1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the X86 specific subclass of TargetMachine.
11 //===----------------------------------------------------------------------===//
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86MacroFusion.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetObjectFile.h"
21 #include "X86TargetTransformInfo.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/CodeGen/ExecutionDomainFix.h"
27 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
28 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
32 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MachineScheduler.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegAllocRegistry.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/TargetRegistry.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CodeGen.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/TargetParser/Triple.h"
50 #include "llvm/Transforms/CFGuard.h"
57 static cl::opt
<bool> EnableMachineCombinerPass("x86-machine-combiner",
58 cl::desc("Enable the machine combiner pass"),
59 cl::init(true), cl::Hidden
);
62 EnableTileRAPass("x86-tile-ra",
63 cl::desc("Enable the tile register allocation pass"),
64 cl::init(true), cl::Hidden
);
66 extern "C" LLVM_EXTERNAL_VISIBILITY
void LLVMInitializeX86Target() {
67 // Register the target.
68 RegisterTargetMachine
<X86TargetMachine
> X(getTheX86_32Target());
69 RegisterTargetMachine
<X86TargetMachine
> Y(getTheX86_64Target());
71 PassRegistry
&PR
= *PassRegistry::getPassRegistry();
72 initializeX86LowerAMXIntrinsicsLegacyPassPass(PR
);
73 initializeX86LowerAMXTypeLegacyPassPass(PR
);
74 initializeX86PreTileConfigPass(PR
);
75 initializeGlobalISel(PR
);
76 initializeWinEHStatePassPass(PR
);
77 initializeFixupBWInstPassPass(PR
);
78 initializeEvexToVexInstPassPass(PR
);
79 initializeFixupLEAPassPass(PR
);
80 initializeFPSPass(PR
);
81 initializeX86FixupSetCCPassPass(PR
);
82 initializeX86CallFrameOptimizationPass(PR
);
83 initializeX86CmovConverterPassPass(PR
);
84 initializeX86TileConfigPass(PR
);
85 initializeX86FastPreTileConfigPass(PR
);
86 initializeX86FastTileConfigPass(PR
);
87 initializeKCFIPass(PR
);
88 initializeX86LowerTileCopyPass(PR
);
89 initializeX86ExpandPseudoPass(PR
);
90 initializeX86ExecutionDomainFixPass(PR
);
91 initializeX86DomainReassignmentPass(PR
);
92 initializeX86AvoidSFBPassPass(PR
);
93 initializeX86AvoidTrailingCallPassPass(PR
);
94 initializeX86SpeculativeLoadHardeningPassPass(PR
);
95 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR
);
96 initializeX86FlagsCopyLoweringPassPass(PR
);
97 initializeX86LoadValueInjectionLoadHardeningPassPass(PR
);
98 initializeX86LoadValueInjectionRetHardeningPassPass(PR
);
99 initializeX86OptimizeLEAPassPass(PR
);
100 initializeX86PartialReductionPass(PR
);
101 initializePseudoProbeInserterPass(PR
);
102 initializeX86ReturnThunksPass(PR
);
103 initializeX86DAGToDAGISelPass(PR
);
104 initializeX86ArgumentStackSlotPassPass(PR
);
107 static std::unique_ptr
<TargetLoweringObjectFile
> createTLOF(const Triple
&TT
) {
108 if (TT
.isOSBinFormatMachO()) {
109 if (TT
.getArch() == Triple::x86_64
)
110 return std::make_unique
<X86_64MachoTargetObjectFile
>();
111 return std::make_unique
<TargetLoweringObjectFileMachO
>();
114 if (TT
.isOSBinFormatCOFF())
115 return std::make_unique
<TargetLoweringObjectFileCOFF
>();
116 return std::make_unique
<X86ELFTargetObjectFile
>();
119 static std::string
computeDataLayout(const Triple
&TT
) {
120 // X86 is little endian
121 std::string Ret
= "e";
123 Ret
+= DataLayout::getManglingComponent(TT
);
124 // X86 and x32 have 32 bit pointers.
125 if (!TT
.isArch64Bit() || TT
.isX32() || TT
.isOSNaCl())
128 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
129 Ret
+= "-p270:32:32-p271:32:32-p272:64:64";
131 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
132 // 128 bit integers are not specified in the 32-bit ABIs but are used
133 // internally for lowering f128, so we match the alignment to that.
134 if (TT
.isArch64Bit() || TT
.isOSWindows() || TT
.isOSNaCl())
135 Ret
+= "-i64:64-i128:128";
136 else if (TT
.isOSIAMCU())
137 Ret
+= "-i64:32-f64:32";
139 Ret
+= "-i128:128-f64:32:64";
141 // Some ABIs align long double to 128 bits, others to 32.
142 if (TT
.isOSNaCl() || TT
.isOSIAMCU())
144 else if (TT
.isArch64Bit() || TT
.isOSDarwin() || TT
.isWindowsMSVCEnvironment())
152 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
153 if (TT
.isArch64Bit())
154 Ret
+= "-n8:16:32:64";
158 // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
159 if ((!TT
.isArch64Bit() && TT
.isOSWindows()) || TT
.isOSIAMCU())
160 Ret
+= "-a:0:32-S32";
167 static Reloc::Model
getEffectiveRelocModel(const Triple
&TT
, bool JIT
,
168 std::optional
<Reloc::Model
> RM
) {
169 bool is64Bit
= TT
.getArch() == Triple::x86_64
;
171 // JIT codegen should use static relocations by default, since it's
172 // typically executed in process and not relocatable.
174 return Reloc::Static
;
176 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
177 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
178 // use static relocation model by default.
179 if (TT
.isOSDarwin()) {
182 return Reloc::DynamicNoPIC
;
184 if (TT
.isOSWindows() && is64Bit
)
186 return Reloc::Static
;
189 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
190 // is defined as a model for code which may be used in static or dynamic
191 // executables but not necessarily a shared library. On X86-32 we just
192 // compile in -static mode, in x86-64 we use PIC.
193 if (*RM
== Reloc::DynamicNoPIC
) {
196 if (!TT
.isOSDarwin())
197 return Reloc::Static
;
200 // If we are on Darwin, disallow static relocation model in X86-64 mode, since
201 // the Mach-O file format doesn't support it.
202 if (*RM
== Reloc::Static
&& TT
.isOSDarwin() && is64Bit
)
208 static CodeModel::Model
209 getEffectiveX86CodeModel(std::optional
<CodeModel::Model
> CM
, bool JIT
,
212 if (*CM
== CodeModel::Tiny
)
213 report_fatal_error("Target does not support the tiny CodeModel", false);
217 return Is64Bit
? CodeModel::Large
: CodeModel::Small
;
218 return CodeModel::Small
;
221 /// Create an X86 target.
223 X86TargetMachine::X86TargetMachine(const Target
&T
, const Triple
&TT
,
224 StringRef CPU
, StringRef FS
,
225 const TargetOptions
&Options
,
226 std::optional
<Reloc::Model
> RM
,
227 std::optional
<CodeModel::Model
> CM
,
228 CodeGenOptLevel OL
, bool JIT
)
230 T
, computeDataLayout(TT
), TT
, CPU
, FS
, Options
,
231 getEffectiveRelocModel(TT
, JIT
, RM
),
232 getEffectiveX86CodeModel(CM
, JIT
, TT
.getArch() == Triple::x86_64
),
234 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT
) {
235 // On PS4/PS5, the "return address" of a 'noreturn' call must still be within
236 // the calling function, and TrapUnreachable is an easy way to get that.
237 if (TT
.isPS() || TT
.isOSBinFormatMachO()) {
238 this->Options
.TrapUnreachable
= true;
239 this->Options
.NoTrapAfterNoreturn
= TT
.isOSBinFormatMachO();
242 setMachineOutliner(true);
244 // x86 supports the debug entry values.
245 setSupportsDebugEntryValues(true);
250 X86TargetMachine::~X86TargetMachine() = default;
253 X86TargetMachine::getSubtargetImpl(const Function
&F
) const {
254 Attribute CPUAttr
= F
.getFnAttribute("target-cpu");
255 Attribute TuneAttr
= F
.getFnAttribute("tune-cpu");
256 Attribute FSAttr
= F
.getFnAttribute("target-features");
259 CPUAttr
.isValid() ? CPUAttr
.getValueAsString() : (StringRef
)TargetCPU
;
260 // "x86-64" is a default target setting for many front ends. In these cases,
261 // they actually request for "generic" tuning unless the "tune-cpu" was
263 StringRef TuneCPU
= TuneAttr
.isValid() ? TuneAttr
.getValueAsString()
264 : CPU
== "x86-64" ? "generic"
267 FSAttr
.isValid() ? FSAttr
.getValueAsString() : (StringRef
)TargetFS
;
269 SmallString
<512> Key
;
270 // The additions here are ordered so that the definitely short strings are
271 // added first so we won't exceed the small size. We append the
272 // much longer FS string at the end so that we only heap allocate at most
275 // Extract prefer-vector-width attribute.
276 unsigned PreferVectorWidthOverride
= 0;
277 Attribute PreferVecWidthAttr
= F
.getFnAttribute("prefer-vector-width");
278 if (PreferVecWidthAttr
.isValid()) {
279 StringRef Val
= PreferVecWidthAttr
.getValueAsString();
281 if (!Val
.getAsInteger(0, Width
)) {
284 PreferVectorWidthOverride
= Width
;
288 // Extract min-legal-vector-width attribute.
289 unsigned RequiredVectorWidth
= UINT32_MAX
;
290 Attribute MinLegalVecWidthAttr
= F
.getFnAttribute("min-legal-vector-width");
291 if (MinLegalVecWidthAttr
.isValid()) {
292 StringRef Val
= MinLegalVecWidthAttr
.getValueAsString();
294 if (!Val
.getAsInteger(0, Width
)) {
297 RequiredVectorWidth
= Width
;
301 // Add CPU to the Key.
304 // Add tune CPU to the Key.
307 // Keep track of the start of the feature portion of the string.
308 unsigned FSStart
= Key
.size();
310 // FIXME: This is related to the code below to reset the target options,
311 // we need to know whether or not the soft float flag is set on the
312 // function before we can generate a subtarget. We also need to use
313 // it as a key for the subtarget since that can be the only difference
314 // between two functions.
315 bool SoftFloat
= F
.getFnAttribute("use-soft-float").getValueAsBool();
316 // If the soft float attribute is set on the function turn on the soft float
317 // subtarget feature.
319 Key
+= FS
.empty() ? "+soft-float" : "+soft-float,";
323 // We may have added +soft-float to the features so move the StringRef to
324 // point to the full string in the Key.
325 FS
= Key
.substr(FSStart
);
327 auto &I
= SubtargetMap
[Key
];
329 // This needs to be done before we create a new subtarget since any
330 // creation will depend on the TM and the code generation flags on the
331 // function that reside in TargetOptions.
332 resetTargetOptions(F
);
333 I
= std::make_unique
<X86Subtarget
>(
334 TargetTriple
, CPU
, TuneCPU
, FS
, *this,
335 MaybeAlign(F
.getParent()->getOverrideStackAlignment()),
336 PreferVectorWidthOverride
, RequiredVectorWidth
);
341 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS
,
342 unsigned DestAS
) const {
343 assert(SrcAS
!= DestAS
&& "Expected different address spaces!");
344 if (getPointerSize(SrcAS
) != getPointerSize(DestAS
))
346 return SrcAS
< 256 && DestAS
< 256;
349 //===----------------------------------------------------------------------===//
351 //===----------------------------------------------------------------------===//
354 X86TargetMachine::getTargetTransformInfo(const Function
&F
) const {
355 return TargetTransformInfo(X86TTIImpl(this, F
));
358 //===----------------------------------------------------------------------===//
359 // Pass Pipeline Configuration
360 //===----------------------------------------------------------------------===//
364 /// X86 Code Generator Pass Configuration Options.
365 class X86PassConfig
: public TargetPassConfig
{
367 X86PassConfig(X86TargetMachine
&TM
, PassManagerBase
&PM
)
368 : TargetPassConfig(TM
, PM
) {}
370 X86TargetMachine
&getX86TargetMachine() const {
371 return getTM
<X86TargetMachine
>();
375 createMachineScheduler(MachineSchedContext
*C
) const override
{
376 ScheduleDAGMILive
*DAG
= createGenericSchedLive(C
);
377 DAG
->addMutation(createX86MacroFusionDAGMutation());
382 createPostMachineScheduler(MachineSchedContext
*C
) const override
{
383 ScheduleDAGMI
*DAG
= createGenericSchedPostRA(C
);
384 DAG
->addMutation(createX86MacroFusionDAGMutation());
388 void addIRPasses() override
;
389 bool addInstSelector() override
;
390 bool addIRTranslator() override
;
391 bool addLegalizeMachineIR() override
;
392 bool addRegBankSelect() override
;
393 bool addGlobalInstructionSelect() override
;
394 bool addILPOpts() override
;
395 bool addPreISel() override
;
396 void addMachineSSAOptimization() override
;
397 void addPreRegAlloc() override
;
398 bool addPostFastRegAllocRewrite() override
;
399 void addPostRegAlloc() override
;
400 void addPreEmitPass() override
;
401 void addPreEmitPass2() override
;
402 void addPreSched2() override
;
403 bool addRegAssignAndRewriteOptimized() override
;
405 std::unique_ptr
<CSEConfigBase
> getCSEConfig() const override
;
408 class X86ExecutionDomainFix
: public ExecutionDomainFix
{
411 X86ExecutionDomainFix() : ExecutionDomainFix(ID
, X86::VR128XRegClass
) {}
412 StringRef
getPassName() const override
{
413 return "X86 Execution Dependency Fix";
416 char X86ExecutionDomainFix::ID
;
418 } // end anonymous namespace
420 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix
, "x86-execution-domain-fix",
421 "X86 Execution Domain Fix", false, false)
422 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis
)
423 INITIALIZE_PASS_END(X86ExecutionDomainFix
, "x86-execution-domain-fix",
424 "X86 Execution Domain Fix", false, false)
426 TargetPassConfig
*X86TargetMachine::createPassConfig(PassManagerBase
&PM
) {
427 return new X86PassConfig(*this, PM
);
430 MachineFunctionInfo
*X86TargetMachine::createMachineFunctionInfo(
431 BumpPtrAllocator
&Allocator
, const Function
&F
,
432 const TargetSubtargetInfo
*STI
) const {
433 return X86MachineFunctionInfo::create
<X86MachineFunctionInfo
>(Allocator
, F
,
437 void X86PassConfig::addIRPasses() {
438 addPass(createAtomicExpandPass());
440 // We add both pass anyway and when these two passes run, we skip the pass
441 // based on the option level and option attribute.
442 addPass(createX86LowerAMXIntrinsicsPass());
443 addPass(createX86LowerAMXTypePass());
445 TargetPassConfig::addIRPasses();
447 if (TM
->getOptLevel() != CodeGenOptLevel::None
) {
448 addPass(createInterleavedAccessPass());
449 addPass(createX86PartialReductionPass());
452 // Add passes that handle indirect branch removal and insertion of a retpoline
453 // thunk. These will be a no-op unless a function subtarget has the retpoline
455 addPass(createIndirectBrExpandPass());
457 // Add Control Flow Guard checks.
458 const Triple
&TT
= TM
->getTargetTriple();
459 if (TT
.isOSWindows()) {
460 if (TT
.getArch() == Triple::x86_64
) {
461 addPass(createCFGuardDispatchPass());
463 addPass(createCFGuardCheckPass());
467 if (TM
->Options
.JMCInstrument
)
468 addPass(createJMCInstrumenterPass());
471 bool X86PassConfig::addInstSelector() {
472 // Install an instruction selector.
473 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
475 // For ELF, cleanup any local-dynamic TLS accesses.
476 if (TM
->getTargetTriple().isOSBinFormatELF() &&
477 getOptLevel() != CodeGenOptLevel::None
)
478 addPass(createCleanupLocalDynamicTLSPass());
480 addPass(createX86GlobalBaseRegPass());
481 addPass(createX86ArgumentStackSlotPass());
485 bool X86PassConfig::addIRTranslator() {
486 addPass(new IRTranslator(getOptLevel()));
490 bool X86PassConfig::addLegalizeMachineIR() {
491 addPass(new Legalizer());
495 bool X86PassConfig::addRegBankSelect() {
496 addPass(new RegBankSelect());
500 bool X86PassConfig::addGlobalInstructionSelect() {
501 addPass(new InstructionSelect(getOptLevel()));
505 bool X86PassConfig::addILPOpts() {
506 addPass(&EarlyIfConverterID
);
507 if (EnableMachineCombinerPass
)
508 addPass(&MachineCombinerID
);
509 addPass(createX86CmovConverterPass());
513 bool X86PassConfig::addPreISel() {
514 // Only add this pass for 32-bit x86 Windows.
515 const Triple
&TT
= TM
->getTargetTriple();
516 if (TT
.isOSWindows() && TT
.getArch() == Triple::x86
)
517 addPass(createX86WinEHStatePass());
521 void X86PassConfig::addPreRegAlloc() {
522 if (getOptLevel() != CodeGenOptLevel::None
) {
523 addPass(&LiveRangeShrinkID
);
524 addPass(createX86FixupSetCC());
525 addPass(createX86OptimizeLEAs());
526 addPass(createX86CallFrameOptimization());
527 addPass(createX86AvoidStoreForwardingBlocks());
530 addPass(createX86SpeculativeLoadHardeningPass());
531 addPass(createX86FlagsCopyLoweringPass());
532 addPass(createX86DynAllocaExpander());
534 if (getOptLevel() != CodeGenOptLevel::None
)
535 addPass(createX86PreTileConfigPass());
537 addPass(createX86FastPreTileConfigPass());
540 void X86PassConfig::addMachineSSAOptimization() {
541 addPass(createX86DomainReassignmentPass());
542 TargetPassConfig::addMachineSSAOptimization();
545 void X86PassConfig::addPostRegAlloc() {
546 addPass(createX86LowerTileCopyPass());
547 addPass(createX86FloatingPointStackifierPass());
548 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
549 // to using the Speculative Execution Side Effect Suppression pass for
550 // mitigation. This is to prevent slow downs due to
551 // analyses needed by the LVIHardening pass when compiling at -O0.
552 if (getOptLevel() != CodeGenOptLevel::None
)
553 addPass(createX86LoadValueInjectionLoadHardeningPass());
556 void X86PassConfig::addPreSched2() {
557 addPass(createX86ExpandPseudoPass());
558 addPass(createKCFIPass());
561 void X86PassConfig::addPreEmitPass() {
562 if (getOptLevel() != CodeGenOptLevel::None
) {
563 addPass(new X86ExecutionDomainFix());
564 addPass(createBreakFalseDeps());
567 addPass(createX86IndirectBranchTrackingPass());
569 addPass(createX86IssueVZeroUpperPass());
571 if (getOptLevel() != CodeGenOptLevel::None
) {
572 addPass(createX86FixupBWInsts());
573 addPass(createX86PadShortFunctions());
574 addPass(createX86FixupLEAs());
575 addPass(createX86FixupInstTuning());
576 addPass(createX86FixupVectorConstants());
578 addPass(createX86EvexToVexInsts());
579 addPass(createX86DiscriminateMemOpsPass());
580 addPass(createX86InsertPrefetchPass());
581 addPass(createX86InsertX87waitPass());
584 void X86PassConfig::addPreEmitPass2() {
585 const Triple
&TT
= TM
->getTargetTriple();
586 const MCAsmInfo
*MAI
= TM
->getMCAsmInfo();
588 // The X86 Speculative Execution Pass must run after all control
589 // flow graph modifying passes. As a result it was listed to run right before
590 // the X86 Retpoline Thunks pass. The reason it must run after control flow
591 // graph modifications is that the model of LFENCE in LLVM has to be updated
592 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
593 // placement of this pass was hand checked to ensure that the subsequent
594 // passes don't move the code around the LFENCEs in a way that will hurt the
595 // correctness of this pass. This placement has been shown to work based on
596 // hand inspection of the codegen output.
597 addPass(createX86SpeculativeExecutionSideEffectSuppression());
598 addPass(createX86IndirectThunksPass());
599 addPass(createX86ReturnThunksPass());
601 // Insert extra int3 instructions after trailing call instructions to avoid
602 // issues in the unwinder.
603 if (TT
.isOSWindows() && TT
.getArch() == Triple::x86_64
)
604 addPass(createX86AvoidTrailingCallPass());
606 // Verify basic block incoming and outgoing cfa offset and register values and
607 // correct CFA calculation rule where needed by inserting appropriate CFI
609 if (!TT
.isOSDarwin() &&
610 (!TT
.isOSWindows() ||
611 MAI
->getExceptionHandlingType() == ExceptionHandling::DwarfCFI
))
612 addPass(createCFIInstrInserter());
614 if (TT
.isOSWindows()) {
615 // Identify valid longjmp targets for Windows Control Flow Guard.
616 addPass(createCFGuardLongjmpPass());
617 // Identify valid eh continuation targets for Windows EHCont Guard.
618 addPass(createEHContGuardCatchretPass());
620 addPass(createX86LoadValueInjectionRetHardeningPass());
622 // Insert pseudo probe annotation for callsite profiling
623 addPass(createPseudoProbeInserter());
625 // KCFI indirect call checks are lowered to a bundle, and on Darwin platforms,
626 // also CALL_RVMARKER.
627 addPass(createUnpackMachineBundles([&TT
](const MachineFunction
&MF
) {
628 // Only run bundle expansion if the module uses kcfi, or there are relevant
629 // ObjC runtime functions present in the module.
630 const Function
&F
= MF
.getFunction();
631 const Module
*M
= F
.getParent();
632 return M
->getModuleFlag("kcfi") ||
634 (M
->getFunction("objc_retainAutoreleasedReturnValue") ||
635 M
->getFunction("objc_unsafeClaimAutoreleasedReturnValue")));
639 bool X86PassConfig::addPostFastRegAllocRewrite() {
640 addPass(createX86FastTileConfigPass());
644 std::unique_ptr
<CSEConfigBase
> X86PassConfig::getCSEConfig() const {
645 return getStandardCSEConfigForOpt(TM
->getOptLevel());
648 static bool onlyAllocateTileRegisters(const TargetRegisterInfo
&TRI
,
649 const TargetRegisterClass
&RC
) {
650 return static_cast<const X86RegisterInfo
&>(TRI
).isTileRegisterClass(&RC
);
653 bool X86PassConfig::addRegAssignAndRewriteOptimized() {
654 // Don't support tile RA when RA is specified by command line "-regalloc".
655 if (!isCustomizedRegAlloc() && EnableTileRAPass
) {
656 // Allocate tile register first.
657 addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters
));
658 addPass(createX86TileConfigPass());
660 return TargetPassConfig::addRegAssignAndRewriteOptimized();