[AMDGPU] Make v8i16/v8f16 legal
[llvm-project.git] / mlir / test / Integration / Dialect / SparseTensor / python / test_SDDMM.py
blobfeeedcc9bc97f61e672eb332bfbe53780131692b
1 # RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext \
2 # RUN: %PYTHON %s | FileCheck %s
4 import ctypes
5 import numpy as np
6 import os
8 import mlir.all_passes_registration
10 from mlir import ir
11 from mlir import runtime as rt
12 from mlir import execution_engine
13 from mlir import passmanager
15 from mlir.dialects import sparse_tensor as st
16 from mlir.dialects import builtin
17 from mlir.dialects.linalg.opdsl import lang as dsl
20 @dsl.linalg_structured_op
21 def sddmm_dsl(
22 A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K),
23 B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N),
24 S=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N),
25 C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True)):
26 C[dsl.D.m,
27 dsl.D.n] += S[dsl.D.m, dsl.D.n] * A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n]
30 def build_SDDMM(attr: st.EncodingAttr):
31 """Build SDDMM kernel.
33 This method generates a linalg op with for matrix multiplication using
34 just the Python API. Effectively, a generic linalg op is constructed
35 that computes C(i,j) += S(i,j) SUM_k A(i,k) B(k,j) for sparse S.
36 """
37 module = ir.Module.create()
38 f64 = ir.F64Type.get()
39 a = ir.RankedTensorType.get([8, 8], f64)
40 b = ir.RankedTensorType.get([8, 8], f64)
41 c = ir.RankedTensorType.get([8, 8], f64)
42 s = ir.RankedTensorType.get([8, 8], f64, attr)
43 arguments = [a, b, s, c]
44 with ir.InsertionPoint(module.body):
46 @builtin.FuncOp.from_py_func(*arguments)
47 def sddmm(*args):
48 return sddmm_dsl(args[0], args[1], args[2], outs=[args[3]])
50 return module
53 def boilerplate(attr: st.EncodingAttr):
54 """Returns boilerplate code for main driver."""
55 return f"""
56 func @main(%a: tensor<8x8xf64>,
57 %b: tensor<8x8xf64>,
58 %c: tensor<8x8xf64>) -> tensor<8x8xf64> attributes {{ llvm.emit_c_interface }} {{
59 %t = arith.constant sparse<[[0,0], [0,2], [4,1]], [1.0, 2.0, 3.0]> : tensor<8x8xf64>
60 %s = sparse_tensor.convert %t : tensor<8x8xf64> to tensor<8x8xf64, {attr}>
61 %0 = call @sddmm(%a, %b, %s, %c) : (tensor<8x8xf64>,
62 tensor<8x8xf64>,
63 tensor<8x8xf64, {attr}>,
64 tensor<8x8xf64>) -> tensor<8x8xf64>
65 return %0 : tensor<8x8xf64>
67 """
70 def build_compile_and_run_SDDMMM(attr: st.EncodingAttr, opt: str,
71 support_lib: str, compiler):
72 # Build.
73 module = build_SDDMM(attr)
74 func = str(module.operation.regions[0].blocks[0].operations[0].operation)
75 module = ir.Module.parse(func + boilerplate(attr))
77 # Compile.
78 compiler(module)
79 engine = execution_engine.ExecutionEngine(
80 module, opt_level=0, shared_libs=[support_lib])
82 # Set up numpy input and buffer for output.
83 a = np.array([[1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1],
84 [1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2],
85 [1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3],
86 [1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4],
87 [1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5],
88 [1.6, 2.6, 3.6, 4.6, 5.6, 6.6, 7.6, 8.6],
89 [1.7, 2.7, 3.7, 4.7, 5.7, 6.7, 7.7, 8.7],
90 [1.8, 2.8, 3.8, 4.8, 5.8, 6.8, 7.8, 8.8]], np.float64)
91 b = np.ones((8, 8), np.float64)
92 c = np.zeros((8, 8), np.float64)
94 mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
95 mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
96 mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c)))
98 # Allocate a MemRefDescriptor to receive the output tensor.
99 # The buffer itself is allocated inside the MLIR code generation.
100 ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)()
101 mem_out = ctypes.pointer(ctypes.pointer(ref_out))
103 # Invoke the kernel and get numpy output.
104 # Built-in bufferization uses in-out buffers.
105 # TODO: replace with inplace comprehensive bufferization.
106 engine.invoke('main', mem_out, mem_a, mem_b, mem_c)
108 # Sanity check on computed result. Only a few elements
109 # are sampled from the full dense matrix multiplication.
110 full_matmul = np.matmul(a, b)
111 expected = np.zeros((8, 8), np.float64)
112 expected[0, 0] = 1.0 * full_matmul[0, 0]
113 expected[0, 2] = 2.0 * full_matmul[0, 2]
114 expected[4, 1] = 3.0 * full_matmul[4, 1]
115 c = rt.ranked_memref_to_numpy(mem_out[0])
116 if np.allclose(c, expected):
117 pass
118 else:
119 quit(f'FAILURE')
122 class SparseCompiler:
123 """Sparse compiler passes."""
125 def __init__(self, options: str):
126 pipeline = (
127 f'sparsification{{{options}}},'
128 f'sparse-tensor-conversion,'
129 f'builtin.func(linalg-bufferize,convert-linalg-to-loops,convert-vector-to-scf),'
130 f'convert-scf-to-std,'
131 f'func-bufferize,'
132 f'tensor-constant-bufferize,'
133 f'builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize),'
134 f'convert-vector-to-llvm{{reassociate-fp-reductions=1 enable-index-optimizations=1}},'
135 f'lower-affine,'
136 f'convert-memref-to-llvm,'
137 f'convert-std-to-llvm,'
138 f'reconcile-unrealized-casts')
139 self.pipeline = pipeline
141 def __call__(self, module: ir.Module):
142 passmanager.PassManager.parse(self.pipeline).run(module)
145 def main():
146 support_lib = os.getenv('SUPPORT_LIB')
147 assert support_lib is not None, 'SUPPORT_LIB is undefined'
148 if not os.path.exists(support_lib):
149 raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT),
150 support_lib)
152 # CHECK-LABEL: TEST: testSDDMMM
153 print('\nTEST: testSDDMMM')
154 with ir.Context() as ctx, ir.Location.unknown():
155 count = 0
156 # Loop over various ways to compile and annotate the SDDMM kernel with
157 # a *single* sparse tensor. Note that we deliberate do not exhaustively
158 # search the full state space to reduce runtime of the test. It is
159 # straightforward to adapt the code below to explore more combinations.
160 levels = [[st.DimLevelType.dense, st.DimLevelType.dense],
161 [st.DimLevelType.dense, st.DimLevelType.compressed],
162 [st.DimLevelType.compressed, st.DimLevelType.dense],
163 [st.DimLevelType.compressed, st.DimLevelType.compressed]]
164 orderings = [
165 ir.AffineMap.get_permutation([0, 1]),
166 ir.AffineMap.get_permutation([1, 0])
168 for level in levels:
169 for ordering in orderings:
170 for pwidth in [32]:
171 for iwidth in [32]:
172 for par in [0]:
173 for vec in [0, 1]:
174 for e in [True]:
175 vl = 1 if vec == 0 else 16
176 attr = st.EncodingAttr.get(level, ordering, pwidth, iwidth)
177 opt = (f'parallelization-strategy={par} '
178 f'vectorization-strategy={vec} '
179 f'vl={vl} enable-simd-index32={e}')
180 compiler = SparseCompiler(options=opt)
181 build_compile_and_run_SDDMMM(attr, opt, support_lib, compiler)
182 count = count + 1
183 # CHECK: Passed 16 tests
184 print('Passed ', count, 'tests')
187 if __name__ == '__main__':
188 main()