[AMDGPU] Make v8i16/v8f16 legal
[llvm-project.git] / mlir / test / Integration / Dialect / SparseTensor / python / test_SpMM.py
blob76ff846aeea6b3a0dd4ad126fa6fac2ca93edb88
1 # RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext \
2 # RUN: %PYTHON %s | FileCheck %s
4 import ctypes
5 import numpy as np
6 import os
8 import mlir.all_passes_registration
10 from mlir import ir
11 from mlir import runtime as rt
12 from mlir import execution_engine
13 from mlir import passmanager
15 from mlir.dialects import sparse_tensor as st
16 from mlir.dialects import builtin
17 from mlir.dialects.linalg.opdsl import lang as dsl
20 @dsl.linalg_structured_op
21 def matmul_dsl(
22 A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K),
23 B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N),
24 C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True)):
25 C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n]
28 def build_SpMM(attr: st.EncodingAttr):
29 """Build SpMM kernel.
31 This method generates a linalg op with for matrix multiplication using
32 just the Python API. Effectively, a generic linalg op is constructed
33 that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A.
34 """
35 module = ir.Module.create()
36 f64 = ir.F64Type.get()
37 a = ir.RankedTensorType.get([3, 4], f64, attr)
38 b = ir.RankedTensorType.get([4, 2], f64)
39 c = ir.RankedTensorType.get([3, 2], f64)
40 arguments = [a, b, c]
41 with ir.InsertionPoint(module.body):
43 @builtin.FuncOp.from_py_func(*arguments)
44 def spMxM(*args):
45 return matmul_dsl(args[0], args[1], outs=[args[2]])
47 return module
50 def boilerplate(attr: st.EncodingAttr):
51 """Returns boilerplate main method.
53 This method sets up a boilerplate main method that takes three tensors
54 (a, b, c), converts the first tensor a into s sparse tensor, and then
55 calls the sparse kernel for matrix multiplication. For convenience,
56 this part is purely done as string input.
57 """
58 return f"""
59 func @main(%ad: tensor<3x4xf64>, %b: tensor<4x2xf64>, %c: tensor<3x2xf64>) -> tensor<3x2xf64>
60 attributes {{ llvm.emit_c_interface }} {{
61 %a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, {attr}>
62 %0 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>,
63 tensor<4x2xf64>,
64 tensor<3x2xf64>) -> tensor<3x2xf64>
65 return %0 : tensor<3x2xf64>
67 """
70 def build_compile_and_run_SpMM(attr: st.EncodingAttr, support_lib: str,
71 compiler):
72 # Build.
73 module = build_SpMM(attr)
74 func = str(module.operation.regions[0].blocks[0].operations[0].operation)
75 module = ir.Module.parse(func + boilerplate(attr))
77 # Compile.
78 compiler(module)
79 engine = execution_engine.ExecutionEngine(
80 module, opt_level=0, shared_libs=[support_lib])
82 # Set up numpy input and buffer for output.
83 a = np.array(
84 [[1.1, 0.0, 0.0, 1.4], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.3, 0.0]],
85 np.float64)
86 b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64)
87 c = np.zeros((3, 2), np.float64)
89 mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a)))
90 mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b)))
91 mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c)))
92 # Allocate a MemRefDescriptor to receive the output tensor.
93 # The buffer itself is allocated inside the MLIR code generation.
94 ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)()
95 mem_out = ctypes.pointer(ctypes.pointer(ref_out))
97 # Invoke the kernel and get numpy output.
98 # Built-in bufferization uses in-out buffers.
99 # TODO: replace with inplace comprehensive bufferization.
100 engine.invoke('main', mem_out, mem_a, mem_b, mem_c)
102 # Sanity check on computed result.
103 expected = np.matmul(a, b);
104 c = rt.ranked_memref_to_numpy(mem_out[0])
105 if np.allclose(c, expected):
106 pass
107 else:
108 quit(f'FAILURE')
111 class SparseCompiler:
112 """Sparse compiler passes."""
114 def __init__(self, options: str):
115 pipeline = (
116 f'builtin.func(linalg-generalize-named-ops,linalg-fuse-elementwise-ops),'
117 f'sparsification{{{options}}},'
118 f'sparse-tensor-conversion,'
119 f'builtin.func(linalg-bufferize,convert-linalg-to-loops,convert-vector-to-scf),'
120 f'convert-scf-to-std,'
121 f'func-bufferize,'
122 f'tensor-constant-bufferize,'
123 f'builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize),'
124 f'convert-vector-to-llvm{{reassociate-fp-reductions=1 enable-index-optimizations=1}},'
125 f'lower-affine,'
126 f'convert-memref-to-llvm,'
127 f'convert-std-to-llvm,'
128 f'reconcile-unrealized-casts')
129 self.pipeline = pipeline
131 def __call__(self, module: ir.Module):
132 passmanager.PassManager.parse(self.pipeline).run(module)
135 def main():
136 support_lib = os.getenv('SUPPORT_LIB')
137 assert support_lib is not None, 'SUPPORT_LIB is undefined'
138 if not os.path.exists(support_lib):
139 raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib)
141 # CHECK-LABEL: TEST: testSpMM
142 print('\nTEST: testSpMM')
143 with ir.Context() as ctx, ir.Location.unknown():
144 count = 0
145 # Loop over various ways to compile and annotate the SpMM kernel with
146 # a *single* sparse tensor. Note that we deliberate do not exhaustively
147 # search the full state space to reduce runtime of the test. It is
148 # straightforward to adapt the code below to explore more combinations.
149 par = 0
150 vec = 0
151 vl = 1
152 e = False
153 opt = (f'parallelization-strategy={par} '
154 f'vectorization-strategy={vec} '
155 f'vl={vl} enable-simd-index32={e}')
156 levels = [[st.DimLevelType.dense, st.DimLevelType.dense],
157 [st.DimLevelType.dense, st.DimLevelType.compressed],
158 [st.DimLevelType.compressed, st.DimLevelType.dense],
159 [st.DimLevelType.compressed, st.DimLevelType.compressed]]
160 orderings = [
161 ir.AffineMap.get_permutation([0, 1]),
162 ir.AffineMap.get_permutation([1, 0])
164 bitwidths = [0]
165 for level in levels:
166 for ordering in orderings:
167 for pwidth in bitwidths:
168 for iwidth in bitwidths:
169 attr = st.EncodingAttr.get(level, ordering, pwidth, iwidth)
170 compiler = SparseCompiler(options=opt)
171 build_compile_and_run_SpMM(attr, support_lib, compiler)
172 count = count + 1
173 # CHECK: Passed 8 tests
174 print('Passed ', count, 'tests')
177 if __name__ == '__main__':
178 main()