1 //===- bolt/Rewrite/RewriteInstance.cpp - ELF rewriter --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "bolt/Rewrite/RewriteInstance.h"
10 #include "bolt/Core/AddressMap.h"
11 #include "bolt/Core/BinaryContext.h"
12 #include "bolt/Core/BinaryEmitter.h"
13 #include "bolt/Core/BinaryFunction.h"
14 #include "bolt/Core/DebugData.h"
15 #include "bolt/Core/Exceptions.h"
16 #include "bolt/Core/FunctionLayout.h"
17 #include "bolt/Core/MCPlusBuilder.h"
18 #include "bolt/Core/ParallelUtilities.h"
19 #include "bolt/Core/Relocation.h"
20 #include "bolt/Passes/CacheMetrics.h"
21 #include "bolt/Passes/ReorderFunctions.h"
22 #include "bolt/Profile/BoltAddressTranslation.h"
23 #include "bolt/Profile/DataAggregator.h"
24 #include "bolt/Profile/DataReader.h"
25 #include "bolt/Profile/YAMLProfileReader.h"
26 #include "bolt/Profile/YAMLProfileWriter.h"
27 #include "bolt/Rewrite/BinaryPassManager.h"
28 #include "bolt/Rewrite/DWARFRewriter.h"
29 #include "bolt/Rewrite/ExecutableFileMemoryManager.h"
30 #include "bolt/Rewrite/JITLinkLinker.h"
31 #include "bolt/Rewrite/MetadataRewriters.h"
32 #include "bolt/RuntimeLibs/HugifyRuntimeLibrary.h"
33 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h"
34 #include "bolt/Utils/CommandLineOpts.h"
35 #include "bolt/Utils/Utils.h"
36 #include "llvm/ADT/AddressRanges.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
39 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
40 #include "llvm/MC/MCAsmBackend.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/MCAsmLayout.h"
43 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
44 #include "llvm/MC/MCObjectStreamer.h"
45 #include "llvm/MC/MCStreamer.h"
46 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/MC/TargetRegistry.h"
48 #include "llvm/Object/ObjectFile.h"
49 #include "llvm/Support/Alignment.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/DataExtractor.h"
53 #include "llvm/Support/Errc.h"
54 #include "llvm/Support/Error.h"
55 #include "llvm/Support/FileSystem.h"
56 #include "llvm/Support/ManagedStatic.h"
57 #include "llvm/Support/Regex.h"
58 #include "llvm/Support/Timer.h"
59 #include "llvm/Support/ToolOutputFile.h"
60 #include "llvm/Support/raw_ostream.h"
65 #include <system_error>
68 #define DEBUG_TYPE "bolt"
71 using namespace object
;
74 extern cl::opt
<uint32_t> X86AlignBranchBoundary
;
75 extern cl::opt
<bool> X86AlignBranchWithin32BBoundaries
;
79 extern cl::opt
<MacroFusionType
> AlignMacroOpFusion
;
80 extern cl::list
<std::string
> HotTextMoveSections
;
81 extern cl::opt
<bool> Hugify
;
82 extern cl::opt
<bool> Instrument
;
83 extern cl::opt
<JumpTableSupportLevel
> JumpTables
;
84 extern cl::list
<std::string
> ReorderData
;
85 extern cl::opt
<bolt::ReorderFunctions::ReorderType
> ReorderFunctions
;
86 extern cl::opt
<bool> TimeBuild
;
88 cl::opt
<bool> AllowStripped("allow-stripped",
89 cl::desc("allow processing of stripped binaries"),
90 cl::Hidden
, cl::cat(BoltCategory
));
92 static cl::opt
<bool> ForceToDataRelocations(
93 "force-data-relocations",
94 cl::desc("force relocations to data sections to always be processed"),
96 cl::Hidden
, cl::cat(BoltCategory
));
100 cl::desc("add any string to tag this execution in the "
101 "output binary via bolt info section"),
102 cl::cat(BoltCategory
));
104 cl::opt
<bool> DumpDotAll(
106 cl::desc("dump function CFGs to graphviz format after each stage;"
107 "enable '-print-loops' for color-coded blocks"),
108 cl::Hidden
, cl::cat(BoltCategory
));
110 static cl::list
<std::string
>
111 ForceFunctionNames("funcs",
113 cl::desc("limit optimizations to functions from the list"),
114 cl::value_desc("func1,func2,func3,..."),
116 cl::cat(BoltCategory
));
118 static cl::opt
<std::string
>
119 FunctionNamesFile("funcs-file",
120 cl::desc("file with list of functions to optimize"),
122 cl::cat(BoltCategory
));
124 static cl::list
<std::string
> ForceFunctionNamesNR(
125 "funcs-no-regex", cl::CommaSeparated
,
126 cl::desc("limit optimizations to functions from the list (non-regex)"),
127 cl::value_desc("func1,func2,func3,..."), cl::Hidden
, cl::cat(BoltCategory
));
129 static cl::opt
<std::string
> FunctionNamesFileNR(
130 "funcs-file-no-regex",
131 cl::desc("file with list of functions to optimize (non-regex)"), cl::Hidden
,
132 cl::cat(BoltCategory
));
136 cl::desc("preserve intermediate .o file"),
138 cl::cat(BoltCategory
));
140 cl::opt
<bool> Lite("lite", cl::desc("skip processing of cold functions"),
141 cl::cat(BoltCategory
));
143 static cl::opt
<unsigned>
144 LiteThresholdPct("lite-threshold-pct",
145 cl::desc("threshold (in percent) for selecting functions to process in lite "
146 "mode. Higher threshold means fewer functions to process. E.g "
147 "threshold of 90 means only top 10 percent of functions with "
148 "profile will be processed."),
152 cl::cat(BoltOptCategory
));
154 static cl::opt
<unsigned> LiteThresholdCount(
155 "lite-threshold-count",
156 cl::desc("similar to '-lite-threshold-pct' but specify threshold using "
157 "absolute function call count. I.e. limit processing to functions "
158 "executed at least the specified number of times."),
159 cl::init(0), cl::Hidden
, cl::cat(BoltOptCategory
));
161 static cl::opt
<unsigned>
162 MaxFunctions("max-funcs",
163 cl::desc("maximum number of functions to process"), cl::Hidden
,
164 cl::cat(BoltCategory
));
166 static cl::opt
<unsigned> MaxDataRelocations(
167 "max-data-relocations",
168 cl::desc("maximum number of data relocations to process"), cl::Hidden
,
169 cl::cat(BoltCategory
));
171 cl::opt
<bool> PrintAll("print-all",
172 cl::desc("print functions after each stage"), cl::Hidden
,
173 cl::cat(BoltCategory
));
175 cl::opt
<bool> PrintProfile("print-profile",
176 cl::desc("print functions after attaching profile"),
177 cl::Hidden
, cl::cat(BoltCategory
));
179 cl::opt
<bool> PrintCFG("print-cfg",
180 cl::desc("print functions after CFG construction"),
181 cl::Hidden
, cl::cat(BoltCategory
));
183 cl::opt
<bool> PrintDisasm("print-disasm",
184 cl::desc("print function after disassembly"),
185 cl::Hidden
, cl::cat(BoltCategory
));
188 PrintGlobals("print-globals",
189 cl::desc("print global symbols after disassembly"), cl::Hidden
,
190 cl::cat(BoltCategory
));
192 extern cl::opt
<bool> PrintSections
;
194 static cl::opt
<bool> PrintLoopInfo("print-loops",
195 cl::desc("print loop related information"),
196 cl::Hidden
, cl::cat(BoltCategory
));
198 static cl::opt
<cl::boolOrDefault
> RelocationMode(
199 "relocs", cl::desc("use relocations in the binary (default=autodetect)"),
200 cl::cat(BoltCategory
));
202 static cl::opt
<std::string
>
204 cl::desc("save recorded profile to a file"),
205 cl::cat(BoltOutputCategory
));
207 static cl::list
<std::string
>
208 SkipFunctionNames("skip-funcs",
210 cl::desc("list of functions to skip"),
211 cl::value_desc("func1,func2,func3,..."),
213 cl::cat(BoltCategory
));
215 static cl::opt
<std::string
>
216 SkipFunctionNamesFile("skip-funcs-file",
217 cl::desc("file with list of functions to skip"),
219 cl::cat(BoltCategory
));
222 TrapOldCode("trap-old-code",
223 cl::desc("insert traps in old function bodies (relocation mode)"),
225 cl::cat(BoltCategory
));
227 static cl::opt
<std::string
> DWPPathName("dwp",
228 cl::desc("Path and name to DWP file."),
229 cl::Hidden
, cl::init(""),
230 cl::cat(BoltCategory
));
233 UseGnuStack("use-gnu-stack",
234 cl::desc("use GNU_STACK program header for new segment (workaround for "
235 "issues with strip/objcopy)"),
237 cl::cat(BoltCategory
));
240 TimeRewrite("time-rewrite",
241 cl::desc("print time spent in rewriting passes"), cl::Hidden
,
242 cl::cat(BoltCategory
));
245 SequentialDisassembly("sequential-disassembly",
246 cl::desc("performs disassembly sequentially"),
248 cl::cat(BoltOptCategory
));
250 static cl::opt
<bool> WriteBoltInfoSection(
251 "bolt-info", cl::desc("write bolt info section in the output binary"),
252 cl::init(true), cl::Hidden
, cl::cat(BoltOutputCategory
));
256 // FIXME: implement a better way to mark sections for replacement.
257 constexpr const char *RewriteInstance::SectionsToOverwrite
[];
258 std::vector
<std::string
> RewriteInstance::DebugSectionsToOverwrite
= {
259 ".debug_abbrev", ".debug_aranges", ".debug_line", ".debug_line_str",
260 ".debug_loc", ".debug_loclists", ".debug_ranges", ".debug_rnglists",
261 ".gdb_index", ".debug_addr", ".debug_abbrev", ".debug_info",
262 ".debug_types", ".pseudo_probe"};
264 const char RewriteInstance::TimerGroupName
[] = "rewrite";
265 const char RewriteInstance::TimerGroupDesc
[] = "Rewrite passes";
270 extern const char *BoltRevision
;
272 MCPlusBuilder
*createMCPlusBuilder(const Triple::ArchType Arch
,
273 const MCInstrAnalysis
*Analysis
,
274 const MCInstrInfo
*Info
,
275 const MCRegisterInfo
*RegInfo
,
276 const MCSubtargetInfo
*STI
) {
278 if (Arch
== Triple::x86_64
)
279 return createX86MCPlusBuilder(Analysis
, Info
, RegInfo
, STI
);
282 #ifdef AARCH64_AVAILABLE
283 if (Arch
== Triple::aarch64
)
284 return createAArch64MCPlusBuilder(Analysis
, Info
, RegInfo
, STI
);
287 #ifdef RISCV_AVAILABLE
288 if (Arch
== Triple::riscv64
)
289 return createRISCVMCPlusBuilder(Analysis
, Info
, RegInfo
, STI
);
292 llvm_unreachable("architecture unsupported by MCPlusBuilder");
298 using ELF64LEPhdrTy
= ELF64LEFile::Elf_Phdr
;
302 bool refersToReorderedSection(ErrorOr
<BinarySection
&> Section
) {
303 return llvm::any_of(opts::ReorderData
, [&](const std::string
&SectionName
) {
304 return Section
&& Section
->getName() == SectionName
;
308 } // anonymous namespace
310 Expected
<std::unique_ptr
<RewriteInstance
>>
311 RewriteInstance::create(ELFObjectFileBase
*File
, const int Argc
,
312 const char *const *Argv
, StringRef ToolPath
) {
313 Error Err
= Error::success();
314 auto RI
= std::make_unique
<RewriteInstance
>(File
, Argc
, Argv
, ToolPath
, Err
);
316 return std::move(Err
);
317 return std::move(RI
);
320 RewriteInstance::RewriteInstance(ELFObjectFileBase
*File
, const int Argc
,
321 const char *const *Argv
, StringRef ToolPath
,
323 : InputFile(File
), Argc(Argc
), Argv(Argv
), ToolPath(ToolPath
),
324 SHStrTab(StringTableBuilder::ELF
) {
325 ErrorAsOutParameter
EAO(&Err
);
326 auto ELF64LEFile
= dyn_cast
<ELF64LEObjectFile
>(InputFile
);
328 Err
= createStringError(errc::not_supported
,
329 "Only 64-bit LE ELF binaries are supported");
334 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
335 if (Obj
.getHeader().e_type
!= ELF::ET_EXEC
) {
336 outs() << "BOLT-INFO: shared object or position-independent executable "
341 auto BCOrErr
= BinaryContext::createBinaryContext(
343 DWARFContext::create(*File
, DWARFContext::ProcessDebugRelocations::Ignore
,
344 nullptr, opts::DWPPathName
,
345 WithColor::defaultErrorHandler
,
346 WithColor::defaultWarningHandler
));
347 if (Error E
= BCOrErr
.takeError()) {
351 BC
= std::move(BCOrErr
.get());
352 BC
->initializeTarget(std::unique_ptr
<MCPlusBuilder
>(
353 createMCPlusBuilder(BC
->TheTriple
->getArch(), BC
->MIA
.get(),
354 BC
->MII
.get(), BC
->MRI
.get(), BC
->STI
.get())));
356 BAT
= std::make_unique
<BoltAddressTranslation
>();
358 if (opts::UpdateDebugSections
)
359 DebugInfoRewriter
= std::make_unique
<DWARFRewriter
>(*BC
);
361 if (opts::Instrument
)
362 BC
->setRuntimeLibrary(std::make_unique
<InstrumentationRuntimeLibrary
>());
363 else if (opts::Hugify
)
364 BC
->setRuntimeLibrary(std::make_unique
<HugifyRuntimeLibrary
>());
367 RewriteInstance::~RewriteInstance() {}
369 Error
RewriteInstance::setProfile(StringRef Filename
) {
370 if (!sys::fs::exists(Filename
))
371 return errorCodeToError(make_error_code(errc::no_such_file_or_directory
));
375 return make_error
<StringError
>(Twine("multiple profiles specified: ") +
376 ProfileReader
->getFilename() + " and " +
378 inconvertibleErrorCode());
381 // Spawn a profile reader based on file contents.
382 if (DataAggregator::checkPerfDataMagic(Filename
))
383 ProfileReader
= std::make_unique
<DataAggregator
>(Filename
);
384 else if (YAMLProfileReader::isYAML(Filename
))
385 ProfileReader
= std::make_unique
<YAMLProfileReader
>(Filename
);
387 ProfileReader
= std::make_unique
<DataReader
>(Filename
);
389 return Error::success();
392 /// Return true if the function \p BF should be disassembled.
393 static bool shouldDisassemble(const BinaryFunction
&BF
) {
397 if (opts::processAllFunctions())
400 return !BF
.isIgnored();
403 // Return if a section stored in the image falls into a segment address space.
404 // If not, Set \p Overlap to true if there's a partial overlap.
405 template <class ELFT
>
406 static bool checkOffsets(const typename
ELFT::Phdr
&Phdr
,
407 const typename
ELFT::Shdr
&Sec
, bool &Overlap
) {
408 // SHT_NOBITS sections don't need to have an offset inside the segment.
409 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
412 // Only non-empty sections can be at the end of a segment.
413 uint64_t SectionSize
= Sec
.sh_size
? Sec
.sh_size
: 1ull;
414 AddressRange
SectionAddressRange((uint64_t)Sec
.sh_offset
,
415 Sec
.sh_offset
+ SectionSize
);
416 AddressRange
SegmentAddressRange(Phdr
.p_offset
,
417 Phdr
.p_offset
+ Phdr
.p_filesz
);
418 if (SegmentAddressRange
.contains(SectionAddressRange
))
421 Overlap
= SegmentAddressRange
.intersects(SectionAddressRange
);
425 // Check that an allocatable section belongs to a virtual address
426 // space of a segment.
427 template <class ELFT
>
428 static bool checkVMA(const typename
ELFT::Phdr
&Phdr
,
429 const typename
ELFT::Shdr
&Sec
, bool &Overlap
) {
430 // Only non-empty sections can be at the end of a segment.
431 uint64_t SectionSize
= Sec
.sh_size
? Sec
.sh_size
: 1ull;
432 AddressRange
SectionAddressRange((uint64_t)Sec
.sh_addr
,
433 Sec
.sh_addr
+ SectionSize
);
434 AddressRange
SegmentAddressRange(Phdr
.p_vaddr
, Phdr
.p_vaddr
+ Phdr
.p_memsz
);
436 if (SegmentAddressRange
.contains(SectionAddressRange
))
438 Overlap
= SegmentAddressRange
.intersects(SectionAddressRange
);
442 void RewriteInstance::markGnuRelroSections() {
443 using ELFT
= ELF64LE
;
444 using ELFShdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Shdr
;
445 auto ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
446 const ELFFile
<ELFT
> &Obj
= ELF64LEFile
->getELFFile();
448 auto handleSection
= [&](const ELFT::Phdr
&Phdr
, SectionRef SecRef
) {
449 BinarySection
*BinarySection
= BC
->getSectionForSectionRef(SecRef
);
450 // If the section is non-allocatable, ignore it for GNU_RELRO purposes:
451 // it can't be made read-only after runtime relocations processing.
452 if (!BinarySection
|| !BinarySection
->isAllocatable())
454 const ELFShdrTy
*Sec
= cantFail(Obj
.getSection(SecRef
.getIndex()));
455 bool ImageOverlap
{false}, VMAOverlap
{false};
456 bool ImageContains
= checkOffsets
<ELFT
>(Phdr
, *Sec
, ImageOverlap
);
457 bool VMAContains
= checkVMA
<ELFT
>(Phdr
, *Sec
, VMAOverlap
);
459 if (opts::Verbosity
>= 1)
460 errs() << "BOLT-WARNING: GNU_RELRO segment has partial file offset "
461 << "overlap with section " << BinarySection
->getName() << '\n';
465 if (opts::Verbosity
>= 1)
466 errs() << "BOLT-WARNING: GNU_RELRO segment has partial VMA overlap "
467 << "with section " << BinarySection
->getName() << '\n';
470 if (!ImageContains
|| !VMAContains
)
472 BinarySection
->setRelro();
473 if (opts::Verbosity
>= 1)
474 outs() << "BOLT-INFO: marking " << BinarySection
->getName()
475 << " as GNU_RELRO\n";
478 for (const ELFT::Phdr
&Phdr
: cantFail(Obj
.program_headers()))
479 if (Phdr
.p_type
== ELF::PT_GNU_RELRO
)
480 for (SectionRef SecRef
: InputFile
->sections())
481 handleSection(Phdr
, SecRef
);
484 Error
RewriteInstance::discoverStorage() {
485 NamedRegionTimer
T("discoverStorage", "discover storage", TimerGroupName
,
486 TimerGroupDesc
, opts::TimeRewrite
);
488 auto ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
489 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
491 BC
->StartFunctionAddress
= Obj
.getHeader().e_entry
;
493 NextAvailableAddress
= 0;
494 uint64_t NextAvailableOffset
= 0;
495 Expected
<ELF64LE::PhdrRange
> PHsOrErr
= Obj
.program_headers();
496 if (Error E
= PHsOrErr
.takeError())
499 ELF64LE::PhdrRange PHs
= PHsOrErr
.get();
500 for (const ELF64LE::Phdr
&Phdr
: PHs
) {
501 switch (Phdr
.p_type
) {
503 BC
->FirstAllocAddress
= std::min(BC
->FirstAllocAddress
,
504 static_cast<uint64_t>(Phdr
.p_vaddr
));
505 NextAvailableAddress
= std::max(NextAvailableAddress
,
506 Phdr
.p_vaddr
+ Phdr
.p_memsz
);
507 NextAvailableOffset
= std::max(NextAvailableOffset
,
508 Phdr
.p_offset
+ Phdr
.p_filesz
);
510 BC
->SegmentMapInfo
[Phdr
.p_vaddr
] = SegmentInfo
{Phdr
.p_vaddr
,
517 BC
->HasInterpHeader
= true;
522 for (const SectionRef
&Section
: InputFile
->sections()) {
523 Expected
<StringRef
> SectionNameOrErr
= Section
.getName();
524 if (Error E
= SectionNameOrErr
.takeError())
526 StringRef SectionName
= SectionNameOrErr
.get();
527 if (SectionName
== ".text") {
528 BC
->OldTextSectionAddress
= Section
.getAddress();
529 BC
->OldTextSectionSize
= Section
.getSize();
531 Expected
<StringRef
> SectionContentsOrErr
= Section
.getContents();
532 if (Error E
= SectionContentsOrErr
.takeError())
534 StringRef SectionContents
= SectionContentsOrErr
.get();
535 BC
->OldTextSectionOffset
=
536 SectionContents
.data() - InputFile
->getData().data();
539 if (!opts::HeatmapMode
&&
540 !(opts::AggregateOnly
&& BAT
->enabledFor(InputFile
)) &&
541 (SectionName
.starts_with(getOrgSecPrefix()) ||
542 SectionName
== getBOLTTextSectionName()))
543 return createStringError(
544 errc::function_not_supported
,
545 "BOLT-ERROR: input file was processed by BOLT. Cannot re-optimize");
548 if (!NextAvailableAddress
|| !NextAvailableOffset
)
549 return createStringError(errc::executable_format_error
,
550 "no PT_LOAD pheader seen");
552 outs() << "BOLT-INFO: first alloc address is 0x"
553 << Twine::utohexstr(BC
->FirstAllocAddress
) << '\n';
555 FirstNonAllocatableOffset
= NextAvailableOffset
;
557 NextAvailableAddress
= alignTo(NextAvailableAddress
, BC
->PageAlign
);
558 NextAvailableOffset
= alignTo(NextAvailableOffset
, BC
->PageAlign
);
560 // Hugify: Additional huge page from left side due to
561 // weird ASLR mapping addresses (4KB aligned)
562 if (opts::Hugify
&& !BC
->HasFixedLoadAddress
)
563 NextAvailableAddress
+= BC
->PageAlign
;
565 if (!opts::UseGnuStack
) {
566 // This is where the black magic happens. Creating PHDR table in a segment
567 // other than that containing ELF header is tricky. Some loaders and/or
568 // parts of loaders will apply e_phoff from ELF header assuming both are in
569 // the same segment, while others will do the proper calculation.
570 // We create the new PHDR table in such a way that both of the methods
571 // of loading and locating the table work. There's a slight file size
572 // overhead because of that.
574 // NB: bfd's strip command cannot do the above and will corrupt the
575 // binary during the process of stripping non-allocatable sections.
576 if (NextAvailableOffset
<= NextAvailableAddress
- BC
->FirstAllocAddress
)
577 NextAvailableOffset
= NextAvailableAddress
- BC
->FirstAllocAddress
;
579 NextAvailableAddress
= NextAvailableOffset
+ BC
->FirstAllocAddress
;
581 assert(NextAvailableOffset
==
582 NextAvailableAddress
- BC
->FirstAllocAddress
&&
583 "PHDR table address calculation error");
585 outs() << "BOLT-INFO: creating new program header table at address 0x"
586 << Twine::utohexstr(NextAvailableAddress
) << ", offset 0x"
587 << Twine::utohexstr(NextAvailableOffset
) << '\n';
589 PHDRTableAddress
= NextAvailableAddress
;
590 PHDRTableOffset
= NextAvailableOffset
;
592 // Reserve space for 3 extra pheaders.
593 unsigned Phnum
= Obj
.getHeader().e_phnum
;
596 NextAvailableAddress
+= Phnum
* sizeof(ELF64LEPhdrTy
);
597 NextAvailableOffset
+= Phnum
* sizeof(ELF64LEPhdrTy
);
600 // Align at cache line.
601 NextAvailableAddress
= alignTo(NextAvailableAddress
, 64);
602 NextAvailableOffset
= alignTo(NextAvailableOffset
, 64);
604 NewTextSegmentAddress
= NextAvailableAddress
;
605 NewTextSegmentOffset
= NextAvailableOffset
;
606 BC
->LayoutStartAddress
= NextAvailableAddress
;
608 // Tools such as objcopy can strip section contents but leave header
609 // entries. Check that at least .text is mapped in the file.
610 if (!getFileOffsetForAddress(BC
->OldTextSectionAddress
))
611 return createStringError(errc::executable_format_error
,
612 "BOLT-ERROR: input binary is not a valid ELF "
613 "executable as its text section is not "
614 "mapped to a valid segment");
615 return Error::success();
618 void RewriteInstance::parseBuildID() {
622 StringRef Buf
= BuildIDSection
->getContents();
624 // Reading notes section (see Portable Formats Specification, Version 1.1,
625 // pg 2-5, section "Note Section").
628 /*IsLittleEndian=*/true, InputFile
->getBytesInAddress());
630 if (!DE
.isValidOffset(Offset
))
632 uint32_t NameSz
= DE
.getU32(&Offset
);
633 if (!DE
.isValidOffset(Offset
))
635 uint32_t DescSz
= DE
.getU32(&Offset
);
636 if (!DE
.isValidOffset(Offset
))
638 uint32_t Type
= DE
.getU32(&Offset
);
640 LLVM_DEBUG(dbgs() << "NameSz = " << NameSz
<< "; DescSz = " << DescSz
641 << "; Type = " << Type
<< "\n");
643 // Type 3 is a GNU build-id note section
647 StringRef Name
= Buf
.slice(Offset
, Offset
+ NameSz
);
648 Offset
= alignTo(Offset
+ NameSz
, 4);
649 if (Name
.substr(0, 3) != "GNU")
652 BuildID
= Buf
.slice(Offset
, Offset
+ DescSz
);
655 std::optional
<std::string
> RewriteInstance::getPrintableBuildID() const {
660 raw_string_ostream
OS(Str
);
661 const unsigned char *CharIter
= BuildID
.bytes_begin();
662 while (CharIter
!= BuildID
.bytes_end()) {
663 if (*CharIter
< 0x10)
665 OS
<< Twine::utohexstr(*CharIter
);
671 void RewriteInstance::patchBuildID() {
672 raw_fd_ostream
&OS
= Out
->os();
677 size_t IDOffset
= BuildIDSection
->getContents().rfind(BuildID
);
678 assert(IDOffset
!= StringRef::npos
&& "failed to patch build-id");
680 uint64_t FileOffset
= getFileOffsetForAddress(BuildIDSection
->getAddress());
682 errs() << "BOLT-WARNING: Non-allocatable build-id will not be updated.\n";
686 char LastIDByte
= BuildID
[BuildID
.size() - 1];
688 OS
.pwrite(&LastIDByte
, 1, FileOffset
+ IDOffset
+ BuildID
.size() - 1);
690 outs() << "BOLT-INFO: patched build-id (flipped last bit)\n";
693 Error
RewriteInstance::run() {
694 assert(BC
&& "failed to create a binary context");
696 outs() << "BOLT-INFO: Target architecture: "
697 << Triple::getArchTypeName(
698 (llvm::Triple::ArchType
)InputFile
->getArch())
700 outs() << "BOLT-INFO: BOLT version: " << BoltRevision
<< "\n";
702 if (Error E
= discoverStorage())
704 if (Error E
= readSpecialSections())
706 adjustCommandLineOptions();
707 discoverFileObjects();
709 if (opts::Instrument
&& !BC
->IsStaticExecutable
)
710 if (Error E
= discoverRtFiniAddress())
713 preprocessProfileData();
715 // Skip disassembling if we have a translation table and we are running an
717 if (opts::AggregateOnly
&& BAT
->enabledFor(InputFile
)) {
718 processProfileData();
719 return Error::success();
722 selectFunctionsToProcess();
726 disassembleFunctions();
728 processMetadataPreCFG();
732 processProfileData();
734 postProcessFunctions();
736 processMetadataPostCFG();
739 return Error::success();
741 preregisterSections();
743 runOptimizationPasses();
749 if (opts::Instrument
&& !BC
->IsStaticExecutable
)
752 if (opts::LinuxKernelMode
) {
753 errs() << "BOLT-WARNING: not writing the output file for Linux Kernel\n";
754 return Error::success();
755 } else if (opts::OutputFilename
== "/dev/null") {
756 outs() << "BOLT-INFO: skipping writing final binary to disk\n";
757 return Error::success();
760 // Rewrite allocatable contents and copy non-allocatable parts with mods.
762 return Error::success();
765 void RewriteInstance::discoverFileObjects() {
766 NamedRegionTimer
T("discoverFileObjects", "discover file objects",
767 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
769 // For local symbols we want to keep track of associated FILE symbol name for
770 // disambiguation by combined name.
771 StringRef FileSymbolName
;
772 bool SeenFileName
= false;
773 struct SymbolRefHash
{
774 size_t operator()(SymbolRef
const &S
) const {
775 return std::hash
<decltype(DataRefImpl::p
)>{}(S
.getRawDataRefImpl().p
);
778 std::unordered_map
<SymbolRef
, StringRef
, SymbolRefHash
> SymbolToFileName
;
779 for (const ELFSymbolRef
&Symbol
: InputFile
->symbols()) {
780 Expected
<StringRef
> NameOrError
= Symbol
.getName();
781 if (NameOrError
&& NameOrError
->starts_with("__asan_init")) {
782 errs() << "BOLT-ERROR: input file was compiled or linked with sanitizer "
783 "support. Cannot optimize.\n";
786 if (NameOrError
&& NameOrError
->starts_with("__llvm_coverage_mapping")) {
787 errs() << "BOLT-ERROR: input file was compiled or linked with coverage "
788 "support. Cannot optimize.\n";
792 if (cantFail(Symbol
.getFlags()) & SymbolRef::SF_Undefined
)
795 if (cantFail(Symbol
.getType()) == SymbolRef::ST_File
) {
797 cantFail(std::move(NameOrError
), "cannot get symbol name for file");
798 // Ignore Clang LTO artificial FILE symbol as it is not always generated,
799 // and this uncertainty is causing havoc in function name matching.
800 if (Name
== "ld-temp.o")
802 FileSymbolName
= Name
;
806 if (!FileSymbolName
.empty() &&
807 !(cantFail(Symbol
.getFlags()) & SymbolRef::SF_Global
))
808 SymbolToFileName
[Symbol
] = FileSymbolName
;
811 // Sort symbols in the file by value. Ignore symbols from non-allocatable
812 // sections. We memoize getAddress(), as it has rather high overhead.
817 std::vector
<SymbolInfo
> SortedSymbols
;
818 auto isSymbolInMemory
= [this](const SymbolRef
&Sym
) {
819 if (cantFail(Sym
.getType()) == SymbolRef::ST_File
)
821 if (cantFail(Sym
.getFlags()) & SymbolRef::SF_Absolute
)
823 if (cantFail(Sym
.getFlags()) & SymbolRef::SF_Undefined
)
825 BinarySection
Section(*BC
, *cantFail(Sym
.getSection()));
826 return Section
.isAllocatable();
828 for (const SymbolRef
&Symbol
: InputFile
->symbols())
829 if (isSymbolInMemory(Symbol
))
830 SortedSymbols
.push_back({cantFail(Symbol
.getAddress()), Symbol
});
832 auto CompareSymbols
= [this](const SymbolInfo
&A
, const SymbolInfo
&B
) {
833 if (A
.Address
!= B
.Address
)
834 return A
.Address
< B
.Address
;
836 const bool AMarker
= BC
->isMarker(A
.Symbol
);
837 const bool BMarker
= BC
->isMarker(B
.Symbol
);
838 if (AMarker
|| BMarker
) {
839 return AMarker
&& !BMarker
;
842 const auto AType
= cantFail(A
.Symbol
.getType());
843 const auto BType
= cantFail(B
.Symbol
.getType());
844 if (AType
== SymbolRef::ST_Function
&& BType
!= SymbolRef::ST_Function
)
846 if (BType
== SymbolRef::ST_Debug
&& AType
!= SymbolRef::ST_Debug
)
851 llvm::stable_sort(SortedSymbols
, CompareSymbols
);
853 auto LastSymbol
= SortedSymbols
.end();
854 if (!SortedSymbols
.empty())
857 // For aarch64, the ABI defines mapping symbols so we identify data in the
858 // code section (see IHI0056B). $d identifies data contents.
859 // Compilers usually merge multiple data objects in a single $d-$x interval,
860 // but we need every data object to be marked with $d. Because of that we
861 // create a vector of MarkerSyms with all locations of data objects.
868 std::vector
<MarkerSym
> SortedMarkerSymbols
;
869 auto addExtraDataMarkerPerSymbol
= [&]() {
871 uint64_t LastAddr
= 0;
872 for (const auto &SymInfo
: SortedSymbols
) {
873 if (LastAddr
== SymInfo
.Address
) // don't repeat markers
876 MarkerSymType MarkerType
= BC
->getMarkerType(SymInfo
.Symbol
);
877 if (MarkerType
!= MarkerSymType::NONE
) {
878 SortedMarkerSymbols
.push_back(MarkerSym
{SymInfo
.Address
, MarkerType
});
879 LastAddr
= SymInfo
.Address
;
880 IsData
= MarkerType
== MarkerSymType::DATA
;
885 SortedMarkerSymbols
.push_back({SymInfo
.Address
, MarkerSymType::DATA
});
886 LastAddr
= SymInfo
.Address
;
891 if (BC
->isAArch64() || BC
->isRISCV()) {
892 addExtraDataMarkerPerSymbol();
893 LastSymbol
= std::stable_partition(
894 SortedSymbols
.begin(), SortedSymbols
.end(),
895 [this](const SymbolInfo
&S
) { return !BC
->isMarker(S
.Symbol
); });
896 if (!SortedSymbols
.empty())
900 BinaryFunction
*PreviousFunction
= nullptr;
901 unsigned AnonymousId
= 0;
903 // Regex object for matching cold fragments.
904 const Regex
ColdFragment(".*\\.cold(\\.[0-9]+)?");
906 const auto SortedSymbolsEnd
=
907 LastSymbol
== SortedSymbols
.end() ? LastSymbol
: std::next(LastSymbol
);
908 for (auto Iter
= SortedSymbols
.begin(); Iter
!= SortedSymbolsEnd
; ++Iter
) {
909 const SymbolRef
&Symbol
= Iter
->Symbol
;
910 const uint64_t SymbolAddress
= Iter
->Address
;
911 const auto SymbolFlags
= cantFail(Symbol
.getFlags());
912 const SymbolRef::Type SymbolType
= cantFail(Symbol
.getType());
914 if (SymbolType
== SymbolRef::ST_File
)
917 StringRef SymName
= cantFail(Symbol
.getName(), "cannot get symbol name");
918 if (SymbolAddress
== 0) {
919 if (opts::Verbosity
>= 1 && SymbolType
== SymbolRef::ST_Function
)
920 errs() << "BOLT-WARNING: function with 0 address seen\n";
924 // Ignore input hot markers
925 if (SymName
== "__hot_start" || SymName
== "__hot_end")
928 FileSymRefs
[SymbolAddress
] = Symbol
;
930 // Skip section symbols that will be registered by disassemblePLT().
931 if (SymbolType
== SymbolRef::ST_Debug
) {
932 ErrorOr
<BinarySection
&> BSection
=
933 BC
->getSectionForAddress(SymbolAddress
);
934 if (BSection
&& getPLTSectionInfo(BSection
->getName()))
938 /// It is possible we are seeing a globalized local. LLVM might treat it as
939 /// a local if it has a "private global" prefix, e.g. ".L". Thus we have to
940 /// change the prefix to enforce global scope of the symbol.
942 SymName
.starts_with(BC
->AsmInfo
->getPrivateGlobalPrefix())
943 ? "PG" + std::string(SymName
)
944 : std::string(SymName
);
946 // Disambiguate all local symbols before adding to symbol table.
947 // Since we don't know if we will see a global with the same name,
948 // always modify the local name.
950 // NOTE: the naming convention for local symbols should match
951 // the one we use for profile data.
952 std::string UniqueName
;
953 std::string AlternativeName
;
955 UniqueName
= "ANONYMOUS." + std::to_string(AnonymousId
++);
956 } else if (SymbolFlags
& SymbolRef::SF_Global
) {
957 if (const BinaryData
*BD
= BC
->getBinaryDataByName(Name
)) {
958 if (BD
->getSize() == ELFSymbolRef(Symbol
).getSize() &&
959 BD
->getAddress() == SymbolAddress
) {
960 if (opts::Verbosity
> 1)
961 errs() << "BOLT-WARNING: ignoring duplicate global symbol " << Name
963 // Ignore duplicate entry - possibly a bug in the linker
966 errs() << "BOLT-ERROR: bad input binary, global symbol \"" << Name
967 << "\" is not unique\n";
972 // If we have a local file name, we should create 2 variants for the
973 // function name. The reason is that perf profile might have been
974 // collected on a binary that did not have the local file name (e.g. as
975 // a side effect of stripping debug info from the binary):
977 // primary: <function>/<id>
978 // alternative: <function>/<file>/<id2>
980 // The <id> field is used for disambiguation of local symbols since there
981 // could be identical function names coming from identical file names
982 // (e.g. from different directories).
983 std::string AltPrefix
;
984 auto SFI
= SymbolToFileName
.find(Symbol
);
985 if (SymbolType
== SymbolRef::ST_Function
&& SFI
!= SymbolToFileName
.end())
986 AltPrefix
= Name
+ "/" + std::string(SFI
->second
);
988 UniqueName
= NR
.uniquify(Name
);
989 if (!AltPrefix
.empty())
990 AlternativeName
= NR
.uniquify(AltPrefix
);
993 uint64_t SymbolSize
= ELFSymbolRef(Symbol
).getSize();
994 uint64_t SymbolAlignment
= Symbol
.getAlignment();
996 auto registerName
= [&](uint64_t FinalSize
) {
997 // Register names even if it's not a function, e.g. for an entry point.
998 BC
->registerNameAtAddress(UniqueName
, SymbolAddress
, FinalSize
,
999 SymbolAlignment
, SymbolFlags
);
1000 if (!AlternativeName
.empty())
1001 BC
->registerNameAtAddress(AlternativeName
, SymbolAddress
, FinalSize
,
1002 SymbolAlignment
, SymbolFlags
);
1005 section_iterator Section
=
1006 cantFail(Symbol
.getSection(), "cannot get symbol section");
1007 if (Section
== InputFile
->section_end()) {
1008 // Could be an absolute symbol. Used on RISC-V for __global_pointer$ so we
1009 // need to record it to handle relocations against it. For other instances
1010 // of absolute symbols, we record for pretty printing.
1011 LLVM_DEBUG(if (opts::Verbosity
> 1) {
1012 dbgs() << "BOLT-INFO: absolute sym " << UniqueName
<< "\n";
1014 registerName(SymbolSize
);
1018 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: considering symbol " << UniqueName
1019 << " for function\n");
1021 if (SymbolAddress
== Section
->getAddress() + Section
->getSize()) {
1022 assert(SymbolSize
== 0 &&
1023 "unexpect non-zero sized symbol at end of section");
1026 << "BOLT-DEBUG: rejecting as symbol points to end of its section\n");
1027 registerName(SymbolSize
);
1031 if (!Section
->isText()) {
1032 assert(SymbolType
!= SymbolRef::ST_Function
&&
1033 "unexpected function inside non-code section");
1034 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejecting as symbol is not in code\n");
1035 registerName(SymbolSize
);
1039 // Assembly functions could be ST_NONE with 0 size. Check that the
1040 // corresponding section is a code section and they are not inside any
1041 // other known function to consider them.
1043 // Sometimes assembly functions are not marked as functions and neither are
1044 // their local labels. The only way to tell them apart is to look at
1045 // symbol scope - global vs local.
1046 if (PreviousFunction
&& SymbolType
!= SymbolRef::ST_Function
) {
1047 if (PreviousFunction
->containsAddress(SymbolAddress
)) {
1048 if (PreviousFunction
->isSymbolValidInScope(Symbol
, SymbolSize
)) {
1050 << "BOLT-DEBUG: symbol is a function local symbol\n");
1051 } else if (SymbolAddress
== PreviousFunction
->getAddress() &&
1053 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring symbol as a marker\n");
1054 } else if (opts::Verbosity
> 1) {
1055 errs() << "BOLT-WARNING: symbol " << UniqueName
1056 << " seen in the middle of function " << *PreviousFunction
1057 << ". Could be a new entry.\n";
1059 registerName(SymbolSize
);
1061 } else if (PreviousFunction
->getSize() == 0 &&
1062 PreviousFunction
->isSymbolValidInScope(Symbol
, SymbolSize
)) {
1063 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: symbol is a function local symbol\n");
1064 registerName(SymbolSize
);
1069 if (PreviousFunction
&& PreviousFunction
->containsAddress(SymbolAddress
) &&
1070 PreviousFunction
->getAddress() != SymbolAddress
) {
1071 if (PreviousFunction
->isSymbolValidInScope(Symbol
, SymbolSize
)) {
1072 if (opts::Verbosity
>= 1)
1073 outs() << "BOLT-INFO: skipping possibly another entry for function "
1074 << *PreviousFunction
<< " : " << UniqueName
<< '\n';
1075 registerName(SymbolSize
);
1077 outs() << "BOLT-INFO: using " << UniqueName
<< " as another entry to "
1078 << "function " << *PreviousFunction
<< '\n';
1082 PreviousFunction
->addEntryPointAtOffset(SymbolAddress
-
1083 PreviousFunction
->getAddress());
1085 // Remove the symbol from FileSymRefs so that we can skip it from
1087 auto SI
= FileSymRefs
.find(SymbolAddress
);
1088 assert(SI
!= FileSymRefs
.end() && "symbol expected to be present");
1089 assert(SI
->second
== Symbol
&& "wrong symbol found");
1090 FileSymRefs
.erase(SI
);
1095 // Checkout for conflicts with function data from FDEs.
1096 bool IsSimple
= true;
1097 auto FDEI
= CFIRdWrt
->getFDEs().lower_bound(SymbolAddress
);
1098 if (FDEI
!= CFIRdWrt
->getFDEs().end()) {
1099 const dwarf::FDE
&FDE
= *FDEI
->second
;
1100 if (FDEI
->first
!= SymbolAddress
) {
1101 // There's no matching starting address in FDE. Make sure the previous
1102 // FDE does not contain this address.
1103 if (FDEI
!= CFIRdWrt
->getFDEs().begin()) {
1105 const dwarf::FDE
&PrevFDE
= *FDEI
->second
;
1106 uint64_t PrevStart
= PrevFDE
.getInitialLocation();
1107 uint64_t PrevLength
= PrevFDE
.getAddressRange();
1108 if (SymbolAddress
> PrevStart
&&
1109 SymbolAddress
< PrevStart
+ PrevLength
) {
1110 errs() << "BOLT-ERROR: function " << UniqueName
1111 << " is in conflict with FDE ["
1112 << Twine::utohexstr(PrevStart
) << ", "
1113 << Twine::utohexstr(PrevStart
+ PrevLength
)
1114 << "). Skipping.\n";
1118 } else if (FDE
.getAddressRange() != SymbolSize
) {
1120 // Function addresses match but sizes differ.
1121 errs() << "BOLT-WARNING: sizes differ for function " << UniqueName
1122 << ". FDE : " << FDE
.getAddressRange()
1123 << "; symbol table : " << SymbolSize
<< ". Using max size.\n";
1125 SymbolSize
= std::max(SymbolSize
, FDE
.getAddressRange());
1126 if (BC
->getBinaryDataAtAddress(SymbolAddress
)) {
1127 BC
->setBinaryDataSize(SymbolAddress
, SymbolSize
);
1129 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: No BD @ 0x"
1130 << Twine::utohexstr(SymbolAddress
) << "\n");
1135 BinaryFunction
*BF
= nullptr;
1136 // Since function may not have yet obtained its real size, do a search
1137 // using the list of registered functions instead of calling
1138 // getBinaryFunctionAtAddress().
1139 auto BFI
= BC
->getBinaryFunctions().find(SymbolAddress
);
1140 if (BFI
!= BC
->getBinaryFunctions().end()) {
1142 // Duplicate the function name. Make sure everything matches before we add
1143 // an alternative name.
1144 if (SymbolSize
!= BF
->getSize()) {
1145 if (opts::Verbosity
>= 1) {
1146 if (SymbolSize
&& BF
->getSize())
1147 errs() << "BOLT-WARNING: size mismatch for duplicate entries "
1148 << *BF
<< " and " << UniqueName
<< '\n';
1149 outs() << "BOLT-INFO: adjusting size of function " << *BF
<< " old "
1150 << BF
->getSize() << " new " << SymbolSize
<< "\n";
1152 BF
->setSize(std::max(SymbolSize
, BF
->getSize()));
1153 BC
->setBinaryDataSize(SymbolAddress
, BF
->getSize());
1155 BF
->addAlternativeName(UniqueName
);
1157 ErrorOr
<BinarySection
&> Section
=
1158 BC
->getSectionForAddress(SymbolAddress
);
1159 // Skip symbols from invalid sections
1161 errs() << "BOLT-WARNING: " << UniqueName
<< " (0x"
1162 << Twine::utohexstr(SymbolAddress
)
1163 << ") does not have any section\n";
1167 // Skip symbols from zero-sized sections.
1168 if (!Section
->getSize())
1171 BF
= BC
->createBinaryFunction(UniqueName
, *Section
, SymbolAddress
,
1174 BF
->setSimple(false);
1177 // Check if it's a cold function fragment.
1178 if (ColdFragment
.match(SymName
)) {
1179 static bool PrintedWarning
= false;
1180 if (!PrintedWarning
) {
1181 PrintedWarning
= true;
1182 errs() << "BOLT-WARNING: split function detected on input : "
1184 if (BC
->HasRelocations
)
1185 errs() << ". The support is limited in relocation mode\n";
1189 BC
->HasSplitFunctions
= true;
1190 BF
->IsFragment
= true;
1193 if (!AlternativeName
.empty())
1194 BF
->addAlternativeName(AlternativeName
);
1196 registerName(SymbolSize
);
1197 PreviousFunction
= BF
;
1200 // Read dynamic relocation first as their presence affects the way we process
1201 // static relocations. E.g. we will ignore a static relocation at an address
1202 // that is a subject to dynamic relocation processing.
1203 processDynamicRelocations();
1205 // Process PLT section.
1208 // See if we missed any functions marked by FDE.
1209 for (const auto &FDEI
: CFIRdWrt
->getFDEs()) {
1210 const uint64_t Address
= FDEI
.first
;
1211 const dwarf::FDE
*FDE
= FDEI
.second
;
1212 const BinaryFunction
*BF
= BC
->getBinaryFunctionAtAddress(Address
);
1216 BF
= BC
->getBinaryFunctionContainingAddress(Address
);
1218 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address
) << ", 0x"
1219 << Twine::utohexstr(Address
+ FDE
->getAddressRange())
1220 << ") conflicts with function " << *BF
<< '\n';
1224 if (opts::Verbosity
>= 1)
1225 errs() << "BOLT-WARNING: FDE [0x" << Twine::utohexstr(Address
) << ", 0x"
1226 << Twine::utohexstr(Address
+ FDE
->getAddressRange())
1227 << ") has no corresponding symbol table entry\n";
1229 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(Address
);
1230 assert(Section
&& "cannot get section for address from FDE");
1231 std::string FunctionName
=
1232 "__BOLT_FDE_FUNCat" + Twine::utohexstr(Address
).str();
1233 BC
->createBinaryFunction(FunctionName
, *Section
, Address
,
1234 FDE
->getAddressRange());
1237 BC
->setHasSymbolsWithFileName(SeenFileName
);
1239 // Now that all the functions were created - adjust their boundaries.
1240 adjustFunctionBoundaries();
1242 // Annotate functions with code/data markers in AArch64
1243 for (auto ISym
= SortedMarkerSymbols
.begin();
1244 ISym
!= SortedMarkerSymbols
.end(); ++ISym
) {
1247 BC
->getBinaryFunctionContainingAddress(ISym
->Address
, true, true);
1253 const auto EntryOffset
= ISym
->Address
- BF
->getAddress();
1254 if (ISym
->Type
== MarkerSymType::CODE
) {
1255 BF
->markCodeAtOffset(EntryOffset
);
1258 if (ISym
->Type
== MarkerSymType::DATA
) {
1259 BF
->markDataAtOffset(EntryOffset
);
1260 BC
->AddressToConstantIslandMap
[ISym
->Address
] = BF
;
1263 llvm_unreachable("Unknown marker");
1266 if (BC
->isAArch64()) {
1267 // Check for dynamic relocations that might be contained in
1268 // constant islands.
1269 for (const BinarySection
&Section
: BC
->allocatableSections()) {
1270 const uint64_t SectionAddress
= Section
.getAddress();
1271 for (const Relocation
&Rel
: Section
.dynamicRelocations()) {
1272 const uint64_t RelAddress
= SectionAddress
+ Rel
.Offset
;
1273 BinaryFunction
*BF
=
1274 BC
->getBinaryFunctionContainingAddress(RelAddress
,
1275 /*CheckPastEnd*/ false,
1276 /*UseMaxSize*/ true);
1278 assert(Rel
.isRelative() && "Expected relative relocation for island");
1279 BF
->markIslandDynamicRelocationAtAddress(RelAddress
);
1285 if (!opts::LinuxKernelMode
) {
1286 // Read all relocations now that we have binary functions mapped.
1287 processRelocations();
1290 registerFragments();
1293 Error
RewriteInstance::discoverRtFiniAddress() {
1294 // Use DT_FINI if it's available.
1295 if (BC
->FiniAddress
) {
1296 BC
->FiniFunctionAddress
= BC
->FiniAddress
;
1297 return Error::success();
1300 if (!BC
->FiniArrayAddress
|| !BC
->FiniArraySize
) {
1301 return createStringError(
1302 std::errc::not_supported
,
1303 "Instrumentation needs either DT_FINI or DT_FINI_ARRAY");
1306 if (*BC
->FiniArraySize
< BC
->AsmInfo
->getCodePointerSize()) {
1307 return createStringError(std::errc::not_supported
,
1308 "Need at least 1 DT_FINI_ARRAY slot");
1311 ErrorOr
<BinarySection
&> FiniArraySection
=
1312 BC
->getSectionForAddress(*BC
->FiniArrayAddress
);
1313 if (auto EC
= FiniArraySection
.getError())
1314 return errorCodeToError(EC
);
1316 if (const Relocation
*Reloc
= FiniArraySection
->getDynamicRelocationAt(0)) {
1317 BC
->FiniFunctionAddress
= Reloc
->Addend
;
1318 return Error::success();
1321 if (const Relocation
*Reloc
= FiniArraySection
->getRelocationAt(0)) {
1322 BC
->FiniFunctionAddress
= Reloc
->Value
;
1323 return Error::success();
1326 return createStringError(std::errc::not_supported
,
1327 "No relocation for first DT_FINI_ARRAY slot");
1330 void RewriteInstance::updateRtFiniReloc() {
1331 // Updating DT_FINI is handled by patchELFDynamic.
1332 if (BC
->FiniAddress
)
1335 const RuntimeLibrary
*RT
= BC
->getRuntimeLibrary();
1336 if (!RT
|| !RT
->getRuntimeFiniAddress())
1339 assert(BC
->FiniArrayAddress
&& BC
->FiniArraySize
&&
1340 "inconsistent .fini_array state");
1342 ErrorOr
<BinarySection
&> FiniArraySection
=
1343 BC
->getSectionForAddress(*BC
->FiniArrayAddress
);
1344 assert(FiniArraySection
&& ".fini_array removed");
1346 if (std::optional
<Relocation
> Reloc
=
1347 FiniArraySection
->takeDynamicRelocationAt(0)) {
1348 assert(Reloc
->Addend
== BC
->FiniFunctionAddress
&&
1349 "inconsistent .fini_array dynamic relocation");
1350 Reloc
->Addend
= RT
->getRuntimeFiniAddress();
1351 FiniArraySection
->addDynamicRelocation(*Reloc
);
1354 // Update the static relocation by adding a pending relocation which will get
1355 // patched when flushPendingRelocations is called in rewriteFile. Note that
1356 // flushPendingRelocations will calculate the value to patch as
1357 // "Symbol + Addend". Since we don't have a symbol, just set the addend to the
1359 FiniArraySection
->addPendingRelocation(Relocation
{
1360 /*Offset*/ 0, /*Symbol*/ nullptr, /*Type*/ Relocation::getAbs64(),
1361 /*Addend*/ RT
->getRuntimeFiniAddress(), /*Value*/ 0});
1364 void RewriteInstance::registerFragments() {
1365 if (!BC
->HasSplitFunctions
)
1368 for (auto &BFI
: BC
->getBinaryFunctions()) {
1369 BinaryFunction
&Function
= BFI
.second
;
1370 if (!Function
.isFragment())
1372 unsigned ParentsFound
= 0;
1373 for (StringRef Name
: Function
.getNames()) {
1374 StringRef BaseName
, Suffix
;
1375 std::tie(BaseName
, Suffix
) = Name
.split('/');
1376 const size_t ColdSuffixPos
= BaseName
.find(".cold");
1377 if (ColdSuffixPos
== StringRef::npos
)
1379 // For cold function with local (foo.cold/1) symbol, prefer a parent with
1380 // local symbol as well (foo/1) over global symbol (foo).
1381 std::string ParentName
= BaseName
.substr(0, ColdSuffixPos
).str();
1382 const BinaryData
*BD
= BC
->getBinaryDataByName(ParentName
);
1384 ParentName
.append(Twine("/", Suffix
).str());
1385 const BinaryData
*BDLocal
= BC
->getBinaryDataByName(ParentName
);
1390 if (opts::Verbosity
>= 1)
1391 outs() << "BOLT-INFO: parent function not found for " << Name
<< "\n";
1394 const uint64_t Address
= BD
->getAddress();
1395 BinaryFunction
*BF
= BC
->getBinaryFunctionAtAddress(Address
);
1397 if (opts::Verbosity
>= 1)
1398 outs() << formatv("BOLT-INFO: parent function not found at {0:x}\n",
1402 BC
->registerFragment(Function
, *BF
);
1405 if (!ParentsFound
) {
1406 errs() << "BOLT-ERROR: parent function not found for " << Function
1413 void RewriteInstance::createPLTBinaryFunction(uint64_t TargetAddress
,
1414 uint64_t EntryAddress
,
1415 uint64_t EntrySize
) {
1419 auto setPLTSymbol
= [&](BinaryFunction
*BF
, StringRef Name
) {
1420 const unsigned PtrSize
= BC
->AsmInfo
->getCodePointerSize();
1421 MCSymbol
*TargetSymbol
= BC
->registerNameAtAddress(
1422 Name
.str() + "@GOT", TargetAddress
, PtrSize
, PtrSize
);
1423 BF
->setPLTSymbol(TargetSymbol
);
1426 BinaryFunction
*BF
= BC
->getBinaryFunctionAtAddress(EntryAddress
);
1427 if (BF
&& BC
->isAArch64()) {
1428 // Handle IFUNC trampoline with symbol
1429 setPLTSymbol(BF
, BF
->getOneName());
1433 const Relocation
*Rel
= BC
->getDynamicRelocationAt(TargetAddress
);
1437 MCSymbol
*Symbol
= Rel
->Symbol
;
1439 if (!BC
->isAArch64() || !Rel
->Addend
|| !Rel
->isIRelative())
1442 // IFUNC trampoline without symbol
1443 BinaryFunction
*TargetBF
= BC
->getBinaryFunctionAtAddress(Rel
->Addend
);
1446 << "BOLT-WARNING: Expected BF to be presented as IFUNC resolver at "
1447 << Twine::utohexstr(Rel
->Addend
) << ", skipping\n";
1451 Symbol
= TargetBF
->getSymbol();
1454 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(EntryAddress
);
1455 assert(Section
&& "cannot get section for address");
1457 BF
= BC
->createBinaryFunction(Symbol
->getName().str() + "@PLT", *Section
,
1458 EntryAddress
, 0, EntrySize
,
1459 Section
->getAlignment());
1461 BF
->addAlternativeName(Symbol
->getName().str() + "@PLT");
1462 setPLTSymbol(BF
, Symbol
->getName());
1465 void RewriteInstance::disassemblePLTSectionAArch64(BinarySection
&Section
) {
1466 const uint64_t SectionAddress
= Section
.getAddress();
1467 const uint64_t SectionSize
= Section
.getSize();
1468 StringRef PLTContents
= Section
.getContents();
1469 ArrayRef
<uint8_t> PLTData(
1470 reinterpret_cast<const uint8_t *>(PLTContents
.data()), SectionSize
);
1472 auto disassembleInstruction
= [&](uint64_t InstrOffset
, MCInst
&Instruction
,
1473 uint64_t &InstrSize
) {
1474 const uint64_t InstrAddr
= SectionAddress
+ InstrOffset
;
1475 if (!BC
->DisAsm
->getInstruction(Instruction
, InstrSize
,
1476 PLTData
.slice(InstrOffset
), InstrAddr
,
1478 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1479 << Section
.getName() << " at offset 0x"
1480 << Twine::utohexstr(InstrOffset
) << '\n';
1485 uint64_t InstrOffset
= 0;
1486 // Locate new plt entry
1487 while (InstrOffset
< SectionSize
) {
1488 InstructionListType Instructions
;
1490 uint64_t EntryOffset
= InstrOffset
;
1491 uint64_t EntrySize
= 0;
1493 // Loop through entry instructions
1494 while (InstrOffset
< SectionSize
) {
1495 disassembleInstruction(InstrOffset
, Instruction
, InstrSize
);
1496 EntrySize
+= InstrSize
;
1497 if (!BC
->MIB
->isIndirectBranch(Instruction
)) {
1498 Instructions
.emplace_back(Instruction
);
1499 InstrOffset
+= InstrSize
;
1503 const uint64_t EntryAddress
= SectionAddress
+ EntryOffset
;
1504 const uint64_t TargetAddress
= BC
->MIB
->analyzePLTEntry(
1505 Instruction
, Instructions
.begin(), Instructions
.end(), EntryAddress
);
1507 createPLTBinaryFunction(TargetAddress
, EntryAddress
, EntrySize
);
1511 // Branch instruction
1512 InstrOffset
+= InstrSize
;
1515 while (InstrOffset
< SectionSize
) {
1516 disassembleInstruction(InstrOffset
, Instruction
, InstrSize
);
1517 if (!BC
->MIB
->isNoop(Instruction
))
1520 InstrOffset
+= InstrSize
;
1525 void RewriteInstance::disassemblePLTSectionRISCV(BinarySection
&Section
) {
1526 const uint64_t SectionAddress
= Section
.getAddress();
1527 const uint64_t SectionSize
= Section
.getSize();
1528 StringRef PLTContents
= Section
.getContents();
1529 ArrayRef
<uint8_t> PLTData(
1530 reinterpret_cast<const uint8_t *>(PLTContents
.data()), SectionSize
);
1532 auto disassembleInstruction
= [&](uint64_t InstrOffset
, MCInst
&Instruction
,
1533 uint64_t &InstrSize
) {
1534 const uint64_t InstrAddr
= SectionAddress
+ InstrOffset
;
1535 if (!BC
->DisAsm
->getInstruction(Instruction
, InstrSize
,
1536 PLTData
.slice(InstrOffset
), InstrAddr
,
1538 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1539 << Section
.getName() << " at offset 0x"
1540 << Twine::utohexstr(InstrOffset
) << '\n';
1545 // Skip the first special entry since no relocation points to it.
1546 uint64_t InstrOffset
= 32;
1548 while (InstrOffset
< SectionSize
) {
1549 InstructionListType Instructions
;
1551 const uint64_t EntryOffset
= InstrOffset
;
1552 const uint64_t EntrySize
= 16;
1555 while (InstrOffset
< EntryOffset
+ EntrySize
) {
1556 disassembleInstruction(InstrOffset
, Instruction
, InstrSize
);
1557 Instructions
.emplace_back(Instruction
);
1558 InstrOffset
+= InstrSize
;
1561 const uint64_t EntryAddress
= SectionAddress
+ EntryOffset
;
1562 const uint64_t TargetAddress
= BC
->MIB
->analyzePLTEntry(
1563 Instruction
, Instructions
.begin(), Instructions
.end(), EntryAddress
);
1565 createPLTBinaryFunction(TargetAddress
, EntryAddress
, EntrySize
);
1569 void RewriteInstance::disassemblePLTSectionX86(BinarySection
&Section
,
1570 uint64_t EntrySize
) {
1571 const uint64_t SectionAddress
= Section
.getAddress();
1572 const uint64_t SectionSize
= Section
.getSize();
1573 StringRef PLTContents
= Section
.getContents();
1574 ArrayRef
<uint8_t> PLTData(
1575 reinterpret_cast<const uint8_t *>(PLTContents
.data()), SectionSize
);
1577 auto disassembleInstruction
= [&](uint64_t InstrOffset
, MCInst
&Instruction
,
1578 uint64_t &InstrSize
) {
1579 const uint64_t InstrAddr
= SectionAddress
+ InstrOffset
;
1580 if (!BC
->DisAsm
->getInstruction(Instruction
, InstrSize
,
1581 PLTData
.slice(InstrOffset
), InstrAddr
,
1583 errs() << "BOLT-ERROR: unable to disassemble instruction in PLT section "
1584 << Section
.getName() << " at offset 0x"
1585 << Twine::utohexstr(InstrOffset
) << '\n';
1590 for (uint64_t EntryOffset
= 0; EntryOffset
+ EntrySize
<= SectionSize
;
1591 EntryOffset
+= EntrySize
) {
1593 uint64_t InstrSize
, InstrOffset
= EntryOffset
;
1594 while (InstrOffset
< EntryOffset
+ EntrySize
) {
1595 disassembleInstruction(InstrOffset
, Instruction
, InstrSize
);
1596 // Check if the entry size needs adjustment.
1597 if (EntryOffset
== 0 && BC
->MIB
->isTerminateBranch(Instruction
) &&
1601 if (BC
->MIB
->isIndirectBranch(Instruction
))
1604 InstrOffset
+= InstrSize
;
1607 if (InstrOffset
+ InstrSize
> EntryOffset
+ EntrySize
)
1610 uint64_t TargetAddress
;
1611 if (!BC
->MIB
->evaluateMemOperandTarget(Instruction
, TargetAddress
,
1612 SectionAddress
+ InstrOffset
,
1614 errs() << "BOLT-ERROR: error evaluating PLT instruction at offset 0x"
1615 << Twine::utohexstr(SectionAddress
+ InstrOffset
) << '\n';
1619 createPLTBinaryFunction(TargetAddress
, SectionAddress
+ EntryOffset
,
1624 void RewriteInstance::disassemblePLT() {
1625 auto analyzeOnePLTSection
= [&](BinarySection
&Section
, uint64_t EntrySize
) {
1626 if (BC
->isAArch64())
1627 return disassemblePLTSectionAArch64(Section
);
1629 return disassemblePLTSectionRISCV(Section
);
1630 return disassemblePLTSectionX86(Section
, EntrySize
);
1633 for (BinarySection
&Section
: BC
->allocatableSections()) {
1634 const PLTSectionInfo
*PLTSI
= getPLTSectionInfo(Section
.getName());
1638 analyzeOnePLTSection(Section
, PLTSI
->EntrySize
);
1640 BinaryFunction
*PltBF
;
1641 auto BFIter
= BC
->getBinaryFunctions().find(Section
.getAddress());
1642 if (BFIter
!= BC
->getBinaryFunctions().end()) {
1643 PltBF
= &BFIter
->second
;
1645 // If we did not register any function at the start of the section,
1646 // then it must be a general PLT entry. Add a function at the location.
1647 PltBF
= BC
->createBinaryFunction(
1648 "__BOLT_PSEUDO_" + Section
.getName().str(), Section
,
1649 Section
.getAddress(), 0, PLTSI
->EntrySize
, Section
.getAlignment());
1651 PltBF
->setPseudo(true);
1655 void RewriteInstance::adjustFunctionBoundaries() {
1656 for (auto BFI
= BC
->getBinaryFunctions().begin(),
1657 BFE
= BC
->getBinaryFunctions().end();
1658 BFI
!= BFE
; ++BFI
) {
1659 BinaryFunction
&Function
= BFI
->second
;
1660 const BinaryFunction
*NextFunction
= nullptr;
1661 if (std::next(BFI
) != BFE
)
1662 NextFunction
= &std::next(BFI
)->second
;
1664 // Check if there's a symbol or a function with a larger address in the
1665 // same section. If there is - it determines the maximum size for the
1666 // current function. Otherwise, it is the size of a containing section
1669 // NOTE: ignore some symbols that could be tolerated inside the body
1671 auto NextSymRefI
= FileSymRefs
.upper_bound(Function
.getAddress());
1672 while (NextSymRefI
!= FileSymRefs
.end()) {
1673 SymbolRef
&Symbol
= NextSymRefI
->second
;
1674 const uint64_t SymbolAddress
= NextSymRefI
->first
;
1675 const uint64_t SymbolSize
= ELFSymbolRef(Symbol
).getSize();
1677 if (NextFunction
&& SymbolAddress
>= NextFunction
->getAddress())
1680 if (!Function
.isSymbolValidInScope(Symbol
, SymbolSize
))
1683 // Ignore unnamed symbols. Used, for example, by debugging info on RISC-V.
1684 if (BC
->isRISCV() && cantFail(Symbol
.getName()).empty()) {
1689 // Skip basic block labels. This happens on RISC-V with linker relaxation
1690 // enabled because every branch needs a relocation and corresponding
1691 // symbol. We don't want to add such symbols as entry points.
1692 const auto PrivateLabelPrefix
= BC
->AsmInfo
->getPrivateLabelPrefix();
1693 if (!PrivateLabelPrefix
.empty() &&
1694 cantFail(Symbol
.getName()).starts_with(PrivateLabelPrefix
)) {
1699 // This is potentially another entry point into the function.
1700 uint64_t EntryOffset
= NextSymRefI
->first
- Function
.getAddress();
1701 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding entry point to function "
1702 << Function
<< " at offset 0x"
1703 << Twine::utohexstr(EntryOffset
) << '\n');
1704 Function
.addEntryPointAtOffset(EntryOffset
);
1709 // Function runs at most till the end of the containing section.
1710 uint64_t NextObjectAddress
= Function
.getOriginSection()->getEndAddress();
1711 // Or till the next object marked by a symbol.
1712 if (NextSymRefI
!= FileSymRefs
.end())
1713 NextObjectAddress
= std::min(NextSymRefI
->first
, NextObjectAddress
);
1715 // Or till the next function not marked by a symbol.
1718 std::min(NextFunction
->getAddress(), NextObjectAddress
);
1720 const uint64_t MaxSize
= NextObjectAddress
- Function
.getAddress();
1721 if (MaxSize
< Function
.getSize()) {
1722 errs() << "BOLT-ERROR: symbol seen in the middle of the function "
1723 << Function
<< ". Skipping.\n";
1724 Function
.setSimple(false);
1725 Function
.setMaxSize(Function
.getSize());
1728 Function
.setMaxSize(MaxSize
);
1729 if (!Function
.getSize() && Function
.isSimple()) {
1730 // Some assembly functions have their size set to 0, use the max
1731 // size as their real size.
1732 if (opts::Verbosity
>= 1)
1733 outs() << "BOLT-INFO: setting size of function " << Function
<< " to "
1734 << Function
.getMaxSize() << " (was 0)\n";
1735 Function
.setSize(Function
.getMaxSize());
1740 void RewriteInstance::relocateEHFrameSection() {
1741 assert(EHFrameSection
&& "Non-empty .eh_frame section expected.");
1743 BinarySection
*RelocatedEHFrameSection
=
1744 getSection(".relocated" + getEHFrameSectionName());
1745 assert(RelocatedEHFrameSection
&&
1746 "Relocated eh_frame section should be preregistered.");
1747 DWARFDataExtractor
DE(EHFrameSection
->getContents(),
1748 BC
->AsmInfo
->isLittleEndian(),
1749 BC
->AsmInfo
->getCodePointerSize());
1750 auto createReloc
= [&](uint64_t Value
, uint64_t Offset
, uint64_t DwarfType
) {
1751 if (DwarfType
== dwarf::DW_EH_PE_omit
)
1754 // Only fix references that are relative to other locations.
1755 if (!(DwarfType
& dwarf::DW_EH_PE_pcrel
) &&
1756 !(DwarfType
& dwarf::DW_EH_PE_textrel
) &&
1757 !(DwarfType
& dwarf::DW_EH_PE_funcrel
) &&
1758 !(DwarfType
& dwarf::DW_EH_PE_datarel
))
1761 if (!(DwarfType
& dwarf::DW_EH_PE_sdata4
))
1765 switch (DwarfType
& 0x0f) {
1767 llvm_unreachable("unsupported DWARF encoding type");
1768 case dwarf::DW_EH_PE_sdata4
:
1769 case dwarf::DW_EH_PE_udata4
:
1770 RelType
= Relocation::getPC32();
1773 case dwarf::DW_EH_PE_sdata8
:
1774 case dwarf::DW_EH_PE_udata8
:
1775 RelType
= Relocation::getPC64();
1780 // Create a relocation against an absolute value since the goal is to
1781 // preserve the contents of the section independent of the new values
1782 // of referenced symbols.
1783 RelocatedEHFrameSection
->addRelocation(Offset
, nullptr, RelType
, Value
);
1786 Error E
= EHFrameParser::parse(DE
, EHFrameSection
->getAddress(), createReloc
);
1787 check_error(std::move(E
), "failed to patch EH frame");
1790 Error
RewriteInstance::readSpecialSections() {
1791 NamedRegionTimer
T("readSpecialSections", "read special sections",
1792 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
1794 bool HasTextRelocations
= false;
1795 bool HasSymbolTable
= false;
1796 bool HasDebugInfo
= false;
1798 // Process special sections.
1799 for (const SectionRef
&Section
: InputFile
->sections()) {
1800 Expected
<StringRef
> SectionNameOrErr
= Section
.getName();
1801 check_error(SectionNameOrErr
.takeError(), "cannot get section name");
1802 StringRef SectionName
= *SectionNameOrErr
;
1804 if (Error E
= Section
.getContents().takeError())
1806 BC
->registerSection(Section
);
1808 dbgs() << "BOLT-DEBUG: registering section " << SectionName
<< " @ 0x"
1809 << Twine::utohexstr(Section
.getAddress()) << ":0x"
1810 << Twine::utohexstr(Section
.getAddress() + Section
.getSize())
1812 if (isDebugSection(SectionName
))
1813 HasDebugInfo
= true;
1814 if (isKSymtabSection(SectionName
))
1815 opts::LinuxKernelMode
= true;
1818 // Set IsRelro section attribute based on PT_GNU_RELRO segment.
1819 markGnuRelroSections();
1821 if (HasDebugInfo
&& !opts::UpdateDebugSections
&& !opts::AggregateOnly
) {
1822 errs() << "BOLT-WARNING: debug info will be stripped from the binary. "
1823 "Use -update-debug-sections to keep it.\n";
1826 HasTextRelocations
= (bool)BC
->getUniqueSectionByName(".rela.text");
1827 HasSymbolTable
= (bool)BC
->getUniqueSectionByName(".symtab");
1828 EHFrameSection
= BC
->getUniqueSectionByName(".eh_frame");
1829 BuildIDSection
= BC
->getUniqueSectionByName(".note.gnu.build-id");
1831 if (ErrorOr
<BinarySection
&> BATSec
=
1832 BC
->getUniqueSectionByName(BoltAddressTranslation::SECTION_NAME
)) {
1833 // Do not read BAT when plotting a heatmap
1834 if (!opts::HeatmapMode
) {
1835 if (std::error_code EC
= BAT
->parse(BATSec
->getContents())) {
1836 errs() << "BOLT-ERROR: failed to parse BOLT address translation "
1843 if (opts::PrintSections
) {
1844 outs() << "BOLT-INFO: Sections from original binary:\n";
1845 BC
->printSections(outs());
1848 if (opts::RelocationMode
== cl::BOU_TRUE
&& !HasTextRelocations
) {
1849 errs() << "BOLT-ERROR: relocations against code are missing from the input "
1850 "file. Cannot proceed in relocations mode (-relocs).\n";
1854 BC
->HasRelocations
=
1855 HasTextRelocations
&& (opts::RelocationMode
!= cl::BOU_FALSE
);
1857 BC
->IsStripped
= !HasSymbolTable
;
1859 if (BC
->IsStripped
&& !opts::AllowStripped
) {
1860 errs() << "BOLT-ERROR: stripped binaries are not supported. If you know "
1861 "what you're doing, use --allow-stripped to proceed";
1865 // Force non-relocation mode for heatmap generation
1866 if (opts::HeatmapMode
)
1867 BC
->HasRelocations
= false;
1869 if (BC
->HasRelocations
)
1870 outs() << "BOLT-INFO: enabling " << (opts::StrictMode
? "strict " : "")
1871 << "relocation mode\n";
1873 // Read EH frame for function boundaries info.
1874 Expected
<const DWARFDebugFrame
*> EHFrameOrError
= BC
->DwCtx
->getEHFrame();
1875 if (!EHFrameOrError
)
1876 report_error("expected valid eh_frame section", EHFrameOrError
.takeError());
1877 CFIRdWrt
.reset(new CFIReaderWriter(*EHFrameOrError
.get()));
1881 if (std::optional
<std::string
> FileBuildID
= getPrintableBuildID())
1882 BC
->setFileBuildID(*FileBuildID
);
1884 // Read .dynamic/PT_DYNAMIC.
1885 return readELFDynamic();
1888 void RewriteInstance::adjustCommandLineOptions() {
1889 if (BC
->isAArch64() && !BC
->HasRelocations
)
1890 errs() << "BOLT-WARNING: non-relocation mode for AArch64 is not fully "
1893 if (RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary())
1894 RtLibrary
->adjustCommandLineOptions(*BC
);
1896 if (opts::AlignMacroOpFusion
!= MFT_NONE
&& !BC
->isX86()) {
1897 outs() << "BOLT-INFO: disabling -align-macro-fusion on non-x86 platform\n";
1898 opts::AlignMacroOpFusion
= MFT_NONE
;
1901 if (BC
->isX86() && BC
->MAB
->allowAutoPadding()) {
1902 if (!BC
->HasRelocations
) {
1903 errs() << "BOLT-ERROR: cannot apply mitigations for Intel JCC erratum in "
1904 "non-relocation mode\n";
1907 outs() << "BOLT-WARNING: using mitigation for Intel JCC erratum, layout "
1908 "may take several minutes\n";
1909 opts::AlignMacroOpFusion
= MFT_NONE
;
1912 if (opts::AlignMacroOpFusion
!= MFT_NONE
&& !BC
->HasRelocations
) {
1913 outs() << "BOLT-INFO: disabling -align-macro-fusion in non-relocation "
1915 opts::AlignMacroOpFusion
= MFT_NONE
;
1918 if (opts::SplitEH
&& !BC
->HasRelocations
) {
1919 errs() << "BOLT-WARNING: disabling -split-eh in non-relocation mode\n";
1920 opts::SplitEH
= false;
1923 if (opts::StrictMode
&& !BC
->HasRelocations
) {
1924 errs() << "BOLT-WARNING: disabling strict mode (-strict) in non-relocation "
1926 opts::StrictMode
= false;
1929 if (BC
->HasRelocations
&& opts::AggregateOnly
&&
1930 !opts::StrictMode
.getNumOccurrences()) {
1931 outs() << "BOLT-INFO: enabling strict relocation mode for aggregation "
1933 opts::StrictMode
= true;
1936 if (BC
->isX86() && BC
->HasRelocations
&&
1937 opts::AlignMacroOpFusion
== MFT_HOT
&& !ProfileReader
) {
1938 outs() << "BOLT-INFO: enabling -align-macro-fusion=all since no profile "
1940 opts::AlignMacroOpFusion
= MFT_ALL
;
1943 if (!BC
->HasRelocations
&&
1944 opts::ReorderFunctions
!= ReorderFunctions::RT_NONE
) {
1945 errs() << "BOLT-ERROR: function reordering only works when "
1946 << "relocations are enabled\n";
1950 if (opts::Instrument
||
1951 (opts::ReorderFunctions
!= ReorderFunctions::RT_NONE
&&
1952 !opts::HotText
.getNumOccurrences())) {
1953 opts::HotText
= true;
1954 } else if (opts::HotText
&& !BC
->HasRelocations
) {
1955 errs() << "BOLT-WARNING: hot text is disabled in non-relocation mode\n";
1956 opts::HotText
= false;
1959 if (opts::HotText
&& opts::HotTextMoveSections
.getNumOccurrences() == 0) {
1960 opts::HotTextMoveSections
.addValue(".stub");
1961 opts::HotTextMoveSections
.addValue(".mover");
1962 opts::HotTextMoveSections
.addValue(".never_hugify");
1965 if (opts::UseOldText
&& !BC
->OldTextSectionAddress
) {
1966 errs() << "BOLT-WARNING: cannot use old .text as the section was not found"
1968 opts::UseOldText
= false;
1970 if (opts::UseOldText
&& !BC
->HasRelocations
) {
1971 errs() << "BOLT-WARNING: cannot use old .text in non-relocation mode\n";
1972 opts::UseOldText
= false;
1975 if (!opts::AlignText
.getNumOccurrences())
1976 opts::AlignText
= BC
->PageAlign
;
1978 if (opts::AlignText
< opts::AlignFunctions
)
1979 opts::AlignText
= (unsigned)opts::AlignFunctions
;
1981 if (BC
->isX86() && opts::Lite
.getNumOccurrences() == 0 && !opts::StrictMode
&&
1985 if (opts::Lite
&& opts::UseOldText
) {
1986 errs() << "BOLT-WARNING: cannot combine -lite with -use-old-text. "
1987 "Disabling -use-old-text.\n";
1988 opts::UseOldText
= false;
1991 if (opts::Lite
&& opts::StrictMode
) {
1992 errs() << "BOLT-ERROR: -strict and -lite cannot be used at the same time\n";
1997 outs() << "BOLT-INFO: enabling lite mode\n";
1999 if (!opts::SaveProfile
.empty() && BAT
->enabledFor(InputFile
)) {
2000 errs() << "BOLT-ERROR: unable to save profile in YAML format for input "
2001 "file processed by BOLT. Please remove -w option and use branch "
2008 template <typename ELFT
>
2009 int64_t getRelocationAddend(const ELFObjectFile
<ELFT
> *Obj
,
2010 const RelocationRef
&RelRef
) {
2011 using ELFShdrTy
= typename
ELFT::Shdr
;
2012 using Elf_Rela
= typename
ELFT::Rela
;
2014 const ELFFile
<ELFT
> &EF
= Obj
->getELFFile();
2015 DataRefImpl Rel
= RelRef
.getRawDataRefImpl();
2016 const ELFShdrTy
*RelocationSection
= cantFail(EF
.getSection(Rel
.d
.a
));
2017 switch (RelocationSection
->sh_type
) {
2019 llvm_unreachable("unexpected relocation section type");
2022 case ELF::SHT_RELA
: {
2023 const Elf_Rela
*RelA
= Obj
->getRela(Rel
);
2024 Addend
= RelA
->r_addend
;
2032 int64_t getRelocationAddend(const ELFObjectFileBase
*Obj
,
2033 const RelocationRef
&Rel
) {
2034 return getRelocationAddend(cast
<ELF64LEObjectFile
>(Obj
), Rel
);
2037 template <typename ELFT
>
2038 uint32_t getRelocationSymbol(const ELFObjectFile
<ELFT
> *Obj
,
2039 const RelocationRef
&RelRef
) {
2040 using ELFShdrTy
= typename
ELFT::Shdr
;
2041 uint32_t Symbol
= 0;
2042 const ELFFile
<ELFT
> &EF
= Obj
->getELFFile();
2043 DataRefImpl Rel
= RelRef
.getRawDataRefImpl();
2044 const ELFShdrTy
*RelocationSection
= cantFail(EF
.getSection(Rel
.d
.a
));
2045 switch (RelocationSection
->sh_type
) {
2047 llvm_unreachable("unexpected relocation section type");
2049 Symbol
= Obj
->getRel(Rel
)->getSymbol(EF
.isMips64EL());
2052 Symbol
= Obj
->getRela(Rel
)->getSymbol(EF
.isMips64EL());
2059 uint32_t getRelocationSymbol(const ELFObjectFileBase
*Obj
,
2060 const RelocationRef
&Rel
) {
2061 return getRelocationSymbol(cast
<ELF64LEObjectFile
>(Obj
), Rel
);
2063 } // anonymous namespace
2065 bool RewriteInstance::analyzeRelocation(
2066 const RelocationRef
&Rel
, uint64_t &RType
, std::string
&SymbolName
,
2067 bool &IsSectionRelocation
, uint64_t &SymbolAddress
, int64_t &Addend
,
2068 uint64_t &ExtractedValue
, bool &Skip
) const {
2070 if (!Relocation::isSupported(RType
))
2073 const bool IsAArch64
= BC
->isAArch64();
2075 const size_t RelSize
= Relocation::getSizeForType(RType
);
2077 ErrorOr
<uint64_t> Value
=
2078 BC
->getUnsignedValueAtAddress(Rel
.getOffset(), RelSize
);
2079 assert(Value
&& "failed to extract relocated value");
2080 if ((Skip
= Relocation::skipRelocationProcess(RType
, *Value
)))
2083 ExtractedValue
= Relocation::extractValue(RType
, *Value
, Rel
.getOffset());
2084 Addend
= getRelocationAddend(InputFile
, Rel
);
2086 const bool IsPCRelative
= Relocation::isPCRelative(RType
);
2087 const uint64_t PCRelOffset
= IsPCRelative
&& !IsAArch64
? Rel
.getOffset() : 0;
2088 bool SkipVerification
= false;
2089 auto SymbolIter
= Rel
.getSymbol();
2090 if (SymbolIter
== InputFile
->symbol_end()) {
2091 SymbolAddress
= ExtractedValue
- Addend
+ PCRelOffset
;
2092 MCSymbol
*RelSymbol
=
2093 BC
->getOrCreateGlobalSymbol(SymbolAddress
, "RELSYMat");
2094 SymbolName
= std::string(RelSymbol
->getName());
2095 IsSectionRelocation
= false;
2097 const SymbolRef
&Symbol
= *SymbolIter
;
2098 SymbolName
= std::string(cantFail(Symbol
.getName()));
2099 SymbolAddress
= cantFail(Symbol
.getAddress());
2100 SkipVerification
= (cantFail(Symbol
.getType()) == SymbolRef::ST_Other
);
2101 // Section symbols are marked as ST_Debug.
2102 IsSectionRelocation
= (cantFail(Symbol
.getType()) == SymbolRef::ST_Debug
);
2103 // Check for PLT entry registered with symbol name
2104 if (!SymbolAddress
&& (IsAArch64
|| BC
->isRISCV())) {
2105 const BinaryData
*BD
= BC
->getPLTBinaryDataByName(SymbolName
);
2106 SymbolAddress
= BD
? BD
->getAddress() : 0;
2109 // For PIE or dynamic libs, the linker may choose not to put the relocation
2110 // result at the address if it is a X86_64_64 one because it will emit a
2111 // dynamic relocation (X86_RELATIVE) for the dynamic linker and loader to
2112 // resolve it at run time. The static relocation result goes as the addend
2113 // of the dynamic relocation in this case. We can't verify these cases.
2114 // FIXME: perhaps we can try to find if it really emitted a corresponding
2115 // RELATIVE relocation at this offset with the correct value as the addend.
2116 if (!BC
->HasFixedLoadAddress
&& RelSize
== 8)
2117 SkipVerification
= true;
2119 if (IsSectionRelocation
&& !IsAArch64
) {
2120 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(SymbolAddress
);
2121 assert(Section
&& "section expected for section relocation");
2122 SymbolName
= "section " + std::string(Section
->getName());
2123 // Convert section symbol relocations to regular relocations inside
2124 // non-section symbols.
2125 if (Section
->containsAddress(ExtractedValue
) && !IsPCRelative
) {
2126 SymbolAddress
= ExtractedValue
;
2129 Addend
= ExtractedValue
- (SymbolAddress
- PCRelOffset
);
2133 // If no symbol has been found or if it is a relocation requiring the
2134 // creation of a GOT entry, do not link against the symbol but against
2135 // whatever address was extracted from the instruction itself. We are
2136 // not creating a GOT entry as this was already processed by the linker.
2137 // For GOT relocs, do not subtract addend as the addend does not refer
2138 // to this instruction's target, but it refers to the target in the GOT
2140 if (Relocation::isGOT(RType
)) {
2142 SymbolAddress
= ExtractedValue
+ PCRelOffset
;
2143 } else if (Relocation::isTLS(RType
)) {
2144 SkipVerification
= true;
2145 } else if (!SymbolAddress
) {
2146 assert(!IsSectionRelocation
);
2147 if (ExtractedValue
|| Addend
== 0 || IsPCRelative
) {
2149 truncateToSize(ExtractedValue
- Addend
+ PCRelOffset
, RelSize
);
2151 // This is weird case. The extracted value is zero but the addend is
2152 // non-zero and the relocation is not pc-rel. Using the previous logic,
2153 // the SymbolAddress would end up as a huge number. Seen in
2154 // exceptions_pic.test.
2155 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocation @ 0x"
2156 << Twine::utohexstr(Rel
.getOffset())
2157 << " value does not match addend for "
2158 << "relocation to undefined symbol.\n");
2163 auto verifyExtractedValue
= [&]() {
2164 if (SkipVerification
)
2167 if (IsAArch64
|| BC
->isRISCV())
2170 if (SymbolName
== "__hot_start" || SymbolName
== "__hot_end")
2173 if (RType
== ELF::R_X86_64_PLT32
)
2176 return truncateToSize(ExtractedValue
, RelSize
) ==
2177 truncateToSize(SymbolAddress
+ Addend
- PCRelOffset
, RelSize
);
2180 (void)verifyExtractedValue
;
2181 assert(verifyExtractedValue() && "mismatched extracted relocation value");
2186 void RewriteInstance::processDynamicRelocations() {
2187 // Read .relr.dyn section containing compressed R_*_RELATIVE relocations.
2188 if (DynamicRelrSize
> 0) {
2189 ErrorOr
<BinarySection
&> DynamicRelrSectionOrErr
=
2190 BC
->getSectionForAddress(*DynamicRelrAddress
);
2191 if (!DynamicRelrSectionOrErr
)
2192 report_error("unable to find section corresponding to DT_RELR",
2193 DynamicRelrSectionOrErr
.getError());
2194 if (DynamicRelrSectionOrErr
->getSize() != DynamicRelrSize
)
2195 report_error("section size mismatch for DT_RELRSZ",
2196 errc::executable_format_error
);
2197 readDynamicRelrRelocations(*DynamicRelrSectionOrErr
);
2200 // Read relocations for PLT - DT_JMPREL.
2201 if (PLTRelocationsSize
> 0) {
2202 ErrorOr
<BinarySection
&> PLTRelSectionOrErr
=
2203 BC
->getSectionForAddress(*PLTRelocationsAddress
);
2204 if (!PLTRelSectionOrErr
)
2205 report_error("unable to find section corresponding to DT_JMPREL",
2206 PLTRelSectionOrErr
.getError());
2207 if (PLTRelSectionOrErr
->getSize() != PLTRelocationsSize
)
2208 report_error("section size mismatch for DT_PLTRELSZ",
2209 errc::executable_format_error
);
2210 readDynamicRelocations(PLTRelSectionOrErr
->getSectionRef(),
2214 // The rest of dynamic relocations - DT_RELA.
2215 // The static executable might have .rela.dyn secion and not have PT_DYNAMIC
2216 if (!DynamicRelocationsSize
&& BC
->IsStaticExecutable
) {
2217 ErrorOr
<BinarySection
&> DynamicRelSectionOrErr
=
2218 BC
->getUniqueSectionByName(getRelaDynSectionName());
2219 if (DynamicRelSectionOrErr
) {
2220 DynamicRelocationsAddress
= DynamicRelSectionOrErr
->getAddress();
2221 DynamicRelocationsSize
= DynamicRelSectionOrErr
->getSize();
2222 const SectionRef
&SectionRef
= DynamicRelSectionOrErr
->getSectionRef();
2223 DynamicRelativeRelocationsCount
= std::distance(
2224 SectionRef
.relocation_begin(), SectionRef
.relocation_end());
2228 if (DynamicRelocationsSize
> 0) {
2229 ErrorOr
<BinarySection
&> DynamicRelSectionOrErr
=
2230 BC
->getSectionForAddress(*DynamicRelocationsAddress
);
2231 if (!DynamicRelSectionOrErr
)
2232 report_error("unable to find section corresponding to DT_RELA",
2233 DynamicRelSectionOrErr
.getError());
2234 auto DynamicRelSectionSize
= DynamicRelSectionOrErr
->getSize();
2235 // On RISC-V DT_RELASZ seems to include both .rela.dyn and .rela.plt
2236 if (DynamicRelocationsSize
== DynamicRelSectionSize
+ PLTRelocationsSize
)
2237 DynamicRelocationsSize
= DynamicRelSectionSize
;
2238 if (DynamicRelSectionSize
!= DynamicRelocationsSize
)
2239 report_error("section size mismatch for DT_RELASZ",
2240 errc::executable_format_error
);
2241 readDynamicRelocations(DynamicRelSectionOrErr
->getSectionRef(),
2242 /*IsJmpRel*/ false);
2246 void RewriteInstance::processRelocations() {
2247 if (!BC
->HasRelocations
)
2250 for (const SectionRef
&Section
: InputFile
->sections()) {
2251 if (cantFail(Section
.getRelocatedSection()) != InputFile
->section_end() &&
2252 !BinarySection(*BC
, Section
).isAllocatable())
2253 readRelocations(Section
);
2256 if (NumFailedRelocations
)
2257 errs() << "BOLT-WARNING: Failed to analyze " << NumFailedRelocations
2258 << " relocations\n";
2261 void RewriteInstance::readDynamicRelocations(const SectionRef
&Section
,
2263 assert(BinarySection(*BC
, Section
).isAllocatable() && "allocatable expected");
2266 StringRef SectionName
= cantFail(Section
.getName());
2267 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2271 for (const RelocationRef
&Rel
: Section
.relocations()) {
2272 const uint64_t RType
= Rel
.getType();
2273 if (Relocation::isNone(RType
))
2276 StringRef SymbolName
= "<none>";
2277 MCSymbol
*Symbol
= nullptr;
2278 uint64_t SymbolAddress
= 0;
2279 const uint64_t Addend
= getRelocationAddend(InputFile
, Rel
);
2281 symbol_iterator SymbolIter
= Rel
.getSymbol();
2282 if (SymbolIter
!= InputFile
->symbol_end()) {
2283 SymbolName
= cantFail(SymbolIter
->getName());
2284 BinaryData
*BD
= BC
->getBinaryDataByName(SymbolName
);
2285 Symbol
= BD
? BD
->getSymbol()
2286 : BC
->getOrCreateUndefinedGlobalSymbol(SymbolName
);
2287 SymbolAddress
= cantFail(SymbolIter
->getAddress());
2288 (void)SymbolAddress
;
2292 SmallString
<16> TypeName
;
2293 Rel
.getTypeName(TypeName
);
2294 dbgs() << "BOLT-DEBUG: dynamic relocation at 0x"
2295 << Twine::utohexstr(Rel
.getOffset()) << " : " << TypeName
2296 << " : " << SymbolName
<< " : " << Twine::utohexstr(SymbolAddress
)
2297 << " : + 0x" << Twine::utohexstr(Addend
) << '\n'
2301 IsJmpRelocation
[RType
] = true;
2304 SymbolIndex
[Symbol
] = getRelocationSymbol(InputFile
, Rel
);
2306 BC
->addDynamicRelocation(Rel
.getOffset(), Symbol
, RType
, Addend
);
2310 void RewriteInstance::readDynamicRelrRelocations(BinarySection
&Section
) {
2311 assert(Section
.isAllocatable() && "allocatable expected");
2314 StringRef SectionName
= Section
.getName();
2315 dbgs() << "BOLT-DEBUG: reading relocations in section " << SectionName
2319 const uint64_t RType
= Relocation::getRelative();
2320 const uint8_t PSize
= BC
->AsmInfo
->getCodePointerSize();
2321 const uint64_t MaxDelta
= ((CHAR_BIT
* DynamicRelrEntrySize
) - 1) * PSize
;
2323 auto ExtractAddendValue
= [&](uint64_t Address
) -> uint64_t {
2324 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(Address
);
2325 assert(Section
&& "cannot get section for data address from RELR");
2326 DataExtractor DE
= DataExtractor(Section
->getContents(),
2327 BC
->AsmInfo
->isLittleEndian(), PSize
);
2328 uint64_t Offset
= Address
- Section
->getAddress();
2329 return DE
.getUnsigned(&Offset
, PSize
);
2332 auto AddRelocation
= [&](uint64_t Address
) {
2333 uint64_t Addend
= ExtractAddendValue(Address
);
2334 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: R_*_RELATIVE relocation at 0x"
2335 << Twine::utohexstr(Address
) << " to 0x"
2336 << Twine::utohexstr(Addend
) << '\n';);
2337 BC
->addDynamicRelocation(Address
, nullptr, RType
, Addend
);
2340 DataExtractor DE
= DataExtractor(Section
.getContents(),
2341 BC
->AsmInfo
->isLittleEndian(), PSize
);
2342 uint64_t Offset
= 0, Address
= 0;
2343 uint64_t RelrCount
= DynamicRelrSize
/ DynamicRelrEntrySize
;
2344 while (RelrCount
--) {
2345 assert(DE
.isValidOffset(Offset
));
2346 uint64_t Entry
= DE
.getUnsigned(&Offset
, DynamicRelrEntrySize
);
2347 if ((Entry
& 1) == 0) {
2348 AddRelocation(Entry
);
2349 Address
= Entry
+ PSize
;
2351 const uint64_t StartAddress
= Address
;
2352 while (Entry
>>= 1) {
2354 AddRelocation(Address
);
2359 Address
= StartAddress
+ MaxDelta
;
2364 void RewriteInstance::printRelocationInfo(const RelocationRef
&Rel
,
2365 StringRef SymbolName
,
2366 uint64_t SymbolAddress
,
2368 uint64_t ExtractedValue
) const {
2369 SmallString
<16> TypeName
;
2370 Rel
.getTypeName(TypeName
);
2371 const uint64_t Address
= SymbolAddress
+ Addend
;
2372 const uint64_t Offset
= Rel
.getOffset();
2373 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(SymbolAddress
);
2374 BinaryFunction
*Func
=
2375 BC
->getBinaryFunctionContainingAddress(Offset
, false, BC
->isAArch64());
2376 dbgs() << formatv("Relocation: offset = {0:x}; type = {1}; value = {2:x}; ",
2377 Offset
, TypeName
, ExtractedValue
)
2378 << formatv("symbol = {0} ({1}); symbol address = {2:x}; ", SymbolName
,
2379 Section
? Section
->getName() : "", SymbolAddress
)
2380 << formatv("addend = {0:x}; address = {1:x}; in = ", Addend
, Address
);
2382 dbgs() << Func
->getPrintName();
2384 dbgs() << BC
->getSectionForAddress(Rel
.getOffset())->getName();
2388 void RewriteInstance::readRelocations(const SectionRef
&Section
) {
2390 StringRef SectionName
= cantFail(Section
.getName());
2391 dbgs() << "BOLT-DEBUG: reading relocations for section " << SectionName
2394 if (BinarySection(*BC
, Section
).isAllocatable()) {
2395 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring runtime relocations\n");
2398 section_iterator SecIter
= cantFail(Section
.getRelocatedSection());
2399 assert(SecIter
!= InputFile
->section_end() && "relocated section expected");
2400 SectionRef RelocatedSection
= *SecIter
;
2402 StringRef RelocatedSectionName
= cantFail(RelocatedSection
.getName());
2403 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: relocated section is "
2404 << RelocatedSectionName
<< '\n');
2406 if (!BinarySection(*BC
, RelocatedSection
).isAllocatable()) {
2407 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocations against "
2408 << "non-allocatable section\n");
2411 const bool SkipRelocs
= StringSwitch
<bool>(RelocatedSectionName
)
2412 .Cases(".plt", ".rela.plt", ".got.plt",
2413 ".eh_frame", ".gcc_except_table", true)
2417 dbgs() << "BOLT-DEBUG: ignoring relocations against known section\n");
2421 for (const RelocationRef
&Rel
: Section
.relocations())
2422 handleRelocation(RelocatedSection
, Rel
);
2425 void RewriteInstance::handleRelocation(const SectionRef
&RelocatedSection
,
2426 const RelocationRef
&Rel
) {
2427 const bool IsAArch64
= BC
->isAArch64();
2428 const bool IsFromCode
= RelocatedSection
.isText();
2430 SmallString
<16> TypeName
;
2431 Rel
.getTypeName(TypeName
);
2432 uint64_t RType
= Rel
.getType();
2433 if (Relocation::skipRelocationType(RType
))
2436 // Adjust the relocation type as the linker might have skewed it.
2437 if (BC
->isX86() && (RType
& ELF::R_X86_64_converted_reloc_bit
)) {
2438 if (opts::Verbosity
>= 1)
2439 dbgs() << "BOLT-WARNING: ignoring R_X86_64_converted_reloc_bit\n";
2440 RType
&= ~ELF::R_X86_64_converted_reloc_bit
;
2443 if (Relocation::isTLS(RType
)) {
2444 // No special handling required for TLS relocations on X86.
2448 // The non-got related TLS relocations on AArch64 and RISC-V also could be
2450 if (!Relocation::isGOT(RType
))
2454 if (!IsAArch64
&& BC
->getDynamicRelocationAt(Rel
.getOffset())) {
2456 dbgs() << formatv("BOLT-DEBUG: address {0:x} has a ", Rel
.getOffset())
2457 << "dynamic relocation against it. Ignoring static relocation.\n";
2462 std::string SymbolName
;
2463 uint64_t SymbolAddress
;
2465 uint64_t ExtractedValue
;
2466 bool IsSectionRelocation
;
2468 if (!analyzeRelocation(Rel
, RType
, SymbolName
, IsSectionRelocation
,
2469 SymbolAddress
, Addend
, ExtractedValue
, Skip
)) {
2471 dbgs() << "BOLT-WARNING: failed to analyze relocation @ offset = "
2472 << formatv("{0:x}; type name = {1}\n", Rel
.getOffset(), TypeName
);
2474 ++NumFailedRelocations
;
2480 dbgs() << "BOLT-DEBUG: skipping relocation @ offset = "
2481 << formatv("{0:x}; type name = {1}\n", Rel
.getOffset(), TypeName
);
2486 const uint64_t Address
= SymbolAddress
+ Addend
;
2489 dbgs() << "BOLT-DEBUG: ";
2490 printRelocationInfo(Rel
, SymbolName
, SymbolAddress
, Addend
, ExtractedValue
);
2493 BinaryFunction
*ContainingBF
= nullptr;
2496 BC
->getBinaryFunctionContainingAddress(Rel
.getOffset(),
2497 /*CheckPastEnd*/ false,
2498 /*UseMaxSize*/ true);
2499 assert(ContainingBF
&& "cannot find function for address in code");
2500 if (!IsAArch64
&& !ContainingBF
->containsAddress(Rel
.getOffset())) {
2501 if (opts::Verbosity
>= 1)
2502 outs() << formatv("BOLT-INFO: {0} has relocations in padding area\n",
2504 ContainingBF
->setSize(ContainingBF
->getMaxSize());
2505 ContainingBF
->setSimple(false);
2510 MCSymbol
*ReferencedSymbol
= nullptr;
2511 if (!IsSectionRelocation
) {
2512 if (BinaryData
*BD
= BC
->getBinaryDataByName(SymbolName
))
2513 ReferencedSymbol
= BD
->getSymbol();
2514 else if (BC
->isGOTSymbol(SymbolName
))
2515 if (BinaryData
*BD
= BC
->getGOTSymbol())
2516 ReferencedSymbol
= BD
->getSymbol();
2519 ErrorOr
<BinarySection
&> ReferencedSection
{std::errc::bad_address
};
2520 symbol_iterator SymbolIter
= Rel
.getSymbol();
2521 if (SymbolIter
!= InputFile
->symbol_end()) {
2522 SymbolRef Symbol
= *SymbolIter
;
2523 section_iterator Section
=
2524 cantFail(Symbol
.getSection(), "cannot get symbol section");
2525 if (Section
!= InputFile
->section_end()) {
2526 Expected
<StringRef
> SectionName
= Section
->getName();
2527 if (SectionName
&& !SectionName
->empty())
2528 ReferencedSection
= BC
->getUniqueSectionByName(*SectionName
);
2529 } else if (ReferencedSymbol
&&
2530 (cantFail(Symbol
.getFlags()) & SymbolRef::SF_Absolute
)) {
2531 // This might be a relocation for an ABS symbols like __global_pointer$ on
2533 ContainingBF
->addRelocation(Rel
.getOffset(), ReferencedSymbol
,
2535 cantFail(Symbol
.getValue()));
2540 if (!ReferencedSection
)
2541 ReferencedSection
= BC
->getSectionForAddress(SymbolAddress
);
2543 const bool IsToCode
= ReferencedSection
&& ReferencedSection
->isText();
2545 // Special handling of PC-relative relocations.
2546 if (!IsAArch64
&& !BC
->isRISCV() && Relocation::isPCRelative(RType
)) {
2547 if (!IsFromCode
&& IsToCode
) {
2548 // PC-relative relocations from data to code are tricky since the
2549 // original information is typically lost after linking, even with
2550 // '--emit-relocs'. Such relocations are normally used by PIC-style
2551 // jump tables and they reference both the jump table and jump
2552 // targets by computing the difference between the two. If we blindly
2553 // apply the relocation, it will appear that it references an arbitrary
2554 // location in the code, possibly in a different function from the one
2555 // containing the jump table.
2557 // For that reason, we only register the fact that there is a
2558 // PC-relative relocation at a given address against the code.
2559 // The actual referenced label/address will be determined during jump
2561 BC
->addPCRelativeDataRelocation(Rel
.getOffset());
2562 } else if (ContainingBF
&& !IsSectionRelocation
&& ReferencedSymbol
) {
2563 // If we know the referenced symbol, register the relocation from
2564 // the code. It's required to properly handle cases where
2565 // "symbol + addend" references an object different from "symbol".
2566 ContainingBF
->addRelocation(Rel
.getOffset(), ReferencedSymbol
, RType
,
2567 Addend
, ExtractedValue
);
2570 dbgs() << "BOLT-DEBUG: not creating PC-relative relocation at"
2571 << formatv("{0:x} for {1}\n", Rel
.getOffset(), SymbolName
);
2578 bool ForceRelocation
= BC
->forceSymbolRelocations(SymbolName
);
2579 if ((BC
->isAArch64() || BC
->isRISCV()) && Relocation::isGOT(RType
))
2580 ForceRelocation
= true;
2582 if (!ReferencedSection
&& !ForceRelocation
) {
2583 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: cannot determine referenced section.\n");
2587 // Occasionally we may see a reference past the last byte of the function
2588 // typically as a result of __builtin_unreachable(). Check it here.
2589 BinaryFunction
*ReferencedBF
= BC
->getBinaryFunctionContainingAddress(
2590 Address
, /*CheckPastEnd*/ true, /*UseMaxSize*/ IsAArch64
);
2592 if (!IsSectionRelocation
) {
2593 if (BinaryFunction
*BF
=
2594 BC
->getBinaryFunctionContainingAddress(SymbolAddress
)) {
2595 if (BF
!= ReferencedBF
) {
2596 // It's possible we are referencing a function without referencing any
2597 // code, e.g. when taking a bitmask action on a function address.
2598 errs() << "BOLT-WARNING: non-standard function reference (e.g. bitmask)"
2599 << formatv(" detected against function {0} from ", *BF
);
2601 errs() << formatv("function {0}\n", *ContainingBF
);
2603 errs() << formatv("data section at {0:x}\n", Rel
.getOffset());
2604 LLVM_DEBUG(printRelocationInfo(Rel
, SymbolName
, SymbolAddress
, Addend
,
2609 } else if (ReferencedBF
) {
2610 assert(ReferencedSection
&& "section expected for section relocation");
2611 if (*ReferencedBF
->getOriginSection() != *ReferencedSection
) {
2612 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring false function reference\n");
2613 ReferencedBF
= nullptr;
2617 // Workaround for a member function pointer de-virtualization bug. We check
2618 // if a non-pc-relative relocation in the code is pointing to (fptr - 1).
2619 if (IsToCode
&& ContainingBF
&& !Relocation::isPCRelative(RType
) &&
2620 (!ReferencedBF
|| (ReferencedBF
->getAddress() != Address
))) {
2621 if (const BinaryFunction
*RogueBF
=
2622 BC
->getBinaryFunctionAtAddress(Address
+ 1)) {
2623 // Do an extra check that the function was referenced previously.
2624 // It's a linear search, but it should rarely happen.
2625 auto CheckReloc
= [&](const Relocation
&Rel
) {
2626 return Rel
.Symbol
== RogueBF
->getSymbol() &&
2627 !Relocation::isPCRelative(Rel
.Type
);
2629 bool Found
= llvm::any_of(
2630 llvm::make_second_range(ContainingBF
->Relocations
), CheckReloc
);
2633 errs() << "BOLT-WARNING: detected possible compiler de-virtualization "
2634 "bug: -1 addend used with non-pc-relative relocation against "
2635 << formatv("function {0} in function {1}\n", *RogueBF
,
2642 if (ForceRelocation
) {
2644 Relocation::isGOT(RType
) ? "__BOLT_got_zero" : SymbolName
;
2645 ReferencedSymbol
= BC
->registerNameAtAddress(Name
, 0, 0, 0);
2647 if (Relocation::isGOT(RType
))
2649 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: forcing relocation against symbol "
2650 << SymbolName
<< " with addend " << Addend
<< '\n');
2651 } else if (ReferencedBF
) {
2652 ReferencedSymbol
= ReferencedBF
->getSymbol();
2653 uint64_t RefFunctionOffset
= 0;
2655 // Adjust the point of reference to a code location inside a function.
2656 if (ReferencedBF
->containsAddress(Address
, /*UseMaxSize = */ true)) {
2657 RefFunctionOffset
= Address
- ReferencedBF
->getAddress();
2658 if (Relocation::isInstructionReference(RType
)) {
2659 // Instruction labels are created while disassembling so we just leave
2660 // the symbol empty for now. Since the extracted value is typically
2661 // unrelated to the referenced symbol (e.g., %pcrel_lo in RISC-V
2662 // references an instruction but the patched value references the low
2663 // bits of a data address), we set the extracted value to the symbol
2664 // address in order to be able to correctly reconstruct the reference
2666 ReferencedSymbol
= nullptr;
2667 ExtractedValue
= Address
;
2668 } else if (RefFunctionOffset
) {
2669 if (ContainingBF
&& ContainingBF
!= ReferencedBF
) {
2671 ReferencedBF
->addEntryPointAtOffset(RefFunctionOffset
);
2674 ReferencedBF
->getOrCreateLocalLabel(Address
,
2675 /*CreatePastEnd =*/true);
2677 // If ContainingBF != nullptr, it equals ReferencedBF (see
2678 // if-condition above) so we're handling a relocation from a function
2679 // to itself. RISC-V uses such relocations for branches, for example.
2680 // These should not be registered as externally references offsets.
2682 ReferencedBF
->registerReferencedOffset(RefFunctionOffset
);
2684 if (opts::Verbosity
> 1 &&
2685 BinarySection(*BC
, RelocatedSection
).isWritable())
2686 errs() << "BOLT-WARNING: writable reference into the middle of the "
2687 << formatv("function {0} detected at address {1:x}\n",
2688 *ReferencedBF
, Rel
.getOffset());
2690 SymbolAddress
= Address
;
2694 dbgs() << " referenced function " << *ReferencedBF
;
2695 if (Address
!= ReferencedBF
->getAddress())
2696 dbgs() << formatv(" at offset {0:x}", RefFunctionOffset
);
2700 if (IsToCode
&& SymbolAddress
) {
2701 // This can happen e.g. with PIC-style jump tables.
2702 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: no corresponding function for "
2703 "relocation against code\n");
2706 // In AArch64 there are zero reasons to keep a reference to the
2707 // "original" symbol plus addend. The original symbol is probably just a
2708 // section symbol. If we are here, this means we are probably accessing
2709 // data, so it is imperative to keep the original address.
2711 SymbolName
= formatv("SYMBOLat{0:x}", Address
);
2712 SymbolAddress
= Address
;
2716 if (BinaryData
*BD
= BC
->getBinaryDataContainingAddress(SymbolAddress
)) {
2717 // Note: this assertion is trying to check sanity of BinaryData objects
2718 // but AArch64 has inferred and incomplete object locations coming from
2719 // GOT/TLS or any other non-trivial relocation (that requires creation
2720 // of sections and whose symbol address is not really what should be
2721 // encoded in the instruction). So we essentially disabled this check
2722 // for AArch64 and live with bogus names for objects.
2723 assert((IsAArch64
|| IsSectionRelocation
||
2724 BD
->nameStartsWith(SymbolName
) ||
2725 BD
->nameStartsWith("PG" + SymbolName
) ||
2726 (BD
->nameStartsWith("ANONYMOUS") &&
2727 (BD
->getSectionName().starts_with(".plt") ||
2728 BD
->getSectionName().ends_with(".plt")))) &&
2729 "BOLT symbol names of all non-section relocations must match up "
2730 "with symbol names referenced in the relocation");
2732 if (IsSectionRelocation
)
2733 BC
->markAmbiguousRelocations(*BD
, Address
);
2735 ReferencedSymbol
= BD
->getSymbol();
2736 Addend
+= (SymbolAddress
- BD
->getAddress());
2737 SymbolAddress
= BD
->getAddress();
2738 assert(Address
== SymbolAddress
+ Addend
);
2740 // These are mostly local data symbols but undefined symbols
2741 // in relocation sections can get through here too, from .plt.
2743 (IsAArch64
|| BC
->isRISCV() || IsSectionRelocation
||
2744 BC
->getSectionNameForAddress(SymbolAddress
)->starts_with(".plt")) &&
2745 "known symbols should not resolve to anonymous locals");
2747 if (IsSectionRelocation
) {
2749 BC
->getOrCreateGlobalSymbol(SymbolAddress
, "SYMBOLat");
2751 SymbolRef Symbol
= *Rel
.getSymbol();
2752 const uint64_t SymbolSize
=
2753 IsAArch64
? 0 : ELFSymbolRef(Symbol
).getSize();
2754 const uint64_t SymbolAlignment
= IsAArch64
? 1 : Symbol
.getAlignment();
2755 const uint32_t SymbolFlags
= cantFail(Symbol
.getFlags());
2757 if (SymbolFlags
& SymbolRef::SF_Global
) {
2760 if (StringRef(SymbolName
)
2761 .starts_with(BC
->AsmInfo
->getPrivateGlobalPrefix()))
2762 Name
= NR
.uniquify("PG" + SymbolName
);
2764 Name
= NR
.uniquify(SymbolName
);
2766 ReferencedSymbol
= BC
->registerNameAtAddress(
2767 Name
, SymbolAddress
, SymbolSize
, SymbolAlignment
, SymbolFlags
);
2770 if (IsSectionRelocation
) {
2771 BinaryData
*BD
= BC
->getBinaryDataByName(ReferencedSymbol
->getName());
2772 BC
->markAmbiguousRelocations(*BD
, Address
);
2777 auto checkMaxDataRelocations
= [&]() {
2778 ++NumDataRelocations
;
2779 LLVM_DEBUG(if (opts::MaxDataRelocations
&&
2780 NumDataRelocations
+ 1 == opts::MaxDataRelocations
) {
2781 dbgs() << "BOLT-DEBUG: processing ending on data relocation "
2782 << NumDataRelocations
<< ": ";
2783 printRelocationInfo(Rel
, ReferencedSymbol
->getName(), SymbolAddress
,
2784 Addend
, ExtractedValue
);
2787 return (!opts::MaxDataRelocations
||
2788 NumDataRelocations
< opts::MaxDataRelocations
);
2791 if ((ReferencedSection
&& refersToReorderedSection(ReferencedSection
)) ||
2792 (opts::ForceToDataRelocations
&& checkMaxDataRelocations()) ||
2793 // RISC-V has ADD/SUB data-to-data relocations
2795 ForceRelocation
= true;
2798 ContainingBF
->addRelocation(Rel
.getOffset(), ReferencedSymbol
, RType
,
2799 Addend
, ExtractedValue
);
2800 } else if (IsToCode
|| ForceRelocation
) {
2801 BC
->addRelocation(Rel
.getOffset(), ReferencedSymbol
, RType
, Addend
,
2804 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: ignoring relocation from data to data\n");
2808 void RewriteInstance::selectFunctionsToProcess() {
2809 // Extend the list of functions to process or skip from a file.
2810 auto populateFunctionNames
= [](cl::opt
<std::string
> &FunctionNamesFile
,
2811 cl::list
<std::string
> &FunctionNames
) {
2812 if (FunctionNamesFile
.empty())
2814 std::ifstream
FuncsFile(FunctionNamesFile
, std::ios::in
);
2815 std::string FuncName
;
2816 while (std::getline(FuncsFile
, FuncName
))
2817 FunctionNames
.push_back(FuncName
);
2819 populateFunctionNames(opts::FunctionNamesFile
, opts::ForceFunctionNames
);
2820 populateFunctionNames(opts::SkipFunctionNamesFile
, opts::SkipFunctionNames
);
2821 populateFunctionNames(opts::FunctionNamesFileNR
, opts::ForceFunctionNamesNR
);
2823 // Make a set of functions to process to speed up lookups.
2824 std::unordered_set
<std::string
> ForceFunctionsNR(
2825 opts::ForceFunctionNamesNR
.begin(), opts::ForceFunctionNamesNR
.end());
2827 if ((!opts::ForceFunctionNames
.empty() ||
2828 !opts::ForceFunctionNamesNR
.empty()) &&
2829 !opts::SkipFunctionNames
.empty()) {
2830 errs() << "BOLT-ERROR: cannot select functions to process and skip at the "
2831 "same time. Please use only one type of selection.\n";
2835 uint64_t LiteThresholdExecCount
= 0;
2836 if (opts::LiteThresholdPct
) {
2837 if (opts::LiteThresholdPct
> 100)
2838 opts::LiteThresholdPct
= 100;
2840 std::vector
<const BinaryFunction
*> TopFunctions
;
2841 for (auto &BFI
: BC
->getBinaryFunctions()) {
2842 const BinaryFunction
&Function
= BFI
.second
;
2843 if (ProfileReader
->mayHaveProfileData(Function
))
2844 TopFunctions
.push_back(&Function
);
2847 TopFunctions
, [](const BinaryFunction
*A
, const BinaryFunction
*B
) {
2848 return A
->getKnownExecutionCount() < B
->getKnownExecutionCount();
2851 size_t Index
= TopFunctions
.size() * opts::LiteThresholdPct
/ 100;
2854 LiteThresholdExecCount
= TopFunctions
[Index
]->getKnownExecutionCount();
2855 outs() << "BOLT-INFO: limiting processing to functions with at least "
2856 << LiteThresholdExecCount
<< " invocations\n";
2858 LiteThresholdExecCount
= std::max(
2859 LiteThresholdExecCount
, static_cast<uint64_t>(opts::LiteThresholdCount
));
2861 StringSet
<> ReorderFunctionsUserSet
;
2862 StringSet
<> ReorderFunctionsLTOCommonSet
;
2863 if (opts::ReorderFunctions
== ReorderFunctions::RT_USER
) {
2864 for (const std::string
&Function
:
2865 ReorderFunctions::readFunctionOrderFile()) {
2866 ReorderFunctionsUserSet
.insert(Function
);
2867 if (std::optional
<StringRef
> LTOCommonName
= getLTOCommonName(Function
))
2868 ReorderFunctionsLTOCommonSet
.insert(*LTOCommonName
);
2872 uint64_t NumFunctionsToProcess
= 0;
2873 auto mustSkip
= [&](const BinaryFunction
&Function
) {
2874 if (opts::MaxFunctions
.getNumOccurrences() &&
2875 NumFunctionsToProcess
>= opts::MaxFunctions
)
2877 for (std::string
&Name
: opts::SkipFunctionNames
)
2878 if (Function
.hasNameRegex(Name
))
2884 auto shouldProcess
= [&](const BinaryFunction
&Function
) {
2885 if (mustSkip(Function
))
2888 // If the list is not empty, only process functions from the list.
2889 if (!opts::ForceFunctionNames
.empty() || !ForceFunctionsNR
.empty()) {
2890 // Regex check (-funcs and -funcs-file options).
2891 for (std::string
&Name
: opts::ForceFunctionNames
)
2892 if (Function
.hasNameRegex(Name
))
2895 // Non-regex check (-funcs-no-regex and -funcs-file-no-regex).
2896 for (const StringRef Name
: Function
.getNames())
2897 if (ForceFunctionsNR
.count(Name
.str()))
2904 // Forcibly include functions specified in the -function-order file.
2905 if (opts::ReorderFunctions
== ReorderFunctions::RT_USER
) {
2906 for (const StringRef Name
: Function
.getNames())
2907 if (ReorderFunctionsUserSet
.contains(Name
))
2909 for (const StringRef Name
: Function
.getNames())
2910 if (std::optional
<StringRef
> LTOCommonName
= getLTOCommonName(Name
))
2911 if (ReorderFunctionsLTOCommonSet
.contains(*LTOCommonName
))
2915 if (ProfileReader
&& !ProfileReader
->mayHaveProfileData(Function
))
2918 if (Function
.getKnownExecutionCount() < LiteThresholdExecCount
)
2925 for (auto &BFI
: BC
->getBinaryFunctions()) {
2926 BinaryFunction
&Function
= BFI
.second
;
2928 // Pseudo functions are explicitly marked by us not to be processed.
2929 if (Function
.isPseudo()) {
2930 Function
.IsIgnored
= true;
2931 Function
.HasExternalRefRelocations
= true;
2935 // Decide what to do with fragments after parent functions are processed.
2936 if (Function
.isFragment())
2939 if (!shouldProcess(Function
)) {
2940 if (opts::Verbosity
>= 1) {
2941 outs() << "BOLT-INFO: skipping processing " << Function
2942 << " per user request\n";
2944 Function
.setIgnored();
2946 ++NumFunctionsToProcess
;
2947 if (opts::MaxFunctions
.getNumOccurrences() &&
2948 NumFunctionsToProcess
== opts::MaxFunctions
)
2949 outs() << "BOLT-INFO: processing ending on " << Function
<< '\n';
2953 if (!BC
->HasSplitFunctions
)
2956 // Fragment overrides:
2957 // - If the fragment must be skipped, then the parent must be skipped as well.
2958 // Otherwise, fragment should follow the parent function:
2959 // - if the parent is skipped, skip fragment,
2960 // - if the parent is processed, process the fragment(s) as well.
2961 for (auto &BFI
: BC
->getBinaryFunctions()) {
2962 BinaryFunction
&Function
= BFI
.second
;
2963 if (!Function
.isFragment())
2965 if (mustSkip(Function
)) {
2966 for (BinaryFunction
*Parent
: Function
.ParentFragments
) {
2967 if (opts::Verbosity
>= 1) {
2968 outs() << "BOLT-INFO: skipping processing " << *Parent
2969 << " together with fragment function\n";
2971 Parent
->setIgnored();
2972 --NumFunctionsToProcess
;
2974 Function
.setIgnored();
2978 bool IgnoredParent
=
2979 llvm::any_of(Function
.ParentFragments
, [&](BinaryFunction
*Parent
) {
2980 return Parent
->isIgnored();
2982 if (IgnoredParent
) {
2983 if (opts::Verbosity
>= 1) {
2984 outs() << "BOLT-INFO: skipping processing " << Function
2985 << " together with parent function\n";
2987 Function
.setIgnored();
2989 ++NumFunctionsToProcess
;
2990 if (opts::Verbosity
>= 1) {
2991 outs() << "BOLT-INFO: processing " << Function
2992 << " as a sibling of non-ignored function\n";
2994 if (opts::MaxFunctions
&& NumFunctionsToProcess
== opts::MaxFunctions
)
2995 outs() << "BOLT-INFO: processing ending on " << Function
<< '\n';
3000 void RewriteInstance::readDebugInfo() {
3001 NamedRegionTimer
T("readDebugInfo", "read debug info", TimerGroupName
,
3002 TimerGroupDesc
, opts::TimeRewrite
);
3003 if (!opts::UpdateDebugSections
)
3006 BC
->preprocessDebugInfo();
3009 void RewriteInstance::preprocessProfileData() {
3013 NamedRegionTimer
T("preprocessprofile", "pre-process profile data",
3014 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3016 outs() << "BOLT-INFO: pre-processing profile using "
3017 << ProfileReader
->getReaderName() << '\n';
3019 if (BAT
->enabledFor(InputFile
)) {
3020 outs() << "BOLT-INFO: profile collection done on a binary already "
3021 "processed by BOLT\n";
3022 ProfileReader
->setBAT(&*BAT
);
3025 if (Error E
= ProfileReader
->preprocessProfile(*BC
.get()))
3026 report_error("cannot pre-process profile", std::move(E
));
3028 if (!BC
->hasSymbolsWithFileName() && ProfileReader
->hasLocalsWithFileName()) {
3029 errs() << "BOLT-ERROR: input binary does not have local file symbols "
3030 "but profile data includes function names with embedded file "
3031 "names. It appears that the input binary was stripped while a "
3032 "profiled binary was not\n";
3037 void RewriteInstance::initializeMetadataManager() {
3038 if (opts::LinuxKernelMode
)
3039 MetadataManager
.registerRewriter(createLinuxKernelRewriter(*BC
));
3041 MetadataManager
.registerRewriter(createPseudoProbeRewriter(*BC
));
3043 MetadataManager
.registerRewriter(createSDTRewriter(*BC
));
3046 void RewriteInstance::processMetadataPreCFG() {
3047 initializeMetadataManager();
3049 MetadataManager
.runInitializersPreCFG();
3051 processProfileDataPreCFG();
3054 void RewriteInstance::processMetadataPostCFG() {
3055 MetadataManager
.runInitializersPostCFG();
3058 void RewriteInstance::processProfileDataPreCFG() {
3062 NamedRegionTimer
T("processprofile-precfg", "process profile data pre-CFG",
3063 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3065 if (Error E
= ProfileReader
->readProfilePreCFG(*BC
.get()))
3066 report_error("cannot read profile pre-CFG", std::move(E
));
3069 void RewriteInstance::processProfileData() {
3073 NamedRegionTimer
T("processprofile", "process profile data", TimerGroupName
,
3074 TimerGroupDesc
, opts::TimeRewrite
);
3076 if (Error E
= ProfileReader
->readProfile(*BC
.get()))
3077 report_error("cannot read profile", std::move(E
));
3079 if (opts::PrintProfile
|| opts::PrintAll
) {
3080 for (auto &BFI
: BC
->getBinaryFunctions()) {
3081 BinaryFunction
&Function
= BFI
.second
;
3082 if (Function
.empty())
3085 Function
.print(outs(), "after attaching profile");
3089 if (!opts::SaveProfile
.empty()) {
3090 YAMLProfileWriter
PW(opts::SaveProfile
);
3091 PW
.writeProfile(*this);
3093 if (opts::AggregateOnly
&&
3094 opts::ProfileFormat
== opts::ProfileFormatKind::PF_YAML
) {
3095 YAMLProfileWriter
PW(opts::OutputFilename
);
3096 PW
.writeProfile(*this);
3099 // Release memory used by profile reader.
3100 ProfileReader
.reset();
3102 if (opts::AggregateOnly
)
3106 void RewriteInstance::disassembleFunctions() {
3107 NamedRegionTimer
T("disassembleFunctions", "disassemble functions",
3108 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3109 for (auto &BFI
: BC
->getBinaryFunctions()) {
3110 BinaryFunction
&Function
= BFI
.second
;
3112 ErrorOr
<ArrayRef
<uint8_t>> FunctionData
= Function
.getData();
3113 if (!FunctionData
) {
3114 errs() << "BOLT-ERROR: corresponding section is non-executable or "
3115 << "empty for function " << Function
<< '\n';
3119 // Treat zero-sized functions as non-simple ones.
3120 if (Function
.getSize() == 0) {
3121 Function
.setSimple(false);
3125 // Offset of the function in the file.
3126 const auto *FileBegin
=
3127 reinterpret_cast<const uint8_t *>(InputFile
->getData().data());
3128 Function
.setFileOffset(FunctionData
->begin() - FileBegin
);
3130 if (!shouldDisassemble(Function
)) {
3131 NamedRegionTimer
T("scan", "scan functions", "buildfuncs",
3132 "Scan Binary Functions", opts::TimeBuild
);
3133 Function
.scanExternalRefs();
3134 Function
.setSimple(false);
3138 if (!Function
.disassemble()) {
3139 if (opts::processAllFunctions())
3140 BC
->exitWithBugReport("function cannot be properly disassembled. "
3141 "Unable to continue in relocation mode.",
3143 if (opts::Verbosity
>= 1)
3144 outs() << "BOLT-INFO: could not disassemble function " << Function
3145 << ". Will ignore.\n";
3146 // Forcefully ignore the function.
3147 Function
.setIgnored();
3151 if (opts::PrintAll
|| opts::PrintDisasm
)
3152 Function
.print(outs(), "after disassembly");
3155 BC
->processInterproceduralReferences();
3156 BC
->populateJumpTables();
3158 for (auto &BFI
: BC
->getBinaryFunctions()) {
3159 BinaryFunction
&Function
= BFI
.second
;
3161 if (!shouldDisassemble(Function
))
3164 Function
.postProcessEntryPoints();
3165 Function
.postProcessJumpTables();
3168 BC
->clearJumpTableTempData();
3169 BC
->adjustCodePadding();
3171 for (auto &BFI
: BC
->getBinaryFunctions()) {
3172 BinaryFunction
&Function
= BFI
.second
;
3174 if (!shouldDisassemble(Function
))
3177 if (!Function
.isSimple()) {
3178 assert((!BC
->HasRelocations
|| Function
.getSize() == 0 ||
3179 Function
.hasIndirectTargetToSplitFragment()) &&
3180 "unexpected non-simple function in relocation mode");
3184 // Fill in CFI information for this function
3185 if (!Function
.trapsOnEntry() && !CFIRdWrt
->fillCFIInfoFor(Function
)) {
3186 if (BC
->HasRelocations
) {
3187 BC
->exitWithBugReport("unable to fill CFI.", Function
);
3189 errs() << "BOLT-WARNING: unable to fill CFI for function " << Function
3191 Function
.setSimple(false);
3197 if (Function
.getLSDAAddress() != 0 &&
3198 !BC
->getFragmentsToSkip().count(&Function
)) {
3199 ErrorOr
<BinarySection
&> LSDASection
=
3200 BC
->getSectionForAddress(Function
.getLSDAAddress());
3201 check_error(LSDASection
.getError(), "failed to get LSDA section");
3202 ArrayRef
<uint8_t> LSDAData
= ArrayRef
<uint8_t>(
3203 LSDASection
->getData(), LSDASection
->getContents().size());
3204 Function
.parseLSDA(LSDAData
, LSDASection
->getAddress());
3209 void RewriteInstance::buildFunctionsCFG() {
3210 NamedRegionTimer
T("buildCFG", "buildCFG", "buildfuncs",
3211 "Build Binary Functions", opts::TimeBuild
);
3213 // Create annotation indices to allow lock-free execution
3214 BC
->MIB
->getOrCreateAnnotationIndex("JTIndexReg");
3215 BC
->MIB
->getOrCreateAnnotationIndex("NOP");
3217 ParallelUtilities::WorkFuncWithAllocTy WorkFun
=
3218 [&](BinaryFunction
&BF
, MCPlusBuilder::AllocatorIdTy AllocId
) {
3219 if (!BF
.buildCFG(AllocId
))
3222 if (opts::PrintAll
) {
3223 auto L
= BC
->scopeLock();
3224 BF
.print(outs(), "while building cfg");
3228 ParallelUtilities::PredicateTy SkipPredicate
= [&](const BinaryFunction
&BF
) {
3229 return !shouldDisassemble(BF
) || !BF
.isSimple();
3232 ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
3233 *BC
, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR
, WorkFun
,
3234 SkipPredicate
, "disassembleFunctions-buildCFG",
3235 /*ForceSequential*/ opts::SequentialDisassembly
|| opts::PrintAll
);
3237 BC
->postProcessSymbolTable();
3240 void RewriteInstance::postProcessFunctions() {
3241 // We mark fragments as non-simple here, not during disassembly,
3242 // So we can build their CFGs.
3243 BC
->skipMarkedFragments();
3244 BC
->clearFragmentsToSkip();
3247 BC
->SumExecutionCount
= 0;
3248 for (auto &BFI
: BC
->getBinaryFunctions()) {
3249 BinaryFunction
&Function
= BFI
.second
;
3251 // Set function as non-simple if it has dynamic relocations
3252 // in constant island, we don't want this function to be optimized
3253 // e.g. function splitting is unsupported.
3254 if (Function
.hasDynamicRelocationAtIsland())
3255 Function
.setSimple(false);
3257 if (Function
.empty())
3260 Function
.postProcessCFG();
3262 if (opts::PrintAll
|| opts::PrintCFG
)
3263 Function
.print(outs(), "after building cfg");
3265 if (opts::DumpDotAll
)
3266 Function
.dumpGraphForPass("00_build-cfg");
3268 if (opts::PrintLoopInfo
) {
3269 Function
.calculateLoopInfo();
3270 Function
.printLoopInfo(outs());
3273 BC
->TotalScore
+= Function
.getFunctionScore();
3274 BC
->SumExecutionCount
+= Function
.getKnownExecutionCount();
3277 if (opts::PrintGlobals
) {
3278 outs() << "BOLT-INFO: Global symbols:\n";
3279 BC
->printGlobalSymbols(outs());
3283 void RewriteInstance::runOptimizationPasses() {
3284 NamedRegionTimer
T("runOptimizationPasses", "run optimization passes",
3285 TimerGroupName
, TimerGroupDesc
, opts::TimeRewrite
);
3286 BinaryFunctionPassManager::runAllPasses(*BC
);
3289 void RewriteInstance::preregisterSections() {
3290 // Preregister sections before emission to set their order in the output.
3291 const unsigned ROFlags
= BinarySection::getFlags(/*IsReadOnly*/ true,
3293 /*IsAllocatable*/ true);
3294 if (BinarySection
*EHFrameSection
= getSection(getEHFrameSectionName())) {
3296 BC
->registerOrUpdateSection(getNewSecPrefix() + getEHFrameSectionName(),
3297 ELF::SHT_PROGBITS
, ROFlags
);
3298 // Fully register a relocatable copy of the original .eh_frame.
3299 BC
->registerSection(".relocated.eh_frame", *EHFrameSection
);
3301 BC
->registerOrUpdateSection(getNewSecPrefix() + ".gcc_except_table",
3302 ELF::SHT_PROGBITS
, ROFlags
);
3303 BC
->registerOrUpdateSection(getNewSecPrefix() + ".rodata", ELF::SHT_PROGBITS
,
3305 BC
->registerOrUpdateSection(getNewSecPrefix() + ".rodata.cold",
3306 ELF::SHT_PROGBITS
, ROFlags
);
3309 void RewriteInstance::emitAndLink() {
3310 NamedRegionTimer
T("emitAndLink", "emit and link", TimerGroupName
,
3311 TimerGroupDesc
, opts::TimeRewrite
);
3313 SmallString
<0> ObjectBuffer
;
3314 raw_svector_ostream
OS(ObjectBuffer
);
3316 // Implicitly MCObjectStreamer takes ownership of MCAsmBackend (MAB)
3317 // and MCCodeEmitter (MCE). ~MCObjectStreamer() will delete these
3319 std::unique_ptr
<MCStreamer
> Streamer
= BC
->createStreamer(OS
);
3321 if (EHFrameSection
) {
3322 if (opts::UseOldText
|| opts::StrictMode
) {
3323 // The section is going to be regenerated from scratch.
3324 // Empty the contents, but keep the section reference.
3325 EHFrameSection
->clearContents();
3327 // Make .eh_frame relocatable.
3328 relocateEHFrameSection();
3332 emitBinaryContext(*Streamer
, *BC
, getOrgSecPrefix());
3335 if (Streamer
->getContext().hadError()) {
3336 errs() << "BOLT-ERROR: Emission failed.\n";
3340 if (opts::KeepTmp
) {
3341 SmallString
<128> OutObjectPath
;
3342 sys::fs::getPotentiallyUniqueTempFileName("output", "o", OutObjectPath
);
3344 raw_fd_ostream
FOS(OutObjectPath
, EC
);
3345 check_error(EC
, "cannot create output object file");
3346 FOS
<< ObjectBuffer
;
3347 outs() << "BOLT-INFO: intermediary output object file saved for debugging "
3349 << OutObjectPath
<< "\n";
3352 ErrorOr
<BinarySection
&> TextSection
=
3353 BC
->getUniqueSectionByName(BC
->getMainCodeSectionName());
3354 if (BC
->HasRelocations
&& TextSection
)
3355 BC
->renameSection(*TextSection
, getOrgSecPrefix() + ".text");
3357 //////////////////////////////////////////////////////////////////////////////
3358 // Assign addresses to new sections.
3359 //////////////////////////////////////////////////////////////////////////////
3361 // Get output object as ObjectFile.
3362 std::unique_ptr
<MemoryBuffer
> ObjectMemBuffer
=
3363 MemoryBuffer::getMemBuffer(ObjectBuffer
, "in-memory object file", false);
3365 auto EFMM
= std::make_unique
<ExecutableFileMemoryManager
>(*BC
);
3366 EFMM
->setNewSecPrefix(getNewSecPrefix());
3367 EFMM
->setOrgSecPrefix(getOrgSecPrefix());
3369 Linker
= std::make_unique
<JITLinkLinker
>(*BC
, std::move(EFMM
));
3370 Linker
->loadObject(ObjectMemBuffer
->getMemBufferRef(),
3371 [this](auto MapSection
) { mapFileSections(MapSection
); });
3373 // Update output addresses based on the new section map and
3374 // layout. Only do this for the object created by ourselves.
3375 updateOutputValues(*Linker
);
3377 if (opts::UpdateDebugSections
) {
3378 MCAsmLayout
FinalLayout(
3379 static_cast<MCObjectStreamer
*>(Streamer
.get())->getAssembler());
3380 DebugInfoRewriter
->updateLineTableOffsets(FinalLayout
);
3383 if (RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary())
3384 RtLibrary
->link(*BC
, ToolPath
, *Linker
, [this](auto MapSection
) {
3385 // Map newly registered sections.
3386 this->mapAllocatableSections(MapSection
);
3389 // Once the code is emitted, we can rename function sections to actual
3390 // output sections and de-register sections used for emission.
3391 for (BinaryFunction
*Function
: BC
->getAllBinaryFunctions()) {
3392 ErrorOr
<BinarySection
&> Section
= Function
->getCodeSection();
3394 (Function
->getImageAddress() == 0 || Function
->getImageSize() == 0))
3397 // Restore origin section for functions that were emitted or supposed to
3398 // be emitted to patch sections.
3400 BC
->deregisterSection(*Section
);
3401 assert(Function
->getOriginSectionName() && "expected origin section");
3402 Function
->CodeSectionName
= Function
->getOriginSectionName()->str();
3403 for (const FunctionFragment
&FF
:
3404 Function
->getLayout().getSplitFragments()) {
3405 if (ErrorOr
<BinarySection
&> ColdSection
=
3406 Function
->getCodeSection(FF
.getFragmentNum()))
3407 BC
->deregisterSection(*ColdSection
);
3409 if (Function
->getLayout().isSplit())
3410 Function
->setColdCodeSectionName(getBOLTTextSectionName());
3413 if (opts::PrintCacheMetrics
) {
3414 outs() << "BOLT-INFO: cache metrics after emitting functions:\n";
3415 CacheMetrics::printAll(BC
->getSortedFunctions());
3419 void RewriteInstance::updateMetadata() {
3420 MetadataManager
.runFinalizersAfterEmit();
3422 if (opts::UpdateDebugSections
) {
3423 NamedRegionTimer
T("updateDebugInfo", "update debug info", TimerGroupName
,
3424 TimerGroupDesc
, opts::TimeRewrite
);
3425 DebugInfoRewriter
->updateDebugInfo();
3428 if (opts::WriteBoltInfoSection
)
3429 addBoltInfoSection();
3432 void RewriteInstance::mapFileSections(BOLTLinker::SectionMapper MapSection
) {
3433 BC
->deregisterUnusedSections();
3435 // If no new .eh_frame was written, remove relocated original .eh_frame.
3436 BinarySection
*RelocatedEHFrameSection
=
3437 getSection(".relocated" + getEHFrameSectionName());
3438 if (RelocatedEHFrameSection
&& RelocatedEHFrameSection
->hasValidSectionID()) {
3439 BinarySection
*NewEHFrameSection
=
3440 getSection(getNewSecPrefix() + getEHFrameSectionName());
3441 if (!NewEHFrameSection
|| !NewEHFrameSection
->isFinalized()) {
3442 // JITLink will still have to process relocations for the section, hence
3443 // we need to assign it the address that wouldn't result in relocation
3444 // processing failure.
3445 MapSection(*RelocatedEHFrameSection
, NextAvailableAddress
);
3446 BC
->deregisterSection(*RelocatedEHFrameSection
);
3450 mapCodeSections(MapSection
);
3452 // Map the rest of the sections.
3453 mapAllocatableSections(MapSection
);
3456 std::vector
<BinarySection
*> RewriteInstance::getCodeSections() {
3457 std::vector
<BinarySection
*> CodeSections
;
3458 for (BinarySection
&Section
: BC
->textSections())
3459 if (Section
.hasValidSectionID())
3460 CodeSections
.emplace_back(&Section
);
3462 auto compareSections
= [&](const BinarySection
*A
, const BinarySection
*B
) {
3463 // If both A and B have names starting with ".text.cold", then
3464 // - if opts::HotFunctionsAtEnd is true, we want order
3465 // ".text.cold.T", ".text.cold.T-1", ... ".text.cold.1", ".text.cold"
3466 // - if opts::HotFunctionsAtEnd is false, we want order
3467 // ".text.cold", ".text.cold.1", ... ".text.cold.T-1", ".text.cold.T"
3468 if (A
->getName().starts_with(BC
->getColdCodeSectionName()) &&
3469 B
->getName().starts_with(BC
->getColdCodeSectionName())) {
3470 if (A
->getName().size() != B
->getName().size())
3471 return (opts::HotFunctionsAtEnd
)
3472 ? (A
->getName().size() > B
->getName().size())
3473 : (A
->getName().size() < B
->getName().size());
3474 return (opts::HotFunctionsAtEnd
) ? (A
->getName() > B
->getName())
3475 : (A
->getName() < B
->getName());
3478 // Place movers before anything else.
3479 if (A
->getName() == BC
->getHotTextMoverSectionName())
3481 if (B
->getName() == BC
->getHotTextMoverSectionName())
3484 // Depending on opts::HotFunctionsAtEnd, place main and warm sections in
3486 if (opts::HotFunctionsAtEnd
) {
3487 if (B
->getName() == BC
->getMainCodeSectionName())
3489 if (A
->getName() == BC
->getMainCodeSectionName())
3491 return (B
->getName() == BC
->getWarmCodeSectionName());
3493 if (A
->getName() == BC
->getMainCodeSectionName())
3495 if (B
->getName() == BC
->getMainCodeSectionName())
3497 return (A
->getName() == BC
->getWarmCodeSectionName());
3501 // Determine the order of sections.
3502 llvm::stable_sort(CodeSections
, compareSections
);
3504 return CodeSections
;
3507 void RewriteInstance::mapCodeSections(BOLTLinker::SectionMapper MapSection
) {
3508 if (BC
->HasRelocations
) {
3509 // Map sections for functions with pre-assigned addresses.
3510 for (BinaryFunction
*InjectedFunction
: BC
->getInjectedBinaryFunctions()) {
3511 const uint64_t OutputAddress
= InjectedFunction
->getOutputAddress();
3515 ErrorOr
<BinarySection
&> FunctionSection
=
3516 InjectedFunction
->getCodeSection();
3517 assert(FunctionSection
&& "function should have section");
3518 FunctionSection
->setOutputAddress(OutputAddress
);
3519 MapSection(*FunctionSection
, OutputAddress
);
3520 InjectedFunction
->setImageAddress(FunctionSection
->getAllocAddress());
3521 InjectedFunction
->setImageSize(FunctionSection
->getOutputSize());
3524 // Populate the list of sections to be allocated.
3525 std::vector
<BinarySection
*> CodeSections
= getCodeSections();
3527 // Remove sections that were pre-allocated (patch sections).
3528 llvm::erase_if(CodeSections
, [](BinarySection
*Section
) {
3529 return Section
->getOutputAddress();
3531 LLVM_DEBUG(dbgs() << "Code sections in the order of output:\n";
3532 for (const BinarySection
*Section
: CodeSections
)
3533 dbgs() << Section
->getName() << '\n';
3536 uint64_t PaddingSize
= 0; // size of padding required at the end
3538 // Allocate sections starting at a given Address.
3539 auto allocateAt
= [&](uint64_t Address
) {
3540 const char *LastNonColdSectionName
= BC
->HasWarmSection
3541 ? BC
->getWarmCodeSectionName()
3542 : BC
->getMainCodeSectionName();
3543 for (BinarySection
*Section
: CodeSections
) {
3544 Address
= alignTo(Address
, Section
->getAlignment());
3545 Section
->setOutputAddress(Address
);
3546 Address
+= Section
->getOutputSize();
3548 // Hugify: Additional huge page from right side due to
3549 // weird ASLR mapping addresses (4KB aligned)
3550 if (opts::Hugify
&& !BC
->HasFixedLoadAddress
&&
3551 Section
->getName() == LastNonColdSectionName
)
3552 Address
= alignTo(Address
, Section
->getAlignment());
3555 // Make sure we allocate enough space for huge pages.
3556 ErrorOr
<BinarySection
&> TextSection
=
3557 BC
->getUniqueSectionByName(LastNonColdSectionName
);
3558 if (opts::HotText
&& TextSection
&& TextSection
->hasValidSectionID()) {
3559 uint64_t HotTextEnd
=
3560 TextSection
->getOutputAddress() + TextSection
->getOutputSize();
3561 HotTextEnd
= alignTo(HotTextEnd
, BC
->PageAlign
);
3562 if (HotTextEnd
> Address
) {
3563 PaddingSize
= HotTextEnd
- Address
;
3564 Address
= HotTextEnd
;
3570 // Check if we can fit code in the original .text
3571 bool AllocationDone
= false;
3572 if (opts::UseOldText
) {
3573 const uint64_t CodeSize
=
3574 allocateAt(BC
->OldTextSectionAddress
) - BC
->OldTextSectionAddress
;
3576 if (CodeSize
<= BC
->OldTextSectionSize
) {
3577 outs() << "BOLT-INFO: using original .text for new code with 0x"
3578 << Twine::utohexstr(opts::AlignText
) << " alignment\n";
3579 AllocationDone
= true;
3581 errs() << "BOLT-WARNING: original .text too small to fit the new code"
3582 << " using 0x" << Twine::utohexstr(opts::AlignText
)
3583 << " alignment. " << CodeSize
<< " bytes needed, have "
3584 << BC
->OldTextSectionSize
<< " bytes available.\n";
3585 opts::UseOldText
= false;
3589 if (!AllocationDone
)
3590 NextAvailableAddress
= allocateAt(NextAvailableAddress
);
3592 // Do the mapping for ORC layer based on the allocation.
3593 for (BinarySection
*Section
: CodeSections
) {
3595 dbgs() << "BOLT: mapping " << Section
->getName() << " at 0x"
3596 << Twine::utohexstr(Section
->getAllocAddress()) << " to 0x"
3597 << Twine::utohexstr(Section
->getOutputAddress()) << '\n');
3598 MapSection(*Section
, Section
->getOutputAddress());
3599 Section
->setOutputFileOffset(
3600 getFileOffsetForAddress(Section
->getOutputAddress()));
3603 // Check if we need to insert a padding section for hot text.
3604 if (PaddingSize
&& !opts::UseOldText
)
3605 outs() << "BOLT-INFO: padding code to 0x"
3606 << Twine::utohexstr(NextAvailableAddress
)
3607 << " to accommodate hot text\n";
3612 // Processing in non-relocation mode.
3613 uint64_t NewTextSectionStartAddress
= NextAvailableAddress
;
3615 for (auto &BFI
: BC
->getBinaryFunctions()) {
3616 BinaryFunction
&Function
= BFI
.second
;
3617 if (!Function
.isEmitted())
3620 bool TooLarge
= false;
3621 ErrorOr
<BinarySection
&> FuncSection
= Function
.getCodeSection();
3622 assert(FuncSection
&& "cannot find section for function");
3623 FuncSection
->setOutputAddress(Function
.getAddress());
3624 LLVM_DEBUG(dbgs() << "BOLT: mapping 0x"
3625 << Twine::utohexstr(FuncSection
->getAllocAddress())
3626 << " to 0x" << Twine::utohexstr(Function
.getAddress())
3628 MapSection(*FuncSection
, Function
.getAddress());
3629 Function
.setImageAddress(FuncSection
->getAllocAddress());
3630 Function
.setImageSize(FuncSection
->getOutputSize());
3631 if (Function
.getImageSize() > Function
.getMaxSize()) {
3633 FailedAddresses
.emplace_back(Function
.getAddress());
3636 // Map jump tables if updating in-place.
3637 if (opts::JumpTables
== JTS_BASIC
) {
3638 for (auto &JTI
: Function
.JumpTables
) {
3639 JumpTable
*JT
= JTI
.second
;
3640 BinarySection
&Section
= JT
->getOutputSection();
3641 Section
.setOutputAddress(JT
->getAddress());
3642 Section
.setOutputFileOffset(getFileOffsetForAddress(JT
->getAddress()));
3643 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: mapping JT " << Section
.getName()
3644 << " to 0x" << Twine::utohexstr(JT
->getAddress())
3646 MapSection(Section
, JT
->getAddress());
3650 if (!Function
.isSplit())
3653 assert(Function
.getLayout().isHotColdSplit() &&
3654 "Cannot allocate more than two fragments per function in "
3655 "non-relocation mode.");
3657 FunctionFragment
&FF
=
3658 Function
.getLayout().getFragment(FragmentNum::cold());
3659 ErrorOr
<BinarySection
&> ColdSection
=
3660 Function
.getCodeSection(FF
.getFragmentNum());
3661 assert(ColdSection
&& "cannot find section for cold part");
3662 // Cold fragments are aligned at 16 bytes.
3663 NextAvailableAddress
= alignTo(NextAvailableAddress
, 16);
3665 // The corresponding FDE will refer to address 0.
3667 FF
.setImageAddress(0);
3669 FF
.setFileOffset(0);
3671 FF
.setAddress(NextAvailableAddress
);
3672 FF
.setImageAddress(ColdSection
->getAllocAddress());
3673 FF
.setImageSize(ColdSection
->getOutputSize());
3674 FF
.setFileOffset(getFileOffsetForAddress(NextAvailableAddress
));
3675 ColdSection
->setOutputAddress(FF
.getAddress());
3680 "BOLT: mapping cold fragment {0:x+} to {1:x+} with size {2:x+}\n",
3681 FF
.getImageAddress(), FF
.getAddress(), FF
.getImageSize()));
3682 MapSection(*ColdSection
, FF
.getAddress());
3685 BC
->deregisterSection(*ColdSection
);
3687 NextAvailableAddress
+= FF
.getImageSize();
3690 // Add the new text section aggregating all existing code sections.
3691 // This is pseudo-section that serves a purpose of creating a corresponding
3692 // entry in section header table.
3693 int64_t NewTextSectionSize
=
3694 NextAvailableAddress
- NewTextSectionStartAddress
;
3695 if (NewTextSectionSize
) {
3696 const unsigned Flags
= BinarySection::getFlags(/*IsReadOnly=*/true,
3698 /*IsAllocatable=*/true);
3699 BinarySection
&Section
=
3700 BC
->registerOrUpdateSection(getBOLTTextSectionName(),
3706 Section
.setOutputAddress(NewTextSectionStartAddress
);
3707 Section
.setOutputFileOffset(
3708 getFileOffsetForAddress(NewTextSectionStartAddress
));
3712 void RewriteInstance::mapAllocatableSections(
3713 BOLTLinker::SectionMapper MapSection
) {
3714 // Allocate read-only sections first, then writable sections.
3715 enum : uint8_t { ST_READONLY
, ST_READWRITE
};
3716 for (uint8_t SType
= ST_READONLY
; SType
<= ST_READWRITE
; ++SType
) {
3717 const uint64_t LastNextAvailableAddress
= NextAvailableAddress
;
3718 if (SType
== ST_READWRITE
) {
3719 // Align R+W segment to regular page size
3720 NextAvailableAddress
= alignTo(NextAvailableAddress
, BC
->RegularPageSize
);
3721 NewWritableSegmentAddress
= NextAvailableAddress
;
3724 for (BinarySection
&Section
: BC
->allocatableSections()) {
3725 if (Section
.isLinkOnly())
3728 if (!Section
.hasValidSectionID())
3731 if (Section
.isWritable() == (SType
== ST_READONLY
))
3734 if (Section
.getOutputAddress()) {
3736 dbgs() << "BOLT-DEBUG: section " << Section
.getName()
3737 << " is already mapped at 0x"
3738 << Twine::utohexstr(Section
.getOutputAddress()) << '\n';
3743 if (Section
.hasSectionRef()) {
3745 dbgs() << "BOLT-DEBUG: mapping original section " << Section
.getName()
3746 << " to 0x" << Twine::utohexstr(Section
.getAddress()) << '\n';
3748 Section
.setOutputAddress(Section
.getAddress());
3749 Section
.setOutputFileOffset(Section
.getInputFileOffset());
3750 MapSection(Section
, Section
.getAddress());
3752 NextAvailableAddress
=
3753 alignTo(NextAvailableAddress
, Section
.getAlignment());
3755 dbgs() << "BOLT: mapping section " << Section
.getName() << " (0x"
3756 << Twine::utohexstr(Section
.getAllocAddress()) << ") to 0x"
3757 << Twine::utohexstr(NextAvailableAddress
) << ":0x"
3758 << Twine::utohexstr(NextAvailableAddress
+
3759 Section
.getOutputSize())
3763 MapSection(Section
, NextAvailableAddress
);
3764 Section
.setOutputAddress(NextAvailableAddress
);
3765 Section
.setOutputFileOffset(
3766 getFileOffsetForAddress(NextAvailableAddress
));
3768 NextAvailableAddress
+= Section
.getOutputSize();
3772 if (SType
== ST_READONLY
) {
3773 if (PHDRTableAddress
) {
3774 // Segment size includes the size of the PHDR area.
3775 NewTextSegmentSize
= NextAvailableAddress
- PHDRTableAddress
;
3777 // Existing PHDR table would be updated.
3778 NewTextSegmentSize
= NextAvailableAddress
- NewTextSegmentAddress
;
3780 } else if (SType
== ST_READWRITE
) {
3781 NewWritableSegmentSize
= NextAvailableAddress
- NewWritableSegmentAddress
;
3782 // Restore NextAvailableAddress if no new writable sections
3783 if (!NewWritableSegmentSize
)
3784 NextAvailableAddress
= LastNextAvailableAddress
;
3789 void RewriteInstance::updateOutputValues(const BOLTLinker
&Linker
) {
3790 if (std::optional
<AddressMap
> Map
= AddressMap::parse(*BC
))
3791 BC
->setIOAddressMap(std::move(*Map
));
3793 for (BinaryFunction
*Function
: BC
->getAllBinaryFunctions())
3794 Function
->updateOutputValues(Linker
);
3797 void RewriteInstance::patchELFPHDRTable() {
3798 auto ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
3799 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
3800 raw_fd_ostream
&OS
= Out
->os();
3802 // Write/re-write program headers.
3803 Phnum
= Obj
.getHeader().e_phnum
;
3804 if (PHDRTableOffset
) {
3805 // Writing new pheader table and adding one new entry for R+X segment.
3807 if (NewWritableSegmentSize
) {
3808 // Adding one more entry for R+W segment.
3812 assert(!PHDRTableAddress
&& "unexpected address for program header table");
3813 PHDRTableOffset
= Obj
.getHeader().e_phoff
;
3814 if (NewWritableSegmentSize
) {
3815 errs() << "Unable to add writable segment with UseGnuStack option\n";
3820 // NOTE Currently .eh_frame_hdr appends to the last segment, recalculate
3821 // last segments size based on the NextAvailableAddress variable.
3822 if (!NewWritableSegmentSize
) {
3823 if (PHDRTableAddress
)
3824 NewTextSegmentSize
= NextAvailableAddress
- PHDRTableAddress
;
3826 NewTextSegmentSize
= NextAvailableAddress
- NewTextSegmentAddress
;
3828 NewWritableSegmentSize
= NextAvailableAddress
- NewWritableSegmentAddress
;
3831 OS
.seek(PHDRTableOffset
);
3833 bool ModdedGnuStack
= false;
3834 (void)ModdedGnuStack
;
3835 bool AddedSegment
= false;
3838 auto createNewTextPhdr
= [&]() {
3839 ELF64LEPhdrTy NewPhdr
;
3840 NewPhdr
.p_type
= ELF::PT_LOAD
;
3841 if (PHDRTableAddress
) {
3842 NewPhdr
.p_offset
= PHDRTableOffset
;
3843 NewPhdr
.p_vaddr
= PHDRTableAddress
;
3844 NewPhdr
.p_paddr
= PHDRTableAddress
;
3846 NewPhdr
.p_offset
= NewTextSegmentOffset
;
3847 NewPhdr
.p_vaddr
= NewTextSegmentAddress
;
3848 NewPhdr
.p_paddr
= NewTextSegmentAddress
;
3850 NewPhdr
.p_filesz
= NewTextSegmentSize
;
3851 NewPhdr
.p_memsz
= NewTextSegmentSize
;
3852 NewPhdr
.p_flags
= ELF::PF_X
| ELF::PF_R
;
3853 // FIXME: Currently instrumentation is experimental and the runtime data
3854 // is emitted with code, thus everything needs to be writable
3855 if (opts::Instrument
)
3856 NewPhdr
.p_flags
|= ELF::PF_W
;
3857 NewPhdr
.p_align
= BC
->PageAlign
;
3862 auto createNewWritableSectionsPhdr
= [&]() {
3863 ELF64LEPhdrTy NewPhdr
;
3864 NewPhdr
.p_type
= ELF::PT_LOAD
;
3865 NewPhdr
.p_offset
= getFileOffsetForAddress(NewWritableSegmentAddress
);
3866 NewPhdr
.p_vaddr
= NewWritableSegmentAddress
;
3867 NewPhdr
.p_paddr
= NewWritableSegmentAddress
;
3868 NewPhdr
.p_filesz
= NewWritableSegmentSize
;
3869 NewPhdr
.p_memsz
= NewWritableSegmentSize
;
3870 NewPhdr
.p_align
= BC
->RegularPageSize
;
3871 NewPhdr
.p_flags
= ELF::PF_R
| ELF::PF_W
;
3875 // Copy existing program headers with modifications.
3876 for (const ELF64LE::Phdr
&Phdr
: cantFail(Obj
.program_headers())) {
3877 ELF64LE::Phdr NewPhdr
= Phdr
;
3878 if (PHDRTableAddress
&& Phdr
.p_type
== ELF::PT_PHDR
) {
3879 NewPhdr
.p_offset
= PHDRTableOffset
;
3880 NewPhdr
.p_vaddr
= PHDRTableAddress
;
3881 NewPhdr
.p_paddr
= PHDRTableAddress
;
3882 NewPhdr
.p_filesz
= sizeof(NewPhdr
) * Phnum
;
3883 NewPhdr
.p_memsz
= sizeof(NewPhdr
) * Phnum
;
3884 } else if (Phdr
.p_type
== ELF::PT_GNU_EH_FRAME
) {
3885 ErrorOr
<BinarySection
&> EHFrameHdrSec
=
3886 BC
->getUniqueSectionByName(getNewSecPrefix() + ".eh_frame_hdr");
3887 if (EHFrameHdrSec
&& EHFrameHdrSec
->isAllocatable() &&
3888 EHFrameHdrSec
->isFinalized()) {
3889 NewPhdr
.p_offset
= EHFrameHdrSec
->getOutputFileOffset();
3890 NewPhdr
.p_vaddr
= EHFrameHdrSec
->getOutputAddress();
3891 NewPhdr
.p_paddr
= EHFrameHdrSec
->getOutputAddress();
3892 NewPhdr
.p_filesz
= EHFrameHdrSec
->getOutputSize();
3893 NewPhdr
.p_memsz
= EHFrameHdrSec
->getOutputSize();
3895 } else if (opts::UseGnuStack
&& Phdr
.p_type
== ELF::PT_GNU_STACK
) {
3896 NewPhdr
= createNewTextPhdr();
3897 ModdedGnuStack
= true;
3898 } else if (!opts::UseGnuStack
&& Phdr
.p_type
== ELF::PT_DYNAMIC
) {
3899 // Insert the new header before DYNAMIC.
3900 ELF64LE::Phdr NewTextPhdr
= createNewTextPhdr();
3901 OS
.write(reinterpret_cast<const char *>(&NewTextPhdr
),
3902 sizeof(NewTextPhdr
));
3903 if (NewWritableSegmentSize
) {
3904 ELF64LEPhdrTy NewWritablePhdr
= createNewWritableSectionsPhdr();
3905 OS
.write(reinterpret_cast<const char *>(&NewWritablePhdr
),
3906 sizeof(NewWritablePhdr
));
3908 AddedSegment
= true;
3910 OS
.write(reinterpret_cast<const char *>(&NewPhdr
), sizeof(NewPhdr
));
3913 if (!opts::UseGnuStack
&& !AddedSegment
) {
3914 // Append the new header to the end of the table.
3915 ELF64LE::Phdr NewTextPhdr
= createNewTextPhdr();
3916 OS
.write(reinterpret_cast<const char *>(&NewTextPhdr
), sizeof(NewTextPhdr
));
3917 if (NewWritableSegmentSize
) {
3918 ELF64LEPhdrTy NewWritablePhdr
= createNewWritableSectionsPhdr();
3919 OS
.write(reinterpret_cast<const char *>(&NewWritablePhdr
),
3920 sizeof(NewWritablePhdr
));
3924 assert((!opts::UseGnuStack
|| ModdedGnuStack
) &&
3925 "could not find GNU_STACK program header to modify");
3930 /// Write padding to \p OS such that its current \p Offset becomes aligned
3931 /// at \p Alignment. Return new (aligned) offset.
3932 uint64_t appendPadding(raw_pwrite_stream
&OS
, uint64_t Offset
,
3933 uint64_t Alignment
) {
3937 const uint64_t PaddingSize
=
3938 offsetToAlignment(Offset
, llvm::Align(Alignment
));
3939 for (unsigned I
= 0; I
< PaddingSize
; ++I
)
3940 OS
.write((unsigned char)0);
3941 return Offset
+ PaddingSize
;
3946 void RewriteInstance::rewriteNoteSections() {
3947 auto ELF64LEFile
= cast
<ELF64LEObjectFile
>(InputFile
);
3948 const ELFFile
<ELF64LE
> &Obj
= ELF64LEFile
->getELFFile();
3949 raw_fd_ostream
&OS
= Out
->os();
3951 uint64_t NextAvailableOffset
= getFileOffsetForAddress(NextAvailableAddress
);
3952 assert(NextAvailableOffset
>= FirstNonAllocatableOffset
&&
3953 "next available offset calculation failure");
3954 OS
.seek(NextAvailableOffset
);
3956 // Copy over non-allocatable section contents and update file offsets.
3957 for (const ELF64LE::Shdr
&Section
: cantFail(Obj
.sections())) {
3958 if (Section
.sh_type
== ELF::SHT_NULL
)
3960 if (Section
.sh_flags
& ELF::SHF_ALLOC
)
3963 SectionRef SecRef
= ELF64LEFile
->toSectionRef(&Section
);
3964 BinarySection
*BSec
= BC
->getSectionForSectionRef(SecRef
);
3965 assert(BSec
&& !BSec
->isAllocatable() &&
3966 "Matching non-allocatable BinarySection should exist.");
3968 StringRef SectionName
=
3969 cantFail(Obj
.getSectionName(Section
), "cannot get section name");
3970 if (shouldStrip(Section
, SectionName
))
3973 // Insert padding as needed.
3974 NextAvailableOffset
=
3975 appendPadding(OS
, NextAvailableOffset
, Section
.sh_addralign
);
3977 // New section size.
3979 bool DataWritten
= false;
3980 uint8_t *SectionData
= nullptr;
3981 // Copy over section contents unless it's one of the sections we overwrite.
3982 if (!willOverwriteSection(SectionName
)) {
3983 Size
= Section
.sh_size
;
3984 StringRef Dataref
= InputFile
->getData().substr(Section
.sh_offset
, Size
);
3986 if (BSec
->getPatcher()) {
3987 Data
= BSec
->getPatcher()->patchBinary(Dataref
);
3988 Dataref
= StringRef(Data
);
3991 // Section was expanded, so need to treat it as overwrite.
3992 if (Size
!= Dataref
.size()) {
3993 BSec
= &BC
->registerOrUpdateNoteSection(
3994 SectionName
, copyByteArray(Dataref
), Dataref
.size());
4000 // Add padding as the section extension might rely on the alignment.
4001 Size
= appendPadding(OS
, Size
, Section
.sh_addralign
);
4005 // Perform section post-processing.
4006 assert(BSec
->getAlignment() <= Section
.sh_addralign
&&
4007 "alignment exceeds value in file");
4009 if (BSec
->getAllocAddress()) {
4010 assert(!DataWritten
&& "Writing section twice.");
4012 SectionData
= BSec
->getOutputData();
4014 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: " << (Size
? "appending" : "writing")
4015 << " contents to section " << SectionName
<< '\n');
4016 OS
.write(reinterpret_cast<char *>(SectionData
), BSec
->getOutputSize());
4017 Size
+= BSec
->getOutputSize();
4020 BSec
->setOutputFileOffset(NextAvailableOffset
);
4021 BSec
->flushPendingRelocations(OS
, [this](const MCSymbol
*S
) {
4022 return getNewValueForSymbol(S
->getName());
4025 // Set/modify section info.
4026 BinarySection
&NewSection
= BC
->registerOrUpdateNoteSection(
4027 SectionName
, SectionData
, Size
, Section
.sh_addralign
,
4028 !BSec
->isWritable(), BSec
->getELFType());
4029 NewSection
.setOutputAddress(0);
4030 NewSection
.setOutputFileOffset(NextAvailableOffset
);
4032 NextAvailableOffset
+= Size
;
4035 // Write new note sections.
4036 for (BinarySection
&Section
: BC
->nonAllocatableSections()) {
4037 if (Section
.getOutputFileOffset() || !Section
.getAllocAddress())
4040 assert(!Section
.hasPendingRelocations() && "cannot have pending relocs");
4042 NextAvailableOffset
=
4043 appendPadding(OS
, NextAvailableOffset
, Section
.getAlignment());
4044 Section
.setOutputFileOffset(NextAvailableOffset
);
4047 dbgs() << "BOLT-DEBUG: writing out new section " << Section
.getName()
4048 << " of size " << Section
.getOutputSize() << " at offset 0x"
4049 << Twine::utohexstr(Section
.getOutputFileOffset()) << '\n');
4051 OS
.write(Section
.getOutputContents().data(), Section
.getOutputSize());
4052 NextAvailableOffset
+= Section
.getOutputSize();
4056 template <typename ELFT
>
4057 void RewriteInstance::finalizeSectionStringTable(ELFObjectFile
<ELFT
> *File
) {
4058 // Pre-populate section header string table.
4059 for (const BinarySection
&Section
: BC
->sections())
4060 if (!Section
.isAnonymous())
4061 SHStrTab
.add(Section
.getOutputName());
4062 SHStrTab
.finalize();
4064 const size_t SHStrTabSize
= SHStrTab
.getSize();
4065 uint8_t *DataCopy
= new uint8_t[SHStrTabSize
];
4066 memset(DataCopy
, 0, SHStrTabSize
);
4067 SHStrTab
.write(DataCopy
);
4068 BC
->registerOrUpdateNoteSection(".shstrtab",
4072 /*IsReadOnly=*/true,
4076 void RewriteInstance::addBoltInfoSection() {
4077 std::string DescStr
;
4078 raw_string_ostream
DescOS(DescStr
);
4080 DescOS
<< "BOLT revision: " << BoltRevision
<< ", "
4082 for (int I
= 0; I
< Argc
; ++I
)
4083 DescOS
<< " " << Argv
[I
];
4086 // Encode as GNU GOLD VERSION so it is easily printable by 'readelf -n'
4087 const std::string BoltInfo
=
4088 BinarySection::encodeELFNote("GNU", DescStr
, 4 /*NT_GNU_GOLD_VERSION*/);
4089 BC
->registerOrUpdateNoteSection(".note.bolt_info", copyByteArray(BoltInfo
),
4092 /*IsReadOnly=*/true, ELF::SHT_NOTE
);
4095 void RewriteInstance::addBATSection() {
4096 BC
->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME
, nullptr,
4099 /*IsReadOnly=*/true, ELF::SHT_NOTE
);
4102 void RewriteInstance::encodeBATSection() {
4103 std::string DescStr
;
4104 raw_string_ostream
DescOS(DescStr
);
4106 BAT
->write(*BC
, DescOS
);
4109 const std::string BoltInfo
=
4110 BinarySection::encodeELFNote("BOLT", DescStr
, BinarySection::NT_BOLT_BAT
);
4111 BC
->registerOrUpdateNoteSection(BoltAddressTranslation::SECTION_NAME
,
4112 copyByteArray(BoltInfo
), BoltInfo
.size(),
4114 /*IsReadOnly=*/true, ELF::SHT_NOTE
);
4115 outs() << "BOLT-INFO: BAT section size (bytes): " << BoltInfo
.size() << '\n';
4118 template <typename ELFShdrTy
>
4119 bool RewriteInstance::shouldStrip(const ELFShdrTy
&Section
,
4120 StringRef SectionName
) {
4121 // Strip non-allocatable relocation sections.
4122 if (!(Section
.sh_flags
& ELF::SHF_ALLOC
) && Section
.sh_type
== ELF::SHT_RELA
)
4125 // Strip debug sections if not updating them.
4126 if (isDebugSection(SectionName
) && !opts::UpdateDebugSections
)
4129 // Strip symtab section if needed
4130 if (opts::RemoveSymtab
&& Section
.sh_type
== ELF::SHT_SYMTAB
)
4136 template <typename ELFT
>
4137 std::vector
<typename
object::ELFObjectFile
<ELFT
>::Elf_Shdr
>
4138 RewriteInstance::getOutputSections(ELFObjectFile
<ELFT
> *File
,
4139 std::vector
<uint32_t> &NewSectionIndex
) {
4140 using ELFShdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Shdr
;
4141 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
4142 typename
ELFT::ShdrRange Sections
= cantFail(Obj
.sections());
4144 // Keep track of section header entries attached to the corresponding section.
4145 std::vector
<std::pair
<BinarySection
*, ELFShdrTy
>> OutputSections
;
4146 auto addSection
= [&](const ELFShdrTy
&Section
, BinarySection
*BinSec
) {
4147 ELFShdrTy NewSection
= Section
;
4148 NewSection
.sh_name
= SHStrTab
.getOffset(BinSec
->getOutputName());
4149 OutputSections
.emplace_back(BinSec
, std::move(NewSection
));
4152 // Copy over entries for original allocatable sections using modified name.
4153 for (const ELFShdrTy
&Section
: Sections
) {
4154 // Always ignore this section.
4155 if (Section
.sh_type
== ELF::SHT_NULL
) {
4156 OutputSections
.emplace_back(nullptr, Section
);
4160 if (!(Section
.sh_flags
& ELF::SHF_ALLOC
))
4163 SectionRef SecRef
= File
->toSectionRef(&Section
);
4164 BinarySection
*BinSec
= BC
->getSectionForSectionRef(SecRef
);
4165 assert(BinSec
&& "Matching BinarySection should exist.");
4167 addSection(Section
, BinSec
);
4170 for (BinarySection
&Section
: BC
->allocatableSections()) {
4171 if (!Section
.isFinalized())
4174 if (Section
.hasSectionRef() || Section
.isAnonymous()) {
4175 if (opts::Verbosity
)
4176 outs() << "BOLT-INFO: not writing section header for section "
4177 << Section
.getOutputName() << '\n';
4181 if (opts::Verbosity
>= 1)
4182 outs() << "BOLT-INFO: writing section header for "
4183 << Section
.getOutputName() << '\n';
4184 ELFShdrTy NewSection
;
4185 NewSection
.sh_type
= ELF::SHT_PROGBITS
;
4186 NewSection
.sh_addr
= Section
.getOutputAddress();
4187 NewSection
.sh_offset
= Section
.getOutputFileOffset();
4188 NewSection
.sh_size
= Section
.getOutputSize();
4189 NewSection
.sh_entsize
= 0;
4190 NewSection
.sh_flags
= Section
.getELFFlags();
4191 NewSection
.sh_link
= 0;
4192 NewSection
.sh_info
= 0;
4193 NewSection
.sh_addralign
= Section
.getAlignment();
4194 addSection(NewSection
, &Section
);
4197 // Sort all allocatable sections by their offset.
4198 llvm::stable_sort(OutputSections
, [](const auto &A
, const auto &B
) {
4199 return A
.second
.sh_offset
< B
.second
.sh_offset
;
4202 // Fix section sizes to prevent overlapping.
4203 ELFShdrTy
*PrevSection
= nullptr;
4204 BinarySection
*PrevBinSec
= nullptr;
4205 for (auto &SectionKV
: OutputSections
) {
4206 ELFShdrTy
&Section
= SectionKV
.second
;
4208 // TBSS section does not take file or memory space. Ignore it for layout
4210 if (Section
.sh_type
== ELF::SHT_NOBITS
&& (Section
.sh_flags
& ELF::SHF_TLS
))
4214 PrevSection
->sh_addr
+ PrevSection
->sh_size
> Section
.sh_addr
) {
4215 if (opts::Verbosity
> 1)
4216 outs() << "BOLT-INFO: adjusting size for section "
4217 << PrevBinSec
->getOutputName() << '\n';
4218 PrevSection
->sh_size
= Section
.sh_addr
> PrevSection
->sh_addr
4219 ? Section
.sh_addr
- PrevSection
->sh_addr
4223 PrevSection
= &Section
;
4224 PrevBinSec
= SectionKV
.first
;
4227 uint64_t LastFileOffset
= 0;
4229 // Copy over entries for non-allocatable sections performing necessary
4231 for (const ELFShdrTy
&Section
: Sections
) {
4232 if (Section
.sh_type
== ELF::SHT_NULL
)
4234 if (Section
.sh_flags
& ELF::SHF_ALLOC
)
4237 StringRef SectionName
=
4238 cantFail(Obj
.getSectionName(Section
), "cannot get section name");
4240 if (shouldStrip(Section
, SectionName
))
4243 SectionRef SecRef
= File
->toSectionRef(&Section
);
4244 BinarySection
*BinSec
= BC
->getSectionForSectionRef(SecRef
);
4245 assert(BinSec
&& "Matching BinarySection should exist.");
4247 ELFShdrTy NewSection
= Section
;
4248 NewSection
.sh_offset
= BinSec
->getOutputFileOffset();
4249 NewSection
.sh_size
= BinSec
->getOutputSize();
4251 if (NewSection
.sh_type
== ELF::SHT_SYMTAB
)
4252 NewSection
.sh_info
= NumLocalSymbols
;
4254 addSection(NewSection
, BinSec
);
4256 LastFileOffset
= BinSec
->getOutputFileOffset();
4259 // Create entries for new non-allocatable sections.
4260 for (BinarySection
&Section
: BC
->nonAllocatableSections()) {
4261 if (Section
.getOutputFileOffset() <= LastFileOffset
)
4264 if (opts::Verbosity
>= 1)
4265 outs() << "BOLT-INFO: writing section header for "
4266 << Section
.getOutputName() << '\n';
4268 ELFShdrTy NewSection
;
4269 NewSection
.sh_type
= Section
.getELFType();
4270 NewSection
.sh_addr
= 0;
4271 NewSection
.sh_offset
= Section
.getOutputFileOffset();
4272 NewSection
.sh_size
= Section
.getOutputSize();
4273 NewSection
.sh_entsize
= 0;
4274 NewSection
.sh_flags
= Section
.getELFFlags();
4275 NewSection
.sh_link
= 0;
4276 NewSection
.sh_info
= 0;
4277 NewSection
.sh_addralign
= Section
.getAlignment();
4279 addSection(NewSection
, &Section
);
4282 // Assign indices to sections.
4283 std::unordered_map
<std::string
, uint64_t> NameToIndex
;
4284 for (uint32_t Index
= 1; Index
< OutputSections
.size(); ++Index
)
4285 OutputSections
[Index
].first
->setIndex(Index
);
4287 // Update section index mapping
4288 NewSectionIndex
.clear();
4289 NewSectionIndex
.resize(Sections
.size(), 0);
4290 for (const ELFShdrTy
&Section
: Sections
) {
4291 if (Section
.sh_type
== ELF::SHT_NULL
)
4294 size_t OrgIndex
= std::distance(Sections
.begin(), &Section
);
4296 SectionRef SecRef
= File
->toSectionRef(&Section
);
4297 BinarySection
*BinSec
= BC
->getSectionForSectionRef(SecRef
);
4298 assert(BinSec
&& "BinarySection should exist for an input section.");
4300 // Some sections are stripped
4301 if (!BinSec
->hasValidIndex())
4304 NewSectionIndex
[OrgIndex
] = BinSec
->getIndex();
4307 std::vector
<ELFShdrTy
> SectionsOnly(OutputSections
.size());
4308 llvm::copy(llvm::make_second_range(OutputSections
), SectionsOnly
.begin());
4310 return SectionsOnly
;
4313 // Rewrite section header table inserting new entries as needed. The sections
4314 // header table size itself may affect the offsets of other sections,
4315 // so we are placing it at the end of the binary.
4317 // As we rewrite entries we need to track how many sections were inserted
4318 // as it changes the sh_link value. We map old indices to new ones for
4319 // existing sections.
4320 template <typename ELFT
>
4321 void RewriteInstance::patchELFSectionHeaderTable(ELFObjectFile
<ELFT
> *File
) {
4322 using ELFShdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Shdr
;
4323 using ELFEhdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Ehdr
;
4324 raw_fd_ostream
&OS
= Out
->os();
4325 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
4327 std::vector
<uint32_t> NewSectionIndex
;
4328 std::vector
<ELFShdrTy
> OutputSections
=
4329 getOutputSections(File
, NewSectionIndex
);
4331 dbgs() << "BOLT-DEBUG: old to new section index mapping:\n";
4332 for (uint64_t I
= 0; I
< NewSectionIndex
.size(); ++I
)
4333 dbgs() << " " << I
<< " -> " << NewSectionIndex
[I
] << '\n';
4336 // Align starting address for section header table. There's no architecutal
4337 // need to align this, it is just for pleasant human readability.
4338 uint64_t SHTOffset
= OS
.tell();
4339 SHTOffset
= appendPadding(OS
, SHTOffset
, 16);
4341 // Write all section header entries while patching section references.
4342 for (ELFShdrTy
&Section
: OutputSections
) {
4343 Section
.sh_link
= NewSectionIndex
[Section
.sh_link
];
4344 if (Section
.sh_type
== ELF::SHT_REL
|| Section
.sh_type
== ELF::SHT_RELA
) {
4345 if (Section
.sh_info
)
4346 Section
.sh_info
= NewSectionIndex
[Section
.sh_info
];
4348 OS
.write(reinterpret_cast<const char *>(&Section
), sizeof(Section
));
4352 ELFEhdrTy NewEhdr
= Obj
.getHeader();
4354 if (BC
->HasRelocations
) {
4355 if (RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary())
4356 NewEhdr
.e_entry
= RtLibrary
->getRuntimeStartAddress();
4358 NewEhdr
.e_entry
= getNewFunctionAddress(NewEhdr
.e_entry
);
4359 assert((NewEhdr
.e_entry
|| !Obj
.getHeader().e_entry
) &&
4360 "cannot find new address for entry point");
4362 NewEhdr
.e_phoff
= PHDRTableOffset
;
4363 NewEhdr
.e_phnum
= Phnum
;
4364 NewEhdr
.e_shoff
= SHTOffset
;
4365 NewEhdr
.e_shnum
= OutputSections
.size();
4366 NewEhdr
.e_shstrndx
= NewSectionIndex
[NewEhdr
.e_shstrndx
];
4367 OS
.pwrite(reinterpret_cast<const char *>(&NewEhdr
), sizeof(NewEhdr
), 0);
4370 template <typename ELFT
, typename WriteFuncTy
, typename StrTabFuncTy
>
4371 void RewriteInstance::updateELFSymbolTable(
4372 ELFObjectFile
<ELFT
> *File
, bool IsDynSym
,
4373 const typename
object::ELFObjectFile
<ELFT
>::Elf_Shdr
&SymTabSection
,
4374 const std::vector
<uint32_t> &NewSectionIndex
, WriteFuncTy Write
,
4375 StrTabFuncTy AddToStrTab
) {
4376 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
4377 using ELFSymTy
= typename ELFObjectFile
<ELFT
>::Elf_Sym
;
4379 StringRef StringSection
=
4380 cantFail(Obj
.getStringTableForSymtab(SymTabSection
));
4382 unsigned NumHotTextSymsUpdated
= 0;
4383 unsigned NumHotDataSymsUpdated
= 0;
4385 std::map
<const BinaryFunction
*, uint64_t> IslandSizes
;
4386 auto getConstantIslandSize
= [&IslandSizes
](const BinaryFunction
&BF
) {
4387 auto Itr
= IslandSizes
.find(&BF
);
4388 if (Itr
!= IslandSizes
.end())
4390 return IslandSizes
[&BF
] = BF
.estimateConstantIslandSize();
4393 // Symbols for the new symbol table.
4394 std::vector
<ELFSymTy
> Symbols
;
4396 auto getNewSectionIndex
= [&](uint32_t OldIndex
) {
4397 // For dynamic symbol table, the section index could be wrong on the input,
4398 // and its value is ignored by the runtime if it's different from
4399 // SHN_UNDEF and SHN_ABS.
4400 // However, we still need to update dynamic symbol table, so return a
4401 // section index, even though the index is broken.
4402 if (IsDynSym
&& OldIndex
>= NewSectionIndex
.size())
4405 assert(OldIndex
< NewSectionIndex
.size() && "section index out of bounds");
4406 const uint32_t NewIndex
= NewSectionIndex
[OldIndex
];
4408 // We may have stripped the section that dynsym was referencing due to
4409 // the linker bug. In that case return the old index avoiding marking
4410 // the symbol as undefined.
4411 if (IsDynSym
&& NewIndex
!= OldIndex
&& NewIndex
== ELF::SHN_UNDEF
)
4416 // Get the extra symbol name of a split fragment; used in addExtraSymbols.
4417 auto getSplitSymbolName
= [&](const FunctionFragment
&FF
,
4418 const ELFSymTy
&FunctionSymbol
) {
4419 SmallString
<256> SymbolName
;
4420 if (BC
->HasWarmSection
)
4422 formatv("{0}.{1}", cantFail(FunctionSymbol
.getName(StringSection
)),
4423 FF
.getFragmentNum() == FragmentNum::warm() ? "warm" : "cold");
4425 SymbolName
= formatv("{0}.cold.{1}",
4426 cantFail(FunctionSymbol
.getName(StringSection
)),
4427 FF
.getFragmentNum().get() - 1);
4431 // Add extra symbols for the function.
4433 // Note that addExtraSymbols() could be called multiple times for the same
4434 // function with different FunctionSymbol matching the main function entry
4436 auto addExtraSymbols
= [&](const BinaryFunction
&Function
,
4437 const ELFSymTy
&FunctionSymbol
) {
4438 if (Function
.isFolded()) {
4439 BinaryFunction
*ICFParent
= Function
.getFoldedIntoFunction();
4440 while (ICFParent
->isFolded())
4441 ICFParent
= ICFParent
->getFoldedIntoFunction();
4442 ELFSymTy ICFSymbol
= FunctionSymbol
;
4443 SmallVector
<char, 256> Buf
;
4445 AddToStrTab(Twine(cantFail(FunctionSymbol
.getName(StringSection
)))
4448 ICFSymbol
.st_value
= ICFParent
->getOutputAddress();
4449 ICFSymbol
.st_size
= ICFParent
->getOutputSize();
4450 ICFSymbol
.st_shndx
= ICFParent
->getCodeSection()->getIndex();
4451 Symbols
.emplace_back(ICFSymbol
);
4453 if (Function
.isSplit()) {
4454 for (const FunctionFragment
&FF
:
4455 Function
.getLayout().getSplitFragments()) {
4456 if (FF
.getAddress()) {
4457 ELFSymTy NewColdSym
= FunctionSymbol
;
4458 const SmallString
<256> SymbolName
=
4459 getSplitSymbolName(FF
, FunctionSymbol
);
4460 NewColdSym
.st_name
= AddToStrTab(SymbolName
);
4461 NewColdSym
.st_shndx
=
4462 Function
.getCodeSection(FF
.getFragmentNum())->getIndex();
4463 NewColdSym
.st_value
= FF
.getAddress();
4464 NewColdSym
.st_size
= FF
.getImageSize();
4465 NewColdSym
.setBindingAndType(ELF::STB_LOCAL
, ELF::STT_FUNC
);
4466 Symbols
.emplace_back(NewColdSym
);
4470 if (Function
.hasConstantIsland()) {
4471 uint64_t DataMark
= Function
.getOutputDataAddress();
4472 uint64_t CISize
= getConstantIslandSize(Function
);
4473 uint64_t CodeMark
= DataMark
+ CISize
;
4474 ELFSymTy DataMarkSym
= FunctionSymbol
;
4475 DataMarkSym
.st_name
= AddToStrTab("$d");
4476 DataMarkSym
.st_value
= DataMark
;
4477 DataMarkSym
.st_size
= 0;
4478 DataMarkSym
.setType(ELF::STT_NOTYPE
);
4479 DataMarkSym
.setBinding(ELF::STB_LOCAL
);
4480 ELFSymTy CodeMarkSym
= DataMarkSym
;
4481 CodeMarkSym
.st_name
= AddToStrTab("$x");
4482 CodeMarkSym
.st_value
= CodeMark
;
4483 Symbols
.emplace_back(DataMarkSym
);
4484 Symbols
.emplace_back(CodeMarkSym
);
4486 if (Function
.hasConstantIsland() && Function
.isSplit()) {
4487 uint64_t DataMark
= Function
.getOutputColdDataAddress();
4488 uint64_t CISize
= getConstantIslandSize(Function
);
4489 uint64_t CodeMark
= DataMark
+ CISize
;
4490 ELFSymTy DataMarkSym
= FunctionSymbol
;
4491 DataMarkSym
.st_name
= AddToStrTab("$d");
4492 DataMarkSym
.st_value
= DataMark
;
4493 DataMarkSym
.st_size
= 0;
4494 DataMarkSym
.setType(ELF::STT_NOTYPE
);
4495 DataMarkSym
.setBinding(ELF::STB_LOCAL
);
4496 ELFSymTy CodeMarkSym
= DataMarkSym
;
4497 CodeMarkSym
.st_name
= AddToStrTab("$x");
4498 CodeMarkSym
.st_value
= CodeMark
;
4499 Symbols
.emplace_back(DataMarkSym
);
4500 Symbols
.emplace_back(CodeMarkSym
);
4504 // For regular (non-dynamic) symbol table, exclude symbols referring
4505 // to non-allocatable sections.
4506 auto shouldStrip
= [&](const ELFSymTy
&Symbol
) {
4507 if (Symbol
.isAbsolute() || !Symbol
.isDefined())
4510 // If we cannot link the symbol to a section, leave it as is.
4511 Expected
<const typename
ELFT::Shdr
*> Section
=
4512 Obj
.getSection(Symbol
.st_shndx
);
4516 // Remove the section symbol iif the corresponding section was stripped.
4517 if (Symbol
.getType() == ELF::STT_SECTION
) {
4518 if (!getNewSectionIndex(Symbol
.st_shndx
))
4523 // Symbols in non-allocatable sections are typically remnants of relocations
4524 // emitted under "-emit-relocs" linker option. Delete those as we delete
4525 // relocations against non-allocatable sections.
4526 if (!((*Section
)->sh_flags
& ELF::SHF_ALLOC
))
4532 for (const ELFSymTy
&Symbol
: cantFail(Obj
.symbols(&SymTabSection
))) {
4533 // For regular (non-dynamic) symbol table strip unneeded symbols.
4534 if (!IsDynSym
&& shouldStrip(Symbol
))
4537 const BinaryFunction
*Function
=
4538 BC
->getBinaryFunctionAtAddress(Symbol
.st_value
);
4539 // Ignore false function references, e.g. when the section address matches
4540 // the address of the function.
4541 if (Function
&& Symbol
.getType() == ELF::STT_SECTION
)
4544 // For non-dynamic symtab, make sure the symbol section matches that of
4545 // the function. It can mismatch e.g. if the symbol is a section marker
4546 // in which case we treat the symbol separately from the function.
4547 // For dynamic symbol table, the section index could be wrong on the input,
4548 // and its value is ignored by the runtime if it's different from
4549 // SHN_UNDEF and SHN_ABS.
4550 if (!IsDynSym
&& Function
&&
4552 Function
->getOriginSection()->getSectionRef().getIndex())
4555 // Create a new symbol based on the existing symbol.
4556 ELFSymTy NewSymbol
= Symbol
;
4559 // If the symbol matched a function that was not emitted, update the
4560 // corresponding section index but otherwise leave it unchanged.
4561 if (Function
->isEmitted()) {
4562 NewSymbol
.st_value
= Function
->getOutputAddress();
4563 NewSymbol
.st_size
= Function
->getOutputSize();
4564 NewSymbol
.st_shndx
= Function
->getCodeSection()->getIndex();
4565 } else if (Symbol
.st_shndx
< ELF::SHN_LORESERVE
) {
4566 NewSymbol
.st_shndx
= getNewSectionIndex(Symbol
.st_shndx
);
4569 // Add new symbols to the symbol table if necessary.
4571 addExtraSymbols(*Function
, NewSymbol
);
4573 // Check if the function symbol matches address inside a function, i.e.
4574 // it marks a secondary entry point.
4576 (Symbol
.getType() == ELF::STT_FUNC
)
4577 ? BC
->getBinaryFunctionContainingAddress(Symbol
.st_value
,
4578 /*CheckPastEnd=*/false,
4579 /*UseMaxSize=*/true)
4582 if (Function
&& Function
->isEmitted()) {
4583 assert(Function
->getLayout().isHotColdSplit() &&
4584 "Adding symbols based on cold fragment when there are more than "
4586 const uint64_t OutputAddress
=
4587 Function
->translateInputToOutputAddress(Symbol
.st_value
);
4589 NewSymbol
.st_value
= OutputAddress
;
4590 // Force secondary entry points to have zero size.
4591 NewSymbol
.st_size
= 0;
4593 // Find fragment containing entrypoint
4594 FunctionLayout::fragment_const_iterator FF
= llvm::find_if(
4595 Function
->getLayout().fragments(), [&](const FunctionFragment
&FF
) {
4596 uint64_t Lo
= FF
.getAddress();
4597 uint64_t Hi
= Lo
+ FF
.getImageSize();
4598 return Lo
<= OutputAddress
&& OutputAddress
< Hi
;
4601 if (FF
== Function
->getLayout().fragment_end()) {
4603 OutputAddress
>= Function
->getCodeSection()->getOutputAddress() &&
4604 OutputAddress
< (Function
->getCodeSection()->getOutputAddress() +
4605 Function
->getCodeSection()->getOutputSize()) &&
4606 "Cannot locate fragment containing secondary entrypoint");
4607 FF
= Function
->getLayout().fragment_begin();
4610 NewSymbol
.st_shndx
=
4611 Function
->getCodeSection(FF
->getFragmentNum())->getIndex();
4613 // Check if the symbol belongs to moved data object and update it.
4614 BinaryData
*BD
= opts::ReorderData
.empty()
4616 : BC
->getBinaryDataAtAddress(Symbol
.st_value
);
4617 if (BD
&& BD
->isMoved() && !BD
->isJumpTable()) {
4618 assert((!BD
->getSize() || !Symbol
.st_size
||
4619 Symbol
.st_size
== BD
->getSize()) &&
4620 "sizes must match");
4622 BinarySection
&OutputSection
= BD
->getOutputSection();
4623 assert(OutputSection
.getIndex());
4625 << "BOLT-DEBUG: moving " << BD
->getName() << " from "
4626 << *BC
->getSectionNameForAddress(Symbol
.st_value
) << " ("
4627 << Symbol
.st_shndx
<< ") to " << OutputSection
.getName()
4628 << " (" << OutputSection
.getIndex() << ")\n");
4629 NewSymbol
.st_shndx
= OutputSection
.getIndex();
4630 NewSymbol
.st_value
= BD
->getOutputAddress();
4632 // Otherwise just update the section for the symbol.
4633 if (Symbol
.st_shndx
< ELF::SHN_LORESERVE
)
4634 NewSymbol
.st_shndx
= getNewSectionIndex(Symbol
.st_shndx
);
4637 // Detect local syms in the text section that we didn't update
4638 // and that were preserved by the linker to support relocations against
4639 // .text. Remove them from the symtab.
4640 if (Symbol
.getType() == ELF::STT_NOTYPE
&&
4641 Symbol
.getBinding() == ELF::STB_LOCAL
&& Symbol
.st_size
== 0) {
4642 if (BC
->getBinaryFunctionContainingAddress(Symbol
.st_value
,
4643 /*CheckPastEnd=*/false,
4644 /*UseMaxSize=*/true)) {
4645 // Can only delete the symbol if not patching. Such symbols should
4646 // not exist in the dynamic symbol table.
4647 assert(!IsDynSym
&& "cannot delete symbol");
4654 // Handle special symbols based on their name.
4655 Expected
<StringRef
> SymbolName
= Symbol
.getName(StringSection
);
4656 assert(SymbolName
&& "cannot get symbol name");
4658 auto updateSymbolValue
= [&](const StringRef Name
,
4659 std::optional
<uint64_t> Value
= std::nullopt
) {
4660 NewSymbol
.st_value
= Value
? *Value
: getNewValueForSymbol(Name
);
4661 NewSymbol
.st_shndx
= ELF::SHN_ABS
;
4662 outs() << "BOLT-INFO: setting " << Name
<< " to 0x"
4663 << Twine::utohexstr(NewSymbol
.st_value
) << '\n';
4666 if (opts::HotText
&&
4667 (*SymbolName
== "__hot_start" || *SymbolName
== "__hot_end")) {
4668 updateSymbolValue(*SymbolName
);
4669 ++NumHotTextSymsUpdated
;
4672 if (opts::HotData
&& (*SymbolName
== "__hot_data_start" ||
4673 *SymbolName
== "__hot_data_end")) {
4674 updateSymbolValue(*SymbolName
);
4675 ++NumHotDataSymsUpdated
;
4678 if (*SymbolName
== "_end")
4679 updateSymbolValue(*SymbolName
, NextAvailableAddress
);
4682 Write((&Symbol
- cantFail(Obj
.symbols(&SymTabSection
)).begin()) *
4686 Symbols
.emplace_back(NewSymbol
);
4690 assert(Symbols
.empty());
4694 // Add symbols of injected functions
4695 for (BinaryFunction
*Function
: BC
->getInjectedBinaryFunctions()) {
4697 BinarySection
*OriginSection
= Function
->getOriginSection();
4698 NewSymbol
.st_shndx
=
4700 ? getNewSectionIndex(OriginSection
->getSectionRef().getIndex())
4701 : Function
->getCodeSection()->getIndex();
4702 NewSymbol
.st_value
= Function
->getOutputAddress();
4703 NewSymbol
.st_name
= AddToStrTab(Function
->getOneName());
4704 NewSymbol
.st_size
= Function
->getOutputSize();
4705 NewSymbol
.st_other
= 0;
4706 NewSymbol
.setBindingAndType(ELF::STB_LOCAL
, ELF::STT_FUNC
);
4707 Symbols
.emplace_back(NewSymbol
);
4709 if (Function
->isSplit()) {
4710 assert(Function
->getLayout().isHotColdSplit() &&
4711 "Adding symbols based on cold fragment when there are more than "
4713 ELFSymTy NewColdSym
= NewSymbol
;
4714 NewColdSym
.setType(ELF::STT_NOTYPE
);
4715 SmallVector
<char, 256> Buf
;
4716 NewColdSym
.st_name
= AddToStrTab(
4717 Twine(Function
->getPrintName()).concat(".cold.0").toStringRef(Buf
));
4718 const FunctionFragment
&ColdFF
=
4719 Function
->getLayout().getFragment(FragmentNum::cold());
4720 NewColdSym
.st_value
= ColdFF
.getAddress();
4721 NewColdSym
.st_size
= ColdFF
.getImageSize();
4722 Symbols
.emplace_back(NewColdSym
);
4726 auto AddSymbol
= [&](const StringRef
&Name
, uint64_t Address
) {
4731 Symbol
.st_value
= Address
;
4732 Symbol
.st_shndx
= ELF::SHN_ABS
;
4733 Symbol
.st_name
= AddToStrTab(Name
);
4735 Symbol
.st_other
= 0;
4736 Symbol
.setBindingAndType(ELF::STB_WEAK
, ELF::STT_NOTYPE
);
4738 outs() << "BOLT-INFO: setting " << Name
<< " to 0x"
4739 << Twine::utohexstr(Symbol
.st_value
) << '\n';
4741 Symbols
.emplace_back(Symbol
);
4744 // Add runtime library start and fini address symbols
4745 if (RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary()) {
4746 AddSymbol("__bolt_runtime_start", RtLibrary
->getRuntimeStartAddress());
4747 AddSymbol("__bolt_runtime_fini", RtLibrary
->getRuntimeFiniAddress());
4750 assert((!NumHotTextSymsUpdated
|| NumHotTextSymsUpdated
== 2) &&
4751 "either none or both __hot_start/__hot_end symbols were expected");
4752 assert((!NumHotDataSymsUpdated
|| NumHotDataSymsUpdated
== 2) &&
4753 "either none or both __hot_data_start/__hot_data_end symbols were "
4756 auto AddEmittedSymbol
= [&](const StringRef
&Name
) {
4757 AddSymbol(Name
, getNewValueForSymbol(Name
));
4760 if (opts::HotText
&& !NumHotTextSymsUpdated
) {
4761 AddEmittedSymbol("__hot_start");
4762 AddEmittedSymbol("__hot_end");
4765 if (opts::HotData
&& !NumHotDataSymsUpdated
) {
4766 AddEmittedSymbol("__hot_data_start");
4767 AddEmittedSymbol("__hot_data_end");
4770 // Put local symbols at the beginning.
4771 llvm::stable_sort(Symbols
, [](const ELFSymTy
&A
, const ELFSymTy
&B
) {
4772 if (A
.getBinding() == ELF::STB_LOCAL
&& B
.getBinding() != ELF::STB_LOCAL
)
4777 for (const ELFSymTy
&Symbol
: Symbols
)
4781 template <typename ELFT
>
4782 void RewriteInstance::patchELFSymTabs(ELFObjectFile
<ELFT
> *File
) {
4783 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
4784 using ELFShdrTy
= typename ELFObjectFile
<ELFT
>::Elf_Shdr
;
4785 using ELFSymTy
= typename ELFObjectFile
<ELFT
>::Elf_Sym
;
4787 // Compute a preview of how section indices will change after rewriting, so
4788 // we can properly update the symbol table based on new section indices.
4789 std::vector
<uint32_t> NewSectionIndex
;
4790 getOutputSections(File
, NewSectionIndex
);
4792 // Set pointer at the end of the output file, so we can pwrite old symbol
4793 // tables if we need to.
4794 uint64_t NextAvailableOffset
= getFileOffsetForAddress(NextAvailableAddress
);
4795 assert(NextAvailableOffset
>= FirstNonAllocatableOffset
&&
4796 "next available offset calculation failure");
4797 Out
->os().seek(NextAvailableOffset
);
4799 // Update dynamic symbol table.
4800 const ELFShdrTy
*DynSymSection
= nullptr;
4801 for (const ELFShdrTy
&Section
: cantFail(Obj
.sections())) {
4802 if (Section
.sh_type
== ELF::SHT_DYNSYM
) {
4803 DynSymSection
= &Section
;
4807 assert((DynSymSection
|| BC
->IsStaticExecutable
) &&
4808 "dynamic symbol table expected");
4809 if (DynSymSection
) {
4810 updateELFSymbolTable(
4815 [&](size_t Offset
, const ELFSymTy
&Sym
) {
4816 Out
->os().pwrite(reinterpret_cast<const char *>(&Sym
),
4818 DynSymSection
->sh_offset
+ Offset
);
4820 [](StringRef
) -> size_t { return 0; });
4823 if (opts::RemoveSymtab
)
4826 // (re)create regular symbol table.
4827 const ELFShdrTy
*SymTabSection
= nullptr;
4828 for (const ELFShdrTy
&Section
: cantFail(Obj
.sections())) {
4829 if (Section
.sh_type
== ELF::SHT_SYMTAB
) {
4830 SymTabSection
= &Section
;
4834 if (!SymTabSection
) {
4835 errs() << "BOLT-WARNING: no symbol table found\n";
4839 const ELFShdrTy
*StrTabSection
=
4840 cantFail(Obj
.getSection(SymTabSection
->sh_link
));
4841 std::string NewContents
;
4842 std::string NewStrTab
= std::string(
4843 File
->getData().substr(StrTabSection
->sh_offset
, StrTabSection
->sh_size
));
4844 StringRef SecName
= cantFail(Obj
.getSectionName(*SymTabSection
));
4845 StringRef StrSecName
= cantFail(Obj
.getSectionName(*StrTabSection
));
4847 NumLocalSymbols
= 0;
4848 updateELFSymbolTable(
4853 [&](size_t Offset
, const ELFSymTy
&Sym
) {
4854 if (Sym
.getBinding() == ELF::STB_LOCAL
)
4856 NewContents
.append(reinterpret_cast<const char *>(&Sym
),
4859 [&](StringRef Str
) {
4860 size_t Idx
= NewStrTab
.size();
4861 NewStrTab
.append(NameResolver::restore(Str
).str());
4862 NewStrTab
.append(1, '\0');
4866 BC
->registerOrUpdateNoteSection(SecName
,
4867 copyByteArray(NewContents
),
4870 /*IsReadOnly=*/true,
4873 BC
->registerOrUpdateNoteSection(StrSecName
,
4874 copyByteArray(NewStrTab
),
4877 /*IsReadOnly=*/true,
4881 template <typename ELFT
>
4882 void RewriteInstance::patchELFAllocatableRelrSection(
4883 ELFObjectFile
<ELFT
> *File
) {
4884 if (!DynamicRelrAddress
)
4887 raw_fd_ostream
&OS
= Out
->os();
4888 const uint8_t PSize
= BC
->AsmInfo
->getCodePointerSize();
4889 const uint64_t MaxDelta
= ((CHAR_BIT
* DynamicRelrEntrySize
) - 1) * PSize
;
4891 auto FixAddend
= [&](const BinarySection
&Section
, const Relocation
&Rel
,
4892 uint64_t FileOffset
) {
4893 // Fix relocation symbol value in place if no static relocation found
4894 // on the same address. We won't check the BF relocations here since it
4895 // is rare case and no optimization is required.
4896 if (Section
.getRelocationAt(Rel
.Offset
))
4899 // No fixup needed if symbol address was not changed
4900 const uint64_t Addend
= getNewFunctionOrDataAddress(Rel
.Addend
);
4904 OS
.pwrite(reinterpret_cast<const char *>(&Addend
), PSize
, FileOffset
);
4907 // Fill new relative relocation offsets set
4908 std::set
<uint64_t> RelOffsets
;
4909 for (const BinarySection
&Section
: BC
->allocatableSections()) {
4910 const uint64_t SectionInputAddress
= Section
.getAddress();
4911 uint64_t SectionAddress
= Section
.getOutputAddress();
4912 if (!SectionAddress
)
4913 SectionAddress
= SectionInputAddress
;
4915 for (const Relocation
&Rel
: Section
.dynamicRelocations()) {
4916 if (!Rel
.isRelative())
4919 uint64_t RelOffset
=
4920 getNewFunctionOrDataAddress(SectionInputAddress
+ Rel
.Offset
);
4922 RelOffset
= RelOffset
== 0 ? SectionAddress
+ Rel
.Offset
: RelOffset
;
4923 assert((RelOffset
& 1) == 0 && "Wrong relocation offset");
4924 RelOffsets
.emplace(RelOffset
);
4925 FixAddend(Section
, Rel
, RelOffset
);
4929 ErrorOr
<BinarySection
&> Section
=
4930 BC
->getSectionForAddress(*DynamicRelrAddress
);
4931 assert(Section
&& "cannot get .relr.dyn section");
4932 assert(Section
->isRelr() && "Expected section to be SHT_RELR type");
4933 uint64_t RelrDynOffset
= Section
->getInputFileOffset();
4934 const uint64_t RelrDynEndOffset
= RelrDynOffset
+ Section
->getSize();
4936 auto WriteRelr
= [&](uint64_t Value
) {
4937 if (RelrDynOffset
+ DynamicRelrEntrySize
> RelrDynEndOffset
) {
4938 errs() << "BOLT-ERROR: Offset overflow for relr.dyn section\n";
4942 OS
.pwrite(reinterpret_cast<const char *>(&Value
), DynamicRelrEntrySize
,
4944 RelrDynOffset
+= DynamicRelrEntrySize
;
4947 for (auto RelIt
= RelOffsets
.begin(); RelIt
!= RelOffsets
.end();) {
4949 uint64_t Base
= *RelIt
++ + PSize
;
4951 uint64_t Bitmap
= 0;
4952 for (; RelIt
!= RelOffsets
.end(); ++RelIt
) {
4953 const uint64_t Delta
= *RelIt
- Base
;
4954 if (Delta
>= MaxDelta
|| Delta
% PSize
)
4957 Bitmap
|= (1ULL << (Delta
/ PSize
));
4963 WriteRelr((Bitmap
<< 1) | 1);
4968 // Fill the rest of the section with empty bitmap value
4969 while (RelrDynOffset
!= RelrDynEndOffset
)
4973 template <typename ELFT
>
4975 RewriteInstance::patchELFAllocatableRelaSections(ELFObjectFile
<ELFT
> *File
) {
4976 using Elf_Rela
= typename
ELFT::Rela
;
4977 raw_fd_ostream
&OS
= Out
->os();
4978 const ELFFile
<ELFT
> &EF
= File
->getELFFile();
4980 uint64_t RelDynOffset
= 0, RelDynEndOffset
= 0;
4981 uint64_t RelPltOffset
= 0, RelPltEndOffset
= 0;
4983 auto setSectionFileOffsets
= [&](uint64_t Address
, uint64_t &Start
,
4985 ErrorOr
<BinarySection
&> Section
= BC
->getSectionForAddress(Address
);
4986 assert(Section
&& "cannot get relocation section");
4987 Start
= Section
->getInputFileOffset();
4988 End
= Start
+ Section
->getSize();
4991 if (!DynamicRelocationsAddress
&& !PLTRelocationsAddress
)
4994 if (DynamicRelocationsAddress
)
4995 setSectionFileOffsets(*DynamicRelocationsAddress
, RelDynOffset
,
4998 if (PLTRelocationsAddress
)
4999 setSectionFileOffsets(*PLTRelocationsAddress
, RelPltOffset
,
5002 DynamicRelativeRelocationsCount
= 0;
5004 auto writeRela
= [&OS
](const Elf_Rela
*RelA
, uint64_t &Offset
) {
5005 OS
.pwrite(reinterpret_cast<const char *>(RelA
), sizeof(*RelA
), Offset
);
5006 Offset
+= sizeof(*RelA
);
5009 auto writeRelocations
= [&](bool PatchRelative
) {
5010 for (BinarySection
&Section
: BC
->allocatableSections()) {
5011 const uint64_t SectionInputAddress
= Section
.getAddress();
5012 uint64_t SectionAddress
= Section
.getOutputAddress();
5013 if (!SectionAddress
)
5014 SectionAddress
= SectionInputAddress
;
5016 for (const Relocation
&Rel
: Section
.dynamicRelocations()) {
5017 const bool IsRelative
= Rel
.isRelative();
5018 if (PatchRelative
!= IsRelative
)
5022 ++DynamicRelativeRelocationsCount
;
5025 MCSymbol
*Symbol
= Rel
.Symbol
;
5026 uint32_t SymbolIdx
= 0;
5027 uint64_t Addend
= Rel
.Addend
;
5028 uint64_t RelOffset
=
5029 getNewFunctionOrDataAddress(SectionInputAddress
+ Rel
.Offset
);
5031 RelOffset
= RelOffset
== 0 ? SectionAddress
+ Rel
.Offset
: RelOffset
;
5033 SymbolIdx
= getOutputDynamicSymbolIndex(Symbol
);
5035 // Usually this case is used for R_*_(I)RELATIVE relocations
5036 const uint64_t Address
= getNewFunctionOrDataAddress(Addend
);
5041 NewRelA
.setSymbolAndType(SymbolIdx
, Rel
.Type
, EF
.isMips64EL());
5042 NewRelA
.r_offset
= RelOffset
;
5043 NewRelA
.r_addend
= Addend
;
5045 const bool IsJmpRel
= IsJmpRelocation
.contains(Rel
.Type
);
5046 uint64_t &Offset
= IsJmpRel
? RelPltOffset
: RelDynOffset
;
5047 const uint64_t &EndOffset
=
5048 IsJmpRel
? RelPltEndOffset
: RelDynEndOffset
;
5049 if (!Offset
|| !EndOffset
) {
5050 errs() << "BOLT-ERROR: Invalid offsets for dynamic relocation\n";
5054 if (Offset
+ sizeof(NewRelA
) > EndOffset
) {
5055 errs() << "BOLT-ERROR: Offset overflow for dynamic relocation\n";
5059 writeRela(&NewRelA
, Offset
);
5064 // Place R_*_RELATIVE relocations in RELA section if RELR is not presented.
5065 // The dynamic linker expects all R_*_RELATIVE relocations in RELA
5066 // to be emitted first.
5067 if (!DynamicRelrAddress
)
5068 writeRelocations(/* PatchRelative */ true);
5069 writeRelocations(/* PatchRelative */ false);
5071 auto fillNone
= [&](uint64_t &Offset
, uint64_t EndOffset
) {
5075 typename ELFObjectFile
<ELFT
>::Elf_Rela RelA
;
5076 RelA
.setSymbolAndType(0, Relocation::getNone(), EF
.isMips64EL());
5079 while (Offset
< EndOffset
)
5080 writeRela(&RelA
, Offset
);
5082 assert(Offset
== EndOffset
&& "Unexpected section overflow");
5085 // Fill the rest of the sections with R_*_NONE relocations
5086 fillNone(RelDynOffset
, RelDynEndOffset
);
5087 fillNone(RelPltOffset
, RelPltEndOffset
);
5090 template <typename ELFT
>
5091 void RewriteInstance::patchELFGOT(ELFObjectFile
<ELFT
> *File
) {
5092 raw_fd_ostream
&OS
= Out
->os();
5094 SectionRef GOTSection
;
5095 for (const SectionRef
&Section
: File
->sections()) {
5096 StringRef SectionName
= cantFail(Section
.getName());
5097 if (SectionName
== ".got") {
5098 GOTSection
= Section
;
5102 if (!GOTSection
.getObject()) {
5103 if (!BC
->IsStaticExecutable
)
5104 errs() << "BOLT-INFO: no .got section found\n";
5108 StringRef GOTContents
= cantFail(GOTSection
.getContents());
5109 for (const uint64_t *GOTEntry
=
5110 reinterpret_cast<const uint64_t *>(GOTContents
.data());
5111 GOTEntry
< reinterpret_cast<const uint64_t *>(GOTContents
.data() +
5112 GOTContents
.size());
5114 if (uint64_t NewAddress
= getNewFunctionAddress(*GOTEntry
)) {
5115 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching GOT entry 0x"
5116 << Twine::utohexstr(*GOTEntry
) << " with 0x"
5117 << Twine::utohexstr(NewAddress
) << '\n');
5118 OS
.pwrite(reinterpret_cast<const char *>(&NewAddress
), sizeof(NewAddress
),
5119 reinterpret_cast<const char *>(GOTEntry
) -
5120 File
->getData().data());
5125 template <typename ELFT
>
5126 void RewriteInstance::patchELFDynamic(ELFObjectFile
<ELFT
> *File
) {
5127 if (BC
->IsStaticExecutable
)
5130 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
5131 raw_fd_ostream
&OS
= Out
->os();
5133 using Elf_Phdr
= typename ELFFile
<ELFT
>::Elf_Phdr
;
5134 using Elf_Dyn
= typename ELFFile
<ELFT
>::Elf_Dyn
;
5136 // Locate DYNAMIC by looking through program headers.
5137 uint64_t DynamicOffset
= 0;
5138 const Elf_Phdr
*DynamicPhdr
= nullptr;
5139 for (const Elf_Phdr
&Phdr
: cantFail(Obj
.program_headers())) {
5140 if (Phdr
.p_type
== ELF::PT_DYNAMIC
) {
5141 DynamicOffset
= Phdr
.p_offset
;
5142 DynamicPhdr
= &Phdr
;
5143 assert(Phdr
.p_memsz
== Phdr
.p_filesz
&& "dynamic sizes should match");
5147 assert(DynamicPhdr
&& "missing dynamic in ELF binary");
5149 bool ZNowSet
= false;
5151 // Go through all dynamic entries and patch functions addresses with
5153 typename
ELFT::DynRange DynamicEntries
=
5154 cantFail(Obj
.dynamicEntries(), "error accessing dynamic table");
5155 auto DTB
= DynamicEntries
.begin();
5156 for (const Elf_Dyn
&Dyn
: DynamicEntries
) {
5157 Elf_Dyn NewDE
= Dyn
;
5158 bool ShouldPatch
= true;
5159 switch (Dyn
.d_tag
) {
5161 ShouldPatch
= false;
5163 case ELF::DT_RELACOUNT
:
5164 NewDE
.d_un
.d_val
= DynamicRelativeRelocationsCount
;
5167 case ELF::DT_FINI
: {
5168 if (BC
->HasRelocations
) {
5169 if (uint64_t NewAddress
= getNewFunctionAddress(Dyn
.getPtr())) {
5170 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: patching dynamic entry of type "
5171 << Dyn
.getTag() << '\n');
5172 NewDE
.d_un
.d_ptr
= NewAddress
;
5175 RuntimeLibrary
*RtLibrary
= BC
->getRuntimeLibrary();
5176 if (RtLibrary
&& Dyn
.getTag() == ELF::DT_FINI
) {
5177 if (uint64_t Addr
= RtLibrary
->getRuntimeFiniAddress())
5178 NewDE
.d_un
.d_ptr
= Addr
;
5180 if (RtLibrary
&& Dyn
.getTag() == ELF::DT_INIT
&& !BC
->HasInterpHeader
) {
5181 if (auto Addr
= RtLibrary
->getRuntimeStartAddress()) {
5182 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set DT_INIT to 0x"
5183 << Twine::utohexstr(Addr
) << '\n');
5184 NewDE
.d_un
.d_ptr
= Addr
;
5190 if (BC
->RequiresZNow
) {
5191 NewDE
.d_un
.d_val
|= ELF::DF_BIND_NOW
;
5195 case ELF::DT_FLAGS_1
:
5196 if (BC
->RequiresZNow
) {
5197 NewDE
.d_un
.d_val
|= ELF::DF_1_NOW
;
5203 OS
.pwrite(reinterpret_cast<const char *>(&NewDE
), sizeof(NewDE
),
5204 DynamicOffset
+ (&Dyn
- DTB
) * sizeof(Dyn
));
5207 if (BC
->RequiresZNow
&& !ZNowSet
) {
5208 errs() << "BOLT-ERROR: output binary requires immediate relocation "
5209 "processing which depends on DT_FLAGS or DT_FLAGS_1 presence in "
5210 ".dynamic. Please re-link the binary with -znow.\n";
5215 template <typename ELFT
>
5216 Error
RewriteInstance::readELFDynamic(ELFObjectFile
<ELFT
> *File
) {
5217 const ELFFile
<ELFT
> &Obj
= File
->getELFFile();
5219 using Elf_Phdr
= typename ELFFile
<ELFT
>::Elf_Phdr
;
5220 using Elf_Dyn
= typename ELFFile
<ELFT
>::Elf_Dyn
;
5222 // Locate DYNAMIC by looking through program headers.
5223 const Elf_Phdr
*DynamicPhdr
= nullptr;
5224 for (const Elf_Phdr
&Phdr
: cantFail(Obj
.program_headers())) {
5225 if (Phdr
.p_type
== ELF::PT_DYNAMIC
) {
5226 DynamicPhdr
= &Phdr
;
5232 outs() << "BOLT-INFO: static input executable detected\n";
5233 // TODO: static PIE executable might have dynamic header
5234 BC
->IsStaticExecutable
= true;
5235 return Error::success();
5238 if (DynamicPhdr
->p_memsz
!= DynamicPhdr
->p_filesz
)
5239 return createStringError(errc::executable_format_error
,
5240 "dynamic section sizes should match");
5242 // Go through all dynamic entries to locate entries of interest.
5243 auto DynamicEntriesOrErr
= Obj
.dynamicEntries();
5244 if (!DynamicEntriesOrErr
)
5245 return DynamicEntriesOrErr
.takeError();
5246 typename
ELFT::DynRange DynamicEntries
= DynamicEntriesOrErr
.get();
5248 for (const Elf_Dyn
&Dyn
: DynamicEntries
) {
5249 switch (Dyn
.d_tag
) {
5251 if (!BC
->HasInterpHeader
) {
5252 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Set start function address\n");
5253 BC
->StartFunctionAddress
= Dyn
.getPtr();
5257 BC
->FiniAddress
= Dyn
.getPtr();
5259 case ELF::DT_FINI_ARRAY
:
5260 BC
->FiniArrayAddress
= Dyn
.getPtr();
5262 case ELF::DT_FINI_ARRAYSZ
:
5263 BC
->FiniArraySize
= Dyn
.getPtr();
5266 DynamicRelocationsAddress
= Dyn
.getPtr();
5268 case ELF::DT_RELASZ
:
5269 DynamicRelocationsSize
= Dyn
.getVal();
5271 case ELF::DT_JMPREL
:
5272 PLTRelocationsAddress
= Dyn
.getPtr();
5274 case ELF::DT_PLTRELSZ
:
5275 PLTRelocationsSize
= Dyn
.getVal();
5277 case ELF::DT_RELACOUNT
:
5278 DynamicRelativeRelocationsCount
= Dyn
.getVal();
5281 DynamicRelrAddress
= Dyn
.getPtr();
5283 case ELF::DT_RELRSZ
:
5284 DynamicRelrSize
= Dyn
.getVal();
5286 case ELF::DT_RELRENT
:
5287 DynamicRelrEntrySize
= Dyn
.getVal();
5292 if (!DynamicRelocationsAddress
|| !DynamicRelocationsSize
) {
5293 DynamicRelocationsAddress
.reset();
5294 DynamicRelocationsSize
= 0;
5297 if (!PLTRelocationsAddress
|| !PLTRelocationsSize
) {
5298 PLTRelocationsAddress
.reset();
5299 PLTRelocationsSize
= 0;
5302 if (!DynamicRelrAddress
|| !DynamicRelrSize
) {
5303 DynamicRelrAddress
.reset();
5304 DynamicRelrSize
= 0;
5305 } else if (!DynamicRelrEntrySize
) {
5306 errs() << "BOLT-ERROR: expected DT_RELRENT to be presented "
5307 << "in DYNAMIC section\n";
5309 } else if (DynamicRelrSize
% DynamicRelrEntrySize
) {
5310 errs() << "BOLT-ERROR: expected RELR table size to be divisible "
5311 << "by RELR entry size\n";
5315 return Error::success();
5318 uint64_t RewriteInstance::getNewFunctionAddress(uint64_t OldAddress
) {
5319 const BinaryFunction
*Function
= BC
->getBinaryFunctionAtAddress(OldAddress
);
5323 return Function
->getOutputAddress();
5326 uint64_t RewriteInstance::getNewFunctionOrDataAddress(uint64_t OldAddress
) {
5327 if (uint64_t Function
= getNewFunctionAddress(OldAddress
))
5330 const BinaryData
*BD
= BC
->getBinaryDataAtAddress(OldAddress
);
5331 if (BD
&& BD
->isMoved())
5332 return BD
->getOutputAddress();
5337 void RewriteInstance::rewriteFile() {
5339 Out
= std::make_unique
<ToolOutputFile
>(opts::OutputFilename
, EC
,
5341 check_error(EC
, "cannot create output executable file");
5343 raw_fd_ostream
&OS
= Out
->os();
5345 // Copy allocatable part of the input.
5346 OS
<< InputFile
->getData().substr(0, FirstNonAllocatableOffset
);
5348 auto Streamer
= BC
->createStreamer(OS
);
5349 // Make sure output stream has enough reserved space, otherwise
5350 // pwrite() will fail.
5351 uint64_t Offset
= OS
.seek(getFileOffsetForAddress(NextAvailableAddress
));
5353 assert(Offset
== getFileOffsetForAddress(NextAvailableAddress
) &&
5354 "error resizing output file");
5356 // Overwrite functions with fixed output address. This is mostly used by
5357 // non-relocation mode, with one exception: injected functions are covered
5358 // here in both modes.
5359 uint64_t CountOverwrittenFunctions
= 0;
5360 uint64_t OverwrittenScore
= 0;
5361 for (BinaryFunction
*Function
: BC
->getAllBinaryFunctions()) {
5362 if (Function
->getImageAddress() == 0 || Function
->getImageSize() == 0)
5365 if (Function
->getImageSize() > Function
->getMaxSize()) {
5366 if (opts::Verbosity
>= 1)
5367 errs() << "BOLT-WARNING: new function size (0x"
5368 << Twine::utohexstr(Function
->getImageSize())
5369 << ") is larger than maximum allowed size (0x"
5370 << Twine::utohexstr(Function
->getMaxSize()) << ") for function "
5371 << *Function
<< '\n';
5373 // Remove jump table sections that this function owns in non-reloc mode
5374 // because we don't want to write them anymore.
5375 if (!BC
->HasRelocations
&& opts::JumpTables
== JTS_BASIC
) {
5376 for (auto &JTI
: Function
->JumpTables
) {
5377 JumpTable
*JT
= JTI
.second
;
5378 BinarySection
&Section
= JT
->getOutputSection();
5379 BC
->deregisterSection(Section
);
5385 const auto HasAddress
= [](const FunctionFragment
&FF
) {
5386 return FF
.empty() ||
5387 (FF
.getImageAddress() != 0 && FF
.getImageSize() != 0);
5389 const bool SplitFragmentsHaveAddress
=
5390 llvm::all_of(Function
->getLayout().getSplitFragments(), HasAddress
);
5391 if (Function
->isSplit() && !SplitFragmentsHaveAddress
) {
5392 const auto HasNoAddress
= [](const FunctionFragment
&FF
) {
5393 return FF
.getImageAddress() == 0 && FF
.getImageSize() == 0;
5395 assert(llvm::all_of(Function
->getLayout().getSplitFragments(),
5397 "Some split fragments have an address while others do not");
5402 OverwrittenScore
+= Function
->getFunctionScore();
5403 ++CountOverwrittenFunctions
;
5405 // Overwrite function in the output file.
5406 if (opts::Verbosity
>= 2)
5407 outs() << "BOLT: rewriting function \"" << *Function
<< "\"\n";
5409 OS
.pwrite(reinterpret_cast<char *>(Function
->getImageAddress()),
5410 Function
->getImageSize(), Function
->getFileOffset());
5412 // Write nops at the end of the function.
5413 if (Function
->getMaxSize() != std::numeric_limits
<uint64_t>::max()) {
5414 uint64_t Pos
= OS
.tell();
5415 OS
.seek(Function
->getFileOffset() + Function
->getImageSize());
5416 BC
->MAB
->writeNopData(
5417 OS
, Function
->getMaxSize() - Function
->getImageSize(), &*BC
->STI
);
5422 if (!Function
->isSplit())
5426 if (opts::Verbosity
>= 2) {
5427 outs() << formatv("BOLT: rewriting function \"{0}\" (split parts)\n",
5431 for (const FunctionFragment
&FF
:
5432 Function
->getLayout().getSplitFragments()) {
5433 OS
.pwrite(reinterpret_cast<char *>(FF
.getImageAddress()),
5434 FF
.getImageSize(), FF
.getFileOffset());
5438 // Print function statistics for non-relocation mode.
5439 if (!BC
->HasRelocations
) {
5440 outs() << "BOLT: " << CountOverwrittenFunctions
<< " out of "
5441 << BC
->getBinaryFunctions().size()
5442 << " functions were overwritten.\n";
5443 if (BC
->TotalScore
!= 0) {
5444 double Coverage
= OverwrittenScore
/ (double)BC
->TotalScore
* 100.0;
5445 outs() << format("BOLT-INFO: rewritten functions cover %.2lf", Coverage
)
5446 << "% of the execution count of simple functions of "
5451 if (BC
->HasRelocations
&& opts::TrapOldCode
) {
5452 uint64_t SavedPos
= OS
.tell();
5453 // Overwrite function body to make sure we never execute these instructions.
5454 for (auto &BFI
: BC
->getBinaryFunctions()) {
5455 BinaryFunction
&BF
= BFI
.second
;
5456 if (!BF
.getFileOffset() || !BF
.isEmitted())
5458 OS
.seek(BF
.getFileOffset());
5459 StringRef TrapInstr
= BC
->MIB
->getTrapFillValue();
5460 unsigned NInstr
= BF
.getMaxSize() / TrapInstr
.size();
5461 for (unsigned I
= 0; I
< NInstr
; ++I
)
5462 OS
.write(TrapInstr
.data(), TrapInstr
.size());
5467 // Write all allocatable sections - reloc-mode text is written here as well
5468 for (BinarySection
&Section
: BC
->allocatableSections()) {
5469 if (!Section
.isFinalized() || !Section
.getOutputData())
5471 if (Section
.isLinkOnly())
5474 if (opts::Verbosity
>= 1)
5475 outs() << "BOLT: writing new section " << Section
.getName()
5476 << "\n data at 0x" << Twine::utohexstr(Section
.getAllocAddress())
5477 << "\n of size " << Section
.getOutputSize() << "\n at offset "
5478 << Section
.getOutputFileOffset() << '\n';
5479 OS
.pwrite(reinterpret_cast<const char *>(Section
.getOutputData()),
5480 Section
.getOutputSize(), Section
.getOutputFileOffset());
5483 for (BinarySection
&Section
: BC
->allocatableSections())
5484 Section
.flushPendingRelocations(OS
, [this](const MCSymbol
*S
) {
5485 return getNewValueForSymbol(S
->getName());
5488 // If .eh_frame is present create .eh_frame_hdr.
5490 writeEHFrameHeader();
5492 // Add BOLT Addresses Translation maps to allow profile collection to
5493 // happen in the output binary
5494 if (opts::EnableBAT
)
5497 // Patch program header table.
5498 patchELFPHDRTable();
5500 // Finalize memory image of section string table.
5501 finalizeSectionStringTable();
5503 // Update symbol tables.
5508 if (opts::EnableBAT
)
5511 // Copy non-allocatable sections once allocatable part is finished.
5512 rewriteNoteSections();
5514 if (BC
->HasRelocations
) {
5515 patchELFAllocatableRelaSections();
5516 patchELFAllocatableRelrSection();
5520 // Patch dynamic section/segment.
5523 // Update ELF book-keeping info.
5524 patchELFSectionHeaderTable();
5526 if (opts::PrintSections
) {
5527 outs() << "BOLT-INFO: Sections after processing:\n";
5528 BC
->printSections(outs());
5532 EC
= sys::fs::setPermissions(
5533 opts::OutputFilename
,
5534 static_cast<sys::fs::perms
>(sys::fs::perms::all_all
&
5535 ~sys::fs::getUmask()));
5536 check_error(EC
, "cannot set permissions of output file");
5539 void RewriteInstance::writeEHFrameHeader() {
5540 BinarySection
*NewEHFrameSection
=
5541 getSection(getNewSecPrefix() + getEHFrameSectionName());
5543 // No need to update the header if no new .eh_frame was created.
5544 if (!NewEHFrameSection
)
5547 DWARFDebugFrame
NewEHFrame(BC
->TheTriple
->getArch(), true,
5548 NewEHFrameSection
->getOutputAddress());
5549 Error E
= NewEHFrame
.parse(DWARFDataExtractor(
5550 NewEHFrameSection
->getOutputContents(), BC
->AsmInfo
->isLittleEndian(),
5551 BC
->AsmInfo
->getCodePointerSize()));
5552 check_error(std::move(E
), "failed to parse EH frame");
5554 uint64_t RelocatedEHFrameAddress
= 0;
5555 StringRef RelocatedEHFrameContents
;
5556 BinarySection
*RelocatedEHFrameSection
=
5557 getSection(".relocated" + getEHFrameSectionName());
5558 if (RelocatedEHFrameSection
) {
5559 RelocatedEHFrameAddress
= RelocatedEHFrameSection
->getOutputAddress();
5560 RelocatedEHFrameContents
= RelocatedEHFrameSection
->getOutputContents();
5562 DWARFDebugFrame
RelocatedEHFrame(BC
->TheTriple
->getArch(), true,
5563 RelocatedEHFrameAddress
);
5564 Error Er
= RelocatedEHFrame
.parse(DWARFDataExtractor(
5565 RelocatedEHFrameContents
, BC
->AsmInfo
->isLittleEndian(),
5566 BC
->AsmInfo
->getCodePointerSize()));
5567 check_error(std::move(Er
), "failed to parse EH frame");
5569 LLVM_DEBUG(dbgs() << "BOLT: writing a new .eh_frame_hdr\n");
5571 NextAvailableAddress
=
5572 appendPadding(Out
->os(), NextAvailableAddress
, EHFrameHdrAlign
);
5574 const uint64_t EHFrameHdrOutputAddress
= NextAvailableAddress
;
5575 const uint64_t EHFrameHdrFileOffset
=
5576 getFileOffsetForAddress(NextAvailableAddress
);
5578 std::vector
<char> NewEHFrameHdr
= CFIRdWrt
->generateEHFrameHeader(
5579 RelocatedEHFrame
, NewEHFrame
, EHFrameHdrOutputAddress
, FailedAddresses
);
5581 assert(Out
->os().tell() == EHFrameHdrFileOffset
&& "offset mismatch");
5582 Out
->os().write(NewEHFrameHdr
.data(), NewEHFrameHdr
.size());
5584 const unsigned Flags
= BinarySection::getFlags(/*IsReadOnly=*/true,
5586 /*IsAllocatable=*/true);
5587 BinarySection
*OldEHFrameHdrSection
= getSection(".eh_frame_hdr");
5588 if (OldEHFrameHdrSection
)
5589 OldEHFrameHdrSection
->setOutputName(getOrgSecPrefix() + ".eh_frame_hdr");
5591 BinarySection
&EHFrameHdrSec
= BC
->registerOrUpdateSection(
5592 getNewSecPrefix() + ".eh_frame_hdr", ELF::SHT_PROGBITS
, Flags
, nullptr,
5593 NewEHFrameHdr
.size(), /*Alignment=*/1);
5594 EHFrameHdrSec
.setOutputFileOffset(EHFrameHdrFileOffset
);
5595 EHFrameHdrSec
.setOutputAddress(EHFrameHdrOutputAddress
);
5596 EHFrameHdrSec
.setOutputName(".eh_frame_hdr");
5598 NextAvailableAddress
+= EHFrameHdrSec
.getOutputSize();
5600 // Merge new .eh_frame with the relocated original so that gdb can locate all
5602 if (RelocatedEHFrameSection
) {
5603 const uint64_t NewEHFrameSectionSize
=
5604 RelocatedEHFrameSection
->getOutputAddress() +
5605 RelocatedEHFrameSection
->getOutputSize() -
5606 NewEHFrameSection
->getOutputAddress();
5607 NewEHFrameSection
->updateContents(NewEHFrameSection
->getOutputData(),
5608 NewEHFrameSectionSize
);
5609 BC
->deregisterSection(*RelocatedEHFrameSection
);
5612 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: size of .eh_frame after merge is "
5613 << NewEHFrameSection
->getOutputSize() << '\n');
5616 uint64_t RewriteInstance::getNewValueForSymbol(const StringRef Name
) {
5617 auto Value
= Linker
->lookupSymbol(Name
);
5621 // Return the original value if we haven't emitted the symbol.
5622 BinaryData
*BD
= BC
->getBinaryDataByName(Name
);
5626 return BD
->getAddress();
5629 uint64_t RewriteInstance::getFileOffsetForAddress(uint64_t Address
) const {
5630 // Check if it's possibly part of the new segment.
5631 if (Address
>= NewTextSegmentAddress
)
5632 return Address
- NewTextSegmentAddress
+ NewTextSegmentOffset
;
5634 // Find an existing segment that matches the address.
5635 const auto SegmentInfoI
= BC
->SegmentMapInfo
.upper_bound(Address
);
5636 if (SegmentInfoI
== BC
->SegmentMapInfo
.begin())
5639 const SegmentInfo
&SegmentInfo
= std::prev(SegmentInfoI
)->second
;
5640 if (Address
< SegmentInfo
.Address
||
5641 Address
>= SegmentInfo
.Address
+ SegmentInfo
.FileSize
)
5644 return SegmentInfo
.FileOffset
+ Address
- SegmentInfo
.Address
;
5647 bool RewriteInstance::willOverwriteSection(StringRef SectionName
) {
5648 if (llvm::is_contained(SectionsToOverwrite
, SectionName
))
5650 if (llvm::is_contained(DebugSectionsToOverwrite
, SectionName
))
5653 ErrorOr
<BinarySection
&> Section
= BC
->getUniqueSectionByName(SectionName
);
5654 return Section
&& Section
->isAllocatable() && Section
->isFinalized();
5657 bool RewriteInstance::isDebugSection(StringRef SectionName
) {
5658 if (SectionName
.starts_with(".debug_") ||
5659 SectionName
.starts_with(".zdebug_") || SectionName
== ".gdb_index" ||
5660 SectionName
== ".stab" || SectionName
== ".stabstr")
5666 bool RewriteInstance::isKSymtabSection(StringRef SectionName
) {
5667 if (SectionName
.starts_with("__ksymtab"))