[NFC][Coroutines] Use structured binding with llvm::enumerate in CoroSplit (#116879)
[llvm-project.git] / lld / ELF / ICF.cpp
blob7090ca779b0e7b88b114d78601c6247aa2577399
1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. This is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
14 // In ICF, two sections are considered identical if they have the same
15 // section flags, section data, and relocations. Relocations are tricky,
16 // because two relocations are considered the same if they have the same
17 // relocation types, values, and if they point to the same sections *in
18 // terms of ICF*.
20 // Here is an example. If foo and bar defined below are compiled to the
21 // same machine instructions, ICF can and should merge the two, although
22 // their relocations point to each other.
24 // void foo() { bar(); }
25 // void bar() { foo(); }
27 // If you merge the two, their relocations point to the same section and
28 // thus you know they are mergeable, but how do you know they are
29 // mergeable in the first place? This is not an easy problem to solve.
31 // What we are doing in LLD is to partition sections into equivalence
32 // classes. Sections in the same equivalence class when the algorithm
33 // terminates are considered identical. Here are details:
35 // 1. First, we partition sections using their hash values as keys. Hash
36 // values contain section types, section contents and numbers of
37 // relocations. During this step, relocation targets are not taken into
38 // account. We just put sections that apparently differ into different
39 // equivalence classes.
41 // 2. Next, for each equivalence class, we visit sections to compare
42 // relocation targets. Relocation targets are considered equivalent if
43 // their targets are in the same equivalence class. Sections with
44 // different relocation targets are put into different equivalence
45 // classes.
47 // 3. If we split an equivalence class in step 2, two relocations
48 // previously target the same equivalence class may now target
49 // different equivalence classes. Therefore, we repeat step 2 until a
50 // convergence is obtained.
52 // 4. For each equivalence class C, pick an arbitrary section in C, and
53 // merge all the other sections in C with it.
55 // For small programs, this algorithm needs 3-5 iterations. For large
56 // programs such as Chromium, it takes more than 20 iterations.
58 // This algorithm was mentioned as an "optimistic algorithm" in [1],
59 // though gold implements a different algorithm than this.
61 // We parallelize each step so that multiple threads can work on different
62 // equivalence classes concurrently. That gave us a large performance
63 // boost when applying ICF on large programs. For example, MSVC link.exe
64 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67 // faster than MSVC or gold though.
69 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
70 // in the Gold Linker
71 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
73 //===----------------------------------------------------------------------===//
75 #include "ICF.h"
76 #include "Config.h"
77 #include "InputFiles.h"
78 #include "LinkerScript.h"
79 #include "OutputSections.h"
80 #include "SymbolTable.h"
81 #include "Symbols.h"
82 #include "SyntheticSections.h"
83 #include "llvm/BinaryFormat/ELF.h"
84 #include "llvm/Object/ELF.h"
85 #include "llvm/Support/Parallel.h"
86 #include "llvm/Support/TimeProfiler.h"
87 #include "llvm/Support/xxhash.h"
88 #include <algorithm>
89 #include <atomic>
91 using namespace llvm;
92 using namespace llvm::ELF;
93 using namespace llvm::object;
94 using namespace lld;
95 using namespace lld::elf;
97 namespace {
98 template <class ELFT> class ICF {
99 public:
100 ICF(Ctx &ctx) : ctx(ctx) {}
101 void run();
103 private:
104 void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant);
106 template <class RelTy>
107 bool constantEq(const InputSection *a, Relocs<RelTy> relsA,
108 const InputSection *b, Relocs<RelTy> relsB);
110 template <class RelTy>
111 bool variableEq(const InputSection *a, Relocs<RelTy> relsA,
112 const InputSection *b, Relocs<RelTy> relsB);
114 bool equalsConstant(const InputSection *a, const InputSection *b);
115 bool equalsVariable(const InputSection *a, const InputSection *b);
117 size_t findBoundary(size_t begin, size_t end);
119 void forEachClassRange(size_t begin, size_t end,
120 llvm::function_ref<void(size_t, size_t)> fn);
122 void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
124 Ctx &ctx;
125 SmallVector<InputSection *, 0> sections;
127 // We repeat the main loop while `Repeat` is true.
128 std::atomic<bool> repeat;
130 // The main loop counter.
131 int cnt = 0;
133 // We have two locations for equivalence classes. On the first iteration
134 // of the main loop, Class[0] has a valid value, and Class[1] contains
135 // garbage. We read equivalence classes from slot 0 and write to slot 1.
136 // So, Class[0] represents the current class, and Class[1] represents
137 // the next class. On each iteration, we switch their roles and use them
138 // alternately.
140 // Why are we doing this? Recall that other threads may be working on
141 // other equivalence classes in parallel. They may read sections that we
142 // are updating. We cannot update equivalence classes in place because
143 // it breaks the invariance that all possibly-identical sections must be
144 // in the same equivalence class at any moment. In other words, the for
145 // loop to update equivalence classes is not atomic, and that is
146 // observable from other threads. By writing new classes to other
147 // places, we can keep the invariance.
149 // Below, `Current` has the index of the current class, and `Next` has
150 // the index of the next class. If threading is enabled, they are either
151 // (0, 1) or (1, 0).
153 // Note on single-thread: if that's the case, they are always (0, 0)
154 // because we can safely read the next class without worrying about race
155 // conditions. Using the same location makes this algorithm converge
156 // faster because it uses results of the same iteration earlier.
157 int current = 0;
158 int next = 0;
162 // Returns true if section S is subject of ICF.
163 static bool isEligible(InputSection *s) {
164 if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
165 return false;
167 // Don't merge writable sections. .data.rel.ro sections are marked as writable
168 // but are semantically read-only.
169 if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
170 !s->name.starts_with(".data.rel.ro."))
171 return false;
173 // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
174 // so we don't consider them for ICF individually.
175 if (s->flags & SHF_LINK_ORDER)
176 return false;
178 // Don't merge synthetic sections as their Data member is not valid and empty.
179 // The Data member needs to be valid for ICF as it is used by ICF to determine
180 // the equality of section contents.
181 if (isa<SyntheticSection>(s))
182 return false;
184 // .init and .fini contains instructions that must be executed to initialize
185 // and finalize the process. They cannot and should not be merged.
186 if (s->name == ".init" || s->name == ".fini")
187 return false;
189 // A user program may enumerate sections named with a C identifier using
190 // __start_* and __stop_* symbols. We cannot ICF any such sections because
191 // that could change program semantics.
192 if (isValidCIdentifier(s->name))
193 return false;
195 return true;
198 // Split an equivalence class into smaller classes.
199 template <class ELFT>
200 void ICF<ELFT>::segregate(size_t begin, size_t end, uint32_t eqClassBase,
201 bool constant) {
202 // This loop rearranges sections in [Begin, End) so that all sections
203 // that are equal in terms of equals{Constant,Variable} are contiguous
204 // in [Begin, End).
206 // The algorithm is quadratic in the worst case, but that is not an
207 // issue in practice because the number of the distinct sections in
208 // each range is usually very small.
210 while (begin < end) {
211 // Divide [Begin, End) into two. Let Mid be the start index of the
212 // second group.
213 auto bound =
214 std::stable_partition(sections.begin() + begin + 1,
215 sections.begin() + end, [&](InputSection *s) {
216 if (constant)
217 return equalsConstant(sections[begin], s);
218 return equalsVariable(sections[begin], s);
220 size_t mid = bound - sections.begin();
222 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
223 // updating the sections in [Begin, Mid). We use Mid as the basis for
224 // the equivalence class ID because every group ends with a unique index.
225 // Add this to eqClassBase to avoid equality with unique IDs.
226 for (size_t i = begin; i < mid; ++i)
227 sections[i]->eqClass[next] = eqClassBase + mid;
229 // If we created a group, we need to iterate the main loop again.
230 if (mid != end)
231 repeat = true;
233 begin = mid;
237 // Compare two lists of relocations.
238 template <class ELFT>
239 template <class RelTy>
240 bool ICF<ELFT>::constantEq(const InputSection *secA, Relocs<RelTy> ra,
241 const InputSection *secB, Relocs<RelTy> rb) {
242 if (ra.size() != rb.size())
243 return false;
244 auto rai = ra.begin(), rae = ra.end(), rbi = rb.begin();
245 for (; rai != rae; ++rai, ++rbi) {
246 if (rai->r_offset != rbi->r_offset ||
247 rai->getType(ctx.arg.isMips64EL) != rbi->getType(ctx.arg.isMips64EL))
248 return false;
250 uint64_t addA = getAddend<ELFT>(*rai);
251 uint64_t addB = getAddend<ELFT>(*rbi);
253 Symbol &sa = secA->file->getRelocTargetSym(*rai);
254 Symbol &sb = secB->file->getRelocTargetSym(*rbi);
255 if (&sa == &sb) {
256 if (addA == addB)
257 continue;
258 return false;
261 auto *da = dyn_cast<Defined>(&sa);
262 auto *db = dyn_cast<Defined>(&sb);
264 // Placeholder symbols generated by linker scripts look the same now but
265 // may have different values later.
266 if (!da || !db || da->scriptDefined || db->scriptDefined)
267 return false;
269 // When comparing a pair of relocations, if they refer to different symbols,
270 // and either symbol is preemptible, the containing sections should be
271 // considered different. This is because even if the sections are identical
272 // in this DSO, they may not be after preemption.
273 if (da->isPreemptible || db->isPreemptible)
274 return false;
276 // Relocations referring to absolute symbols are constant-equal if their
277 // values are equal.
278 if (!da->section && !db->section && da->value + addA == db->value + addB)
279 continue;
280 if (!da->section || !db->section)
281 return false;
283 if (da->section->kind() != db->section->kind())
284 return false;
286 // Relocations referring to InputSections are constant-equal if their
287 // section offsets are equal.
288 if (isa<InputSection>(da->section)) {
289 if (da->value + addA == db->value + addB)
290 continue;
291 return false;
294 // Relocations referring to MergeInputSections are constant-equal if their
295 // offsets in the output section are equal.
296 auto *x = dyn_cast<MergeInputSection>(da->section);
297 if (!x)
298 return false;
299 auto *y = cast<MergeInputSection>(db->section);
300 if (x->getParent() != y->getParent())
301 return false;
303 uint64_t offsetA =
304 sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
305 uint64_t offsetB =
306 sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
307 if (offsetA != offsetB)
308 return false;
311 return true;
314 // Compare "non-moving" part of two InputSections, namely everything
315 // except relocation targets.
316 template <class ELFT>
317 bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
318 if (a->flags != b->flags || a->getSize() != b->getSize() ||
319 a->content() != b->content())
320 return false;
322 // If two sections have different output sections, we cannot merge them.
323 assert(a->getParent() && b->getParent());
324 if (a->getParent() != b->getParent())
325 return false;
327 const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
328 const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
329 if (ra.areRelocsCrel() || rb.areRelocsCrel())
330 return constantEq(a, ra.crels, b, rb.crels);
331 return ra.areRelocsRel() || rb.areRelocsRel()
332 ? constantEq(a, ra.rels, b, rb.rels)
333 : constantEq(a, ra.relas, b, rb.relas);
336 // Compare two lists of relocations. Returns true if all pairs of
337 // relocations point to the same section in terms of ICF.
338 template <class ELFT>
339 template <class RelTy>
340 bool ICF<ELFT>::variableEq(const InputSection *secA, Relocs<RelTy> ra,
341 const InputSection *secB, Relocs<RelTy> rb) {
342 assert(ra.size() == rb.size());
344 auto rai = ra.begin(), rae = ra.end(), rbi = rb.begin();
345 for (; rai != rae; ++rai, ++rbi) {
346 // The two sections must be identical.
347 Symbol &sa = secA->file->getRelocTargetSym(*rai);
348 Symbol &sb = secB->file->getRelocTargetSym(*rbi);
349 if (&sa == &sb)
350 continue;
352 auto *da = cast<Defined>(&sa);
353 auto *db = cast<Defined>(&sb);
355 // We already dealt with absolute and non-InputSection symbols in
356 // constantEq, and for InputSections we have already checked everything
357 // except the equivalence class.
358 if (!da->section)
359 continue;
360 auto *x = dyn_cast<InputSection>(da->section);
361 if (!x)
362 continue;
363 auto *y = cast<InputSection>(db->section);
365 // Sections that are in the special equivalence class 0, can never be the
366 // same in terms of the equivalence class.
367 if (x->eqClass[current] == 0)
368 return false;
369 if (x->eqClass[current] != y->eqClass[current])
370 return false;
373 return true;
376 // Compare "moving" part of two InputSections, namely relocation targets.
377 template <class ELFT>
378 bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
379 const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
380 const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
381 if (ra.areRelocsCrel() || rb.areRelocsCrel())
382 return variableEq(a, ra.crels, b, rb.crels);
383 return ra.areRelocsRel() || rb.areRelocsRel()
384 ? variableEq(a, ra.rels, b, rb.rels)
385 : variableEq(a, ra.relas, b, rb.relas);
388 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
389 uint32_t eqClass = sections[begin]->eqClass[current];
390 for (size_t i = begin + 1; i < end; ++i)
391 if (eqClass != sections[i]->eqClass[current])
392 return i;
393 return end;
396 // Sections in the same equivalence class are contiguous in Sections
397 // vector. Therefore, Sections vector can be considered as contiguous
398 // groups of sections, grouped by the class.
400 // This function calls Fn on every group within [Begin, End).
401 template <class ELFT>
402 void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
403 llvm::function_ref<void(size_t, size_t)> fn) {
404 while (begin < end) {
405 size_t mid = findBoundary(begin, end);
406 fn(begin, mid);
407 begin = mid;
411 // Call Fn on each equivalence class.
412 template <class ELFT>
413 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
414 // If threading is disabled or the number of sections are
415 // too small to use threading, call Fn sequentially.
416 if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) {
417 forEachClassRange(0, sections.size(), fn);
418 ++cnt;
419 return;
422 current = cnt % 2;
423 next = (cnt + 1) % 2;
425 // Shard into non-overlapping intervals, and call Fn in parallel.
426 // The sharding must be completed before any calls to Fn are made
427 // so that Fn can modify the Chunks in its shard without causing data
428 // races.
429 const size_t numShards = 256;
430 size_t step = sections.size() / numShards;
431 size_t boundaries[numShards + 1];
432 boundaries[0] = 0;
433 boundaries[numShards] = sections.size();
435 parallelFor(1, numShards, [&](size_t i) {
436 boundaries[i] = findBoundary((i - 1) * step, sections.size());
439 parallelFor(1, numShards + 1, [&](size_t i) {
440 if (boundaries[i - 1] < boundaries[i])
441 forEachClassRange(boundaries[i - 1], boundaries[i], fn);
443 ++cnt;
446 // Combine the hashes of the sections referenced by the given section into its
447 // hash.
448 template <class RelTy>
449 static void combineRelocHashes(unsigned cnt, InputSection *isec,
450 Relocs<RelTy> rels) {
451 uint32_t hash = isec->eqClass[cnt % 2];
452 for (RelTy rel : rels) {
453 Symbol &s = isec->file->getRelocTargetSym(rel);
454 if (auto *d = dyn_cast<Defined>(&s))
455 if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
456 hash += relSec->eqClass[cnt % 2];
458 // Set MSB to 1 to avoid collisions with unique IDs.
459 isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
462 static void print(Ctx &ctx, const Twine &s) {
463 if (ctx.arg.printIcfSections)
464 Msg(ctx) << s;
467 // The main function of ICF.
468 template <class ELFT> void ICF<ELFT>::run() {
469 // Compute isPreemptible early. We may add more symbols later, so this loop
470 // cannot be merged with the later computeIsPreemptible() pass which is used
471 // by scanRelocations().
472 if (ctx.arg.hasDynSymTab)
473 for (Symbol *sym : ctx.symtab->getSymbols())
474 sym->isPreemptible = computeIsPreemptible(ctx, *sym);
476 // Two text sections may have identical content and relocations but different
477 // LSDA, e.g. the two functions may have catch blocks of different types. If a
478 // text section is referenced by a .eh_frame FDE with LSDA, it is not
479 // eligible. This is implemented by iterating over CIE/FDE and setting
480 // eqClass[0] to the referenced text section from a live FDE.
482 // If two .gcc_except_table have identical semantics (usually identical
483 // content with PC-relative encoding), we will lose folding opportunity.
484 uint32_t uniqueId = 0;
485 for (Partition &part : ctx.partitions)
486 part.ehFrame->iterateFDEWithLSDA<ELFT>(
487 [&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; });
489 // Collect sections to merge.
490 for (InputSectionBase *sec : ctx.inputSections) {
491 auto *s = dyn_cast<InputSection>(sec);
492 if (s && s->eqClass[0] == 0) {
493 if (isEligible(s))
494 sections.push_back(s);
495 else
496 // Ineligible sections are assigned unique IDs, i.e. each section
497 // belongs to an equivalence class of its own.
498 s->eqClass[0] = s->eqClass[1] = ++uniqueId;
502 // Initially, we use hash values to partition sections.
503 parallelForEach(sections, [&](InputSection *s) {
504 // Set MSB to 1 to avoid collisions with unique IDs.
505 s->eqClass[0] = xxh3_64bits(s->content()) | (1U << 31);
508 // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
509 // reduce the average sizes of equivalence classes, i.e. segregate() which has
510 // a large time complexity will have less work to do.
511 for (unsigned cnt = 0; cnt != 2; ++cnt) {
512 parallelForEach(sections, [&](InputSection *s) {
513 const RelsOrRelas<ELFT> rels = s->template relsOrRelas<ELFT>();
514 if (rels.areRelocsCrel())
515 combineRelocHashes(cnt, s, rels.crels);
516 else if (rels.areRelocsRel())
517 combineRelocHashes(cnt, s, rels.rels);
518 else
519 combineRelocHashes(cnt, s, rels.relas);
523 // From now on, sections in Sections vector are ordered so that sections
524 // in the same equivalence class are consecutive in the vector.
525 llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
526 return a->eqClass[0] < b->eqClass[0];
529 // Compare static contents and assign unique equivalence class IDs for each
530 // static content. Use a base offset for these IDs to ensure no overlap with
531 // the unique IDs already assigned.
532 uint32_t eqClassBase = ++uniqueId;
533 forEachClass([&](size_t begin, size_t end) {
534 segregate(begin, end, eqClassBase, true);
537 // Split groups by comparing relocations until convergence is obtained.
538 do {
539 repeat = false;
540 forEachClass([&](size_t begin, size_t end) {
541 segregate(begin, end, eqClassBase, false);
543 } while (repeat);
545 Log(ctx) << "ICF needed " << Twine(cnt) << " iterations";
547 // Merge sections by the equivalence class.
548 forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
549 if (end - begin == 1)
550 return;
551 print(ctx, "selected section " + toStr(ctx, sections[begin]));
552 for (size_t i = begin + 1; i < end; ++i) {
553 print(ctx, " removing identical section " + toStr(ctx, sections[i]));
554 sections[begin]->replace(sections[i]);
556 // At this point we know sections merged are fully identical and hence
557 // we want to remove duplicate implicit dependencies such as link order
558 // and relocation sections.
559 for (InputSection *isec : sections[i]->dependentSections)
560 isec->markDead();
564 // Change Defined symbol's section field to the canonical one.
565 auto fold = [](Symbol *sym) {
566 if (auto *d = dyn_cast<Defined>(sym))
567 if (auto *sec = dyn_cast_or_null<InputSection>(d->section))
568 if (sec->repl != d->section) {
569 d->section = sec->repl;
570 d->folded = true;
573 for (Symbol *sym : ctx.symtab->getSymbols())
574 fold(sym);
575 parallelForEach(ctx.objectFiles, [&](ELFFileBase *file) {
576 for (Symbol *sym : file->getLocalSymbols())
577 fold(sym);
580 // InputSectionDescription::sections is populated by processSectionCommands().
581 // ICF may fold some input sections assigned to output sections. Remove them.
582 for (SectionCommand *cmd : ctx.script->sectionCommands)
583 if (auto *osd = dyn_cast<OutputDesc>(cmd))
584 for (SectionCommand *subCmd : osd->osec.commands)
585 if (auto *isd = dyn_cast<InputSectionDescription>(subCmd))
586 llvm::erase_if(isd->sections,
587 [](InputSection *isec) { return !isec->isLive(); });
590 // ICF entry point function.
591 template <class ELFT> void elf::doIcf(Ctx &ctx) {
592 llvm::TimeTraceScope timeScope("ICF");
593 ICF<ELFT>(ctx).run();
596 template void elf::doIcf<ELF32LE>(Ctx &);
597 template void elf::doIcf<ELF32BE>(Ctx &);
598 template void elf::doIcf<ELF64LE>(Ctx &);
599 template void elf::doIcf<ELF64BE>(Ctx &);