1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements a pass that converts X86 cmov instructions into
11 /// branches when profitable. This pass is conservative. It transforms if and
12 /// only if it can guarantee a gain with high confidence.
14 /// Thus, the optimization applies under the following conditions:
15 /// 1. Consider as candidates only CMOVs in innermost loops (assume that
16 /// most hotspots are represented by these loops).
17 /// 2. Given a group of CMOV instructions that are using the same EFLAGS def
19 /// a. Consider them as candidates only if all have the same code condition
20 /// or the opposite one to prevent generating more than one conditional
21 /// jump per EFLAGS def instruction.
22 /// b. Consider them as candidates only if all are profitable to be
23 /// converted (assume that one bad conversion may cause a degradation).
24 /// 3. Apply conversion only for loops that are found profitable and only for
25 /// CMOV candidates that were found profitable.
26 /// a. A loop is considered profitable only if conversion will reduce its
27 /// depth cost by some threshold.
28 /// b. CMOV is considered profitable if the cost of its condition is higher
29 /// than the average cost of its true-value and false-value by 25% of
30 /// branch-misprediction-penalty. This assures no degradation even with
31 /// 25% branch misprediction.
33 /// Note: This pass is assumed to run on SSA machine code.
35 //===----------------------------------------------------------------------===//
37 // External interfaces:
38 // FunctionPass *llvm::createX86CmovConverterPass();
39 // bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
41 //===----------------------------------------------------------------------===//
44 #include "X86InstrInfo.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/STLExtras.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/CodeGen/MachineBasicBlock.h"
52 #include "llvm/CodeGen/MachineFunction.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineInstr.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineLoopInfo.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSchedule.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/MC/MCSchedule.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/CGPassBuilderOption.h"
78 #define DEBUG_TYPE "x86-cmov-conversion"
80 STATISTIC(NumOfSkippedCmovGroups
, "Number of unsupported CMOV-groups");
81 STATISTIC(NumOfCmovGroupCandidate
, "Number of CMOV-group candidates");
82 STATISTIC(NumOfLoopCandidate
, "Number of CMOV-conversion profitable loops");
83 STATISTIC(NumOfOptimizedCmovGroups
, "Number of optimized CMOV-groups");
85 // This internal switch can be used to turn off the cmov/branch optimization.
87 EnableCmovConverter("x86-cmov-converter",
88 cl::desc("Enable the X86 cmov-to-branch optimization."),
89 cl::init(true), cl::Hidden
);
91 static cl::opt
<unsigned>
92 GainCycleThreshold("x86-cmov-converter-threshold",
93 cl::desc("Minimum gain per loop (in cycles) threshold."),
94 cl::init(4), cl::Hidden
);
96 static cl::opt
<bool> ForceMemOperand(
97 "x86-cmov-converter-force-mem-operand",
98 cl::desc("Convert cmovs to branches whenever they have memory operands."),
99 cl::init(true), cl::Hidden
);
101 static cl::opt
<bool> ForceAll(
102 "x86-cmov-converter-force-all",
103 cl::desc("Convert all cmovs to branches."),
104 cl::init(false), cl::Hidden
);
108 /// Converts X86 cmov instructions into branches when profitable.
109 class X86CmovConverterPass
: public MachineFunctionPass
{
111 X86CmovConverterPass() : MachineFunctionPass(ID
) { }
113 StringRef
getPassName() const override
{ return "X86 cmov Conversion"; }
114 bool runOnMachineFunction(MachineFunction
&MF
) override
;
115 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
117 /// Pass identification, replacement for typeid.
121 MachineRegisterInfo
*MRI
= nullptr;
122 const TargetInstrInfo
*TII
= nullptr;
123 const TargetRegisterInfo
*TRI
= nullptr;
124 MachineLoopInfo
*MLI
= nullptr;
125 TargetSchedModel TSchedModel
;
127 /// List of consecutive CMOV instructions.
128 using CmovGroup
= SmallVector
<MachineInstr
*, 2>;
129 using CmovGroups
= SmallVector
<CmovGroup
, 2>;
131 /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
132 /// CmovInstGroups accordingly.
134 /// \param Blocks List of blocks to process.
135 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
136 /// \returns true iff it found any CMOV-group-candidate.
137 bool collectCmovCandidates(ArrayRef
<MachineBasicBlock
*> Blocks
,
138 CmovGroups
&CmovInstGroups
,
139 bool IncludeLoads
= false);
141 /// Check if it is profitable to transform each CMOV-group-candidates into
142 /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
144 /// \param Blocks List of blocks to process.
145 /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
146 /// \returns true iff any CMOV-group-candidate remain.
147 bool checkForProfitableCmovCandidates(ArrayRef
<MachineBasicBlock
*> Blocks
,
148 CmovGroups
&CmovInstGroups
);
150 /// Convert the given list of consecutive CMOV instructions into a branch.
152 /// \param Group Consecutive CMOV instructions to be converted into branch.
153 void convertCmovInstsToBranches(SmallVectorImpl
<MachineInstr
*> &Group
) const;
156 } // end anonymous namespace
158 char X86CmovConverterPass::ID
= 0;
160 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
161 MachineFunctionPass::getAnalysisUsage(AU
);
162 AU
.addRequired
<MachineLoopInfo
>();
165 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction
&MF
) {
166 if (skipFunction(MF
.getFunction()))
168 if (!EnableCmovConverter
)
171 // If the SelectOptimize pass is enabled, cmovs have already been optimized.
172 if (!getCGPassBuilderOption().DisableSelectOptimize
)
175 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF
.getName()
178 bool Changed
= false;
179 MLI
= &getAnalysis
<MachineLoopInfo
>();
180 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
181 MRI
= &MF
.getRegInfo();
182 TII
= STI
.getInstrInfo();
183 TRI
= STI
.getRegisterInfo();
184 TSchedModel
.init(&STI
);
186 // Before we handle the more subtle cases of register-register CMOVs inside
187 // of potentially hot loops, we want to quickly remove all CMOVs (ForceAll) or
188 // the ones with a memory operand (ForceMemOperand option). The latter CMOV
189 // will risk a stall waiting for the load to complete that speculative
190 // execution behind a branch is better suited to handle on modern x86 chips.
191 if (ForceMemOperand
|| ForceAll
) {
192 CmovGroups AllCmovGroups
;
193 SmallVector
<MachineBasicBlock
*, 4> Blocks
;
195 Blocks
.push_back(&MBB
);
196 if (collectCmovCandidates(Blocks
, AllCmovGroups
, /*IncludeLoads*/ true)) {
197 for (auto &Group
: AllCmovGroups
) {
198 // Skip any group that doesn't do at least one memory operand cmov.
199 if (ForceMemOperand
&& !ForceAll
&&
200 llvm::none_of(Group
, [&](MachineInstr
*I
) { return I
->mayLoad(); }))
203 // For CMOV groups which we can rewrite and which contain a memory load,
204 // always rewrite them. On x86, a CMOV will dramatically amplify any
205 // memory latency by blocking speculative execution.
207 convertCmovInstsToBranches(Group
);
210 // Early return as ForceAll converts all CmovGroups.
215 //===--------------------------------------------------------------------===//
216 // Register-operand Conversion Algorithm
218 // For each innermost loop
219 // collectCmovCandidates() {
220 // Find all CMOV-group-candidates.
223 // checkForProfitableCmovCandidates() {
224 // * Calculate both loop-depth and optimized-loop-depth.
225 // * Use these depth to check for loop transformation profitability.
226 // * Check for CMOV-group-candidate transformation profitability.
229 // For each profitable CMOV-group-candidate
230 // convertCmovInstsToBranches() {
231 // * Create FalseBB, SinkBB, Conditional branch to SinkBB.
232 // * Replace each CMOV instruction with a PHI instruction in SinkBB.
235 // Note: For more details, see each function description.
236 //===--------------------------------------------------------------------===//
238 // Build up the loops in pre-order.
239 SmallVector
<MachineLoop
*, 4> Loops(MLI
->begin(), MLI
->end());
240 // Note that we need to check size on each iteration as we accumulate child
242 for (int i
= 0; i
< (int)Loops
.size(); ++i
)
243 for (MachineLoop
*Child
: Loops
[i
]->getSubLoops())
244 Loops
.push_back(Child
);
246 for (MachineLoop
*CurrLoop
: Loops
) {
247 // Optimize only innermost loops.
248 if (!CurrLoop
->getSubLoops().empty())
251 // List of consecutive CMOV instructions to be processed.
252 CmovGroups CmovInstGroups
;
254 if (!collectCmovCandidates(CurrLoop
->getBlocks(), CmovInstGroups
))
257 if (!checkForProfitableCmovCandidates(CurrLoop
->getBlocks(),
262 for (auto &Group
: CmovInstGroups
)
263 convertCmovInstsToBranches(Group
);
269 bool X86CmovConverterPass::collectCmovCandidates(
270 ArrayRef
<MachineBasicBlock
*> Blocks
, CmovGroups
&CmovInstGroups
,
272 //===--------------------------------------------------------------------===//
273 // Collect all CMOV-group-candidates and add them into CmovInstGroups.
276 // CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
278 // CMOV-group-candidate:
279 // CMOV-group where all the CMOV instructions are
281 // 2. have same condition code or opposite one.
282 // 3. have only operand registers (X86::CMOVrr).
283 //===--------------------------------------------------------------------===//
284 // List of possible improvement (TODO's):
285 // --------------------------------------
286 // TODO: Add support for X86::CMOVrm instructions.
287 // TODO: Add support for X86::SETcc instructions.
288 // TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
289 //===--------------------------------------------------------------------===//
291 // Current processed CMOV-Group.
293 for (auto *MBB
: Blocks
) {
295 // Condition code of first CMOV instruction current processed range and its
296 // opposite condition code.
297 X86::CondCode FirstCC
= X86::COND_INVALID
, FirstOppCC
= X86::COND_INVALID
,
298 MemOpCC
= X86::COND_INVALID
;
299 // Indicator of a non CMOVrr instruction in the current processed range.
300 bool FoundNonCMOVInst
= false;
301 // Indicator for current processed CMOV-group if it should be skipped.
302 bool SkipGroup
= false;
304 for (auto &I
: *MBB
) {
305 // Skip debug instructions.
306 if (I
.isDebugInstr())
309 X86::CondCode CC
= X86::getCondFromCMov(I
);
310 // Check if we found a X86::CMOVrr instruction. If it is marked as
311 // unpredictable, skip it and do not convert it to branch.
312 if (CC
!= X86::COND_INVALID
&&
313 !I
.getFlag(MachineInstr::MIFlag::Unpredictable
) &&
314 (IncludeLoads
|| !I
.mayLoad())) {
316 // We found first CMOV in the range, reset flags.
318 FirstOppCC
= X86::GetOppositeBranchCondition(CC
);
319 // Clear out the prior group's memory operand CC.
320 MemOpCC
= X86::COND_INVALID
;
321 FoundNonCMOVInst
= false;
325 // Check if it is a non-consecutive CMOV instruction or it has different
326 // condition code than FirstCC or FirstOppCC.
327 if (FoundNonCMOVInst
|| (CC
!= FirstCC
&& CC
!= FirstOppCC
))
328 // Mark the SKipGroup indicator to skip current processed CMOV-Group.
331 if (MemOpCC
== X86::COND_INVALID
)
332 // The first memory operand CMOV.
334 else if (CC
!= MemOpCC
)
335 // Can't handle mixed conditions with memory operands.
338 // Check if we were relying on zero-extending behavior of the CMOV.
341 MRI
->use_nodbg_instructions(I
.defs().begin()->getReg()),
342 [&](MachineInstr
&UseI
) {
343 return UseI
.getOpcode() == X86::SUBREG_TO_REG
;
345 // FIXME: We should model the cost of using an explicit MOV to handle
346 // the zero-extension rather than just refusing to handle this.
350 // If Group is empty, keep looking for first CMOV in the range.
354 // We found a non X86::CMOVrr instruction.
355 FoundNonCMOVInst
= true;
356 // Check if this instruction define EFLAGS, to determine end of processed
357 // range, as there would be no more instructions using current EFLAGS def.
358 if (I
.definesRegister(X86::EFLAGS
)) {
359 // Check if current processed CMOV-group should not be skipped and add
360 // it as a CMOV-group-candidate.
362 CmovInstGroups
.push_back(Group
);
364 ++NumOfSkippedCmovGroups
;
368 // End of basic block is considered end of range, check if current processed
369 // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
373 CmovInstGroups
.push_back(Group
);
375 ++NumOfSkippedCmovGroups
;
378 NumOfCmovGroupCandidate
+= CmovInstGroups
.size();
379 return !CmovInstGroups
.empty();
382 /// \returns Depth of CMOV instruction as if it was converted into branch.
383 /// \param TrueOpDepth depth cost of CMOV true value operand.
384 /// \param FalseOpDepth depth cost of CMOV false value operand.
385 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth
, unsigned FalseOpDepth
) {
386 // The depth of the result after branch conversion is
387 // TrueOpDepth * TrueOpProbability + FalseOpDepth * FalseOpProbability.
388 // As we have no info about branch weight, we assume 75% for one and 25% for
389 // the other, and pick the result with the largest resulting depth.
391 divideCeil(TrueOpDepth
* 3 + FalseOpDepth
, 4),
392 divideCeil(FalseOpDepth
* 3 + TrueOpDepth
, 4));
395 bool X86CmovConverterPass::checkForProfitableCmovCandidates(
396 ArrayRef
<MachineBasicBlock
*> Blocks
, CmovGroups
&CmovInstGroups
) {
398 /// Depth of original loop.
400 /// Depth of optimized loop.
403 /// Number of loop iterations to calculate depth for ?!
404 static const unsigned LoopIterations
= 2;
405 DenseMap
<MachineInstr
*, DepthInfo
> DepthMap
;
406 DepthInfo LoopDepth
[LoopIterations
] = {{0, 0}, {0, 0}};
407 enum { PhyRegType
= 0, VirRegType
= 1, RegTypeNum
= 2 };
408 /// For each register type maps the register to its last def instruction.
409 DenseMap
<unsigned, MachineInstr
*> RegDefMaps
[RegTypeNum
];
410 /// Maps register operand to its def instruction, which can be nullptr if it
411 /// is unknown (e.g., operand is defined outside the loop).
412 DenseMap
<MachineOperand
*, MachineInstr
*> OperandToDefMap
;
414 // Set depth of unknown instruction (i.e., nullptr) to zero.
415 DepthMap
[nullptr] = {0, 0};
417 SmallPtrSet
<MachineInstr
*, 4> CmovInstructions
;
418 for (auto &Group
: CmovInstGroups
)
419 CmovInstructions
.insert(Group
.begin(), Group
.end());
421 //===--------------------------------------------------------------------===//
422 // Step 1: Calculate instruction depth and loop depth.
424 // loop with CMOV-group-candidates converted into branches.
426 // Instruction-Depth:
427 // instruction latency + max operand depth.
428 // * For CMOV instruction in optimized loop the depth is calculated as:
429 // CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
430 // TODO: Find a better way to estimate the latency of the branch instruction
431 // rather than using the CMOV latency.
434 // max instruction depth of all instructions in the loop.
435 // Note: instruction with max depth represents the critical-path in the loop.
438 // Loop-Depth calculated for first `i` iterations.
439 // Note: it is enough to calculate depth for up to two iterations.
442 // Number of cycles saved in first 'i` iterations by optimizing the loop.
443 //===--------------------------------------------------------------------===//
444 for (DepthInfo
&MaxDepth
: LoopDepth
) {
445 for (auto *MBB
: Blocks
) {
446 // Clear physical registers Def map.
447 RegDefMaps
[PhyRegType
].clear();
448 for (MachineInstr
&MI
: *MBB
) {
449 // Skip debug instructions.
450 if (MI
.isDebugInstr())
452 unsigned MIDepth
= 0;
453 unsigned MIDepthOpt
= 0;
454 bool IsCMOV
= CmovInstructions
.count(&MI
);
455 for (auto &MO
: MI
.uses()) {
456 // Checks for "isUse()" as "uses()" returns also implicit definitions.
457 if (!MO
.isReg() || !MO
.isUse())
459 Register Reg
= MO
.getReg();
460 auto &RDM
= RegDefMaps
[Reg
.isVirtual()];
461 if (MachineInstr
*DefMI
= RDM
.lookup(Reg
)) {
462 OperandToDefMap
[&MO
] = DefMI
;
463 DepthInfo Info
= DepthMap
.lookup(DefMI
);
464 MIDepth
= std::max(MIDepth
, Info
.Depth
);
466 MIDepthOpt
= std::max(MIDepthOpt
, Info
.OptDepth
);
471 MIDepthOpt
= getDepthOfOptCmov(
472 DepthMap
[OperandToDefMap
.lookup(&MI
.getOperand(1))].OptDepth
,
473 DepthMap
[OperandToDefMap
.lookup(&MI
.getOperand(2))].OptDepth
);
475 // Iterates over all operands to handle implicit definitions as well.
476 for (auto &MO
: MI
.operands()) {
477 if (!MO
.isReg() || !MO
.isDef())
479 Register Reg
= MO
.getReg();
480 RegDefMaps
[Reg
.isVirtual()][Reg
] = &MI
;
483 unsigned Latency
= TSchedModel
.computeInstrLatency(&MI
);
484 DepthMap
[&MI
] = {MIDepth
+= Latency
, MIDepthOpt
+= Latency
};
485 MaxDepth
.Depth
= std::max(MaxDepth
.Depth
, MIDepth
);
486 MaxDepth
.OptDepth
= std::max(MaxDepth
.OptDepth
, MIDepthOpt
);
491 unsigned Diff
[LoopIterations
] = {LoopDepth
[0].Depth
- LoopDepth
[0].OptDepth
,
492 LoopDepth
[1].Depth
- LoopDepth
[1].OptDepth
};
494 //===--------------------------------------------------------------------===//
495 // Step 2: Check if Loop worth to be optimized.
496 // Worth-Optimize-Loop:
497 // case 1: Diff[1] == Diff[0]
498 // Critical-path is iteration independent - there is no dependency
499 // of critical-path instructions on critical-path instructions of
500 // previous iteration.
501 // Thus, it is enough to check gain percent of 1st iteration -
502 // To be conservative, the optimized loop need to have a depth of
503 // 12.5% cycles less than original loop, per iteration.
505 // case 2: Diff[1] > Diff[0]
506 // Critical-path is iteration dependent - there is dependency of
507 // critical-path instructions on critical-path instructions of
508 // previous iteration.
509 // Thus, check the gain percent of the 2nd iteration (similar to the
510 // previous case), but it is also required to check the gradient of
511 // the gain - the change in Depth-Diff compared to the change in
512 // Loop-Depth between 1st and 2nd iterations.
513 // To be conservative, the gradient need to be at least 50%.
515 // In addition, In order not to optimize loops with very small gain, the
516 // gain (in cycles) after 2nd iteration should not be less than a given
517 // threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
519 // If loop is not worth optimizing, remove all CMOV-group-candidates.
520 //===--------------------------------------------------------------------===//
521 if (Diff
[1] < GainCycleThreshold
)
524 bool WorthOptLoop
= false;
525 if (Diff
[1] == Diff
[0])
526 WorthOptLoop
= Diff
[0] * 8 >= LoopDepth
[0].Depth
;
527 else if (Diff
[1] > Diff
[0])
529 (Diff
[1] - Diff
[0]) * 2 >= (LoopDepth
[1].Depth
- LoopDepth
[0].Depth
) &&
530 (Diff
[1] * 8 >= LoopDepth
[1].Depth
);
535 ++NumOfLoopCandidate
;
537 //===--------------------------------------------------------------------===//
538 // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
539 // Worth-Optimize-Group:
540 // Iff it is worth to optimize all CMOV instructions in the group.
542 // Worth-Optimize-CMOV:
543 // Predicted branch is faster than CMOV by the difference between depth of
544 // condition operand and depth of taken (predicted) value operand.
545 // To be conservative, the gain of such CMOV transformation should cover at
546 // at least 25% of branch-misprediction-penalty.
547 //===--------------------------------------------------------------------===//
548 unsigned MispredictPenalty
= TSchedModel
.getMCSchedModel()->MispredictPenalty
;
549 CmovGroups TempGroups
;
550 std::swap(TempGroups
, CmovInstGroups
);
551 for (auto &Group
: TempGroups
) {
552 bool WorthOpGroup
= true;
553 for (auto *MI
: Group
) {
554 // Avoid CMOV instruction which value is used as a pointer to load from.
555 // This is another conservative check to avoid converting CMOV instruction
556 // used with tree-search like algorithm, where the branch is unpredicted.
557 auto UIs
= MRI
->use_instructions(MI
->defs().begin()->getReg());
558 if (!UIs
.empty() && ++UIs
.begin() == UIs
.end()) {
559 unsigned Op
= UIs
.begin()->getOpcode();
560 if (Op
== X86::MOV64rm
|| Op
== X86::MOV32rm
) {
561 WorthOpGroup
= false;
567 DepthMap
[OperandToDefMap
.lookup(&MI
->getOperand(4))].Depth
;
568 unsigned ValCost
= getDepthOfOptCmov(
569 DepthMap
[OperandToDefMap
.lookup(&MI
->getOperand(1))].Depth
,
570 DepthMap
[OperandToDefMap
.lookup(&MI
->getOperand(2))].Depth
);
571 if (ValCost
> CondCost
|| (CondCost
- ValCost
) * 4 < MispredictPenalty
) {
572 WorthOpGroup
= false;
578 CmovInstGroups
.push_back(Group
);
581 return !CmovInstGroups
.empty();
584 static bool checkEFLAGSLive(MachineInstr
*MI
) {
585 if (MI
->killsRegister(X86::EFLAGS
))
588 // The EFLAGS operand of MI might be missing a kill marker.
589 // Figure out whether EFLAGS operand should LIVE after MI instruction.
590 MachineBasicBlock
*BB
= MI
->getParent();
591 MachineBasicBlock::iterator ItrMI
= MI
;
593 // Scan forward through BB for a use/def of EFLAGS.
594 for (auto I
= std::next(ItrMI
), E
= BB
->end(); I
!= E
; ++I
) {
595 if (I
->readsRegister(X86::EFLAGS
))
597 if (I
->definesRegister(X86::EFLAGS
))
601 // We hit the end of the block, check whether EFLAGS is live into a successor.
602 for (MachineBasicBlock
*Succ
: BB
->successors())
603 if (Succ
->isLiveIn(X86::EFLAGS
))
609 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a
610 /// group of CMOV instructions, which may contain debug instructions in between,
611 /// move all debug instructions to after the last CMOV instruction, making the
612 /// CMOV group consecutive.
613 static void packCmovGroup(MachineInstr
*First
, MachineInstr
*Last
) {
614 assert(X86::getCondFromCMov(*Last
) != X86::COND_INVALID
&&
615 "Last instruction in a CMOV group must be a CMOV instruction");
617 SmallVector
<MachineInstr
*, 2> DBGInstructions
;
618 for (auto I
= First
->getIterator(), E
= Last
->getIterator(); I
!= E
; I
++) {
619 if (I
->isDebugInstr())
620 DBGInstructions
.push_back(&*I
);
623 // Splice the debug instruction after the cmov group.
624 MachineBasicBlock
*MBB
= First
->getParent();
625 for (auto *MI
: DBGInstructions
)
626 MBB
->insertAfter(Last
, MI
->removeFromParent());
629 void X86CmovConverterPass::convertCmovInstsToBranches(
630 SmallVectorImpl
<MachineInstr
*> &Group
) const {
631 assert(!Group
.empty() && "No CMOV instructions to convert");
632 ++NumOfOptimizedCmovGroups
;
634 // If the CMOV group is not packed, e.g., there are debug instructions between
635 // first CMOV and last CMOV, then pack the group and make the CMOV instruction
636 // consecutive by moving the debug instructions to after the last CMOV.
637 packCmovGroup(Group
.front(), Group
.back());
639 // To convert a CMOVcc instruction, we actually have to insert the diamond
640 // control-flow pattern. The incoming instruction knows the destination vreg
641 // to set, the condition code register to branch on, the true/false values to
642 // select between, and a branch opcode to use.
648 // v1 = CMOVge t1, f1, cond
649 // v2 = CMOVlt t2, f2, cond
650 // v3 = CMOVge v1, f3, cond
662 // %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
663 // %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
664 // ; true-value with false-value
665 // %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
666 // ; previous Phi instruction result
668 MachineInstr
&MI
= *Group
.front();
669 MachineInstr
*LastCMOV
= Group
.back();
670 DebugLoc DL
= MI
.getDebugLoc();
672 X86::CondCode CC
= X86::CondCode(X86::getCondFromCMov(MI
));
673 X86::CondCode OppCC
= X86::GetOppositeBranchCondition(CC
);
674 // Potentially swap the condition codes so that any memory operand to a CMOV
675 // is in the *false* position instead of the *true* position. We can invert
676 // any non-memory operand CMOV instructions to cope with this and we ensure
677 // memory operand CMOVs are only included with a single condition code.
678 if (llvm::any_of(Group
, [&](MachineInstr
*I
) {
679 return I
->mayLoad() && X86::getCondFromCMov(*I
) == CC
;
681 std::swap(CC
, OppCC
);
683 MachineBasicBlock
*MBB
= MI
.getParent();
684 MachineFunction::iterator It
= ++MBB
->getIterator();
685 MachineFunction
*F
= MBB
->getParent();
686 const BasicBlock
*BB
= MBB
->getBasicBlock();
688 MachineBasicBlock
*FalseMBB
= F
->CreateMachineBasicBlock(BB
);
689 MachineBasicBlock
*SinkMBB
= F
->CreateMachineBasicBlock(BB
);
690 F
->insert(It
, FalseMBB
);
691 F
->insert(It
, SinkMBB
);
693 // If the EFLAGS register isn't dead in the terminator, then claim that it's
694 // live into the sink and copy blocks.
695 if (checkEFLAGSLive(LastCMOV
)) {
696 FalseMBB
->addLiveIn(X86::EFLAGS
);
697 SinkMBB
->addLiveIn(X86::EFLAGS
);
700 // Transfer the remainder of BB and its successor edges to SinkMBB.
701 SinkMBB
->splice(SinkMBB
->begin(), MBB
,
702 std::next(MachineBasicBlock::iterator(LastCMOV
)), MBB
->end());
703 SinkMBB
->transferSuccessorsAndUpdatePHIs(MBB
);
705 // Add the false and sink blocks as its successors.
706 MBB
->addSuccessor(FalseMBB
);
707 MBB
->addSuccessor(SinkMBB
);
709 // Create the conditional branch instruction.
710 BuildMI(MBB
, DL
, TII
->get(X86::JCC_1
)).addMBB(SinkMBB
).addImm(CC
);
712 // Add the sink block to the false block successors.
713 FalseMBB
->addSuccessor(SinkMBB
);
715 MachineInstrBuilder MIB
;
716 MachineBasicBlock::iterator MIItBegin
= MachineBasicBlock::iterator(MI
);
717 MachineBasicBlock::iterator MIItEnd
=
718 std::next(MachineBasicBlock::iterator(LastCMOV
));
719 MachineBasicBlock::iterator FalseInsertionPoint
= FalseMBB
->begin();
720 MachineBasicBlock::iterator SinkInsertionPoint
= SinkMBB
->begin();
722 // First we need to insert an explicit load on the false path for any memory
723 // operand. We also need to potentially do register rewriting here, but it is
724 // simpler as the memory operands are always on the false path so we can
725 // simply take that input, whatever it is.
726 DenseMap
<unsigned, unsigned> FalseBBRegRewriteTable
;
727 for (MachineBasicBlock::iterator MIIt
= MIItBegin
; MIIt
!= MIItEnd
;) {
729 // Skip any CMOVs in this group which don't load from memory.
731 // Remember the false-side register input.
733 MI
.getOperand(X86::getCondFromCMov(MI
) == CC
? 1 : 2).getReg();
734 // Walk back through any intermediate cmovs referenced.
736 auto FRIt
= FalseBBRegRewriteTable
.find(FalseReg
);
737 if (FRIt
== FalseBBRegRewriteTable
.end())
739 FalseReg
= FRIt
->second
;
741 FalseBBRegRewriteTable
[MI
.getOperand(0).getReg()] = FalseReg
;
745 // The condition must be the *opposite* of the one we've decided to branch
746 // on as the branch will go *around* the load and the load should happen
747 // when the CMOV condition is false.
748 assert(X86::getCondFromCMov(MI
) == OppCC
&&
749 "Can only handle memory-operand cmov instructions with a condition "
750 "opposite to the selected branch direction.");
752 // The goal is to rewrite the cmov from:
755 // %A = CMOVcc %B (tied), (mem)
760 // %A = CMOVcc %B (tied), %C
764 // Which will allow the next loop to rewrite the CMOV in terms of a PHI:
771 // %A = PHI [ %C, FalseMBB ], [ %B, MBB]
773 // Get a fresh register to use as the destination of the MOV.
774 const TargetRegisterClass
*RC
= MRI
->getRegClass(MI
.getOperand(0).getReg());
775 Register TmpReg
= MRI
->createVirtualRegister(RC
);
777 // Retain debug instr number when unfolded.
778 unsigned OldDebugInstrNum
= MI
.peekDebugInstrNum();
779 SmallVector
<MachineInstr
*, 4> NewMIs
;
780 bool Unfolded
= TII
->unfoldMemoryOperand(*MBB
->getParent(), MI
, TmpReg
,
782 /*UnfoldStore*/ false, NewMIs
);
784 assert(Unfolded
&& "Should never fail to unfold a loading cmov!");
786 // Move the new CMOV to just before the old one and reset any impacted
788 auto *NewCMOV
= NewMIs
.pop_back_val();
789 assert(X86::getCondFromCMov(*NewCMOV
) == OppCC
&&
790 "Last new instruction isn't the expected CMOV!");
791 LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV
->dump());
792 MBB
->insert(MachineBasicBlock::iterator(MI
), NewCMOV
);
793 if (&*MIItBegin
== &MI
)
794 MIItBegin
= MachineBasicBlock::iterator(NewCMOV
);
796 if (OldDebugInstrNum
)
797 NewCMOV
->setDebugInstrNum(OldDebugInstrNum
);
799 // Sink whatever instructions were needed to produce the unfolded operand
800 // into the false block.
801 for (auto *NewMI
: NewMIs
) {
802 LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI
->dump());
803 FalseMBB
->insert(FalseInsertionPoint
, NewMI
);
804 // Re-map any operands that are from other cmovs to the inputs for this block.
805 for (auto &MOp
: NewMI
->uses()) {
808 auto It
= FalseBBRegRewriteTable
.find(MOp
.getReg());
809 if (It
== FalseBBRegRewriteTable
.end())
812 MOp
.setReg(It
->second
);
813 // This might have been a kill when it referenced the cmov result, but
814 // it won't necessarily be once rewritten.
815 // FIXME: We could potentially improve this by tracking whether the
816 // operand to the cmov was also a kill, and then skipping the PHI node
817 // construction below.
818 MOp
.setIsKill(false);
823 // Add this PHI to the rewrite table.
824 FalseBBRegRewriteTable
[NewCMOV
->getOperand(0).getReg()] = TmpReg
;
827 // As we are creating the PHIs, we have to be careful if there is more than
828 // one. Later CMOVs may reference the results of earlier CMOVs, but later
829 // PHIs have to reference the individual true/false inputs from earlier PHIs.
830 // That also means that PHI construction must work forward from earlier to
831 // later, and that the code must maintain a mapping from earlier PHI's
832 // destination registers, and the registers that went into the PHI.
833 DenseMap
<unsigned, std::pair
<unsigned, unsigned>> RegRewriteTable
;
835 for (MachineBasicBlock::iterator MIIt
= MIItBegin
; MIIt
!= MIItEnd
; ++MIIt
) {
836 Register DestReg
= MIIt
->getOperand(0).getReg();
837 Register Op1Reg
= MIIt
->getOperand(1).getReg();
838 Register Op2Reg
= MIIt
->getOperand(2).getReg();
840 // If this CMOV we are processing is the opposite condition from the jump we
841 // generated, then we have to swap the operands for the PHI that is going to
843 if (X86::getCondFromCMov(*MIIt
) == OppCC
)
844 std::swap(Op1Reg
, Op2Reg
);
846 auto Op1Itr
= RegRewriteTable
.find(Op1Reg
);
847 if (Op1Itr
!= RegRewriteTable
.end())
848 Op1Reg
= Op1Itr
->second
.first
;
850 auto Op2Itr
= RegRewriteTable
.find(Op2Reg
);
851 if (Op2Itr
!= RegRewriteTable
.end())
852 Op2Reg
= Op2Itr
->second
.second
;
855 // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
857 MIB
= BuildMI(*SinkMBB
, SinkInsertionPoint
, DL
, TII
->get(X86::PHI
), DestReg
)
863 LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt
->dump());
864 LLVM_DEBUG(dbgs() << "\tTo: "; MIB
->dump());
866 // debug-info: we can just copy the instr-ref number from one instruction
867 // to the other, seeing how it's a one-for-one substitution.
868 if (unsigned InstrNum
= MIIt
->peekDebugInstrNum())
869 MIB
->setDebugInstrNum(InstrNum
);
871 // Add this PHI to the rewrite table.
872 RegRewriteTable
[DestReg
] = std::make_pair(Op1Reg
, Op2Reg
);
875 // Reset the NoPHIs property if a PHI was inserted to prevent a conflict with
876 // the MachineVerifier during testing.
877 if (MIItBegin
!= MIItEnd
)
878 F
->getProperties().reset(MachineFunctionProperties::Property::NoPHIs
);
880 // Now remove the CMOV(s).
881 MBB
->erase(MIItBegin
, MIItEnd
);
883 // Add new basic blocks to MachineLoopInfo.
884 if (MachineLoop
*L
= MLI
->getLoopFor(MBB
)) {
885 L
->addBasicBlockToLoop(FalseMBB
, MLI
->getBase());
886 L
->addBasicBlockToLoop(SinkMBB
, MLI
->getBase());
890 INITIALIZE_PASS_BEGIN(X86CmovConverterPass
, DEBUG_TYPE
, "X86 cmov Conversion",
892 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
893 INITIALIZE_PASS_END(X86CmovConverterPass
, DEBUG_TYPE
, "X86 cmov Conversion",
896 FunctionPass
*llvm::createX86CmovConverterPass() {
897 return new X86CmovConverterPass();