1 """Code generator for Code Completion Model Inference.
3 Tool runs on the Decision Forest model defined in {model} directory.
4 It generates two files: {output_dir}/{filename}.h and {output_dir}/{filename}.cpp
5 The generated files defines the Example class named {cpp_class} having all the features as class members.
6 The generated runtime provides an `Evaluate` function which can be used to score a code completion candidate.
15 """Holds class name and names of the enclosing namespaces."""
17 def __init__(self
, cpp_class
):
18 ns_and_class
= cpp_class
.split("::")
19 self
.ns
= [ns
for ns
in ns_and_class
[0:-1] if len(ns
) > 0]
20 self
.name
= ns_and_class
[-1]
21 if len(self
.name
) == 0:
22 raise ValueError("Empty class name.")
25 """Returns snippet for opening namespace declarations."""
26 open_ns
= ["namespace %s {" % ns
for ns
in self
.ns
]
27 return "\n".join(open_ns
)
30 """Returns snippet for closing namespace declarations."""
31 close_ns
= ["} // namespace %s" % ns
for ns
in reversed(self
.ns
)]
32 return "\n".join(close_ns
)
35 def header_guard(filename
):
36 """Returns the header guard for the generated header."""
37 return "GENERATED_DECISION_FOREST_MODEL_%s_H" % filename
.upper()
40 def boost_node(n
, label
, next_label
):
41 """Returns code snippet for a leaf/boost node."""
42 return "%s: return %sf;" % (label
, n
["score"])
45 def if_greater_node(n
, label
, next_label
):
46 """Returns code snippet for a if_greater node.
47 Jumps to true_label if the Example feature (NUMBER) is greater than the threshold.
48 Comparing integers is much faster than comparing floats. Assuming floating points
49 are represented as IEEE 754, it order-encodes the floats to integers before comparing them.
50 Control falls through if condition is evaluated to false."""
51 threshold
= n
["threshold"]
52 return "%s: if (E.get%s() >= %s /*%s*/) goto %s;" % (
55 order_encode(threshold
),
61 def if_member_node(n
, label
, next_label
):
62 """Returns code snippet for a if_member node.
63 Jumps to true_label if the Example feature (ENUM) is present in the set of enum values
64 described in the node.
65 Control falls through if condition is evaluated to false."""
67 ["BIT(%s_type::%s)" % (n
["feature"], member
) for member
in n
["set"]]
69 return "%s: if (E.get%s() & (%s)) goto %s;" % (
77 def node(n
, label
, next_label
):
78 """Returns code snippet for the node."""
81 "if_greater": if_greater_node
,
82 "if_member": if_member_node
,
83 }[n
["operation"]](n
, label
, next_label
)
86 def tree(t
, tree_num
, node_num
):
87 """Returns code for inferencing a Decision Tree.
88 Also returns the size of the decision tree.
90 A tree starts with its label `t{tree#}`.
91 A node of the tree starts with label `t{tree#}_n{node#}`.
93 The tree contains two types of node: Conditional node and Leaf node.
94 - Conditional node evaluates a condition. If true, it jumps to the true node/child.
95 Code is generated using pre-order traversal of the tree considering
96 false node as the first child. Therefore the false node is always the
97 immediately next label.
98 - Leaf node adds the value to the score and jumps to the next tree.
100 label
= "t%d_n%d" % (tree_num
, node_num
)
103 if t
["operation"] == "boost":
104 code
.append(node(t
, label
=label
, next_label
="t%d" % (tree_num
+ 1)))
107 false_code
, false_size
= tree(t
["else"], tree_num
=tree_num
, node_num
=node_num
+ 1)
109 true_node_num
= node_num
+ false_size
+ 1
110 true_label
= "t%d_n%d" % (tree_num
, true_node_num
)
112 true_code
, true_size
= tree(t
["then"], tree_num
=tree_num
, node_num
=true_node_num
)
114 code
.append(node(t
, label
=label
, next_label
=true_label
))
116 return code
+ false_code
+ true_code
, 1 + false_size
+ true_size
119 def gen_header_code(features_json
, cpp_class
, filename
):
120 """Returns code for header declaring the inference runtime.
122 Declares the Example class named {cpp_class} inside relevant namespaces.
123 The Example class contains all the features as class members. This
124 class can be used to represent a code completion candidate.
125 Provides `float Evaluate()` function which can be used to score the Example.
129 for f
in features_json
:
132 if f
["kind"] == "NUMBER":
133 # Floats are order-encoded to integers for faster comparison.
135 "void set%s(float V) { %s = OrderEncode(V); }" % (feature
, feature
)
137 elif f
["kind"] == "ENUM":
139 "void set%s(unsigned V) { %s = 1LL << V; }" % (feature
, feature
)
142 raise ValueError("Unhandled feature type.", f
["kind"])
144 # Class members represent all the features of the Example.
146 "uint%d_t %s = 0;" % (64 if f
["kind"] == "ENUM" else 32, f
["name"])
147 for f
in features_json
150 "LLVM_ATTRIBUTE_ALWAYS_INLINE uint%d_t get%s() const { return %s; }"
151 % (64 if f
["kind"] == "ENUM" else 32, f
["name"], f
["name"])
152 for f
in features_json
155 guard
= header_guard(filename
)
159 #include "llvm/Support/Compiler.h"
173 // Produces an integer that sorts in the same order as F.
174 // That is: a < b <==> orderEncode(a) < orderEncode(b).
175 static uint32_t OrderEncode(float F);
178 float Evaluate(const %s&);
184 cpp_class
.ns_begin(),
188 nline
.join(class_members
),
196 i
= struct
.unpack("<I", struct
.pack("<f", v
))[0]
198 # IEEE 754 floats compare like sign-magnitude integers.
199 if i
& TopBit
: # Negative float
200 return (1 << 32) - i
# low half of integers, order reversed.
201 return TopBit
+ i
# top half of integers
204 def evaluate_func(forest_json
, cpp_class
):
205 """Generates evaluation functions for each tree and combines them in
206 `float Evaluate(const {Example}&)` function. This function can be
207 used to score an Example."""
211 # Generate evaluation function of each tree.
212 code
+= "namespace {\n"
214 for tree_json
in forest_json
:
215 code
+= "LLVM_ATTRIBUTE_NOINLINE float EvaluateTree%d(const %s& E) {\n" % (
220 " " + "\n ".join(tree(tree_json
, tree_num
=tree_num
, node_num
=0)[0]) + "\n"
224 code
+= "} // namespace\n\n"
226 # Combine the scores of all trees in the final function.
227 # MSAN will timeout if these functions are inlined.
228 code
+= "float Evaluate(const %s& E) {\n" % cpp_class
.name
229 code
+= " float Score = 0;\n"
230 for tree_num
in range(len(forest_json
)):
231 code
+= " Score += EvaluateTree%d(E);\n" % tree_num
232 code
+= " return Score;\n"
238 def gen_cpp_code(forest_json
, features_json
, filename
, cpp_class
):
239 """Generates code for the .cpp file."""
241 # Required by OrderEncode(float F).
242 angled_include
= ["#include <%s>" % h
for h
in ["cstring", "limits"]]
244 # Include generated header.
245 qouted_headers
= {filename
+ ".h", "llvm/ADT/bit.h"}
246 # Headers required by ENUM features used by the model.
247 qouted_headers |
= {f
["header"] for f
in features_json
if f
["kind"] == "ENUM"}
248 quoted_include
= ['#include "%s"' % h
for h
in sorted(qouted_headers
)]
250 # using-decl for ENUM features.
251 using_decls
= "\n".join(
252 "using %s_type = %s;" % (feature
["name"], feature
["type"])
253 for feature
in features_json
254 if feature
["kind"] == "ENUM"
261 #define BIT(X) (1LL << X)
267 uint32_t %s::OrderEncode(float F) {
268 static_assert(std::numeric_limits<float>::is_iec559, "");
269 constexpr uint32_t TopBit = ~(~uint32_t{0} >> 1);
271 // Get the bits of the float. Endianness is the same as for integers.
272 uint32_t U = llvm::bit_cast<uint32_t>(F);
273 std::memcpy(&U, &F, sizeof(U));
274 // IEEE 754 floats compare like sign-magnitude integers.
275 if (U & TopBit) // Negative float.
276 return 0 - U; // Map onto the low half of integers, order reversed.
277 return U + TopBit; // Positive floats map onto the high half of integers.
283 nl
.join(angled_include
),
284 nl
.join(quoted_include
),
285 cpp_class
.ns_begin(),
288 evaluate_func(forest_json
, cpp_class
),
294 parser
= argparse
.ArgumentParser("DecisionForestCodegen")
295 parser
.add_argument("--filename", help="output file name.")
296 parser
.add_argument("--output_dir", help="output directory.")
297 parser
.add_argument("--model", help="path to model directory.")
300 help="The name of the class (which may be a namespace-qualified) created in generated header.",
302 ns
= parser
.parse_args()
304 output_dir
= ns
.output_dir
305 filename
= ns
.filename
306 header_file
= "%s/%s.h" % (output_dir
, filename
)
307 cpp_file
= "%s/%s.cpp" % (output_dir
, filename
)
308 cpp_class
= CppClass(cpp_class
=ns
.cpp_class
)
310 model_file
= "%s/forest.json" % ns
.model
311 features_file
= "%s/features.json" % ns
.model
313 with
open(features_file
) as f
:
314 features_json
= json
.load(f
)
316 with
open(model_file
) as m
:
317 forest_json
= json
.load(m
)
319 with
open(cpp_file
, "w+t") as output_cc
:
322 forest_json
=forest_json
,
323 features_json
=features_json
,
329 with
open(header_file
, "w+t") as output_h
:
332 features_json
=features_json
, cpp_class
=cpp_class
, filename
=filename
337 if __name__
== "__main__":