[NFC][Coroutines] Use structured binding with llvm::enumerate in CoroSplit (#116879)
[llvm-project.git] / lld / ELF / ARMErrataFix.cpp
blob4257e491121f2153b155df5e64982b7724050a9a
1 //===- ARMErrataFix.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This file implements Section Patching for the purpose of working around the
9 // Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions
10 // can result in an incorrect instruction fetch or processor deadlock." The
11 // erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the
12 // Cortex-A8. A high level description of the patching technique is given in
13 // the opening comment of AArch64ErrataFix.cpp.
14 //===----------------------------------------------------------------------===//
16 #include "ARMErrataFix.h"
17 #include "InputFiles.h"
18 #include "LinkerScript.h"
19 #include "OutputSections.h"
20 #include "Relocations.h"
21 #include "Symbols.h"
22 #include "SyntheticSections.h"
23 #include "Target.h"
24 #include "lld/Common/CommonLinkerContext.h"
25 #include "lld/Common/Strings.h"
26 #include "llvm/Support/Endian.h"
27 #include <algorithm>
29 using namespace llvm;
30 using namespace llvm::ELF;
31 using namespace llvm::object;
32 using namespace llvm::support;
33 using namespace llvm::support::endian;
34 using namespace lld;
35 using namespace lld::elf;
37 // The documented title for Erratum 657417 is:
38 // "A 32bit branch instruction that spans two 4K regions can result in an
39 // incorrect instruction fetch or processor deadlock". Graphically using a
40 // 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff
41 // xxxxxx000 // Memory region 1 start
42 // target:
43 // ...
44 // xxxxxxffe f7fe // First halfword of branch to target:
45 // xxxxxx000 // Memory region 2 start
46 // xxxxxx002 bfff // Second halfword of branch to target:
48 // The specific trigger conditions that can be detected at link time are:
49 // - There is a 32-bit Thumb-2 branch instruction with an address of the form
50 // xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the
51 // second 2 bytes are in region 2.
52 // - The branch instruction is one of BLX, BL, B.w BCC.w
53 // - The instruction preceding the branch is a 32-bit non-branch instruction.
54 // - The target of the branch is in region 1.
56 // The linker mitigation for the fix is to redirect any branch that meets the
57 // erratum conditions to a patch section containing a branch to the target.
59 // As adding patch sections may move branches onto region boundaries the patch
60 // must iterate until no more patches are added.
62 // Example, before:
63 // 00000FFA func: NOP.w // 32-bit Thumb function
64 // 00000FFE B.W func // 32-bit branch spanning 2 regions, dest in 1st.
65 // Example, after:
66 // 00000FFA func: NOP.w // 32-bit Thumb function
67 // 00000FFE B.w __CortexA8657417_00000FFE
68 // 00001002 2 - bytes padding
69 // 00001004 __CortexA8657417_00000FFE: B.w func
71 class elf::Patch657417Section final : public SyntheticSection {
72 public:
73 Patch657417Section(Ctx &, InputSection *p, uint64_t off, uint32_t instr,
74 bool isARM);
76 void writeTo(uint8_t *buf) override;
78 size_t getSize() const override { return 4; }
80 // Get the virtual address of the branch instruction at patcheeOffset.
81 uint64_t getBranchAddr() const;
83 static bool classof(const SectionBase *d) {
84 return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch";
87 // The Section we are patching.
88 const InputSection *patchee;
89 // The offset of the instruction in the Patchee section we are patching.
90 uint64_t patcheeOffset;
91 // A label for the start of the Patch that we can use as a relocation target.
92 Symbol *patchSym;
93 // A decoding of the branch instruction at patcheeOffset.
94 uint32_t instr;
95 // True If the patch is to be written in ARM state, otherwise the patch will
96 // be written in Thumb state.
97 bool isARM;
100 // Return true if the half-word, when taken as the first of a pair of halfwords
101 // is the first half of a 32-bit instruction.
102 // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
103 // section A6.3: 32-bit Thumb instruction encoding
104 // | HW1 | HW2 |
105 // | 1 1 1 | op1 (2) | op2 (7) | x (4) |op| x (15) |
106 // With op1 == 0b00, a 16-bit instruction is encoded.
108 // We test only the first halfword, looking for op != 0b00.
109 static bool is32bitInstruction(uint16_t hw) {
110 return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000;
113 // Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
114 // section A6.3.4 Branches and miscellaneous control.
115 // | HW1 | HW2 |
116 // | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) |
117 // op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W)
118 // op1 == 0x1 | Branch (B.W)
119 // op1 == 1x0 | Branch with Link and Exchange (BLX.w)
120 // op1 == 1x1 | Branch with Link (BL.W)
122 static bool isBcc(uint32_t instr) {
123 return (instr & 0xf800d000) == 0xf0008000 &&
124 (instr & 0x03800000) != 0x03800000;
127 static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; }
129 static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; }
131 static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; }
133 static bool is32bitBranch(uint32_t instr) {
134 return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr);
137 Patch657417Section::Patch657417Section(Ctx &ctx, InputSection *p, uint64_t off,
138 uint32_t instr, bool isARM)
139 : SyntheticSection(ctx, SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
140 ".text.patch"),
141 patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) {
142 parent = p->getParent();
143 patchSym = addSyntheticLocal(
144 ctx, ctx.saver.save("__CortexA8657417_" + utohexstr(getBranchAddr())),
145 STT_FUNC, isARM ? 0 : 1, getSize(), *this);
146 addSyntheticLocal(ctx, ctx.saver.save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0,
147 *this);
150 uint64_t Patch657417Section::getBranchAddr() const {
151 return patchee->getVA(patcheeOffset);
154 // Given a branch instruction instr at sourceAddr work out its destination
155 // address. This is only used when the branch instruction has no relocation.
156 static uint64_t getThumbDestAddr(Ctx &ctx, uint64_t sourceAddr,
157 uint32_t instr) {
158 uint8_t buf[4];
159 write16le(buf, instr >> 16);
160 write16le(buf + 2, instr & 0x0000ffff);
161 int64_t offset;
162 if (isBcc(instr))
163 offset = ctx.target->getImplicitAddend(buf, R_ARM_THM_JUMP19);
164 else if (isB(instr))
165 offset = ctx.target->getImplicitAddend(buf, R_ARM_THM_JUMP24);
166 else
167 offset = ctx.target->getImplicitAddend(buf, R_ARM_THM_CALL);
168 // A BLX instruction from Thumb to Arm may have an address that is
169 // not 4-byte aligned. As Arm instructions are always 4-byte aligned
170 // the instruction is calculated (from Arm ARM):
171 // targetAddress = Align(PC, 4) + imm32
172 // where
173 // Align(x, y) = y * (x Div y)
174 // which corresponds to alignDown.
175 if (isBLX(instr))
176 sourceAddr = alignDown(sourceAddr, 4);
177 return sourceAddr + offset + 4;
180 void Patch657417Section::writeTo(uint8_t *buf) {
181 // The base instruction of the patch is always a 32-bit unconditional branch.
182 if (isARM)
183 write32le(buf, 0xea000000);
184 else
185 write32le(buf, 0x9000f000);
186 // If we have a relocation then apply it.
187 if (!relocs().empty()) {
188 ctx.target->relocateAlloc(*this, buf);
189 return;
192 // If we don't have a relocation then we must calculate and write the offset
193 // ourselves.
194 // Get the destination offset from the addend in the branch instruction.
195 // We cannot use the instruction in the patchee section as this will have
196 // been altered to point to us!
197 uint64_t s = getThumbDestAddr(ctx, getBranchAddr(), instr);
198 // A BLX changes the state of the branch in the patch to Arm state, which
199 // has a PC Bias of 8, whereas in all other cases the branch is in Thumb
200 // state with a PC Bias of 4.
201 uint64_t pcBias = isBLX(instr) ? 8 : 4;
202 uint64_t p = getVA(pcBias);
203 ctx.target->relocateNoSym(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24,
204 s - p);
207 // Given a branch instruction spanning two 4KiB regions, at offset off from the
208 // start of isec, return true if the destination of the branch is within the
209 // first of the two 4Kib regions.
210 static bool branchDestInFirstRegion(Ctx &ctx, const InputSection *isec,
211 uint64_t off, uint32_t instr,
212 const Relocation *r) {
213 uint64_t sourceAddr = isec->getVA(0) + off;
214 assert((sourceAddr & 0xfff) == 0xffe);
215 uint64_t destAddr;
216 // If there is a branch relocation at the same offset we must use this to
217 // find the destination address as the branch could be indirected via a thunk
218 // or the PLT.
219 if (r) {
220 uint64_t dst =
221 r->expr == R_PLT_PC ? r->sym->getPltVA(ctx) : r->sym->getVA(ctx);
222 // Account for Thumb PC bias, usually cancelled to 0 by addend of -4.
223 destAddr = dst + r->addend + 4;
224 } else {
225 // If there is no relocation, we must have an intra-section branch
226 // We must extract the offset from the addend manually.
227 destAddr = getThumbDestAddr(ctx, sourceAddr, instr);
230 return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000);
233 // Return true if a branch can reach a patch section placed after isec.
234 // The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB.
235 static bool patchInRange(Ctx &ctx, const InputSection *isec, uint64_t off,
236 uint32_t instr) {
238 // We need the branch at source to reach a patch section placed immediately
239 // after isec. As there can be more than one patch in the patch section we
240 // add 0x100 as contingency to account for worst case of 1 branch every 4KiB
241 // for a 1 MiB range.
242 return ctx.target->inBranchRange(
243 isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off),
244 isec->getVA() + isec->getSize() + 0x100);
247 struct ScanResult {
248 // Offset of branch within its InputSection.
249 uint64_t off;
250 // Cached decoding of the branch instruction.
251 uint32_t instr;
252 // Branch relocation at off. Will be nullptr if no relocation exists.
253 Relocation *rel;
256 // Detect the erratum sequence, returning the offset of the branch instruction
257 // and a decoding of the branch. If the erratum sequence is not found then
258 // return an offset of 0 for the branch. 0 is a safe value to use for no patch
259 // as there must be at least one 32-bit non-branch instruction before the
260 // branch so the minimum offset for a patch is 4.
261 static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off,
262 uint64_t limit) {
263 Ctx &ctx = isec->getCtx();
264 uint64_t isecAddr = isec->getVA(0);
265 // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We
266 // need to check for a 32-bit instruction immediately before a 32-bit branch
267 // at 0xffe modulo 0x1000.
268 off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr;
269 if (off >= limit || limit - off < 8) {
270 // Need at least 2 4-byte sized instructions to trigger erratum.
271 off = limit;
272 return {0, 0, nullptr};
275 ScanResult scanRes = {0, 0, nullptr};
276 const uint8_t *buf = isec->content().begin();
277 // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive
278 // little-endian halfwords.
279 const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off);
280 uint16_t hw11 = *instBuf++;
281 uint16_t hw12 = *instBuf++;
282 uint16_t hw21 = *instBuf++;
283 uint16_t hw22 = *instBuf++;
284 if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) {
285 uint32_t instr1 = (hw11 << 16) | hw12;
286 uint32_t instr2 = (hw21 << 16) | hw22;
287 if (!is32bitBranch(instr1) && is32bitBranch(instr2)) {
288 // Find a relocation for the branch if it exists. This will be used
289 // to determine the target.
290 uint64_t branchOff = off + 4;
291 auto relIt = llvm::find_if(isec->relocs(), [=](const Relocation &r) {
292 return r.offset == branchOff &&
293 (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 ||
294 r.type == R_ARM_THM_CALL);
296 if (relIt != isec->relocs().end())
297 scanRes.rel = &(*relIt);
298 if (branchDestInFirstRegion(ctx, isec, branchOff, instr2, scanRes.rel)) {
299 if (patchInRange(ctx, isec, branchOff, instr2)) {
300 scanRes.off = branchOff;
301 scanRes.instr = instr2;
302 } else {
303 Warn(ctx) << isec->file
304 << ": skipping cortex-a8 657417 erratum sequence, section "
305 << isec->name << " is too large to patch";
310 off += 0x1000;
311 return scanRes;
314 void ARMErr657417Patcher::init() {
315 // The Arm ABI permits a mix of ARM, Thumb and Data in the same
316 // InputSection. We must only scan Thumb instructions to avoid false
317 // matches. We use the mapping symbols in the InputObjects to identify this
318 // data, caching the results in sectionMap so we don't have to recalculate
319 // it each pass.
321 // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe
322 // half open intervals [Symbol Value, Next Symbol Value) of code and data
323 // within sections. If there is no next symbol then the half open interval is
324 // [Symbol Value, End of section). The type, code or data, is determined by
325 // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data.
326 auto isArmMapSymbol = [](const Symbol *s) {
327 return s->getName() == "$a" || s->getName().starts_with("$a.");
329 auto isThumbMapSymbol = [](const Symbol *s) {
330 return s->getName() == "$t" || s->getName().starts_with("$t.");
332 auto isDataMapSymbol = [](const Symbol *s) {
333 return s->getName() == "$d" || s->getName().starts_with("$d.");
336 // Collect mapping symbols for every executable InputSection.
337 for (ELFFileBase *file : ctx.objectFiles) {
338 for (Symbol *s : file->getLocalSymbols()) {
339 auto *def = dyn_cast<Defined>(s);
340 if (!def)
341 continue;
342 if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) &&
343 !isDataMapSymbol(def))
344 continue;
345 if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
346 if (sec->flags & SHF_EXECINSTR)
347 sectionMap[sec].push_back(def);
350 // For each InputSection make sure the mapping symbols are in sorted in
351 // ascending order and are in alternating Thumb, non-Thumb order.
352 for (auto &kv : sectionMap) {
353 std::vector<const Defined *> &mapSyms = kv.second;
354 llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
355 return a->value < b->value;
357 mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(),
358 [=](const Defined *a, const Defined *b) {
359 return (isThumbMapSymbol(a) ==
360 isThumbMapSymbol(b));
362 mapSyms.end());
363 // Always start with a Thumb Mapping Symbol
364 if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front()))
365 mapSyms.erase(mapSyms.begin());
367 initialized = true;
370 void ARMErr657417Patcher::insertPatches(
371 InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) {
372 uint64_t spacing = 0x100000 - 0x7500;
373 uint64_t isecLimit;
374 uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
375 uint64_t patchUpperBound = prevIsecLimit + spacing;
376 uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
378 // Set the outSecOff of patches to the place where we want to insert them.
379 // We use a similar strategy to initial thunk placement, using 1 MiB as the
380 // range of the Thumb-2 conditional branch with a contingency accounting for
381 // thunk generation.
382 auto patchIt = patches.begin();
383 auto patchEnd = patches.end();
384 for (const InputSection *isec : isd.sections) {
385 isecLimit = isec->outSecOff + isec->getSize();
386 if (isecLimit > patchUpperBound) {
387 for (; patchIt != patchEnd; ++patchIt) {
388 if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit)
389 break;
390 (*patchIt)->outSecOff = prevIsecLimit;
392 patchUpperBound = prevIsecLimit + spacing;
394 prevIsecLimit = isecLimit;
396 for (; patchIt != patchEnd; ++patchIt)
397 (*patchIt)->outSecOff = isecLimit;
399 // Merge all patch sections. We use the outSecOff assigned above to
400 // determine the insertion point. This is ok as we only merge into an
401 // InputSectionDescription once per pass, and at the end of the pass
402 // assignAddresses() will recalculate all the outSecOff values.
403 SmallVector<InputSection *, 0> tmp;
404 tmp.reserve(isd.sections.size() + patches.size());
405 auto mergeCmp = [](const InputSection *a, const InputSection *b) {
406 if (a->outSecOff != b->outSecOff)
407 return a->outSecOff < b->outSecOff;
408 return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b);
410 std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
411 patches.end(), std::back_inserter(tmp), mergeCmp);
412 isd.sections = std::move(tmp);
415 // Given a branch instruction described by ScanRes redirect it to a patch
416 // section containing an unconditional branch instruction to the target.
417 // Ensure that this patch section is 4-byte aligned so that the branch cannot
418 // span two 4 KiB regions. Place the patch section so that it is always after
419 // isec so the branch we are patching always goes forwards.
420 static void implementPatch(ScanResult sr, InputSection *isec,
421 std::vector<Patch657417Section *> &patches) {
422 Ctx &ctx = isec->getCtx();
423 Log(ctx) << "detected cortex-a8-657419 erratum sequence starting at " <<
424 utohexstr(isec->getVA(sr.off)) << " in unpatched output";
425 Patch657417Section *psec;
426 // We have two cases to deal with.
427 // Case 1. There is a relocation at patcheeOffset to a symbol. The
428 // unconditional branch in the patch must have a relocation so that any
429 // further redirection via the PLT or a Thunk happens as normal. At
430 // patcheeOffset we redirect the existing relocation to a Symbol defined at
431 // the start of the patch section.
433 // Case 2. There is no relocation at patcheeOffset. We are unlikely to have
434 // a symbol that we can use as a target for a relocation in the patch section.
435 // Luckily we know that the destination cannot be indirected via the PLT or
436 // a Thunk so we can just write the destination directly.
437 if (sr.rel) {
438 // Case 1. We have an existing relocation to redirect to patch and a
439 // Symbol target.
441 // Create a branch relocation for the unconditional branch in the patch.
442 // This can be redirected via the PLT or Thunks.
443 RelType patchRelType = R_ARM_THM_JUMP24;
444 int64_t patchRelAddend = sr.rel->addend;
445 bool destIsARM = false;
446 if (isBL(sr.instr) || isBLX(sr.instr)) {
447 // The final target of the branch may be ARM or Thumb, if the target
448 // is ARM then we write the patch in ARM state to avoid a state change
449 // Thunk from the patch to the target.
450 uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC)
451 ? sr.rel->sym->getPltVA(ctx)
452 : sr.rel->sym->getVA(ctx);
453 destIsARM = (dstSymAddr & 1) == 0;
455 psec = make<Patch657417Section>(ctx, isec, sr.off, sr.instr, destIsARM);
456 if (destIsARM) {
457 // The patch will be in ARM state. Use an ARM relocation and account for
458 // the larger ARM PC-bias of 8 rather than Thumb's 4.
459 patchRelType = R_ARM_JUMP24;
460 patchRelAddend -= 4;
462 psec->addReloc(
463 Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym});
464 // Redirect the existing branch relocation to the patch.
465 sr.rel->expr = R_PC;
466 sr.rel->addend = -4;
467 sr.rel->sym = psec->patchSym;
468 } else {
469 // Case 2. We do not have a relocation to the patch. Add a relocation of the
470 // appropriate type to the patch at patcheeOffset.
472 // The destination is ARM if we have a BLX.
473 psec =
474 make<Patch657417Section>(ctx, isec, sr.off, sr.instr, isBLX(sr.instr));
475 RelType type;
476 if (isBcc(sr.instr))
477 type = R_ARM_THM_JUMP19;
478 else if (isB(sr.instr))
479 type = R_ARM_THM_JUMP24;
480 else
481 type = R_ARM_THM_CALL;
482 isec->addReloc(Relocation{R_PC, type, sr.off, -4, psec->patchSym});
484 patches.push_back(psec);
487 // Scan all the instructions in InputSectionDescription, for each instance of
488 // the erratum sequence create a Patch657417Section. We return the list of
489 // Patch657417Sections that need to be applied to the InputSectionDescription.
490 std::vector<Patch657417Section *>
491 ARMErr657417Patcher::patchInputSectionDescription(
492 InputSectionDescription &isd) {
493 std::vector<Patch657417Section *> patches;
494 for (InputSection *isec : isd.sections) {
495 // LLD doesn't use the erratum sequence in SyntheticSections.
496 if (isa<SyntheticSection>(isec))
497 continue;
498 // Use sectionMap to make sure we only scan Thumb code and not Arm or inline
499 // data. We have already sorted mapSyms in ascending order and removed
500 // consecutive mapping symbols of the same type. Our range of executable
501 // instructions to scan is therefore [thumbSym->value, nonThumbSym->value)
502 // or [thumbSym->value, section size).
503 std::vector<const Defined *> &mapSyms = sectionMap[isec];
505 auto thumbSym = mapSyms.begin();
506 while (thumbSym != mapSyms.end()) {
507 auto nonThumbSym = std::next(thumbSym);
508 uint64_t off = (*thumbSym)->value;
509 uint64_t limit = nonThumbSym == mapSyms.end() ? isec->content().size()
510 : (*nonThumbSym)->value;
512 while (off < limit) {
513 ScanResult sr = scanCortexA8Errata657417(isec, off, limit);
514 if (sr.off)
515 implementPatch(sr, isec, patches);
517 if (nonThumbSym == mapSyms.end())
518 break;
519 thumbSym = std::next(nonThumbSym);
522 return patches;
525 bool ARMErr657417Patcher::createFixes() {
526 if (!initialized)
527 init();
529 bool addressesChanged = false;
530 for (OutputSection *os : ctx.outputSections) {
531 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
532 continue;
533 for (SectionCommand *cmd : os->commands)
534 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
535 std::vector<Patch657417Section *> patches =
536 patchInputSectionDescription(*isd);
537 if (!patches.empty()) {
538 insertPatches(*isd, patches);
539 addressesChanged = true;
543 return addressesChanged;