1 // RUN: mlir-opt %s -transform-interpreter -canonicalize -cse -split-input-file | FileCheck %s
3 // CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> (s0 + 8)>
4 // CHECK-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 7)>
5 // CHECK: func @dynamic_pad_tensor_3_4(
6 // CHECK-SAME: %[[IN:.*]]: tensor<?x?xf32>
7 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
8 // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
9 // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
10 // CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index
11 // CHECK-DAG: %[[DIM_IN0:.*]] = tensor.dim %[[IN]], %[[C0]]
12 // CHECK-DAG: %[[DIM_IN1:.*]] = tensor.dim %[[IN]], %[[C1]]
13 // CHECK-DAG: %[[DIM0:.*]] = affine.apply #[[MAP0]]()[%[[DIM_IN0]]]
14 // CHECK-DAG: %[[DIM1:.*]] = affine.apply #[[MAP1]]()[%[[DIM_IN1]]]
15 // CHECK: %[[RESULT:.*]] = scf.for {{.*}} = %[[C0]] to %[[DIM0]] step %[[C2]]
16 // CHECK: scf.for {{.*}} = %[[C0]] to %[[DIM1]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] =
17 // CHECK: %[[SWAP_RESULT:.*]] = scf.if
18 // CHECK: tensor.generate
20 // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[IN]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
21 // CHECK: %[[PAD:.*]] = tensor.pad %[[SLICE]]
22 // CHECK: tensor.insert_slice %[[SWAP_RESULT]] into %[[INNER_OUT]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
23 // CHECK: return %[[RESULT]]
25 func.func @dynamic_pad_tensor_3_4(%input_tensor: tensor<?x?xf32>,
26 %pad_value: f32) -> tensor<?x?xf32> {
27 %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] {
28 ^bb0(%arg1: index, %arg2: index):
29 tensor.yield %pad_value : f32
30 } : tensor<?x?xf32> to tensor<?x?xf32>
31 return %0 : tensor<?x?xf32>
34 module attributes {transform.with_named_sequence} {
35 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
36 %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
37 %1, %loops:2 = transform.structured.tile_using_for %0 tile_sizes [2, 3] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
44 // CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> (s0 + 7)>
45 // CHECK-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 8)>
46 // CHECK: func @dynamic_pad_tensor_0_3(
47 // CHECK-SAME: %[[IN:.*]]: tensor<?x?xf32>
48 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
49 // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
50 // CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index
51 // CHECK-DAG: %[[DIM_IN1:.*]] = tensor.dim %[[IN]], %[[C1]]
52 // CHECK-DAG: %[[DIM1:.*]] = affine.apply #[[MAP0]]()[%[[DIM_IN1]]]
53 // CHECK-DAG: %[[DIM_IN0:.*]] = tensor.dim %[[IN]], %[[C0]]
54 // CHECK-DAG: %[[DIM0:.*]] = affine.apply #[[MAP1]]()[%[[DIM_IN0]]]
55 // CHECK: %[[RESULT:.*]] = scf.for {{.*}} = %[[C0]] to %[[DIM1]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] =
56 // CHECK: %[[SWAP_RESULT:.*]] = scf.if
57 // CHECK: tensor.generate
59 // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[IN]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
60 // CHECK: %[[PAD:.*]] = tensor.pad %[[SLICE]] low[3, %{{.*}}] high[{{.*}}, {{.*}}]
61 // CHECK: tensor.insert_slice %[[SWAP_RESULT]] into %[[INNER_OUT]][0, {{.*}}] [%[[DIM0]], {{.*}}] [1, 1]
62 // CHECK: return %[[RESULT]]
64 func.func @dynamic_pad_tensor_0_3(%input_tensor: tensor<?x?xf32>,
65 %pad_value: f32) -> tensor<?x?xf32> {
66 %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] {
67 ^bb0(%arg1: index, %arg2: index):
68 tensor.yield %pad_value : f32
69 } : tensor<?x?xf32> to tensor<?x?xf32>
70 return %0 : tensor<?x?xf32>
73 module attributes {transform.with_named_sequence} {
74 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
75 %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
76 %1, %loop = transform.structured.tile_using_for %0 tile_sizes [0, 3] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
83 // CHECK-LABEL: func @static_pad_tensor_3_4(
84 // CHECK-SAME: %[[IN:.*]]: tensor<7x9xf32>
85 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
86 // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
87 // CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index
88 // CHECK-DAG: %[[C15:.*]] = arith.constant 15 : index
89 // CHECK-DAG: %[[C16:.*]] = arith.constant 16 : index
90 // CHECK: %[[RESULT:.*]] = scf.for {{.*}} = %[[C0]] to %[[C15]] step %[[C2]]
91 // CHECK: scf.for {{.*}} = %[[C0]] to %[[C16]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] =
92 // CHECK: %[[SWAP_RESULT:.*]] = scf.if
93 // CHECK: tensor.generate
95 // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[IN]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
96 // CHECK: %[[PAD:.*]] = tensor.pad %[[SLICE]]
97 // CHECK: tensor.insert_slice %[[SWAP_RESULT]] into %[[INNER_OUT]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
98 // CHECK: return %[[RESULT]]
100 func.func @static_pad_tensor_3_4(%input_tensor: tensor<7x9xf32>,
101 %pad_value: f32) -> tensor<15x16xf32> {
102 %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] {
103 ^bb0(%arg1: index, %arg2: index):
104 tensor.yield %pad_value : f32
105 } : tensor<7x9xf32> to tensor<15x16xf32>
106 return %0 : tensor<15x16xf32>
109 module attributes {transform.with_named_sequence} {
110 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
111 %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
112 %1, %loops:2 = transform.structured.tile_using_for %0 tile_sizes [2, 3] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
119 // CHECK-LABEL: func @fuse_static_pad_tensor_3_4(
120 // CHECK-SAME: %[[IN:.*]]: tensor<7x9xf32>
121 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
122 // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
123 // CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index
124 // CHECK-DAG: %[[C15:.*]] = arith.constant 15 : index
125 // CHECK-DAG: %[[C16:.*]] = arith.constant 16 : index
126 // CHECK: %[[RESULT:.*]] = scf.for {{.*}} = %[[C0]] to %[[C15]] step %[[C2]]
127 // CHECK: scf.for {{.*}} = %[[C0]] to %[[C16]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] =
128 // CHECK: %[[SWAP_RESULT:.*]] = scf.if
129 // CHECK: tensor.generate
131 // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[IN]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
132 // CHECK: %[[PAD:.*]] = tensor.pad %[[SLICE]]
133 // CHECK: %[[COPY:.*]] = linalg.copy ins(%[[SWAP_RESULT:.*]]
134 // CHECK: tensor.insert_slice %[[COPY]] into %[[INNER_OUT]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1]
135 // CHECK: return %[[RESULT]]
137 func.func @fuse_static_pad_tensor_3_4(%input_tensor: tensor<7x9xf32>,
138 %pad_value: f32) -> tensor<15x16xf32> {
139 %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] {
140 ^bb0(%arg1: index, %arg2: index):
141 tensor.yield %pad_value : f32
142 } : tensor<7x9xf32> to tensor<15x16xf32>
143 %empty = tensor.empty() : tensor<15x16xf32>
144 %1 = linalg.copy ins(%0 : tensor<15x16xf32>) outs(%empty : tensor<15x16xf32>) -> tensor<15x16xf32>
145 return %1 : tensor<15x16xf32>
148 module attributes {transform.with_named_sequence} {
149 transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
150 %copy = transform.structured.match ops{["linalg.copy"]} in %arg1
151 : (!transform.any_op) -> !transform.any_op
152 %a, %b, %c = transform.structured.fuse %copy [2, 3]
153 : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
160 // CHECK-LABEL: func @static_pad_tensor_0_3(
161 // CHECK-SAME: %[[IN:.*]]: tensor<7x9xf32>
162 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
163 // CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index
164 // CHECK-DAG: %[[C16:.*]] = arith.constant 16 : index
165 // CHECK: %[[RESULT:.*]] = scf.for {{.*}} = %[[C0]] to %[[C16]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] =
166 // CHECK: %[[SWAP_RESULT:.*]] = scf.if
167 // CHECK: tensor.generate
169 // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[IN]][0, {{.*}}] [7, {{.*}}] [1, 1]
170 // CHECK: %[[PAD:.*]] = tensor.pad %[[SLICE]] low[3, %{{.*}}] high[5, {{.*}}]
171 // CHECK: tensor.insert_slice %[[SWAP_RESULT]] into %[[INNER_OUT]][0, {{.*}}] [15, {{.*}}] [1, 1]
172 // CHECK: return %[[RESULT]]
174 func.func @static_pad_tensor_0_3(%input_tensor: tensor<7x9xf32>,
175 %pad_value: f32) -> tensor<15x16xf32> {
176 %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] {
177 ^bb0(%arg1: index, %arg2: index):
178 tensor.yield %pad_value : f32
179 } : tensor<7x9xf32> to tensor<15x16xf32>
180 return %0 : tensor<15x16xf32>
183 module attributes {transform.with_named_sequence} {
184 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
185 %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
186 %1, %loop = transform.structured.tile_using_for %0 tile_sizes [0, 3] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
193 // CHECK-LABEL: func @static_pad_tile_evenly_0_3(
194 // CHECK-SAME: %[[IN:.*]]: tensor<7x9xf32>, %[[OUT:.*]]: tensor<14x15xf32>
195 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
196 // CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index
197 // CHECK-DAG: %[[C15:.*]] = arith.constant 15 : index
198 // CHECK: %[[RESULT:.*]] = scf.for %[[IV:.*]] = %[[C0]] to %[[C15]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] =
199 // CHECK: %[[R2:.*]] = scf.if
200 // CHECK: %[[GEN:.*]] = tensor.generate
201 // CHECK: scf.yield %[[GEN]] : tensor<14x3xf32>
203 // CHECK: %[[SLICE:.*]] = tensor.extract_slice %arg0[0, %{{.*}}] [7, %{{.*}}] [1, 1] : tensor<7x9xf32> to tensor<7x?xf32>
204 // CHECK: %[[PAD:.*]] = tensor.pad %[[SLICE]] low[0, 0] high[7, %{{.*}}]
205 // CHECK: scf.yield %[[PAD]] : tensor<14x3xf32>
206 // CHECK: %[[R3:.*]] = tensor.insert_slice %[[R2]] into %[[INNER_OUT]][0, %[[IV]]] [14, 3] [1, 1] : tensor<14x3xf32> into tensor<14x15xf32>
207 // CHECK: scf.yield %[[R3]] : tensor<14x15xf32>
208 // CHECK: return %[[RESULT]] : tensor<14x15xf32>
210 func.func @static_pad_tile_evenly_0_3(%input_tensor: tensor<7x9xf32>,
211 %output_tensor: tensor<14x15xf32>,
212 %pad_value: f32) -> tensor<14x15xf32> {
213 %0 = tensor.pad %input_tensor low[0, 0] high[7, 6] {
214 ^bb0(%arg1: index, %arg2: index):
215 tensor.yield %pad_value : f32
216 } : tensor<7x9xf32> to tensor<14x15xf32>
217 return %0 : tensor<14x15xf32>
220 module attributes {transform.with_named_sequence} {
221 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
222 %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
223 %1, %loop = transform.structured.tile_using_for %0 tile_sizes [0, 3] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
230 // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0) -> (d0 * 32)>
231 // CHECK: func.func @NC_to_NCnc
232 // CHECK-SAME: %[[IN:.*]]: tensor<128x256xf32>,
233 // CHECK-SAME: %[[OUT:.*]]: tensor<4x8x32x32xf32>) -> tensor<4x8x32x32xf32> {
234 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
235 // CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
236 // CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index
237 // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
238 // CHECK: %[[RES0:.*]] = scf.for %[[N:.*]] = %[[C0]] to %[[C4]] step %[[C2]] iter_args(%[[ITER0:.*]] = %[[OUT]]) -> (tensor<4x8x32x32xf32>) {
239 // CHECK: %[[RES1:.+]] = scf.for %[[C:.*]] = %[[C0]] to %[[C8]] step %[[C4]] iter_args(%[[ITER1:.*]] = %[[ITER0]]) -> (tensor<4x8x32x32xf32>) {
240 // CHECK-DAG: %[[IN_N:.+]] = affine.apply #[[MAP0]](%[[N]])
241 // CHECK-DAG: %[[IN_C:.+]] = affine.apply #[[MAP0]](%[[C]])
242 // CHECK: %[[SUB_IN:.*]] = tensor.extract_slice %[[IN]][%[[IN_N]], %[[IN_C]]] [64, 128] [1, 1] : tensor<128x256xf32> to tensor<64x128xf32>
243 // CHECK: %[[SUB_OUT:.*]] = tensor.extract_slice %[[ITER1]][%[[N]], %[[C]], 0, 0] [2, 4, 32, 32] [1, 1, 1, 1] : tensor<4x8x32x32xf32> to tensor<2x4x32x32xf32>
244 // CHECK: %[[SUB_RES:.*]] = tensor.pack
245 // CHECK-SAME: %[[SUB_IN]] inner_dims_pos = [0, 1] inner_tiles = [32, 32] into %[[SUB_OUT]]
246 // CHECK: %[[INSERT:.*]] = tensor.insert_slice %[[SUB_RES]] into %[[ITER1]]
247 // CHECK: scf.yield %[[INSERT]] : tensor<4x8x32x32xf32>
249 // CHECK: scf.yield %[[RES1:.*]] : tensor<4x8x32x32xf32>
251 // CHECK: return %[[RES0:.*]] : tensor<4x8x32x32xf32>
253 func.func @NC_to_NCnc(%arg0: tensor<128x256xf32>, %arg1: tensor<4x8x32x32xf32>) -> tensor<4x8x32x32xf32> {
254 %0 = tensor.pack %arg0 inner_dims_pos = [0, 1] inner_tiles = [32, 32] into %arg1 : tensor<128x256xf32> -> tensor<4x8x32x32xf32>
255 return %0 : tensor<4x8x32x32xf32>
258 module attributes {transform.with_named_sequence} {
259 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
260 %0 = transform.structured.match ops{["tensor.pack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
261 %1, %loops:2 = transform.structured.tile_using_for %0 tile_sizes [2, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
268 // CHECK: #[[MAP0:.+]] = affine_map<(d0) -> (d0 * 8)>
269 // CHECK: func.func @KC_to_CKkc
270 // CHECK-SAME: %[[IN:[A-Za-z0-9]+]]:
271 // CHECK-SAME: %[[OUT:[A-Za-z0-9]+]]:
272 // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
273 // CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index
274 // CHECK-DAG: %[[C32:.+]] = arith.constant 32 : index
275 // CHECK: scf.for %[[C:.+]] = %[[C0]] to %[[C32]] step %[[C2]]
276 // CHECK-DAG: %[[IN_C:.+]] = affine.apply #[[MAP0]](%[[C]])
277 // CHECK: %[[INPUT_SLICE:.+]] = tensor.extract_slice %[[IN]]
278 // CHECK-SAME: [0, %[[IN_C]]] [128, 16]
279 // CHECK: %[[OUTPUT_SLICE:.+]] = tensor.extract_slice %{{.+}}[%[[C]], 0, 0, 0] [2, 4, 32, 8]
280 // CHECK: tensor.pack
281 // CHECK-SAME: %[[INPUT_SLICE]] outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 8]
282 // CHECK-SAME: into %[[OUTPUT_SLICE]]
283 func.func @KC_to_CKkc(%arg0: tensor<128x256xf32>, %arg1: tensor<32x4x32x8xf32>) -> tensor<32x4x32x8xf32> {
284 %0 = tensor.pack %arg0 outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 8] into %arg1 : tensor<128x256xf32> -> tensor<32x4x32x8xf32>
285 return %0 : tensor<32x4x32x8xf32>
288 module attributes {transform.with_named_sequence} {
289 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
290 %0 = transform.structured.match ops{["tensor.pack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
291 %1, %loops:2 = transform.structured.tile_using_for %0 tile_sizes [2, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
298 // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0) -> (d0 * 2)>
299 // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0) -> (d0 * -2 + 15, 8)>
300 // CHECK: func.func @pad_and_pack_static(
301 // CHECK-SAME: %[[IN:.*]]: tensor<13x15xf32>,
302 // CHECK-SAME: %[[OUT:.*]]: tensor<2x8x8x2xf32>,
303 // CHECK-SAME: %[[PAD:.*]]: f32) -> tensor<2x8x8x2xf32> {
304 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
305 // CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
306 // CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index
307 // CHECK-DAG: %[[RES0:.*]] = scf.for %[[J:.*]] = %[[C0]] to %[[C8]] step %[[C4]] iter_args(%[[ITER1:.*]] = %[[OUT]]) -> (tensor<2x8x8x2xf32>) {
308 // CHECK-DAG: %[[IN_J:.*]] = affine.apply #[[MAP0]](%[[J]])
309 // CHECK-DAG: %[[IN_J_SZ:.*]] = affine.min #[[MAP1]](%[[J]])
310 // CHECK: %[[SUB_IN:.*]] = tensor.extract_slice %[[IN]][0, %[[IN_J]]] [13, %[[IN_J_SZ]]] [1, 1]
311 // CHECK: %[[SUB_OUT:.*]] = tensor.extract_slice %[[ITER1]][0, %[[J]], 0, 0] [2, 4, 8, 2] [1, 1, 1, 1]
312 // CHECK: %[[SUB_RES:.*]] = tensor.pack
313 // CHECK-SAME: %[[SUB_IN]] padding_value(%[[PAD]] : f32) inner_dims_pos = [0, 1] inner_tiles = [8, 2]
314 // CHECK-SAME: into %[[SUB_OUT]]
315 // CHECK: %[[INSERT:.*]] = tensor.insert_slice %[[SUB_RES]] into %[[ITER1]]
316 // CHECK: scf.yield %[[INSERT]] : tensor<2x8x8x2xf32>
318 // CHECK: return %[[RES0:.*]] : tensor<2x8x8x2xf32>
320 func.func @pad_and_pack_static(%input: tensor<13x15xf32>, %output: tensor<2x8x8x2xf32>, %pad: f32) -> tensor<2x8x8x2xf32> {
321 %0 = tensor.pack %input padding_value(%pad : f32) inner_dims_pos = [0, 1] inner_tiles = [8, 2] into %output : tensor<13x15xf32> -> tensor<2x8x8x2xf32>
322 return %0 : tensor<2x8x8x2xf32>
325 module attributes {transform.with_named_sequence} {
326 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
327 %0 = transform.structured.match ops{["tensor.pack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
328 %1, %loops:2 = transform.structured.tile_using_for %0 tile_sizes [2, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
335 // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 2)>
336 // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 4)>
337 // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0) -> (d0 * 8)>
338 // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1)[s0] -> (d1 * -8 + s0, d0 * 8)>
339 // CHECK-DAG: #[[MAP4:.+]] = affine_map<(d0) -> (d0 * 2)>
340 // CHECK-DAG: #[[MAP5:.+]] = affine_map<(d0, d1)[s0] -> (d1 * -2 + s0, d0 * 2)>
341 // CHECK: func.func @pad_and_pack_partially_dynamic(
342 // CHECK-SAME: %[[IN:.*]]: tensor<?x?xf32>,
343 // CHECK-SAME: %[[OUT:.*]]: tensor<?x?x8x2xf32>,
344 // CHECK-SAME: %[[PAD:.*]]: f32) -> tensor<?x?x8x2xf32> {
345 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
346 // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
347 // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
348 // CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
349 // CHECK-DAG: %[[OUT_D0:.*]] = tensor.dim %[[OUT]], %[[C0]] : tensor<?x?x8x2xf32>
350 // CHECK-DAG: %[[OUT_D1:.*]] = tensor.dim %[[OUT]], %[[C1]] : tensor<?x?x8x2xf32>
351 // CHECK: %[[RES0:.*]] = scf.for %[[I:.*]] = %[[C0]] to %[[OUT_D0]] step %[[C2]] iter_args(%[[ITER0:.*]] = %[[OUT]]) -> (tensor<?x?x8x2xf32>) {
352 // CHECK: %[[RES1:.*]] = scf.for %[[J:.*]] = %[[C0]] to %[[OUT_D1]] step %[[C4]] iter_args(%[[ITER1:.*]] = %[[ITER0]]) -> (tensor<?x?x8x2xf32>) {
353 // CHECK-DAG: %[[OUT_I_SZ:.*]] = affine.min #[[MAP0]](%[[I]])[%[[OUT_D0]]]
354 // CHECK-DAG: %[[OUT_J_SZ:.*]] = affine.min #[[MAP1]](%[[J]])[%[[OUT_D1]]]
355 // CHECK-DAG: %[[IN_I:.*]] = affine.apply #[[MAP2]](%[[I]])
356 // CHECK-DAG: %[[IN_I_SZ:.*]] = affine.min #[[MAP3]]
357 // CHECK-DAG: %[[IN_J:.*]] = affine.apply #[[MAP4]](%[[J]])
358 // CHECK-DAG: %[[IN_J_SZ:.*]] = affine.min #[[MAP5]]
359 // CHECK: %[[SUB_IN:.*]] = tensor.extract_slice %[[IN]][%[[IN_I]], %[[IN_J]]] [%[[IN_I_SZ]], %[[IN_J_SZ]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
360 // CHECK: %[[SUB_OUT:.*]] = tensor.extract_slice %[[ITER1]][%[[I]], %[[J]], 0, 0] [%[[OUT_I_SZ]], %[[OUT_J_SZ]], 8, 2] [1, 1, 1, 1] : tensor<?x?x8x2xf32> to tensor<?x?x8x2xf32>
361 // CHECK: %[[SUB_RES:.*]] = tensor.pack
362 // CHECK-SAME: %[[SUB_IN]] padding_value(%[[PAD]] : f32) inner_dims_pos = [0, 1] inner_tiles = [8, 2]
363 // CHECK-SAME: into %[[SUB_OUT]]
364 // CHECK: %[[INSERT:.*]] = tensor.insert_slice %[[SUB_RES]] into %[[ITER1]]
365 // CHECK: scf.yield %[[INSERT]] : tensor<?x?x8x2xf32>
367 // CHECK: scf.yield %[[RES1:.*]] : tensor<?x?x8x2xf32>
369 // CHECK: return %[[VAL_34:.*]] : tensor<?x?x8x2xf32>
371 func.func @pad_and_pack_partially_dynamic(%input: tensor<?x?xf32>, %output: tensor<?x?x8x2xf32>, %pad: f32) -> tensor<?x?x8x2xf32> {
372 %0 = tensor.pack %input padding_value(%pad : f32) inner_dims_pos = [0, 1] inner_tiles = [8, 2] into %output : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
373 return %0 : tensor<?x?x8x2xf32>
376 module attributes {transform.with_named_sequence} {
377 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
378 %0 = transform.structured.match ops{["tensor.pack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
379 %1, %loops:2 = transform.structured.tile_using_for %0 tile_sizes [2, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
386 // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 2)>
387 // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 4)>
388 // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0)[s0] -> (d0 * s0)>
389 // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s0, -(d1 * s0) + s1)>
390 // CHECK: func.func @pad_and_pack_fully_dynamic(
391 // CHECK-SAME: %[[IN:.*]]: tensor<?x?xf32>,
392 // CHECK-SAME: %[[OUT:.*]]: tensor<?x?x?x?xf32>,
393 // CHECK-SAME: %[[PAD:.*]]: f32,
394 // CHECK-SAME: %[[TILE_0:.*]]: index,
395 // CHECK-SAME: %[[TILE_1:.*]]: index) -> tensor<?x?x?x?xf32> {
396 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
397 // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
398 // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
399 // CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index
400 // CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
401 // CHECK-DAG: %[[OUT_D0:.*]] = tensor.dim %[[OUT]], %[[C0]] : tensor<?x?x?x?xf32>
402 // CHECK-DAG: %[[OUT_D1:.*]] = tensor.dim %[[OUT]], %[[C1]] : tensor<?x?x?x?xf32>
403 // CHECK: %[[RES0:.*]] = scf.for %[[I:.*]] = %[[C0]] to %[[OUT_D0]] step %[[C2]] iter_args(%[[ITER0:.*]] = %[[OUT]]) -> (tensor<?x?x?x?xf32>) {
404 // CHECK: %[[RES1:.*]] = scf.for %[[J:.*]] = %[[C0]] to %[[OUT_D1]] step %[[C4]] iter_args(%[[ITER1:.*]] = %[[ITER0]]) -> (tensor<?x?x?x?xf32>) {
405 // CHECK-DAG: %[[OUT_I_SZ:.*]] = affine.min #[[MAP0]](%[[I]])[%[[OUT_D0]]]
406 // CHECK-DAG: %[[OUT_J_SZ:.*]] = affine.min #[[MAP1]](%[[J]])[%[[OUT_D1]]]
407 // CHECK-DAG: %[[IN_D0:.*]] = tensor.dim %[[IN]], %[[C0]]
408 // CHECK-DAG: %[[IN_D1:.*]] = tensor.dim %[[IN]], %[[C1]]
409 // CHECK: %[[IN_I:.*]] = affine.apply #[[MAP2]](%[[I]])[%[[TILE_0]]]
410 // CHECK: %[[IN_I_SZ:.*]] = affine.min #[[MAP3]](%[[OUT_I_SZ]], %[[I]])[%[[TILE_0]], %[[IN_D0]]]
411 // CHECK: %[[IN_J:.*]] = affine.apply #[[MAP2]](%[[J]])[%[[TILE_1]]]
412 // CHECK: %[[IN_J_SZ:.*]] = affine.min #[[MAP3]](%[[OUT_J_SZ]], %[[J]])[%[[TILE_1]], %[[IN_D1]]]
413 // CHECK: %[[SUB_IN:.*]] = tensor.extract_slice %[[IN]][%[[IN_I]], %[[IN_J]]] [%[[IN_I_SZ]], %[[IN_J_SZ]]] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
414 // CHECK: %[[OUT_D2:.+]] = tensor.dim %[[ITER1]], %[[C2]]
415 // CHECK: %[[OUT_D3:.+]] = tensor.dim %[[ITER1]], %[[C3]]
416 // CHECK: %[[SUB_OUT:.*]] = tensor.extract_slice %[[ITER1]][%[[I]], %[[J]], 0, 0] [%[[OUT_I_SZ]], %[[OUT_J_SZ]], %[[OUT_D2]], %[[OUT_D3]]] [1, 1, 1, 1] : tensor<?x?x?x?xf32> to tensor<?x?x?x?xf32>
417 // CHECK: %[[PACK:.*]] = tensor.pack
418 // CHECK-SAME: %[[SUB_IN]] padding_value(%[[PAD]] : f32) inner_dims_pos = [0, 1] inner_tiles = [%[[TILE_0]], %[[TILE_1]]]
419 // CHECK-SAME: into %[[SUB_OUT]]
420 // CHECK: %[[INSERT:.*]] = tensor.insert_slice %[[PACK]] into %[[ITER1]]
421 // CHECK: scf.yield %[[INSERT]] : tensor<?x?x?x?xf32>
423 // CHECK: scf.yield %[[RES1:.*]] : tensor<?x?x?x?xf32>
425 // CHECK: return %[[RES0:.*]] : tensor<?x?x?x?xf32>
427 func.func @pad_and_pack_fully_dynamic(%source: tensor<?x?xf32>, %dest: tensor<?x?x?x?xf32>, %pad: f32, %tile_n : index, %tile_m : index) -> tensor<?x?x?x?xf32> {
428 %0 = tensor.pack %source padding_value(%pad : f32) inner_dims_pos = [0, 1] inner_tiles = [%tile_n, %tile_m] into %dest : tensor<?x?xf32> -> tensor<?x?x?x?xf32>
429 return %0 : tensor<?x?x?x?xf32>
432 module attributes {transform.with_named_sequence} {
433 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
434 %0 = transform.structured.match ops{["tensor.pack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
435 %1, %loops:2 = transform.structured.tile_using_for %0 tile_sizes [2, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
442 // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0) -> (d0 floordiv 32)>
443 // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0) -> (d0 mod 32)>
444 // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0) -> ((d0 + 1) floordiv 32 - d0 floordiv 32 + 1)>
445 // CHECK-DAG: #[[MAP4:.+]] = affine_map<(d0) -> (d0 floordiv 16)>
446 // CHECK-DAG: #[[MAP5:.+]] = affine_map<(d0) -> (d0 mod 16)>
447 // CHECK-DAG: #[[MAP6:.+]] = affine_map<(d0) -> ((d0 + 3) floordiv 16 - d0 floordiv 16 + 1)>
448 // CHECK: func.func @NCnc_to_NC
449 // CHECK-SAME: %[[IN:[A-Za-z0-9]+]]:
450 // CHECK-SAME: %[[OUT:[A-Za-z0-9]+]]:
451 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
452 // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
453 // CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
454 // CHECK-DAG: %[[C128:.*]] = arith.constant 128 : index
455 // CHECK-DAG: %[[C256:.*]] = arith.constant 256 : index
456 // CHECK: %{{.+}} = scf.for %[[I:.+]] = %[[C0]] to %[[C256]] step %[[C2]]
457 // CHECK: %{{.+}} = scf.for %[[J:.+]] = %[[C0]] to %[[C128]] step %[[C4]]
458 // CHECK-DAG: %[[IN_I:.+]] = affine.apply #[[MAP0]](%[[I]])
459 // CHECK-DAG: %[[OFFSET_I:.+]] = affine.apply #[[MAP1]](%[[I]])
460 // CHECK-DAG: %[[IN_I_SZ:.+]] = affine.apply #[[MAP2]](%[[I]])
461 // CHECK-DAG: %[[IN_J:.+]] = affine.apply #[[MAP4]](%[[J]])
462 // CHECK-DAG: %[[OFFSET_J:.+]] = affine.apply #[[MAP5]](%[[J]])
463 // CHECK-DAG: %[[IN_J_SZ:.+]] = affine.apply #[[MAP6]](%[[J]])
464 // CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[IN]]
465 // CHECK-SAME: [%[[IN_I]], %[[IN_J]], 0, 0] [%[[IN_I_SZ]], %[[IN_J_SZ]], 32, 16]
466 // CHECK-SAME: : tensor<8x8x32x16xf32> to tensor<?x?x32x16xf32>
467 // CHECK: %[[EMPTY:.+]] = tensor.empty
468 // CHECK: %[[UNPACK:.+]] = tensor.unpack
469 // CHECK-SAME: %[[SLICE]] inner_dims_pos = [0, 1] inner_tiles = [32, 16]
470 // CHECK-SAME: into %[[EMPTY]]
471 // CHECK: %[[UNPACK_SLICE:.+]] = tensor.extract_slice %[[UNPACK]]
472 // CHECK-SAME: [%[[OFFSET_I]], %[[OFFSET_J]]] [2, 4]
473 // CHECK: %[[RES:.+]] = tensor.insert_slice %[[UNPACK_SLICE]]
474 // CHECK-SAME: into %{{.+}}[%[[I]], %[[J]]] [2, 4]
475 // CHECK: scf.yield %[[RES]]
476 func.func @NCnc_to_NC(%source: tensor<8x8x32x16xf32>, %dest: tensor<256x128xf32>) -> tensor<256x128xf32> {
477 %0 = tensor.unpack %source inner_dims_pos = [0, 1] inner_tiles = [32, 16] into %dest : tensor<8x8x32x16xf32> -> tensor<256x128xf32>
478 return %0 : tensor<256x128xf32>
481 module attributes {transform.with_named_sequence} {
482 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
483 %0 = transform.structured.match ops{["tensor.unpack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
484 %1, %loops:2 = transform.structured.tile_using_for %0 tile_sizes [2, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
491 // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0) -> (d0 floordiv 32)>
492 // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0) -> (d0 mod 32)>
493 // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0) -> ((d0 + 1) floordiv 32 - d0 floordiv 32 + 1)>
494 // CHECK-DAG: #[[MAP4:.+]] = affine_map<(d0) -> (d0 floordiv 8)>
495 // CHECK-DAG: #[[MAP5:.+]] = affine_map<(d0) -> (d0 mod 8)>
496 // CHECK-DAG: #[[MAP6:.+]] = affine_map<(d0) -> ((d0 + 3) floordiv 8 - d0 floordiv 8 + 1)>
497 // CHECK: func.func @CKkc_to_KC
498 // CHECK-SAME: %[[IN:[A-Za-z0-9]+]]:
499 // CHECK-SAME: %[[OUT:[A-Za-z0-9]+]]:
500 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
501 // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
502 // CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
503 // CHECK-DAG: %[[C128:.*]] = arith.constant 128 : index
504 // CHECK-DAG: %[[C256:.*]] = arith.constant 256 : index
505 // CHECK: %{{.+}} = scf.for %[[K:.+]] = %[[C0]] to %[[C128]] step %[[C2]]
506 // CHECK: %{{.+}} = scf.for %[[C:.+]] = %[[C0]] to %[[C256]] step %[[C4]]
507 // CHECK-DAG: %[[IN_K:.+]] = affine.apply #[[MAP0]](%[[K]])
508 // CHECK-DAG: %[[OFFSET_K:.+]] = affine.apply #[[MAP1]](%[[K]])
509 // CHECK-DAG: %[[IN_K_SZ:.+]] = affine.apply #[[MAP2]](%[[K]])
510 // CHECK-DAG: %[[IN_C:.+]] = affine.apply #[[MAP4]](%[[C]])
511 // CHECK-DAG: %[[OFFSET_C:.+]] = affine.apply #[[MAP5]](%[[C]])
512 // CHECK-DAG: %[[IN_C_SZ:.+]] = affine.apply #[[MAP6]](%[[C]])
513 // CHECK: %[[IN_SLICE:.+]] = tensor.extract_slice %[[IN]]
514 // CHECK: [%[[IN_C]], %[[IN_K]], 0, 0] [%[[IN_C_SZ]], %[[IN_K_SZ]], 32, 8]
515 // CHECK: %[[EMPTY:.+]] = tensor.empty
516 // CHECK: %[[UNPACK:.+]] = tensor.unpack
517 // CHECK-SAME: %[[IN_SLICE]] outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 8]
518 // CHECK-SAME: into %[[EMPTY]]
519 // CHECK: %[[UNPACK_SLICE:.+]] = tensor.extract_slice %[[UNPACK]]
520 // CHECK-SAME: [%[[OFFSET_K]], %[[OFFSET_C]]] [2, 4]
521 // CHECK: %[[RES:.+]] = tensor.insert_slice %[[UNPACK_SLICE]]
522 // CHECK-SAME: into %{{.+}}[%[[K]], %[[C]]] [2, 4]
523 // CHECK: scf.yield %[[RES]]
524 func.func @CKkc_to_KC(%source: tensor<32x4x32x8xf32>, %dest: tensor<128x256xf32>) -> tensor<128x256xf32> {
525 %0 = tensor.unpack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [32, 8] into %dest : tensor<32x4x32x8xf32> -> tensor<128x256xf32>
526 return %0 : tensor<128x256xf32>
529 module attributes {transform.with_named_sequence} {
530 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
531 %0 = transform.structured.match ops{["tensor.unpack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
532 %1, %loops:2 = transform.structured.tile_using_for %0 tile_sizes [2, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
539 // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0) -> (d0 floordiv 2)>
540 // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0) -> (d0 floordiv 4)>
541 // CHECK: func.func @perfect_CKkc_to_KC
542 // CHECK-SAME: %[[IN:[A-Za-z0-9]+]]:
543 // CHECK-SAME: %[[OUT:[A-Za-z0-9]+]]:
544 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
545 // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
546 // CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
547 // CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index
548 // CHECK-DAG: %[[C128:.*]] = arith.constant 128 : index
549 // CHECK: %{{.+}} = scf.for %[[K:.+]] = %[[C0]] to %[[C8]] step %[[C2]]
550 // CHECK: %{{.+}} = scf.for %[[C:.+]] = %[[C0]] to %[[C128]] step %[[C4]]
551 // CHECK-DAG: %[[IN_K:.+]] = affine.apply #[[MAP0]](%[[K]])
552 // CHECK-DAG: %[[IN_C:.+]] = affine.apply #[[MAP1]](%[[C]])
553 // CHECK: %[[IN_SLICE:.+]] = tensor.extract_slice %[[IN]]
554 // CHECK: [%[[IN_C]], %[[IN_K]], 0, 0] [1, 1, 2, 4]
555 // CHECK: %[[ITER_SLICE:.+]] = tensor.extract_slice %{{.+}}[%[[K]], %[[C]]] [2, 4]
556 // CHECK: %[[UNPACK:.+]] = tensor.unpack
557 // CHECK-SAME: %[[IN_SLICE]] outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [2, 4]
558 // CHECK-SAME: into %[[ITER_SLICE]]
559 // CHECK: %[[RES:.+]] = tensor.insert_slice %[[UNPACK]]
560 // CHECK-SAME: into %{{.+}}[%[[K]], %[[C]]] [2, 4]
561 // CHECK: scf.yield %[[RES]]
562 func.func @perfect_CKkc_to_KC(%source: tensor<32x4x2x4xf32>, %dest: tensor<8x128xf32>) -> tensor<8x128xf32> {
563 %0 = tensor.unpack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [2, 4] into %dest : tensor<32x4x2x4xf32> -> tensor<8x128xf32>
564 return %0 : tensor<8x128xf32>
567 module attributes {transform.with_named_sequence} {
568 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
569 %0 = transform.structured.match ops{["tensor.unpack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
570 %1, %loops:2 = transform.structured.tile_using_for %0 tile_sizes [2, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
577 // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 2)>
578 // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 4)>
579 // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0) -> (d0 floordiv 2)>
580 // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0) -> (d0 ceildiv 2)>
581 // CHECK: func.func @dynamic_perfect_CKkc_to_KC
582 // CHECK-SAME: %[[IN:[A-Za-z0-9]+]]:
583 // CHECK-SAME: %[[OUT:[A-Za-z0-9]+]]:
584 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
585 // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
586 // CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
587 // CHECK-DAG: %[[DIM_0:.+]] = tensor.dim %[[OUT]], %[[C0]]
588 // CHECK-DAG: %[[DIM_1:.+]] = tensor.dim %[[OUT]], %[[C1]]
589 // CHECK: %{{.+}} = scf.for %[[K:.+]] = %[[C0]] to %[[DIM_0]] step %[[C2]]
590 // CHECK: %{{.+}} = scf.for %[[C:.+]] = %[[C0]] to %[[DIM_1]] step %[[C4]]
591 // CHECK-DAG: %[[OUT_K_SZ:.+]] = affine.min #[[MAP0]](%[[K]])[%[[DIM_0]]]
592 // CHECK-DAG: %[[OUT_C_SZ:.+]] = affine.min #[[MAP1]](%[[C]])[%[[DIM_1]]]
593 // CHECK-DAG: %[[IN_K:.+]] = affine.apply #[[MAP2]](%[[K]])
594 // CHECK-DAG: %[[IN_C:.+]] = affine.apply #[[MAP2]](%[[C]])
595 // CHECK-DAG: %[[IN_C_SZ:.+]] = affine.apply #[[MAP3]](%[[OUT_C_SZ]])
596 // CHECK: %[[IN_SLICE:.+]] = tensor.extract_slice %[[IN]]
597 // CHECK: [%[[IN_C]], %[[IN_K]], 0, 0] [%[[IN_C_SZ]], 1, 2, 2]
598 // CHECK: %[[ITER_SLICE:.+]] = tensor.extract_slice %{{.+}}[%[[K]], %[[C]]] [%[[OUT_K_SZ]], %[[OUT_C_SZ]]]
599 // CHECK: %[[UNPACK:.+]] = tensor.unpack
600 // CHECK-SAME: %[[IN_SLICE]] outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [2, 2]
601 // CHECK-SAME: into %[[ITER_SLICE]]
602 // CHECK: %[[RES:.+]] = tensor.insert_slice %[[UNPACK]]
603 // CHECK-SAME: into %{{.+}}[%[[K]], %[[C]]] [%[[OUT_K_SZ]], %[[OUT_C_SZ]]]
604 // CHECK: scf.yield %[[RES]]
606 func.func @dynamic_perfect_CKkc_to_KC(%source: tensor<?x?x2x2xf32>, %dest: tensor<?x?xf32>) -> tensor<?x?xf32> {
607 %0 = tensor.unpack %source outer_dims_perm = [1, 0] inner_dims_pos = [0, 1] inner_tiles = [2, 2] into %dest : tensor<?x?x2x2xf32> -> tensor<?x?xf32>
608 return %0 : tensor<?x?xf32>
611 module attributes {transform.with_named_sequence} {
612 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
613 %0 = transform.structured.match ops{["tensor.unpack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
614 %1, %loops:2 = transform.structured.tile_using_for %0 tile_sizes [2, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
621 // CHECK: #[[MAP:.+]] = affine_map<(d0) -> (d0 floordiv 2)>
622 // CHECK: func.func @perfect_NKPQk_to_NPQK(
623 // CHECK-SAME: %[[SOURCE:.+]]: tensor<1x4x6x6x2xf32>,
624 // CHECK-SAME: %{{.+}}: tensor<1x6x6x8xf32>)
625 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
626 // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
627 // CHECK-DAG: %[[C6:.*]] = arith.constant 6 : index
628 // CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index
629 // CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
630 // CHECK: %{{.+}} = scf.for %[[P:.+]] = %[[C0]] to %[[C6]] step %[[C1]]
631 // CHECK: %{{.+}} = scf.for %[[Q:.+]] = %[[C0]] to %[[C6]] step %[[C1]]
632 // CHECK: %{{.+}} = scf.for %[[K:.+]] = %[[C0]] to %[[C8]] step %[[C4]]
633 // CHECK: %[[K_SZ:.+]] = affine.apply #[[MAP]](%[[K]])
634 // CHECK: %[[SLICE_SOURCE:.+]] = tensor.extract_slice %[[SOURCE]][0, %[[K_SZ]], %[[P]], %[[Q]], 0]
635 // CHECK: %[[SLICE_DEST:.+]] = tensor.extract_slice %{{.+}}[0, %[[P]], %[[Q]], %[[K]]]
636 // CHECK: %[[UNPACK:.+]] = tensor.unpack
637 // CHECK-SAME: %[[SLICE_SOURCE]] outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [2]
638 // CHECK-SAME: into %[[SLICE_DEST]]
639 // CHECK: %[[RES:.+]] = tensor.insert_slice %[[UNPACK]]
640 // CHECK-SAME: into %{{.+}}[0, %[[P]], %[[Q]], %[[K]]]
641 // CHECK: scf.yield %[[RES]]
643 func.func @perfect_NKPQk_to_NPQK(%source: tensor<1x4x6x6x2xf32>, %dest: tensor<1x6x6x8xf32>) -> tensor<1x6x6x8xf32> {
644 %0 = tensor.unpack %source outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [2] into %dest : tensor<1x4x6x6x2xf32> -> tensor<1x6x6x8xf32>
645 return %0 : tensor<1x6x6x8xf32>
648 module attributes {transform.with_named_sequence} {
649 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
650 %0 = transform.structured.match ops{["tensor.unpack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
651 %1, %loops:4 = transform.structured.tile_using_for %0 tile_sizes [1, 1, 1, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
658 func.func private @get_dynamic_tile_size() -> index
660 // CHECK-LABEL: func.func @fully_dynamic_unpack
661 // CHECK-SAME: %[[SRC:[0-9a-zA-Z]+]]
662 // CHECK-SAME: %[[DST:[0-9a-zA-Z]+]]
663 // CHECK: %[[INNER_TS:.+]] = call @get_dynamic_tile_size() : () -> index
664 // CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[DST]])
665 // CHECK: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]])
666 // CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[SRC]]
667 // CHECK: %[[EMPTY:.+]] = tensor.empty
668 // CHECK: %[[UNPACK:.+]] = tensor.unpack %[[SLICE]]
669 // CHECK-SAME: inner_dims_pos = [1, 0] inner_tiles = [%[[INNER_TS]], %[[INNER_TS]]] into %[[EMPTY]]
670 func.func @fully_dynamic_unpack(%source: tensor<?x?x?x?xf32>, %dest: tensor<?x?xf32>) -> tensor<?x?xf32> {
671 %0 = func.call @get_dynamic_tile_size() : () -> index
672 %1 = tensor.unpack %source inner_dims_pos = [1, 0] inner_tiles = [%0, %0] into %dest : tensor<?x?x?x?xf32> -> tensor<?x?xf32>
673 return %1 : tensor<?x?xf32>
676 module attributes {transform.with_named_sequence} {
677 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
678 %0 = transform.structured.match ops{["tensor.unpack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
679 %1, %loops:2 = transform.structured.tile_using_for %0 tile_sizes [4, 8] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op)
686 // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0) -> (d0 * 2)>
687 // CHECK: func.func @perfect_NPQK_to_NKPQk
688 // CHECK-SAME: %[[SOURCE:.+]]: tensor<1x6x6x8xf32>,
689 // CHECK-SAME: %{{.+}}: tensor<1x4x6x6x2xf32>)
690 // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
691 // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
692 // CHECK-DAG: %[[C4:.+]] = arith.constant 4 : index
693 // CHECK-DAG: %[[C6:.+]] = arith.constant 6 : index
694 // CHECK: %{{.+}} = scf.for %[[ARG2:.+]] = %[[C0]] to %[[C4]] step %[[C1]]
695 // CHECK: %{{.+}} = scf.for %[[ARG4:.+]] = %[[C0]] to %[[C6]] step %[[C1]]
696 // CHECK: %{{.+}} = scf.for %[[ARG6:.+]] = %[[C0]] to %[[C6]] step %[[C1]]
697 // CHECK: %[[APPLY:.+]] = affine.apply #[[MAP1]](%[[ARG2]])
698 // CHECK: %[[SLICE_SOURCE:.+]] = tensor.extract_slice %[[SOURCE]][0, %[[ARG4]], %[[ARG6]], %[[APPLY]]]
699 // CHECK: %[[SLICE_DEST:.+]] = tensor.extract_slice %{{.+}}[0, %[[ARG2]], %[[ARG4]], %[[ARG6]], 0]
700 // CHECK: %[[PACK:.+]] = tensor.pack
701 // CHECK-SAME: %[[SLICE_SOURCE]] outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [2]
702 // CHECK-SAME: into %[[SLICE_DEST]]
703 // CHECK: %[[RES:.+]] = tensor.insert_slice %[[PACK]]
704 // CHECK-SAME: into %{{.+}}[0, %[[ARG2]], %[[ARG4]], %[[ARG6]], 0]
705 // CHECK: scf.yield %[[RES]]
707 func.func @perfect_NPQK_to_NKPQk(%source: tensor<1x6x6x8xf32>, %dest: tensor<1x4x6x6x2xf32>) -> tensor<1x4x6x6x2xf32> {
708 %0 = tensor.pack %source outer_dims_perm = [0, 3, 1, 2] inner_dims_pos = [3] inner_tiles = [2] into %dest : tensor<1x6x6x8xf32> -> tensor<1x4x6x6x2xf32>
709 return %0 : tensor<1x4x6x6x2xf32>
712 module attributes {transform.with_named_sequence} {
713 transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
714 %0 = transform.structured.match ops{["tensor.pack"]} in %arg1 : (!transform.any_op) -> !transform.any_op
715 %1, %loops:4 = transform.structured.tile_using_for %0 tile_sizes [1, 1, 1, 1] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)