[WebAssembly] Add new target feature in support of 'extended-const' proposal
[llvm-project.git] / llvm / lib / Target / WebAssembly / WebAssemblyISelLowering.cpp
bloba221f37cfd945312e92af9088a07cd7010f511d4
1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "Utils/WebAssemblyUtilities.h"
18 #include "WebAssemblyMachineFunctionInfo.h"
19 #include "WebAssemblySubtarget.h"
20 #include "WebAssemblyTargetMachine.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/DiagnosticPrinter.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsWebAssembly.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
39 using namespace llvm;
41 #define DEBUG_TYPE "wasm-lower"
43 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
44 const TargetMachine &TM, const WebAssemblySubtarget &STI)
45 : TargetLowering(TM), Subtarget(&STI) {
46 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
48 // Booleans always contain 0 or 1.
49 setBooleanContents(ZeroOrOneBooleanContent);
50 // Except in SIMD vectors
51 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
52 // We don't know the microarchitecture here, so just reduce register pressure.
53 setSchedulingPreference(Sched::RegPressure);
54 // Tell ISel that we have a stack pointer.
55 setStackPointerRegisterToSaveRestore(
56 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
57 // Set up the register classes.
58 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
59 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
60 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
61 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
62 if (Subtarget->hasSIMD128()) {
63 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
64 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
65 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
66 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
67 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
68 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
70 if (Subtarget->hasReferenceTypes()) {
71 addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
72 addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
74 // Compute derived properties from the register classes.
75 computeRegisterProperties(Subtarget->getRegisterInfo());
77 // Transform loads and stores to pointers in address space 1 to loads and
78 // stores to WebAssembly global variables, outside linear memory.
79 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
80 setOperationAction(ISD::LOAD, T, Custom);
81 setOperationAction(ISD::STORE, T, Custom);
83 if (Subtarget->hasSIMD128()) {
84 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
85 MVT::v2f64}) {
86 setOperationAction(ISD::LOAD, T, Custom);
87 setOperationAction(ISD::STORE, T, Custom);
90 if (Subtarget->hasReferenceTypes()) {
91 // We need custom load and store lowering for both externref, funcref and
92 // Other. The MVT::Other here represents tables of reference types.
93 for (auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
94 setOperationAction(ISD::LOAD, T, Custom);
95 setOperationAction(ISD::STORE, T, Custom);
99 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
100 setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
101 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
102 setOperationAction(ISD::JumpTable, MVTPtr, Custom);
103 setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
104 setOperationAction(ISD::BRIND, MVT::Other, Custom);
106 // Take the default expansion for va_arg, va_copy, and va_end. There is no
107 // default action for va_start, so we do that custom.
108 setOperationAction(ISD::VASTART, MVT::Other, Custom);
109 setOperationAction(ISD::VAARG, MVT::Other, Expand);
110 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
111 setOperationAction(ISD::VAEND, MVT::Other, Expand);
113 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
114 // Don't expand the floating-point types to constant pools.
115 setOperationAction(ISD::ConstantFP, T, Legal);
116 // Expand floating-point comparisons.
117 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
118 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
119 setCondCodeAction(CC, T, Expand);
120 // Expand floating-point library function operators.
121 for (auto Op :
122 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
123 setOperationAction(Op, T, Expand);
124 // Note supported floating-point library function operators that otherwise
125 // default to expand.
126 for (auto Op :
127 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
128 setOperationAction(Op, T, Legal);
129 // Support minimum and maximum, which otherwise default to expand.
130 setOperationAction(ISD::FMINIMUM, T, Legal);
131 setOperationAction(ISD::FMAXIMUM, T, Legal);
132 // WebAssembly currently has no builtin f16 support.
133 setOperationAction(ISD::FP16_TO_FP, T, Expand);
134 setOperationAction(ISD::FP_TO_FP16, T, Expand);
135 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
136 setTruncStoreAction(T, MVT::f16, Expand);
139 // Expand unavailable integer operations.
140 for (auto Op :
141 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
142 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
143 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
144 for (auto T : {MVT::i32, MVT::i64})
145 setOperationAction(Op, T, Expand);
146 if (Subtarget->hasSIMD128())
147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
148 setOperationAction(Op, T, Expand);
151 if (Subtarget->hasNontrappingFPToInt())
152 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
153 for (auto T : {MVT::i32, MVT::i64})
154 setOperationAction(Op, T, Custom);
156 // SIMD-specific configuration
157 if (Subtarget->hasSIMD128()) {
158 // Hoist bitcasts out of shuffles
159 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
161 // Combine extends of extract_subvectors into widening ops
162 setTargetDAGCombine(ISD::SIGN_EXTEND);
163 setTargetDAGCombine(ISD::ZERO_EXTEND);
165 // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
166 // conversions ops
167 setTargetDAGCombine(ISD::SINT_TO_FP);
168 setTargetDAGCombine(ISD::UINT_TO_FP);
169 setTargetDAGCombine(ISD::FP_EXTEND);
170 setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
172 // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
173 // into conversion ops
174 setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
175 setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
176 setTargetDAGCombine(ISD::FP_ROUND);
177 setTargetDAGCombine(ISD::CONCAT_VECTORS);
179 setTargetDAGCombine(ISD::TRUNCATE);
181 // Support saturating add for i8x16 and i16x8
182 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
183 for (auto T : {MVT::v16i8, MVT::v8i16})
184 setOperationAction(Op, T, Legal);
186 // Support integer abs
187 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
188 setOperationAction(ISD::ABS, T, Legal);
190 // Custom lower BUILD_VECTORs to minimize number of replace_lanes
191 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
192 MVT::v2f64})
193 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
195 // We have custom shuffle lowering to expose the shuffle mask
196 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
197 MVT::v2f64})
198 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
200 // Custom lowering since wasm shifts must have a scalar shift amount
201 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
202 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
203 setOperationAction(Op, T, Custom);
205 // Custom lower lane accesses to expand out variable indices
206 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
207 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
208 MVT::v2f64})
209 setOperationAction(Op, T, Custom);
211 // There is no i8x16.mul instruction
212 setOperationAction(ISD::MUL, MVT::v16i8, Expand);
214 // There is no vector conditional select instruction
215 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
216 MVT::v2f64})
217 setOperationAction(ISD::SELECT_CC, T, Expand);
219 // Expand integer operations supported for scalars but not SIMD
220 for (auto Op :
221 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
222 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
223 setOperationAction(Op, T, Expand);
225 // But we do have integer min and max operations
226 for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
227 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
228 setOperationAction(Op, T, Legal);
230 // And we have popcnt for i8x16. It can be used to expand ctlz/cttz.
231 setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
232 setOperationAction(ISD::CTLZ, MVT::v16i8, Expand);
233 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
235 // Custom lower bit counting operations for other types to scalarize them.
236 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP})
237 for (auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
238 setOperationAction(Op, T, Custom);
240 // Expand float operations supported for scalars but not SIMD
241 for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
242 ISD::FEXP, ISD::FEXP2, ISD::FRINT})
243 for (auto T : {MVT::v4f32, MVT::v2f64})
244 setOperationAction(Op, T, Expand);
246 // Unsigned comparison operations are unavailable for i64x2 vectors.
247 for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
248 setCondCodeAction(CC, MVT::v2i64, Custom);
250 // 64x2 conversions are not in the spec
251 for (auto Op :
252 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
253 for (auto T : {MVT::v2i64, MVT::v2f64})
254 setOperationAction(Op, T, Expand);
256 // But saturating fp_to_int converstions are
257 for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
258 setOperationAction(Op, MVT::v4i32, Custom);
261 // As a special case, these operators use the type to mean the type to
262 // sign-extend from.
263 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
264 if (!Subtarget->hasSignExt()) {
265 // Sign extends are legal only when extending a vector extract
266 auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
267 for (auto T : {MVT::i8, MVT::i16, MVT::i32})
268 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
270 for (auto T : MVT::integer_fixedlen_vector_valuetypes())
271 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
273 // Dynamic stack allocation: use the default expansion.
274 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
275 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
276 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
278 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
279 setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
280 setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
282 // Expand these forms; we pattern-match the forms that we can handle in isel.
283 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
284 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
285 setOperationAction(Op, T, Expand);
287 // We have custom switch handling.
288 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
290 // WebAssembly doesn't have:
291 // - Floating-point extending loads.
292 // - Floating-point truncating stores.
293 // - i1 extending loads.
294 // - truncating SIMD stores and most extending loads
295 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
296 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
297 for (auto T : MVT::integer_valuetypes())
298 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
299 setLoadExtAction(Ext, T, MVT::i1, Promote);
300 if (Subtarget->hasSIMD128()) {
301 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
302 MVT::v2f64}) {
303 for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
304 if (MVT(T) != MemT) {
305 setTruncStoreAction(T, MemT, Expand);
306 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
307 setLoadExtAction(Ext, T, MemT, Expand);
311 // But some vector extending loads are legal
312 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
313 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
314 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
315 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
317 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
320 // Don't do anything clever with build_pairs
321 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
323 // Trap lowers to wasm unreachable
324 setOperationAction(ISD::TRAP, MVT::Other, Legal);
325 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
327 // Exception handling intrinsics
328 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
329 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
330 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
332 setMaxAtomicSizeInBitsSupported(64);
334 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
335 // consistent with the f64 and f128 names.
336 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
337 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
339 // Define the emscripten name for return address helper.
340 // TODO: when implementing other Wasm backends, make this generic or only do
341 // this on emscripten depending on what they end up doing.
342 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
344 // Always convert switches to br_tables unless there is only one case, which
345 // is equivalent to a simple branch. This reduces code size for wasm, and we
346 // defer possible jump table optimizations to the VM.
347 setMinimumJumpTableEntries(2);
350 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
351 uint32_t AS) const {
352 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
353 return MVT::externref;
354 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
355 return MVT::funcref;
356 return TargetLowering::getPointerTy(DL, AS);
359 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
360 uint32_t AS) const {
361 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
362 return MVT::externref;
363 if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
364 return MVT::funcref;
365 return TargetLowering::getPointerMemTy(DL, AS);
368 TargetLowering::AtomicExpansionKind
369 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
370 // We have wasm instructions for these
371 switch (AI->getOperation()) {
372 case AtomicRMWInst::Add:
373 case AtomicRMWInst::Sub:
374 case AtomicRMWInst::And:
375 case AtomicRMWInst::Or:
376 case AtomicRMWInst::Xor:
377 case AtomicRMWInst::Xchg:
378 return AtomicExpansionKind::None;
379 default:
380 break;
382 return AtomicExpansionKind::CmpXChg;
385 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
386 // Implementation copied from X86TargetLowering.
387 unsigned Opc = VecOp.getOpcode();
389 // Assume target opcodes can't be scalarized.
390 // TODO - do we have any exceptions?
391 if (Opc >= ISD::BUILTIN_OP_END)
392 return false;
394 // If the vector op is not supported, try to convert to scalar.
395 EVT VecVT = VecOp.getValueType();
396 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
397 return true;
399 // If the vector op is supported, but the scalar op is not, the transform may
400 // not be worthwhile.
401 EVT ScalarVT = VecVT.getScalarType();
402 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
405 FastISel *WebAssemblyTargetLowering::createFastISel(
406 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
407 return WebAssembly::createFastISel(FuncInfo, LibInfo);
410 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
411 EVT VT) const {
412 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
413 if (BitWidth > 1 && BitWidth < 8)
414 BitWidth = 8;
416 if (BitWidth > 64) {
417 // The shift will be lowered to a libcall, and compiler-rt libcalls expect
418 // the count to be an i32.
419 BitWidth = 32;
420 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
421 "32-bit shift counts ought to be enough for anyone");
424 MVT Result = MVT::getIntegerVT(BitWidth);
425 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
426 "Unable to represent scalar shift amount type");
427 return Result;
430 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
431 // undefined result on invalid/overflow, to the WebAssembly opcode, which
432 // traps on invalid/overflow.
433 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
434 MachineBasicBlock *BB,
435 const TargetInstrInfo &TII,
436 bool IsUnsigned, bool Int64,
437 bool Float64, unsigned LoweredOpcode) {
438 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
440 Register OutReg = MI.getOperand(0).getReg();
441 Register InReg = MI.getOperand(1).getReg();
443 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
444 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
445 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
446 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
447 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
448 unsigned Eqz = WebAssembly::EQZ_I32;
449 unsigned And = WebAssembly::AND_I32;
450 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
451 int64_t Substitute = IsUnsigned ? 0 : Limit;
452 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
453 auto &Context = BB->getParent()->getFunction().getContext();
454 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
456 const BasicBlock *LLVMBB = BB->getBasicBlock();
457 MachineFunction *F = BB->getParent();
458 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
459 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
460 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
462 MachineFunction::iterator It = ++BB->getIterator();
463 F->insert(It, FalseMBB);
464 F->insert(It, TrueMBB);
465 F->insert(It, DoneMBB);
467 // Transfer the remainder of BB and its successor edges to DoneMBB.
468 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
469 DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
471 BB->addSuccessor(TrueMBB);
472 BB->addSuccessor(FalseMBB);
473 TrueMBB->addSuccessor(DoneMBB);
474 FalseMBB->addSuccessor(DoneMBB);
476 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
477 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
478 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
479 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
480 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
481 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
482 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
484 MI.eraseFromParent();
485 // For signed numbers, we can do a single comparison to determine whether
486 // fabs(x) is within range.
487 if (IsUnsigned) {
488 Tmp0 = InReg;
489 } else {
490 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
492 BuildMI(BB, DL, TII.get(FConst), Tmp1)
493 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
494 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
496 // For unsigned numbers, we have to do a separate comparison with zero.
497 if (IsUnsigned) {
498 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
499 Register SecondCmpReg =
500 MRI.createVirtualRegister(&WebAssembly::I32RegClass);
501 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
502 BuildMI(BB, DL, TII.get(FConst), Tmp1)
503 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
504 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
505 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
506 CmpReg = AndReg;
509 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
511 // Create the CFG diamond to select between doing the conversion or using
512 // the substitute value.
513 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
514 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
515 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
516 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
517 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
518 .addReg(FalseReg)
519 .addMBB(FalseMBB)
520 .addReg(TrueReg)
521 .addMBB(TrueMBB);
523 return DoneMBB;
526 static MachineBasicBlock *
527 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
528 const WebAssemblySubtarget *Subtarget,
529 const TargetInstrInfo &TII) {
530 MachineInstr &CallParams = *CallResults.getPrevNode();
531 assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
532 assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
533 CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
535 bool IsIndirect = CallParams.getOperand(0).isReg();
536 bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
538 bool IsFuncrefCall = false;
539 if (IsIndirect) {
540 Register Reg = CallParams.getOperand(0).getReg();
541 const MachineFunction *MF = BB->getParent();
542 const MachineRegisterInfo &MRI = MF->getRegInfo();
543 const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
544 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
545 assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
548 unsigned CallOp;
549 if (IsIndirect && IsRetCall) {
550 CallOp = WebAssembly::RET_CALL_INDIRECT;
551 } else if (IsIndirect) {
552 CallOp = WebAssembly::CALL_INDIRECT;
553 } else if (IsRetCall) {
554 CallOp = WebAssembly::RET_CALL;
555 } else {
556 CallOp = WebAssembly::CALL;
559 MachineFunction &MF = *BB->getParent();
560 const MCInstrDesc &MCID = TII.get(CallOp);
561 MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
563 // See if we must truncate the function pointer.
564 // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
565 // as 64-bit for uniformity with other pointer types.
566 // See also: WebAssemblyFastISel::selectCall
567 if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
568 Register Reg32 =
569 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
570 auto &FnPtr = CallParams.getOperand(0);
571 BuildMI(*BB, CallResults.getIterator(), DL,
572 TII.get(WebAssembly::I32_WRAP_I64), Reg32)
573 .addReg(FnPtr.getReg());
574 FnPtr.setReg(Reg32);
577 // Move the function pointer to the end of the arguments for indirect calls
578 if (IsIndirect) {
579 auto FnPtr = CallParams.getOperand(0);
580 CallParams.RemoveOperand(0);
582 // For funcrefs, call_indirect is done through __funcref_call_table and the
583 // funcref is always installed in slot 0 of the table, therefore instead of having
584 // the function pointer added at the end of the params list, a zero (the index in
585 // __funcref_call_table is added).
586 if (IsFuncrefCall) {
587 Register RegZero =
588 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
589 MachineInstrBuilder MIBC0 =
590 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
592 BB->insert(CallResults.getIterator(), MIBC0);
593 MachineInstrBuilder(MF, CallParams).addReg(RegZero);
594 } else
595 CallParams.addOperand(FnPtr);
598 for (auto Def : CallResults.defs())
599 MIB.add(Def);
601 if (IsIndirect) {
602 // Placeholder for the type index.
603 MIB.addImm(0);
604 // The table into which this call_indirect indexes.
605 MCSymbolWasm *Table = IsFuncrefCall
606 ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
607 MF.getContext(), Subtarget)
608 : WebAssembly::getOrCreateFunctionTableSymbol(
609 MF.getContext(), Subtarget);
610 if (Subtarget->hasReferenceTypes()) {
611 MIB.addSym(Table);
612 } else {
613 // For the MVP there is at most one table whose number is 0, but we can't
614 // write a table symbol or issue relocations. Instead we just ensure the
615 // table is live and write a zero.
616 Table->setNoStrip();
617 MIB.addImm(0);
621 for (auto Use : CallParams.uses())
622 MIB.add(Use);
624 BB->insert(CallResults.getIterator(), MIB);
625 CallParams.eraseFromParent();
626 CallResults.eraseFromParent();
628 // If this is a funcref call, to avoid hidden GC roots, we need to clear the
629 // table slot with ref.null upon call_indirect return.
631 // This generates the following code, which comes right after a call_indirect
632 // of a funcref:
634 // i32.const 0
635 // ref.null func
636 // table.set __funcref_call_table
637 if (IsIndirect && IsFuncrefCall) {
638 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
639 MF.getContext(), Subtarget);
640 Register RegZero =
641 MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
642 MachineInstr *Const0 =
643 BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
644 BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
646 Register RegFuncref =
647 MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
648 MachineInstr *RefNull =
649 BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
650 BB->insertAfter(Const0->getIterator(), RefNull);
652 MachineInstr *TableSet =
653 BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
654 .addSym(Table)
655 .addReg(RegZero)
656 .addReg(RegFuncref);
657 BB->insertAfter(RefNull->getIterator(), TableSet);
660 return BB;
663 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
664 MachineInstr &MI, MachineBasicBlock *BB) const {
665 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
666 DebugLoc DL = MI.getDebugLoc();
668 switch (MI.getOpcode()) {
669 default:
670 llvm_unreachable("Unexpected instr type to insert");
671 case WebAssembly::FP_TO_SINT_I32_F32:
672 return LowerFPToInt(MI, DL, BB, TII, false, false, false,
673 WebAssembly::I32_TRUNC_S_F32);
674 case WebAssembly::FP_TO_UINT_I32_F32:
675 return LowerFPToInt(MI, DL, BB, TII, true, false, false,
676 WebAssembly::I32_TRUNC_U_F32);
677 case WebAssembly::FP_TO_SINT_I64_F32:
678 return LowerFPToInt(MI, DL, BB, TII, false, true, false,
679 WebAssembly::I64_TRUNC_S_F32);
680 case WebAssembly::FP_TO_UINT_I64_F32:
681 return LowerFPToInt(MI, DL, BB, TII, true, true, false,
682 WebAssembly::I64_TRUNC_U_F32);
683 case WebAssembly::FP_TO_SINT_I32_F64:
684 return LowerFPToInt(MI, DL, BB, TII, false, false, true,
685 WebAssembly::I32_TRUNC_S_F64);
686 case WebAssembly::FP_TO_UINT_I32_F64:
687 return LowerFPToInt(MI, DL, BB, TII, true, false, true,
688 WebAssembly::I32_TRUNC_U_F64);
689 case WebAssembly::FP_TO_SINT_I64_F64:
690 return LowerFPToInt(MI, DL, BB, TII, false, true, true,
691 WebAssembly::I64_TRUNC_S_F64);
692 case WebAssembly::FP_TO_UINT_I64_F64:
693 return LowerFPToInt(MI, DL, BB, TII, true, true, true,
694 WebAssembly::I64_TRUNC_U_F64);
695 case WebAssembly::CALL_RESULTS:
696 case WebAssembly::RET_CALL_RESULTS:
697 return LowerCallResults(MI, DL, BB, Subtarget, TII);
701 const char *
702 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
703 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
704 case WebAssemblyISD::FIRST_NUMBER:
705 case WebAssemblyISD::FIRST_MEM_OPCODE:
706 break;
707 #define HANDLE_NODETYPE(NODE) \
708 case WebAssemblyISD::NODE: \
709 return "WebAssemblyISD::" #NODE;
710 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
711 #include "WebAssemblyISD.def"
712 #undef HANDLE_MEM_NODETYPE
713 #undef HANDLE_NODETYPE
715 return nullptr;
718 std::pair<unsigned, const TargetRegisterClass *>
719 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
720 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
721 // First, see if this is a constraint that directly corresponds to a
722 // WebAssembly register class.
723 if (Constraint.size() == 1) {
724 switch (Constraint[0]) {
725 case 'r':
726 assert(VT != MVT::iPTR && "Pointer MVT not expected here");
727 if (Subtarget->hasSIMD128() && VT.isVector()) {
728 if (VT.getSizeInBits() == 128)
729 return std::make_pair(0U, &WebAssembly::V128RegClass);
731 if (VT.isInteger() && !VT.isVector()) {
732 if (VT.getSizeInBits() <= 32)
733 return std::make_pair(0U, &WebAssembly::I32RegClass);
734 if (VT.getSizeInBits() <= 64)
735 return std::make_pair(0U, &WebAssembly::I64RegClass);
737 if (VT.isFloatingPoint() && !VT.isVector()) {
738 switch (VT.getSizeInBits()) {
739 case 32:
740 return std::make_pair(0U, &WebAssembly::F32RegClass);
741 case 64:
742 return std::make_pair(0U, &WebAssembly::F64RegClass);
743 default:
744 break;
747 break;
748 default:
749 break;
753 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
756 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
757 // Assume ctz is a relatively cheap operation.
758 return true;
761 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
762 // Assume clz is a relatively cheap operation.
763 return true;
766 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
767 const AddrMode &AM,
768 Type *Ty, unsigned AS,
769 Instruction *I) const {
770 // WebAssembly offsets are added as unsigned without wrapping. The
771 // isLegalAddressingMode gives us no way to determine if wrapping could be
772 // happening, so we approximate this by accepting only non-negative offsets.
773 if (AM.BaseOffs < 0)
774 return false;
776 // WebAssembly has no scale register operands.
777 if (AM.Scale != 0)
778 return false;
780 // Everything else is legal.
781 return true;
784 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
785 EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
786 MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
787 // WebAssembly supports unaligned accesses, though it should be declared
788 // with the p2align attribute on loads and stores which do so, and there
789 // may be a performance impact. We tell LLVM they're "fast" because
790 // for the kinds of things that LLVM uses this for (merging adjacent stores
791 // of constants, etc.), WebAssembly implementations will either want the
792 // unaligned access or they'll split anyway.
793 if (Fast)
794 *Fast = true;
795 return true;
798 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
799 AttributeList Attr) const {
800 // The current thinking is that wasm engines will perform this optimization,
801 // so we can save on code size.
802 return true;
805 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
806 EVT ExtT = ExtVal.getValueType();
807 EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
808 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
809 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
810 (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
813 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
814 const GlobalAddressSDNode *GA) const {
815 // Wasm doesn't support function addresses with offsets
816 const GlobalValue *GV = GA->getGlobal();
817 return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
820 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
821 LLVMContext &C,
822 EVT VT) const {
823 if (VT.isVector())
824 return VT.changeVectorElementTypeToInteger();
826 // So far, all branch instructions in Wasm take an I32 condition.
827 // The default TargetLowering::getSetCCResultType returns the pointer size,
828 // which would be useful to reduce instruction counts when testing
829 // against 64-bit pointers/values if at some point Wasm supports that.
830 return EVT::getIntegerVT(C, 32);
833 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
834 const CallInst &I,
835 MachineFunction &MF,
836 unsigned Intrinsic) const {
837 switch (Intrinsic) {
838 case Intrinsic::wasm_memory_atomic_notify:
839 Info.opc = ISD::INTRINSIC_W_CHAIN;
840 Info.memVT = MVT::i32;
841 Info.ptrVal = I.getArgOperand(0);
842 Info.offset = 0;
843 Info.align = Align(4);
844 // atomic.notify instruction does not really load the memory specified with
845 // this argument, but MachineMemOperand should either be load or store, so
846 // we set this to a load.
847 // FIXME Volatile isn't really correct, but currently all LLVM atomic
848 // instructions are treated as volatiles in the backend, so we should be
849 // consistent. The same applies for wasm_atomic_wait intrinsics too.
850 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
851 return true;
852 case Intrinsic::wasm_memory_atomic_wait32:
853 Info.opc = ISD::INTRINSIC_W_CHAIN;
854 Info.memVT = MVT::i32;
855 Info.ptrVal = I.getArgOperand(0);
856 Info.offset = 0;
857 Info.align = Align(4);
858 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
859 return true;
860 case Intrinsic::wasm_memory_atomic_wait64:
861 Info.opc = ISD::INTRINSIC_W_CHAIN;
862 Info.memVT = MVT::i64;
863 Info.ptrVal = I.getArgOperand(0);
864 Info.offset = 0;
865 Info.align = Align(8);
866 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
867 return true;
868 default:
869 return false;
873 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
874 const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
875 const SelectionDAG &DAG, unsigned Depth) const {
876 switch (Op.getOpcode()) {
877 default:
878 break;
879 case ISD::INTRINSIC_WO_CHAIN: {
880 unsigned IntNo = Op.getConstantOperandVal(0);
881 switch (IntNo) {
882 default:
883 break;
884 case Intrinsic::wasm_bitmask: {
885 unsigned BitWidth = Known.getBitWidth();
886 EVT VT = Op.getOperand(1).getSimpleValueType();
887 unsigned PossibleBits = VT.getVectorNumElements();
888 APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
889 Known.Zero |= ZeroMask;
890 break;
897 TargetLoweringBase::LegalizeTypeAction
898 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
899 if (VT.isFixedLengthVector()) {
900 MVT EltVT = VT.getVectorElementType();
901 // We have legal vector types with these lane types, so widening the
902 // vector would let us use some of the lanes directly without having to
903 // extend or truncate values.
904 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
905 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
906 return TypeWidenVector;
909 return TargetLoweringBase::getPreferredVectorAction(VT);
912 //===----------------------------------------------------------------------===//
913 // WebAssembly Lowering private implementation.
914 //===----------------------------------------------------------------------===//
916 //===----------------------------------------------------------------------===//
917 // Lowering Code
918 //===----------------------------------------------------------------------===//
920 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
921 MachineFunction &MF = DAG.getMachineFunction();
922 DAG.getContext()->diagnose(
923 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
926 // Test whether the given calling convention is supported.
927 static bool callingConvSupported(CallingConv::ID CallConv) {
928 // We currently support the language-independent target-independent
929 // conventions. We don't yet have a way to annotate calls with properties like
930 // "cold", and we don't have any call-clobbered registers, so these are mostly
931 // all handled the same.
932 return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
933 CallConv == CallingConv::Cold ||
934 CallConv == CallingConv::PreserveMost ||
935 CallConv == CallingConv::PreserveAll ||
936 CallConv == CallingConv::CXX_FAST_TLS ||
937 CallConv == CallingConv::WASM_EmscriptenInvoke ||
938 CallConv == CallingConv::Swift;
941 SDValue
942 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
943 SmallVectorImpl<SDValue> &InVals) const {
944 SelectionDAG &DAG = CLI.DAG;
945 SDLoc DL = CLI.DL;
946 SDValue Chain = CLI.Chain;
947 SDValue Callee = CLI.Callee;
948 MachineFunction &MF = DAG.getMachineFunction();
949 auto Layout = MF.getDataLayout();
951 CallingConv::ID CallConv = CLI.CallConv;
952 if (!callingConvSupported(CallConv))
953 fail(DL, DAG,
954 "WebAssembly doesn't support language-specific or target-specific "
955 "calling conventions yet");
956 if (CLI.IsPatchPoint)
957 fail(DL, DAG, "WebAssembly doesn't support patch point yet");
959 if (CLI.IsTailCall) {
960 auto NoTail = [&](const char *Msg) {
961 if (CLI.CB && CLI.CB->isMustTailCall())
962 fail(DL, DAG, Msg);
963 CLI.IsTailCall = false;
966 if (!Subtarget->hasTailCall())
967 NoTail("WebAssembly 'tail-call' feature not enabled");
969 // Varargs calls cannot be tail calls because the buffer is on the stack
970 if (CLI.IsVarArg)
971 NoTail("WebAssembly does not support varargs tail calls");
973 // Do not tail call unless caller and callee return types match
974 const Function &F = MF.getFunction();
975 const TargetMachine &TM = getTargetMachine();
976 Type *RetTy = F.getReturnType();
977 SmallVector<MVT, 4> CallerRetTys;
978 SmallVector<MVT, 4> CalleeRetTys;
979 computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
980 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
981 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
982 std::equal(CallerRetTys.begin(), CallerRetTys.end(),
983 CalleeRetTys.begin());
984 if (!TypesMatch)
985 NoTail("WebAssembly tail call requires caller and callee return types to "
986 "match");
988 // If pointers to local stack values are passed, we cannot tail call
989 if (CLI.CB) {
990 for (auto &Arg : CLI.CB->args()) {
991 Value *Val = Arg.get();
992 // Trace the value back through pointer operations
993 while (true) {
994 Value *Src = Val->stripPointerCastsAndAliases();
995 if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
996 Src = GEP->getPointerOperand();
997 if (Val == Src)
998 break;
999 Val = Src;
1001 if (isa<AllocaInst>(Val)) {
1002 NoTail(
1003 "WebAssembly does not support tail calling with stack arguments");
1004 break;
1010 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1011 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1012 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1014 // The generic code may have added an sret argument. If we're lowering an
1015 // invoke function, the ABI requires that the function pointer be the first
1016 // argument, so we may have to swap the arguments.
1017 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
1018 Outs[0].Flags.isSRet()) {
1019 std::swap(Outs[0], Outs[1]);
1020 std::swap(OutVals[0], OutVals[1]);
1023 bool HasSwiftSelfArg = false;
1024 bool HasSwiftErrorArg = false;
1025 unsigned NumFixedArgs = 0;
1026 for (unsigned I = 0; I < Outs.size(); ++I) {
1027 const ISD::OutputArg &Out = Outs[I];
1028 SDValue &OutVal = OutVals[I];
1029 HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
1030 HasSwiftErrorArg |= Out.Flags.isSwiftError();
1031 if (Out.Flags.isNest())
1032 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1033 if (Out.Flags.isInAlloca())
1034 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1035 if (Out.Flags.isInConsecutiveRegs())
1036 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1037 if (Out.Flags.isInConsecutiveRegsLast())
1038 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1039 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
1040 auto &MFI = MF.getFrameInfo();
1041 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
1042 Out.Flags.getNonZeroByValAlign(),
1043 /*isSS=*/false);
1044 SDValue SizeNode =
1045 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
1046 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1047 Chain = DAG.getMemcpy(
1048 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
1049 /*isVolatile*/ false, /*AlwaysInline=*/false,
1050 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
1051 OutVal = FINode;
1053 // Count the number of fixed args *after* legalization.
1054 NumFixedArgs += Out.IsFixed;
1057 bool IsVarArg = CLI.IsVarArg;
1058 auto PtrVT = getPointerTy(Layout);
1060 // For swiftcc, emit additional swiftself and swifterror arguments
1061 // if there aren't. These additional arguments are also added for callee
1062 // signature They are necessary to match callee and caller signature for
1063 // indirect call.
1064 if (CallConv == CallingConv::Swift) {
1065 if (!HasSwiftSelfArg) {
1066 NumFixedArgs++;
1067 ISD::OutputArg Arg;
1068 Arg.Flags.setSwiftSelf();
1069 CLI.Outs.push_back(Arg);
1070 SDValue ArgVal = DAG.getUNDEF(PtrVT);
1071 CLI.OutVals.push_back(ArgVal);
1073 if (!HasSwiftErrorArg) {
1074 NumFixedArgs++;
1075 ISD::OutputArg Arg;
1076 Arg.Flags.setSwiftError();
1077 CLI.Outs.push_back(Arg);
1078 SDValue ArgVal = DAG.getUNDEF(PtrVT);
1079 CLI.OutVals.push_back(ArgVal);
1083 // Analyze operands of the call, assigning locations to each operand.
1084 SmallVector<CCValAssign, 16> ArgLocs;
1085 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1087 if (IsVarArg) {
1088 // Outgoing non-fixed arguments are placed in a buffer. First
1089 // compute their offsets and the total amount of buffer space needed.
1090 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1091 const ISD::OutputArg &Out = Outs[I];
1092 SDValue &Arg = OutVals[I];
1093 EVT VT = Arg.getValueType();
1094 assert(VT != MVT::iPTR && "Legalized args should be concrete");
1095 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1096 Align Alignment =
1097 std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1098 unsigned Offset =
1099 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1100 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1101 Offset, VT.getSimpleVT(),
1102 CCValAssign::Full));
1106 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1108 SDValue FINode;
1109 if (IsVarArg && NumBytes) {
1110 // For non-fixed arguments, next emit stores to store the argument values
1111 // to the stack buffer at the offsets computed above.
1112 int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1113 Layout.getStackAlignment(),
1114 /*isSS=*/false);
1115 unsigned ValNo = 0;
1116 SmallVector<SDValue, 8> Chains;
1117 for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1118 assert(ArgLocs[ValNo].getValNo() == ValNo &&
1119 "ArgLocs should remain in order and only hold varargs args");
1120 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1121 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1122 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1123 DAG.getConstant(Offset, DL, PtrVT));
1124 Chains.push_back(
1125 DAG.getStore(Chain, DL, Arg, Add,
1126 MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1128 if (!Chains.empty())
1129 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1130 } else if (IsVarArg) {
1131 FINode = DAG.getIntPtrConstant(0, DL);
1134 if (Callee->getOpcode() == ISD::GlobalAddress) {
1135 // If the callee is a GlobalAddress node (quite common, every direct call
1136 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1137 // doesn't at MO_GOT which is not needed for direct calls.
1138 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
1139 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1140 getPointerTy(DAG.getDataLayout()),
1141 GA->getOffset());
1142 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1143 getPointerTy(DAG.getDataLayout()), Callee);
1146 // Compute the operands for the CALLn node.
1147 SmallVector<SDValue, 16> Ops;
1148 Ops.push_back(Chain);
1149 Ops.push_back(Callee);
1151 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1152 // isn't reliable.
1153 Ops.append(OutVals.begin(),
1154 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1155 // Add a pointer to the vararg buffer.
1156 if (IsVarArg)
1157 Ops.push_back(FINode);
1159 SmallVector<EVT, 8> InTys;
1160 for (const auto &In : Ins) {
1161 assert(!In.Flags.isByVal() && "byval is not valid for return values");
1162 assert(!In.Flags.isNest() && "nest is not valid for return values");
1163 if (In.Flags.isInAlloca())
1164 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1165 if (In.Flags.isInConsecutiveRegs())
1166 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1167 if (In.Flags.isInConsecutiveRegsLast())
1168 fail(DL, DAG,
1169 "WebAssembly hasn't implemented cons regs last return values");
1170 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1171 // registers.
1172 InTys.push_back(In.VT);
1175 // Lastly, if this is a call to a funcref we need to add an instruction
1176 // table.set to the chain and transform the call.
1177 if (CLI.CB &&
1178 WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) {
1179 // In the absence of function references proposal where a funcref call is
1180 // lowered to call_ref, using reference types we generate a table.set to set
1181 // the funcref to a special table used solely for this purpose, followed by
1182 // a call_indirect. Here we just generate the table set, and return the
1183 // SDValue of the table.set so that LowerCall can finalize the lowering by
1184 // generating the call_indirect.
1185 SDValue Chain = Ops[0];
1187 MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1188 MF.getContext(), Subtarget);
1189 SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1190 SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1191 SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1192 SDValue TableSet = DAG.getMemIntrinsicNode(
1193 WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1194 MVT::funcref,
1195 // Machine Mem Operand args
1196 MachinePointerInfo(
1197 WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
1198 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1199 MachineMemOperand::MOStore);
1201 Ops[0] = TableSet; // The new chain is the TableSet itself
1204 if (CLI.IsTailCall) {
1205 // ret_calls do not return values to the current frame
1206 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1207 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1210 InTys.push_back(MVT::Other);
1211 SDVTList InTyList = DAG.getVTList(InTys);
1212 SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1214 for (size_t I = 0; I < Ins.size(); ++I)
1215 InVals.push_back(Res.getValue(I));
1217 // Return the chain
1218 return Res.getValue(Ins.size());
1221 bool WebAssemblyTargetLowering::CanLowerReturn(
1222 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1223 const SmallVectorImpl<ISD::OutputArg> &Outs,
1224 LLVMContext & /*Context*/) const {
1225 // WebAssembly can only handle returning tuples with multivalue enabled
1226 return Subtarget->hasMultivalue() || Outs.size() <= 1;
1229 SDValue WebAssemblyTargetLowering::LowerReturn(
1230 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1231 const SmallVectorImpl<ISD::OutputArg> &Outs,
1232 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1233 SelectionDAG &DAG) const {
1234 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1235 "MVP WebAssembly can only return up to one value");
1236 if (!callingConvSupported(CallConv))
1237 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1239 SmallVector<SDValue, 4> RetOps(1, Chain);
1240 RetOps.append(OutVals.begin(), OutVals.end());
1241 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1243 // Record the number and types of the return values.
1244 for (const ISD::OutputArg &Out : Outs) {
1245 assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1246 assert(!Out.Flags.isNest() && "nest is not valid for return values");
1247 assert(Out.IsFixed && "non-fixed return value is not valid");
1248 if (Out.Flags.isInAlloca())
1249 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1250 if (Out.Flags.isInConsecutiveRegs())
1251 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1252 if (Out.Flags.isInConsecutiveRegsLast())
1253 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1256 return Chain;
1259 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1260 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1261 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1262 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1263 if (!callingConvSupported(CallConv))
1264 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1266 MachineFunction &MF = DAG.getMachineFunction();
1267 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1269 // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1270 // of the incoming values before they're represented by virtual registers.
1271 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1273 bool HasSwiftErrorArg = false;
1274 bool HasSwiftSelfArg = false;
1275 for (const ISD::InputArg &In : Ins) {
1276 HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1277 HasSwiftErrorArg |= In.Flags.isSwiftError();
1278 if (In.Flags.isInAlloca())
1279 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1280 if (In.Flags.isNest())
1281 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1282 if (In.Flags.isInConsecutiveRegs())
1283 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1284 if (In.Flags.isInConsecutiveRegsLast())
1285 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1286 // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1287 // registers.
1288 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1289 DAG.getTargetConstant(InVals.size(),
1290 DL, MVT::i32))
1291 : DAG.getUNDEF(In.VT));
1293 // Record the number and types of arguments.
1294 MFI->addParam(In.VT);
1297 // For swiftcc, emit additional swiftself and swifterror arguments
1298 // if there aren't. These additional arguments are also added for callee
1299 // signature They are necessary to match callee and caller signature for
1300 // indirect call.
1301 auto PtrVT = getPointerTy(MF.getDataLayout());
1302 if (CallConv == CallingConv::Swift) {
1303 if (!HasSwiftSelfArg) {
1304 MFI->addParam(PtrVT);
1306 if (!HasSwiftErrorArg) {
1307 MFI->addParam(PtrVT);
1310 // Varargs are copied into a buffer allocated by the caller, and a pointer to
1311 // the buffer is passed as an argument.
1312 if (IsVarArg) {
1313 MVT PtrVT = getPointerTy(MF.getDataLayout());
1314 Register VarargVreg =
1315 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1316 MFI->setVarargBufferVreg(VarargVreg);
1317 Chain = DAG.getCopyToReg(
1318 Chain, DL, VarargVreg,
1319 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1320 DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1321 MFI->addParam(PtrVT);
1324 // Record the number and types of arguments and results.
1325 SmallVector<MVT, 4> Params;
1326 SmallVector<MVT, 4> Results;
1327 computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1328 MF.getFunction(), DAG.getTarget(), Params, Results);
1329 for (MVT VT : Results)
1330 MFI->addResult(VT);
1331 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1332 // the param logic here with ComputeSignatureVTs
1333 assert(MFI->getParams().size() == Params.size() &&
1334 std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1335 Params.begin()));
1337 return Chain;
1340 void WebAssemblyTargetLowering::ReplaceNodeResults(
1341 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1342 switch (N->getOpcode()) {
1343 case ISD::SIGN_EXTEND_INREG:
1344 // Do not add any results, signifying that N should not be custom lowered
1345 // after all. This happens because simd128 turns on custom lowering for
1346 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1347 // illegal type.
1348 break;
1349 default:
1350 llvm_unreachable(
1351 "ReplaceNodeResults not implemented for this op for WebAssembly!");
1355 //===----------------------------------------------------------------------===//
1356 // Custom lowering hooks.
1357 //===----------------------------------------------------------------------===//
1359 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1360 SelectionDAG &DAG) const {
1361 SDLoc DL(Op);
1362 switch (Op.getOpcode()) {
1363 default:
1364 llvm_unreachable("unimplemented operation lowering");
1365 return SDValue();
1366 case ISD::FrameIndex:
1367 return LowerFrameIndex(Op, DAG);
1368 case ISD::GlobalAddress:
1369 return LowerGlobalAddress(Op, DAG);
1370 case ISD::GlobalTLSAddress:
1371 return LowerGlobalTLSAddress(Op, DAG);
1372 case ISD::ExternalSymbol:
1373 return LowerExternalSymbol(Op, DAG);
1374 case ISD::JumpTable:
1375 return LowerJumpTable(Op, DAG);
1376 case ISD::BR_JT:
1377 return LowerBR_JT(Op, DAG);
1378 case ISD::VASTART:
1379 return LowerVASTART(Op, DAG);
1380 case ISD::BlockAddress:
1381 case ISD::BRIND:
1382 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1383 return SDValue();
1384 case ISD::RETURNADDR:
1385 return LowerRETURNADDR(Op, DAG);
1386 case ISD::FRAMEADDR:
1387 return LowerFRAMEADDR(Op, DAG);
1388 case ISD::CopyToReg:
1389 return LowerCopyToReg(Op, DAG);
1390 case ISD::EXTRACT_VECTOR_ELT:
1391 case ISD::INSERT_VECTOR_ELT:
1392 return LowerAccessVectorElement(Op, DAG);
1393 case ISD::INTRINSIC_VOID:
1394 case ISD::INTRINSIC_WO_CHAIN:
1395 case ISD::INTRINSIC_W_CHAIN:
1396 return LowerIntrinsic(Op, DAG);
1397 case ISD::SIGN_EXTEND_INREG:
1398 return LowerSIGN_EXTEND_INREG(Op, DAG);
1399 case ISD::BUILD_VECTOR:
1400 return LowerBUILD_VECTOR(Op, DAG);
1401 case ISD::VECTOR_SHUFFLE:
1402 return LowerVECTOR_SHUFFLE(Op, DAG);
1403 case ISD::SETCC:
1404 return LowerSETCC(Op, DAG);
1405 case ISD::SHL:
1406 case ISD::SRA:
1407 case ISD::SRL:
1408 return LowerShift(Op, DAG);
1409 case ISD::FP_TO_SINT_SAT:
1410 case ISD::FP_TO_UINT_SAT:
1411 return LowerFP_TO_INT_SAT(Op, DAG);
1412 case ISD::LOAD:
1413 return LowerLoad(Op, DAG);
1414 case ISD::STORE:
1415 return LowerStore(Op, DAG);
1416 case ISD::CTPOP:
1417 case ISD::CTLZ:
1418 case ISD::CTTZ:
1419 return DAG.UnrollVectorOp(Op.getNode());
1423 static bool IsWebAssemblyGlobal(SDValue Op) {
1424 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1425 return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1427 return false;
1430 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) {
1431 const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1432 if (!FI)
1433 return None;
1435 auto &MF = DAG.getMachineFunction();
1436 return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1439 static bool IsWebAssemblyTable(SDValue Op) {
1440 const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1441 if (GA && WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace())) {
1442 const GlobalValue *Value = GA->getGlobal();
1443 const Type *Ty = Value->getValueType();
1445 if (Ty->isArrayTy() && WebAssembly::isRefType(Ty->getArrayElementType()))
1446 return true;
1448 return false;
1451 // This function will accept as Op any access to a table, so Op can
1452 // be the actual table or an offset into the table.
1453 static bool IsWebAssemblyTableWithOffset(SDValue Op) {
1454 if (Op->getOpcode() == ISD::ADD && Op->getNumOperands() == 2)
1455 return (Op->getOperand(1).getSimpleValueType() == MVT::i32 &&
1456 IsWebAssemblyTableWithOffset(Op->getOperand(0))) ||
1457 (Op->getOperand(0).getSimpleValueType() == MVT::i32 &&
1458 IsWebAssemblyTableWithOffset(Op->getOperand(1)));
1460 return IsWebAssemblyTable(Op);
1463 // Helper for table pattern matching used in LowerStore and LowerLoad
1464 bool WebAssemblyTargetLowering::MatchTableForLowering(SelectionDAG &DAG,
1465 const SDLoc &DL,
1466 const SDValue &Base,
1467 GlobalAddressSDNode *&GA,
1468 SDValue &Idx) const {
1469 // We expect the following graph for a load of the form:
1470 // table[<var> + <constant offset>]
1472 // Case 1:
1473 // externref = load t1
1474 // t1: i32 = add t2, i32:<constant offset>
1475 // t2: i32 = add tX, table
1477 // This is in some cases simplified to just:
1478 // Case 2:
1479 // externref = load t1
1480 // t1: i32 = add t2, i32:tX
1482 // So, unfortunately we need to check for both cases and if we are in the
1483 // first case extract the table GlobalAddressNode and build a new node tY
1484 // that's tY: i32 = add i32:<constant offset>, i32:tX
1486 if (IsWebAssemblyTable(Base)) {
1487 GA = cast<GlobalAddressSDNode>(Base);
1488 Idx = DAG.getConstant(0, DL, MVT::i32);
1489 } else {
1490 GA = dyn_cast<GlobalAddressSDNode>(Base->getOperand(0));
1491 if (GA) {
1492 // We are in Case 2 above.
1493 Idx = Base->getOperand(1);
1494 assert(GA->getNumValues() == 1);
1495 } else {
1496 // This might be Case 1 above (or an error)
1497 SDValue V = Base->getOperand(0);
1498 GA = dyn_cast<GlobalAddressSDNode>(V->getOperand(1));
1500 if (V->getOpcode() != ISD::ADD || V->getNumOperands() != 2 || !GA)
1501 return false;
1503 SDValue IdxV = DAG.getNode(ISD::ADD, DL, MVT::i32, Base->getOperand(1),
1504 V->getOperand(0));
1505 Idx = IdxV;
1509 return true;
1512 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1513 SelectionDAG &DAG) const {
1514 SDLoc DL(Op);
1515 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1516 const SDValue &Value = SN->getValue();
1517 const SDValue &Base = SN->getBasePtr();
1518 const SDValue &Offset = SN->getOffset();
1520 if (IsWebAssemblyTableWithOffset(Base)) {
1521 if (!Offset->isUndef())
1522 report_fatal_error(
1523 "unexpected offset when loading from webassembly table", false);
1525 SDValue Idx;
1526 GlobalAddressSDNode *GA;
1528 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx))
1529 report_fatal_error("failed pattern matching for lowering table store",
1530 false);
1532 SDVTList Tys = DAG.getVTList(MVT::Other);
1533 SDValue TableSetOps[] = {SN->getChain(), SDValue(GA, 0), Idx, Value};
1534 SDValue TableSet =
1535 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_SET, DL, Tys, TableSetOps,
1536 SN->getMemoryVT(), SN->getMemOperand());
1537 return TableSet;
1540 if (IsWebAssemblyGlobal(Base)) {
1541 if (!Offset->isUndef())
1542 report_fatal_error("unexpected offset when storing to webassembly global",
1543 false);
1545 SDVTList Tys = DAG.getVTList(MVT::Other);
1546 SDValue Ops[] = {SN->getChain(), Value, Base};
1547 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1548 SN->getMemoryVT(), SN->getMemOperand());
1551 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1552 if (!Offset->isUndef())
1553 report_fatal_error("unexpected offset when storing to webassembly local",
1554 false);
1556 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1557 SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1558 SDValue Ops[] = {SN->getChain(), Idx, Value};
1559 return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1562 return Op;
1565 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1566 SelectionDAG &DAG) const {
1567 SDLoc DL(Op);
1568 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1569 const SDValue &Base = LN->getBasePtr();
1570 const SDValue &Offset = LN->getOffset();
1572 if (IsWebAssemblyTableWithOffset(Base)) {
1573 if (!Offset->isUndef())
1574 report_fatal_error(
1575 "unexpected offset when loading from webassembly table", false);
1577 GlobalAddressSDNode *GA;
1578 SDValue Idx;
1580 if (!MatchTableForLowering(DAG, DL, Base, GA, Idx))
1581 report_fatal_error("failed pattern matching for lowering table load",
1582 false);
1584 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1585 SDValue TableGetOps[] = {LN->getChain(), SDValue(GA, 0), Idx};
1586 SDValue TableGet =
1587 DAG.getMemIntrinsicNode(WebAssemblyISD::TABLE_GET, DL, Tys, TableGetOps,
1588 LN->getMemoryVT(), LN->getMemOperand());
1589 return TableGet;
1592 if (IsWebAssemblyGlobal(Base)) {
1593 if (!Offset->isUndef())
1594 report_fatal_error(
1595 "unexpected offset when loading from webassembly global", false);
1597 SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1598 SDValue Ops[] = {LN->getChain(), Base};
1599 return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1600 LN->getMemoryVT(), LN->getMemOperand());
1603 if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1604 if (!Offset->isUndef())
1605 report_fatal_error(
1606 "unexpected offset when loading from webassembly local", false);
1608 SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1609 EVT LocalVT = LN->getValueType(0);
1610 SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1611 {LN->getChain(), Idx});
1612 SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1613 assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1614 return Result;
1617 return Op;
1620 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1621 SelectionDAG &DAG) const {
1622 SDValue Src = Op.getOperand(2);
1623 if (isa<FrameIndexSDNode>(Src.getNode())) {
1624 // CopyToReg nodes don't support FrameIndex operands. Other targets select
1625 // the FI to some LEA-like instruction, but since we don't have that, we
1626 // need to insert some kind of instruction that can take an FI operand and
1627 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1628 // local.copy between Op and its FI operand.
1629 SDValue Chain = Op.getOperand(0);
1630 SDLoc DL(Op);
1631 Register Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1632 EVT VT = Src.getValueType();
1633 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1634 : WebAssembly::COPY_I64,
1635 DL, VT, Src),
1637 return Op.getNode()->getNumValues() == 1
1638 ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1639 : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1640 Op.getNumOperands() == 4 ? Op.getOperand(3)
1641 : SDValue());
1643 return SDValue();
1646 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1647 SelectionDAG &DAG) const {
1648 int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1649 return DAG.getTargetFrameIndex(FI, Op.getValueType());
1652 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1653 SelectionDAG &DAG) const {
1654 SDLoc DL(Op);
1656 if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1657 fail(DL, DAG,
1658 "Non-Emscripten WebAssembly hasn't implemented "
1659 "__builtin_return_address");
1660 return SDValue();
1663 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1664 return SDValue();
1666 unsigned Depth = Op.getConstantOperandVal(0);
1667 MakeLibCallOptions CallOptions;
1668 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1669 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1670 .first;
1673 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1674 SelectionDAG &DAG) const {
1675 // Non-zero depths are not supported by WebAssembly currently. Use the
1676 // legalizer's default expansion, which is to return 0 (what this function is
1677 // documented to do).
1678 if (Op.getConstantOperandVal(0) > 0)
1679 return SDValue();
1681 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1682 EVT VT = Op.getValueType();
1683 Register FP =
1684 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1685 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1688 SDValue
1689 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1690 SelectionDAG &DAG) const {
1691 SDLoc DL(Op);
1692 const auto *GA = cast<GlobalAddressSDNode>(Op);
1694 MachineFunction &MF = DAG.getMachineFunction();
1695 if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1696 report_fatal_error("cannot use thread-local storage without bulk memory",
1697 false);
1699 const GlobalValue *GV = GA->getGlobal();
1701 // Currently Emscripten does not support dynamic linking with threads.
1702 // Therefore, if we have thread-local storage, only the local-exec model
1703 // is possible.
1704 // TODO: remove this and implement proper TLS models once Emscripten
1705 // supports dynamic linking with threads.
1706 if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1707 !Subtarget->getTargetTriple().isOSEmscripten()) {
1708 report_fatal_error("only -ftls-model=local-exec is supported for now on "
1709 "non-Emscripten OSes: variable " +
1710 GV->getName(),
1711 false);
1714 auto model = GV->getThreadLocalMode();
1716 // Unsupported TLS modes
1717 assert(model != GlobalValue::NotThreadLocal);
1718 assert(model != GlobalValue::InitialExecTLSModel);
1720 if (model == GlobalValue::LocalExecTLSModel ||
1721 model == GlobalValue::LocalDynamicTLSModel ||
1722 (model == GlobalValue::GeneralDynamicTLSModel &&
1723 getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) {
1724 // For DSO-local TLS variables we use offset from __tls_base
1726 MVT PtrVT = getPointerTy(DAG.getDataLayout());
1727 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1728 : WebAssembly::GLOBAL_GET_I32;
1729 const char *BaseName = MF.createExternalSymbolName("__tls_base");
1731 SDValue BaseAddr(
1732 DAG.getMachineNode(GlobalGet, DL, PtrVT,
1733 DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1736 SDValue TLSOffset = DAG.getTargetGlobalAddress(
1737 GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1738 SDValue SymOffset =
1739 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
1741 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
1744 assert(model == GlobalValue::GeneralDynamicTLSModel);
1746 EVT VT = Op.getValueType();
1747 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1748 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1749 GA->getOffset(),
1750 WebAssemblyII::MO_GOT_TLS));
1753 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1754 SelectionDAG &DAG) const {
1755 SDLoc DL(Op);
1756 const auto *GA = cast<GlobalAddressSDNode>(Op);
1757 EVT VT = Op.getValueType();
1758 assert(GA->getTargetFlags() == 0 &&
1759 "Unexpected target flags on generic GlobalAddressSDNode");
1760 if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1761 fail(DL, DAG, "Invalid address space for WebAssembly target");
1763 unsigned OperandFlags = 0;
1764 if (isPositionIndependent()) {
1765 const GlobalValue *GV = GA->getGlobal();
1766 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1767 MachineFunction &MF = DAG.getMachineFunction();
1768 MVT PtrVT = getPointerTy(MF.getDataLayout());
1769 const char *BaseName;
1770 if (GV->getValueType()->isFunctionTy()) {
1771 BaseName = MF.createExternalSymbolName("__table_base");
1772 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1774 else {
1775 BaseName = MF.createExternalSymbolName("__memory_base");
1776 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1778 SDValue BaseAddr =
1779 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1780 DAG.getTargetExternalSymbol(BaseName, PtrVT));
1782 SDValue SymAddr = DAG.getNode(
1783 WebAssemblyISD::WrapperREL, DL, VT,
1784 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1785 OperandFlags));
1787 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1789 OperandFlags = WebAssemblyII::MO_GOT;
1792 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1793 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1794 GA->getOffset(), OperandFlags));
1797 SDValue
1798 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1799 SelectionDAG &DAG) const {
1800 SDLoc DL(Op);
1801 const auto *ES = cast<ExternalSymbolSDNode>(Op);
1802 EVT VT = Op.getValueType();
1803 assert(ES->getTargetFlags() == 0 &&
1804 "Unexpected target flags on generic ExternalSymbolSDNode");
1805 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1806 DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1809 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1810 SelectionDAG &DAG) const {
1811 // There's no need for a Wrapper node because we always incorporate a jump
1812 // table operand into a BR_TABLE instruction, rather than ever
1813 // materializing it in a register.
1814 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1815 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1816 JT->getTargetFlags());
1819 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1820 SelectionDAG &DAG) const {
1821 SDLoc DL(Op);
1822 SDValue Chain = Op.getOperand(0);
1823 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1824 SDValue Index = Op.getOperand(2);
1825 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1827 SmallVector<SDValue, 8> Ops;
1828 Ops.push_back(Chain);
1829 Ops.push_back(Index);
1831 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1832 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1834 // Add an operand for each case.
1835 for (auto MBB : MBBs)
1836 Ops.push_back(DAG.getBasicBlock(MBB));
1838 // Add the first MBB as a dummy default target for now. This will be replaced
1839 // with the proper default target (and the preceding range check eliminated)
1840 // if possible by WebAssemblyFixBrTableDefaults.
1841 Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1842 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1845 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1846 SelectionDAG &DAG) const {
1847 SDLoc DL(Op);
1848 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1850 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1851 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1853 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1854 MFI->getVarargBufferVreg(), PtrVT);
1855 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1856 MachinePointerInfo(SV));
1859 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1860 SelectionDAG &DAG) const {
1861 MachineFunction &MF = DAG.getMachineFunction();
1862 unsigned IntNo;
1863 switch (Op.getOpcode()) {
1864 case ISD::INTRINSIC_VOID:
1865 case ISD::INTRINSIC_W_CHAIN:
1866 IntNo = Op.getConstantOperandVal(1);
1867 break;
1868 case ISD::INTRINSIC_WO_CHAIN:
1869 IntNo = Op.getConstantOperandVal(0);
1870 break;
1871 default:
1872 llvm_unreachable("Invalid intrinsic");
1874 SDLoc DL(Op);
1876 switch (IntNo) {
1877 default:
1878 return SDValue(); // Don't custom lower most intrinsics.
1880 case Intrinsic::wasm_lsda: {
1881 auto PtrVT = getPointerTy(MF.getDataLayout());
1882 const char *SymName = MF.createExternalSymbolName(
1883 "GCC_except_table" + std::to_string(MF.getFunctionNumber()));
1884 if (isPositionIndependent()) {
1885 SDValue Node = DAG.getTargetExternalSymbol(
1886 SymName, PtrVT, WebAssemblyII::MO_MEMORY_BASE_REL);
1887 const char *BaseName = MF.createExternalSymbolName("__memory_base");
1888 SDValue BaseAddr =
1889 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1890 DAG.getTargetExternalSymbol(BaseName, PtrVT));
1891 SDValue SymAddr =
1892 DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, Node);
1893 return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1895 SDValue Node = DAG.getTargetExternalSymbol(SymName, PtrVT);
1896 return DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, Node);
1899 case Intrinsic::wasm_shuffle: {
1900 // Drop in-chain and replace undefs, but otherwise pass through unchanged
1901 SDValue Ops[18];
1902 size_t OpIdx = 0;
1903 Ops[OpIdx++] = Op.getOperand(1);
1904 Ops[OpIdx++] = Op.getOperand(2);
1905 while (OpIdx < 18) {
1906 const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1907 if (MaskIdx.isUndef() ||
1908 cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1909 Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1910 } else {
1911 Ops[OpIdx++] = MaskIdx;
1914 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1919 SDValue
1920 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1921 SelectionDAG &DAG) const {
1922 SDLoc DL(Op);
1923 // If sign extension operations are disabled, allow sext_inreg only if operand
1924 // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1925 // extension operations, but allowing sext_inreg in this context lets us have
1926 // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1927 // everywhere would be simpler in this file, but would necessitate large and
1928 // brittle patterns to undo the expansion and select extract_lane_s
1929 // instructions.
1930 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1931 if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1932 return SDValue();
1934 const SDValue &Extract = Op.getOperand(0);
1935 MVT VecT = Extract.getOperand(0).getSimpleValueType();
1936 if (VecT.getVectorElementType().getSizeInBits() > 32)
1937 return SDValue();
1938 MVT ExtractedLaneT =
1939 cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1940 MVT ExtractedVecT =
1941 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1942 if (ExtractedVecT == VecT)
1943 return Op;
1945 // Bitcast vector to appropriate type to ensure ISel pattern coverage
1946 const SDNode *Index = Extract.getOperand(1).getNode();
1947 if (!isa<ConstantSDNode>(Index))
1948 return SDValue();
1949 unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1950 unsigned Scale =
1951 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1952 assert(Scale > 1);
1953 SDValue NewIndex =
1954 DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1955 SDValue NewExtract = DAG.getNode(
1956 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1957 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1958 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1959 Op.getOperand(1));
1962 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
1963 SDLoc DL(Op);
1964 if (Op.getValueType() != MVT::v2f64)
1965 return SDValue();
1967 auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
1968 unsigned &Index) -> bool {
1969 switch (Op.getOpcode()) {
1970 case ISD::SINT_TO_FP:
1971 Opcode = WebAssemblyISD::CONVERT_LOW_S;
1972 break;
1973 case ISD::UINT_TO_FP:
1974 Opcode = WebAssemblyISD::CONVERT_LOW_U;
1975 break;
1976 case ISD::FP_EXTEND:
1977 Opcode = WebAssemblyISD::PROMOTE_LOW;
1978 break;
1979 default:
1980 return false;
1983 auto ExtractVector = Op.getOperand(0);
1984 if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1985 return false;
1987 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
1988 return false;
1990 SrcVec = ExtractVector.getOperand(0);
1991 Index = ExtractVector.getConstantOperandVal(1);
1992 return true;
1995 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
1996 SDValue LHSSrcVec, RHSSrcVec;
1997 if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
1998 !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
1999 return SDValue();
2001 if (LHSOpcode != RHSOpcode)
2002 return SDValue();
2004 MVT ExpectedSrcVT;
2005 switch (LHSOpcode) {
2006 case WebAssemblyISD::CONVERT_LOW_S:
2007 case WebAssemblyISD::CONVERT_LOW_U:
2008 ExpectedSrcVT = MVT::v4i32;
2009 break;
2010 case WebAssemblyISD::PROMOTE_LOW:
2011 ExpectedSrcVT = MVT::v4f32;
2012 break;
2014 if (LHSSrcVec.getValueType() != ExpectedSrcVT)
2015 return SDValue();
2017 auto Src = LHSSrcVec;
2018 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
2019 // Shuffle the source vector so that the converted lanes are the low lanes.
2020 Src = DAG.getVectorShuffle(
2021 ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
2022 {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
2024 return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
2027 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2028 SelectionDAG &DAG) const {
2029 if (auto ConvertLow = LowerConvertLow(Op, DAG))
2030 return ConvertLow;
2032 SDLoc DL(Op);
2033 const EVT VecT = Op.getValueType();
2034 const EVT LaneT = Op.getOperand(0).getValueType();
2035 const size_t Lanes = Op.getNumOperands();
2036 bool CanSwizzle = VecT == MVT::v16i8;
2038 // BUILD_VECTORs are lowered to the instruction that initializes the highest
2039 // possible number of lanes at once followed by a sequence of replace_lane
2040 // instructions to individually initialize any remaining lanes.
2042 // TODO: Tune this. For example, lanewise swizzling is very expensive, so
2043 // swizzled lanes should be given greater weight.
2045 // TODO: Investigate looping rather than always extracting/replacing specific
2046 // lanes to fill gaps.
2048 auto IsConstant = [](const SDValue &V) {
2049 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
2052 // Returns the source vector and index vector pair if they exist. Checks for:
2053 // (extract_vector_elt
2054 // $src,
2055 // (sign_extend_inreg (extract_vector_elt $indices, $i))
2056 // )
2057 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
2058 auto Bail = std::make_pair(SDValue(), SDValue());
2059 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2060 return Bail;
2061 const SDValue &SwizzleSrc = Lane->getOperand(0);
2062 const SDValue &IndexExt = Lane->getOperand(1);
2063 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
2064 return Bail;
2065 const SDValue &Index = IndexExt->getOperand(0);
2066 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2067 return Bail;
2068 const SDValue &SwizzleIndices = Index->getOperand(0);
2069 if (SwizzleSrc.getValueType() != MVT::v16i8 ||
2070 SwizzleIndices.getValueType() != MVT::v16i8 ||
2071 Index->getOperand(1)->getOpcode() != ISD::Constant ||
2072 Index->getConstantOperandVal(1) != I)
2073 return Bail;
2074 return std::make_pair(SwizzleSrc, SwizzleIndices);
2077 // If the lane is extracted from another vector at a constant index, return
2078 // that vector. The source vector must not have more lanes than the dest
2079 // because the shufflevector indices are in terms of the destination lanes and
2080 // would not be able to address the smaller individual source lanes.
2081 auto GetShuffleSrc = [&](const SDValue &Lane) {
2082 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2083 return SDValue();
2084 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
2085 return SDValue();
2086 if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2087 VecT.getVectorNumElements())
2088 return SDValue();
2089 return Lane->getOperand(0);
2092 using ValueEntry = std::pair<SDValue, size_t>;
2093 SmallVector<ValueEntry, 16> SplatValueCounts;
2095 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
2096 SmallVector<SwizzleEntry, 16> SwizzleCounts;
2098 using ShuffleEntry = std::pair<SDValue, size_t>;
2099 SmallVector<ShuffleEntry, 16> ShuffleCounts;
2101 auto AddCount = [](auto &Counts, const auto &Val) {
2102 auto CountIt =
2103 llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
2104 if (CountIt == Counts.end()) {
2105 Counts.emplace_back(Val, 1);
2106 } else {
2107 CountIt->second++;
2111 auto GetMostCommon = [](auto &Counts) {
2112 auto CommonIt =
2113 std::max_element(Counts.begin(), Counts.end(),
2114 [](auto A, auto B) { return A.second < B.second; });
2115 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
2116 return *CommonIt;
2119 size_t NumConstantLanes = 0;
2121 // Count eligible lanes for each type of vector creation op
2122 for (size_t I = 0; I < Lanes; ++I) {
2123 const SDValue &Lane = Op->getOperand(I);
2124 if (Lane.isUndef())
2125 continue;
2127 AddCount(SplatValueCounts, Lane);
2129 if (IsConstant(Lane))
2130 NumConstantLanes++;
2131 if (auto ShuffleSrc = GetShuffleSrc(Lane))
2132 AddCount(ShuffleCounts, ShuffleSrc);
2133 if (CanSwizzle) {
2134 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
2135 if (SwizzleSrcs.first)
2136 AddCount(SwizzleCounts, SwizzleSrcs);
2140 SDValue SplatValue;
2141 size_t NumSplatLanes;
2142 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2144 SDValue SwizzleSrc;
2145 SDValue SwizzleIndices;
2146 size_t NumSwizzleLanes = 0;
2147 if (SwizzleCounts.size())
2148 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2149 NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2151 // Shuffles can draw from up to two vectors, so find the two most common
2152 // sources.
2153 SDValue ShuffleSrc1, ShuffleSrc2;
2154 size_t NumShuffleLanes = 0;
2155 if (ShuffleCounts.size()) {
2156 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2157 llvm::erase_if(ShuffleCounts,
2158 [&](const auto &Pair) { return Pair.first == ShuffleSrc1; });
2160 if (ShuffleCounts.size()) {
2161 size_t AdditionalShuffleLanes;
2162 std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2163 GetMostCommon(ShuffleCounts);
2164 NumShuffleLanes += AdditionalShuffleLanes;
2167 // Predicate returning true if the lane is properly initialized by the
2168 // original instruction
2169 std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
2170 SDValue Result;
2171 // Prefer swizzles over shuffles over vector consts over splats
2172 if (NumSwizzleLanes >= NumShuffleLanes &&
2173 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2174 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
2175 SwizzleIndices);
2176 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2177 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
2178 return Swizzled == GetSwizzleSrcs(I, Lane);
2180 } else if (NumShuffleLanes >= NumConstantLanes &&
2181 NumShuffleLanes >= NumSplatLanes) {
2182 size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
2183 size_t DestLaneCount = VecT.getVectorNumElements();
2184 size_t Scale1 = 1;
2185 size_t Scale2 = 1;
2186 SDValue Src1 = ShuffleSrc1;
2187 SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
2188 if (Src1.getValueType() != VecT) {
2189 size_t LaneSize =
2190 Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2191 assert(LaneSize > DestLaneSize);
2192 Scale1 = LaneSize / DestLaneSize;
2193 Src1 = DAG.getBitcast(VecT, Src1);
2195 if (Src2.getValueType() != VecT) {
2196 size_t LaneSize =
2197 Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2198 assert(LaneSize > DestLaneSize);
2199 Scale2 = LaneSize / DestLaneSize;
2200 Src2 = DAG.getBitcast(VecT, Src2);
2203 int Mask[16];
2204 assert(DestLaneCount <= 16);
2205 for (size_t I = 0; I < DestLaneCount; ++I) {
2206 const SDValue &Lane = Op->getOperand(I);
2207 SDValue Src = GetShuffleSrc(Lane);
2208 if (Src == ShuffleSrc1) {
2209 Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
2210 } else if (Src && Src == ShuffleSrc2) {
2211 Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
2212 } else {
2213 Mask[I] = -1;
2216 ArrayRef<int> MaskRef(Mask, DestLaneCount);
2217 Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
2218 IsLaneConstructed = [&](size_t, const SDValue &Lane) {
2219 auto Src = GetShuffleSrc(Lane);
2220 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2222 } else if (NumConstantLanes >= NumSplatLanes) {
2223 SmallVector<SDValue, 16> ConstLanes;
2224 for (const SDValue &Lane : Op->op_values()) {
2225 if (IsConstant(Lane)) {
2226 // Values may need to be fixed so that they will sign extend to be
2227 // within the expected range during ISel. Check whether the value is in
2228 // bounds based on the lane bit width and if it is out of bounds, lop
2229 // off the extra bits and subtract 2^n to reflect giving the high bit
2230 // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
2231 // cannot possibly be out of range.
2232 auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
2233 int64_t Val = Const ? Const->getSExtValue() : 0;
2234 uint64_t LaneBits = 128 / Lanes;
2235 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2236 "Unexpected out of bounds negative value");
2237 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2238 auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits);
2239 ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
2240 } else {
2241 ConstLanes.push_back(Lane);
2243 } else if (LaneT.isFloatingPoint()) {
2244 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2245 } else {
2246 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2249 Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2250 IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2251 return IsConstant(Lane);
2253 } else {
2254 // Use a splat, but possibly a load_splat
2255 LoadSDNode *SplattedLoad;
2256 if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
2257 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
2258 Result = DAG.getMemIntrinsicNode(
2259 WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
2260 {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
2261 SplattedLoad->getOffset()},
2262 SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
2263 } else {
2264 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2266 IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2267 return Lane == SplatValue;
2271 assert(Result);
2272 assert(IsLaneConstructed);
2274 // Add replace_lane instructions for any unhandled values
2275 for (size_t I = 0; I < Lanes; ++I) {
2276 const SDValue &Lane = Op->getOperand(I);
2277 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2278 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2279 DAG.getConstant(I, DL, MVT::i32));
2282 return Result;
2285 SDValue
2286 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2287 SelectionDAG &DAG) const {
2288 SDLoc DL(Op);
2289 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2290 MVT VecType = Op.getOperand(0).getSimpleValueType();
2291 assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2292 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2294 // Space for two vector args and sixteen mask indices
2295 SDValue Ops[18];
2296 size_t OpIdx = 0;
2297 Ops[OpIdx++] = Op.getOperand(0);
2298 Ops[OpIdx++] = Op.getOperand(1);
2300 // Expand mask indices to byte indices and materialize them as operands
2301 for (int M : Mask) {
2302 for (size_t J = 0; J < LaneBytes; ++J) {
2303 // Lower undefs (represented by -1 in mask) to zero
2304 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
2305 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2309 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2312 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2313 SelectionDAG &DAG) const {
2314 SDLoc DL(Op);
2315 // The legalizer does not know how to expand the unsupported comparison modes
2316 // of i64x2 vectors, so we manually unroll them here.
2317 assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2318 SmallVector<SDValue, 2> LHS, RHS;
2319 DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2320 DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2321 const SDValue &CC = Op->getOperand(2);
2322 auto MakeLane = [&](unsigned I) {
2323 return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2324 DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2325 DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2327 return DAG.getBuildVector(Op->getValueType(0), DL,
2328 {MakeLane(0), MakeLane(1)});
2331 SDValue
2332 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2333 SelectionDAG &DAG) const {
2334 // Allow constant lane indices, expand variable lane indices
2335 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2336 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
2337 return Op;
2338 else
2339 // Perform default expansion
2340 return SDValue();
2343 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2344 EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2345 // 32-bit and 64-bit unrolled shifts will have proper semantics
2346 if (LaneT.bitsGE(MVT::i32))
2347 return DAG.UnrollVectorOp(Op.getNode());
2348 // Otherwise mask the shift value to get proper semantics from 32-bit shift
2349 SDLoc DL(Op);
2350 size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2351 SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2352 unsigned ShiftOpcode = Op.getOpcode();
2353 SmallVector<SDValue, 16> ShiftedElements;
2354 DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2355 SmallVector<SDValue, 16> ShiftElements;
2356 DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2357 SmallVector<SDValue, 16> UnrolledOps;
2358 for (size_t i = 0; i < NumLanes; ++i) {
2359 SDValue MaskedShiftValue =
2360 DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2361 SDValue ShiftedValue = ShiftedElements[i];
2362 if (ShiftOpcode == ISD::SRA)
2363 ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2364 ShiftedValue, DAG.getValueType(LaneT));
2365 UnrolledOps.push_back(
2366 DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2368 return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2371 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2372 SelectionDAG &DAG) const {
2373 SDLoc DL(Op);
2375 // Only manually lower vector shifts
2376 assert(Op.getSimpleValueType().isVector());
2378 auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
2379 if (!ShiftVal)
2380 return unrollVectorShift(Op, DAG);
2382 // Use anyext because none of the high bits can affect the shift
2383 ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2385 unsigned Opcode;
2386 switch (Op.getOpcode()) {
2387 case ISD::SHL:
2388 Opcode = WebAssemblyISD::VEC_SHL;
2389 break;
2390 case ISD::SRA:
2391 Opcode = WebAssemblyISD::VEC_SHR_S;
2392 break;
2393 case ISD::SRL:
2394 Opcode = WebAssemblyISD::VEC_SHR_U;
2395 break;
2396 default:
2397 llvm_unreachable("unexpected opcode");
2400 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2403 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2404 SelectionDAG &DAG) const {
2405 SDLoc DL(Op);
2406 EVT ResT = Op.getValueType();
2407 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2409 if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2410 (SatVT == MVT::i32 || SatVT == MVT::i64))
2411 return Op;
2413 if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2414 return Op;
2416 return SDValue();
2419 //===----------------------------------------------------------------------===//
2420 // Custom DAG combine hooks
2421 //===----------------------------------------------------------------------===//
2422 static SDValue
2423 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2424 auto &DAG = DCI.DAG;
2425 auto Shuffle = cast<ShuffleVectorSDNode>(N);
2427 // Hoist vector bitcasts that don't change the number of lanes out of unary
2428 // shuffles, where they are less likely to get in the way of other combines.
2429 // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2430 // (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2431 SDValue Bitcast = N->getOperand(0);
2432 if (Bitcast.getOpcode() != ISD::BITCAST)
2433 return SDValue();
2434 if (!N->getOperand(1).isUndef())
2435 return SDValue();
2436 SDValue CastOp = Bitcast.getOperand(0);
2437 MVT SrcType = CastOp.getSimpleValueType();
2438 MVT DstType = Bitcast.getSimpleValueType();
2439 if (!SrcType.is128BitVector() ||
2440 SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2441 return SDValue();
2442 SDValue NewShuffle = DAG.getVectorShuffle(
2443 SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2444 return DAG.getBitcast(DstType, NewShuffle);
2447 static SDValue
2448 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2449 auto &DAG = DCI.DAG;
2450 assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2451 N->getOpcode() == ISD::ZERO_EXTEND);
2453 // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2454 // possible before the extract_subvector can be expanded.
2455 auto Extract = N->getOperand(0);
2456 if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2457 return SDValue();
2458 auto Source = Extract.getOperand(0);
2459 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2460 if (IndexNode == nullptr)
2461 return SDValue();
2462 auto Index = IndexNode->getZExtValue();
2464 // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2465 // extracted subvector is the low or high half of its source.
2466 EVT ResVT = N->getValueType(0);
2467 if (ResVT == MVT::v8i16) {
2468 if (Extract.getValueType() != MVT::v8i8 ||
2469 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2470 return SDValue();
2471 } else if (ResVT == MVT::v4i32) {
2472 if (Extract.getValueType() != MVT::v4i16 ||
2473 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2474 return SDValue();
2475 } else if (ResVT == MVT::v2i64) {
2476 if (Extract.getValueType() != MVT::v2i32 ||
2477 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2478 return SDValue();
2479 } else {
2480 return SDValue();
2483 bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2484 bool IsLow = Index == 0;
2486 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2487 : WebAssemblyISD::EXTEND_HIGH_S)
2488 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2489 : WebAssemblyISD::EXTEND_HIGH_U);
2491 return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2494 static SDValue
2495 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2496 auto &DAG = DCI.DAG;
2498 auto GetWasmConversionOp = [](unsigned Op) {
2499 switch (Op) {
2500 case ISD::FP_TO_SINT_SAT:
2501 return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2502 case ISD::FP_TO_UINT_SAT:
2503 return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2504 case ISD::FP_ROUND:
2505 return WebAssemblyISD::DEMOTE_ZERO;
2507 llvm_unreachable("unexpected op");
2510 auto IsZeroSplat = [](SDValue SplatVal) {
2511 auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2512 APInt SplatValue, SplatUndef;
2513 unsigned SplatBitSize;
2514 bool HasAnyUndefs;
2515 return Splat &&
2516 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2517 HasAnyUndefs) &&
2518 SplatValue == 0;
2521 if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2522 // Combine this:
2524 // (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2526 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2528 // Or this:
2530 // (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2532 // into (f32x4.demote_zero_f64x2 $x).
2533 EVT ResVT;
2534 EVT ExpectedConversionType;
2535 auto Conversion = N->getOperand(0);
2536 auto ConversionOp = Conversion.getOpcode();
2537 switch (ConversionOp) {
2538 case ISD::FP_TO_SINT_SAT:
2539 case ISD::FP_TO_UINT_SAT:
2540 ResVT = MVT::v4i32;
2541 ExpectedConversionType = MVT::v2i32;
2542 break;
2543 case ISD::FP_ROUND:
2544 ResVT = MVT::v4f32;
2545 ExpectedConversionType = MVT::v2f32;
2546 break;
2547 default:
2548 return SDValue();
2551 if (N->getValueType(0) != ResVT)
2552 return SDValue();
2554 if (Conversion.getValueType() != ExpectedConversionType)
2555 return SDValue();
2557 auto Source = Conversion.getOperand(0);
2558 if (Source.getValueType() != MVT::v2f64)
2559 return SDValue();
2561 if (!IsZeroSplat(N->getOperand(1)) ||
2562 N->getOperand(1).getValueType() != ExpectedConversionType)
2563 return SDValue();
2565 unsigned Op = GetWasmConversionOp(ConversionOp);
2566 return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2569 // Combine this:
2571 // (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2573 // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2575 // Or this:
2577 // (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2579 // into (f32x4.demote_zero_f64x2 $x).
2580 EVT ResVT;
2581 auto ConversionOp = N->getOpcode();
2582 switch (ConversionOp) {
2583 case ISD::FP_TO_SINT_SAT:
2584 case ISD::FP_TO_UINT_SAT:
2585 ResVT = MVT::v4i32;
2586 break;
2587 case ISD::FP_ROUND:
2588 ResVT = MVT::v4f32;
2589 break;
2590 default:
2591 llvm_unreachable("unexpected op");
2594 if (N->getValueType(0) != ResVT)
2595 return SDValue();
2597 auto Concat = N->getOperand(0);
2598 if (Concat.getValueType() != MVT::v4f64)
2599 return SDValue();
2601 auto Source = Concat.getOperand(0);
2602 if (Source.getValueType() != MVT::v2f64)
2603 return SDValue();
2605 if (!IsZeroSplat(Concat.getOperand(1)) ||
2606 Concat.getOperand(1).getValueType() != MVT::v2f64)
2607 return SDValue();
2609 unsigned Op = GetWasmConversionOp(ConversionOp);
2610 return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2613 // Helper to extract VectorWidth bits from Vec, starting from IdxVal.
2614 static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
2615 const SDLoc &DL, unsigned VectorWidth) {
2616 EVT VT = Vec.getValueType();
2617 EVT ElVT = VT.getVectorElementType();
2618 unsigned Factor = VT.getSizeInBits() / VectorWidth;
2619 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
2620 VT.getVectorNumElements() / Factor);
2622 // Extract the relevant VectorWidth bits. Generate an EXTRACT_SUBVECTOR
2623 unsigned ElemsPerChunk = VectorWidth / ElVT.getSizeInBits();
2624 assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
2626 // This is the index of the first element of the VectorWidth-bit chunk
2627 // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
2628 IdxVal &= ~(ElemsPerChunk - 1);
2630 // If the input is a buildvector just emit a smaller one.
2631 if (Vec.getOpcode() == ISD::BUILD_VECTOR)
2632 return DAG.getBuildVector(ResultVT, DL,
2633 Vec->ops().slice(IdxVal, ElemsPerChunk));
2635 SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, DL);
2636 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, VecIdx);
2639 // Helper to recursively truncate vector elements in half with NARROW_U. DstVT
2640 // is the expected destination value type after recursion. In is the initial
2641 // input. Note that the input should have enough leading zero bits to prevent
2642 // NARROW_U from saturating results.
2643 static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL,
2644 SelectionDAG &DAG) {
2645 EVT SrcVT = In.getValueType();
2647 // No truncation required, we might get here due to recursive calls.
2648 if (SrcVT == DstVT)
2649 return In;
2651 unsigned SrcSizeInBits = SrcVT.getSizeInBits();
2652 unsigned NumElems = SrcVT.getVectorNumElements();
2653 if (!isPowerOf2_32(NumElems))
2654 return SDValue();
2655 assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
2656 assert(SrcSizeInBits > DstVT.getSizeInBits() && "Illegal truncation");
2658 LLVMContext &Ctx = *DAG.getContext();
2659 EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
2661 // Narrow to the largest type possible:
2662 // vXi64/vXi32 -> i16x8.narrow_i32x4_u and vXi16 -> i8x16.narrow_i16x8_u.
2663 EVT InVT = MVT::i16, OutVT = MVT::i8;
2664 if (SrcVT.getScalarSizeInBits() > 16) {
2665 InVT = MVT::i32;
2666 OutVT = MVT::i16;
2668 unsigned SubSizeInBits = SrcSizeInBits / 2;
2669 InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
2670 OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
2672 // Split lower/upper subvectors.
2673 SDValue Lo = extractSubVector(In, 0, DAG, DL, SubSizeInBits);
2674 SDValue Hi = extractSubVector(In, NumElems / 2, DAG, DL, SubSizeInBits);
2676 // 256bit -> 128bit truncate - Narrow lower/upper 128-bit subvectors.
2677 if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
2678 Lo = DAG.getBitcast(InVT, Lo);
2679 Hi = DAG.getBitcast(InVT, Hi);
2680 SDValue Res = DAG.getNode(WebAssemblyISD::NARROW_U, DL, OutVT, Lo, Hi);
2681 return DAG.getBitcast(DstVT, Res);
2684 // Recursively narrow lower/upper subvectors, concat result and narrow again.
2685 EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems / 2);
2686 Lo = truncateVectorWithNARROW(PackedVT, Lo, DL, DAG);
2687 Hi = truncateVectorWithNARROW(PackedVT, Hi, DL, DAG);
2689 PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
2690 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
2691 return truncateVectorWithNARROW(DstVT, Res, DL, DAG);
2694 static SDValue performTruncateCombine(SDNode *N,
2695 TargetLowering::DAGCombinerInfo &DCI) {
2696 auto &DAG = DCI.DAG;
2698 SDValue In = N->getOperand(0);
2699 EVT InVT = In.getValueType();
2700 if (!InVT.isSimple())
2701 return SDValue();
2703 EVT OutVT = N->getValueType(0);
2704 if (!OutVT.isVector())
2705 return SDValue();
2707 EVT OutSVT = OutVT.getVectorElementType();
2708 EVT InSVT = InVT.getVectorElementType();
2709 // Currently only cover truncate to v16i8 or v8i16.
2710 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
2711 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.is128BitVector()))
2712 return SDValue();
2714 SDLoc DL(N);
2715 APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
2716 OutVT.getScalarSizeInBits());
2717 In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
2718 return truncateVectorWithNARROW(OutVT, In, DL, DAG);
2721 SDValue
2722 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2723 DAGCombinerInfo &DCI) const {
2724 switch (N->getOpcode()) {
2725 default:
2726 return SDValue();
2727 case ISD::VECTOR_SHUFFLE:
2728 return performVECTOR_SHUFFLECombine(N, DCI);
2729 case ISD::SIGN_EXTEND:
2730 case ISD::ZERO_EXTEND:
2731 return performVectorExtendCombine(N, DCI);
2732 case ISD::FP_TO_SINT_SAT:
2733 case ISD::FP_TO_UINT_SAT:
2734 case ISD::FP_ROUND:
2735 case ISD::CONCAT_VECTORS:
2736 return performVectorTruncZeroCombine(N, DCI);
2737 case ISD::TRUNCATE:
2738 return performTruncateCombine(N, DCI);