3 ========================
4 Log/Log10/Log2 Algorithm
5 ========================
9 In this short note, we will discuss in detail about the computation of
10 :math:`\log(x)` function, with double precision inputs, in particular, the range
11 reduction steps and error analysis. The algorithm is broken down into 2 main
17 b. Polynomial approximation
20 2. Accurate phase (if Ziv's test failed):
22 a. Further range reduction
23 b. Polynomial approximation
32 Let `x = 2^{e_x} (1 + m_x)` be a normalized double precision number, in which
33 `-1074 \leq e_x \leq 1022` and `0 \leq m_x < 1` such that
34 `2^{52} m_x \in \mathbb{Z}`.
36 Then from the properties of logarithm:
39 \log(x) &= \log\left( 2^{e_x} (1 + m_x) \right) \\
40 &= \log\left( 2^{e_x} \right) + \log(1 + m_x) \\
41 &= e_x \log(2) + \log(1 + m_x)
43 the computation of `\log(x)` can be reduced to:
45 1. compute the product of `e_x` and `\log(2)`,
46 2. compute `\log(1 + m_x)` for `0 \leq m_x < 1`,
49 To compute `\log(1 + m_x)` in step 2, we can reduce the range further by finding
53 | r(1 + m_x) - 1 | < C \quad \quad \text{(R1)}
55 for small `0 < C < 1`. Then if we let `u = r(1 + m_x) - 1`, `|u| < C`:
58 \log(1 + m_x) &= \log \left( \frac{r (1 + m_x)}{r} \right) \\
59 &= \log(r (1 + m_x) ) - \log(r) \\
60 &= \log(1 + u) - \log(r)
62 and step 2 can be computed with:
64 a. extract `r` and `-\log(r)` from look-up tables,
65 b. compute the reduced argument `u = r(1 + m_x) - 1`,
66 c. compute `\log(1 + u)` by polynomial approximation or further range reduction,
67 d. add step a and step c results.
73 For an efficient implementation, we would like to use the first `M` significant
74 bits of `m_x` to look up for `r`. In particular, we would like to find a value
75 of `r` that works for all `m_x` satisfying:
78 k 2^{-M} \leq m_x < (k + 1) 2^{-M} \quad \text{for some} \quad
79 k = 0..2^{M} - 1. \quad\quad \text{(M1)}
81 Let `r = 1 + s`, then `u` can be expressed in terms of `s` as:
84 u &= r(1 + m_x) - 1 \\
85 &= (1 + s)(1 + m_x) - 1 \\
86 &= s m_x + s + m_x &\quad\quad \text{(U1)} \\
87 &= s (1 + m_x) + m_x \\
90 From the condition `\text{(R1)}`, `s` is bounded by:
93 \frac{-C - m_x}{1 + m_x} < s < \frac{C - m_x}{1 + m_x} \quad\quad \text{(S1)}.
95 Since our reduction constant `s` must work for all `m_x` in the interval
96 `I = \{ v: k 2^{-M} \leq v < (k + 1) 2^{-M} \}`, `s` is bounded by:
99 \sup_{v \in I} \frac{-C - v}{1 + v} < s < \inf_{v \in I} \frac{C - v}{1 + v}
101 For a fixed constant `|c| < 1`, let `f(v) = \frac{c - v}{1 + v}`, then its
105 f'(v) = \frac{(-1)(1 + v) - (1)(c - v)}{(1 + v)^2} = \frac{-1 - c}{(1 + v)^2}.
107 Since `|c| < 1`, `f'(v) < 0` for all `v \neq -1`, so:
110 \sup_{v \in I} f(v) &= f \left( \inf\{ v: v \in I \} \right)
111 = f \left( k 2^{-M} \right) \\
112 \inf_{v \in I} f(v) &= f \left( \sup\{ v: v \in I \} \right)
113 = f \left( (k + 1) 2^{-M} \right)
115 Hence we have the following bound on `s`:
118 \frac{-C - k 2^{-M}}{1 + k 2^{-M}} < s \leq
119 \frac{C - (k + 1) 2^{-M}}{1 + (k + 1) 2^{-M}}. \quad\quad \text{(S2)}
121 In order for `s` to exist, we need that:
124 \frac{C - (k + 1) 2^{-M}}{1 + (k + 1) 2^{-M}} >
125 \frac{-C - k 2^{-M}}{1 + k 2^{-M}}
127 which is equivalent to:
130 \quad\quad 2C - 2^{-M} + (2k + 1) 2^{-M} C > 0
131 \iff C > \frac{2^{-M - 1}}{1 + (2k + 1) 2^{-M - 1}} \quad\quad \text{(C1)}.
133 Consider the case `C = 2^{-N}`. Since `0 \leq k \leq 2^M - 1,` the right hand
134 side of `\text{(C1)}` is bounded by:
137 2^{-M - 1} > \frac{2^{-M - 1}}{1 + (2k + 1) 2^{-M - 1}} \geq
138 \frac{2^{-M - 1}}{1 + (2^{M + 1} - 1) 2^{-M - 1}} > 2^{-M - 2}.
140 Hence, from `\text{(C1)}`, being an exact power of 2, `C = 2^{-N}` is bounded below
144 C = 2^{-N} \geq 2^{-M - 1}.
146 To make the range reduction efficient, we will want to minimize `C` (maximize
147 `N`) while keeping the required precision of `s`(`r`) as low as possible. And
148 for that, we will consider the following two cases: `N = M + 1` and `N = M`.
153 When `N = M + 1`, `\text{(S2)}` becomes:
156 \frac{-2^{-M - 1} - k 2^{-M}}{1 + k 2^{-M}} < s <
157 \frac{2^{-M - 1} - (k + 1) 2^{-M}}{1 + (k + 1) 2^{-M}}.
158 \quad\quad \text{(S2')}
160 This is an interval of length:
163 l &= \frac{2^{-M - 1} - (k + 1) 2^{-M}}{1 + (k + 1) 2^{-M}} -
164 \frac{-2^{-M - 1} - k 2^{-M}}{1 + k 2^{-M}} \\
165 &= \frac{(2k + 1)2^{-2M - 1}}{(1 + k 2^{-M})(1 + (k + 1)2^{-M})}
166 \quad\quad \text{(L1)}
168 As a function of `k`, the length `l` has its derivative with respect to `k`:
172 \frac{2^{2M + 1} - 2k(k + 1) - 1}
173 {2^{4M}(1 + k 2^{-M})^2 (1 + (k + 1) 2^{-M})^2}
175 which is always positive for `0 \leq k \leq 2^M - 1`. So for all
176 `0 < k < 2^{-M}` (`k = 0` will be treated differently in edge cases), and for
177 `M > 2`, `l` is bounded below by:
182 It implies that we can always find `s` with `\operatorname{ulp}(s) = 2^{-2M}`.
183 And from `\text{(U1)}`, `u = s(1 + m_x) + m_x`, its `ulp` is:
186 \operatorname{ulp}(u) &= \operatorname{ulp}(s) \cdot \operatorname{ulp}(m_x) \\
187 &= 2^{-2M} \operatorname{ulp}(m_x).
192 |u| < C = 2^{-N} = 2^{-M - 1},
194 Its required precision is:
197 \operatorname{prec}(u) &= \log_2(2^{-M-1} / \operatorname{ulp}(u)) \\
198 &= \log_2(2^{M - 1} / \operatorname{ulp}(m_x)) \\
199 &= M - 1 - \log_2(\operatorname{ulp}(m_x)).
201 This means that in this case, we cannot restrict `u` to be exactly representable
202 in double precision for double precision input `x` with `M > 2`. Nonetheless,
203 for a reasonable value of `M`, we can have `u` exactly representable in double
204 precision for single precision input `x` (`\operatorname{ulp}(m_x) = 2^{-23}`)
205 such that `|u| < 2^{-M - 1}` using a look-up table of size `2^M`.
207 A particular formula for `s` can be derived from `\text{(S2')}` by the midpoint
211 s &= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot \operatorname{midpoint}
212 \left(-\frac{-2^{-M - 1} - k2^{-M}}{1 + k 2^{-M}},
213 \frac{2^{-M-1} - (k + 1)2^{-M}}{1 + (k + 1) 2^{-M}}\right) \right) \\
214 &= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot \frac{1}{2} \left(
215 \frac{-2^{-M - 1} - k2^{-M}}{1 + k 2^{-M}} +
216 \frac{2^{-M - 1} + (k + 1)2^{-M}}{1 + (k + 1) 2^{-M}}
218 &= 2^{-2M} \operatorname{round}\left( \frac{
219 - \left(k + \frac{1}{2} \right) \left(2^M - k - \frac{1}{2} \right) }
220 {(1 + k 2^{-N})(1 + (k + 1) 2^{-N})} \right) \\
221 &= - 2^{-2M} \operatorname{round}\left( \frac{
222 \left(k + \frac{1}{2} \right) \left(2^M - k - \frac{1}{2} \right) }
223 {(1 + k 2^{-N})(1 + (k + 1) 2^{-N})} \right) \quad\quad \text{(S3)}
225 The corresponding range and formula for `r = 1 + s` are:
228 \frac{1 - 2^{-M - 1}}{1 + k 2^{-M}} < r \leq
229 \frac{1 + 2^{-M - 1}}{1 + (k + 1) 2^{-M}}
232 r &= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot
233 \operatorname{midpoint}\left( \frac{1 - 2^{-M - 1}}{1 + k 2^{-M}},
234 \frac{1 + 2^{-M - 1}}{1 + (k + 1) 2^{-M}}\right) \right) \\
235 &= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot \frac{1}{2} \left(
236 \frac{1 + 2^{-M-1}}{1 + (k + 1) 2^{-M}} + \frac{1 - 2^{-M-1}}{1 + k 2^{-M}}
238 &= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot \frac{
239 1 + \left(k + \frac{1}{2} \right) 2^{-M} - 2^{-2M-2} }{(1 + k 2^{-M})
240 (1 + (k + 1) 2^{-M})} \right)
245 When `N = M`, `\text{(S2)}` becomes:
248 \frac{-(k + 1)2^{-M}}{1 + k 2^{-M}} < s < \frac{-k 2^{-M}}{1 + (k + 1) 2^{-M}}
249 \quad\quad \text{(S2")}
251 This is an interval of length:
254 l &= \frac{- k 2^{-M}}{1 + (k + 1) 2^{-M}} -
255 \frac{- (k + 1) 2^{-M}}{1 + k 2^{-M}} \\
256 &= \frac{2^{-M} (1 + (2k + 1) 2^{-M})}{(1 + k 2^{-M})(1 + (k + 1)2^{-M})}
257 \quad\quad \text{(L1')}
259 As a function of `k`, its derivative with respect to `k`:
263 -\frac{2^{-2M}(k(k + 1)2^{-M + 1} + 2^{-M} + 2k + 1)}
264 {(1 + k 2^{-M})^2 (1 + (k + 1) 2^{-M})^2}
266 which is always negative for `0 \leq k \leq 2^M - 1`. So for `M > 1`, `l` is
270 l > \frac{2^{-M - 1} (3 - 2^{-M})}{2 - 2^{-M}} > 2^{-M - 1}.
272 It implies that we can always find `s` with `\operatorname{ulp}(s) = 2^{-M-1}`.
273 And from `\text{(U1)}`, `u = s(1 + m_x) + m_x`, its `ulp` is:
276 \operatorname{ulp}(u) &= \operatorname{ulp}(s) \cdot \operatorname{ulp}(m_x) \\
277 &= 2^{-M - 1} \operatorname{ulp}(m_x).
282 |u| < C = 2^{-N} = 2^{-M},
284 Its required precision is:
287 \operatorname{prec}(u) &= \log_2(2^{-M} / \operatorname{ulp}(u)) \\
288 &= \log_2(2 / \operatorname{ulp}(m_x)) \\
289 &= 1 - \log_2(\operatorname{ulp}(m_x)).
291 Hence, for double precision `x`, `\operatorname{ulp}(m_x) = 2^{-52}`, and the
292 precision needed for `u` is `\operatorname{prec}(u) = 53`, i.e., `u` can be
293 exactly representable in double precision. And in this case, `s` can be
294 derived from `\text{(S2")}` by the midpoint formula:
297 s &= 2^{-M - 1} \operatorname{round}\left( 2^{M + 1} \cdot
298 \operatorname{midpoint} \left(-\frac{-(k + 1)2^{-M}}{1 + k 2^{-M}},
299 \frac{-k2^{-M}}{1 + (k + 1) 2^{-M}}\right) \right) \\
300 &= 2^{-M - 1} \operatorname{round}\left( 2^{M + 1} \cdot \frac{1}{2} \left(
301 \frac{-(k + 1)2^{-M}}{1 + k 2^{-M}} + \frac{-k2^{-M}}{1 + (k + 1) 2^{-M}}
303 &= -2^{-M - 1} \operatorname{round}\left( \frac{
304 (2k + 1) + (2k^2 + 2k + 1) 2^{-M} }
305 {(1 + k 2^{-N})(1 + (k + 1) 2^{-N})} \right) \quad\quad \text{(S3')}
307 The corresponding range and formula for `r = 1 + s` are:
310 \frac{1 - 2^{-M}}{1 + k 2^{-M}} < r \leq \frac{1 + 2^{-M}}{1 + (k + 1) 2^{-M}}
313 r &= 2^{-M-1} \operatorname{round}\left( 2^{M + 1} \cdot
314 \operatorname{midpoint}\left( \frac{1 - 2^{-M}}{1 + k 2^{-M}},
315 \frac{1 + 2^{-M}}{1 + (k + 1) 2^{-M}}\right) \right) \\
316 &= 2^{-M-1} \operatorname{round}\left( 2^{M + 1} \cdot \frac{1}{2} \left(
317 \frac{1 + 2^{-M}}{1 + (k + 1) 2^{-M}} + \frac{1 - 2^{-M}}{1 + k 2^{-M}}
319 &= 2^{-M - 1} \operatorname{round}\left( 2^{M + 1} \cdot \frac{
320 1 + \left(k + \frac{1}{2} \right) 2^{-M} - 2^{-2M-1} }{(1 + k 2^{-M})
321 (1 + (k + 1) 2^{-M})} \right)
326 1. When `k = 0`, notice that:
329 0 = k 2^{-N} \leq m_x < (k + 1) 2^{-N} = 2^{-N} = C,
331 so we can simply choose `r = 1` so that `\log(r) = 0` is exact, then `u = m_x`.
332 This will help reduce the accumulated errors when `m_x` is close to 0 while
333 maintaining the range reduction output's requirements.
335 2. When `k = 2^{N} - 1`, `\text{(S2)}` becomes:
338 -\frac{1}{2} - \frac{C - 2^{-M-1}}{2 - 2^{-M}} <> s \leq
339 -\frac{1}{2} + \frac{C}{2}.
341 so when `C > 2^{-M - 1}` is a power of 2, we can always choose:
344 s = -\frac{1}{2}, \quad \text{i.e.} \quad r = \frac{1}{2}.
346 This reduction works well to avoid catastrophic cancellation happening when
349 This also works when `C = 2^{-M - 1}` if we relax the condition on `u` to
350 `|u| \leq C = 2^{-M-1}`.
352 Intermediate precision, and Ziv's test
353 --------------------------------------
355 In the fast phase, we want extra precision while performant, so we use
356 double-double precision for most intermediate computation steps, and employ Ziv
357 test to see if the result is accurate or not. In our case, the Ziv's test can
358 be described as follow:
360 1. Let `re = re.hi + re.lo` be the double-double output of the fast phase
362 2. Let `err` be an estimated upper bound of the errors of `re`.
363 3. If `\circ(re.hi + (re.lo - err)) == \circ(re.hi + (r.lo + err))` then the
364 result is correctly rounded to double precision for the current rounding mode
365 `\circ`. Otherwise, the accurate phase with extra precision is needed.
367 For an easy and cheap estimation of the error bound `err`, since the range
368 reduction step described above is accurate, the errors of the result:
371 \log(x) &= e_x \log(2) - \log(r) + \log(1 + u) \\
372 &\approx e_x \log(2) - \log(r) + u P(u)
376 1. the look-up part: `e_x \log(2) - \log(r)`
377 2. the polynomial approximation part: `u P(u)`
379 The errors of the first part can be computed with a single `\operatorname{fma}`
383 err_1 = \operatorname{fma}(e_x, err(\log(2)), err(\log(r))),
385 and then combining with the errors of the second part for another
386 `\operatorname{fma}` operation:
389 err = \operatorname{fma}(u, err(P), err_1)
395 Extending range reduction
396 -------------------------
398 Since the output `u = r(1 + m_x) - 1` of the fast phase's range reduction
399 is computed exactly, we can apply further range reduction steps by
400 using the following formula:
403 u_{i + 1} = r_i(1 + u_i) - 1 = u_i \cdot r_i + (r_i - 1),
405 where `|u_i| < 2^{-N_i}` and `u_0 = u` is representable in double precision.
407 Let `s_i = r_i - 1`, then we can rewrite it as:
410 u_{i + 1} &= (1 + s_i)(1 + u_i) - 1 \\
411 &= s_i u_i + u_i + s_i \\
412 &= u_i (1 + s_i) + s_i
413 &= s_i (1 + u_i) + u_i.
415 Then the bound on `u_{i + 1}` is translated to `s_i` as:
418 \frac{-2^{-N_{i + 1}} - u_i}{1 + u_i} < s_i < \frac{2^{-N_{i + 1}} - u_i}{1 + u_i}.
420 Let say we divide the interval `[0, 2^-{N_i})` into `2^{M_i}` subintervals
421 evenly and use the index `k` such that:
424 k 2^{-N_i - M_i} \leq u_i < (k + 1) 2^{-N_i - M_i},
426 to look-up for the reduction constant `s_{i, k}`. In other word, `k` is given
430 k = \left\lfloor 2^{N_i + M_i} u_i \right\rfloor
432 Notice that our reduction constant `s_{i, k}` must work for all `u_i` in the
433 interval `I = \{ v: k 2^{-N_i - M_i} \leq v < (k + 1) 2^{-N_i - M_i} \}`,
437 \sup_{v \in I} \frac{-2^{-N_{i + 1}} - v}{1 + v} < s_{i, k} < \inf_{v \in I} \frac{2^{-N_{i + 1}} - v}{1 + v}
439 For a fixed constant `|C| < 1`, let `f(v) = \frac{C - v}{1 + v}`, then its derivative
443 f'(v) = \frac{(-1)(1 + v) - (1)(C - v)}{(1 + v)^2} = \frac{-1 - C}{(1 + v)^2}.
445 Since `|C| < 1`, `f'(v) < 0` for all `v \neq -1`, so:
448 \sup_{v \in I} f(v) &= f \left( \inf\{ v: v \in I \} \right)
449 = f \left( k 2^{-N_i - M_i} \right) \\
450 \inf_{v \in I} f(v) &= f \left( \sup\{ v: v \in I \} \right)
451 = f \left( (k + 1) 2^{-N_i - M_i} \right)
453 Hence we have the following bound on `s_{i, k}`:
456 \frac{-2^{-N_{i + 1}} - k 2^{-N_i - M_i}}{1 + k 2^{-N_i - M_i}} < s_{i, k}
457 \leq \frac{2^{-N_{i + 1}} - (k + 1) 2^{-N_i - M_i}}{1 + (k + 1) 2^{-N_i - M_i}}
459 This interval is of length:
462 l &= \frac{2^{-N_{i + 1}} - (k + 1) 2^{-N_i - M_i}}{1 + (k + 1) 2^{-N_i - M_i}} -
463 \frac{-2^{-N_{i + 1}} - k 2^{-N_i - M_i}}{1 + k 2^{-N_i - M_i}} \\
464 &= \frac{2^{-N_{i + 1} + 1} - 2^{-N_i - M_i} + (2k + 1) 2^{-N_{i + 1} - N_i - M_i}}
465 {(1 + k 2^{-N_i - M_i})(1 + (k + 1) 2^{-N_i -M_i})}
467 So in order to be able to find `s_{i, k}`, we need that:
470 2^{-N_{i + 1} + 1} - 2^{-N_i - M_i} + (2k + 1) 2^{-N_{i + 1} - N_i - M_i} > 0
472 This give us the following bound on `N_{i + 1}`:
475 N_{i + 1} \leq N_i + M_i + 1.
477 To make the range reduction effective, we will want to maximize `N_{i + 1}`, so
478 let consider the two cases: `N_{i + 1} = N_i + M_i + 1` and
479 `N_{i + 1} = N_i + M_i`.
483 The optimal choice to balance between maximizing `N_{i + 1}` and minimizing the
484 precision needed for `s_{i, k}` is:
487 N_{i + 1} = N_i + M_i,
489 and in this case, the optimal `\operatorname{ulp}(s_{i, k})` is:
492 \operatorname{ulp}(s_{i, k}) = 2^{-N_i - M_i}
494 and the corresponding `\operatorname{ulp}(u_{i + 1})` is:
497 \operatorname{ulp}(u_{i + 1}) &= \operatorname{ulp}(u_i) \operatorname{ulp}(s_{i, k}) \\
498 &= \operatorname{ulp}(u_i) \cdot 2^{-N_i - M_i} \\
499 &= \operatorname{ulp}(u_0) \cdot 2^{-N_0 - M_0} \cdot 2^{-N_0 - M_0 - M_1} \cdots 2^{-N_0 - M_0 - M_1 - \cdots - M_i} \\
500 &= 2^{-N_0 - 53} \cdot 2^{-N_0 - M_0} \cdot 2^{-N_0 - M_0 - M_1} \cdots 2^{-N_0 - M_0 - M_1 - \cdots - M_i}
502 Since `|u_{i + 1}| < 2^{-N_{i + 1}} = 2^{-N_0 - M_1 - ... -M_i}`, the precision
506 \operatorname{prec}(u_{i + 1}) &= (N_0 + 53) + (N_0 + M_0) + \cdots +
507 (N_0 + M_0 + \cdots + M_i) - (N_0 + M_0 + \cdots + M_i) \\
508 &= (i + 1) N_0 + i M_0 + (i - 1) M_1 + \cdots + M_{i - 1} + 53
510 If we choose to have the same `M_0 = M_1 = \cdots = M_i = M`, this can be
514 \operatorname{prec}(u_{i + 1}) = (i + 1) N_0 + \frac{i(i + 1)}{2} \cdot M + 53.
516 We summarize the precision analysis for extending the range reduction in the
519 +-------+-----+-----------+------------+--------------+-----------------+-------------------+
520 | `N_0` | `M` | No. steps | Table size | Output bound | ulp(`s_{i, k}`) | prec(`u_{i + 1}`) |
521 +-------+-----+-----------+------------+--------------+-----------------+-------------------+
522 | 7 | 4 | 1 | 32 | `2^{-11}` | `2^{-12}` | 60 |
523 | | +-----------+------------+--------------+-----------------+-------------------+
524 | | | 2 | 64 | `2^{-15}` | `2^{-16}` | 71 |
525 | | +-----------+------------+--------------+-----------------+-------------------+
526 | | | 3 | 96 | `2^{-19}` | `2^{-20}` | 86 |
527 | | +-----------+------------+--------------+-----------------+-------------------+
528 | | | 4 | 128 | `2^{-23}` | `2^{-24}` | 105 |
529 | | +-----------+------------+--------------+-----------------+-------------------+
530 | | | 5 | 160 | `2^{-27}` | `2^{-28}` | 128 |
531 | | +-----------+------------+--------------+-----------------+-------------------+
532 | | | 6 | 192 | `2^{-31}` | `2^{-32}` | 155 |
533 | +-----+-----------+------------+--------------+-----------------+-------------------+
534 | | 5 | 3 | 192 | `2^{-22}` | `2^{-23}` | 89 |
535 | | +-----------+------------+--------------+-----------------+-------------------+
536 | | | 4 | 256 | `2^{-27}` | `2^{-28}` | 111 |
537 | | +-----------+------------+--------------+-----------------+-------------------+
538 | | | 5 | 320 | `2^{-32}` | `2^{-33}` | 138 |
539 | | +-----------+------------+--------------+-----------------+-------------------+
540 | | | 6 | 384 | `2^{-37}` | `2^{-38}` | 170 |
541 | +-----+-----------+------------+--------------+-----------------+-------------------+
542 | | 6 | 3 | 384 | `2^{-25}` | `2^{-26}` | 92 |
543 | | +-----------+------------+--------------+-----------------+-------------------+
544 | | | 4 | 512 | `2^{-31}` | `2^{-32}` | 117 |
545 | +-----+-----------+------------+--------------+-----------------+-------------------+
546 | | 7 | 1 | 256 | `2^{-24}` | `2^{-15}` | 60 |
547 | | +-----------+------------+--------------+-----------------+-------------------+
548 | | | 2 | 512 | `2^{-21}` | `2^{-22}` | 74 |
549 +-------+-----+-----------+------------+--------------+-----------------+-------------------+
553 - Number of steps = `i + 1`
554 - Table size = `(i + 1) 2^{M + 1}`
555 - Output bound = `2^{-N_{i + 1}} = 2^{-N_0 - (i + 1) M}`
556 - `\operatorname{ulp}(s_{i, k}) = 2^{-N_{i + 1} - 1}`
557 - `\operatorname{prec}(u_{i + 1}) = (i + 1) N_0 + \frac{i(i + 1)}{2} \cdot M + 53`