[NFC][Coroutines] Use structured binding with llvm::enumerate in CoroSplit (#116879)
[llvm-project.git] / lld / ELF / InputSection.h
blob303452fed60d86d784df5b745b866b6a987ad44e
1 //===- InputSection.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_ELF_INPUT_SECTION_H
10 #define LLD_ELF_INPUT_SECTION_H
12 #include "Config.h"
13 #include "Relocations.h"
14 #include "lld/Common/CommonLinkerContext.h"
15 #include "lld/Common/LLVM.h"
16 #include "lld/Common/Memory.h"
17 #include "llvm/ADT/CachedHashString.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/TinyPtrVector.h"
21 #include "llvm/Object/ELF.h"
22 #include "llvm/Support/Compiler.h"
24 namespace lld {
25 namespace elf {
27 class InputFile;
28 class Symbol;
30 class Defined;
31 struct Partition;
32 class SyntheticSection;
33 template <class ELFT> class ObjFile;
34 class OutputSection;
36 // Returned by InputSectionBase::relsOrRelas. At most one member is empty.
37 template <class ELFT> struct RelsOrRelas {
38 Relocs<typename ELFT::Rel> rels;
39 Relocs<typename ELFT::Rela> relas;
40 Relocs<typename ELFT::Crel> crels;
41 bool areRelocsRel() const { return rels.size(); }
42 bool areRelocsCrel() const { return crels.size(); }
45 #define invokeOnRelocs(sec, f, ...) \
46 { \
47 const RelsOrRelas<ELFT> rs = (sec).template relsOrRelas<ELFT>(); \
48 if (rs.areRelocsCrel()) \
49 f(__VA_ARGS__, rs.crels); \
50 else if (rs.areRelocsRel()) \
51 f(__VA_ARGS__, rs.rels); \
52 else \
53 f(__VA_ARGS__, rs.relas); \
56 // This is the base class of all sections that lld handles. Some are sections in
57 // input files, some are sections in the produced output file and some exist
58 // just as a convenience for implementing special ways of combining some
59 // sections.
60 class SectionBase {
61 public:
62 enum Kind { Regular, Synthetic, Spill, EHFrame, Merge, Output, Class };
64 Kind kind() const { return (Kind)sectionKind; }
66 LLVM_PREFERRED_TYPE(Kind)
67 uint8_t sectionKind : 3;
69 // The next two bit fields are only used by InputSectionBase, but we
70 // put them here so the struct packs better.
72 LLVM_PREFERRED_TYPE(bool)
73 uint8_t bss : 1;
75 // Set for sections that should not be folded by ICF.
76 LLVM_PREFERRED_TYPE(bool)
77 uint8_t keepUnique : 1;
79 uint8_t partition = 1;
80 uint32_t type;
82 // The file which contains this section. For InputSectionBase, its dynamic
83 // type is usually ObjFile<ELFT>, but may be an InputFile of InternalKind
84 // (for a synthetic section).
85 InputFile *file;
87 StringRef name;
89 // The 1-indexed partition that this section is assigned to by the garbage
90 // collector, or 0 if this section is dead. Normally there is only one
91 // partition, so this will either be 0 or 1.
92 elf::Partition &getPartition(Ctx &) const;
94 // These corresponds to the fields in Elf_Shdr.
95 uint64_t flags;
96 uint32_t addralign;
97 uint32_t entsize;
98 uint32_t link;
99 uint32_t info;
101 Ctx &getCtx() const;
102 OutputSection *getOutputSection();
103 const OutputSection *getOutputSection() const {
104 return const_cast<SectionBase *>(this)->getOutputSection();
107 // Translate an offset in the input section to an offset in the output
108 // section.
109 uint64_t getOffset(uint64_t offset) const;
111 uint64_t getVA(uint64_t offset = 0) const;
113 bool isLive() const { return partition != 0; }
114 void markLive() { partition = 1; }
115 void markDead() { partition = 0; }
117 protected:
118 constexpr SectionBase(Kind sectionKind, InputFile *file, StringRef name,
119 uint64_t flags, uint32_t entsize, uint32_t addralign,
120 uint32_t type, uint32_t info, uint32_t link)
121 : sectionKind(sectionKind), bss(false), keepUnique(false), type(type),
122 file(file), name(name), flags(flags), addralign(addralign),
123 entsize(entsize), link(link), info(info) {}
126 struct SymbolAnchor {
127 uint64_t offset;
128 Defined *d;
129 bool end; // true for the anchor of st_value+st_size
132 struct RelaxAux {
133 // This records symbol start and end offsets which will be adjusted according
134 // to the nearest relocDeltas element.
135 SmallVector<SymbolAnchor, 0> anchors;
136 // For relocations[i], the actual offset is
137 // r_offset - (i ? relocDeltas[i-1] : 0).
138 std::unique_ptr<uint32_t[]> relocDeltas;
139 // For relocations[i], the actual type is relocTypes[i].
140 std::unique_ptr<RelType[]> relocTypes;
141 SmallVector<uint32_t, 0> writes;
144 // This corresponds to a section of an input file.
145 class InputSectionBase : public SectionBase {
146 public:
147 template <class ELFT>
148 InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header,
149 StringRef name, Kind sectionKind);
151 InputSectionBase(InputFile *file, uint64_t flags, uint32_t type,
152 uint64_t entsize, uint32_t link, uint32_t info,
153 uint32_t addralign, ArrayRef<uint8_t> data, StringRef name,
154 Kind sectionKind);
156 static bool classof(const SectionBase *s) {
157 return s->kind() != Output && s->kind() != Class;
160 // Input sections are part of an output section. Special sections
161 // like .eh_frame and merge sections are first combined into a
162 // synthetic section that is then added to an output section. In all
163 // cases this points one level up.
164 SectionBase *parent = nullptr;
166 // Section index of the relocation section if exists.
167 uint32_t relSecIdx = 0;
169 // Getter when the dynamic type is ObjFile<ELFT>.
170 template <class ELFT> ObjFile<ELFT> *getFile() const {
171 return cast<ObjFile<ELFT>>(file);
174 // Used by --optimize-bb-jumps and RISC-V linker relaxation temporarily to
175 // indicate the number of bytes which is not counted in the size. This should
176 // be reset to zero after uses.
177 uint32_t bytesDropped = 0;
179 mutable bool compressed = false;
181 // Whether this section is SHT_CREL and has been decoded to RELA by
182 // relsOrRelas.
183 bool decodedCrel = false;
185 // Whether the section needs to be padded with a NOP filler due to
186 // deleteFallThruJmpInsn.
187 bool nopFiller = false;
189 void drop_back(unsigned num) {
190 assert(bytesDropped + num < 256);
191 bytesDropped += num;
194 void push_back(uint64_t num) {
195 assert(bytesDropped >= num);
196 bytesDropped -= num;
199 mutable const uint8_t *content_;
200 uint64_t size;
202 void trim() {
203 if (bytesDropped) {
204 size -= bytesDropped;
205 bytesDropped = 0;
209 ArrayRef<uint8_t> content() const {
210 return ArrayRef<uint8_t>(content_, size);
212 ArrayRef<uint8_t> contentMaybeDecompress() const {
213 if (compressed)
214 decompress();
215 return content();
218 // The next member in the section group if this section is in a group. This is
219 // used by --gc-sections.
220 InputSectionBase *nextInSectionGroup = nullptr;
222 template <class ELFT>
223 RelsOrRelas<ELFT> relsOrRelas(bool supportsCrel = true) const;
225 // InputSections that are dependent on us (reverse dependency for GC)
226 llvm::TinyPtrVector<InputSection *> dependentSections;
228 // Returns the size of this section (even if this is a common or BSS.)
229 size_t getSize() const;
231 InputSection *getLinkOrderDep() const;
233 // Get a symbol that encloses this offset from within the section. If type is
234 // not zero, return a symbol with the specified type.
235 Defined *getEnclosingSymbol(uint64_t offset, uint8_t type = 0) const;
236 Defined *getEnclosingFunction(uint64_t offset) const {
237 return getEnclosingSymbol(offset, llvm::ELF::STT_FUNC);
240 // Returns a source location string. Used to construct an error message.
241 std::string getLocation(uint64_t offset) const;
242 std::string getSrcMsg(const Symbol &sym, uint64_t offset) const;
243 std::string getObjMsg(uint64_t offset) const;
245 // Each section knows how to relocate itself. These functions apply
246 // relocations, assuming that Buf points to this section's copy in
247 // the mmap'ed output buffer.
248 template <class ELFT> void relocate(Ctx &, uint8_t *buf, uint8_t *bufEnd);
249 uint64_t getRelocTargetVA(Ctx &, const Relocation &r, uint64_t p) const;
251 // The native ELF reloc data type is not very convenient to handle.
252 // So we convert ELF reloc records to our own records in Relocations.cpp.
253 // This vector contains such "cooked" relocations.
254 SmallVector<Relocation, 0> relocations;
256 void addReloc(const Relocation &r) { relocations.push_back(r); }
257 MutableArrayRef<Relocation> relocs() { return relocations; }
258 ArrayRef<Relocation> relocs() const { return relocations; }
260 union {
261 // These are modifiers to jump instructions that are necessary when basic
262 // block sections are enabled. Basic block sections creates opportunities
263 // to relax jump instructions at basic block boundaries after reordering the
264 // basic blocks.
265 JumpInstrMod *jumpInstrMod = nullptr;
267 // Auxiliary information for RISC-V and LoongArch linker relaxation.
268 // They do not use jumpInstrMod.
269 RelaxAux *relaxAux;
271 // The compressed content size when `compressed` is true.
272 size_t compressedSize;
275 // A function compiled with -fsplit-stack calling a function
276 // compiled without -fsplit-stack needs its prologue adjusted. Find
277 // such functions and adjust their prologues. This is very similar
278 // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more
279 // information.
280 template <typename ELFT>
281 void adjustSplitStackFunctionPrologues(Ctx &, uint8_t *buf, uint8_t *end);
283 template <typename T> llvm::ArrayRef<T> getDataAs() const {
284 size_t s = content().size();
285 assert(s % sizeof(T) == 0);
286 return llvm::ArrayRef<T>((const T *)content().data(), s / sizeof(T));
289 protected:
290 template <typename ELFT> void parseCompressedHeader(Ctx &);
291 void decompress() const;
294 // SectionPiece represents a piece of splittable section contents.
295 // We allocate a lot of these and binary search on them. This means that they
296 // have to be as compact as possible, which is why we don't store the size (can
297 // be found by looking at the next one).
298 struct SectionPiece {
299 SectionPiece() = default;
300 SectionPiece(size_t off, uint32_t hash, bool live)
301 : inputOff(off), live(live), hash(hash >> 1) {}
303 uint32_t inputOff;
304 LLVM_PREFERRED_TYPE(bool)
305 uint32_t live : 1;
306 uint32_t hash : 31;
307 uint64_t outputOff = 0;
310 static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");
312 // This corresponds to a SHF_MERGE section of an input file.
313 class MergeInputSection : public InputSectionBase {
314 public:
315 template <class ELFT>
316 MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
317 StringRef name);
318 MergeInputSection(Ctx &, uint64_t flags, uint32_t type, uint64_t entsize,
319 ArrayRef<uint8_t> data, StringRef name);
321 static bool classof(const SectionBase *s) { return s->kind() == Merge; }
322 void splitIntoPieces();
324 // Translate an offset in the input section to an offset in the parent
325 // MergeSyntheticSection.
326 uint64_t getParentOffset(uint64_t offset) const;
328 // Splittable sections are handled as a sequence of data
329 // rather than a single large blob of data.
330 SmallVector<SectionPiece, 0> pieces;
332 // Returns I'th piece's data. This function is very hot when
333 // string merging is enabled, so we want to inline.
334 LLVM_ATTRIBUTE_ALWAYS_INLINE
335 llvm::CachedHashStringRef getData(size_t i) const {
336 size_t begin = pieces[i].inputOff;
337 size_t end =
338 (pieces.size() - 1 == i) ? content().size() : pieces[i + 1].inputOff;
339 return {toStringRef(content().slice(begin, end - begin)), pieces[i].hash};
342 // Returns the SectionPiece at a given input section offset.
343 SectionPiece &getSectionPiece(uint64_t offset);
344 const SectionPiece &getSectionPiece(uint64_t offset) const {
345 return const_cast<MergeInputSection *>(this)->getSectionPiece(offset);
348 SyntheticSection *getParent() const {
349 return cast_or_null<SyntheticSection>(parent);
352 private:
353 void splitStrings(StringRef s, size_t size);
354 void splitNonStrings(ArrayRef<uint8_t> a, size_t size);
357 struct EhSectionPiece {
358 EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size,
359 unsigned firstRelocation)
360 : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {}
362 ArrayRef<uint8_t> data() const {
363 return {sec->content().data() + this->inputOff, size};
366 size_t inputOff;
367 ssize_t outputOff = -1;
368 InputSectionBase *sec;
369 uint32_t size;
370 unsigned firstRelocation;
373 // This corresponds to a .eh_frame section of an input file.
374 class EhInputSection : public InputSectionBase {
375 public:
376 template <class ELFT>
377 EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
378 StringRef name);
379 static bool classof(const SectionBase *s) { return s->kind() == EHFrame; }
380 template <class ELFT> void split();
381 template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels);
383 // Splittable sections are handled as a sequence of data
384 // rather than a single large blob of data.
385 SmallVector<EhSectionPiece, 0> cies, fdes;
387 SyntheticSection *getParent() const;
388 uint64_t getParentOffset(uint64_t offset) const;
391 // This is a section that is added directly to an output section
392 // instead of needing special combination via a synthetic section. This
393 // includes all input sections with the exceptions of SHF_MERGE and
394 // .eh_frame. It also includes the synthetic sections themselves.
395 class InputSection : public InputSectionBase {
396 public:
397 InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t addralign,
398 ArrayRef<uint8_t> data, StringRef name, Kind k = Regular);
399 template <class ELFT>
400 InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
401 StringRef name);
403 static bool classof(const SectionBase *s) {
404 return s->kind() == SectionBase::Regular ||
405 s->kind() == SectionBase::Synthetic ||
406 s->kind() == SectionBase::Spill;
409 // Write this section to a mmap'ed file, assuming Buf is pointing to
410 // beginning of the output section.
411 template <class ELFT> void writeTo(Ctx &, uint8_t *buf);
413 OutputSection *getParent() const {
414 return reinterpret_cast<OutputSection *>(parent);
417 // This variable has two usages. Initially, it represents an index in the
418 // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
419 // sections. After assignAddresses is called, it represents the offset from
420 // the beginning of the output section this section was assigned to.
421 uint64_t outSecOff = 0;
423 InputSectionBase *getRelocatedSection() const;
425 template <class ELFT, class RelTy>
426 void relocateNonAlloc(Ctx &, uint8_t *buf, Relocs<RelTy> rels);
428 // Points to the canonical section. If ICF folds two sections, repl pointer of
429 // one section points to the other.
430 InputSection *repl = this;
432 // Used by ICF.
433 uint32_t eqClass[2] = {0, 0};
435 // Called by ICF to merge two input sections.
436 void replace(InputSection *other);
438 static InputSection discarded;
440 private:
441 template <class ELFT, class RelTy> void copyRelocations(Ctx &, uint8_t *buf);
443 template <class ELFT, class RelTy, class RelIt>
444 void copyRelocations(Ctx &, uint8_t *buf, llvm::iterator_range<RelIt> rels);
446 template <class ELFT> void copyShtGroup(uint8_t *buf);
449 // A marker for a potential spill location for another input section. This
450 // broadly acts as if it were the original section until address assignment.
451 // Then it is either replaced with the real input section or removed.
452 class PotentialSpillSection : public InputSection {
453 public:
454 // The containing input section description; used to quickly replace this stub
455 // with the actual section.
456 InputSectionDescription *isd;
458 // Next potential spill location for the same source input section.
459 PotentialSpillSection *next = nullptr;
461 PotentialSpillSection(const InputSectionBase &source,
462 InputSectionDescription &isd);
464 static bool classof(const SectionBase *sec) {
465 return sec->kind() == InputSectionBase::Spill;
469 static_assert(sizeof(InputSection) <= 160, "InputSection is too big");
471 class SyntheticSection : public InputSection {
472 public:
473 Ctx &ctx;
474 SyntheticSection(Ctx &ctx, uint64_t flags, uint32_t type, uint32_t addralign,
475 StringRef name)
476 : InputSection(ctx.internalFile, flags, type, addralign, {}, name,
477 InputSectionBase::Synthetic),
478 ctx(ctx) {}
480 virtual ~SyntheticSection() = default;
481 virtual size_t getSize() const = 0;
482 virtual bool updateAllocSize(Ctx &) { return false; }
483 // If the section has the SHF_ALLOC flag and the size may be changed if
484 // thunks are added, update the section size.
485 virtual bool isNeeded() const { return true; }
486 virtual void finalizeContents() {}
487 virtual void writeTo(uint8_t *buf) = 0;
489 static bool classof(const SectionBase *sec) {
490 return sec->kind() == InputSectionBase::Synthetic;
494 inline bool isStaticRelSecType(uint32_t type) {
495 return type == llvm::ELF::SHT_RELA || type == llvm::ELF::SHT_CREL ||
496 type == llvm::ELF::SHT_REL;
499 inline bool isDebugSection(const InputSectionBase &sec) {
500 return (sec.flags & llvm::ELF::SHF_ALLOC) == 0 &&
501 sec.name.starts_with(".debug");
504 std::string toStr(elf::Ctx &, const elf::InputSectionBase *);
505 const ELFSyncStream &operator<<(const ELFSyncStream &,
506 const InputSectionBase *);
507 } // namespace elf
508 } // namespace lld
510 #endif