for (auto &E
: Parser
.getGlobalEntries()) {
6617 const Elf_Sym
&Sym
= *Parser
.getGotSym(&E
);
6618 const Elf_Sym
&FirstSym
= this->dynamic_symbols()[0];
6619 std::string SymName
= this->getFullSymbolName(
6620 Sym
, &Sym
- &FirstSym
, ShndxTable
, this->DynamicStringTable
, false);
6623 OS
<< to_string(format_hex_no_prefix(Parser
.getGotAddress(&E
), 8 + Bias
));
6624 OS
.PadToColumn(11 + Bias
);
6625 OS
<< to_string(format_decimal(Parser
.getGotOffset(&E
), 6)) + "(gp)";
6626 OS
.PadToColumn(22 + Bias
);
6627 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
6628 OS
.PadToColumn(31 + 2 * Bias
);
6629 OS
<< to_string(format_hex_no_prefix(Sym
.st_value
, 8 + Bias
));
6630 OS
.PadToColumn(40 + 3 * Bias
);
6631 OS
<< enumToString(Sym
.getType(), ArrayRef(ElfSymbolTypes
));
6632 OS
.PadToColumn(48 + 3 * Bias
);
6633 OS
<< getSymbolSectionNdx(Sym
, &Sym
- this->dynamic_symbols().begin(),
6635 OS
.PadToColumn(52 + 3 * Bias
);
6636 OS
<< SymName
<< "\n";
6640 if (!Parser
.getOtherEntries().empty())
6641 OS
<< "\n Number of TLS and multi-GOT entries "
6642 << Parser
.getOtherEntries().size() << "\n";
6645 template <class ELFT
>
6646 void GNUELFDumper
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
6647 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
6648 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
6650 OS
<< format_hex_no_prefix(Parser
.getPltAddress(E
), 8 + Bias
);
6651 OS
.PadToColumn(11 + Bias
);
6652 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
6653 OS
.PadToColumn(20 + 2 * Bias
);
6654 OS
<< Purpose
<< "\n";
6657 OS
<< "PLT GOT:\n\n";
6659 OS
<< " Reserved entries:\n";
6660 OS
<< " Address Initial Purpose\n";
6661 PrintEntry(Parser
.getPltLazyResolver(), "PLT lazy resolver");
6662 if (Parser
.getPltModulePointer())
6663 PrintEntry(Parser
.getPltModulePointer(), "Module pointer");
6665 if (!Parser
.getPltEntries().empty()) {
6667 OS
<< " Entries:\n";
6668 OS
<< " Address Initial Sym.Val. Type Ndx Name\n";
6669 DataRegion
<Elf_Word
> ShndxTable(
6670 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
6671 for (auto &E
: Parser
.getPltEntries()) {
6672 const Elf_Sym
&Sym
= *Parser
.getPltSym(&E
);
6673 const Elf_Sym
&FirstSym
= *cantFail(
6674 this->Obj
.template getEntry
<Elf_Sym
>(*Parser
.getPltSymTable(), 0));
6675 std::string SymName
= this->getFullSymbolName(
6676 Sym
, &Sym
- &FirstSym
, ShndxTable
, this->DynamicStringTable
, false);
6679 OS
<< to_string(format_hex_no_prefix(Parser
.getPltAddress(&E
), 8 + Bias
));
6680 OS
.PadToColumn(11 + Bias
);
6681 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
6682 OS
.PadToColumn(20 + 2 * Bias
);
6683 OS
<< to_string(format_hex_no_prefix(Sym
.st_value
, 8 + Bias
));
6684 OS
.PadToColumn(29 + 3 * Bias
);
6685 OS
<< enumToString(Sym
.getType(), ArrayRef(ElfSymbolTypes
));
6686 OS
.PadToColumn(37 + 3 * Bias
);
6687 OS
<< getSymbolSectionNdx(Sym
, &Sym
- this->dynamic_symbols().begin(),
6689 OS
.PadToColumn(41 + 3 * Bias
);
6690 OS
<< SymName
<< "\n";
6695 template <class ELFT
>
6696 Expected
<const Elf_Mips_ABIFlags
<ELFT
> *>
6697 getMipsAbiFlagsSection(const ELFDumper
<ELFT
> &Dumper
) {
6698 const typename
ELFT::Shdr
*Sec
= Dumper
.findSectionByName(".MIPS.abiflags");
6702 constexpr StringRef ErrPrefix
= "unable to read the .MIPS.abiflags section: ";
6703 Expected
<ArrayRef
<uint8_t>> DataOrErr
=
6704 Dumper
.getElfObject().getELFFile().getSectionContents(*Sec
);
6706 return createError(ErrPrefix
+ toString(DataOrErr
.takeError()));
6708 if (DataOrErr
->size() != sizeof(Elf_Mips_ABIFlags
<ELFT
>))
6709 return createError(ErrPrefix
+ "it has a wrong size (" +
6710 Twine(DataOrErr
->size()) + ")");
6711 return reinterpret_cast<const Elf_Mips_ABIFlags
<ELFT
> *>(DataOrErr
->data());
6714 template <class ELFT
> void GNUELFDumper
<ELFT
>::printMipsABIFlags() {
6715 const Elf_Mips_ABIFlags
<ELFT
> *Flags
= nullptr;
6716 if (Expected
<const Elf_Mips_ABIFlags
<ELFT
> *> SecOrErr
=
6717 getMipsAbiFlagsSection(*this))
6720 this->reportUniqueWarning(SecOrErr
.takeError());
6724 OS
<< "MIPS ABI Flags Version: " << Flags
->version
<< "\n\n";
6725 OS
<< "ISA: MIPS" << int(Flags
->isa_level
);
6726 if (Flags
->isa_rev
> 1)
6727 OS
<< "r" << int(Flags
->isa_rev
);
6729 OS
<< "GPR size: " << getMipsRegisterSize(Flags
->gpr_size
) << "\n";
6730 OS
<< "CPR1 size: " << getMipsRegisterSize(Flags
->cpr1_size
) << "\n";
6731 OS
<< "CPR2 size: " << getMipsRegisterSize(Flags
->cpr2_size
) << "\n";
6732 OS
<< "FP ABI: " << enumToString(Flags
->fp_abi
, ArrayRef(ElfMipsFpABIType
))
6734 OS
<< "ISA Extension: "
6735 << enumToString(Flags
->isa_ext
, ArrayRef(ElfMipsISAExtType
)) << "\n";
6736 if (Flags
->ases
== 0)
6737 OS
<< "ASEs: None\n";
6739 // FIXME: Print each flag on a separate line.
6740 OS
<< "ASEs: " << printFlags(Flags
->ases
, ArrayRef(ElfMipsASEFlags
))
6742 OS
<< "FLAGS 1: " << format_hex_no_prefix(Flags
->flags1
, 8, false) << "\n";
6743 OS
<< "FLAGS 2: " << format_hex_no_prefix(Flags
->flags2
, 8, false) << "\n";
6747 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printFileHeaders() {
6748 const Elf_Ehdr
&E
= this->Obj
.getHeader();
6750 DictScope
D(W
, "ElfHeader");
6752 DictScope
D(W
, "Ident");
6753 W
.printBinary("Magic",
6754 ArrayRef
<unsigned char>(E
.e_ident
).slice(ELF::EI_MAG0
, 4));
6755 W
.printEnum("Class", E
.e_ident
[ELF::EI_CLASS
], ArrayRef(ElfClass
));
6756 W
.printEnum("DataEncoding", E
.e_ident
[ELF::EI_DATA
],
6757 ArrayRef(ElfDataEncoding
));
6758 W
.printNumber("FileVersion", E
.e_ident
[ELF::EI_VERSION
]);
6760 auto OSABI
= ArrayRef(ElfOSABI
);
6761 if (E
.e_ident
[ELF::EI_OSABI
] >= ELF::ELFOSABI_FIRST_ARCH
&&
6762 E
.e_ident
[ELF::EI_OSABI
] <= ELF::ELFOSABI_LAST_ARCH
) {
6763 switch (E
.e_machine
) {
6764 case ELF::EM_AMDGPU
:
6765 OSABI
= ArrayRef(AMDGPUElfOSABI
);
6768 OSABI
= ArrayRef(ARMElfOSABI
);
6770 case ELF::EM_TI_C6000
:
6771 OSABI
= ArrayRef(C6000ElfOSABI
);
6775 W
.printEnum("OS/ABI", E
.e_ident
[ELF::EI_OSABI
], OSABI
);
6776 W
.printNumber("ABIVersion", E
.e_ident
[ELF::EI_ABIVERSION
]);
6777 W
.printBinary("Unused",
6778 ArrayRef
<unsigned char>(E
.e_ident
).slice(ELF::EI_PAD
));
6781 std::string TypeStr
;
6782 if (const EnumEntry
<unsigned> *Ent
= getObjectFileEnumEntry(E
.e_type
)) {
6783 TypeStr
= Ent
->Name
.str();
6785 if (E
.e_type
>= ET_LOPROC
)
6786 TypeStr
= "Processor Specific";
6787 else if (E
.e_type
>= ET_LOOS
)
6788 TypeStr
= "OS Specific";
6790 TypeStr
= "Unknown";
6792 W
.printString("Type", TypeStr
+ " (0x" + utohexstr(E
.e_type
) + ")");
6794 W
.printEnum("Machine", E
.e_machine
, ArrayRef(ElfMachineType
));
6795 W
.printNumber("Version", E
.e_version
);
6796 W
.printHex("Entry", E
.e_entry
);
6797 W
.printHex("ProgramHeaderOffset", E
.e_phoff
);
6798 W
.printHex("SectionHeaderOffset", E
.e_shoff
);
6799 if (E
.e_machine
== EM_MIPS
)
6800 W
.printFlags("Flags", E
.e_flags
, ArrayRef(ElfHeaderMipsFlags
),
6801 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
6802 unsigned(ELF::EF_MIPS_MACH
));
6803 else if (E
.e_machine
== EM_AMDGPU
) {
6804 switch (E
.e_ident
[ELF::EI_ABIVERSION
]) {
6806 W
.printHex("Flags", E
.e_flags
);
6809 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6811 case ELF::ELFABIVERSION_AMDGPU_HSA_V3
:
6812 W
.printFlags("Flags", E
.e_flags
,
6813 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3
),
6814 unsigned(ELF::EF_AMDGPU_MACH
));
6816 case ELF::ELFABIVERSION_AMDGPU_HSA_V4
:
6817 case ELF::ELFABIVERSION_AMDGPU_HSA_V5
:
6818 W
.printFlags("Flags", E
.e_flags
,
6819 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4
),
6820 unsigned(ELF::EF_AMDGPU_MACH
),
6821 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4
),
6822 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4
));
6825 } else if (E
.e_machine
== EM_RISCV
)
6826 W
.printFlags("Flags", E
.e_flags
, ArrayRef(ElfHeaderRISCVFlags
));
6827 else if (E
.e_machine
== EM_AVR
)
6828 W
.printFlags("Flags", E
.e_flags
, ArrayRef(ElfHeaderAVRFlags
),
6829 unsigned(ELF::EF_AVR_ARCH_MASK
));
6830 else if (E
.e_machine
== EM_LOONGARCH
)
6831 W
.printFlags("Flags", E
.e_flags
, ArrayRef(ElfHeaderLoongArchFlags
),
6832 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK
),
6833 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK
));
6834 else if (E
.e_machine
== EM_XTENSA
)
6835 W
.printFlags("Flags", E
.e_flags
, ArrayRef(ElfHeaderXtensaFlags
),
6836 unsigned(ELF::EF_XTENSA_MACH
));
6838 W
.printFlags("Flags", E
.e_flags
);
6839 W
.printNumber("HeaderSize", E
.e_ehsize
);
6840 W
.printNumber("ProgramHeaderEntrySize", E
.e_phentsize
);
6841 W
.printNumber("ProgramHeaderCount", E
.e_phnum
);
6842 W
.printNumber("SectionHeaderEntrySize", E
.e_shentsize
);
6843 W
.printString("SectionHeaderCount",
6844 getSectionHeadersNumString(this->Obj
, this->FileName
));
6845 W
.printString("StringTableSectionIndex",
6846 getSectionHeaderTableIndexString(this->Obj
, this->FileName
));
6850 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printGroupSections() {
6851 DictScope
Lists(W
, "Groups");
6852 std::vector
<GroupSection
> V
= this->getGroups();
6853 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
6854 for (const GroupSection
&G
: V
) {
6855 DictScope
D(W
, "Group");
6856 W
.printNumber("Name", G
.Name
, G
.ShName
);
6857 W
.printNumber("Index", G
.Index
);
6858 W
.printNumber("Link", G
.Link
);
6859 W
.printNumber("Info", G
.Info
);
6860 W
.printHex("Type", getGroupType(G
.Type
), G
.Type
);
6861 W
.printString("Signature", G
.Signature
);
6863 ListScope
L(W
, getGroupSectionHeaderName());
6864 for (const GroupMember
&GM
: G
.Members
) {
6865 const GroupSection
*MainGroup
= Map
[GM
.Index
];
6866 if (MainGroup
!= &G
)
6867 this->reportUniqueWarning(
6868 "section with index " + Twine(GM
.Index
) +
6869 ", included in the group section with index " +
6870 Twine(MainGroup
->Index
) +
6871 ", was also found in the group section with index " +
6873 printSectionGroupMembers(GM
.Name
, GM
.Index
);
6878 printEmptyGroupMessage();
6881 template <class ELFT
>
6882 std::string LLVMELFDumper
<ELFT
>::getGroupSectionHeaderName() const {
6883 return "Section(s) in group";
6886 template <class ELFT
>
6887 void LLVMELFDumper
<ELFT
>::printSectionGroupMembers(StringRef Name
,
6888 uint64_t Idx
) const {
6889 W
.startLine() << Name
<< " (" << Idx
<< ")\n";
6892 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printRelocations() {
6893 ListScope
D(W
, "Relocations");
6895 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
6896 if (!isRelocationSec
<ELFT
>(Sec
))
6899 StringRef Name
= this->getPrintableSectionName(Sec
);
6900 unsigned SecNdx
= &Sec
- &cantFail(this->Obj
.sections()).front();
6901 printRelocationSectionInfo(Sec
, Name
, SecNdx
);
6905 template <class ELFT
>
6906 void LLVMELFDumper
<ELFT
>::printRelrReloc(const Elf_Relr
&R
) {
6907 W
.startLine() << W
.hex(R
) << "\n";
6910 template <class ELFT
>
6911 void LLVMELFDumper
<ELFT
>::printExpandedRelRelaReloc(const Relocation
<ELFT
> &R
,
6912 StringRef SymbolName
,
6913 StringRef RelocName
) {
6914 DictScope
Group(W
, "Relocation");
6915 W
.printHex("Offset", R
.Offset
);
6916 W
.printNumber("Type", RelocName
, R
.Type
);
6917 W
.printNumber("Symbol", !SymbolName
.empty() ? SymbolName
: "-", R
.Symbol
);
6919 W
.printHex("Addend", (uintX_t
)*R
.Addend
);
6922 template <class ELFT
>
6923 void LLVMELFDumper
<ELFT
>::printDefaultRelRelaReloc(const Relocation
<ELFT
> &R
,
6924 StringRef SymbolName
,
6925 StringRef RelocName
) {
6926 raw_ostream
&OS
= W
.startLine();
6927 OS
<< W
.hex(R
.Offset
) << " " << RelocName
<< " "
6928 << (!SymbolName
.empty() ? SymbolName
: "-");
6930 OS
<< " " << W
.hex((uintX_t
)*R
.Addend
);
6934 template <class ELFT
>
6935 void LLVMELFDumper
<ELFT
>::printRelocationSectionInfo(const Elf_Shdr
&Sec
,
6937 const unsigned SecNdx
) {
6938 DictScope
D(W
, (Twine("Section (") + Twine(SecNdx
) + ") " + Name
).str());
6939 this->printRelocationsHelper(Sec
);
6942 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printEmptyGroupMessage() const {
6943 W
.startLine() << "There are no group sections in the file.\n";
6946 template <class ELFT
>
6947 void LLVMELFDumper
<ELFT
>::printRelRelaReloc(const Relocation
<ELFT
> &R
,
6948 const RelSymbol
<ELFT
> &RelSym
) {
6949 StringRef SymbolName
= RelSym
.Name
;
6950 SmallString
<32> RelocName
;
6951 this->Obj
.getRelocationTypeName(R
.Type
, RelocName
);
6953 if (opts::ExpandRelocs
) {
6954 printExpandedRelRelaReloc(R
, SymbolName
, RelocName
);
6956 printDefaultRelRelaReloc(R
, SymbolName
, RelocName
);
6960 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printSectionHeaders() {
6961 ListScope
SectionsD(W
, "Sections");
6963 int SectionIndex
= -1;
6964 std::vector
<EnumEntry
<unsigned>> FlagsList
=
6965 getSectionFlagsForTarget(this->Obj
.getHeader().e_ident
[ELF::EI_OSABI
],
6966 this->Obj
.getHeader().e_machine
);
6967 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
6968 DictScope
SectionD(W
, "Section");
6969 W
.printNumber("Index", ++SectionIndex
);
6970 W
.printNumber("Name", this->getPrintableSectionName(Sec
), Sec
.sh_name
);
6972 object::getELFSectionTypeName(this->Obj
.getHeader().e_machine
,
6975 W
.printFlags("Flags", Sec
.sh_flags
, ArrayRef(FlagsList
));
6976 W
.printHex("Address", Sec
.sh_addr
);
6977 W
.printHex("Offset", Sec
.sh_offset
);
6978 W
.printNumber("Size", Sec
.sh_size
);
6979 W
.printNumber("Link", Sec
.sh_link
);
6980 W
.printNumber("Info", Sec
.sh_info
);
6981 W
.printNumber("AddressAlignment", Sec
.sh_addralign
);
6982 W
.printNumber("EntrySize", Sec
.sh_entsize
);
6984 if (opts::SectionRelocations
) {
6985 ListScope
D(W
, "Relocations");
6986 this->printRelocationsHelper(Sec
);
6989 if (opts::SectionSymbols
) {
6990 ListScope
D(W
, "Symbols");
6991 if (this->DotSymtabSec
) {
6992 StringRef StrTable
= unwrapOrError(
6994 this->Obj
.getStringTableForSymtab(*this->DotSymtabSec
));
6995 ArrayRef
<Elf_Word
> ShndxTable
= this->getShndxTable(this->DotSymtabSec
);
6997 typename
ELFT::SymRange Symbols
= unwrapOrError(
6998 this->FileName
, this->Obj
.symbols(this->DotSymtabSec
));
6999 for (const Elf_Sym
&Sym
: Symbols
) {
7000 const Elf_Shdr
*SymSec
= unwrapOrError(
7002 this->Obj
.getSection(Sym
, this->DotSymtabSec
, ShndxTable
));
7004 printSymbol(Sym
, &Sym
- &Symbols
[0], ShndxTable
, StrTable
, false,
7010 if (opts::SectionData
&& Sec
.sh_type
!= ELF::SHT_NOBITS
) {
7011 ArrayRef
<uint8_t> Data
=
7012 unwrapOrError(this->FileName
, this->Obj
.getSectionContents(Sec
));
7015 StringRef(reinterpret_cast<const char *>(Data
.data()), Data
.size()));
7020 template <class ELFT
>
7021 void LLVMELFDumper
<ELFT
>::printSymbolSection(
7022 const Elf_Sym
&Symbol
, unsigned SymIndex
,
7023 DataRegion
<Elf_Word
> ShndxTable
) const {
7024 auto GetSectionSpecialType
= [&]() -> std::optional
<StringRef
> {
7025 if (Symbol
.isUndefined())
7026 return StringRef("Undefined");
7027 if (Symbol
.isProcessorSpecific())
7028 return StringRef("Processor Specific");
7029 if (Symbol
.isOSSpecific())
7030 return StringRef("Operating System Specific");
7031 if (Symbol
.isAbsolute())
7032 return StringRef("Absolute");
7033 if (Symbol
.isCommon())
7034 return StringRef("Common");
7035 if (Symbol
.isReserved() && Symbol
.st_shndx
!= SHN_XINDEX
)
7036 return StringRef("Reserved");
7037 return std::nullopt
;
7040 if (std::optional
<StringRef
> Type
= GetSectionSpecialType()) {
7041 W
.printHex("Section", *Type
, Symbol
.st_shndx
);
7045 Expected
<unsigned> SectionIndex
=
7046 this->getSymbolSectionIndex(Symbol
, SymIndex
, ShndxTable
);
7047 if (!SectionIndex
) {
7048 assert(Symbol
.st_shndx
== SHN_XINDEX
&&
7049 "getSymbolSectionIndex should only fail due to an invalid "
7050 "SHT_SYMTAB_SHNDX table/reference");
7051 this->reportUniqueWarning(SectionIndex
.takeError());
7052 W
.printHex("Section", "Reserved", SHN_XINDEX
);
7056 Expected
<StringRef
> SectionName
=
7057 this->getSymbolSectionName(Symbol
, *SectionIndex
);
7059 // Don't report an invalid section name if the section headers are missing.
7060 // In such situations, all sections will be "invalid".
7061 if (!this->ObjF
.sections().empty())
7062 this->reportUniqueWarning(SectionName
.takeError());
7064 consumeError(SectionName
.takeError());
7065 W
.printHex("Section", "<?>", *SectionIndex
);
7067 W
.printHex("Section", *SectionName
, *SectionIndex
);
7071 template <class ELFT
>
7072 void LLVMELFDumper
<ELFT
>::printSymbolOtherField(const Elf_Sym
&Symbol
) const {
7073 std::vector
<EnumEntry
<unsigned>> SymOtherFlags
=
7074 this->getOtherFlagsFromSymbol(this->Obj
.getHeader(), Symbol
);
7075 W
.printFlags("Other", Symbol
.st_other
, ArrayRef(SymOtherFlags
), 0x3u
);
7078 template <class ELFT
>
7079 void LLVMELFDumper
<ELFT
>::printZeroSymbolOtherField(
7080 const Elf_Sym
&Symbol
) const {
7081 assert(Symbol
.st_other
== 0 && "non-zero Other Field");
7082 // Usually st_other flag is zero. Do not pollute the output
7083 // by flags enumeration in that case.
7084 W
.printNumber("Other", 0);
7087 template <class ELFT
>
7088 void LLVMELFDumper
<ELFT
>::printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
7089 DataRegion
<Elf_Word
> ShndxTable
,
7090 std::optional
<StringRef
> StrTable
,
7092 bool /*NonVisibilityBitsUsed*/) const {
7093 std::string FullSymbolName
= this->getFullSymbolName(
7094 Symbol
, SymIndex
, ShndxTable
, StrTable
, IsDynamic
);
7095 unsigned char SymbolType
= Symbol
.getType();
7097 DictScope
D(W
, "Symbol");
7098 W
.printNumber("Name", FullSymbolName
, Symbol
.st_name
);
7099 W
.printHex("Value", Symbol
.st_value
);
7100 W
.printNumber("Size", Symbol
.st_size
);
7101 W
.printEnum("Binding", Symbol
.getBinding(), ArrayRef(ElfSymbolBindings
));
7102 if (this->Obj
.getHeader().e_machine
== ELF::EM_AMDGPU
&&
7103 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
7104 W
.printEnum("Type", SymbolType
, ArrayRef(AMDGPUSymbolTypes
));
7106 W
.printEnum("Type", SymbolType
, ArrayRef(ElfSymbolTypes
));
7107 if (Symbol
.st_other
== 0)
7108 printZeroSymbolOtherField(Symbol
);
7110 printSymbolOtherField(Symbol
);
7111 printSymbolSection(Symbol
, SymIndex
, ShndxTable
);
7114 template <class ELFT
>
7115 void LLVMELFDumper
<ELFT
>::printSymbols(bool PrintSymbols
,
7116 bool PrintDynamicSymbols
) {
7118 ListScope
Group(W
, "Symbols");
7119 this->printSymbolsHelper(false);
7121 if (PrintDynamicSymbols
) {
7122 ListScope
Group(W
, "DynamicSymbols");
7123 this->printSymbolsHelper(true);
7127 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printDynamicTable() {
7128 Elf_Dyn_Range Table
= this->dynamic_table();
7132 W
.startLine() << "DynamicSection [ (" << Table
.size() << " entries)\n";
7134 size_t MaxTagSize
= getMaxDynamicTagSize(this->Obj
, Table
);
7135 // The "Name/Value" column should be indented from the "Type" column by N
7136 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
7138 W
.startLine() << " Tag" << std::string(ELFT::Is64Bits
? 16 : 8, ' ')
7139 << "Type" << std::string(MaxTagSize
- 3, ' ') << "Name/Value\n";
7141 std::string ValueFmt
= "%-" + std::to_string(MaxTagSize
) + "s ";
7142 for (auto Entry
: Table
) {
7143 uintX_t Tag
= Entry
.getTag();
7144 std::string Value
= this->getDynamicEntry(Tag
, Entry
.getVal());
7145 W
.startLine() << " " << format_hex(Tag
, ELFT::Is64Bits
? 18 : 10, true)
7147 << format(ValueFmt
.c_str(),
7148 this->Obj
.getDynamicTagAsString(Tag
).c_str())
7151 W
.startLine() << "]\n";
7154 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printDynamicRelocations() {
7155 W
.startLine() << "Dynamic Relocations {\n";
7157 this->printDynamicRelocationsHelper();
7159 W
.startLine() << "}\n";
7162 template <class ELFT
>
7163 void LLVMELFDumper
<ELFT
>::printProgramHeaders(
7164 bool PrintProgramHeaders
, cl::boolOrDefault PrintSectionMapping
) {
7165 if (PrintProgramHeaders
)
7166 printProgramHeaders();
7167 if (PrintSectionMapping
== cl::BOU_TRUE
)
7168 printSectionMapping();
7171 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printProgramHeaders() {
7172 ListScope
L(W
, "ProgramHeaders");
7174 Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= this->Obj
.program_headers();
7176 this->reportUniqueWarning("unable to dump program headers: " +
7177 toString(PhdrsOrErr
.takeError()));
7181 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
7182 DictScope
P(W
, "ProgramHeader");
7184 segmentTypeToString(this->Obj
.getHeader().e_machine
, Phdr
.p_type
);
7186 W
.printHex("Type", Type
.empty() ? "Unknown" : Type
, Phdr
.p_type
);
7187 W
.printHex("Offset", Phdr
.p_offset
);
7188 W
.printHex("VirtualAddress", Phdr
.p_vaddr
);
7189 W
.printHex("PhysicalAddress", Phdr
.p_paddr
);
7190 W
.printNumber("FileSize", Phdr
.p_filesz
);
7191 W
.printNumber("MemSize", Phdr
.p_memsz
);
7192 W
.printFlags("Flags", Phdr
.p_flags
, ArrayRef(ElfSegmentFlags
));
7193 W
.printNumber("Alignment", Phdr
.p_align
);
7197 template <class ELFT
>
7198 void LLVMELFDumper
<ELFT
>::printVersionSymbolSection(const Elf_Shdr
*Sec
) {
7199 ListScope
SS(W
, "VersionSymbols");
7204 ArrayRef
<Elf_Sym
> Syms
;
7205 const Elf_Shdr
*SymTabSec
;
7206 Expected
<ArrayRef
<Elf_Versym
>> VerTableOrErr
=
7207 this->getVersionTable(*Sec
, &Syms
, &StrTable
, &SymTabSec
);
7208 if (!VerTableOrErr
) {
7209 this->reportUniqueWarning(VerTableOrErr
.takeError());
7213 if (StrTable
.empty() || Syms
.empty() || Syms
.size() != VerTableOrErr
->size())
7216 ArrayRef
<Elf_Word
> ShNdxTable
= this->getShndxTable(SymTabSec
);
7217 for (size_t I
= 0, E
= Syms
.size(); I
< E
; ++I
) {
7218 DictScope
S(W
, "Symbol");
7219 W
.printNumber("Version", (*VerTableOrErr
)[I
].vs_index
& VERSYM_VERSION
);
7220 W
.printString("Name",
7221 this->getFullSymbolName(Syms
[I
], I
, ShNdxTable
, StrTable
,
7222 /*IsDynamic=*/true));
7226 const EnumEntry
<unsigned> SymVersionFlags
[] = {
7227 {"Base", "BASE", VER_FLG_BASE
},
7228 {"Weak", "WEAK", VER_FLG_WEAK
},
7229 {"Info", "INFO", VER_FLG_INFO
}};
7231 template <class ELFT
>
7232 void LLVMELFDumper
<ELFT
>::printVersionDefinitionSection(const Elf_Shdr
*Sec
) {
7233 ListScope
SD(W
, "VersionDefinitions");
7237 Expected
<std::vector
<VerDef
>> V
= this->Obj
.getVersionDefinitions(*Sec
);
7239 this->reportUniqueWarning(V
.takeError());
7243 for (const VerDef
&D
: *V
) {
7244 DictScope
Def(W
, "Definition");
7245 W
.printNumber("Version", D
.Version
);
7246 W
.printFlags("Flags", D
.Flags
, ArrayRef(SymVersionFlags
));
7247 W
.printNumber("Index", D
.Ndx
);
7248 W
.printNumber("Hash", D
.Hash
);
7249 W
.printString("Name", D
.Name
.c_str());
7251 "Predecessors", D
.AuxV
,
7252 [](raw_ostream
&OS
, const VerdAux
&Aux
) { OS
<< Aux
.Name
.c_str(); });
7256 template <class ELFT
>
7257 void LLVMELFDumper
<ELFT
>::printVersionDependencySection(const Elf_Shdr
*Sec
) {
7258 ListScope
SD(W
, "VersionRequirements");
7262 Expected
<std::vector
<VerNeed
>> V
=
7263 this->Obj
.getVersionDependencies(*Sec
, this->WarningHandler
);
7265 this->reportUniqueWarning(V
.takeError());
7269 for (const VerNeed
&VN
: *V
) {
7270 DictScope
Entry(W
, "Dependency");
7271 W
.printNumber("Version", VN
.Version
);
7272 W
.printNumber("Count", VN
.Cnt
);
7273 W
.printString("FileName", VN
.File
.c_str());
7275 ListScope
L(W
, "Entries");
7276 for (const VernAux
&Aux
: VN
.AuxV
) {
7277 DictScope
Entry(W
, "Entry");
7278 W
.printNumber("Hash", Aux
.Hash
);
7279 W
.printFlags("Flags", Aux
.Flags
, ArrayRef(SymVersionFlags
));
7280 W
.printNumber("Index", Aux
.Other
);
7281 W
.printString("Name", Aux
.Name
.c_str());
7286 template <class ELFT
>
7287 void LLVMELFDumper
<ELFT
>::printHashHistogramStats(size_t NBucket
,
7290 ArrayRef
<size_t> Count
,
7292 StringRef HistName
= IsGnu
? "GnuHashHistogram" : "HashHistogram";
7293 StringRef BucketName
= IsGnu
? "Bucket" : "Chain";
7294 StringRef ListName
= IsGnu
? "Buckets" : "Chains";
7295 DictScope
Outer(W
, HistName
);
7296 W
.printNumber("TotalBuckets", NBucket
);
7297 ListScope
Buckets(W
, ListName
);
7298 size_t CumulativeNonZero
= 0;
7299 for (size_t I
= 0; I
< MaxChain
; ++I
) {
7300 CumulativeNonZero
+= Count
[I
] * I
;
7301 DictScope
Bucket(W
, BucketName
);
7302 W
.printNumber("Length", I
);
7303 W
.printNumber("Count", Count
[I
]);
7304 W
.printNumber("Percentage", (float)(Count
[I
] * 100.0) / NBucket
);
7305 W
.printNumber("Coverage", (float)(CumulativeNonZero
* 100.0) / TotalSyms
);
7309 // Returns true if rel/rela section exists, and populates SymbolIndices.
7310 // Otherwise returns false.
7311 template <class ELFT
>
7312 static bool getSymbolIndices(const typename
ELFT::Shdr
*CGRelSection
,
7313 const ELFFile
<ELFT
> &Obj
,
7314 const LLVMELFDumper
<ELFT
> *Dumper
,
7315 SmallVector
<uint32_t, 128> &SymbolIndices
) {
7316 if (!CGRelSection
) {
7317 Dumper
->reportUniqueWarning(
7318 "relocation section for a call graph section doesn't exist");
7322 if (CGRelSection
->sh_type
== SHT_REL
) {
7323 typename
ELFT::RelRange CGProfileRel
;
7324 Expected
<typename
ELFT::RelRange
> CGProfileRelOrError
=
7325 Obj
.rels(*CGRelSection
);
7326 if (!CGProfileRelOrError
) {
7327 Dumper
->reportUniqueWarning("unable to load relocations for "
7328 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7329 toString(CGProfileRelOrError
.takeError()));
7333 CGProfileRel
= *CGProfileRelOrError
;
7334 for (const typename
ELFT::Rel
&Rel
: CGProfileRel
)
7335 SymbolIndices
.push_back(Rel
.getSymbol(Obj
.isMips64EL()));
7337 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7338 // the format to SHT_RELA
7339 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7340 typename
ELFT::RelaRange CGProfileRela
;
7341 Expected
<typename
ELFT::RelaRange
> CGProfileRelaOrError
=
7342 Obj
.relas(*CGRelSection
);
7343 if (!CGProfileRelaOrError
) {
7344 Dumper
->reportUniqueWarning("unable to load relocations for "
7345 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7346 toString(CGProfileRelaOrError
.takeError()));
7350 CGProfileRela
= *CGProfileRelaOrError
;
7351 for (const typename
ELFT::Rela
&Rela
: CGProfileRela
)
7352 SymbolIndices
.push_back(Rela
.getSymbol(Obj
.isMips64EL()));
7358 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printCGProfile() {
7359 auto IsMatch
= [](const Elf_Shdr
&Sec
) -> bool {
7360 return Sec
.sh_type
== ELF::SHT_LLVM_CALL_GRAPH_PROFILE
;
7363 Expected
<MapVector
<const Elf_Shdr
*, const Elf_Shdr
*>> SecToRelocMapOrErr
=
7364 this->Obj
.getSectionAndRelocations(IsMatch
);
7365 if (!SecToRelocMapOrErr
) {
7366 this->reportUniqueWarning("unable to get CG Profile section(s): " +
7367 toString(SecToRelocMapOrErr
.takeError()));
7371 for (const auto &CGMapEntry
: *SecToRelocMapOrErr
) {
7372 const Elf_Shdr
*CGSection
= CGMapEntry
.first
;
7373 const Elf_Shdr
*CGRelSection
= CGMapEntry
.second
;
7375 Expected
<ArrayRef
<Elf_CGProfile
>> CGProfileOrErr
=
7376 this->Obj
.template getSectionContentsAsArray
<Elf_CGProfile
>(*CGSection
);
7377 if (!CGProfileOrErr
) {
7378 this->reportUniqueWarning(
7379 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7380 toString(CGProfileOrErr
.takeError()));
7384 SmallVector
<uint32_t, 128> SymbolIndices
;
7386 getSymbolIndices
<ELFT
>(CGRelSection
, this->Obj
, this, SymbolIndices
);
7387 if (UseReloc
&& SymbolIndices
.size() != CGProfileOrErr
->size() * 2) {
7388 this->reportUniqueWarning(
7389 "number of from/to pairs does not match number of frequencies");
7393 ListScope
L(W
, "CGProfile");
7394 for (uint32_t I
= 0, Size
= CGProfileOrErr
->size(); I
!= Size
; ++I
) {
7395 const Elf_CGProfile
&CGPE
= (*CGProfileOrErr
)[I
];
7396 DictScope
D(W
, "CGProfileEntry");
7398 uint32_t From
= SymbolIndices
[I
* 2];
7399 uint32_t To
= SymbolIndices
[I
* 2 + 1];
7400 W
.printNumber("From", this->getStaticSymbolName(From
), From
);
7401 W
.printNumber("To", this->getStaticSymbolName(To
), To
);
7403 W
.printNumber("Weight", CGPE
.cgp_weight
);
7408 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printBBAddrMaps() {
7409 bool IsRelocatable
= this->Obj
.getHeader().e_type
== ELF::ET_REL
;
7410 using Elf_Shdr
= typename
ELFT::Shdr
;
7411 auto IsMatch
= [](const Elf_Shdr
&Sec
) -> bool {
7412 return Sec
.sh_type
== ELF::SHT_LLVM_BB_ADDR_MAP
||
7413 Sec
.sh_type
== ELF::SHT_LLVM_BB_ADDR_MAP_V0
;
7415 Expected
<MapVector
<const Elf_Shdr
*, const Elf_Shdr
*>> SecRelocMapOrErr
=
7416 this->Obj
.getSectionAndRelocations(IsMatch
);
7417 if (!SecRelocMapOrErr
) {
7418 this->reportUniqueWarning(
7419 "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " +
7420 toString(SecRelocMapOrErr
.takeError()));
7423 for (auto const &[Sec
, RelocSec
] : *SecRelocMapOrErr
) {
7424 std::optional
<const Elf_Shdr
*> FunctionSec
;
7427 unwrapOrError(this->FileName
, this->Obj
.getSection(Sec
->sh_link
));
7428 ListScope
L(W
, "BBAddrMap");
7429 if (IsRelocatable
&& !RelocSec
) {
7430 this->reportUniqueWarning("unable to get relocation section for " +
7431 this->describe(*Sec
));
7434 Expected
<std::vector
<BBAddrMap
>> BBAddrMapOrErr
=
7435 this->Obj
.decodeBBAddrMap(*Sec
, RelocSec
);
7436 if (!BBAddrMapOrErr
) {
7437 this->reportUniqueWarning("unable to dump " + this->describe(*Sec
) +
7438 ": " + toString(BBAddrMapOrErr
.takeError()));
7441 for (const BBAddrMap
&AM
: *BBAddrMapOrErr
) {
7442 DictScope
D(W
, "Function");
7443 W
.printHex("At", AM
.Addr
);
7444 SmallVector
<uint32_t> FuncSymIndex
=
7445 this->getSymbolIndexesForFunctionAddress(AM
.Addr
, FunctionSec
);
7446 std::string FuncName
= "<?>";
7447 if (FuncSymIndex
.empty())
7448 this->reportUniqueWarning(
7449 "could not identify function symbol for address (0x" +
7450 Twine::utohexstr(AM
.Addr
) + ") in " + this->describe(*Sec
));
7452 FuncName
= this->getStaticSymbolName(FuncSymIndex
.front());
7453 W
.printString("Name", FuncName
);
7455 ListScope
L(W
, "BB entries");
7456 for (const BBAddrMap::BBEntry
&BBE
: AM
.BBEntries
) {
7458 W
.printNumber("ID", BBE
.ID
);
7459 W
.printHex("Offset", BBE
.Offset
);
7460 W
.printHex("Size", BBE
.Size
);
7461 W
.printBoolean("HasReturn", BBE
.hasReturn());
7462 W
.printBoolean("HasTailCall", BBE
.hasTailCall());
7463 W
.printBoolean("IsEHPad", BBE
.isEHPad());
7464 W
.printBoolean("CanFallThrough", BBE
.canFallThrough());
7470 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printAddrsig() {
7471 ListScope
L(W
, "Addrsig");
7472 if (!this->DotAddrsigSec
)
7475 Expected
<std::vector
<uint64_t>> SymsOrErr
=
7476 decodeAddrsigSection(this->Obj
, *this->DotAddrsigSec
);
7478 this->reportUniqueWarning(SymsOrErr
.takeError());
7482 for (uint64_t Sym
: *SymsOrErr
)
7483 W
.printNumber("Sym", this->getStaticSymbolName(Sym
), Sym
);
7486 template <typename ELFT
>
7487 static bool printGNUNoteLLVMStyle(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
,
7489 // Return true if we were able to pretty-print the note, false otherwise.
7493 case ELF::NT_GNU_ABI_TAG
: {
7494 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
7495 if (!AbiTag
.IsValid
) {
7496 W
.printString("ABI", "<corrupt GNU_ABI_TAG>");
7499 W
.printString("OS", AbiTag
.OSName
);
7500 W
.printString("ABI", AbiTag
.ABI
);
7504 case ELF::NT_GNU_BUILD_ID
: {
7505 W
.printString("Build ID", getGNUBuildId(Desc
));
7508 case ELF::NT_GNU_GOLD_VERSION
:
7509 W
.printString("Version", getDescAsStringRef(Desc
));
7511 case ELF::NT_GNU_PROPERTY_TYPE_0
:
7512 ListScope
D(W
, "Property");
7513 for (const std::string
&Property
: getGNUPropertyList
<ELFT
>(Desc
))
7514 W
.printString(Property
);
7520 static bool printAndroidNoteLLVMStyle(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
,
7522 // Return true if we were able to pretty-print the note, false otherwise.
7523 AndroidNoteProperties Props
= getAndroidNoteProperties(NoteType
, Desc
);
7526 for (const auto &KV
: Props
)
7527 W
.printString(KV
.first
, KV
.second
);
7531 template <class ELFT
>
7532 void LLVMELFDumper
<ELFT
>::printMemtag(
7533 const ArrayRef
<std::pair
<std::string
, std::string
>> DynamicEntries
,
7534 const ArrayRef
<uint8_t> AndroidNoteDesc
,
7535 const ArrayRef
<std::pair
<uint64_t, uint64_t>> Descriptors
) {
7537 ListScope
L(W
, "Memtag Dynamic Entries:");
7538 if (DynamicEntries
.empty())
7539 W
.printString("< none found >");
7540 for (const auto &DynamicEntryKV
: DynamicEntries
)
7541 W
.printString(DynamicEntryKV
.first
, DynamicEntryKV
.second
);
7544 if (!AndroidNoteDesc
.empty()) {
7545 ListScope
L(W
, "Memtag Android Note:");
7546 printAndroidNoteLLVMStyle(ELF::NT_ANDROID_TYPE_MEMTAG
, AndroidNoteDesc
, W
);
7549 if (Descriptors
.empty())
7553 ListScope
L(W
, "Memtag Global Descriptors:");
7554 for (const auto &[Addr
, BytesToTag
] : Descriptors
) {
7555 W
.printHex("0x" + utohexstr(Addr
), BytesToTag
);
7560 template <typename ELFT
>
7561 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType
,
7562 ArrayRef
<uint8_t> Desc
,
7567 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION
:
7568 W
.printString("Version", getDescAsStringRef(Desc
));
7570 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER
:
7571 W
.printString("Producer", getDescAsStringRef(Desc
));
7573 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION
:
7574 W
.printString("Producer version", getDescAsStringRef(Desc
));
7580 static void printCoreNoteLLVMStyle(const CoreNote
&Note
, ScopedPrinter
&W
) {
7581 W
.printNumber("Page Size", Note
.PageSize
);
7582 for (const CoreFileMapping
&Mapping
: Note
.Mappings
) {
7583 ListScope
D(W
, "Mapping");
7584 W
.printHex("Start", Mapping
.Start
);
7585 W
.printHex("End", Mapping
.End
);
7586 W
.printHex("Offset", Mapping
.Offset
);
7587 W
.printString("Filename", Mapping
.Filename
);
7591 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printNotes() {
7592 ListScope
L(W
, "Notes");
7594 std::unique_ptr
<DictScope
> NoteScope
;
7596 auto StartNotes
= [&](std::optional
<StringRef
> SecName
,
7597 const typename
ELFT::Off Offset
,
7598 const typename
ELFT::Addr Size
, size_t Al
) {
7599 Align
= std::max
<size_t>(Al
, 4);
7600 NoteScope
= std::make_unique
<DictScope
>(W
, "NoteSection");
7601 W
.printString("Name", SecName
? *SecName
: "<?>");
7602 W
.printHex("Offset", Offset
);
7603 W
.printHex("Size", Size
);
7606 auto EndNotes
= [&] { NoteScope
.reset(); };
7608 auto ProcessNote
= [&](const Elf_Note
&Note
, bool IsCore
) -> Error
{
7609 DictScope
D2(W
, "Note");
7610 StringRef Name
= Note
.getName();
7611 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc(Align
);
7612 Elf_Word Type
= Note
.getType();
7614 // Print the note owner/type.
7615 W
.printString("Owner", Name
);
7616 W
.printHex("Data size", Descriptor
.size());
7618 StringRef NoteType
=
7619 getNoteTypeName
<ELFT
>(Note
, this->Obj
.getHeader().e_type
);
7620 if (!NoteType
.empty())
7621 W
.printString("Type", NoteType
);
7623 W
.printString("Type",
7624 "Unknown (" + to_string(format_hex(Type
, 10)) + ")");
7626 // Print the description, or fallback to printing raw bytes for unknown
7627 // owners/if we fail to pretty-print the contents.
7628 if (Name
== "GNU") {
7629 if (printGNUNoteLLVMStyle
<ELFT
>(Type
, Descriptor
, W
))
7630 return Error::success();
7631 } else if (Name
== "FreeBSD") {
7632 if (std::optional
<FreeBSDNote
> N
=
7633 getFreeBSDNote
<ELFT
>(Type
, Descriptor
, IsCore
)) {
7634 W
.printString(N
->Type
, N
->Value
);
7635 return Error::success();
7637 } else if (Name
== "AMD") {
7638 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
7639 if (!N
.Type
.empty()) {
7640 W
.printString(N
.Type
, N
.Value
);
7641 return Error::success();
7643 } else if (Name
== "AMDGPU") {
7644 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
7645 if (!N
.Type
.empty()) {
7646 W
.printString(N
.Type
, N
.Value
);
7647 return Error::success();
7649 } else if (Name
== "LLVMOMPOFFLOAD") {
7650 if (printLLVMOMPOFFLOADNoteLLVMStyle
<ELFT
>(Type
, Descriptor
, W
))
7651 return Error::success();
7652 } else if (Name
== "CORE") {
7653 if (Type
== ELF::NT_FILE
) {
7654 DataExtractor
DescExtractor(Descriptor
,
7655 ELFT::TargetEndianness
== support::little
,
7657 if (Expected
<CoreNote
> N
= readCoreNote(DescExtractor
)) {
7658 printCoreNoteLLVMStyle(*N
, W
);
7659 return Error::success();
7661 return N
.takeError();
7664 } else if (Name
== "Android") {
7665 if (printAndroidNoteLLVMStyle(Type
, Descriptor
, W
))
7666 return Error::success();
7668 if (!Descriptor
.empty()) {
7669 W
.printBinaryBlock("Description data", Descriptor
);
7671 return Error::success();
7674 processNotesHelper(*this, /*StartNotesFn=*/StartNotes
,
7675 /*ProcessNoteFn=*/ProcessNote
, /*FinishNotesFn=*/EndNotes
);
7678 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printELFLinkerOptions() {
7679 ListScope
L(W
, "LinkerOptions");
7682 for (const Elf_Shdr
&Shdr
: cantFail(this->Obj
.sections())) {
7684 if (Shdr
.sh_type
!= ELF::SHT_LLVM_LINKER_OPTIONS
)
7687 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
=
7688 this->Obj
.getSectionContents(Shdr
);
7689 if (!ContentsOrErr
) {
7690 this->reportUniqueWarning("unable to read the content of the "
7691 "SHT_LLVM_LINKER_OPTIONS section: " +
7692 toString(ContentsOrErr
.takeError()));
7695 if (ContentsOrErr
->empty())
7698 if (ContentsOrErr
->back() != 0) {
7699 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7702 "content is not null-terminated");
7706 SmallVector
<StringRef
, 16> Strings
;
7707 toStringRef(ContentsOrErr
->drop_back()).split(Strings
, '\0');
7708 if (Strings
.size() % 2 != 0) {
7709 this->reportUniqueWarning(
7710 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I
) +
7711 " is broken: an incomplete "
7712 "key-value pair was found. The last possible key was: \"" +
7713 Strings
.back() + "\"");
7717 for (size_t I
= 0; I
< Strings
.size(); I
+= 2)
7718 W
.printString(Strings
[I
], Strings
[I
+ 1]);
7722 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printDependentLibs() {
7723 ListScope
L(W
, "DependentLibs");
7724 this->printDependentLibsHelper(
7725 [](const Elf_Shdr
&) {},
7726 [this](StringRef Lib
, uint64_t) { W
.printString(Lib
); });
7729 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printStackSizes() {
7730 ListScope
L(W
, "StackSizes");
7731 if (this->Obj
.getHeader().e_type
== ELF::ET_REL
)
7732 this->printRelocatableStackSizes([]() {});
7734 this->printNonRelocatableStackSizes([]() {});
7737 template <class ELFT
>
7738 void LLVMELFDumper
<ELFT
>::printStackSizeEntry(uint64_t Size
,
7739 ArrayRef
<std::string
> FuncNames
) {
7740 DictScope
D(W
, "Entry");
7741 W
.printList("Functions", FuncNames
);
7742 W
.printHex("Size", Size
);
7745 template <class ELFT
>
7746 void LLVMELFDumper
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
7747 auto PrintEntry
= [&](const Elf_Addr
*E
) {
7748 W
.printHex("Address", Parser
.getGotAddress(E
));
7749 W
.printNumber("Access", Parser
.getGotOffset(E
));
7750 W
.printHex("Initial", *E
);
7753 DictScope
GS(W
, Parser
.IsStatic
? "Static GOT" : "Primary GOT");
7755 W
.printHex("Canonical gp value", Parser
.getGp());
7757 ListScope
RS(W
, "Reserved entries");
7759 DictScope
D(W
, "Entry");
7760 PrintEntry(Parser
.getGotLazyResolver());
7761 W
.printString("Purpose", StringRef("Lazy resolver"));
7764 if (Parser
.getGotModulePointer()) {
7765 DictScope
D(W
, "Entry");
7766 PrintEntry(Parser
.getGotModulePointer());
7767 W
.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7771 ListScope
LS(W
, "Local entries");
7772 for (auto &E
: Parser
.getLocalEntries()) {
7773 DictScope
D(W
, "Entry");
7778 if (Parser
.IsStatic
)
7782 ListScope
GS(W
, "Global entries");
7783 for (auto &E
: Parser
.getGlobalEntries()) {
7784 DictScope
D(W
, "Entry");
7788 const Elf_Sym
&Sym
= *Parser
.getGotSym(&E
);
7789 W
.printHex("Value", Sym
.st_value
);
7790 W
.printEnum("Type", Sym
.getType(), ArrayRef(ElfSymbolTypes
));
7792 const unsigned SymIndex
= &Sym
- this->dynamic_symbols().begin();
7793 DataRegion
<Elf_Word
> ShndxTable(
7794 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
7795 printSymbolSection(Sym
, SymIndex
, ShndxTable
);
7797 std::string SymName
= this->getFullSymbolName(
7798 Sym
, SymIndex
, ShndxTable
, this->DynamicStringTable
, true);
7799 W
.printNumber("Name", SymName
, Sym
.st_name
);
7803 W
.printNumber("Number of TLS and multi-GOT entries",
7804 uint64_t(Parser
.getOtherEntries().size()));
7807 template <class ELFT
>
7808 void LLVMELFDumper
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
7809 auto PrintEntry
= [&](const Elf_Addr
*E
) {
7810 W
.printHex("Address", Parser
.getPltAddress(E
));
7811 W
.printHex("Initial", *E
);
7814 DictScope
GS(W
, "PLT GOT");
7817 ListScope
RS(W
, "Reserved entries");
7819 DictScope
D(W
, "Entry");
7820 PrintEntry(Parser
.getPltLazyResolver());
7821 W
.printString("Purpose", StringRef("PLT lazy resolver"));
7824 if (auto E
= Parser
.getPltModulePointer()) {
7825 DictScope
D(W
, "Entry");
7827 W
.printString("Purpose", StringRef("Module pointer"));
7831 ListScope
LS(W
, "Entries");
7832 DataRegion
<Elf_Word
> ShndxTable(
7833 (const Elf_Word
*)this->DynSymTabShndxRegion
.Addr
, this->Obj
.end());
7834 for (auto &E
: Parser
.getPltEntries()) {
7835 DictScope
D(W
, "Entry");
7838 const Elf_Sym
&Sym
= *Parser
.getPltSym(&E
);
7839 W
.printHex("Value", Sym
.st_value
);
7840 W
.printEnum("Type", Sym
.getType(), ArrayRef(ElfSymbolTypes
));
7841 printSymbolSection(Sym
, &Sym
- this->dynamic_symbols().begin(),
7844 const Elf_Sym
*FirstSym
= cantFail(
7845 this->Obj
.template getEntry
<Elf_Sym
>(*Parser
.getPltSymTable(), 0));
7846 std::string SymName
= this->getFullSymbolName(
7847 Sym
, &Sym
- FirstSym
, ShndxTable
, Parser
.getPltStrTable(), true);
7848 W
.printNumber("Name", SymName
, Sym
.st_name
);
7853 template <class ELFT
> void LLVMELFDumper
<ELFT
>::printMipsABIFlags() {
7854 const Elf_Mips_ABIFlags
<ELFT
> *Flags
;
7855 if (Expected
<const Elf_Mips_ABIFlags
<ELFT
> *> SecOrErr
=
7856 getMipsAbiFlagsSection(*this)) {
7859 W
.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7863 this->reportUniqueWarning(SecOrErr
.takeError());
7867 raw_ostream
&OS
= W
.getOStream();
7868 DictScope
GS(W
, "MIPS ABI Flags");
7870 W
.printNumber("Version", Flags
->version
);
7871 W
.startLine() << "ISA: ";
7872 if (Flags
->isa_rev
<= 1)
7873 OS
<< format("MIPS%u", Flags
->isa_level
);
7875 OS
<< format("MIPS%ur%u", Flags
->isa_level
, Flags
->isa_rev
);
7877 W
.printEnum("ISA Extension", Flags
->isa_ext
, ArrayRef(ElfMipsISAExtType
));
7878 W
.printFlags("ASEs", Flags
->ases
, ArrayRef(ElfMipsASEFlags
));
7879 W
.printEnum("FP ABI", Flags
->fp_abi
, ArrayRef(ElfMipsFpABIType
));
7880 W
.printNumber("GPR size", getMipsRegisterSize(Flags
->gpr_size
));
7881 W
.printNumber("CPR1 size", getMipsRegisterSize(Flags
->cpr1_size
));
7882 W
.printNumber("CPR2 size", getMipsRegisterSize(Flags
->cpr2_size
));
7883 W
.printFlags("Flags 1", Flags
->flags1
, ArrayRef(ElfMipsFlags1
));
7884 W
.printHex("Flags 2", Flags
->flags2
);
7887 template <class ELFT
>
7888 void JSONELFDumper
<ELFT
>::printFileSummary(StringRef FileStr
, ObjectFile
&Obj
,
7889 ArrayRef
<std::string
> InputFilenames
,
7891 FileScope
= std::make_unique
<DictScope
>(this->W
);
7892 DictScope
D(this->W
, "FileSummary");
7893 this->W
.printString("File", FileStr
);
7894 this->W
.printString("Format", Obj
.getFileFormatName());
7895 this->W
.printString("Arch", Triple::getArchTypeName(Obj
.getArch()));
7896 this->W
.printString(
7898 std::string(formatv("{0}bit", 8 * Obj
.getBytesInAddress())));
7899 this->printLoadName();
7902 template <class ELFT
>
7903 void JSONELFDumper
<ELFT
>::printZeroSymbolOtherField(
7904 const Elf_Sym
&Symbol
) const {
7905 // We want the JSON format to be uniform, since it is machine readable, so
7906 // always print the `Other` field the same way.
7907 this->printSymbolOtherField(Symbol
);
7910 template <class ELFT
>
7911 void JSONELFDumper
<ELFT
>::printDefaultRelRelaReloc(const Relocation
<ELFT
> &R
,
7912 StringRef SymbolName
,
7913 StringRef RelocName
) {
7914 this->printExpandedRelRelaReloc(R
, SymbolName
, RelocName
);
7917 template <class ELFT
>
7918 void JSONELFDumper
<ELFT
>::printRelocationSectionInfo(const Elf_Shdr
&Sec
,
7920 const unsigned SecNdx
) {
7921 DictScope
Group(this->W
);
7922 this->W
.printNumber("SectionIndex", SecNdx
);
7923 ListScope
D(this->W
, "Relocs");
7924 this->printRelocationsHelper(Sec
);
7927 template <class ELFT
>
7928 std::string JSONELFDumper
<ELFT
>::getGroupSectionHeaderName() const {
7929 return "GroupSections";
7932 template <class ELFT
>
7933 void JSONELFDumper
<ELFT
>::printSectionGroupMembers(StringRef Name
,
7934 uint64_t Idx
) const {
7935 DictScope
Grp(this->W
);
7936 this->W
.printString("Name", Name
);
7937 this->W
.printNumber("Index", Idx
);
7940 template <class ELFT
> void JSONELFDumper
<ELFT
>::printEmptyGroupMessage() const {
7941 // JSON output does not need to print anything for empty groups