1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Expr class and subclasses.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/ComputeDependence.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/DependenceFlags.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/IgnoreExpr.h"
26 #include "clang/AST/Mangle.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CharInfo.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Lexer.h"
33 #include "clang/Lex/LiteralSupport.h"
34 #include "clang/Lex/Preprocessor.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/raw_ostream.h"
41 using namespace clang
;
43 const Expr
*Expr::getBestDynamicClassTypeExpr() const {
46 E
= E
->IgnoreParenBaseCasts();
48 // Follow the RHS of a comma operator.
49 if (auto *BO
= dyn_cast
<BinaryOperator
>(E
)) {
50 if (BO
->getOpcode() == BO_Comma
) {
56 // Step into initializer for materialized temporaries.
57 if (auto *MTE
= dyn_cast
<MaterializeTemporaryExpr
>(E
)) {
58 E
= MTE
->getSubExpr();
68 const CXXRecordDecl
*Expr::getBestDynamicClassType() const {
69 const Expr
*E
= getBestDynamicClassTypeExpr();
70 QualType DerivedType
= E
->getType();
71 if (const PointerType
*PTy
= DerivedType
->getAs
<PointerType
>())
72 DerivedType
= PTy
->getPointeeType();
74 if (DerivedType
->isDependentType())
77 const RecordType
*Ty
= DerivedType
->castAs
<RecordType
>();
78 Decl
*D
= Ty
->getDecl();
79 return cast
<CXXRecordDecl
>(D
);
82 const Expr
*Expr::skipRValueSubobjectAdjustments(
83 SmallVectorImpl
<const Expr
*> &CommaLHSs
,
84 SmallVectorImpl
<SubobjectAdjustment
> &Adjustments
) const {
87 E
= E
->IgnoreParens();
89 if (const auto *CE
= dyn_cast
<CastExpr
>(E
)) {
90 if ((CE
->getCastKind() == CK_DerivedToBase
||
91 CE
->getCastKind() == CK_UncheckedDerivedToBase
) &&
92 E
->getType()->isRecordType()) {
95 cast
<CXXRecordDecl
>(E
->getType()->castAs
<RecordType
>()->getDecl());
96 Adjustments
.push_back(SubobjectAdjustment(CE
, Derived
));
100 if (CE
->getCastKind() == CK_NoOp
) {
101 E
= CE
->getSubExpr();
104 } else if (const auto *ME
= dyn_cast
<MemberExpr
>(E
)) {
105 if (!ME
->isArrow()) {
106 assert(ME
->getBase()->getType()->getAsRecordDecl());
107 if (const auto *Field
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl())) {
108 if (!Field
->isBitField() && !Field
->getType()->isReferenceType()) {
110 Adjustments
.push_back(SubobjectAdjustment(Field
));
115 } else if (const auto *BO
= dyn_cast
<BinaryOperator
>(E
)) {
116 if (BO
->getOpcode() == BO_PtrMemD
) {
117 assert(BO
->getRHS()->isPRValue());
119 const auto *MPT
= BO
->getRHS()->getType()->getAs
<MemberPointerType
>();
120 Adjustments
.push_back(SubobjectAdjustment(MPT
, BO
->getRHS()));
123 if (BO
->getOpcode() == BO_Comma
) {
124 CommaLHSs
.push_back(BO
->getLHS());
136 bool Expr::isKnownToHaveBooleanValue(bool Semantic
) const {
137 const Expr
*E
= IgnoreParens();
139 // If this value has _Bool type, it is obvious 0/1.
140 if (E
->getType()->isBooleanType()) return true;
141 // If this is a non-scalar-integer type, we don't care enough to try.
142 if (!E
->getType()->isIntegralOrEnumerationType()) return false;
144 if (const UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(E
)) {
145 switch (UO
->getOpcode()) {
147 return UO
->getSubExpr()->isKnownToHaveBooleanValue(Semantic
);
155 // Only look through implicit casts. If the user writes
156 // '(int) (a && b)' treat it as an arbitrary int.
157 // FIXME: Should we look through any cast expression in !Semantic mode?
158 if (const ImplicitCastExpr
*CE
= dyn_cast
<ImplicitCastExpr
>(E
))
159 return CE
->getSubExpr()->isKnownToHaveBooleanValue(Semantic
);
161 if (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
162 switch (BO
->getOpcode()) {
163 default: return false;
164 case BO_LT
: // Relational operators.
168 case BO_EQ
: // Equality operators.
170 case BO_LAnd
: // AND operator.
171 case BO_LOr
: // Logical OR operator.
174 case BO_And
: // Bitwise AND operator.
175 case BO_Xor
: // Bitwise XOR operator.
176 case BO_Or
: // Bitwise OR operator.
177 // Handle things like (x==2)|(y==12).
178 return BO
->getLHS()->isKnownToHaveBooleanValue(Semantic
) &&
179 BO
->getRHS()->isKnownToHaveBooleanValue(Semantic
);
183 return BO
->getRHS()->isKnownToHaveBooleanValue(Semantic
);
187 if (const ConditionalOperator
*CO
= dyn_cast
<ConditionalOperator
>(E
))
188 return CO
->getTrueExpr()->isKnownToHaveBooleanValue(Semantic
) &&
189 CO
->getFalseExpr()->isKnownToHaveBooleanValue(Semantic
);
191 if (isa
<ObjCBoolLiteralExpr
>(E
))
194 if (const auto *OVE
= dyn_cast
<OpaqueValueExpr
>(E
))
195 return OVE
->getSourceExpr()->isKnownToHaveBooleanValue(Semantic
);
197 if (const FieldDecl
*FD
= E
->getSourceBitField())
198 if (!Semantic
&& FD
->getType()->isUnsignedIntegerType() &&
199 !FD
->getBitWidth()->isValueDependent() &&
200 FD
->getBitWidthValue(FD
->getASTContext()) == 1)
206 bool Expr::isFlexibleArrayMemberLike(
208 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel
,
209 bool IgnoreTemplateOrMacroSubstitution
) const {
210 const Expr
*E
= IgnoreParens();
211 const Decl
*D
= nullptr;
213 if (const auto *ME
= dyn_cast
<MemberExpr
>(E
))
214 D
= ME
->getMemberDecl();
215 else if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
217 else if (const auto *IRE
= dyn_cast
<ObjCIvarRefExpr
>(E
))
220 return Decl::isFlexibleArrayMemberLike(Ctx
, D
, E
->getType(),
221 StrictFlexArraysLevel
,
222 IgnoreTemplateOrMacroSubstitution
);
226 Expr::getAsBuiltinConstantDeclRef(const ASTContext
&Context
) const {
227 Expr::EvalResult Eval
;
229 if (EvaluateAsConstantExpr(Eval
, Context
)) {
230 APValue
&Value
= Eval
.Val
;
232 if (Value
.isMemberPointer())
233 return Value
.getMemberPointerDecl();
235 if (Value
.isLValue() && Value
.getLValueOffset().isZero())
236 return Value
.getLValueBase().dyn_cast
<const ValueDecl
*>();
242 // Amusing macro metaprogramming hack: check whether a class provides
243 // a more specific implementation of getExprLoc().
245 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
247 /// This implementation is used when a class provides a custom
248 /// implementation of getExprLoc.
249 template <class E
, class T
>
250 SourceLocation
getExprLocImpl(const Expr
*expr
,
251 SourceLocation (T::*v
)() const) {
252 return static_cast<const E
*>(expr
)->getExprLoc();
255 /// This implementation is used when a class doesn't provide
256 /// a custom implementation of getExprLoc. Overload resolution
257 /// should pick it over the implementation above because it's
258 /// more specialized according to function template partial ordering.
260 SourceLocation
getExprLocImpl(const Expr
*expr
,
261 SourceLocation (Expr::*v
)() const) {
262 return static_cast<const E
*>(expr
)->getBeginLoc();
266 QualType
Expr::getEnumCoercedType(const ASTContext
&Ctx
) const {
267 if (isa
<EnumType
>(getType()))
269 if (const auto *ECD
= getEnumConstantDecl()) {
270 const auto *ED
= cast
<EnumDecl
>(ECD
->getDeclContext());
271 if (ED
->isCompleteDefinition())
272 return Ctx
.getTypeDeclType(ED
);
277 SourceLocation
Expr::getExprLoc() const {
278 switch (getStmtClass()) {
279 case Stmt::NoStmtClass
: llvm_unreachable("statement without class");
280 #define ABSTRACT_STMT(type)
281 #define STMT(type, base) \
282 case Stmt::type##Class: break;
283 #define EXPR(type, base) \
284 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
285 #include "clang/AST/StmtNodes.inc"
287 llvm_unreachable("unknown expression kind");
290 //===----------------------------------------------------------------------===//
291 // Primary Expressions.
292 //===----------------------------------------------------------------------===//
294 static void AssertResultStorageKind(ConstantResultStorageKind Kind
) {
295 assert((Kind
== ConstantResultStorageKind::APValue
||
296 Kind
== ConstantResultStorageKind::Int64
||
297 Kind
== ConstantResultStorageKind::None
) &&
298 "Invalid StorageKind Value");
302 ConstantResultStorageKind
ConstantExpr::getStorageKind(const APValue
&Value
) {
303 switch (Value
.getKind()) {
305 case APValue::Indeterminate
:
306 return ConstantResultStorageKind::None
;
308 if (!Value
.getInt().needsCleanup())
309 return ConstantResultStorageKind::Int64
;
312 return ConstantResultStorageKind::APValue
;
316 ConstantResultStorageKind
317 ConstantExpr::getStorageKind(const Type
*T
, const ASTContext
&Context
) {
318 if (T
->isIntegralOrEnumerationType() && Context
.getTypeInfo(T
).Width
<= 64)
319 return ConstantResultStorageKind::Int64
;
320 return ConstantResultStorageKind::APValue
;
323 ConstantExpr::ConstantExpr(Expr
*SubExpr
, ConstantResultStorageKind StorageKind
,
324 bool IsImmediateInvocation
)
325 : FullExpr(ConstantExprClass
, SubExpr
) {
326 ConstantExprBits
.ResultKind
= llvm::to_underlying(StorageKind
);
327 ConstantExprBits
.APValueKind
= APValue::None
;
328 ConstantExprBits
.IsUnsigned
= false;
329 ConstantExprBits
.BitWidth
= 0;
330 ConstantExprBits
.HasCleanup
= false;
331 ConstantExprBits
.IsImmediateInvocation
= IsImmediateInvocation
;
333 if (StorageKind
== ConstantResultStorageKind::APValue
)
334 ::new (getTrailingObjects
<APValue
>()) APValue();
337 ConstantExpr
*ConstantExpr::Create(const ASTContext
&Context
, Expr
*E
,
338 ConstantResultStorageKind StorageKind
,
339 bool IsImmediateInvocation
) {
340 assert(!isa
<ConstantExpr
>(E
));
341 AssertResultStorageKind(StorageKind
);
343 unsigned Size
= totalSizeToAlloc
<APValue
, uint64_t>(
344 StorageKind
== ConstantResultStorageKind::APValue
,
345 StorageKind
== ConstantResultStorageKind::Int64
);
346 void *Mem
= Context
.Allocate(Size
, alignof(ConstantExpr
));
347 return new (Mem
) ConstantExpr(E
, StorageKind
, IsImmediateInvocation
);
350 ConstantExpr
*ConstantExpr::Create(const ASTContext
&Context
, Expr
*E
,
351 const APValue
&Result
) {
352 ConstantResultStorageKind StorageKind
= getStorageKind(Result
);
353 ConstantExpr
*Self
= Create(Context
, E
, StorageKind
);
354 Self
->SetResult(Result
, Context
);
358 ConstantExpr::ConstantExpr(EmptyShell Empty
,
359 ConstantResultStorageKind StorageKind
)
360 : FullExpr(ConstantExprClass
, Empty
) {
361 ConstantExprBits
.ResultKind
= llvm::to_underlying(StorageKind
);
363 if (StorageKind
== ConstantResultStorageKind::APValue
)
364 ::new (getTrailingObjects
<APValue
>()) APValue();
367 ConstantExpr
*ConstantExpr::CreateEmpty(const ASTContext
&Context
,
368 ConstantResultStorageKind StorageKind
) {
369 AssertResultStorageKind(StorageKind
);
371 unsigned Size
= totalSizeToAlloc
<APValue
, uint64_t>(
372 StorageKind
== ConstantResultStorageKind::APValue
,
373 StorageKind
== ConstantResultStorageKind::Int64
);
374 void *Mem
= Context
.Allocate(Size
, alignof(ConstantExpr
));
375 return new (Mem
) ConstantExpr(EmptyShell(), StorageKind
);
378 void ConstantExpr::MoveIntoResult(APValue
&Value
, const ASTContext
&Context
) {
379 assert((unsigned)getStorageKind(Value
) <= ConstantExprBits
.ResultKind
&&
380 "Invalid storage for this value kind");
381 ConstantExprBits
.APValueKind
= Value
.getKind();
382 switch (getResultStorageKind()) {
383 case ConstantResultStorageKind::None
:
385 case ConstantResultStorageKind::Int64
:
386 Int64Result() = *Value
.getInt().getRawData();
387 ConstantExprBits
.BitWidth
= Value
.getInt().getBitWidth();
388 ConstantExprBits
.IsUnsigned
= Value
.getInt().isUnsigned();
390 case ConstantResultStorageKind::APValue
:
391 if (!ConstantExprBits
.HasCleanup
&& Value
.needsCleanup()) {
392 ConstantExprBits
.HasCleanup
= true;
393 Context
.addDestruction(&APValueResult());
395 APValueResult() = std::move(Value
);
398 llvm_unreachable("Invalid ResultKind Bits");
401 llvm::APSInt
ConstantExpr::getResultAsAPSInt() const {
402 switch (getResultStorageKind()) {
403 case ConstantResultStorageKind::APValue
:
404 return APValueResult().getInt();
405 case ConstantResultStorageKind::Int64
:
406 return llvm::APSInt(llvm::APInt(ConstantExprBits
.BitWidth
, Int64Result()),
407 ConstantExprBits
.IsUnsigned
);
409 llvm_unreachable("invalid Accessor");
413 APValue
ConstantExpr::getAPValueResult() const {
415 switch (getResultStorageKind()) {
416 case ConstantResultStorageKind::APValue
:
417 return APValueResult();
418 case ConstantResultStorageKind::Int64
:
420 llvm::APSInt(llvm::APInt(ConstantExprBits
.BitWidth
, Int64Result()),
421 ConstantExprBits
.IsUnsigned
));
422 case ConstantResultStorageKind::None
:
423 if (ConstantExprBits
.APValueKind
== APValue::Indeterminate
)
424 return APValue::IndeterminateValue();
427 llvm_unreachable("invalid ResultKind");
430 DeclRefExpr::DeclRefExpr(const ASTContext
&Ctx
, ValueDecl
*D
,
431 bool RefersToEnclosingVariableOrCapture
, QualType T
,
432 ExprValueKind VK
, SourceLocation L
,
433 const DeclarationNameLoc
&LocInfo
,
434 NonOdrUseReason NOUR
)
435 : Expr(DeclRefExprClass
, T
, VK
, OK_Ordinary
), D(D
), DNLoc(LocInfo
) {
436 DeclRefExprBits
.HasQualifier
= false;
437 DeclRefExprBits
.HasTemplateKWAndArgsInfo
= false;
438 DeclRefExprBits
.HasFoundDecl
= false;
439 DeclRefExprBits
.HadMultipleCandidates
= false;
440 DeclRefExprBits
.RefersToEnclosingVariableOrCapture
=
441 RefersToEnclosingVariableOrCapture
;
442 DeclRefExprBits
.CapturedByCopyInLambdaWithExplicitObjectParameter
= false;
443 DeclRefExprBits
.NonOdrUseReason
= NOUR
;
444 DeclRefExprBits
.IsImmediateEscalating
= false;
445 DeclRefExprBits
.Loc
= L
;
446 setDependence(computeDependence(this, Ctx
));
449 DeclRefExpr::DeclRefExpr(const ASTContext
&Ctx
,
450 NestedNameSpecifierLoc QualifierLoc
,
451 SourceLocation TemplateKWLoc
, ValueDecl
*D
,
452 bool RefersToEnclosingVariableOrCapture
,
453 const DeclarationNameInfo
&NameInfo
, NamedDecl
*FoundD
,
454 const TemplateArgumentListInfo
*TemplateArgs
,
455 QualType T
, ExprValueKind VK
, NonOdrUseReason NOUR
)
456 : Expr(DeclRefExprClass
, T
, VK
, OK_Ordinary
), D(D
),
457 DNLoc(NameInfo
.getInfo()) {
458 DeclRefExprBits
.Loc
= NameInfo
.getLoc();
459 DeclRefExprBits
.HasQualifier
= QualifierLoc
? 1 : 0;
461 new (getTrailingObjects
<NestedNameSpecifierLoc
>())
462 NestedNameSpecifierLoc(QualifierLoc
);
463 DeclRefExprBits
.HasFoundDecl
= FoundD
? 1 : 0;
465 *getTrailingObjects
<NamedDecl
*>() = FoundD
;
466 DeclRefExprBits
.HasTemplateKWAndArgsInfo
467 = (TemplateArgs
|| TemplateKWLoc
.isValid()) ? 1 : 0;
468 DeclRefExprBits
.RefersToEnclosingVariableOrCapture
=
469 RefersToEnclosingVariableOrCapture
;
470 DeclRefExprBits
.CapturedByCopyInLambdaWithExplicitObjectParameter
= false;
471 DeclRefExprBits
.NonOdrUseReason
= NOUR
;
473 auto Deps
= TemplateArgumentDependence::None
;
474 getTrailingObjects
<ASTTemplateKWAndArgsInfo
>()->initializeFrom(
475 TemplateKWLoc
, *TemplateArgs
, getTrailingObjects
<TemplateArgumentLoc
>(),
477 assert(!(Deps
& TemplateArgumentDependence::Dependent
) &&
478 "built a DeclRefExpr with dependent template args");
479 } else if (TemplateKWLoc
.isValid()) {
480 getTrailingObjects
<ASTTemplateKWAndArgsInfo
>()->initializeFrom(
483 DeclRefExprBits
.IsImmediateEscalating
= false;
484 DeclRefExprBits
.HadMultipleCandidates
= 0;
485 setDependence(computeDependence(this, Ctx
));
488 DeclRefExpr
*DeclRefExpr::Create(const ASTContext
&Context
,
489 NestedNameSpecifierLoc QualifierLoc
,
490 SourceLocation TemplateKWLoc
, ValueDecl
*D
,
491 bool RefersToEnclosingVariableOrCapture
,
492 SourceLocation NameLoc
, QualType T
,
493 ExprValueKind VK
, NamedDecl
*FoundD
,
494 const TemplateArgumentListInfo
*TemplateArgs
,
495 NonOdrUseReason NOUR
) {
496 return Create(Context
, QualifierLoc
, TemplateKWLoc
, D
,
497 RefersToEnclosingVariableOrCapture
,
498 DeclarationNameInfo(D
->getDeclName(), NameLoc
),
499 T
, VK
, FoundD
, TemplateArgs
, NOUR
);
502 DeclRefExpr
*DeclRefExpr::Create(const ASTContext
&Context
,
503 NestedNameSpecifierLoc QualifierLoc
,
504 SourceLocation TemplateKWLoc
, ValueDecl
*D
,
505 bool RefersToEnclosingVariableOrCapture
,
506 const DeclarationNameInfo
&NameInfo
,
507 QualType T
, ExprValueKind VK
,
509 const TemplateArgumentListInfo
*TemplateArgs
,
510 NonOdrUseReason NOUR
) {
511 // Filter out cases where the found Decl is the same as the value refenenced.
515 bool HasTemplateKWAndArgsInfo
= TemplateArgs
|| TemplateKWLoc
.isValid();
517 totalSizeToAlloc
<NestedNameSpecifierLoc
, NamedDecl
*,
518 ASTTemplateKWAndArgsInfo
, TemplateArgumentLoc
>(
519 QualifierLoc
? 1 : 0, FoundD
? 1 : 0,
520 HasTemplateKWAndArgsInfo
? 1 : 0,
521 TemplateArgs
? TemplateArgs
->size() : 0);
523 void *Mem
= Context
.Allocate(Size
, alignof(DeclRefExpr
));
524 return new (Mem
) DeclRefExpr(Context
, QualifierLoc
, TemplateKWLoc
, D
,
525 RefersToEnclosingVariableOrCapture
, NameInfo
,
526 FoundD
, TemplateArgs
, T
, VK
, NOUR
);
529 DeclRefExpr
*DeclRefExpr::CreateEmpty(const ASTContext
&Context
,
532 bool HasTemplateKWAndArgsInfo
,
533 unsigned NumTemplateArgs
) {
534 assert(NumTemplateArgs
== 0 || HasTemplateKWAndArgsInfo
);
536 totalSizeToAlloc
<NestedNameSpecifierLoc
, NamedDecl
*,
537 ASTTemplateKWAndArgsInfo
, TemplateArgumentLoc
>(
538 HasQualifier
? 1 : 0, HasFoundDecl
? 1 : 0, HasTemplateKWAndArgsInfo
,
540 void *Mem
= Context
.Allocate(Size
, alignof(DeclRefExpr
));
541 return new (Mem
) DeclRefExpr(EmptyShell());
544 void DeclRefExpr::setDecl(ValueDecl
*NewD
) {
546 if (getType()->isUndeducedType())
547 setType(NewD
->getType());
548 setDependence(computeDependence(this, NewD
->getASTContext()));
551 SourceLocation
DeclRefExpr::getBeginLoc() const {
553 return getQualifierLoc().getBeginLoc();
554 return getNameInfo().getBeginLoc();
556 SourceLocation
DeclRefExpr::getEndLoc() const {
557 if (hasExplicitTemplateArgs())
558 return getRAngleLoc();
559 return getNameInfo().getEndLoc();
562 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc
,
563 SourceLocation LParen
,
564 SourceLocation RParen
,
567 : Expr(SYCLUniqueStableNameExprClass
, ResultTy
, VK_PRValue
, OK_Ordinary
),
568 OpLoc(OpLoc
), LParen(LParen
), RParen(RParen
) {
569 setTypeSourceInfo(TSI
);
570 setDependence(computeDependence(this));
573 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty
,
575 : Expr(SYCLUniqueStableNameExprClass
, ResultTy
, VK_PRValue
, OK_Ordinary
) {}
577 SYCLUniqueStableNameExpr
*
578 SYCLUniqueStableNameExpr::Create(const ASTContext
&Ctx
, SourceLocation OpLoc
,
579 SourceLocation LParen
, SourceLocation RParen
,
580 TypeSourceInfo
*TSI
) {
581 QualType ResultTy
= Ctx
.getPointerType(Ctx
.CharTy
.withConst());
583 SYCLUniqueStableNameExpr(OpLoc
, LParen
, RParen
, ResultTy
, TSI
);
586 SYCLUniqueStableNameExpr
*
587 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext
&Ctx
) {
588 QualType ResultTy
= Ctx
.getPointerType(Ctx
.CharTy
.withConst());
589 return new (Ctx
) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy
);
592 std::string
SYCLUniqueStableNameExpr::ComputeName(ASTContext
&Context
) const {
593 return SYCLUniqueStableNameExpr::ComputeName(Context
,
594 getTypeSourceInfo()->getType());
597 std::string
SYCLUniqueStableNameExpr::ComputeName(ASTContext
&Context
,
599 auto MangleCallback
= [](ASTContext
&Ctx
,
600 const NamedDecl
*ND
) -> std::optional
<unsigned> {
601 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(ND
))
602 return RD
->getDeviceLambdaManglingNumber();
606 std::unique_ptr
<MangleContext
> Ctx
{ItaniumMangleContext::create(
607 Context
, Context
.getDiagnostics(), MangleCallback
)};
611 llvm::raw_string_ostream
Out(Buffer
);
612 Ctx
->mangleCanonicalTypeName(Ty
, Out
);
617 PredefinedExpr::PredefinedExpr(SourceLocation L
, QualType FNTy
,
618 PredefinedIdentKind IK
, bool IsTransparent
,
620 : Expr(PredefinedExprClass
, FNTy
, VK_LValue
, OK_Ordinary
) {
621 PredefinedExprBits
.Kind
= llvm::to_underlying(IK
);
622 assert((getIdentKind() == IK
) &&
623 "IdentKind do not fit in PredefinedExprBitfields!");
624 bool HasFunctionName
= SL
!= nullptr;
625 PredefinedExprBits
.HasFunctionName
= HasFunctionName
;
626 PredefinedExprBits
.IsTransparent
= IsTransparent
;
627 PredefinedExprBits
.Loc
= L
;
630 setDependence(computeDependence(this));
633 PredefinedExpr::PredefinedExpr(EmptyShell Empty
, bool HasFunctionName
)
634 : Expr(PredefinedExprClass
, Empty
) {
635 PredefinedExprBits
.HasFunctionName
= HasFunctionName
;
638 PredefinedExpr
*PredefinedExpr::Create(const ASTContext
&Ctx
, SourceLocation L
,
639 QualType FNTy
, PredefinedIdentKind IK
,
640 bool IsTransparent
, StringLiteral
*SL
) {
641 bool HasFunctionName
= SL
!= nullptr;
642 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<Stmt
*>(HasFunctionName
),
643 alignof(PredefinedExpr
));
644 return new (Mem
) PredefinedExpr(L
, FNTy
, IK
, IsTransparent
, SL
);
647 PredefinedExpr
*PredefinedExpr::CreateEmpty(const ASTContext
&Ctx
,
648 bool HasFunctionName
) {
649 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<Stmt
*>(HasFunctionName
),
650 alignof(PredefinedExpr
));
651 return new (Mem
) PredefinedExpr(EmptyShell(), HasFunctionName
);
654 StringRef
PredefinedExpr::getIdentKindName(PredefinedIdentKind IK
) {
656 case PredefinedIdentKind::Func
:
658 case PredefinedIdentKind::Function
:
659 return "__FUNCTION__";
660 case PredefinedIdentKind::FuncDName
:
661 return "__FUNCDNAME__";
662 case PredefinedIdentKind::LFunction
:
663 return "L__FUNCTION__";
664 case PredefinedIdentKind::PrettyFunction
:
665 return "__PRETTY_FUNCTION__";
666 case PredefinedIdentKind::FuncSig
:
667 return "__FUNCSIG__";
668 case PredefinedIdentKind::LFuncSig
:
669 return "L__FUNCSIG__";
670 case PredefinedIdentKind::PrettyFunctionNoVirtual
:
673 llvm_unreachable("Unknown ident kind for PredefinedExpr");
676 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
677 // expr" policy instead.
678 std::string
PredefinedExpr::ComputeName(PredefinedIdentKind IK
,
679 const Decl
*CurrentDecl
,
680 bool ForceElaboratedPrinting
) {
681 ASTContext
&Context
= CurrentDecl
->getASTContext();
683 if (IK
== PredefinedIdentKind::FuncDName
) {
684 if (const NamedDecl
*ND
= dyn_cast
<NamedDecl
>(CurrentDecl
)) {
685 std::unique_ptr
<MangleContext
> MC
;
686 MC
.reset(Context
.createMangleContext());
688 if (MC
->shouldMangleDeclName(ND
)) {
689 SmallString
<256> Buffer
;
690 llvm::raw_svector_ostream
Out(Buffer
);
692 if (const CXXConstructorDecl
*CD
= dyn_cast
<CXXConstructorDecl
>(ND
))
693 GD
= GlobalDecl(CD
, Ctor_Base
);
694 else if (const CXXDestructorDecl
*DD
= dyn_cast
<CXXDestructorDecl
>(ND
))
695 GD
= GlobalDecl(DD
, Dtor_Base
);
696 else if (ND
->hasAttr
<CUDAGlobalAttr
>())
697 GD
= GlobalDecl(cast
<FunctionDecl
>(ND
));
700 MC
->mangleName(GD
, Out
);
702 if (!Buffer
.empty() && Buffer
.front() == '\01')
703 return std::string(Buffer
.substr(1));
704 return std::string(Buffer
);
706 return std::string(ND
->getIdentifier()->getName());
710 if (isa
<BlockDecl
>(CurrentDecl
)) {
711 // For blocks we only emit something if it is enclosed in a function
712 // For top-level block we'd like to include the name of variable, but we
713 // don't have it at this point.
714 auto DC
= CurrentDecl
->getDeclContext();
715 if (DC
->isFileContext())
718 SmallString
<256> Buffer
;
719 llvm::raw_svector_ostream
Out(Buffer
);
720 if (auto *DCBlock
= dyn_cast
<BlockDecl
>(DC
))
721 // For nested blocks, propagate up to the parent.
722 Out
<< ComputeName(IK
, DCBlock
);
723 else if (auto *DCDecl
= dyn_cast
<Decl
>(DC
))
724 Out
<< ComputeName(IK
, DCDecl
) << "_block_invoke";
725 return std::string(Out
.str());
727 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(CurrentDecl
)) {
728 const auto &LO
= Context
.getLangOpts();
729 bool IsFuncOrFunctionInNonMSVCCompatEnv
=
730 ((IK
== PredefinedIdentKind::Func
||
731 IK
== PredefinedIdentKind ::Function
) &&
733 bool IsLFunctionInMSVCCommpatEnv
=
734 IK
== PredefinedIdentKind::LFunction
&& LO
.MSVCCompat
;
735 bool IsFuncOrFunctionOrLFunctionOrFuncDName
=
736 IK
!= PredefinedIdentKind::PrettyFunction
&&
737 IK
!= PredefinedIdentKind::PrettyFunctionNoVirtual
&&
738 IK
!= PredefinedIdentKind::FuncSig
&&
739 IK
!= PredefinedIdentKind::LFuncSig
;
740 if ((ForceElaboratedPrinting
&&
741 (IsFuncOrFunctionInNonMSVCCompatEnv
|| IsLFunctionInMSVCCommpatEnv
)) ||
742 (!ForceElaboratedPrinting
&& IsFuncOrFunctionOrLFunctionOrFuncDName
))
743 return FD
->getNameAsString();
745 SmallString
<256> Name
;
746 llvm::raw_svector_ostream
Out(Name
);
748 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
749 if (MD
->isVirtual() && IK
!= PredefinedIdentKind::PrettyFunctionNoVirtual
)
755 class PrettyCallbacks final
: public PrintingCallbacks
{
757 PrettyCallbacks(const LangOptions
&LO
) : LO(LO
) {}
758 std::string
remapPath(StringRef Path
) const override
{
759 SmallString
<128> p(Path
);
760 LO
.remapPathPrefix(p
);
761 return std::string(p
);
765 const LangOptions
&LO
;
767 PrintingPolicy
Policy(Context
.getLangOpts());
768 PrettyCallbacks
PrettyCB(Context
.getLangOpts());
769 Policy
.Callbacks
= &PrettyCB
;
770 if (IK
== PredefinedIdentKind::Function
&& ForceElaboratedPrinting
)
771 Policy
.SuppressTagKeyword
= !LO
.MSVCCompat
;
773 llvm::raw_string_ostream
POut(Proto
);
775 const FunctionDecl
*Decl
= FD
;
776 if (const FunctionDecl
* Pattern
= FD
->getTemplateInstantiationPattern())
778 const FunctionType
*AFT
= Decl
->getType()->getAs
<FunctionType
>();
779 const FunctionProtoType
*FT
= nullptr;
780 if (FD
->hasWrittenPrototype())
781 FT
= dyn_cast
<FunctionProtoType
>(AFT
);
783 if (IK
== PredefinedIdentKind::FuncSig
||
784 IK
== PredefinedIdentKind::LFuncSig
) {
785 switch (AFT
->getCallConv()) {
786 case CC_C
: POut
<< "__cdecl "; break;
787 case CC_X86StdCall
: POut
<< "__stdcall "; break;
788 case CC_X86FastCall
: POut
<< "__fastcall "; break;
789 case CC_X86ThisCall
: POut
<< "__thiscall "; break;
790 case CC_X86VectorCall
: POut
<< "__vectorcall "; break;
791 case CC_X86RegCall
: POut
<< "__regcall "; break;
792 // Only bother printing the conventions that MSVC knows about.
797 FD
->printQualifiedName(POut
, Policy
);
799 if (IK
== PredefinedIdentKind::Function
) {
801 return std::string(Name
);
806 for (unsigned i
= 0, e
= Decl
->getNumParams(); i
!= e
; ++i
) {
808 POut
<< Decl
->getParamDecl(i
)->getType().stream(Policy
);
811 if (FT
->isVariadic()) {
812 if (FD
->getNumParams()) POut
<< ", ";
814 } else if ((IK
== PredefinedIdentKind::FuncSig
||
815 IK
== PredefinedIdentKind::LFuncSig
||
816 !Context
.getLangOpts().CPlusPlus
) &&
817 !Decl
->getNumParams()) {
823 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
824 assert(FT
&& "We must have a written prototype in this case.");
827 if (FT
->isVolatile())
829 RefQualifierKind Ref
= MD
->getRefQualifier();
830 if (Ref
== RQ_LValue
)
832 else if (Ref
== RQ_RValue
)
836 typedef SmallVector
<const ClassTemplateSpecializationDecl
*, 8> SpecsTy
;
838 const DeclContext
*Ctx
= FD
->getDeclContext();
839 while (isa_and_nonnull
<NamedDecl
>(Ctx
)) {
840 const ClassTemplateSpecializationDecl
*Spec
841 = dyn_cast
<ClassTemplateSpecializationDecl
>(Ctx
);
842 if (Spec
&& !Spec
->isExplicitSpecialization())
843 Specs
.push_back(Spec
);
844 Ctx
= Ctx
->getParent();
847 std::string TemplateParams
;
848 llvm::raw_string_ostream
TOut(TemplateParams
);
849 for (const ClassTemplateSpecializationDecl
*D
: llvm::reverse(Specs
)) {
850 const TemplateParameterList
*Params
=
851 D
->getSpecializedTemplate()->getTemplateParameters();
852 const TemplateArgumentList
&Args
= D
->getTemplateArgs();
853 assert(Params
->size() == Args
.size());
854 for (unsigned i
= 0, numParams
= Params
->size(); i
!= numParams
; ++i
) {
855 StringRef Param
= Params
->getParam(i
)->getName();
856 if (Param
.empty()) continue;
857 TOut
<< Param
<< " = ";
858 Args
.get(i
).print(Policy
, TOut
,
859 TemplateParameterList::shouldIncludeTypeForArgument(
865 FunctionTemplateSpecializationInfo
*FSI
866 = FD
->getTemplateSpecializationInfo();
867 if (FSI
&& !FSI
->isExplicitSpecialization()) {
868 const TemplateParameterList
* Params
869 = FSI
->getTemplate()->getTemplateParameters();
870 const TemplateArgumentList
* Args
= FSI
->TemplateArguments
;
871 assert(Params
->size() == Args
->size());
872 for (unsigned i
= 0, e
= Params
->size(); i
!= e
; ++i
) {
873 StringRef Param
= Params
->getParam(i
)->getName();
874 if (Param
.empty()) continue;
875 TOut
<< Param
<< " = ";
876 Args
->get(i
).print(Policy
, TOut
, /*IncludeType*/ true);
881 if (!TemplateParams
.empty()) {
882 // remove the trailing comma and space
883 TemplateParams
.resize(TemplateParams
.size() - 2);
884 POut
<< " [" << TemplateParams
<< "]";
887 // Print "auto" for all deduced return types. This includes C++1y return
888 // type deduction and lambdas. For trailing return types resolve the
889 // decltype expression. Otherwise print the real type when this is
890 // not a constructor or destructor.
891 if (isa
<CXXMethodDecl
>(FD
) &&
892 cast
<CXXMethodDecl
>(FD
)->getParent()->isLambda())
893 Proto
= "auto " + Proto
;
894 else if (FT
&& FT
->getReturnType()->getAs
<DecltypeType
>())
896 ->getAs
<DecltypeType
>()
897 ->getUnderlyingType()
898 .getAsStringInternal(Proto
, Policy
);
899 else if (!isa
<CXXConstructorDecl
>(FD
) && !isa
<CXXDestructorDecl
>(FD
))
900 AFT
->getReturnType().getAsStringInternal(Proto
, Policy
);
904 return std::string(Name
);
906 if (const CapturedDecl
*CD
= dyn_cast
<CapturedDecl
>(CurrentDecl
)) {
907 for (const DeclContext
*DC
= CD
->getParent(); DC
; DC
= DC
->getParent())
908 // Skip to its enclosing function or method, but not its enclosing
910 if (DC
->isFunctionOrMethod() && (DC
->getDeclKind() != Decl::Captured
)) {
911 const Decl
*D
= Decl::castFromDeclContext(DC
);
912 return ComputeName(IK
, D
);
914 llvm_unreachable("CapturedDecl not inside a function or method");
916 if (const ObjCMethodDecl
*MD
= dyn_cast
<ObjCMethodDecl
>(CurrentDecl
)) {
917 SmallString
<256> Name
;
918 llvm::raw_svector_ostream
Out(Name
);
919 Out
<< (MD
->isInstanceMethod() ? '-' : '+');
922 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
923 // a null check to avoid a crash.
924 if (const ObjCInterfaceDecl
*ID
= MD
->getClassInterface())
927 if (const ObjCCategoryImplDecl
*CID
=
928 dyn_cast
<ObjCCategoryImplDecl
>(MD
->getDeclContext()))
929 Out
<< '(' << *CID
<< ')';
932 MD
->getSelector().print(Out
);
935 return std::string(Name
);
937 if (isa
<TranslationUnitDecl
>(CurrentDecl
) &&
938 IK
== PredefinedIdentKind::PrettyFunction
) {
939 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
945 void APNumericStorage::setIntValue(const ASTContext
&C
,
946 const llvm::APInt
&Val
) {
950 BitWidth
= Val
.getBitWidth();
951 unsigned NumWords
= Val
.getNumWords();
952 const uint64_t* Words
= Val
.getRawData();
954 pVal
= new (C
) uint64_t[NumWords
];
955 std::copy(Words
, Words
+ NumWords
, pVal
);
956 } else if (NumWords
== 1)
962 IntegerLiteral::IntegerLiteral(const ASTContext
&C
, const llvm::APInt
&V
,
963 QualType type
, SourceLocation l
)
964 : Expr(IntegerLiteralClass
, type
, VK_PRValue
, OK_Ordinary
), Loc(l
) {
965 assert(type
->isIntegerType() && "Illegal type in IntegerLiteral");
966 assert(V
.getBitWidth() == C
.getIntWidth(type
) &&
967 "Integer type is not the correct size for constant.");
969 setDependence(ExprDependence::None
);
973 IntegerLiteral::Create(const ASTContext
&C
, const llvm::APInt
&V
,
974 QualType type
, SourceLocation l
) {
975 return new (C
) IntegerLiteral(C
, V
, type
, l
);
979 IntegerLiteral::Create(const ASTContext
&C
, EmptyShell Empty
) {
980 return new (C
) IntegerLiteral(Empty
);
983 FixedPointLiteral::FixedPointLiteral(const ASTContext
&C
, const llvm::APInt
&V
,
984 QualType type
, SourceLocation l
,
986 : Expr(FixedPointLiteralClass
, type
, VK_PRValue
, OK_Ordinary
), Loc(l
),
988 assert(type
->isFixedPointType() && "Illegal type in FixedPointLiteral");
989 assert(V
.getBitWidth() == C
.getTypeInfo(type
).Width
&&
990 "Fixed point type is not the correct size for constant.");
992 setDependence(ExprDependence::None
);
995 FixedPointLiteral
*FixedPointLiteral::CreateFromRawInt(const ASTContext
&C
,
996 const llvm::APInt
&V
,
1000 return new (C
) FixedPointLiteral(C
, V
, type
, l
, Scale
);
1003 FixedPointLiteral
*FixedPointLiteral::Create(const ASTContext
&C
,
1005 return new (C
) FixedPointLiteral(Empty
);
1008 std::string
FixedPointLiteral::getValueAsString(unsigned Radix
) const {
1009 // Currently the longest decimal number that can be printed is the max for an
1010 // unsigned long _Accum: 4294967295.99999999976716935634613037109375
1011 // which is 43 characters.
1013 FixedPointValueToString(
1014 S
, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale
);
1015 return std::string(S
);
1018 void CharacterLiteral::print(unsigned Val
, CharacterLiteralKind Kind
,
1021 case CharacterLiteralKind::Ascii
:
1022 break; // no prefix.
1023 case CharacterLiteralKind::Wide
:
1026 case CharacterLiteralKind::UTF8
:
1029 case CharacterLiteralKind::UTF16
:
1032 case CharacterLiteralKind::UTF32
:
1037 StringRef Escaped
= escapeCStyle
<EscapeChar::Single
>(Val
);
1038 if (!Escaped
.empty()) {
1039 OS
<< "'" << Escaped
<< "'";
1041 // A character literal might be sign-extended, which
1042 // would result in an invalid \U escape sequence.
1043 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1044 // are not correctly handled.
1045 if ((Val
& ~0xFFu
) == ~0xFFu
&& Kind
== CharacterLiteralKind::Ascii
)
1047 if (Val
< 256 && isPrintable((unsigned char)Val
))
1048 OS
<< "'" << (char)Val
<< "'";
1050 OS
<< "'\\x" << llvm::format("%02x", Val
) << "'";
1051 else if (Val
<= 0xFFFF)
1052 OS
<< "'\\u" << llvm::format("%04x", Val
) << "'";
1054 OS
<< "'\\U" << llvm::format("%08x", Val
) << "'";
1058 FloatingLiteral::FloatingLiteral(const ASTContext
&C
, const llvm::APFloat
&V
,
1059 bool isexact
, QualType Type
, SourceLocation L
)
1060 : Expr(FloatingLiteralClass
, Type
, VK_PRValue
, OK_Ordinary
), Loc(L
) {
1061 setSemantics(V
.getSemantics());
1062 FloatingLiteralBits
.IsExact
= isexact
;
1064 setDependence(ExprDependence::None
);
1067 FloatingLiteral::FloatingLiteral(const ASTContext
&C
, EmptyShell Empty
)
1068 : Expr(FloatingLiteralClass
, Empty
) {
1069 setRawSemantics(llvm::APFloatBase::S_IEEEhalf
);
1070 FloatingLiteralBits
.IsExact
= false;
1074 FloatingLiteral::Create(const ASTContext
&C
, const llvm::APFloat
&V
,
1075 bool isexact
, QualType Type
, SourceLocation L
) {
1076 return new (C
) FloatingLiteral(C
, V
, isexact
, Type
, L
);
1080 FloatingLiteral::Create(const ASTContext
&C
, EmptyShell Empty
) {
1081 return new (C
) FloatingLiteral(C
, Empty
);
1084 /// getValueAsApproximateDouble - This returns the value as an inaccurate
1085 /// double. Note that this may cause loss of precision, but is useful for
1086 /// debugging dumps, etc.
1087 double FloatingLiteral::getValueAsApproximateDouble() const {
1088 llvm::APFloat V
= getValue();
1090 V
.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven
,
1092 return V
.convertToDouble();
1095 unsigned StringLiteral::mapCharByteWidth(TargetInfo
const &Target
,
1096 StringLiteralKind SK
) {
1097 unsigned CharByteWidth
= 0;
1099 case StringLiteralKind::Ordinary
:
1100 case StringLiteralKind::UTF8
:
1101 CharByteWidth
= Target
.getCharWidth();
1103 case StringLiteralKind::Wide
:
1104 CharByteWidth
= Target
.getWCharWidth();
1106 case StringLiteralKind::UTF16
:
1107 CharByteWidth
= Target
.getChar16Width();
1109 case StringLiteralKind::UTF32
:
1110 CharByteWidth
= Target
.getChar32Width();
1112 case StringLiteralKind::Unevaluated
:
1113 return sizeof(char); // Host;
1115 assert((CharByteWidth
& 7) == 0 && "Assumes character size is byte multiple");
1117 assert((CharByteWidth
== 1 || CharByteWidth
== 2 || CharByteWidth
== 4) &&
1118 "The only supported character byte widths are 1,2 and 4!");
1119 return CharByteWidth
;
1122 StringLiteral::StringLiteral(const ASTContext
&Ctx
, StringRef Str
,
1123 StringLiteralKind Kind
, bool Pascal
, QualType Ty
,
1124 const SourceLocation
*Loc
,
1125 unsigned NumConcatenated
)
1126 : Expr(StringLiteralClass
, Ty
, VK_LValue
, OK_Ordinary
) {
1128 unsigned Length
= Str
.size();
1130 StringLiteralBits
.Kind
= llvm::to_underlying(Kind
);
1131 StringLiteralBits
.NumConcatenated
= NumConcatenated
;
1133 if (Kind
!= StringLiteralKind::Unevaluated
) {
1134 assert(Ctx
.getAsConstantArrayType(Ty
) &&
1135 "StringLiteral must be of constant array type!");
1136 unsigned CharByteWidth
= mapCharByteWidth(Ctx
.getTargetInfo(), Kind
);
1137 unsigned ByteLength
= Str
.size();
1138 assert((ByteLength
% CharByteWidth
== 0) &&
1139 "The size of the data must be a multiple of CharByteWidth!");
1141 // Avoid the expensive division. The compiler should be able to figure it
1142 // out by itself. However as of clang 7, even with the appropriate
1143 // llvm_unreachable added just here, it is not able to do so.
1144 switch (CharByteWidth
) {
1146 Length
= ByteLength
;
1149 Length
= ByteLength
/ 2;
1152 Length
= ByteLength
/ 4;
1155 llvm_unreachable("Unsupported character width!");
1158 StringLiteralBits
.CharByteWidth
= CharByteWidth
;
1159 StringLiteralBits
.IsPascal
= Pascal
;
1161 assert(!Pascal
&& "Can't make an unevaluated Pascal string");
1162 StringLiteralBits
.CharByteWidth
= 1;
1163 StringLiteralBits
.IsPascal
= false;
1166 *getTrailingObjects
<unsigned>() = Length
;
1168 // Initialize the trailing array of SourceLocation.
1169 // This is safe since SourceLocation is POD-like.
1170 std::memcpy(getTrailingObjects
<SourceLocation
>(), Loc
,
1171 NumConcatenated
* sizeof(SourceLocation
));
1173 // Initialize the trailing array of char holding the string data.
1174 std::memcpy(getTrailingObjects
<char>(), Str
.data(), Str
.size());
1176 setDependence(ExprDependence::None
);
1179 StringLiteral::StringLiteral(EmptyShell Empty
, unsigned NumConcatenated
,
1180 unsigned Length
, unsigned CharByteWidth
)
1181 : Expr(StringLiteralClass
, Empty
) {
1182 StringLiteralBits
.CharByteWidth
= CharByteWidth
;
1183 StringLiteralBits
.NumConcatenated
= NumConcatenated
;
1184 *getTrailingObjects
<unsigned>() = Length
;
1187 StringLiteral
*StringLiteral::Create(const ASTContext
&Ctx
, StringRef Str
,
1188 StringLiteralKind Kind
, bool Pascal
,
1189 QualType Ty
, const SourceLocation
*Loc
,
1190 unsigned NumConcatenated
) {
1191 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<unsigned, SourceLocation
, char>(
1192 1, NumConcatenated
, Str
.size()),
1193 alignof(StringLiteral
));
1195 StringLiteral(Ctx
, Str
, Kind
, Pascal
, Ty
, Loc
, NumConcatenated
);
1198 StringLiteral
*StringLiteral::CreateEmpty(const ASTContext
&Ctx
,
1199 unsigned NumConcatenated
,
1201 unsigned CharByteWidth
) {
1202 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<unsigned, SourceLocation
, char>(
1203 1, NumConcatenated
, Length
* CharByteWidth
),
1204 alignof(StringLiteral
));
1206 StringLiteral(EmptyShell(), NumConcatenated
, Length
, CharByteWidth
);
1209 void StringLiteral::outputString(raw_ostream
&OS
) const {
1210 switch (getKind()) {
1211 case StringLiteralKind::Unevaluated
:
1212 case StringLiteralKind::Ordinary
:
1213 break; // no prefix.
1214 case StringLiteralKind::Wide
:
1217 case StringLiteralKind::UTF8
:
1220 case StringLiteralKind::UTF16
:
1223 case StringLiteralKind::UTF32
:
1228 static const char Hex
[] = "0123456789ABCDEF";
1230 unsigned LastSlashX
= getLength();
1231 for (unsigned I
= 0, N
= getLength(); I
!= N
; ++I
) {
1232 uint32_t Char
= getCodeUnit(I
);
1233 StringRef Escaped
= escapeCStyle
<EscapeChar::Double
>(Char
);
1234 if (Escaped
.empty()) {
1235 // FIXME: Convert UTF-8 back to codepoints before rendering.
1237 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1238 // Leave invalid surrogates alone; we'll use \x for those.
1239 if (getKind() == StringLiteralKind::UTF16
&& I
!= N
- 1 &&
1240 Char
>= 0xd800 && Char
<= 0xdbff) {
1241 uint32_t Trail
= getCodeUnit(I
+ 1);
1242 if (Trail
>= 0xdc00 && Trail
<= 0xdfff) {
1243 Char
= 0x10000 + ((Char
- 0xd800) << 10) + (Trail
- 0xdc00);
1249 // If this is a wide string, output characters over 0xff using \x
1250 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1251 // codepoint: use \x escapes for invalid codepoints.
1252 if (getKind() == StringLiteralKind::Wide
||
1253 (Char
>= 0xd800 && Char
<= 0xdfff) || Char
>= 0x110000) {
1254 // FIXME: Is this the best way to print wchar_t?
1257 while ((Char
>> Shift
) == 0)
1259 for (/**/; Shift
>= 0; Shift
-= 4)
1260 OS
<< Hex
[(Char
>> Shift
) & 15];
1267 << Hex
[(Char
>> 20) & 15]
1268 << Hex
[(Char
>> 16) & 15];
1271 OS
<< Hex
[(Char
>> 12) & 15]
1272 << Hex
[(Char
>> 8) & 15]
1273 << Hex
[(Char
>> 4) & 15]
1274 << Hex
[(Char
>> 0) & 15];
1278 // If we used \x... for the previous character, and this character is a
1279 // hexadecimal digit, prevent it being slurped as part of the \x.
1280 if (LastSlashX
+ 1 == I
) {
1282 case '0': case '1': case '2': case '3': case '4':
1283 case '5': case '6': case '7': case '8': case '9':
1284 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1285 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1290 assert(Char
<= 0xff &&
1291 "Characters above 0xff should already have been handled.");
1293 if (isPrintable(Char
))
1295 else // Output anything hard as an octal escape.
1297 << (char)('0' + ((Char
>> 6) & 7))
1298 << (char)('0' + ((Char
>> 3) & 7))
1299 << (char)('0' + ((Char
>> 0) & 7));
1301 // Handle some common non-printable cases to make dumps prettier.
1308 /// getLocationOfByte - Return a source location that points to the specified
1309 /// byte of this string literal.
1311 /// Strings are amazingly complex. They can be formed from multiple tokens and
1312 /// can have escape sequences in them in addition to the usual trigraph and
1313 /// escaped newline business. This routine handles this complexity.
1315 /// The *StartToken sets the first token to be searched in this function and
1316 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1317 /// returning, it updates the *StartToken to the TokNo of the token being found
1318 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1320 /// Using these two parameters can reduce the time complexity from O(n^2) to
1321 /// O(n) if one wants to get the location of byte for all the tokens in a
1325 StringLiteral::getLocationOfByte(unsigned ByteNo
, const SourceManager
&SM
,
1326 const LangOptions
&Features
,
1327 const TargetInfo
&Target
, unsigned *StartToken
,
1328 unsigned *StartTokenByteOffset
) const {
1329 assert((getKind() == StringLiteralKind::Ordinary
||
1330 getKind() == StringLiteralKind::UTF8
||
1331 getKind() == StringLiteralKind::Unevaluated
) &&
1332 "Only narrow string literals are currently supported");
1334 // Loop over all of the tokens in this string until we find the one that
1335 // contains the byte we're looking for.
1337 unsigned StringOffset
= 0;
1339 TokNo
= *StartToken
;
1340 if (StartTokenByteOffset
) {
1341 StringOffset
= *StartTokenByteOffset
;
1342 ByteNo
-= StringOffset
;
1345 assert(TokNo
< getNumConcatenated() && "Invalid byte number!");
1346 SourceLocation StrTokLoc
= getStrTokenLoc(TokNo
);
1348 // Get the spelling of the string so that we can get the data that makes up
1349 // the string literal, not the identifier for the macro it is potentially
1350 // expanded through.
1351 SourceLocation StrTokSpellingLoc
= SM
.getSpellingLoc(StrTokLoc
);
1353 // Re-lex the token to get its length and original spelling.
1354 std::pair
<FileID
, unsigned> LocInfo
=
1355 SM
.getDecomposedLoc(StrTokSpellingLoc
);
1356 bool Invalid
= false;
1357 StringRef Buffer
= SM
.getBufferData(LocInfo
.first
, &Invalid
);
1359 if (StartTokenByteOffset
!= nullptr)
1360 *StartTokenByteOffset
= StringOffset
;
1361 if (StartToken
!= nullptr)
1362 *StartToken
= TokNo
;
1363 return StrTokSpellingLoc
;
1366 const char *StrData
= Buffer
.data()+LocInfo
.second
;
1368 // Create a lexer starting at the beginning of this token.
1369 Lexer
TheLexer(SM
.getLocForStartOfFile(LocInfo
.first
), Features
,
1370 Buffer
.begin(), StrData
, Buffer
.end());
1372 TheLexer
.LexFromRawLexer(TheTok
);
1374 // Use the StringLiteralParser to compute the length of the string in bytes.
1375 StringLiteralParser
SLP(TheTok
, SM
, Features
, Target
);
1376 unsigned TokNumBytes
= SLP
.GetStringLength();
1378 // If the byte is in this token, return the location of the byte.
1379 if (ByteNo
< TokNumBytes
||
1380 (ByteNo
== TokNumBytes
&& TokNo
== getNumConcatenated() - 1)) {
1381 unsigned Offset
= SLP
.getOffsetOfStringByte(TheTok
, ByteNo
);
1383 // Now that we know the offset of the token in the spelling, use the
1384 // preprocessor to get the offset in the original source.
1385 if (StartTokenByteOffset
!= nullptr)
1386 *StartTokenByteOffset
= StringOffset
;
1387 if (StartToken
!= nullptr)
1388 *StartToken
= TokNo
;
1389 return Lexer::AdvanceToTokenCharacter(StrTokLoc
, Offset
, SM
, Features
);
1392 // Move to the next string token.
1393 StringOffset
+= TokNumBytes
;
1395 ByteNo
-= TokNumBytes
;
1399 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1400 /// corresponds to, e.g. "sizeof" or "[pre]++".
1401 StringRef
UnaryOperator::getOpcodeStr(Opcode Op
) {
1403 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1404 #include "clang/AST/OperationKinds.def"
1406 llvm_unreachable("Unknown unary operator");
1410 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO
, bool Postfix
) {
1412 default: llvm_unreachable("No unary operator for overloaded function");
1413 case OO_PlusPlus
: return Postfix
? UO_PostInc
: UO_PreInc
;
1414 case OO_MinusMinus
: return Postfix
? UO_PostDec
: UO_PreDec
;
1415 case OO_Amp
: return UO_AddrOf
;
1416 case OO_Star
: return UO_Deref
;
1417 case OO_Plus
: return UO_Plus
;
1418 case OO_Minus
: return UO_Minus
;
1419 case OO_Tilde
: return UO_Not
;
1420 case OO_Exclaim
: return UO_LNot
;
1421 case OO_Coawait
: return UO_Coawait
;
1425 OverloadedOperatorKind
UnaryOperator::getOverloadedOperator(Opcode Opc
) {
1427 case UO_PostInc
: case UO_PreInc
: return OO_PlusPlus
;
1428 case UO_PostDec
: case UO_PreDec
: return OO_MinusMinus
;
1429 case UO_AddrOf
: return OO_Amp
;
1430 case UO_Deref
: return OO_Star
;
1431 case UO_Plus
: return OO_Plus
;
1432 case UO_Minus
: return OO_Minus
;
1433 case UO_Not
: return OO_Tilde
;
1434 case UO_LNot
: return OO_Exclaim
;
1435 case UO_Coawait
: return OO_Coawait
;
1436 default: return OO_None
;
1441 //===----------------------------------------------------------------------===//
1442 // Postfix Operators.
1443 //===----------------------------------------------------------------------===//
1445 CallExpr::CallExpr(StmtClass SC
, Expr
*Fn
, ArrayRef
<Expr
*> PreArgs
,
1446 ArrayRef
<Expr
*> Args
, QualType Ty
, ExprValueKind VK
,
1447 SourceLocation RParenLoc
, FPOptionsOverride FPFeatures
,
1448 unsigned MinNumArgs
, ADLCallKind UsesADL
)
1449 : Expr(SC
, Ty
, VK
, OK_Ordinary
), RParenLoc(RParenLoc
) {
1450 NumArgs
= std::max
<unsigned>(Args
.size(), MinNumArgs
);
1451 unsigned NumPreArgs
= PreArgs
.size();
1452 CallExprBits
.NumPreArgs
= NumPreArgs
;
1453 assert((NumPreArgs
== getNumPreArgs()) && "NumPreArgs overflow!");
1455 unsigned OffsetToTrailingObjects
= offsetToTrailingObjects(SC
);
1456 CallExprBits
.OffsetToTrailingObjects
= OffsetToTrailingObjects
;
1457 assert((CallExprBits
.OffsetToTrailingObjects
== OffsetToTrailingObjects
) &&
1458 "OffsetToTrailingObjects overflow!");
1460 CallExprBits
.UsesADL
= static_cast<bool>(UsesADL
);
1463 for (unsigned I
= 0; I
!= NumPreArgs
; ++I
)
1464 setPreArg(I
, PreArgs
[I
]);
1465 for (unsigned I
= 0; I
!= Args
.size(); ++I
)
1467 for (unsigned I
= Args
.size(); I
!= NumArgs
; ++I
)
1470 this->computeDependence();
1472 CallExprBits
.HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
1473 CallExprBits
.IsCoroElideSafe
= false;
1474 if (hasStoredFPFeatures())
1475 setStoredFPFeatures(FPFeatures
);
1478 CallExpr::CallExpr(StmtClass SC
, unsigned NumPreArgs
, unsigned NumArgs
,
1479 bool HasFPFeatures
, EmptyShell Empty
)
1480 : Expr(SC
, Empty
), NumArgs(NumArgs
) {
1481 CallExprBits
.NumPreArgs
= NumPreArgs
;
1482 assert((NumPreArgs
== getNumPreArgs()) && "NumPreArgs overflow!");
1484 unsigned OffsetToTrailingObjects
= offsetToTrailingObjects(SC
);
1485 CallExprBits
.OffsetToTrailingObjects
= OffsetToTrailingObjects
;
1486 assert((CallExprBits
.OffsetToTrailingObjects
== OffsetToTrailingObjects
) &&
1487 "OffsetToTrailingObjects overflow!");
1488 CallExprBits
.HasFPFeatures
= HasFPFeatures
;
1489 CallExprBits
.IsCoroElideSafe
= false;
1492 CallExpr
*CallExpr::Create(const ASTContext
&Ctx
, Expr
*Fn
,
1493 ArrayRef
<Expr
*> Args
, QualType Ty
, ExprValueKind VK
,
1494 SourceLocation RParenLoc
,
1495 FPOptionsOverride FPFeatures
, unsigned MinNumArgs
,
1496 ADLCallKind UsesADL
) {
1497 unsigned NumArgs
= std::max
<unsigned>(Args
.size(), MinNumArgs
);
1498 unsigned SizeOfTrailingObjects
= CallExpr::sizeOfTrailingObjects(
1499 /*NumPreArgs=*/0, NumArgs
, FPFeatures
.requiresTrailingStorage());
1501 Ctx
.Allocate(sizeof(CallExpr
) + SizeOfTrailingObjects
, alignof(CallExpr
));
1502 return new (Mem
) CallExpr(CallExprClass
, Fn
, /*PreArgs=*/{}, Args
, Ty
, VK
,
1503 RParenLoc
, FPFeatures
, MinNumArgs
, UsesADL
);
1506 CallExpr
*CallExpr::CreateTemporary(void *Mem
, Expr
*Fn
, QualType Ty
,
1507 ExprValueKind VK
, SourceLocation RParenLoc
,
1508 ADLCallKind UsesADL
) {
1509 assert(!(reinterpret_cast<uintptr_t>(Mem
) % alignof(CallExpr
)) &&
1510 "Misaligned memory in CallExpr::CreateTemporary!");
1511 return new (Mem
) CallExpr(CallExprClass
, Fn
, /*PreArgs=*/{}, /*Args=*/{}, Ty
,
1512 VK
, RParenLoc
, FPOptionsOverride(),
1513 /*MinNumArgs=*/0, UsesADL
);
1516 CallExpr
*CallExpr::CreateEmpty(const ASTContext
&Ctx
, unsigned NumArgs
,
1517 bool HasFPFeatures
, EmptyShell Empty
) {
1518 unsigned SizeOfTrailingObjects
=
1519 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs
, HasFPFeatures
);
1521 Ctx
.Allocate(sizeof(CallExpr
) + SizeOfTrailingObjects
, alignof(CallExpr
));
1523 CallExpr(CallExprClass
, /*NumPreArgs=*/0, NumArgs
, HasFPFeatures
, Empty
);
1526 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC
) {
1529 return sizeof(CallExpr
);
1530 case CXXOperatorCallExprClass
:
1531 return sizeof(CXXOperatorCallExpr
);
1532 case CXXMemberCallExprClass
:
1533 return sizeof(CXXMemberCallExpr
);
1534 case UserDefinedLiteralClass
:
1535 return sizeof(UserDefinedLiteral
);
1536 case CUDAKernelCallExprClass
:
1537 return sizeof(CUDAKernelCallExpr
);
1539 llvm_unreachable("unexpected class deriving from CallExpr!");
1543 Decl
*Expr::getReferencedDeclOfCallee() {
1544 Expr
*CEE
= IgnoreParenImpCasts();
1546 while (auto *NTTP
= dyn_cast
<SubstNonTypeTemplateParmExpr
>(CEE
))
1547 CEE
= NTTP
->getReplacement()->IgnoreParenImpCasts();
1549 // If we're calling a dereference, look at the pointer instead.
1551 if (auto *BO
= dyn_cast
<BinaryOperator
>(CEE
)) {
1552 if (BO
->isPtrMemOp()) {
1553 CEE
= BO
->getRHS()->IgnoreParenImpCasts();
1556 } else if (auto *UO
= dyn_cast
<UnaryOperator
>(CEE
)) {
1557 if (UO
->getOpcode() == UO_Deref
|| UO
->getOpcode() == UO_AddrOf
||
1558 UO
->getOpcode() == UO_Plus
) {
1559 CEE
= UO
->getSubExpr()->IgnoreParenImpCasts();
1566 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(CEE
))
1567 return DRE
->getDecl();
1568 if (auto *ME
= dyn_cast
<MemberExpr
>(CEE
))
1569 return ME
->getMemberDecl();
1570 if (auto *BE
= dyn_cast
<BlockExpr
>(CEE
))
1571 return BE
->getBlockDecl();
1576 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
1577 unsigned CallExpr::getBuiltinCallee() const {
1578 const auto *FDecl
= getDirectCallee();
1579 return FDecl
? FDecl
->getBuiltinID() : 0;
1582 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext
&Ctx
) const {
1583 if (unsigned BI
= getBuiltinCallee())
1584 return Ctx
.BuiltinInfo
.isUnevaluated(BI
);
1588 QualType
CallExpr::getCallReturnType(const ASTContext
&Ctx
) const {
1589 const Expr
*Callee
= getCallee();
1590 QualType CalleeType
= Callee
->getType();
1591 if (const auto *FnTypePtr
= CalleeType
->getAs
<PointerType
>()) {
1592 CalleeType
= FnTypePtr
->getPointeeType();
1593 } else if (const auto *BPT
= CalleeType
->getAs
<BlockPointerType
>()) {
1594 CalleeType
= BPT
->getPointeeType();
1595 } else if (CalleeType
->isSpecificPlaceholderType(BuiltinType::BoundMember
)) {
1596 if (isa
<CXXPseudoDestructorExpr
>(Callee
->IgnoreParens()))
1599 if (isa
<UnresolvedMemberExpr
>(Callee
->IgnoreParens()))
1600 return Ctx
.DependentTy
;
1602 // This should never be overloaded and so should never return null.
1603 CalleeType
= Expr::findBoundMemberType(Callee
);
1604 assert(!CalleeType
.isNull());
1605 } else if (CalleeType
->isRecordType()) {
1606 // If the Callee is a record type, then it is a not-yet-resolved
1607 // dependent call to the call operator of that type.
1608 return Ctx
.DependentTy
;
1609 } else if (CalleeType
->isDependentType() ||
1610 CalleeType
->isSpecificPlaceholderType(BuiltinType::Overload
)) {
1611 return Ctx
.DependentTy
;
1614 const FunctionType
*FnType
= CalleeType
->castAs
<FunctionType
>();
1615 return FnType
->getReturnType();
1618 std::pair
<const NamedDecl
*, const Attr
*>
1619 CallExpr::getUnusedResultAttr(const ASTContext
&Ctx
) const {
1620 // If the callee is marked nodiscard, return that attribute
1621 const Decl
*D
= getCalleeDecl();
1622 if (const auto *A
= D
->getAttr
<WarnUnusedResultAttr
>())
1623 return {nullptr, A
};
1625 // If the return type is a struct, union, or enum that is marked nodiscard,
1626 // then return the return type attribute.
1627 if (const TagDecl
*TD
= getCallReturnType(Ctx
)->getAsTagDecl())
1628 if (const auto *A
= TD
->getAttr
<WarnUnusedResultAttr
>())
1631 for (const auto *TD
= getCallReturnType(Ctx
)->getAs
<TypedefType
>(); TD
;
1632 TD
= TD
->desugar()->getAs
<TypedefType
>())
1633 if (const auto *A
= TD
->getDecl()->getAttr
<WarnUnusedResultAttr
>())
1634 return {TD
->getDecl(), A
};
1635 return {nullptr, nullptr};
1638 SourceLocation
CallExpr::getBeginLoc() const {
1639 if (const auto *OCE
= dyn_cast
<CXXOperatorCallExpr
>(this))
1640 return OCE
->getBeginLoc();
1642 SourceLocation begin
= getCallee()->getBeginLoc();
1643 if (begin
.isInvalid() && getNumArgs() > 0 && getArg(0))
1644 begin
= getArg(0)->getBeginLoc();
1647 SourceLocation
CallExpr::getEndLoc() const {
1648 if (const auto *OCE
= dyn_cast
<CXXOperatorCallExpr
>(this))
1649 return OCE
->getEndLoc();
1651 SourceLocation end
= getRParenLoc();
1652 if (end
.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1653 end
= getArg(getNumArgs() - 1)->getEndLoc();
1657 OffsetOfExpr
*OffsetOfExpr::Create(const ASTContext
&C
, QualType type
,
1658 SourceLocation OperatorLoc
,
1659 TypeSourceInfo
*tsi
,
1660 ArrayRef
<OffsetOfNode
> comps
,
1661 ArrayRef
<Expr
*> exprs
,
1662 SourceLocation RParenLoc
) {
1663 void *Mem
= C
.Allocate(
1664 totalSizeToAlloc
<OffsetOfNode
, Expr
*>(comps
.size(), exprs
.size()));
1666 return new (Mem
) OffsetOfExpr(C
, type
, OperatorLoc
, tsi
, comps
, exprs
,
1670 OffsetOfExpr
*OffsetOfExpr::CreateEmpty(const ASTContext
&C
,
1671 unsigned numComps
, unsigned numExprs
) {
1673 C
.Allocate(totalSizeToAlloc
<OffsetOfNode
, Expr
*>(numComps
, numExprs
));
1674 return new (Mem
) OffsetOfExpr(numComps
, numExprs
);
1677 OffsetOfExpr::OffsetOfExpr(const ASTContext
&C
, QualType type
,
1678 SourceLocation OperatorLoc
, TypeSourceInfo
*tsi
,
1679 ArrayRef
<OffsetOfNode
> comps
, ArrayRef
<Expr
*> exprs
,
1680 SourceLocation RParenLoc
)
1681 : Expr(OffsetOfExprClass
, type
, VK_PRValue
, OK_Ordinary
),
1682 OperatorLoc(OperatorLoc
), RParenLoc(RParenLoc
), TSInfo(tsi
),
1683 NumComps(comps
.size()), NumExprs(exprs
.size()) {
1684 for (unsigned i
= 0; i
!= comps
.size(); ++i
)
1685 setComponent(i
, comps
[i
]);
1686 for (unsigned i
= 0; i
!= exprs
.size(); ++i
)
1687 setIndexExpr(i
, exprs
[i
]);
1689 setDependence(computeDependence(this));
1692 IdentifierInfo
*OffsetOfNode::getFieldName() const {
1693 assert(getKind() == Field
|| getKind() == Identifier
);
1694 if (getKind() == Field
)
1695 return getField()->getIdentifier();
1697 return reinterpret_cast<IdentifierInfo
*> (Data
& ~(uintptr_t)Mask
);
1700 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1701 UnaryExprOrTypeTrait ExprKind
, Expr
*E
, QualType resultType
,
1702 SourceLocation op
, SourceLocation rp
)
1703 : Expr(UnaryExprOrTypeTraitExprClass
, resultType
, VK_PRValue
, OK_Ordinary
),
1704 OpLoc(op
), RParenLoc(rp
) {
1705 assert(ExprKind
<= UETT_Last
&& "invalid enum value!");
1706 UnaryExprOrTypeTraitExprBits
.Kind
= ExprKind
;
1707 assert(static_cast<unsigned>(ExprKind
) == UnaryExprOrTypeTraitExprBits
.Kind
&&
1708 "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1709 UnaryExprOrTypeTraitExprBits
.IsType
= false;
1711 setDependence(computeDependence(this));
1714 MemberExpr::MemberExpr(Expr
*Base
, bool IsArrow
, SourceLocation OperatorLoc
,
1715 NestedNameSpecifierLoc QualifierLoc
,
1716 SourceLocation TemplateKWLoc
, ValueDecl
*MemberDecl
,
1717 DeclAccessPair FoundDecl
,
1718 const DeclarationNameInfo
&NameInfo
,
1719 const TemplateArgumentListInfo
*TemplateArgs
, QualType T
,
1720 ExprValueKind VK
, ExprObjectKind OK
,
1721 NonOdrUseReason NOUR
)
1722 : Expr(MemberExprClass
, T
, VK
, OK
), Base(Base
), MemberDecl(MemberDecl
),
1723 MemberDNLoc(NameInfo
.getInfo()), MemberLoc(NameInfo
.getLoc()) {
1724 assert(!NameInfo
.getName() ||
1725 MemberDecl
->getDeclName() == NameInfo
.getName());
1726 MemberExprBits
.IsArrow
= IsArrow
;
1727 MemberExprBits
.HasQualifier
= QualifierLoc
.hasQualifier();
1728 MemberExprBits
.HasFoundDecl
=
1729 FoundDecl
.getDecl() != MemberDecl
||
1730 FoundDecl
.getAccess() != MemberDecl
->getAccess();
1731 MemberExprBits
.HasTemplateKWAndArgsInfo
=
1732 TemplateArgs
|| TemplateKWLoc
.isValid();
1733 MemberExprBits
.HadMultipleCandidates
= false;
1734 MemberExprBits
.NonOdrUseReason
= NOUR
;
1735 MemberExprBits
.OperatorLoc
= OperatorLoc
;
1738 new (getTrailingObjects
<NestedNameSpecifierLoc
>())
1739 NestedNameSpecifierLoc(QualifierLoc
);
1741 *getTrailingObjects
<DeclAccessPair
>() = FoundDecl
;
1743 auto Deps
= TemplateArgumentDependence::None
;
1744 getTrailingObjects
<ASTTemplateKWAndArgsInfo
>()->initializeFrom(
1745 TemplateKWLoc
, *TemplateArgs
, getTrailingObjects
<TemplateArgumentLoc
>(),
1747 } else if (TemplateKWLoc
.isValid()) {
1748 getTrailingObjects
<ASTTemplateKWAndArgsInfo
>()->initializeFrom(
1751 setDependence(computeDependence(this));
1754 MemberExpr
*MemberExpr::Create(
1755 const ASTContext
&C
, Expr
*Base
, bool IsArrow
, SourceLocation OperatorLoc
,
1756 NestedNameSpecifierLoc QualifierLoc
, SourceLocation TemplateKWLoc
,
1757 ValueDecl
*MemberDecl
, DeclAccessPair FoundDecl
,
1758 DeclarationNameInfo NameInfo
, const TemplateArgumentListInfo
*TemplateArgs
,
1759 QualType T
, ExprValueKind VK
, ExprObjectKind OK
, NonOdrUseReason NOUR
) {
1760 bool HasQualifier
= QualifierLoc
.hasQualifier();
1761 bool HasFoundDecl
= FoundDecl
.getDecl() != MemberDecl
||
1762 FoundDecl
.getAccess() != MemberDecl
->getAccess();
1763 bool HasTemplateKWAndArgsInfo
= TemplateArgs
|| TemplateKWLoc
.isValid();
1765 totalSizeToAlloc
<NestedNameSpecifierLoc
, DeclAccessPair
,
1766 ASTTemplateKWAndArgsInfo
, TemplateArgumentLoc
>(
1767 HasQualifier
, HasFoundDecl
, HasTemplateKWAndArgsInfo
,
1768 TemplateArgs
? TemplateArgs
->size() : 0);
1770 void *Mem
= C
.Allocate(Size
, alignof(MemberExpr
));
1771 return new (Mem
) MemberExpr(Base
, IsArrow
, OperatorLoc
, QualifierLoc
,
1772 TemplateKWLoc
, MemberDecl
, FoundDecl
, NameInfo
,
1773 TemplateArgs
, T
, VK
, OK
, NOUR
);
1776 MemberExpr
*MemberExpr::CreateEmpty(const ASTContext
&Context
,
1777 bool HasQualifier
, bool HasFoundDecl
,
1778 bool HasTemplateKWAndArgsInfo
,
1779 unsigned NumTemplateArgs
) {
1780 assert((!NumTemplateArgs
|| HasTemplateKWAndArgsInfo
) &&
1781 "template args but no template arg info?");
1783 totalSizeToAlloc
<NestedNameSpecifierLoc
, DeclAccessPair
,
1784 ASTTemplateKWAndArgsInfo
, TemplateArgumentLoc
>(
1785 HasQualifier
, HasFoundDecl
, HasTemplateKWAndArgsInfo
,
1787 void *Mem
= Context
.Allocate(Size
, alignof(MemberExpr
));
1788 return new (Mem
) MemberExpr(EmptyShell());
1791 void MemberExpr::setMemberDecl(ValueDecl
*NewD
) {
1793 if (getType()->isUndeducedType())
1794 setType(NewD
->getType());
1795 setDependence(computeDependence(this));
1798 SourceLocation
MemberExpr::getBeginLoc() const {
1799 if (isImplicitAccess()) {
1801 return getQualifierLoc().getBeginLoc();
1805 // FIXME: We don't want this to happen. Rather, we should be able to
1806 // detect all kinds of implicit accesses more cleanly.
1807 SourceLocation BaseStartLoc
= getBase()->getBeginLoc();
1808 if (BaseStartLoc
.isValid())
1809 return BaseStartLoc
;
1812 SourceLocation
MemberExpr::getEndLoc() const {
1813 SourceLocation EndLoc
= getMemberNameInfo().getEndLoc();
1814 if (hasExplicitTemplateArgs())
1815 EndLoc
= getRAngleLoc();
1816 else if (EndLoc
.isInvalid())
1817 EndLoc
= getBase()->getEndLoc();
1821 bool CastExpr::CastConsistency() const {
1822 switch (getCastKind()) {
1823 case CK_DerivedToBase
:
1824 case CK_UncheckedDerivedToBase
:
1825 case CK_DerivedToBaseMemberPointer
:
1826 case CK_BaseToDerived
:
1827 case CK_BaseToDerivedMemberPointer
:
1828 assert(!path_empty() && "Cast kind should have a base path!");
1831 case CK_CPointerToObjCPointerCast
:
1832 assert(getType()->isObjCObjectPointerType());
1833 assert(getSubExpr()->getType()->isPointerType());
1834 goto CheckNoBasePath
;
1836 case CK_BlockPointerToObjCPointerCast
:
1837 assert(getType()->isObjCObjectPointerType());
1838 assert(getSubExpr()->getType()->isBlockPointerType());
1839 goto CheckNoBasePath
;
1841 case CK_ReinterpretMemberPointer
:
1842 assert(getType()->isMemberPointerType());
1843 assert(getSubExpr()->getType()->isMemberPointerType());
1844 goto CheckNoBasePath
;
1847 // Arbitrary casts to C pointer types count as bitcasts.
1848 // Otherwise, we should only have block and ObjC pointer casts
1849 // here if they stay within the type kind.
1850 if (!getType()->isPointerType()) {
1851 assert(getType()->isObjCObjectPointerType() ==
1852 getSubExpr()->getType()->isObjCObjectPointerType());
1853 assert(getType()->isBlockPointerType() ==
1854 getSubExpr()->getType()->isBlockPointerType());
1856 goto CheckNoBasePath
;
1858 case CK_AnyPointerToBlockPointerCast
:
1859 assert(getType()->isBlockPointerType());
1860 assert(getSubExpr()->getType()->isAnyPointerType() &&
1861 !getSubExpr()->getType()->isBlockPointerType());
1862 goto CheckNoBasePath
;
1864 case CK_CopyAndAutoreleaseBlockObject
:
1865 assert(getType()->isBlockPointerType());
1866 assert(getSubExpr()->getType()->isBlockPointerType());
1867 goto CheckNoBasePath
;
1869 case CK_FunctionToPointerDecay
:
1870 assert(getType()->isPointerType());
1871 assert(getSubExpr()->getType()->isFunctionType());
1872 goto CheckNoBasePath
;
1874 case CK_AddressSpaceConversion
: {
1875 auto Ty
= getType();
1876 auto SETy
= getSubExpr()->getType();
1877 assert(getValueKindForType(Ty
) == Expr::getValueKindForType(SETy
));
1878 if (isPRValue() && !Ty
->isDependentType() && !SETy
->isDependentType()) {
1879 Ty
= Ty
->getPointeeType();
1880 SETy
= SETy
->getPointeeType();
1882 assert((Ty
->isDependentType() || SETy
->isDependentType()) ||
1883 (!Ty
.isNull() && !SETy
.isNull() &&
1884 Ty
.getAddressSpace() != SETy
.getAddressSpace()));
1885 goto CheckNoBasePath
;
1887 // These should not have an inheritance path.
1890 case CK_ArrayToPointerDecay
:
1891 case CK_NullToMemberPointer
:
1892 case CK_NullToPointer
:
1893 case CK_ConstructorConversion
:
1894 case CK_IntegralToPointer
:
1895 case CK_PointerToIntegral
:
1897 case CK_VectorSplat
:
1898 case CK_IntegralCast
:
1899 case CK_BooleanToSignedIntegral
:
1900 case CK_IntegralToFloating
:
1901 case CK_FloatingToIntegral
:
1902 case CK_FloatingCast
:
1903 case CK_ObjCObjectLValueCast
:
1904 case CK_FloatingRealToComplex
:
1905 case CK_FloatingComplexToReal
:
1906 case CK_FloatingComplexCast
:
1907 case CK_FloatingComplexToIntegralComplex
:
1908 case CK_IntegralRealToComplex
:
1909 case CK_IntegralComplexToReal
:
1910 case CK_IntegralComplexCast
:
1911 case CK_IntegralComplexToFloatingComplex
:
1912 case CK_ARCProduceObject
:
1913 case CK_ARCConsumeObject
:
1914 case CK_ARCReclaimReturnedObject
:
1915 case CK_ARCExtendBlockObject
:
1916 case CK_ZeroToOCLOpaqueType
:
1917 case CK_IntToOCLSampler
:
1918 case CK_FloatingToFixedPoint
:
1919 case CK_FixedPointToFloating
:
1920 case CK_FixedPointCast
:
1921 case CK_FixedPointToIntegral
:
1922 case CK_IntegralToFixedPoint
:
1924 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1925 goto CheckNoBasePath
;
1928 case CK_LValueToRValue
:
1930 case CK_AtomicToNonAtomic
:
1931 case CK_NonAtomicToAtomic
:
1932 case CK_PointerToBoolean
:
1933 case CK_IntegralToBoolean
:
1934 case CK_FloatingToBoolean
:
1935 case CK_MemberPointerToBoolean
:
1936 case CK_FloatingComplexToBoolean
:
1937 case CK_IntegralComplexToBoolean
:
1938 case CK_LValueBitCast
: // -> bool&
1939 case CK_LValueToRValueBitCast
:
1940 case CK_UserDefinedConversion
: // operator bool()
1941 case CK_BuiltinFnToFnPtr
:
1942 case CK_FixedPointToBoolean
:
1943 case CK_HLSLArrayRValue
:
1944 case CK_HLSLVectorTruncation
:
1946 assert(path_empty() && "Cast kind should not have a base path!");
1952 const char *CastExpr::getCastKindName(CastKind CK
) {
1954 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1955 #include "clang/AST/OperationKinds.def"
1957 llvm_unreachable("Unhandled cast kind!");
1961 // Skip over implicit nodes produced as part of semantic analysis.
1962 // Designed for use with IgnoreExprNodes.
1963 static Expr
*ignoreImplicitSemaNodes(Expr
*E
) {
1964 if (auto *Materialize
= dyn_cast
<MaterializeTemporaryExpr
>(E
))
1965 return Materialize
->getSubExpr();
1967 if (auto *Binder
= dyn_cast
<CXXBindTemporaryExpr
>(E
))
1968 return Binder
->getSubExpr();
1970 if (auto *Full
= dyn_cast
<FullExpr
>(E
))
1971 return Full
->getSubExpr();
1973 if (auto *CPLIE
= dyn_cast
<CXXParenListInitExpr
>(E
);
1974 CPLIE
&& CPLIE
->getInitExprs().size() == 1)
1975 return CPLIE
->getInitExprs()[0];
1981 Expr
*CastExpr::getSubExprAsWritten() {
1982 const Expr
*SubExpr
= nullptr;
1984 for (const CastExpr
*E
= this; E
; E
= dyn_cast
<ImplicitCastExpr
>(SubExpr
)) {
1985 SubExpr
= IgnoreExprNodes(E
->getSubExpr(), ignoreImplicitSemaNodes
);
1987 // Conversions by constructor and conversion functions have a
1988 // subexpression describing the call; strip it off.
1989 if (E
->getCastKind() == CK_ConstructorConversion
) {
1990 SubExpr
= IgnoreExprNodes(cast
<CXXConstructExpr
>(SubExpr
)->getArg(0),
1991 ignoreImplicitSemaNodes
);
1992 } else if (E
->getCastKind() == CK_UserDefinedConversion
) {
1993 assert((isa
<CallExpr
, BlockExpr
>(SubExpr
)) &&
1994 "Unexpected SubExpr for CK_UserDefinedConversion.");
1995 if (auto *MCE
= dyn_cast
<CXXMemberCallExpr
>(SubExpr
))
1996 SubExpr
= MCE
->getImplicitObjectArgument();
2000 return const_cast<Expr
*>(SubExpr
);
2003 NamedDecl
*CastExpr::getConversionFunction() const {
2004 const Expr
*SubExpr
= nullptr;
2006 for (const CastExpr
*E
= this; E
; E
= dyn_cast
<ImplicitCastExpr
>(SubExpr
)) {
2007 SubExpr
= IgnoreExprNodes(E
->getSubExpr(), ignoreImplicitSemaNodes
);
2009 if (E
->getCastKind() == CK_ConstructorConversion
)
2010 return cast
<CXXConstructExpr
>(SubExpr
)->getConstructor();
2012 if (E
->getCastKind() == CK_UserDefinedConversion
) {
2013 if (auto *MCE
= dyn_cast
<CXXMemberCallExpr
>(SubExpr
))
2014 return MCE
->getMethodDecl();
2021 CXXBaseSpecifier
**CastExpr::path_buffer() {
2022 switch (getStmtClass()) {
2023 #define ABSTRACT_STMT(x)
2024 #define CASTEXPR(Type, Base) \
2025 case Stmt::Type##Class: \
2026 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
2027 #define STMT(Type, Base)
2028 #include "clang/AST/StmtNodes.inc"
2030 llvm_unreachable("non-cast expressions not possible here");
2034 const FieldDecl
*CastExpr::getTargetFieldForToUnionCast(QualType unionType
,
2036 auto RD
= unionType
->castAs
<RecordType
>()->getDecl();
2037 return getTargetFieldForToUnionCast(RD
, opType
);
2040 const FieldDecl
*CastExpr::getTargetFieldForToUnionCast(const RecordDecl
*RD
,
2042 auto &Ctx
= RD
->getASTContext();
2043 RecordDecl::field_iterator Field
, FieldEnd
;
2044 for (Field
= RD
->field_begin(), FieldEnd
= RD
->field_end();
2045 Field
!= FieldEnd
; ++Field
) {
2046 if (Ctx
.hasSameUnqualifiedType(Field
->getType(), OpType
) &&
2047 !Field
->isUnnamedBitField()) {
2054 FPOptionsOverride
*CastExpr::getTrailingFPFeatures() {
2055 assert(hasStoredFPFeatures());
2056 switch (getStmtClass()) {
2057 case ImplicitCastExprClass
:
2058 return static_cast<ImplicitCastExpr
*>(this)
2059 ->getTrailingObjects
<FPOptionsOverride
>();
2060 case CStyleCastExprClass
:
2061 return static_cast<CStyleCastExpr
*>(this)
2062 ->getTrailingObjects
<FPOptionsOverride
>();
2063 case CXXFunctionalCastExprClass
:
2064 return static_cast<CXXFunctionalCastExpr
*>(this)
2065 ->getTrailingObjects
<FPOptionsOverride
>();
2066 case CXXStaticCastExprClass
:
2067 return static_cast<CXXStaticCastExpr
*>(this)
2068 ->getTrailingObjects
<FPOptionsOverride
>();
2070 llvm_unreachable("Cast does not have FPFeatures");
2074 ImplicitCastExpr
*ImplicitCastExpr::Create(const ASTContext
&C
, QualType T
,
2075 CastKind Kind
, Expr
*Operand
,
2076 const CXXCastPath
*BasePath
,
2078 FPOptionsOverride FPO
) {
2079 unsigned PathSize
= (BasePath
? BasePath
->size() : 0);
2081 C
.Allocate(totalSizeToAlloc
<CXXBaseSpecifier
*, FPOptionsOverride
>(
2082 PathSize
, FPO
.requiresTrailingStorage()));
2083 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2084 // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2085 assert((Kind
!= CK_LValueToRValue
||
2086 !(T
->isNullPtrType() || T
->getAsCXXRecordDecl())) &&
2087 "invalid type for lvalue-to-rvalue conversion");
2088 ImplicitCastExpr
*E
=
2089 new (Buffer
) ImplicitCastExpr(T
, Kind
, Operand
, PathSize
, FPO
, VK
);
2091 std::uninitialized_copy_n(BasePath
->data(), BasePath
->size(),
2092 E
->getTrailingObjects
<CXXBaseSpecifier
*>());
2096 ImplicitCastExpr
*ImplicitCastExpr::CreateEmpty(const ASTContext
&C
,
2098 bool HasFPFeatures
) {
2100 C
.Allocate(totalSizeToAlloc
<CXXBaseSpecifier
*, FPOptionsOverride
>(
2101 PathSize
, HasFPFeatures
));
2102 return new (Buffer
) ImplicitCastExpr(EmptyShell(), PathSize
, HasFPFeatures
);
2105 CStyleCastExpr
*CStyleCastExpr::Create(const ASTContext
&C
, QualType T
,
2106 ExprValueKind VK
, CastKind K
, Expr
*Op
,
2107 const CXXCastPath
*BasePath
,
2108 FPOptionsOverride FPO
,
2109 TypeSourceInfo
*WrittenTy
,
2110 SourceLocation L
, SourceLocation R
) {
2111 unsigned PathSize
= (BasePath
? BasePath
->size() : 0);
2113 C
.Allocate(totalSizeToAlloc
<CXXBaseSpecifier
*, FPOptionsOverride
>(
2114 PathSize
, FPO
.requiresTrailingStorage()));
2116 new (Buffer
) CStyleCastExpr(T
, VK
, K
, Op
, PathSize
, FPO
, WrittenTy
, L
, R
);
2118 std::uninitialized_copy_n(BasePath
->data(), BasePath
->size(),
2119 E
->getTrailingObjects
<CXXBaseSpecifier
*>());
2123 CStyleCastExpr
*CStyleCastExpr::CreateEmpty(const ASTContext
&C
,
2125 bool HasFPFeatures
) {
2127 C
.Allocate(totalSizeToAlloc
<CXXBaseSpecifier
*, FPOptionsOverride
>(
2128 PathSize
, HasFPFeatures
));
2129 return new (Buffer
) CStyleCastExpr(EmptyShell(), PathSize
, HasFPFeatures
);
2132 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2133 /// corresponds to, e.g. "<<=".
2134 StringRef
BinaryOperator::getOpcodeStr(Opcode Op
) {
2136 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2137 #include "clang/AST/OperationKinds.def"
2139 llvm_unreachable("Invalid OpCode!");
2143 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO
) {
2145 default: llvm_unreachable("Not an overloadable binary operator");
2146 case OO_Plus
: return BO_Add
;
2147 case OO_Minus
: return BO_Sub
;
2148 case OO_Star
: return BO_Mul
;
2149 case OO_Slash
: return BO_Div
;
2150 case OO_Percent
: return BO_Rem
;
2151 case OO_Caret
: return BO_Xor
;
2152 case OO_Amp
: return BO_And
;
2153 case OO_Pipe
: return BO_Or
;
2154 case OO_Equal
: return BO_Assign
;
2155 case OO_Spaceship
: return BO_Cmp
;
2156 case OO_Less
: return BO_LT
;
2157 case OO_Greater
: return BO_GT
;
2158 case OO_PlusEqual
: return BO_AddAssign
;
2159 case OO_MinusEqual
: return BO_SubAssign
;
2160 case OO_StarEqual
: return BO_MulAssign
;
2161 case OO_SlashEqual
: return BO_DivAssign
;
2162 case OO_PercentEqual
: return BO_RemAssign
;
2163 case OO_CaretEqual
: return BO_XorAssign
;
2164 case OO_AmpEqual
: return BO_AndAssign
;
2165 case OO_PipeEqual
: return BO_OrAssign
;
2166 case OO_LessLess
: return BO_Shl
;
2167 case OO_GreaterGreater
: return BO_Shr
;
2168 case OO_LessLessEqual
: return BO_ShlAssign
;
2169 case OO_GreaterGreaterEqual
: return BO_ShrAssign
;
2170 case OO_EqualEqual
: return BO_EQ
;
2171 case OO_ExclaimEqual
: return BO_NE
;
2172 case OO_LessEqual
: return BO_LE
;
2173 case OO_GreaterEqual
: return BO_GE
;
2174 case OO_AmpAmp
: return BO_LAnd
;
2175 case OO_PipePipe
: return BO_LOr
;
2176 case OO_Comma
: return BO_Comma
;
2177 case OO_ArrowStar
: return BO_PtrMemI
;
2181 OverloadedOperatorKind
BinaryOperator::getOverloadedOperator(Opcode Opc
) {
2182 static const OverloadedOperatorKind OverOps
[] = {
2183 /* .* Cannot be overloaded */OO_None
, OO_ArrowStar
,
2184 OO_Star
, OO_Slash
, OO_Percent
,
2186 OO_LessLess
, OO_GreaterGreater
,
2188 OO_Less
, OO_Greater
, OO_LessEqual
, OO_GreaterEqual
,
2189 OO_EqualEqual
, OO_ExclaimEqual
,
2195 OO_Equal
, OO_StarEqual
,
2196 OO_SlashEqual
, OO_PercentEqual
,
2197 OO_PlusEqual
, OO_MinusEqual
,
2198 OO_LessLessEqual
, OO_GreaterGreaterEqual
,
2199 OO_AmpEqual
, OO_CaretEqual
,
2203 return OverOps
[Opc
];
2206 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext
&Ctx
,
2213 // Check that we have one pointer and one integer operand.
2215 if (LHS
->getType()->isPointerType()) {
2216 if (!RHS
->getType()->isIntegerType())
2219 } else if (RHS
->getType()->isPointerType()) {
2220 if (!LHS
->getType()->isIntegerType())
2227 // Check that the pointer is a nullptr.
2228 if (!PExp
->IgnoreParenCasts()
2229 ->isNullPointerConstant(Ctx
, Expr::NPC_ValueDependentIsNotNull
))
2232 // Check that the pointee type is char-sized.
2233 const PointerType
*PTy
= PExp
->getType()->getAs
<PointerType
>();
2234 if (!PTy
|| !PTy
->getPointeeType()->isCharType())
2240 SourceLocExpr::SourceLocExpr(const ASTContext
&Ctx
, SourceLocIdentKind Kind
,
2241 QualType ResultTy
, SourceLocation BLoc
,
2242 SourceLocation RParenLoc
,
2243 DeclContext
*ParentContext
)
2244 : Expr(SourceLocExprClass
, ResultTy
, VK_PRValue
, OK_Ordinary
),
2245 BuiltinLoc(BLoc
), RParenLoc(RParenLoc
), ParentContext(ParentContext
) {
2246 SourceLocExprBits
.Kind
= llvm::to_underlying(Kind
);
2247 // In dependent contexts, function names may change.
2248 setDependence(MayBeDependent(Kind
) && ParentContext
->isDependentContext()
2249 ? ExprDependence::Value
2250 : ExprDependence::None
);
2253 StringRef
SourceLocExpr::getBuiltinStr() const {
2254 switch (getIdentKind()) {
2255 case SourceLocIdentKind::File
:
2256 return "__builtin_FILE";
2257 case SourceLocIdentKind::FileName
:
2258 return "__builtin_FILE_NAME";
2259 case SourceLocIdentKind::Function
:
2260 return "__builtin_FUNCTION";
2261 case SourceLocIdentKind::FuncSig
:
2262 return "__builtin_FUNCSIG";
2263 case SourceLocIdentKind::Line
:
2264 return "__builtin_LINE";
2265 case SourceLocIdentKind::Column
:
2266 return "__builtin_COLUMN";
2267 case SourceLocIdentKind::SourceLocStruct
:
2268 return "__builtin_source_location";
2270 llvm_unreachable("unexpected IdentKind!");
2273 APValue
SourceLocExpr::EvaluateInContext(const ASTContext
&Ctx
,
2274 const Expr
*DefaultExpr
) const {
2276 const DeclContext
*Context
;
2278 if (const auto *DIE
= dyn_cast_if_present
<CXXDefaultInitExpr
>(DefaultExpr
)) {
2279 Loc
= DIE
->getUsedLocation();
2280 Context
= DIE
->getUsedContext();
2281 } else if (const auto *DAE
=
2282 dyn_cast_if_present
<CXXDefaultArgExpr
>(DefaultExpr
)) {
2283 Loc
= DAE
->getUsedLocation();
2284 Context
= DAE
->getUsedContext();
2286 Loc
= getLocation();
2287 Context
= getParentContext();
2290 // If we are currently parsing a lambda declarator, we might not have a fully
2291 // formed call operator declaration yet, and we could not form a function name
2292 // for it. Because we do not have access to Sema/function scopes here, we
2293 // detect this case by relying on the fact such method doesn't yet have a
2295 if (const auto *D
= dyn_cast
<CXXMethodDecl
>(Context
);
2296 D
&& D
->getFunctionTypeLoc().isNull() && isLambdaCallOperator(D
))
2297 Context
= D
->getParent()->getParent();
2299 PresumedLoc PLoc
= Ctx
.getSourceManager().getPresumedLoc(
2300 Ctx
.getSourceManager().getExpansionRange(Loc
).getEnd());
2302 auto MakeStringLiteral
= [&](StringRef Tmp
) {
2303 using LValuePathEntry
= APValue::LValuePathEntry
;
2304 StringLiteral
*Res
= Ctx
.getPredefinedStringLiteralFromCache(Tmp
);
2305 // Decay the string to a pointer to the first character.
2306 LValuePathEntry Path
[1] = {LValuePathEntry::ArrayIndex(0)};
2307 return APValue(Res
, CharUnits::Zero(), Path
, /*OnePastTheEnd=*/false);
2310 switch (getIdentKind()) {
2311 case SourceLocIdentKind::FileName
: {
2312 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2313 // the last part of __builtin_FILE().
2314 SmallString
<256> FileName
;
2315 clang::Preprocessor::processPathToFileName(
2316 FileName
, PLoc
, Ctx
.getLangOpts(), Ctx
.getTargetInfo());
2317 return MakeStringLiteral(FileName
);
2319 case SourceLocIdentKind::File
: {
2320 SmallString
<256> Path(PLoc
.getFilename());
2321 clang::Preprocessor::processPathForFileMacro(Path
, Ctx
.getLangOpts(),
2322 Ctx
.getTargetInfo());
2323 return MakeStringLiteral(Path
);
2325 case SourceLocIdentKind::Function
:
2326 case SourceLocIdentKind::FuncSig
: {
2327 const auto *CurDecl
= dyn_cast
<Decl
>(Context
);
2328 const auto Kind
= getIdentKind() == SourceLocIdentKind::Function
2329 ? PredefinedIdentKind::Function
2330 : PredefinedIdentKind::FuncSig
;
2331 return MakeStringLiteral(
2332 CurDecl
? PredefinedExpr::ComputeName(Kind
, CurDecl
) : std::string(""));
2334 case SourceLocIdentKind::Line
:
2335 return APValue(Ctx
.MakeIntValue(PLoc
.getLine(), Ctx
.UnsignedIntTy
));
2336 case SourceLocIdentKind::Column
:
2337 return APValue(Ctx
.MakeIntValue(PLoc
.getColumn(), Ctx
.UnsignedIntTy
));
2338 case SourceLocIdentKind::SourceLocStruct
: {
2339 // Fill in a std::source_location::__impl structure, by creating an
2340 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2342 const CXXRecordDecl
*ImplDecl
= getType()->getPointeeCXXRecordDecl();
2345 // Construct an APValue for the __impl struct, and get or create a Decl
2346 // corresponding to that. Note that we've already verified that the shape of
2347 // the ImplDecl type is as expected.
2349 APValue
Value(APValue::UninitStruct(), 0, 4);
2350 for (const FieldDecl
*F
: ImplDecl
->fields()) {
2351 StringRef Name
= F
->getName();
2352 if (Name
== "_M_file_name") {
2353 SmallString
<256> Path(PLoc
.getFilename());
2354 clang::Preprocessor::processPathForFileMacro(Path
, Ctx
.getLangOpts(),
2355 Ctx
.getTargetInfo());
2356 Value
.getStructField(F
->getFieldIndex()) = MakeStringLiteral(Path
);
2357 } else if (Name
== "_M_function_name") {
2358 // Note: this emits the PrettyFunction name -- different than what
2359 // __builtin_FUNCTION() above returns!
2360 const auto *CurDecl
= dyn_cast
<Decl
>(Context
);
2361 Value
.getStructField(F
->getFieldIndex()) = MakeStringLiteral(
2362 CurDecl
&& !isa
<TranslationUnitDecl
>(CurDecl
)
2363 ? StringRef(PredefinedExpr::ComputeName(
2364 PredefinedIdentKind::PrettyFunction
, CurDecl
))
2366 } else if (Name
== "_M_line") {
2367 llvm::APSInt IntVal
= Ctx
.MakeIntValue(PLoc
.getLine(), F
->getType());
2368 Value
.getStructField(F
->getFieldIndex()) = APValue(IntVal
);
2369 } else if (Name
== "_M_column") {
2370 llvm::APSInt IntVal
= Ctx
.MakeIntValue(PLoc
.getColumn(), F
->getType());
2371 Value
.getStructField(F
->getFieldIndex()) = APValue(IntVal
);
2375 UnnamedGlobalConstantDecl
*GV
=
2376 Ctx
.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value
);
2378 return APValue(GV
, CharUnits::Zero(), ArrayRef
<APValue::LValuePathEntry
>{},
2382 llvm_unreachable("unhandled case");
2385 EmbedExpr::EmbedExpr(const ASTContext
&Ctx
, SourceLocation Loc
,
2386 EmbedDataStorage
*Data
, unsigned Begin
,
2387 unsigned NumOfElements
)
2388 : Expr(EmbedExprClass
, Ctx
.IntTy
, VK_PRValue
, OK_Ordinary
),
2389 EmbedKeywordLoc(Loc
), Ctx(&Ctx
), Data(Data
), Begin(Begin
),
2390 NumOfElements(NumOfElements
) {
2391 setDependence(ExprDependence::None
);
2392 FakeChildNode
= IntegerLiteral::Create(
2393 Ctx
, llvm::APInt::getZero(Ctx
.getTypeSize(getType())), getType(), Loc
);
2396 InitListExpr::InitListExpr(const ASTContext
&C
, SourceLocation lbraceloc
,
2397 ArrayRef
<Expr
*> initExprs
, SourceLocation rbraceloc
)
2398 : Expr(InitListExprClass
, QualType(), VK_PRValue
, OK_Ordinary
),
2399 InitExprs(C
, initExprs
.size()), LBraceLoc(lbraceloc
),
2400 RBraceLoc(rbraceloc
), AltForm(nullptr, true) {
2401 sawArrayRangeDesignator(false);
2402 InitExprs
.insert(C
, InitExprs
.end(), initExprs
.begin(), initExprs
.end());
2404 setDependence(computeDependence(this));
2407 void InitListExpr::reserveInits(const ASTContext
&C
, unsigned NumInits
) {
2408 if (NumInits
> InitExprs
.size())
2409 InitExprs
.reserve(C
, NumInits
);
2412 void InitListExpr::resizeInits(const ASTContext
&C
, unsigned NumInits
) {
2413 InitExprs
.resize(C
, NumInits
, nullptr);
2416 Expr
*InitListExpr::updateInit(const ASTContext
&C
, unsigned Init
, Expr
*expr
) {
2417 if (Init
>= InitExprs
.size()) {
2418 InitExprs
.insert(C
, InitExprs
.end(), Init
- InitExprs
.size() + 1, nullptr);
2419 setInit(Init
, expr
);
2423 Expr
*Result
= cast_or_null
<Expr
>(InitExprs
[Init
]);
2424 setInit(Init
, expr
);
2428 void InitListExpr::setArrayFiller(Expr
*filler
) {
2429 assert(!hasArrayFiller() && "Filler already set!");
2430 ArrayFillerOrUnionFieldInit
= filler
;
2431 // Fill out any "holes" in the array due to designated initializers.
2432 Expr
**inits
= getInits();
2433 for (unsigned i
= 0, e
= getNumInits(); i
!= e
; ++i
)
2434 if (inits
[i
] == nullptr)
2438 bool InitListExpr::isStringLiteralInit() const {
2439 if (getNumInits() != 1)
2441 const ArrayType
*AT
= getType()->getAsArrayTypeUnsafe();
2442 if (!AT
|| !AT
->getElementType()->isIntegerType())
2444 // It is possible for getInit() to return null.
2445 const Expr
*Init
= getInit(0);
2448 Init
= Init
->IgnoreParenImpCasts();
2449 return isa
<StringLiteral
>(Init
) || isa
<ObjCEncodeExpr
>(Init
);
2452 bool InitListExpr::isTransparent() const {
2453 assert(isSemanticForm() && "syntactic form never semantically transparent");
2455 // A glvalue InitListExpr is always just sugar.
2457 assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2461 // Otherwise, we're sugar if and only if we have exactly one initializer that
2462 // is of the same type.
2463 if (getNumInits() != 1 || !getInit(0))
2466 // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2467 // transparent struct copy.
2468 if (!getInit(0)->isPRValue() && getType()->isRecordType())
2471 return getType().getCanonicalType() ==
2472 getInit(0)->getType().getCanonicalType();
2475 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions
&LangOpts
) const {
2476 assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2478 if (LangOpts
.CPlusPlus
|| getNumInits() != 1 || !getInit(0)) {
2482 const IntegerLiteral
*Lit
= dyn_cast
<IntegerLiteral
>(getInit(0)->IgnoreImplicit());
2483 return Lit
&& Lit
->getValue() == 0;
2486 SourceLocation
InitListExpr::getBeginLoc() const {
2487 if (InitListExpr
*SyntacticForm
= getSyntacticForm())
2488 return SyntacticForm
->getBeginLoc();
2489 SourceLocation Beg
= LBraceLoc
;
2490 if (Beg
.isInvalid()) {
2491 // Find the first non-null initializer.
2492 for (InitExprsTy::const_iterator I
= InitExprs
.begin(),
2493 E
= InitExprs
.end();
2496 Beg
= S
->getBeginLoc();
2504 SourceLocation
InitListExpr::getEndLoc() const {
2505 if (InitListExpr
*SyntacticForm
= getSyntacticForm())
2506 return SyntacticForm
->getEndLoc();
2507 SourceLocation End
= RBraceLoc
;
2508 if (End
.isInvalid()) {
2509 // Find the first non-null initializer from the end.
2510 for (Stmt
*S
: llvm::reverse(InitExprs
)) {
2512 End
= S
->getEndLoc();
2520 /// getFunctionType - Return the underlying function type for this block.
2522 const FunctionProtoType
*BlockExpr::getFunctionType() const {
2523 // The block pointer is never sugared, but the function type might be.
2524 return cast
<BlockPointerType
>(getType())
2525 ->getPointeeType()->castAs
<FunctionProtoType
>();
2528 SourceLocation
BlockExpr::getCaretLocation() const {
2529 return TheBlock
->getCaretLocation();
2531 const Stmt
*BlockExpr::getBody() const {
2532 return TheBlock
->getBody();
2534 Stmt
*BlockExpr::getBody() {
2535 return TheBlock
->getBody();
2539 //===----------------------------------------------------------------------===//
2540 // Generic Expression Routines
2541 //===----------------------------------------------------------------------===//
2543 bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2544 // In C++11, discarded-value expressions of a certain form are special,
2545 // according to [expr]p10:
2546 // The lvalue-to-rvalue conversion (4.1) is applied only if the
2547 // expression is a glvalue of volatile-qualified type and it has
2548 // one of the following forms:
2549 if (!isGLValue() || !getType().isVolatileQualified())
2552 const Expr
*E
= IgnoreParens();
2554 // - id-expression (5.1.1),
2555 if (isa
<DeclRefExpr
>(E
))
2558 // - subscripting (5.2.1),
2559 if (isa
<ArraySubscriptExpr
>(E
))
2562 // - class member access (5.2.5),
2563 if (isa
<MemberExpr
>(E
))
2566 // - indirection (5.3.1),
2567 if (auto *UO
= dyn_cast
<UnaryOperator
>(E
))
2568 if (UO
->getOpcode() == UO_Deref
)
2571 if (auto *BO
= dyn_cast
<BinaryOperator
>(E
)) {
2572 // - pointer-to-member operation (5.5),
2573 if (BO
->isPtrMemOp())
2576 // - comma expression (5.18) where the right operand is one of the above.
2577 if (BO
->getOpcode() == BO_Comma
)
2578 return BO
->getRHS()->isReadIfDiscardedInCPlusPlus11();
2581 // - conditional expression (5.16) where both the second and the third
2582 // operands are one of the above, or
2583 if (auto *CO
= dyn_cast
<ConditionalOperator
>(E
))
2584 return CO
->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2585 CO
->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2586 // The related edge case of "*x ?: *x".
2588 dyn_cast
<BinaryConditionalOperator
>(E
)) {
2589 if (auto *OVE
= dyn_cast
<OpaqueValueExpr
>(BCO
->getTrueExpr()))
2590 return OVE
->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2591 BCO
->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2594 // Objective-C++ extensions to the rule.
2595 if (isa
<ObjCIvarRefExpr
>(E
))
2597 if (const auto *POE
= dyn_cast
<PseudoObjectExpr
>(E
)) {
2598 if (isa
<ObjCPropertyRefExpr
, ObjCSubscriptRefExpr
>(POE
->getSyntacticForm()))
2605 /// isUnusedResultAWarning - Return true if this immediate expression should
2606 /// be warned about if the result is unused. If so, fill in Loc and Ranges
2607 /// with location to warn on and the source range[s] to report with the
2609 bool Expr::isUnusedResultAWarning(const Expr
*&WarnE
, SourceLocation
&Loc
,
2610 SourceRange
&R1
, SourceRange
&R2
,
2611 ASTContext
&Ctx
) const {
2612 // Don't warn if the expr is type dependent. The type could end up
2613 // instantiating to void.
2614 if (isTypeDependent())
2617 switch (getStmtClass()) {
2619 if (getType()->isVoidType())
2623 R1
= getSourceRange();
2625 case ParenExprClass
:
2626 return cast
<ParenExpr
>(this)->getSubExpr()->
2627 isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2628 case GenericSelectionExprClass
:
2629 return cast
<GenericSelectionExpr
>(this)->getResultExpr()->
2630 isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2631 case CoawaitExprClass
:
2632 case CoyieldExprClass
:
2633 return cast
<CoroutineSuspendExpr
>(this)->getResumeExpr()->
2634 isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2635 case ChooseExprClass
:
2636 return cast
<ChooseExpr
>(this)->getChosenSubExpr()->
2637 isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2638 case UnaryOperatorClass
: {
2639 const UnaryOperator
*UO
= cast
<UnaryOperator
>(this);
2641 switch (UO
->getOpcode()) {
2650 // This is just the 'operator co_await' call inside the guts of a
2651 // dependent co_await call.
2655 case UO_PreDec
: // ++/--
2656 return false; // Not a warning.
2659 // accessing a piece of a volatile complex is a side-effect.
2660 if (Ctx
.getCanonicalType(UO
->getSubExpr()->getType())
2661 .isVolatileQualified())
2665 return UO
->getSubExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2668 Loc
= UO
->getOperatorLoc();
2669 R1
= UO
->getSubExpr()->getSourceRange();
2672 case BinaryOperatorClass
: {
2673 const BinaryOperator
*BO
= cast
<BinaryOperator
>(this);
2674 switch (BO
->getOpcode()) {
2677 // Consider the RHS of comma for side effects. LHS was checked by
2678 // Sema::CheckCommaOperands.
2680 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2681 // lvalue-ness) of an assignment written in a macro.
2682 if (IntegerLiteral
*IE
=
2683 dyn_cast
<IntegerLiteral
>(BO
->getRHS()->IgnoreParens()))
2684 if (IE
->getValue() == 0)
2686 return BO
->getRHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2687 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2690 if (!BO
->getLHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
) ||
2691 !BO
->getRHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
))
2695 if (BO
->isAssignmentOp())
2698 Loc
= BO
->getOperatorLoc();
2699 R1
= BO
->getLHS()->getSourceRange();
2700 R2
= BO
->getRHS()->getSourceRange();
2703 case CompoundAssignOperatorClass
:
2704 case VAArgExprClass
:
2705 case AtomicExprClass
:
2708 case ConditionalOperatorClass
: {
2709 // If only one of the LHS or RHS is a warning, the operator might
2710 // be being used for control flow. Only warn if both the LHS and
2711 // RHS are warnings.
2712 const auto *Exp
= cast
<ConditionalOperator
>(this);
2713 return Exp
->getLHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
) &&
2714 Exp
->getRHS()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2716 case BinaryConditionalOperatorClass
: {
2717 const auto *Exp
= cast
<BinaryConditionalOperator
>(this);
2718 return Exp
->getFalseExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2721 case MemberExprClass
:
2723 Loc
= cast
<MemberExpr
>(this)->getMemberLoc();
2724 R1
= SourceRange(Loc
, Loc
);
2725 R2
= cast
<MemberExpr
>(this)->getBase()->getSourceRange();
2728 case ArraySubscriptExprClass
:
2730 Loc
= cast
<ArraySubscriptExpr
>(this)->getRBracketLoc();
2731 R1
= cast
<ArraySubscriptExpr
>(this)->getLHS()->getSourceRange();
2732 R2
= cast
<ArraySubscriptExpr
>(this)->getRHS()->getSourceRange();
2735 case CXXOperatorCallExprClass
: {
2736 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2737 // overloads as there is no reasonable way to define these such that they
2738 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2739 // warning: operators == and != are commonly typo'ed, and so warning on them
2740 // provides additional value as well. If this list is updated,
2741 // DiagnoseUnusedComparison should be as well.
2742 const CXXOperatorCallExpr
*Op
= cast
<CXXOperatorCallExpr
>(this);
2743 switch (Op
->getOperator()) {
2747 case OO_ExclaimEqual
:
2750 case OO_GreaterEqual
:
2752 if (Op
->getCallReturnType(Ctx
)->isReferenceType() ||
2753 Op
->getCallReturnType(Ctx
)->isVoidType())
2756 Loc
= Op
->getOperatorLoc();
2757 R1
= Op
->getSourceRange();
2761 // Fallthrough for generic call handling.
2765 case CXXMemberCallExprClass
:
2766 case UserDefinedLiteralClass
: {
2767 // If this is a direct call, get the callee.
2768 const CallExpr
*CE
= cast
<CallExpr
>(this);
2769 if (const Decl
*FD
= CE
->getCalleeDecl()) {
2770 // If the callee has attribute pure, const, or warn_unused_result, warn
2771 // about it. void foo() { strlen("bar"); } should warn.
2773 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2774 // updated to match for QoI.
2775 if (CE
->hasUnusedResultAttr(Ctx
) ||
2776 FD
->hasAttr
<PureAttr
>() || FD
->hasAttr
<ConstAttr
>()) {
2778 Loc
= CE
->getCallee()->getBeginLoc();
2779 R1
= CE
->getCallee()->getSourceRange();
2781 if (unsigned NumArgs
= CE
->getNumArgs())
2782 R2
= SourceRange(CE
->getArg(0)->getBeginLoc(),
2783 CE
->getArg(NumArgs
- 1)->getEndLoc());
2790 // If we don't know precisely what we're looking at, let's not warn.
2791 case UnresolvedLookupExprClass
:
2792 case CXXUnresolvedConstructExprClass
:
2793 case RecoveryExprClass
:
2796 case CXXTemporaryObjectExprClass
:
2797 case CXXConstructExprClass
: {
2798 if (const CXXRecordDecl
*Type
= getType()->getAsCXXRecordDecl()) {
2799 const auto *WarnURAttr
= Type
->getAttr
<WarnUnusedResultAttr
>();
2800 if (Type
->hasAttr
<WarnUnusedAttr
>() ||
2801 (WarnURAttr
&& WarnURAttr
->IsCXX11NoDiscard())) {
2803 Loc
= getBeginLoc();
2804 R1
= getSourceRange();
2809 const auto *CE
= cast
<CXXConstructExpr
>(this);
2810 if (const CXXConstructorDecl
*Ctor
= CE
->getConstructor()) {
2811 const auto *WarnURAttr
= Ctor
->getAttr
<WarnUnusedResultAttr
>();
2812 if (WarnURAttr
&& WarnURAttr
->IsCXX11NoDiscard()) {
2814 Loc
= getBeginLoc();
2815 R1
= getSourceRange();
2817 if (unsigned NumArgs
= CE
->getNumArgs())
2818 R2
= SourceRange(CE
->getArg(0)->getBeginLoc(),
2819 CE
->getArg(NumArgs
- 1)->getEndLoc());
2827 case ObjCMessageExprClass
: {
2828 const ObjCMessageExpr
*ME
= cast
<ObjCMessageExpr
>(this);
2829 if (Ctx
.getLangOpts().ObjCAutoRefCount
&&
2830 ME
->isInstanceMessage() &&
2831 !ME
->getType()->isVoidType() &&
2832 ME
->getMethodFamily() == OMF_init
) {
2835 R1
= ME
->getSourceRange();
2839 if (const ObjCMethodDecl
*MD
= ME
->getMethodDecl())
2840 if (MD
->hasAttr
<WarnUnusedResultAttr
>()) {
2849 case ObjCPropertyRefExprClass
:
2850 case ObjCSubscriptRefExprClass
:
2853 R1
= getSourceRange();
2856 case PseudoObjectExprClass
: {
2857 const auto *POE
= cast
<PseudoObjectExpr
>(this);
2859 // For some syntactic forms, we should always warn.
2860 if (isa
<ObjCPropertyRefExpr
, ObjCSubscriptRefExpr
>(
2861 POE
->getSyntacticForm())) {
2864 R1
= getSourceRange();
2868 // For others, we should never warn.
2869 if (auto *BO
= dyn_cast
<BinaryOperator
>(POE
->getSyntacticForm()))
2870 if (BO
->isAssignmentOp())
2872 if (auto *UO
= dyn_cast
<UnaryOperator
>(POE
->getSyntacticForm()))
2873 if (UO
->isIncrementDecrementOp())
2876 // Otherwise, warn if the result expression would warn.
2877 const Expr
*Result
= POE
->getResultExpr();
2878 return Result
&& Result
->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2881 case StmtExprClass
: {
2882 // Statement exprs don't logically have side effects themselves, but are
2883 // sometimes used in macros in ways that give them a type that is unused.
2884 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2885 // however, if the result of the stmt expr is dead, we don't want to emit a
2887 const CompoundStmt
*CS
= cast
<StmtExpr
>(this)->getSubStmt();
2888 if (!CS
->body_empty()) {
2889 if (const Expr
*E
= dyn_cast
<Expr
>(CS
->body_back()))
2890 return E
->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2891 if (const LabelStmt
*Label
= dyn_cast
<LabelStmt
>(CS
->body_back()))
2892 if (const Expr
*E
= dyn_cast
<Expr
>(Label
->getSubStmt()))
2893 return E
->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2896 if (getType()->isVoidType())
2899 Loc
= cast
<StmtExpr
>(this)->getLParenLoc();
2900 R1
= getSourceRange();
2903 case CXXFunctionalCastExprClass
:
2904 case CStyleCastExprClass
: {
2905 // Ignore an explicit cast to void, except in C++98 if the operand is a
2906 // volatile glvalue for which we would trigger an implicit read in any
2907 // other language mode. (Such an implicit read always happens as part of
2908 // the lvalue conversion in C, and happens in C++ for expressions of all
2909 // forms where it seems likely the user intended to trigger a volatile
2911 const CastExpr
*CE
= cast
<CastExpr
>(this);
2912 const Expr
*SubE
= CE
->getSubExpr()->IgnoreParens();
2913 if (CE
->getCastKind() == CK_ToVoid
) {
2914 if (Ctx
.getLangOpts().CPlusPlus
&& !Ctx
.getLangOpts().CPlusPlus11
&&
2915 SubE
->isReadIfDiscardedInCPlusPlus11()) {
2916 // Suppress the "unused value" warning for idiomatic usage of
2917 // '(void)var;' used to suppress "unused variable" warnings.
2918 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(SubE
))
2919 if (auto *VD
= dyn_cast
<VarDecl
>(DRE
->getDecl()))
2920 if (!VD
->isExternallyVisible())
2923 // The lvalue-to-rvalue conversion would have no effect for an array.
2924 // It's implausible that the programmer expected this to result in a
2925 // volatile array load, so don't warn.
2926 if (SubE
->getType()->isArrayType())
2929 return SubE
->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2934 // If this is a cast to a constructor conversion, check the operand.
2935 // Otherwise, the result of the cast is unused.
2936 if (CE
->getCastKind() == CK_ConstructorConversion
)
2937 return CE
->getSubExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2938 if (CE
->getCastKind() == CK_Dependent
)
2942 if (const CXXFunctionalCastExpr
*CXXCE
=
2943 dyn_cast
<CXXFunctionalCastExpr
>(this)) {
2944 Loc
= CXXCE
->getBeginLoc();
2945 R1
= CXXCE
->getSubExpr()->getSourceRange();
2947 const CStyleCastExpr
*CStyleCE
= cast
<CStyleCastExpr
>(this);
2948 Loc
= CStyleCE
->getLParenLoc();
2949 R1
= CStyleCE
->getSubExpr()->getSourceRange();
2953 case ImplicitCastExprClass
: {
2954 const CastExpr
*ICE
= cast
<ImplicitCastExpr
>(this);
2956 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2957 if (ICE
->getCastKind() == CK_LValueToRValue
&&
2958 ICE
->getSubExpr()->getType().isVolatileQualified())
2961 return ICE
->getSubExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2963 case CXXDefaultArgExprClass
:
2964 return (cast
<CXXDefaultArgExpr
>(this)
2965 ->getExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
));
2966 case CXXDefaultInitExprClass
:
2967 return (cast
<CXXDefaultInitExpr
>(this)
2968 ->getExpr()->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
));
2970 case CXXNewExprClass
:
2971 // FIXME: In theory, there might be new expressions that don't have side
2972 // effects (e.g. a placement new with an uninitialized POD).
2973 case CXXDeleteExprClass
:
2975 case MaterializeTemporaryExprClass
:
2976 return cast
<MaterializeTemporaryExpr
>(this)
2978 ->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2979 case CXXBindTemporaryExprClass
:
2980 return cast
<CXXBindTemporaryExpr
>(this)->getSubExpr()
2981 ->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2982 case ExprWithCleanupsClass
:
2983 return cast
<ExprWithCleanups
>(this)->getSubExpr()
2984 ->isUnusedResultAWarning(WarnE
, Loc
, R1
, R2
, Ctx
);
2988 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2989 /// returns true, if it is; false otherwise.
2990 bool Expr::isOBJCGCCandidate(ASTContext
&Ctx
) const {
2991 const Expr
*E
= IgnoreParens();
2992 switch (E
->getStmtClass()) {
2995 case ObjCIvarRefExprClass
:
2997 case Expr::UnaryOperatorClass
:
2998 return cast
<UnaryOperator
>(E
)->getSubExpr()->isOBJCGCCandidate(Ctx
);
2999 case ImplicitCastExprClass
:
3000 return cast
<ImplicitCastExpr
>(E
)->getSubExpr()->isOBJCGCCandidate(Ctx
);
3001 case MaterializeTemporaryExprClass
:
3002 return cast
<MaterializeTemporaryExpr
>(E
)->getSubExpr()->isOBJCGCCandidate(
3004 case CStyleCastExprClass
:
3005 return cast
<CStyleCastExpr
>(E
)->getSubExpr()->isOBJCGCCandidate(Ctx
);
3006 case DeclRefExprClass
: {
3007 const Decl
*D
= cast
<DeclRefExpr
>(E
)->getDecl();
3009 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
3010 if (VD
->hasGlobalStorage())
3012 QualType T
= VD
->getType();
3013 // dereferencing to a pointer is always a gc'able candidate,
3014 // unless it is __weak.
3015 return T
->isPointerType() &&
3016 (Ctx
.getObjCGCAttrKind(T
) != Qualifiers::Weak
);
3020 case MemberExprClass
: {
3021 const MemberExpr
*M
= cast
<MemberExpr
>(E
);
3022 return M
->getBase()->isOBJCGCCandidate(Ctx
);
3024 case ArraySubscriptExprClass
:
3025 return cast
<ArraySubscriptExpr
>(E
)->getBase()->isOBJCGCCandidate(Ctx
);
3029 bool Expr::isBoundMemberFunction(ASTContext
&Ctx
) const {
3030 if (isTypeDependent())
3032 return ClassifyLValue(Ctx
) == Expr::LV_MemberFunction
;
3035 QualType
Expr::findBoundMemberType(const Expr
*expr
) {
3036 assert(expr
->hasPlaceholderType(BuiltinType::BoundMember
));
3038 // Bound member expressions are always one of these possibilities:
3039 // x->m x.m x->*y x.*y
3040 // (possibly parenthesized)
3042 expr
= expr
->IgnoreParens();
3043 if (const MemberExpr
*mem
= dyn_cast
<MemberExpr
>(expr
)) {
3044 assert(isa
<CXXMethodDecl
>(mem
->getMemberDecl()));
3045 return mem
->getMemberDecl()->getType();
3048 if (const BinaryOperator
*op
= dyn_cast
<BinaryOperator
>(expr
)) {
3049 QualType type
= op
->getRHS()->getType()->castAs
<MemberPointerType
>()
3051 assert(type
->isFunctionType());
3055 assert(isa
<UnresolvedMemberExpr
>(expr
) || isa
<CXXPseudoDestructorExpr
>(expr
));
3059 Expr
*Expr::IgnoreImpCasts() {
3060 return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep
);
3063 Expr
*Expr::IgnoreCasts() {
3064 return IgnoreExprNodes(this, IgnoreCastsSingleStep
);
3067 Expr
*Expr::IgnoreImplicit() {
3068 return IgnoreExprNodes(this, IgnoreImplicitSingleStep
);
3071 Expr
*Expr::IgnoreImplicitAsWritten() {
3072 return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep
);
3075 Expr
*Expr::IgnoreParens() {
3076 return IgnoreExprNodes(this, IgnoreParensSingleStep
);
3079 Expr
*Expr::IgnoreParenImpCasts() {
3080 return IgnoreExprNodes(this, IgnoreParensSingleStep
,
3081 IgnoreImplicitCastsExtraSingleStep
);
3084 Expr
*Expr::IgnoreParenCasts() {
3085 return IgnoreExprNodes(this, IgnoreParensSingleStep
, IgnoreCastsSingleStep
);
3088 Expr
*Expr::IgnoreConversionOperatorSingleStep() {
3089 if (auto *MCE
= dyn_cast
<CXXMemberCallExpr
>(this)) {
3090 if (isa_and_nonnull
<CXXConversionDecl
>(MCE
->getMethodDecl()))
3091 return MCE
->getImplicitObjectArgument();
3096 Expr
*Expr::IgnoreParenLValueCasts() {
3097 return IgnoreExprNodes(this, IgnoreParensSingleStep
,
3098 IgnoreLValueCastsSingleStep
);
3101 Expr
*Expr::IgnoreParenBaseCasts() {
3102 return IgnoreExprNodes(this, IgnoreParensSingleStep
,
3103 IgnoreBaseCastsSingleStep
);
3106 Expr
*Expr::IgnoreParenNoopCasts(const ASTContext
&Ctx
) {
3107 auto IgnoreNoopCastsSingleStep
= [&Ctx
](Expr
*E
) {
3108 if (auto *CE
= dyn_cast
<CastExpr
>(E
)) {
3109 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3110 // ptr<->int casts of the same width. We also ignore all identity casts.
3111 Expr
*SubExpr
= CE
->getSubExpr();
3112 bool IsIdentityCast
=
3113 Ctx
.hasSameUnqualifiedType(E
->getType(), SubExpr
->getType());
3114 bool IsSameWidthCast
= (E
->getType()->isPointerType() ||
3115 E
->getType()->isIntegralType(Ctx
)) &&
3116 (SubExpr
->getType()->isPointerType() ||
3117 SubExpr
->getType()->isIntegralType(Ctx
)) &&
3118 (Ctx
.getTypeSize(E
->getType()) ==
3119 Ctx
.getTypeSize(SubExpr
->getType()));
3121 if (IsIdentityCast
|| IsSameWidthCast
)
3123 } else if (auto *NTTP
= dyn_cast
<SubstNonTypeTemplateParmExpr
>(E
))
3124 return NTTP
->getReplacement();
3128 return IgnoreExprNodes(this, IgnoreParensSingleStep
,
3129 IgnoreNoopCastsSingleStep
);
3132 Expr
*Expr::IgnoreUnlessSpelledInSource() {
3133 auto IgnoreImplicitConstructorSingleStep
= [](Expr
*E
) {
3134 if (auto *Cast
= dyn_cast
<CXXFunctionalCastExpr
>(E
)) {
3135 auto *SE
= Cast
->getSubExpr();
3136 if (SE
->getSourceRange() == E
->getSourceRange())
3140 if (auto *C
= dyn_cast
<CXXConstructExpr
>(E
)) {
3141 auto NumArgs
= C
->getNumArgs();
3143 (NumArgs
> 1 && isa
<CXXDefaultArgExpr
>(C
->getArg(1)))) {
3144 Expr
*A
= C
->getArg(0);
3145 if (A
->getSourceRange() == E
->getSourceRange() || C
->isElidable())
3151 auto IgnoreImplicitMemberCallSingleStep
= [](Expr
*E
) {
3152 if (auto *C
= dyn_cast
<CXXMemberCallExpr
>(E
)) {
3153 Expr
*ExprNode
= C
->getImplicitObjectArgument();
3154 if (ExprNode
->getSourceRange() == E
->getSourceRange()) {
3157 if (auto *PE
= dyn_cast
<ParenExpr
>(ExprNode
)) {
3158 if (PE
->getSourceRange() == C
->getSourceRange()) {
3159 return cast
<Expr
>(PE
);
3162 ExprNode
= ExprNode
->IgnoreParenImpCasts();
3163 if (ExprNode
->getSourceRange() == E
->getSourceRange())
3168 return IgnoreExprNodes(
3169 this, IgnoreImplicitSingleStep
, IgnoreImplicitCastsExtraSingleStep
,
3170 IgnoreParensOnlySingleStep
, IgnoreImplicitConstructorSingleStep
,
3171 IgnoreImplicitMemberCallSingleStep
);
3174 bool Expr::isDefaultArgument() const {
3175 const Expr
*E
= this;
3176 if (const MaterializeTemporaryExpr
*M
= dyn_cast
<MaterializeTemporaryExpr
>(E
))
3177 E
= M
->getSubExpr();
3179 while (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
))
3180 E
= ICE
->getSubExprAsWritten();
3182 return isa
<CXXDefaultArgExpr
>(E
);
3185 /// Skip over any no-op casts and any temporary-binding
3187 static const Expr
*skipTemporaryBindingsNoOpCastsAndParens(const Expr
*E
) {
3188 if (const MaterializeTemporaryExpr
*M
= dyn_cast
<MaterializeTemporaryExpr
>(E
))
3189 E
= M
->getSubExpr();
3191 while (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
3192 if (ICE
->getCastKind() == CK_NoOp
)
3193 E
= ICE
->getSubExpr();
3198 while (const CXXBindTemporaryExpr
*BE
= dyn_cast
<CXXBindTemporaryExpr
>(E
))
3199 E
= BE
->getSubExpr();
3201 while (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
3202 if (ICE
->getCastKind() == CK_NoOp
)
3203 E
= ICE
->getSubExpr();
3208 return E
->IgnoreParens();
3211 /// isTemporaryObject - Determines if this expression produces a
3212 /// temporary of the given class type.
3213 bool Expr::isTemporaryObject(ASTContext
&C
, const CXXRecordDecl
*TempTy
) const {
3214 if (!C
.hasSameUnqualifiedType(getType(), C
.getTypeDeclType(TempTy
)))
3217 const Expr
*E
= skipTemporaryBindingsNoOpCastsAndParens(this);
3219 // Temporaries are by definition pr-values of class type.
3220 if (!E
->Classify(C
).isPRValue()) {
3221 // In this context, property reference is a message call and is pr-value.
3222 if (!isa
<ObjCPropertyRefExpr
>(E
))
3226 // Black-list a few cases which yield pr-values of class type that don't
3227 // refer to temporaries of that type:
3229 // - implicit derived-to-base conversions
3230 if (isa
<ImplicitCastExpr
>(E
)) {
3231 switch (cast
<ImplicitCastExpr
>(E
)->getCastKind()) {
3232 case CK_DerivedToBase
:
3233 case CK_UncheckedDerivedToBase
:
3240 // - member expressions (all)
3241 if (isa
<MemberExpr
>(E
))
3244 if (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
))
3245 if (BO
->isPtrMemOp())
3248 // - opaque values (all)
3249 if (isa
<OpaqueValueExpr
>(E
))
3255 bool Expr::isImplicitCXXThis() const {
3256 const Expr
*E
= this;
3258 // Strip away parentheses and casts we don't care about.
3260 if (const ParenExpr
*Paren
= dyn_cast
<ParenExpr
>(E
)) {
3261 E
= Paren
->getSubExpr();
3265 if (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
3266 if (ICE
->getCastKind() == CK_NoOp
||
3267 ICE
->getCastKind() == CK_LValueToRValue
||
3268 ICE
->getCastKind() == CK_DerivedToBase
||
3269 ICE
->getCastKind() == CK_UncheckedDerivedToBase
) {
3270 E
= ICE
->getSubExpr();
3275 if (const UnaryOperator
* UnOp
= dyn_cast
<UnaryOperator
>(E
)) {
3276 if (UnOp
->getOpcode() == UO_Extension
) {
3277 E
= UnOp
->getSubExpr();
3282 if (const MaterializeTemporaryExpr
*M
3283 = dyn_cast
<MaterializeTemporaryExpr
>(E
)) {
3284 E
= M
->getSubExpr();
3291 if (const CXXThisExpr
*This
= dyn_cast
<CXXThisExpr
>(E
))
3292 return This
->isImplicit();
3297 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3298 /// in Exprs is type-dependent.
3299 bool Expr::hasAnyTypeDependentArguments(ArrayRef
<Expr
*> Exprs
) {
3300 for (unsigned I
= 0; I
< Exprs
.size(); ++I
)
3301 if (Exprs
[I
]->isTypeDependent())
3307 bool Expr::isConstantInitializer(ASTContext
&Ctx
, bool IsForRef
,
3308 const Expr
**Culprit
) const {
3309 assert(!isValueDependent() &&
3310 "Expression evaluator can't be called on a dependent expression.");
3312 // This function is attempting whether an expression is an initializer
3313 // which can be evaluated at compile-time. It very closely parallels
3314 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3315 // will lead to unexpected results. Like ConstExprEmitter, it falls back
3316 // to isEvaluatable most of the time.
3318 // If we ever capture reference-binding directly in the AST, we can
3319 // kill the second parameter.
3322 if (auto *EWC
= dyn_cast
<ExprWithCleanups
>(this))
3323 return EWC
->getSubExpr()->isConstantInitializer(Ctx
, true, Culprit
);
3324 if (auto *MTE
= dyn_cast
<MaterializeTemporaryExpr
>(this))
3325 return MTE
->getSubExpr()->isConstantInitializer(Ctx
, false, Culprit
);
3327 if (EvaluateAsLValue(Result
, Ctx
) && !Result
.HasSideEffects
)
3334 switch (getStmtClass()) {
3336 case Stmt::ExprWithCleanupsClass
:
3337 return cast
<ExprWithCleanups
>(this)->getSubExpr()->isConstantInitializer(
3338 Ctx
, IsForRef
, Culprit
);
3339 case StringLiteralClass
:
3340 case ObjCEncodeExprClass
:
3342 case CXXTemporaryObjectExprClass
:
3343 case CXXConstructExprClass
: {
3344 const CXXConstructExpr
*CE
= cast
<CXXConstructExpr
>(this);
3346 if (CE
->getConstructor()->isTrivial() &&
3347 CE
->getConstructor()->getParent()->hasTrivialDestructor()) {
3348 // Trivial default constructor
3349 if (!CE
->getNumArgs()) return true;
3351 // Trivial copy constructor
3352 assert(CE
->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3353 return CE
->getArg(0)->isConstantInitializer(Ctx
, false, Culprit
);
3358 case ConstantExprClass
: {
3359 // FIXME: We should be able to return "true" here, but it can lead to extra
3360 // error messages. E.g. in Sema/array-init.c.
3361 const Expr
*Exp
= cast
<ConstantExpr
>(this)->getSubExpr();
3362 return Exp
->isConstantInitializer(Ctx
, false, Culprit
);
3364 case CompoundLiteralExprClass
: {
3365 // This handles gcc's extension that allows global initializers like
3366 // "struct x {int x;} x = (struct x) {};".
3367 // FIXME: This accepts other cases it shouldn't!
3368 const Expr
*Exp
= cast
<CompoundLiteralExpr
>(this)->getInitializer();
3369 return Exp
->isConstantInitializer(Ctx
, false, Culprit
);
3371 case DesignatedInitUpdateExprClass
: {
3372 const DesignatedInitUpdateExpr
*DIUE
= cast
<DesignatedInitUpdateExpr
>(this);
3373 return DIUE
->getBase()->isConstantInitializer(Ctx
, false, Culprit
) &&
3374 DIUE
->getUpdater()->isConstantInitializer(Ctx
, false, Culprit
);
3376 case InitListExprClass
: {
3377 // C++ [dcl.init.aggr]p2:
3378 // The elements of an aggregate are:
3379 // - for an array, the array elements in increasing subscript order, or
3380 // - for a class, the direct base classes in declaration order, followed
3381 // by the direct non-static data members (11.4) that are not members of
3382 // an anonymous union, in declaration order.
3383 const InitListExpr
*ILE
= cast
<InitListExpr
>(this);
3384 assert(ILE
->isSemanticForm() && "InitListExpr must be in semantic form");
3385 if (ILE
->getType()->isArrayType()) {
3386 unsigned numInits
= ILE
->getNumInits();
3387 for (unsigned i
= 0; i
< numInits
; i
++) {
3388 if (!ILE
->getInit(i
)->isConstantInitializer(Ctx
, false, Culprit
))
3394 if (ILE
->getType()->isRecordType()) {
3395 unsigned ElementNo
= 0;
3396 RecordDecl
*RD
= ILE
->getType()->castAs
<RecordType
>()->getDecl();
3398 // In C++17, bases were added to the list of members used by aggregate
3400 if (const auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
3401 for (unsigned i
= 0, e
= CXXRD
->getNumBases(); i
< e
; i
++) {
3402 if (ElementNo
< ILE
->getNumInits()) {
3403 const Expr
*Elt
= ILE
->getInit(ElementNo
++);
3404 if (!Elt
->isConstantInitializer(Ctx
, false, Culprit
))
3410 for (const auto *Field
: RD
->fields()) {
3411 // If this is a union, skip all the fields that aren't being initialized.
3412 if (RD
->isUnion() && ILE
->getInitializedFieldInUnion() != Field
)
3415 // Don't emit anonymous bitfields, they just affect layout.
3416 if (Field
->isUnnamedBitField())
3419 if (ElementNo
< ILE
->getNumInits()) {
3420 const Expr
*Elt
= ILE
->getInit(ElementNo
++);
3421 if (Field
->isBitField()) {
3422 // Bitfields have to evaluate to an integer.
3424 if (!Elt
->EvaluateAsInt(Result
, Ctx
)) {
3430 bool RefType
= Field
->getType()->isReferenceType();
3431 if (!Elt
->isConstantInitializer(Ctx
, RefType
, Culprit
))
3441 case ImplicitValueInitExprClass
:
3442 case NoInitExprClass
:
3444 case ParenExprClass
:
3445 return cast
<ParenExpr
>(this)->getSubExpr()
3446 ->isConstantInitializer(Ctx
, IsForRef
, Culprit
);
3447 case GenericSelectionExprClass
:
3448 return cast
<GenericSelectionExpr
>(this)->getResultExpr()
3449 ->isConstantInitializer(Ctx
, IsForRef
, Culprit
);
3450 case ChooseExprClass
:
3451 if (cast
<ChooseExpr
>(this)->isConditionDependent()) {
3456 return cast
<ChooseExpr
>(this)->getChosenSubExpr()
3457 ->isConstantInitializer(Ctx
, IsForRef
, Culprit
);
3458 case UnaryOperatorClass
: {
3459 const UnaryOperator
* Exp
= cast
<UnaryOperator
>(this);
3460 if (Exp
->getOpcode() == UO_Extension
)
3461 return Exp
->getSubExpr()->isConstantInitializer(Ctx
, false, Culprit
);
3464 case PackIndexingExprClass
: {
3465 return cast
<PackIndexingExpr
>(this)
3467 ->isConstantInitializer(Ctx
, false, Culprit
);
3469 case CXXFunctionalCastExprClass
:
3470 case CXXStaticCastExprClass
:
3471 case ImplicitCastExprClass
:
3472 case CStyleCastExprClass
:
3473 case ObjCBridgedCastExprClass
:
3474 case CXXDynamicCastExprClass
:
3475 case CXXReinterpretCastExprClass
:
3476 case CXXAddrspaceCastExprClass
:
3477 case CXXConstCastExprClass
: {
3478 const CastExpr
*CE
= cast
<CastExpr
>(this);
3480 // Handle misc casts we want to ignore.
3481 if (CE
->getCastKind() == CK_NoOp
||
3482 CE
->getCastKind() == CK_LValueToRValue
||
3483 CE
->getCastKind() == CK_ToUnion
||
3484 CE
->getCastKind() == CK_ConstructorConversion
||
3485 CE
->getCastKind() == CK_NonAtomicToAtomic
||
3486 CE
->getCastKind() == CK_AtomicToNonAtomic
||
3487 CE
->getCastKind() == CK_NullToPointer
||
3488 CE
->getCastKind() == CK_IntToOCLSampler
)
3489 return CE
->getSubExpr()->isConstantInitializer(Ctx
, false, Culprit
);
3493 case MaterializeTemporaryExprClass
:
3494 return cast
<MaterializeTemporaryExpr
>(this)
3496 ->isConstantInitializer(Ctx
, false, Culprit
);
3498 case SubstNonTypeTemplateParmExprClass
:
3499 return cast
<SubstNonTypeTemplateParmExpr
>(this)->getReplacement()
3500 ->isConstantInitializer(Ctx
, false, Culprit
);
3501 case CXXDefaultArgExprClass
:
3502 return cast
<CXXDefaultArgExpr
>(this)->getExpr()
3503 ->isConstantInitializer(Ctx
, false, Culprit
);
3504 case CXXDefaultInitExprClass
:
3505 return cast
<CXXDefaultInitExpr
>(this)->getExpr()
3506 ->isConstantInitializer(Ctx
, false, Culprit
);
3508 // Allow certain forms of UB in constant initializers: signed integer
3509 // overflow and floating-point division by zero. We'll give a warning on
3510 // these, but they're common enough that we have to accept them.
3511 if (isEvaluatable(Ctx
, SE_AllowUndefinedBehavior
))
3518 bool CallExpr::isBuiltinAssumeFalse(const ASTContext
&Ctx
) const {
3519 unsigned BuiltinID
= getBuiltinCallee();
3520 if (BuiltinID
!= Builtin::BI__assume
&&
3521 BuiltinID
!= Builtin::BI__builtin_assume
)
3524 const Expr
* Arg
= getArg(0);
3526 return !Arg
->isValueDependent() &&
3527 Arg
->EvaluateAsBooleanCondition(ArgVal
, Ctx
) && !ArgVal
;
3530 bool CallExpr::isCallToStdMove() const {
3531 return getBuiltinCallee() == Builtin::BImove
;
3535 /// Look for any side effects within a Stmt.
3536 class SideEffectFinder
: public ConstEvaluatedExprVisitor
<SideEffectFinder
> {
3537 typedef ConstEvaluatedExprVisitor
<SideEffectFinder
> Inherited
;
3538 const bool IncludePossibleEffects
;
3539 bool HasSideEffects
;
3542 explicit SideEffectFinder(const ASTContext
&Context
, bool IncludePossible
)
3543 : Inherited(Context
),
3544 IncludePossibleEffects(IncludePossible
), HasSideEffects(false) { }
3546 bool hasSideEffects() const { return HasSideEffects
; }
3548 void VisitDecl(const Decl
*D
) {
3552 // We assume the caller checks subexpressions (eg, the initializer, VLA
3553 // bounds) for side-effects on our behalf.
3554 if (auto *VD
= dyn_cast
<VarDecl
>(D
)) {
3555 // Registering a destructor is a side-effect.
3556 if (IncludePossibleEffects
&& VD
->isThisDeclarationADefinition() &&
3557 VD
->needsDestruction(Context
))
3558 HasSideEffects
= true;
3562 void VisitDeclStmt(const DeclStmt
*DS
) {
3563 for (auto *D
: DS
->decls())
3565 Inherited::VisitDeclStmt(DS
);
3568 void VisitExpr(const Expr
*E
) {
3569 if (!HasSideEffects
&&
3570 E
->HasSideEffects(Context
, IncludePossibleEffects
))
3571 HasSideEffects
= true;
3576 bool Expr::HasSideEffects(const ASTContext
&Ctx
,
3577 bool IncludePossibleEffects
) const {
3578 // In circumstances where we care about definite side effects instead of
3579 // potential side effects, we want to ignore expressions that are part of a
3580 // macro expansion as a potential side effect.
3581 if (!IncludePossibleEffects
&& getExprLoc().isMacroID())
3584 switch (getStmtClass()) {
3586 #define ABSTRACT_STMT(Type)
3587 #define STMT(Type, Base) case Type##Class:
3588 #define EXPR(Type, Base)
3589 #include "clang/AST/StmtNodes.inc"
3590 llvm_unreachable("unexpected Expr kind");
3592 case DependentScopeDeclRefExprClass
:
3593 case CXXUnresolvedConstructExprClass
:
3594 case CXXDependentScopeMemberExprClass
:
3595 case UnresolvedLookupExprClass
:
3596 case UnresolvedMemberExprClass
:
3597 case PackExpansionExprClass
:
3598 case SubstNonTypeTemplateParmPackExprClass
:
3599 case FunctionParmPackExprClass
:
3601 case RecoveryExprClass
:
3602 case CXXFoldExprClass
:
3603 // Make a conservative assumption for dependent nodes.
3604 return IncludePossibleEffects
;
3606 case DeclRefExprClass
:
3607 case ObjCIvarRefExprClass
:
3608 case PredefinedExprClass
:
3609 case IntegerLiteralClass
:
3610 case FixedPointLiteralClass
:
3611 case FloatingLiteralClass
:
3612 case ImaginaryLiteralClass
:
3613 case StringLiteralClass
:
3614 case CharacterLiteralClass
:
3615 case OffsetOfExprClass
:
3616 case ImplicitValueInitExprClass
:
3617 case UnaryExprOrTypeTraitExprClass
:
3618 case AddrLabelExprClass
:
3619 case GNUNullExprClass
:
3620 case ArrayInitIndexExprClass
:
3621 case NoInitExprClass
:
3622 case CXXBoolLiteralExprClass
:
3623 case CXXNullPtrLiteralExprClass
:
3624 case CXXThisExprClass
:
3625 case CXXScalarValueInitExprClass
:
3626 case TypeTraitExprClass
:
3627 case ArrayTypeTraitExprClass
:
3628 case ExpressionTraitExprClass
:
3629 case CXXNoexceptExprClass
:
3630 case SizeOfPackExprClass
:
3631 case ObjCStringLiteralClass
:
3632 case ObjCEncodeExprClass
:
3633 case ObjCBoolLiteralExprClass
:
3634 case ObjCAvailabilityCheckExprClass
:
3635 case CXXUuidofExprClass
:
3636 case OpaqueValueExprClass
:
3637 case SourceLocExprClass
:
3638 case EmbedExprClass
:
3639 case ConceptSpecializationExprClass
:
3640 case RequiresExprClass
:
3641 case SYCLUniqueStableNameExprClass
:
3642 case PackIndexingExprClass
:
3643 case HLSLOutArgExprClass
:
3644 case OpenACCAsteriskSizeExprClass
:
3645 // These never have a side-effect.
3648 case ConstantExprClass
:
3649 // FIXME: Move this into the "return false;" block above.
3650 return cast
<ConstantExpr
>(this)->getSubExpr()->HasSideEffects(
3651 Ctx
, IncludePossibleEffects
);
3654 case CXXOperatorCallExprClass
:
3655 case CXXMemberCallExprClass
:
3656 case CUDAKernelCallExprClass
:
3657 case UserDefinedLiteralClass
: {
3658 // We don't know a call definitely has side effects, except for calls
3659 // to pure/const functions that definitely don't.
3660 // If the call itself is considered side-effect free, check the operands.
3661 const Decl
*FD
= cast
<CallExpr
>(this)->getCalleeDecl();
3662 bool IsPure
= FD
&& (FD
->hasAttr
<ConstAttr
>() || FD
->hasAttr
<PureAttr
>());
3663 if (IsPure
|| !IncludePossibleEffects
)
3668 case BlockExprClass
:
3669 case CXXBindTemporaryExprClass
:
3670 if (!IncludePossibleEffects
)
3674 case MSPropertyRefExprClass
:
3675 case MSPropertySubscriptExprClass
:
3676 case CompoundAssignOperatorClass
:
3677 case VAArgExprClass
:
3678 case AtomicExprClass
:
3679 case CXXThrowExprClass
:
3680 case CXXNewExprClass
:
3681 case CXXDeleteExprClass
:
3682 case CoawaitExprClass
:
3683 case DependentCoawaitExprClass
:
3684 case CoyieldExprClass
:
3685 // These always have a side-effect.
3688 case StmtExprClass
: {
3689 // StmtExprs have a side-effect if any substatement does.
3690 SideEffectFinder
Finder(Ctx
, IncludePossibleEffects
);
3691 Finder
.Visit(cast
<StmtExpr
>(this)->getSubStmt());
3692 return Finder
.hasSideEffects();
3695 case ExprWithCleanupsClass
:
3696 if (IncludePossibleEffects
)
3697 if (cast
<ExprWithCleanups
>(this)->cleanupsHaveSideEffects())
3701 case ParenExprClass
:
3702 case ArraySubscriptExprClass
:
3703 case MatrixSubscriptExprClass
:
3704 case ArraySectionExprClass
:
3705 case OMPArrayShapingExprClass
:
3706 case OMPIteratorExprClass
:
3707 case MemberExprClass
:
3708 case ConditionalOperatorClass
:
3709 case BinaryConditionalOperatorClass
:
3710 case CompoundLiteralExprClass
:
3711 case ExtVectorElementExprClass
:
3712 case DesignatedInitExprClass
:
3713 case DesignatedInitUpdateExprClass
:
3714 case ArrayInitLoopExprClass
:
3715 case ParenListExprClass
:
3716 case CXXPseudoDestructorExprClass
:
3717 case CXXRewrittenBinaryOperatorClass
:
3718 case CXXStdInitializerListExprClass
:
3719 case SubstNonTypeTemplateParmExprClass
:
3720 case MaterializeTemporaryExprClass
:
3721 case ShuffleVectorExprClass
:
3722 case ConvertVectorExprClass
:
3723 case AsTypeExprClass
:
3724 case CXXParenListInitExprClass
:
3725 // These have a side-effect if any subexpression does.
3728 case UnaryOperatorClass
:
3729 if (cast
<UnaryOperator
>(this)->isIncrementDecrementOp())
3733 case BinaryOperatorClass
:
3734 if (cast
<BinaryOperator
>(this)->isAssignmentOp())
3738 case InitListExprClass
:
3739 // FIXME: The children for an InitListExpr doesn't include the array filler.
3740 if (const Expr
*E
= cast
<InitListExpr
>(this)->getArrayFiller())
3741 if (E
->HasSideEffects(Ctx
, IncludePossibleEffects
))
3745 case GenericSelectionExprClass
:
3746 return cast
<GenericSelectionExpr
>(this)->getResultExpr()->
3747 HasSideEffects(Ctx
, IncludePossibleEffects
);
3749 case ChooseExprClass
:
3750 return cast
<ChooseExpr
>(this)->getChosenSubExpr()->HasSideEffects(
3751 Ctx
, IncludePossibleEffects
);
3753 case CXXDefaultArgExprClass
:
3754 return cast
<CXXDefaultArgExpr
>(this)->getExpr()->HasSideEffects(
3755 Ctx
, IncludePossibleEffects
);
3757 case CXXDefaultInitExprClass
: {
3758 const FieldDecl
*FD
= cast
<CXXDefaultInitExpr
>(this)->getField();
3759 if (const Expr
*E
= FD
->getInClassInitializer())
3760 return E
->HasSideEffects(Ctx
, IncludePossibleEffects
);
3761 // If we've not yet parsed the initializer, assume it has side-effects.
3765 case CXXDynamicCastExprClass
: {
3766 // A dynamic_cast expression has side-effects if it can throw.
3767 const CXXDynamicCastExpr
*DCE
= cast
<CXXDynamicCastExpr
>(this);
3768 if (DCE
->getTypeAsWritten()->isReferenceType() &&
3769 DCE
->getCastKind() == CK_Dynamic
)
3773 case ImplicitCastExprClass
:
3774 case CStyleCastExprClass
:
3775 case CXXStaticCastExprClass
:
3776 case CXXReinterpretCastExprClass
:
3777 case CXXConstCastExprClass
:
3778 case CXXAddrspaceCastExprClass
:
3779 case CXXFunctionalCastExprClass
:
3780 case BuiltinBitCastExprClass
: {
3781 // While volatile reads are side-effecting in both C and C++, we treat them
3782 // as having possible (not definite) side-effects. This allows idiomatic
3783 // code to behave without warning, such as sizeof(*v) for a volatile-
3784 // qualified pointer.
3785 if (!IncludePossibleEffects
)
3788 const CastExpr
*CE
= cast
<CastExpr
>(this);
3789 if (CE
->getCastKind() == CK_LValueToRValue
&&
3790 CE
->getSubExpr()->getType().isVolatileQualified())
3795 case CXXTypeidExprClass
: {
3796 const auto *TE
= cast
<CXXTypeidExpr
>(this);
3797 if (!TE
->isPotentiallyEvaluated())
3800 // If this type id expression can throw because of a null pointer, that is a
3801 // side-effect independent of if the operand has a side-effect
3802 if (IncludePossibleEffects
&& TE
->hasNullCheck())
3808 case CXXConstructExprClass
:
3809 case CXXTemporaryObjectExprClass
: {
3810 const CXXConstructExpr
*CE
= cast
<CXXConstructExpr
>(this);
3811 if (!CE
->getConstructor()->isTrivial() && IncludePossibleEffects
)
3813 // A trivial constructor does not add any side-effects of its own. Just look
3814 // at its arguments.
3818 case CXXInheritedCtorInitExprClass
: {
3819 const auto *ICIE
= cast
<CXXInheritedCtorInitExpr
>(this);
3820 if (!ICIE
->getConstructor()->isTrivial() && IncludePossibleEffects
)
3825 case LambdaExprClass
: {
3826 const LambdaExpr
*LE
= cast
<LambdaExpr
>(this);
3827 for (Expr
*E
: LE
->capture_inits())
3828 if (E
&& E
->HasSideEffects(Ctx
, IncludePossibleEffects
))
3833 case PseudoObjectExprClass
: {
3834 // Only look for side-effects in the semantic form, and look past
3835 // OpaqueValueExpr bindings in that form.
3836 const PseudoObjectExpr
*PO
= cast
<PseudoObjectExpr
>(this);
3837 for (PseudoObjectExpr::const_semantics_iterator I
= PO
->semantics_begin(),
3838 E
= PO
->semantics_end();
3840 const Expr
*Subexpr
= *I
;
3841 if (const OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(Subexpr
))
3842 Subexpr
= OVE
->getSourceExpr();
3843 if (Subexpr
->HasSideEffects(Ctx
, IncludePossibleEffects
))
3849 case ObjCBoxedExprClass
:
3850 case ObjCArrayLiteralClass
:
3851 case ObjCDictionaryLiteralClass
:
3852 case ObjCSelectorExprClass
:
3853 case ObjCProtocolExprClass
:
3854 case ObjCIsaExprClass
:
3855 case ObjCIndirectCopyRestoreExprClass
:
3856 case ObjCSubscriptRefExprClass
:
3857 case ObjCBridgedCastExprClass
:
3858 case ObjCMessageExprClass
:
3859 case ObjCPropertyRefExprClass
:
3860 // FIXME: Classify these cases better.
3861 if (IncludePossibleEffects
)
3866 // Recurse to children.
3867 for (const Stmt
*SubStmt
: children())
3869 cast
<Expr
>(SubStmt
)->HasSideEffects(Ctx
, IncludePossibleEffects
))
3875 FPOptions
Expr::getFPFeaturesInEffect(const LangOptions
&LO
) const {
3876 if (auto Call
= dyn_cast
<CallExpr
>(this))
3877 return Call
->getFPFeaturesInEffect(LO
);
3878 if (auto UO
= dyn_cast
<UnaryOperator
>(this))
3879 return UO
->getFPFeaturesInEffect(LO
);
3880 if (auto BO
= dyn_cast
<BinaryOperator
>(this))
3881 return BO
->getFPFeaturesInEffect(LO
);
3882 if (auto Cast
= dyn_cast
<CastExpr
>(this))
3883 return Cast
->getFPFeaturesInEffect(LO
);
3884 return FPOptions::defaultWithoutTrailingStorage(LO
);
3888 /// Look for a call to a non-trivial function within an expression.
3889 class NonTrivialCallFinder
: public ConstEvaluatedExprVisitor
<NonTrivialCallFinder
>
3891 typedef ConstEvaluatedExprVisitor
<NonTrivialCallFinder
> Inherited
;
3896 explicit NonTrivialCallFinder(const ASTContext
&Context
)
3897 : Inherited(Context
), NonTrivial(false) { }
3899 bool hasNonTrivialCall() const { return NonTrivial
; }
3901 void VisitCallExpr(const CallExpr
*E
) {
3902 if (const CXXMethodDecl
*Method
3903 = dyn_cast_or_null
<const CXXMethodDecl
>(E
->getCalleeDecl())) {
3904 if (Method
->isTrivial()) {
3905 // Recurse to children of the call.
3906 Inherited::VisitStmt(E
);
3914 void VisitCXXConstructExpr(const CXXConstructExpr
*E
) {
3915 if (E
->getConstructor()->isTrivial()) {
3916 // Recurse to children of the call.
3917 Inherited::VisitStmt(E
);
3924 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr
*E
) {
3925 // Destructor of the temporary might be null if destructor declaration
3927 if (const CXXDestructorDecl
*DtorDecl
=
3928 E
->getTemporary()->getDestructor()) {
3929 if (DtorDecl
->isTrivial()) {
3930 Inherited::VisitStmt(E
);
3940 bool Expr::hasNonTrivialCall(const ASTContext
&Ctx
) const {
3941 NonTrivialCallFinder
Finder(Ctx
);
3943 return Finder
.hasNonTrivialCall();
3946 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3947 /// pointer constant or not, as well as the specific kind of constant detected.
3948 /// Null pointer constants can be integer constant expressions with the
3949 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3950 /// (a GNU extension).
3951 Expr::NullPointerConstantKind
3952 Expr::isNullPointerConstant(ASTContext
&Ctx
,
3953 NullPointerConstantValueDependence NPC
) const {
3954 if (isValueDependent() &&
3955 (!Ctx
.getLangOpts().CPlusPlus11
|| Ctx
.getLangOpts().MSVCCompat
)) {
3956 // Error-dependent expr should never be a null pointer.
3957 if (containsErrors())
3958 return NPCK_NotNull
;
3960 case NPC_NeverValueDependent
:
3961 llvm_unreachable("Unexpected value dependent expression!");
3962 case NPC_ValueDependentIsNull
:
3963 if (isTypeDependent() || getType()->isIntegralType(Ctx
))
3964 return NPCK_ZeroExpression
;
3966 return NPCK_NotNull
;
3968 case NPC_ValueDependentIsNotNull
:
3969 return NPCK_NotNull
;
3973 // Strip off a cast to void*, if it exists. Except in C++.
3974 if (const ExplicitCastExpr
*CE
= dyn_cast
<ExplicitCastExpr
>(this)) {
3975 if (!Ctx
.getLangOpts().CPlusPlus
) {
3976 // Check that it is a cast to void*.
3977 if (const PointerType
*PT
= CE
->getType()->getAs
<PointerType
>()) {
3978 QualType Pointee
= PT
->getPointeeType();
3979 Qualifiers Qs
= Pointee
.getQualifiers();
3980 // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3981 // has non-default address space it is not treated as nullptr.
3982 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3983 // since it cannot be assigned to a pointer to constant address space.
3984 if (Ctx
.getLangOpts().OpenCL
&&
3985 Pointee
.getAddressSpace() == Ctx
.getDefaultOpenCLPointeeAddrSpace())
3986 Qs
.removeAddressSpace();
3988 if (Pointee
->isVoidType() && Qs
.empty() && // to void*
3989 CE
->getSubExpr()->getType()->isIntegerType()) // from int
3990 return CE
->getSubExpr()->isNullPointerConstant(Ctx
, NPC
);
3993 } else if (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(this)) {
3994 // Ignore the ImplicitCastExpr type entirely.
3995 return ICE
->getSubExpr()->isNullPointerConstant(Ctx
, NPC
);
3996 } else if (const ParenExpr
*PE
= dyn_cast
<ParenExpr
>(this)) {
3997 // Accept ((void*)0) as a null pointer constant, as many other
3998 // implementations do.
3999 return PE
->getSubExpr()->isNullPointerConstant(Ctx
, NPC
);
4000 } else if (const GenericSelectionExpr
*GE
=
4001 dyn_cast
<GenericSelectionExpr
>(this)) {
4002 if (GE
->isResultDependent())
4003 return NPCK_NotNull
;
4004 return GE
->getResultExpr()->isNullPointerConstant(Ctx
, NPC
);
4005 } else if (const ChooseExpr
*CE
= dyn_cast
<ChooseExpr
>(this)) {
4006 if (CE
->isConditionDependent())
4007 return NPCK_NotNull
;
4008 return CE
->getChosenSubExpr()->isNullPointerConstant(Ctx
, NPC
);
4009 } else if (const CXXDefaultArgExpr
*DefaultArg
4010 = dyn_cast
<CXXDefaultArgExpr
>(this)) {
4011 // See through default argument expressions.
4012 return DefaultArg
->getExpr()->isNullPointerConstant(Ctx
, NPC
);
4013 } else if (const CXXDefaultInitExpr
*DefaultInit
4014 = dyn_cast
<CXXDefaultInitExpr
>(this)) {
4015 // See through default initializer expressions.
4016 return DefaultInit
->getExpr()->isNullPointerConstant(Ctx
, NPC
);
4017 } else if (isa
<GNUNullExpr
>(this)) {
4018 // The GNU __null extension is always a null pointer constant.
4019 return NPCK_GNUNull
;
4020 } else if (const MaterializeTemporaryExpr
*M
4021 = dyn_cast
<MaterializeTemporaryExpr
>(this)) {
4022 return M
->getSubExpr()->isNullPointerConstant(Ctx
, NPC
);
4023 } else if (const OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(this)) {
4024 if (const Expr
*Source
= OVE
->getSourceExpr())
4025 return Source
->isNullPointerConstant(Ctx
, NPC
);
4028 // If the expression has no type information, it cannot be a null pointer
4030 if (getType().isNull())
4031 return NPCK_NotNull
;
4033 // C++11/C23 nullptr_t is always a null pointer constant.
4034 if (getType()->isNullPtrType())
4035 return NPCK_CXX11_nullptr
;
4037 if (const RecordType
*UT
= getType()->getAsUnionType())
4038 if (!Ctx
.getLangOpts().CPlusPlus11
&&
4039 UT
&& UT
->getDecl()->hasAttr
<TransparentUnionAttr
>())
4040 if (const CompoundLiteralExpr
*CLE
= dyn_cast
<CompoundLiteralExpr
>(this)){
4041 const Expr
*InitExpr
= CLE
->getInitializer();
4042 if (const InitListExpr
*ILE
= dyn_cast
<InitListExpr
>(InitExpr
))
4043 return ILE
->getInit(0)->isNullPointerConstant(Ctx
, NPC
);
4045 // This expression must be an integer type.
4046 if (!getType()->isIntegerType() ||
4047 (Ctx
.getLangOpts().CPlusPlus
&& getType()->isEnumeralType()))
4048 return NPCK_NotNull
;
4050 if (Ctx
.getLangOpts().CPlusPlus11
) {
4051 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
4052 // value zero or a prvalue of type std::nullptr_t.
4053 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
4054 const IntegerLiteral
*Lit
= dyn_cast
<IntegerLiteral
>(this);
4055 if (Lit
&& !Lit
->getValue())
4056 return NPCK_ZeroLiteral
;
4057 if (!Ctx
.getLangOpts().MSVCCompat
|| !isCXX98IntegralConstantExpr(Ctx
))
4058 return NPCK_NotNull
;
4060 // If we have an integer constant expression, we need to *evaluate* it and
4061 // test for the value 0.
4062 if (!isIntegerConstantExpr(Ctx
))
4063 return NPCK_NotNull
;
4066 if (EvaluateKnownConstInt(Ctx
) != 0)
4067 return NPCK_NotNull
;
4069 if (isa
<IntegerLiteral
>(this))
4070 return NPCK_ZeroLiteral
;
4071 return NPCK_ZeroExpression
;
4074 /// If this expression is an l-value for an Objective C
4075 /// property, find the underlying property reference expression.
4076 const ObjCPropertyRefExpr
*Expr::getObjCProperty() const {
4077 const Expr
*E
= this;
4079 assert((E
->isLValue() && E
->getObjectKind() == OK_ObjCProperty
) &&
4080 "expression is not a property reference");
4081 E
= E
->IgnoreParenCasts();
4082 if (const BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
4083 if (BO
->getOpcode() == BO_Comma
) {
4092 return cast
<ObjCPropertyRefExpr
>(E
);
4095 bool Expr::isObjCSelfExpr() const {
4096 const Expr
*E
= IgnoreParenImpCasts();
4098 const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
);
4102 const ImplicitParamDecl
*Param
= dyn_cast
<ImplicitParamDecl
>(DRE
->getDecl());
4106 const ObjCMethodDecl
*M
= dyn_cast
<ObjCMethodDecl
>(Param
->getDeclContext());
4110 return M
->getSelfDecl() == Param
;
4113 FieldDecl
*Expr::getSourceBitField() {
4114 Expr
*E
= this->IgnoreParens();
4116 while (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
4117 if (ICE
->getCastKind() == CK_LValueToRValue
||
4118 (ICE
->isGLValue() && ICE
->getCastKind() == CK_NoOp
))
4119 E
= ICE
->getSubExpr()->IgnoreParens();
4124 if (MemberExpr
*MemRef
= dyn_cast
<MemberExpr
>(E
))
4125 if (FieldDecl
*Field
= dyn_cast
<FieldDecl
>(MemRef
->getMemberDecl()))
4126 if (Field
->isBitField())
4129 if (ObjCIvarRefExpr
*IvarRef
= dyn_cast
<ObjCIvarRefExpr
>(E
)) {
4130 FieldDecl
*Ivar
= IvarRef
->getDecl();
4131 if (Ivar
->isBitField())
4135 if (DeclRefExpr
*DeclRef
= dyn_cast
<DeclRefExpr
>(E
)) {
4136 if (FieldDecl
*Field
= dyn_cast
<FieldDecl
>(DeclRef
->getDecl()))
4137 if (Field
->isBitField())
4140 if (BindingDecl
*BD
= dyn_cast
<BindingDecl
>(DeclRef
->getDecl()))
4141 if (Expr
*E
= BD
->getBinding())
4142 return E
->getSourceBitField();
4145 if (BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(E
)) {
4146 if (BinOp
->isAssignmentOp() && BinOp
->getLHS())
4147 return BinOp
->getLHS()->getSourceBitField();
4149 if (BinOp
->getOpcode() == BO_Comma
&& BinOp
->getRHS())
4150 return BinOp
->getRHS()->getSourceBitField();
4153 if (UnaryOperator
*UnOp
= dyn_cast
<UnaryOperator
>(E
))
4154 if (UnOp
->isPrefix() && UnOp
->isIncrementDecrementOp())
4155 return UnOp
->getSubExpr()->getSourceBitField();
4160 EnumConstantDecl
*Expr::getEnumConstantDecl() {
4161 Expr
*E
= this->IgnoreParenImpCasts();
4162 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
4163 return dyn_cast
<EnumConstantDecl
>(DRE
->getDecl());
4167 bool Expr::refersToVectorElement() const {
4168 // FIXME: Why do we not just look at the ObjectKind here?
4169 const Expr
*E
= this->IgnoreParens();
4171 while (const ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
4172 if (ICE
->isGLValue() && ICE
->getCastKind() == CK_NoOp
)
4173 E
= ICE
->getSubExpr()->IgnoreParens();
4178 if (const ArraySubscriptExpr
*ASE
= dyn_cast
<ArraySubscriptExpr
>(E
))
4179 return ASE
->getBase()->getType()->isVectorType();
4181 if (isa
<ExtVectorElementExpr
>(E
))
4184 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
4185 if (auto *BD
= dyn_cast
<BindingDecl
>(DRE
->getDecl()))
4186 if (auto *E
= BD
->getBinding())
4187 return E
->refersToVectorElement();
4192 bool Expr::refersToGlobalRegisterVar() const {
4193 const Expr
*E
= this->IgnoreParenImpCasts();
4195 if (const DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
))
4196 if (const auto *VD
= dyn_cast
<VarDecl
>(DRE
->getDecl()))
4197 if (VD
->getStorageClass() == SC_Register
&&
4198 VD
->hasAttr
<AsmLabelAttr
>() && !VD
->isLocalVarDecl())
4204 bool Expr::isSameComparisonOperand(const Expr
* E1
, const Expr
* E2
) {
4205 E1
= E1
->IgnoreParens();
4206 E2
= E2
->IgnoreParens();
4208 if (E1
->getStmtClass() != E2
->getStmtClass())
4211 switch (E1
->getStmtClass()) {
4214 case CXXThisExprClass
:
4216 case DeclRefExprClass
: {
4217 // DeclRefExpr without an ImplicitCastExpr can happen for integral
4218 // template parameters.
4219 const auto *DRE1
= cast
<DeclRefExpr
>(E1
);
4220 const auto *DRE2
= cast
<DeclRefExpr
>(E2
);
4221 return DRE1
->isPRValue() && DRE2
->isPRValue() &&
4222 DRE1
->getDecl() == DRE2
->getDecl();
4224 case ImplicitCastExprClass
: {
4225 // Peel off implicit casts.
4227 const auto *ICE1
= dyn_cast
<ImplicitCastExpr
>(E1
);
4228 const auto *ICE2
= dyn_cast
<ImplicitCastExpr
>(E2
);
4231 if (ICE1
->getCastKind() != ICE2
->getCastKind())
4233 E1
= ICE1
->getSubExpr()->IgnoreParens();
4234 E2
= ICE2
->getSubExpr()->IgnoreParens();
4235 // The final cast must be one of these types.
4236 if (ICE1
->getCastKind() == CK_LValueToRValue
||
4237 ICE1
->getCastKind() == CK_ArrayToPointerDecay
||
4238 ICE1
->getCastKind() == CK_FunctionToPointerDecay
) {
4243 const auto *DRE1
= dyn_cast
<DeclRefExpr
>(E1
);
4244 const auto *DRE2
= dyn_cast
<DeclRefExpr
>(E2
);
4246 return declaresSameEntity(DRE1
->getDecl(), DRE2
->getDecl());
4248 const auto *Ivar1
= dyn_cast
<ObjCIvarRefExpr
>(E1
);
4249 const auto *Ivar2
= dyn_cast
<ObjCIvarRefExpr
>(E2
);
4250 if (Ivar1
&& Ivar2
) {
4251 return Ivar1
->isFreeIvar() && Ivar2
->isFreeIvar() &&
4252 declaresSameEntity(Ivar1
->getDecl(), Ivar2
->getDecl());
4255 const auto *Array1
= dyn_cast
<ArraySubscriptExpr
>(E1
);
4256 const auto *Array2
= dyn_cast
<ArraySubscriptExpr
>(E2
);
4257 if (Array1
&& Array2
) {
4258 if (!isSameComparisonOperand(Array1
->getBase(), Array2
->getBase()))
4261 auto Idx1
= Array1
->getIdx();
4262 auto Idx2
= Array2
->getIdx();
4263 const auto Integer1
= dyn_cast
<IntegerLiteral
>(Idx1
);
4264 const auto Integer2
= dyn_cast
<IntegerLiteral
>(Idx2
);
4265 if (Integer1
&& Integer2
) {
4266 if (!llvm::APInt::isSameValue(Integer1
->getValue(),
4267 Integer2
->getValue()))
4270 if (!isSameComparisonOperand(Idx1
, Idx2
))
4277 // Walk the MemberExpr chain.
4278 while (isa
<MemberExpr
>(E1
) && isa
<MemberExpr
>(E2
)) {
4279 const auto *ME1
= cast
<MemberExpr
>(E1
);
4280 const auto *ME2
= cast
<MemberExpr
>(E2
);
4281 if (!declaresSameEntity(ME1
->getMemberDecl(), ME2
->getMemberDecl()))
4283 if (const auto *D
= dyn_cast
<VarDecl
>(ME1
->getMemberDecl()))
4284 if (D
->isStaticDataMember())
4286 E1
= ME1
->getBase()->IgnoreParenImpCasts();
4287 E2
= ME2
->getBase()->IgnoreParenImpCasts();
4290 if (isa
<CXXThisExpr
>(E1
) && isa
<CXXThisExpr
>(E2
))
4293 // A static member variable can end the MemberExpr chain with either
4294 // a MemberExpr or a DeclRefExpr.
4295 auto getAnyDecl
= [](const Expr
*E
) -> const ValueDecl
* {
4296 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
4297 return DRE
->getDecl();
4298 if (const auto *ME
= dyn_cast
<MemberExpr
>(E
))
4299 return ME
->getMemberDecl();
4303 const ValueDecl
*VD1
= getAnyDecl(E1
);
4304 const ValueDecl
*VD2
= getAnyDecl(E2
);
4305 return declaresSameEntity(VD1
, VD2
);
4310 /// isArrow - Return true if the base expression is a pointer to vector,
4311 /// return false if the base expression is a vector.
4312 bool ExtVectorElementExpr::isArrow() const {
4313 return getBase()->getType()->isPointerType();
4316 unsigned ExtVectorElementExpr::getNumElements() const {
4317 if (const VectorType
*VT
= getType()->getAs
<VectorType
>())
4318 return VT
->getNumElements();
4322 /// containsDuplicateElements - Return true if any element access is repeated.
4323 bool ExtVectorElementExpr::containsDuplicateElements() const {
4324 // FIXME: Refactor this code to an accessor on the AST node which returns the
4325 // "type" of component access, and share with code below and in Sema.
4326 StringRef Comp
= Accessor
->getName();
4328 // Halving swizzles do not contain duplicate elements.
4329 if (Comp
== "hi" || Comp
== "lo" || Comp
== "even" || Comp
== "odd")
4332 // Advance past s-char prefix on hex swizzles.
4333 if (Comp
[0] == 's' || Comp
[0] == 'S')
4334 Comp
= Comp
.substr(1);
4336 for (unsigned i
= 0, e
= Comp
.size(); i
!= e
; ++i
)
4337 if (Comp
.substr(i
+ 1).contains(Comp
[i
]))
4343 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4344 void ExtVectorElementExpr::getEncodedElementAccess(
4345 SmallVectorImpl
<uint32_t> &Elts
) const {
4346 StringRef Comp
= Accessor
->getName();
4347 bool isNumericAccessor
= false;
4348 if (Comp
[0] == 's' || Comp
[0] == 'S') {
4349 Comp
= Comp
.substr(1);
4350 isNumericAccessor
= true;
4353 bool isHi
= Comp
== "hi";
4354 bool isLo
= Comp
== "lo";
4355 bool isEven
= Comp
== "even";
4356 bool isOdd
= Comp
== "odd";
4358 for (unsigned i
= 0, e
= getNumElements(); i
!= e
; ++i
) {
4370 Index
= ExtVectorType::getAccessorIdx(Comp
[i
], isNumericAccessor
);
4372 Elts
.push_back(Index
);
4376 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext
&C
, ArrayRef
<Expr
*> args
,
4377 QualType Type
, SourceLocation BLoc
,
4379 : Expr(ShuffleVectorExprClass
, Type
, VK_PRValue
, OK_Ordinary
),
4380 BuiltinLoc(BLoc
), RParenLoc(RP
), NumExprs(args
.size()) {
4381 SubExprs
= new (C
) Stmt
*[args
.size()];
4382 for (unsigned i
= 0; i
!= args
.size(); i
++)
4383 SubExprs
[i
] = args
[i
];
4385 setDependence(computeDependence(this));
4388 void ShuffleVectorExpr::setExprs(const ASTContext
&C
, ArrayRef
<Expr
*> Exprs
) {
4389 if (SubExprs
) C
.Deallocate(SubExprs
);
4391 this->NumExprs
= Exprs
.size();
4392 SubExprs
= new (C
) Stmt
*[NumExprs
];
4393 memcpy(SubExprs
, Exprs
.data(), sizeof(Expr
*) * Exprs
.size());
4396 GenericSelectionExpr::GenericSelectionExpr(
4397 const ASTContext
&, SourceLocation GenericLoc
, Expr
*ControllingExpr
,
4398 ArrayRef
<TypeSourceInfo
*> AssocTypes
, ArrayRef
<Expr
*> AssocExprs
,
4399 SourceLocation DefaultLoc
, SourceLocation RParenLoc
,
4400 bool ContainsUnexpandedParameterPack
, unsigned ResultIndex
)
4401 : Expr(GenericSelectionExprClass
, AssocExprs
[ResultIndex
]->getType(),
4402 AssocExprs
[ResultIndex
]->getValueKind(),
4403 AssocExprs
[ResultIndex
]->getObjectKind()),
4404 NumAssocs(AssocExprs
.size()), ResultIndex(ResultIndex
),
4405 IsExprPredicate(true), DefaultLoc(DefaultLoc
), RParenLoc(RParenLoc
) {
4406 assert(AssocTypes
.size() == AssocExprs
.size() &&
4407 "Must have the same number of association expressions"
4408 " and TypeSourceInfo!");
4409 assert(ResultIndex
< NumAssocs
&& "ResultIndex is out-of-bounds!");
4411 GenericSelectionExprBits
.GenericLoc
= GenericLoc
;
4412 getTrailingObjects
<Stmt
*>()[getIndexOfControllingExpression()] =
4414 std::copy(AssocExprs
.begin(), AssocExprs
.end(),
4415 getTrailingObjects
<Stmt
*>() + getIndexOfStartOfAssociatedExprs());
4416 std::copy(AssocTypes
.begin(), AssocTypes
.end(),
4417 getTrailingObjects
<TypeSourceInfo
*>() +
4418 getIndexOfStartOfAssociatedTypes());
4420 setDependence(computeDependence(this, ContainsUnexpandedParameterPack
));
4423 GenericSelectionExpr::GenericSelectionExpr(
4424 const ASTContext
&, SourceLocation GenericLoc
,
4425 TypeSourceInfo
*ControllingType
, ArrayRef
<TypeSourceInfo
*> AssocTypes
,
4426 ArrayRef
<Expr
*> AssocExprs
, SourceLocation DefaultLoc
,
4427 SourceLocation RParenLoc
, bool ContainsUnexpandedParameterPack
,
4428 unsigned ResultIndex
)
4429 : Expr(GenericSelectionExprClass
, AssocExprs
[ResultIndex
]->getType(),
4430 AssocExprs
[ResultIndex
]->getValueKind(),
4431 AssocExprs
[ResultIndex
]->getObjectKind()),
4432 NumAssocs(AssocExprs
.size()), ResultIndex(ResultIndex
),
4433 IsExprPredicate(false), DefaultLoc(DefaultLoc
), RParenLoc(RParenLoc
) {
4434 assert(AssocTypes
.size() == AssocExprs
.size() &&
4435 "Must have the same number of association expressions"
4436 " and TypeSourceInfo!");
4437 assert(ResultIndex
< NumAssocs
&& "ResultIndex is out-of-bounds!");
4439 GenericSelectionExprBits
.GenericLoc
= GenericLoc
;
4440 getTrailingObjects
<TypeSourceInfo
*>()[getIndexOfControllingType()] =
4442 std::copy(AssocExprs
.begin(), AssocExprs
.end(),
4443 getTrailingObjects
<Stmt
*>() + getIndexOfStartOfAssociatedExprs());
4444 std::copy(AssocTypes
.begin(), AssocTypes
.end(),
4445 getTrailingObjects
<TypeSourceInfo
*>() +
4446 getIndexOfStartOfAssociatedTypes());
4448 setDependence(computeDependence(this, ContainsUnexpandedParameterPack
));
4451 GenericSelectionExpr::GenericSelectionExpr(
4452 const ASTContext
&Context
, SourceLocation GenericLoc
, Expr
*ControllingExpr
,
4453 ArrayRef
<TypeSourceInfo
*> AssocTypes
, ArrayRef
<Expr
*> AssocExprs
,
4454 SourceLocation DefaultLoc
, SourceLocation RParenLoc
,
4455 bool ContainsUnexpandedParameterPack
)
4456 : Expr(GenericSelectionExprClass
, Context
.DependentTy
, VK_PRValue
,
4458 NumAssocs(AssocExprs
.size()), ResultIndex(ResultDependentIndex
),
4459 IsExprPredicate(true), DefaultLoc(DefaultLoc
), RParenLoc(RParenLoc
) {
4460 assert(AssocTypes
.size() == AssocExprs
.size() &&
4461 "Must have the same number of association expressions"
4462 " and TypeSourceInfo!");
4464 GenericSelectionExprBits
.GenericLoc
= GenericLoc
;
4465 getTrailingObjects
<Stmt
*>()[getIndexOfControllingExpression()] =
4467 std::copy(AssocExprs
.begin(), AssocExprs
.end(),
4468 getTrailingObjects
<Stmt
*>() + getIndexOfStartOfAssociatedExprs());
4469 std::copy(AssocTypes
.begin(), AssocTypes
.end(),
4470 getTrailingObjects
<TypeSourceInfo
*>() +
4471 getIndexOfStartOfAssociatedTypes());
4473 setDependence(computeDependence(this, ContainsUnexpandedParameterPack
));
4476 GenericSelectionExpr::GenericSelectionExpr(
4477 const ASTContext
&Context
, SourceLocation GenericLoc
,
4478 TypeSourceInfo
*ControllingType
, ArrayRef
<TypeSourceInfo
*> AssocTypes
,
4479 ArrayRef
<Expr
*> AssocExprs
, SourceLocation DefaultLoc
,
4480 SourceLocation RParenLoc
, bool ContainsUnexpandedParameterPack
)
4481 : Expr(GenericSelectionExprClass
, Context
.DependentTy
, VK_PRValue
,
4483 NumAssocs(AssocExprs
.size()), ResultIndex(ResultDependentIndex
),
4484 IsExprPredicate(false), DefaultLoc(DefaultLoc
), RParenLoc(RParenLoc
) {
4485 assert(AssocTypes
.size() == AssocExprs
.size() &&
4486 "Must have the same number of association expressions"
4487 " and TypeSourceInfo!");
4489 GenericSelectionExprBits
.GenericLoc
= GenericLoc
;
4490 getTrailingObjects
<TypeSourceInfo
*>()[getIndexOfControllingType()] =
4492 std::copy(AssocExprs
.begin(), AssocExprs
.end(),
4493 getTrailingObjects
<Stmt
*>() + getIndexOfStartOfAssociatedExprs());
4494 std::copy(AssocTypes
.begin(), AssocTypes
.end(),
4495 getTrailingObjects
<TypeSourceInfo
*>() +
4496 getIndexOfStartOfAssociatedTypes());
4498 setDependence(computeDependence(this, ContainsUnexpandedParameterPack
));
4501 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty
, unsigned NumAssocs
)
4502 : Expr(GenericSelectionExprClass
, Empty
), NumAssocs(NumAssocs
) {}
4504 GenericSelectionExpr
*GenericSelectionExpr::Create(
4505 const ASTContext
&Context
, SourceLocation GenericLoc
, Expr
*ControllingExpr
,
4506 ArrayRef
<TypeSourceInfo
*> AssocTypes
, ArrayRef
<Expr
*> AssocExprs
,
4507 SourceLocation DefaultLoc
, SourceLocation RParenLoc
,
4508 bool ContainsUnexpandedParameterPack
, unsigned ResultIndex
) {
4509 unsigned NumAssocs
= AssocExprs
.size();
4510 void *Mem
= Context
.Allocate(
4511 totalSizeToAlloc
<Stmt
*, TypeSourceInfo
*>(1 + NumAssocs
, NumAssocs
),
4512 alignof(GenericSelectionExpr
));
4513 return new (Mem
) GenericSelectionExpr(
4514 Context
, GenericLoc
, ControllingExpr
, AssocTypes
, AssocExprs
, DefaultLoc
,
4515 RParenLoc
, ContainsUnexpandedParameterPack
, ResultIndex
);
4518 GenericSelectionExpr
*GenericSelectionExpr::Create(
4519 const ASTContext
&Context
, SourceLocation GenericLoc
, Expr
*ControllingExpr
,
4520 ArrayRef
<TypeSourceInfo
*> AssocTypes
, ArrayRef
<Expr
*> AssocExprs
,
4521 SourceLocation DefaultLoc
, SourceLocation RParenLoc
,
4522 bool ContainsUnexpandedParameterPack
) {
4523 unsigned NumAssocs
= AssocExprs
.size();
4524 void *Mem
= Context
.Allocate(
4525 totalSizeToAlloc
<Stmt
*, TypeSourceInfo
*>(1 + NumAssocs
, NumAssocs
),
4526 alignof(GenericSelectionExpr
));
4527 return new (Mem
) GenericSelectionExpr(
4528 Context
, GenericLoc
, ControllingExpr
, AssocTypes
, AssocExprs
, DefaultLoc
,
4529 RParenLoc
, ContainsUnexpandedParameterPack
);
4532 GenericSelectionExpr
*GenericSelectionExpr::Create(
4533 const ASTContext
&Context
, SourceLocation GenericLoc
,
4534 TypeSourceInfo
*ControllingType
, ArrayRef
<TypeSourceInfo
*> AssocTypes
,
4535 ArrayRef
<Expr
*> AssocExprs
, SourceLocation DefaultLoc
,
4536 SourceLocation RParenLoc
, bool ContainsUnexpandedParameterPack
,
4537 unsigned ResultIndex
) {
4538 unsigned NumAssocs
= AssocExprs
.size();
4539 void *Mem
= Context
.Allocate(
4540 totalSizeToAlloc
<Stmt
*, TypeSourceInfo
*>(1 + NumAssocs
, NumAssocs
),
4541 alignof(GenericSelectionExpr
));
4542 return new (Mem
) GenericSelectionExpr(
4543 Context
, GenericLoc
, ControllingType
, AssocTypes
, AssocExprs
, DefaultLoc
,
4544 RParenLoc
, ContainsUnexpandedParameterPack
, ResultIndex
);
4547 GenericSelectionExpr
*GenericSelectionExpr::Create(
4548 const ASTContext
&Context
, SourceLocation GenericLoc
,
4549 TypeSourceInfo
*ControllingType
, ArrayRef
<TypeSourceInfo
*> AssocTypes
,
4550 ArrayRef
<Expr
*> AssocExprs
, SourceLocation DefaultLoc
,
4551 SourceLocation RParenLoc
, bool ContainsUnexpandedParameterPack
) {
4552 unsigned NumAssocs
= AssocExprs
.size();
4553 void *Mem
= Context
.Allocate(
4554 totalSizeToAlloc
<Stmt
*, TypeSourceInfo
*>(1 + NumAssocs
, NumAssocs
),
4555 alignof(GenericSelectionExpr
));
4556 return new (Mem
) GenericSelectionExpr(
4557 Context
, GenericLoc
, ControllingType
, AssocTypes
, AssocExprs
, DefaultLoc
,
4558 RParenLoc
, ContainsUnexpandedParameterPack
);
4561 GenericSelectionExpr
*
4562 GenericSelectionExpr::CreateEmpty(const ASTContext
&Context
,
4563 unsigned NumAssocs
) {
4564 void *Mem
= Context
.Allocate(
4565 totalSizeToAlloc
<Stmt
*, TypeSourceInfo
*>(1 + NumAssocs
, NumAssocs
),
4566 alignof(GenericSelectionExpr
));
4567 return new (Mem
) GenericSelectionExpr(EmptyShell(), NumAssocs
);
4570 //===----------------------------------------------------------------------===//
4571 // DesignatedInitExpr
4572 //===----------------------------------------------------------------------===//
4574 const IdentifierInfo
*DesignatedInitExpr::Designator::getFieldName() const {
4575 assert(isFieldDesignator() && "Only valid on a field designator");
4576 if (FieldInfo
.NameOrField
& 0x01)
4577 return reinterpret_cast<IdentifierInfo
*>(FieldInfo
.NameOrField
& ~0x01);
4578 return getFieldDecl()->getIdentifier();
4581 DesignatedInitExpr::DesignatedInitExpr(const ASTContext
&C
, QualType Ty
,
4582 llvm::ArrayRef
<Designator
> Designators
,
4583 SourceLocation EqualOrColonLoc
,
4585 ArrayRef
<Expr
*> IndexExprs
, Expr
*Init
)
4586 : Expr(DesignatedInitExprClass
, Ty
, Init
->getValueKind(),
4587 Init
->getObjectKind()),
4588 EqualOrColonLoc(EqualOrColonLoc
), GNUSyntax(GNUSyntax
),
4589 NumDesignators(Designators
.size()), NumSubExprs(IndexExprs
.size() + 1) {
4590 this->Designators
= new (C
) Designator
[NumDesignators
];
4592 // Record the initializer itself.
4593 child_iterator Child
= child_begin();
4596 // Copy the designators and their subexpressions, computing
4597 // value-dependence along the way.
4598 unsigned IndexIdx
= 0;
4599 for (unsigned I
= 0; I
!= NumDesignators
; ++I
) {
4600 this->Designators
[I
] = Designators
[I
];
4601 if (this->Designators
[I
].isArrayDesignator()) {
4602 // Copy the index expressions into permanent storage.
4603 *Child
++ = IndexExprs
[IndexIdx
++];
4604 } else if (this->Designators
[I
].isArrayRangeDesignator()) {
4605 // Copy the start/end expressions into permanent storage.
4606 *Child
++ = IndexExprs
[IndexIdx
++];
4607 *Child
++ = IndexExprs
[IndexIdx
++];
4611 assert(IndexIdx
== IndexExprs
.size() && "Wrong number of index expressions");
4612 setDependence(computeDependence(this));
4615 DesignatedInitExpr
*
4616 DesignatedInitExpr::Create(const ASTContext
&C
,
4617 llvm::ArrayRef
<Designator
> Designators
,
4618 ArrayRef
<Expr
*> IndexExprs
,
4619 SourceLocation ColonOrEqualLoc
,
4620 bool UsesColonSyntax
, Expr
*Init
) {
4621 void *Mem
= C
.Allocate(totalSizeToAlloc
<Stmt
*>(IndexExprs
.size() + 1),
4622 alignof(DesignatedInitExpr
));
4623 return new (Mem
) DesignatedInitExpr(C
, C
.VoidTy
, Designators
,
4624 ColonOrEqualLoc
, UsesColonSyntax
,
4628 DesignatedInitExpr
*DesignatedInitExpr::CreateEmpty(const ASTContext
&C
,
4629 unsigned NumIndexExprs
) {
4630 void *Mem
= C
.Allocate(totalSizeToAlloc
<Stmt
*>(NumIndexExprs
+ 1),
4631 alignof(DesignatedInitExpr
));
4632 return new (Mem
) DesignatedInitExpr(NumIndexExprs
+ 1);
4635 void DesignatedInitExpr::setDesignators(const ASTContext
&C
,
4636 const Designator
*Desigs
,
4637 unsigned NumDesigs
) {
4638 Designators
= new (C
) Designator
[NumDesigs
];
4639 NumDesignators
= NumDesigs
;
4640 for (unsigned I
= 0; I
!= NumDesigs
; ++I
)
4641 Designators
[I
] = Desigs
[I
];
4644 SourceRange
DesignatedInitExpr::getDesignatorsSourceRange() const {
4645 DesignatedInitExpr
*DIE
= const_cast<DesignatedInitExpr
*>(this);
4647 return DIE
->getDesignator(0)->getSourceRange();
4648 return SourceRange(DIE
->getDesignator(0)->getBeginLoc(),
4649 DIE
->getDesignator(size() - 1)->getEndLoc());
4652 SourceLocation
DesignatedInitExpr::getBeginLoc() const {
4653 auto *DIE
= const_cast<DesignatedInitExpr
*>(this);
4654 Designator
&First
= *DIE
->getDesignator(0);
4655 if (First
.isFieldDesignator()) {
4656 // Skip past implicit designators for anonymous structs/unions, since
4657 // these do not have valid source locations.
4658 for (unsigned int i
= 0; i
< DIE
->size(); i
++) {
4659 Designator
&Des
= *DIE
->getDesignator(i
);
4660 SourceLocation retval
= GNUSyntax
? Des
.getFieldLoc() : Des
.getDotLoc();
4661 if (!retval
.isValid())
4666 return First
.getLBracketLoc();
4669 SourceLocation
DesignatedInitExpr::getEndLoc() const {
4670 return getInit()->getEndLoc();
4673 Expr
*DesignatedInitExpr::getArrayIndex(const Designator
& D
) const {
4674 assert(D
.isArrayDesignator() && "Requires array designator");
4675 return getSubExpr(D
.getArrayIndex() + 1);
4678 Expr
*DesignatedInitExpr::getArrayRangeStart(const Designator
&D
) const {
4679 assert(D
.isArrayRangeDesignator() && "Requires array range designator");
4680 return getSubExpr(D
.getArrayIndex() + 1);
4683 Expr
*DesignatedInitExpr::getArrayRangeEnd(const Designator
&D
) const {
4684 assert(D
.isArrayRangeDesignator() && "Requires array range designator");
4685 return getSubExpr(D
.getArrayIndex() + 2);
4688 /// Replaces the designator at index @p Idx with the series
4689 /// of designators in [First, Last).
4690 void DesignatedInitExpr::ExpandDesignator(const ASTContext
&C
, unsigned Idx
,
4691 const Designator
*First
,
4692 const Designator
*Last
) {
4693 unsigned NumNewDesignators
= Last
- First
;
4694 if (NumNewDesignators
== 0) {
4695 std::copy_backward(Designators
+ Idx
+ 1,
4696 Designators
+ NumDesignators
,
4698 --NumNewDesignators
;
4701 if (NumNewDesignators
== 1) {
4702 Designators
[Idx
] = *First
;
4706 Designator
*NewDesignators
4707 = new (C
) Designator
[NumDesignators
- 1 + NumNewDesignators
];
4708 std::copy(Designators
, Designators
+ Idx
, NewDesignators
);
4709 std::copy(First
, Last
, NewDesignators
+ Idx
);
4710 std::copy(Designators
+ Idx
+ 1, Designators
+ NumDesignators
,
4711 NewDesignators
+ Idx
+ NumNewDesignators
);
4712 Designators
= NewDesignators
;
4713 NumDesignators
= NumDesignators
- 1 + NumNewDesignators
;
4716 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext
&C
,
4717 SourceLocation lBraceLoc
,
4719 SourceLocation rBraceLoc
)
4720 : Expr(DesignatedInitUpdateExprClass
, baseExpr
->getType(), VK_PRValue
,
4722 BaseAndUpdaterExprs
[0] = baseExpr
;
4724 InitListExpr
*ILE
= new (C
) InitListExpr(C
, lBraceLoc
, {}, rBraceLoc
);
4725 ILE
->setType(baseExpr
->getType());
4726 BaseAndUpdaterExprs
[1] = ILE
;
4728 // FIXME: this is wrong, set it correctly.
4729 setDependence(ExprDependence::None
);
4732 SourceLocation
DesignatedInitUpdateExpr::getBeginLoc() const {
4733 return getBase()->getBeginLoc();
4736 SourceLocation
DesignatedInitUpdateExpr::getEndLoc() const {
4737 return getBase()->getEndLoc();
4740 ParenListExpr::ParenListExpr(SourceLocation LParenLoc
, ArrayRef
<Expr
*> Exprs
,
4741 SourceLocation RParenLoc
)
4742 : Expr(ParenListExprClass
, QualType(), VK_PRValue
, OK_Ordinary
),
4743 LParenLoc(LParenLoc
), RParenLoc(RParenLoc
) {
4744 ParenListExprBits
.NumExprs
= Exprs
.size();
4746 for (unsigned I
= 0, N
= Exprs
.size(); I
!= N
; ++I
)
4747 getTrailingObjects
<Stmt
*>()[I
] = Exprs
[I
];
4748 setDependence(computeDependence(this));
4751 ParenListExpr::ParenListExpr(EmptyShell Empty
, unsigned NumExprs
)
4752 : Expr(ParenListExprClass
, Empty
) {
4753 ParenListExprBits
.NumExprs
= NumExprs
;
4756 ParenListExpr
*ParenListExpr::Create(const ASTContext
&Ctx
,
4757 SourceLocation LParenLoc
,
4758 ArrayRef
<Expr
*> Exprs
,
4759 SourceLocation RParenLoc
) {
4760 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<Stmt
*>(Exprs
.size()),
4761 alignof(ParenListExpr
));
4762 return new (Mem
) ParenListExpr(LParenLoc
, Exprs
, RParenLoc
);
4765 ParenListExpr
*ParenListExpr::CreateEmpty(const ASTContext
&Ctx
,
4766 unsigned NumExprs
) {
4768 Ctx
.Allocate(totalSizeToAlloc
<Stmt
*>(NumExprs
), alignof(ParenListExpr
));
4769 return new (Mem
) ParenListExpr(EmptyShell(), NumExprs
);
4772 /// Certain overflow-dependent code patterns can have their integer overflow
4773 /// sanitization disabled. Check for the common pattern `if (a + b < a)` and
4774 /// return the resulting BinaryOperator responsible for the addition so we can
4775 /// elide overflow checks during codegen.
4776 static std::optional
<BinaryOperator
*>
4777 getOverflowPatternBinOp(const BinaryOperator
*E
) {
4778 Expr
*Addition
, *ComparedTo
;
4779 if (E
->getOpcode() == BO_LT
) {
4780 Addition
= E
->getLHS();
4781 ComparedTo
= E
->getRHS();
4782 } else if (E
->getOpcode() == BO_GT
) {
4783 Addition
= E
->getRHS();
4784 ComparedTo
= E
->getLHS();
4789 const Expr
*AddLHS
= nullptr, *AddRHS
= nullptr;
4790 BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Addition
);
4792 if (BO
&& BO
->getOpcode() == clang::BO_Add
) {
4793 // now store addends for lookup on other side of '>'
4794 AddLHS
= BO
->getLHS();
4795 AddRHS
= BO
->getRHS();
4798 if (!AddLHS
|| !AddRHS
)
4801 const Decl
*LHSDecl
, *RHSDecl
, *OtherDecl
;
4803 LHSDecl
= AddLHS
->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4804 RHSDecl
= AddRHS
->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4805 OtherDecl
= ComparedTo
->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4810 if (!LHSDecl
&& !RHSDecl
)
4813 if ((LHSDecl
&& LHSDecl
== OtherDecl
&& LHSDecl
!= RHSDecl
) ||
4814 (RHSDecl
&& RHSDecl
== OtherDecl
&& RHSDecl
!= LHSDecl
))
4819 /// Compute and set the OverflowPatternExclusion bit based on whether the
4820 /// BinaryOperator expression matches an overflow pattern being ignored by
4821 /// -fsanitize-undefined-ignore-overflow-pattern=add-signed-overflow-test or
4822 /// -fsanitize-undefined-ignore-overflow-pattern=add-unsigned-overflow-test
4823 static void computeOverflowPatternExclusion(const ASTContext
&Ctx
,
4824 const BinaryOperator
*E
) {
4825 std::optional
<BinaryOperator
*> Result
= getOverflowPatternBinOp(E
);
4826 if (!Result
.has_value())
4828 QualType AdditionResultType
= Result
.value()->getType();
4830 if ((AdditionResultType
->isSignedIntegerType() &&
4831 Ctx
.getLangOpts().isOverflowPatternExcluded(
4832 LangOptions::OverflowPatternExclusionKind::AddSignedOverflowTest
)) ||
4833 (AdditionResultType
->isUnsignedIntegerType() &&
4834 Ctx
.getLangOpts().isOverflowPatternExcluded(
4835 LangOptions::OverflowPatternExclusionKind::AddUnsignedOverflowTest
)))
4836 Result
.value()->setExcludedOverflowPattern(true);
4839 BinaryOperator::BinaryOperator(const ASTContext
&Ctx
, Expr
*lhs
, Expr
*rhs
,
4840 Opcode opc
, QualType ResTy
, ExprValueKind VK
,
4841 ExprObjectKind OK
, SourceLocation opLoc
,
4842 FPOptionsOverride FPFeatures
)
4843 : Expr(BinaryOperatorClass
, ResTy
, VK
, OK
) {
4844 BinaryOperatorBits
.Opc
= opc
;
4845 assert(!isCompoundAssignmentOp() &&
4846 "Use CompoundAssignOperator for compound assignments");
4847 BinaryOperatorBits
.OpLoc
= opLoc
;
4848 BinaryOperatorBits
.ExcludedOverflowPattern
= false;
4849 SubExprs
[LHS
] = lhs
;
4850 SubExprs
[RHS
] = rhs
;
4851 computeOverflowPatternExclusion(Ctx
, this);
4852 BinaryOperatorBits
.HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
4853 if (hasStoredFPFeatures())
4854 setStoredFPFeatures(FPFeatures
);
4855 setDependence(computeDependence(this));
4858 BinaryOperator::BinaryOperator(const ASTContext
&Ctx
, Expr
*lhs
, Expr
*rhs
,
4859 Opcode opc
, QualType ResTy
, ExprValueKind VK
,
4860 ExprObjectKind OK
, SourceLocation opLoc
,
4861 FPOptionsOverride FPFeatures
, bool dead2
)
4862 : Expr(CompoundAssignOperatorClass
, ResTy
, VK
, OK
) {
4863 BinaryOperatorBits
.Opc
= opc
;
4864 BinaryOperatorBits
.ExcludedOverflowPattern
= false;
4865 assert(isCompoundAssignmentOp() &&
4866 "Use CompoundAssignOperator for compound assignments");
4867 BinaryOperatorBits
.OpLoc
= opLoc
;
4868 SubExprs
[LHS
] = lhs
;
4869 SubExprs
[RHS
] = rhs
;
4870 BinaryOperatorBits
.HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
4871 if (hasStoredFPFeatures())
4872 setStoredFPFeatures(FPFeatures
);
4873 setDependence(computeDependence(this));
4876 BinaryOperator
*BinaryOperator::CreateEmpty(const ASTContext
&C
,
4877 bool HasFPFeatures
) {
4878 unsigned Extra
= sizeOfTrailingObjects(HasFPFeatures
);
4880 C
.Allocate(sizeof(BinaryOperator
) + Extra
, alignof(BinaryOperator
));
4881 return new (Mem
) BinaryOperator(EmptyShell());
4884 BinaryOperator
*BinaryOperator::Create(const ASTContext
&C
, Expr
*lhs
,
4885 Expr
*rhs
, Opcode opc
, QualType ResTy
,
4886 ExprValueKind VK
, ExprObjectKind OK
,
4887 SourceLocation opLoc
,
4888 FPOptionsOverride FPFeatures
) {
4889 bool HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
4890 unsigned Extra
= sizeOfTrailingObjects(HasFPFeatures
);
4892 C
.Allocate(sizeof(BinaryOperator
) + Extra
, alignof(BinaryOperator
));
4894 BinaryOperator(C
, lhs
, rhs
, opc
, ResTy
, VK
, OK
, opLoc
, FPFeatures
);
4897 CompoundAssignOperator
*
4898 CompoundAssignOperator::CreateEmpty(const ASTContext
&C
, bool HasFPFeatures
) {
4899 unsigned Extra
= sizeOfTrailingObjects(HasFPFeatures
);
4900 void *Mem
= C
.Allocate(sizeof(CompoundAssignOperator
) + Extra
,
4901 alignof(CompoundAssignOperator
));
4902 return new (Mem
) CompoundAssignOperator(C
, EmptyShell(), HasFPFeatures
);
4905 CompoundAssignOperator
*
4906 CompoundAssignOperator::Create(const ASTContext
&C
, Expr
*lhs
, Expr
*rhs
,
4907 Opcode opc
, QualType ResTy
, ExprValueKind VK
,
4908 ExprObjectKind OK
, SourceLocation opLoc
,
4909 FPOptionsOverride FPFeatures
,
4910 QualType CompLHSType
, QualType CompResultType
) {
4911 bool HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
4912 unsigned Extra
= sizeOfTrailingObjects(HasFPFeatures
);
4913 void *Mem
= C
.Allocate(sizeof(CompoundAssignOperator
) + Extra
,
4914 alignof(CompoundAssignOperator
));
4916 CompoundAssignOperator(C
, lhs
, rhs
, opc
, ResTy
, VK
, OK
, opLoc
, FPFeatures
,
4917 CompLHSType
, CompResultType
);
4920 UnaryOperator
*UnaryOperator::CreateEmpty(const ASTContext
&C
,
4921 bool hasFPFeatures
) {
4922 void *Mem
= C
.Allocate(totalSizeToAlloc
<FPOptionsOverride
>(hasFPFeatures
),
4923 alignof(UnaryOperator
));
4924 return new (Mem
) UnaryOperator(hasFPFeatures
, EmptyShell());
4927 UnaryOperator::UnaryOperator(const ASTContext
&Ctx
, Expr
*input
, Opcode opc
,
4928 QualType type
, ExprValueKind VK
, ExprObjectKind OK
,
4929 SourceLocation l
, bool CanOverflow
,
4930 FPOptionsOverride FPFeatures
)
4931 : Expr(UnaryOperatorClass
, type
, VK
, OK
), Val(input
) {
4932 UnaryOperatorBits
.Opc
= opc
;
4933 UnaryOperatorBits
.CanOverflow
= CanOverflow
;
4934 UnaryOperatorBits
.Loc
= l
;
4935 UnaryOperatorBits
.HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
4936 if (hasStoredFPFeatures())
4937 setStoredFPFeatures(FPFeatures
);
4938 setDependence(computeDependence(this, Ctx
));
4941 UnaryOperator
*UnaryOperator::Create(const ASTContext
&C
, Expr
*input
,
4942 Opcode opc
, QualType type
,
4943 ExprValueKind VK
, ExprObjectKind OK
,
4944 SourceLocation l
, bool CanOverflow
,
4945 FPOptionsOverride FPFeatures
) {
4946 bool HasFPFeatures
= FPFeatures
.requiresTrailingStorage();
4947 unsigned Size
= totalSizeToAlloc
<FPOptionsOverride
>(HasFPFeatures
);
4948 void *Mem
= C
.Allocate(Size
, alignof(UnaryOperator
));
4950 UnaryOperator(C
, input
, opc
, type
, VK
, OK
, l
, CanOverflow
, FPFeatures
);
4953 const OpaqueValueExpr
*OpaqueValueExpr::findInCopyConstruct(const Expr
*e
) {
4954 if (const ExprWithCleanups
*ewc
= dyn_cast
<ExprWithCleanups
>(e
))
4955 e
= ewc
->getSubExpr();
4956 if (const MaterializeTemporaryExpr
*m
= dyn_cast
<MaterializeTemporaryExpr
>(e
))
4957 e
= m
->getSubExpr();
4958 e
= cast
<CXXConstructExpr
>(e
)->getArg(0);
4959 while (const ImplicitCastExpr
*ice
= dyn_cast
<ImplicitCastExpr
>(e
))
4960 e
= ice
->getSubExpr();
4961 return cast
<OpaqueValueExpr
>(e
);
4964 PseudoObjectExpr
*PseudoObjectExpr::Create(const ASTContext
&Context
,
4966 unsigned numSemanticExprs
) {
4968 Context
.Allocate(totalSizeToAlloc
<Expr
*>(1 + numSemanticExprs
),
4969 alignof(PseudoObjectExpr
));
4970 return new(buffer
) PseudoObjectExpr(sh
, numSemanticExprs
);
4973 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell
, unsigned numSemanticExprs
)
4974 : Expr(PseudoObjectExprClass
, shell
) {
4975 PseudoObjectExprBits
.NumSubExprs
= numSemanticExprs
+ 1;
4978 PseudoObjectExpr
*PseudoObjectExpr::Create(const ASTContext
&C
, Expr
*syntax
,
4979 ArrayRef
<Expr
*> semantics
,
4980 unsigned resultIndex
) {
4981 assert(syntax
&& "no syntactic expression!");
4982 assert(semantics
.size() && "no semantic expressions!");
4986 if (resultIndex
== NoResult
) {
4990 assert(resultIndex
< semantics
.size());
4991 type
= semantics
[resultIndex
]->getType();
4992 VK
= semantics
[resultIndex
]->getValueKind();
4993 assert(semantics
[resultIndex
]->getObjectKind() == OK_Ordinary
);
4996 void *buffer
= C
.Allocate(totalSizeToAlloc
<Expr
*>(semantics
.size() + 1),
4997 alignof(PseudoObjectExpr
));
4998 return new(buffer
) PseudoObjectExpr(type
, VK
, syntax
, semantics
,
5002 PseudoObjectExpr::PseudoObjectExpr(QualType type
, ExprValueKind VK
,
5003 Expr
*syntax
, ArrayRef
<Expr
*> semantics
,
5004 unsigned resultIndex
)
5005 : Expr(PseudoObjectExprClass
, type
, VK
, OK_Ordinary
) {
5006 PseudoObjectExprBits
.NumSubExprs
= semantics
.size() + 1;
5007 PseudoObjectExprBits
.ResultIndex
= resultIndex
+ 1;
5009 for (unsigned i
= 0, e
= semantics
.size() + 1; i
!= e
; ++i
) {
5010 Expr
*E
= (i
== 0 ? syntax
: semantics
[i
-1]);
5011 getSubExprsBuffer()[i
] = E
;
5013 if (isa
<OpaqueValueExpr
>(E
))
5014 assert(cast
<OpaqueValueExpr
>(E
)->getSourceExpr() != nullptr &&
5015 "opaque-value semantic expressions for pseudo-object "
5016 "operations must have sources");
5019 setDependence(computeDependence(this));
5022 //===----------------------------------------------------------------------===//
5023 // Child Iterators for iterating over subexpressions/substatements
5024 //===----------------------------------------------------------------------===//
5026 // UnaryExprOrTypeTraitExpr
5027 Stmt::child_range
UnaryExprOrTypeTraitExpr::children() {
5028 const_child_range CCR
=
5029 const_cast<const UnaryExprOrTypeTraitExpr
*>(this)->children();
5030 return child_range(cast_away_const(CCR
.begin()), cast_away_const(CCR
.end()));
5033 Stmt::const_child_range
UnaryExprOrTypeTraitExpr::children() const {
5034 // If this is of a type and the type is a VLA type (and not a typedef), the
5035 // size expression of the VLA needs to be treated as an executable expression.
5036 // Why isn't this weirdness documented better in StmtIterator?
5037 if (isArgumentType()) {
5038 if (const VariableArrayType
*T
=
5039 dyn_cast
<VariableArrayType
>(getArgumentType().getTypePtr()))
5040 return const_child_range(const_child_iterator(T
), const_child_iterator());
5041 return const_child_range(const_child_iterator(), const_child_iterator());
5043 return const_child_range(&Argument
.Ex
, &Argument
.Ex
+ 1);
5046 AtomicExpr::AtomicExpr(SourceLocation BLoc
, ArrayRef
<Expr
*> args
, QualType t
,
5047 AtomicOp op
, SourceLocation RP
)
5048 : Expr(AtomicExprClass
, t
, VK_PRValue
, OK_Ordinary
),
5049 NumSubExprs(args
.size()), BuiltinLoc(BLoc
), RParenLoc(RP
), Op(op
) {
5050 assert(args
.size() == getNumSubExprs(op
) && "wrong number of subexpressions");
5051 for (unsigned i
= 0; i
!= args
.size(); i
++)
5052 SubExprs
[i
] = args
[i
];
5053 setDependence(computeDependence(this));
5056 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op
) {
5058 case AO__c11_atomic_init
:
5059 case AO__opencl_atomic_init
:
5060 case AO__c11_atomic_load
:
5061 case AO__atomic_load_n
:
5064 case AO__scoped_atomic_load_n
:
5065 case AO__opencl_atomic_load
:
5066 case AO__hip_atomic_load
:
5067 case AO__c11_atomic_store
:
5068 case AO__c11_atomic_exchange
:
5069 case AO__atomic_load
:
5070 case AO__atomic_store
:
5071 case AO__atomic_store_n
:
5072 case AO__atomic_exchange_n
:
5073 case AO__c11_atomic_fetch_add
:
5074 case AO__c11_atomic_fetch_sub
:
5075 case AO__c11_atomic_fetch_and
:
5076 case AO__c11_atomic_fetch_or
:
5077 case AO__c11_atomic_fetch_xor
:
5078 case AO__c11_atomic_fetch_nand
:
5079 case AO__c11_atomic_fetch_max
:
5080 case AO__c11_atomic_fetch_min
:
5081 case AO__atomic_fetch_add
:
5082 case AO__atomic_fetch_sub
:
5083 case AO__atomic_fetch_and
:
5084 case AO__atomic_fetch_or
:
5085 case AO__atomic_fetch_xor
:
5086 case AO__atomic_fetch_nand
:
5087 case AO__atomic_add_fetch
:
5088 case AO__atomic_sub_fetch
:
5089 case AO__atomic_and_fetch
:
5090 case AO__atomic_or_fetch
:
5091 case AO__atomic_xor_fetch
:
5092 case AO__atomic_nand_fetch
:
5093 case AO__atomic_min_fetch
:
5094 case AO__atomic_max_fetch
:
5095 case AO__atomic_fetch_min
:
5096 case AO__atomic_fetch_max
:
5099 case AO__scoped_atomic_load
:
5100 case AO__scoped_atomic_store
:
5101 case AO__scoped_atomic_store_n
:
5102 case AO__scoped_atomic_fetch_add
:
5103 case AO__scoped_atomic_fetch_sub
:
5104 case AO__scoped_atomic_fetch_and
:
5105 case AO__scoped_atomic_fetch_or
:
5106 case AO__scoped_atomic_fetch_xor
:
5107 case AO__scoped_atomic_fetch_nand
:
5108 case AO__scoped_atomic_add_fetch
:
5109 case AO__scoped_atomic_sub_fetch
:
5110 case AO__scoped_atomic_and_fetch
:
5111 case AO__scoped_atomic_or_fetch
:
5112 case AO__scoped_atomic_xor_fetch
:
5113 case AO__scoped_atomic_nand_fetch
:
5114 case AO__scoped_atomic_min_fetch
:
5115 case AO__scoped_atomic_max_fetch
:
5116 case AO__scoped_atomic_fetch_min
:
5117 case AO__scoped_atomic_fetch_max
:
5118 case AO__scoped_atomic_exchange_n
:
5119 case AO__hip_atomic_exchange
:
5120 case AO__hip_atomic_fetch_add
:
5121 case AO__hip_atomic_fetch_sub
:
5122 case AO__hip_atomic_fetch_and
:
5123 case AO__hip_atomic_fetch_or
:
5124 case AO__hip_atomic_fetch_xor
:
5125 case AO__hip_atomic_fetch_min
:
5126 case AO__hip_atomic_fetch_max
:
5127 case AO__opencl_atomic_store
:
5128 case AO__hip_atomic_store
:
5129 case AO__opencl_atomic_exchange
:
5130 case AO__opencl_atomic_fetch_add
:
5131 case AO__opencl_atomic_fetch_sub
:
5132 case AO__opencl_atomic_fetch_and
:
5133 case AO__opencl_atomic_fetch_or
:
5134 case AO__opencl_atomic_fetch_xor
:
5135 case AO__opencl_atomic_fetch_min
:
5136 case AO__opencl_atomic_fetch_max
:
5137 case AO__atomic_exchange
:
5140 case AO__scoped_atomic_exchange
:
5141 case AO__c11_atomic_compare_exchange_strong
:
5142 case AO__c11_atomic_compare_exchange_weak
:
5144 case AO__hip_atomic_compare_exchange_strong
:
5145 case AO__opencl_atomic_compare_exchange_strong
:
5146 case AO__opencl_atomic_compare_exchange_weak
:
5147 case AO__hip_atomic_compare_exchange_weak
:
5148 case AO__atomic_compare_exchange
:
5149 case AO__atomic_compare_exchange_n
:
5152 case AO__scoped_atomic_compare_exchange
:
5153 case AO__scoped_atomic_compare_exchange_n
:
5156 llvm_unreachable("unknown atomic op");
5159 QualType
AtomicExpr::getValueType() const {
5160 auto T
= getPtr()->getType()->castAs
<PointerType
>()->getPointeeType();
5161 if (auto AT
= T
->getAs
<AtomicType
>())
5162 return AT
->getValueType();
5166 QualType
ArraySectionExpr::getBaseOriginalType(const Expr
*Base
) {
5167 unsigned ArraySectionCount
= 0;
5168 while (auto *OASE
= dyn_cast
<ArraySectionExpr
>(Base
->IgnoreParens())) {
5169 Base
= OASE
->getBase();
5170 ++ArraySectionCount
;
5173 dyn_cast
<ArraySubscriptExpr
>(Base
->IgnoreParenImpCasts())) {
5174 Base
= ASE
->getBase();
5175 ++ArraySectionCount
;
5177 Base
= Base
->IgnoreParenImpCasts();
5178 auto OriginalTy
= Base
->getType();
5179 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(Base
))
5180 if (auto *PVD
= dyn_cast
<ParmVarDecl
>(DRE
->getDecl()))
5181 OriginalTy
= PVD
->getOriginalType().getNonReferenceType();
5183 for (unsigned Cnt
= 0; Cnt
< ArraySectionCount
; ++Cnt
) {
5184 if (OriginalTy
->isAnyPointerType())
5185 OriginalTy
= OriginalTy
->getPointeeType();
5186 else if (OriginalTy
->isArrayType())
5187 OriginalTy
= OriginalTy
->castAsArrayTypeUnsafe()->getElementType();
5194 RecoveryExpr::RecoveryExpr(ASTContext
&Ctx
, QualType T
, SourceLocation BeginLoc
,
5195 SourceLocation EndLoc
, ArrayRef
<Expr
*> SubExprs
)
5196 : Expr(RecoveryExprClass
, T
.getNonReferenceType(),
5197 T
->isDependentType() ? VK_LValue
: getValueKindForType(T
),
5199 BeginLoc(BeginLoc
), EndLoc(EndLoc
), NumExprs(SubExprs
.size()) {
5200 assert(!T
.isNull());
5201 assert(!llvm::is_contained(SubExprs
, nullptr));
5203 llvm::copy(SubExprs
, getTrailingObjects
<Expr
*>());
5204 setDependence(computeDependence(this));
5207 RecoveryExpr
*RecoveryExpr::Create(ASTContext
&Ctx
, QualType T
,
5208 SourceLocation BeginLoc
,
5209 SourceLocation EndLoc
,
5210 ArrayRef
<Expr
*> SubExprs
) {
5211 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<Expr
*>(SubExprs
.size()),
5212 alignof(RecoveryExpr
));
5213 return new (Mem
) RecoveryExpr(Ctx
, T
, BeginLoc
, EndLoc
, SubExprs
);
5216 RecoveryExpr
*RecoveryExpr::CreateEmpty(ASTContext
&Ctx
, unsigned NumSubExprs
) {
5217 void *Mem
= Ctx
.Allocate(totalSizeToAlloc
<Expr
*>(NumSubExprs
),
5218 alignof(RecoveryExpr
));
5219 return new (Mem
) RecoveryExpr(EmptyShell(), NumSubExprs
);
5222 void OMPArrayShapingExpr::setDimensions(ArrayRef
<Expr
*> Dims
) {
5224 NumDims
== Dims
.size() &&
5225 "Preallocated number of dimensions is different from the provided one.");
5226 llvm::copy(Dims
, getTrailingObjects
<Expr
*>());
5229 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef
<SourceRange
> BR
) {
5231 NumDims
== BR
.size() &&
5232 "Preallocated number of dimensions is different from the provided one.");
5233 llvm::copy(BR
, getTrailingObjects
<SourceRange
>());
5236 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy
, Expr
*Op
,
5237 SourceLocation L
, SourceLocation R
,
5238 ArrayRef
<Expr
*> Dims
)
5239 : Expr(OMPArrayShapingExprClass
, ExprTy
, VK_LValue
, OK_Ordinary
), LPLoc(L
),
5240 RPLoc(R
), NumDims(Dims
.size()) {
5242 setDimensions(Dims
);
5243 setDependence(computeDependence(this));
5246 OMPArrayShapingExpr
*
5247 OMPArrayShapingExpr::Create(const ASTContext
&Context
, QualType T
, Expr
*Op
,
5248 SourceLocation L
, SourceLocation R
,
5249 ArrayRef
<Expr
*> Dims
,
5250 ArrayRef
<SourceRange
> BracketRanges
) {
5251 assert(Dims
.size() == BracketRanges
.size() &&
5252 "Different number of dimensions and brackets ranges.");
5253 void *Mem
= Context
.Allocate(
5254 totalSizeToAlloc
<Expr
*, SourceRange
>(Dims
.size() + 1, Dims
.size()),
5255 alignof(OMPArrayShapingExpr
));
5256 auto *E
= new (Mem
) OMPArrayShapingExpr(T
, Op
, L
, R
, Dims
);
5257 E
->setBracketsRanges(BracketRanges
);
5261 OMPArrayShapingExpr
*OMPArrayShapingExpr::CreateEmpty(const ASTContext
&Context
,
5263 void *Mem
= Context
.Allocate(
5264 totalSizeToAlloc
<Expr
*, SourceRange
>(NumDims
+ 1, NumDims
),
5265 alignof(OMPArrayShapingExpr
));
5266 return new (Mem
) OMPArrayShapingExpr(EmptyShell(), NumDims
);
5269 void OMPIteratorExpr::setIteratorDeclaration(unsigned I
, Decl
*D
) {
5270 assert(I
< NumIterators
&&
5271 "Idx is greater or equal the number of iterators definitions.");
5272 getTrailingObjects
<Decl
*>()[I
] = D
;
5275 void OMPIteratorExpr::setAssignmentLoc(unsigned I
, SourceLocation Loc
) {
5276 assert(I
< NumIterators
&&
5277 "Idx is greater or equal the number of iterators definitions.");
5279 SourceLocation
>()[I
* static_cast<int>(RangeLocOffset::Total
) +
5280 static_cast<int>(RangeLocOffset::AssignLoc
)] = Loc
;
5283 void OMPIteratorExpr::setIteratorRange(unsigned I
, Expr
*Begin
,
5284 SourceLocation ColonLoc
, Expr
*End
,
5285 SourceLocation SecondColonLoc
,
5287 assert(I
< NumIterators
&&
5288 "Idx is greater or equal the number of iterators definitions.");
5289 getTrailingObjects
<Expr
*>()[I
* static_cast<int>(RangeExprOffset::Total
) +
5290 static_cast<int>(RangeExprOffset::Begin
)] =
5292 getTrailingObjects
<Expr
*>()[I
* static_cast<int>(RangeExprOffset::Total
) +
5293 static_cast<int>(RangeExprOffset::End
)] = End
;
5294 getTrailingObjects
<Expr
*>()[I
* static_cast<int>(RangeExprOffset::Total
) +
5295 static_cast<int>(RangeExprOffset::Step
)] = Step
;
5297 SourceLocation
>()[I
* static_cast<int>(RangeLocOffset::Total
) +
5298 static_cast<int>(RangeLocOffset::FirstColonLoc
)] =
5301 SourceLocation
>()[I
* static_cast<int>(RangeLocOffset::Total
) +
5302 static_cast<int>(RangeLocOffset::SecondColonLoc
)] =
5306 Decl
*OMPIteratorExpr::getIteratorDecl(unsigned I
) {
5307 return getTrailingObjects
<Decl
*>()[I
];
5310 OMPIteratorExpr::IteratorRange
OMPIteratorExpr::getIteratorRange(unsigned I
) {
5313 getTrailingObjects
<Expr
*>()[I
* static_cast<int>(
5314 RangeExprOffset::Total
) +
5315 static_cast<int>(RangeExprOffset::Begin
)];
5317 getTrailingObjects
<Expr
*>()[I
* static_cast<int>(
5318 RangeExprOffset::Total
) +
5319 static_cast<int>(RangeExprOffset::End
)];
5321 getTrailingObjects
<Expr
*>()[I
* static_cast<int>(
5322 RangeExprOffset::Total
) +
5323 static_cast<int>(RangeExprOffset::Step
)];
5327 SourceLocation
OMPIteratorExpr::getAssignLoc(unsigned I
) const {
5328 return getTrailingObjects
<
5329 SourceLocation
>()[I
* static_cast<int>(RangeLocOffset::Total
) +
5330 static_cast<int>(RangeLocOffset::AssignLoc
)];
5333 SourceLocation
OMPIteratorExpr::getColonLoc(unsigned I
) const {
5334 return getTrailingObjects
<
5335 SourceLocation
>()[I
* static_cast<int>(RangeLocOffset::Total
) +
5336 static_cast<int>(RangeLocOffset::FirstColonLoc
)];
5339 SourceLocation
OMPIteratorExpr::getSecondColonLoc(unsigned I
) const {
5340 return getTrailingObjects
<
5341 SourceLocation
>()[I
* static_cast<int>(RangeLocOffset::Total
) +
5342 static_cast<int>(RangeLocOffset::SecondColonLoc
)];
5345 void OMPIteratorExpr::setHelper(unsigned I
, const OMPIteratorHelperData
&D
) {
5346 getTrailingObjects
<OMPIteratorHelperData
>()[I
] = D
;
5349 OMPIteratorHelperData
&OMPIteratorExpr::getHelper(unsigned I
) {
5350 return getTrailingObjects
<OMPIteratorHelperData
>()[I
];
5353 const OMPIteratorHelperData
&OMPIteratorExpr::getHelper(unsigned I
) const {
5354 return getTrailingObjects
<OMPIteratorHelperData
>()[I
];
5357 OMPIteratorExpr::OMPIteratorExpr(
5358 QualType ExprTy
, SourceLocation IteratorKwLoc
, SourceLocation L
,
5359 SourceLocation R
, ArrayRef
<OMPIteratorExpr::IteratorDefinition
> Data
,
5360 ArrayRef
<OMPIteratorHelperData
> Helpers
)
5361 : Expr(OMPIteratorExprClass
, ExprTy
, VK_LValue
, OK_Ordinary
),
5362 IteratorKwLoc(IteratorKwLoc
), LPLoc(L
), RPLoc(R
),
5363 NumIterators(Data
.size()) {
5364 for (unsigned I
= 0, E
= Data
.size(); I
< E
; ++I
) {
5365 const IteratorDefinition
&D
= Data
[I
];
5366 setIteratorDeclaration(I
, D
.IteratorDecl
);
5367 setAssignmentLoc(I
, D
.AssignmentLoc
);
5368 setIteratorRange(I
, D
.Range
.Begin
, D
.ColonLoc
, D
.Range
.End
,
5369 D
.SecondColonLoc
, D
.Range
.Step
);
5370 setHelper(I
, Helpers
[I
]);
5372 setDependence(computeDependence(this));
5376 OMPIteratorExpr::Create(const ASTContext
&Context
, QualType T
,
5377 SourceLocation IteratorKwLoc
, SourceLocation L
,
5379 ArrayRef
<OMPIteratorExpr::IteratorDefinition
> Data
,
5380 ArrayRef
<OMPIteratorHelperData
> Helpers
) {
5381 assert(Data
.size() == Helpers
.size() &&
5382 "Data and helpers must have the same size.");
5383 void *Mem
= Context
.Allocate(
5384 totalSizeToAlloc
<Decl
*, Expr
*, SourceLocation
, OMPIteratorHelperData
>(
5385 Data
.size(), Data
.size() * static_cast<int>(RangeExprOffset::Total
),
5386 Data
.size() * static_cast<int>(RangeLocOffset::Total
),
5388 alignof(OMPIteratorExpr
));
5389 return new (Mem
) OMPIteratorExpr(T
, IteratorKwLoc
, L
, R
, Data
, Helpers
);
5392 OMPIteratorExpr
*OMPIteratorExpr::CreateEmpty(const ASTContext
&Context
,
5393 unsigned NumIterators
) {
5394 void *Mem
= Context
.Allocate(
5395 totalSizeToAlloc
<Decl
*, Expr
*, SourceLocation
, OMPIteratorHelperData
>(
5396 NumIterators
, NumIterators
* static_cast<int>(RangeExprOffset::Total
),
5397 NumIterators
* static_cast<int>(RangeLocOffset::Total
), NumIterators
),
5398 alignof(OMPIteratorExpr
));
5399 return new (Mem
) OMPIteratorExpr(EmptyShell(), NumIterators
);
5402 HLSLOutArgExpr
*HLSLOutArgExpr::Create(const ASTContext
&C
, QualType Ty
,
5403 OpaqueValueExpr
*Base
,
5404 OpaqueValueExpr
*OpV
, Expr
*WB
,
5406 return new (C
) HLSLOutArgExpr(Ty
, Base
, OpV
, WB
, IsInOut
);
5409 HLSLOutArgExpr
*HLSLOutArgExpr::CreateEmpty(const ASTContext
&C
) {
5410 return new (C
) HLSLOutArgExpr(EmptyShell());
5413 OpenACCAsteriskSizeExpr
*OpenACCAsteriskSizeExpr::Create(const ASTContext
&C
,
5414 SourceLocation Loc
) {
5415 return new (C
) OpenACCAsteriskSizeExpr(Loc
, C
.IntTy
);
5418 OpenACCAsteriskSizeExpr
*
5419 OpenACCAsteriskSizeExpr::CreateEmpty(const ASTContext
&C
) {
5420 return new (C
) OpenACCAsteriskSizeExpr({}, C
.IntTy
);