[NFC][Coroutines] Use structured binding with llvm::enumerate in CoroSplit (#116879)
[llvm-project.git] / lld / ELF / SyntheticSections.cpp
blob7e5e713513c473dce2bcdcead0195338dd2ea93d
1 //===- SyntheticSections.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains linker-synthesized sections. Currently,
10 // synthetic sections are created either output sections or input sections,
11 // but we are rewriting code so that all synthetic sections are created as
12 // input sections.
14 //===----------------------------------------------------------------------===//
16 #include "SyntheticSections.h"
17 #include "Config.h"
18 #include "DWARF.h"
19 #include "EhFrame.h"
20 #include "InputFiles.h"
21 #include "LinkerScript.h"
22 #include "OutputSections.h"
23 #include "SymbolTable.h"
24 #include "Symbols.h"
25 #include "Target.h"
26 #include "Thunks.h"
27 #include "Writer.h"
28 #include "lld/Common/CommonLinkerContext.h"
29 #include "lld/Common/DWARF.h"
30 #include "lld/Common/Strings.h"
31 #include "lld/Common/Version.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/Sequence.h"
34 #include "llvm/ADT/SetOperations.h"
35 #include "llvm/ADT/StringExtras.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/BinaryFormat/ELF.h"
38 #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
39 #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
40 #include "llvm/Support/DJB.h"
41 #include "llvm/Support/Endian.h"
42 #include "llvm/Support/LEB128.h"
43 #include "llvm/Support/Parallel.h"
44 #include "llvm/Support/TimeProfiler.h"
45 #include <cinttypes>
46 #include <cstdlib>
48 using namespace llvm;
49 using namespace llvm::dwarf;
50 using namespace llvm::ELF;
51 using namespace llvm::object;
52 using namespace llvm::support;
53 using namespace lld;
54 using namespace lld::elf;
56 using llvm::support::endian::read32le;
57 using llvm::support::endian::write32le;
58 using llvm::support::endian::write64le;
60 constexpr size_t MergeNoTailSection::numShards;
62 static uint64_t readUint(Ctx &ctx, uint8_t *buf) {
63 return ctx.arg.is64 ? read64(ctx, buf) : read32(ctx, buf);
66 static void writeUint(Ctx &ctx, uint8_t *buf, uint64_t val) {
67 if (ctx.arg.is64)
68 write64(ctx, buf, val);
69 else
70 write32(ctx, buf, val);
73 // Returns an LLD version string.
74 static ArrayRef<uint8_t> getVersion(Ctx &ctx) {
75 // Check LLD_VERSION first for ease of testing.
76 // You can get consistent output by using the environment variable.
77 // This is only for testing.
78 StringRef s = getenv("LLD_VERSION");
79 if (s.empty())
80 s = ctx.saver.save(Twine("Linker: ") + getLLDVersion());
82 // +1 to include the terminating '\0'.
83 return {(const uint8_t *)s.data(), s.size() + 1};
86 // Creates a .comment section containing LLD version info.
87 // With this feature, you can identify LLD-generated binaries easily
88 // by "readelf --string-dump .comment <file>".
89 // The returned object is a mergeable string section.
90 MergeInputSection *elf::createCommentSection(Ctx &ctx) {
91 auto *sec =
92 make<MergeInputSection>(ctx, SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
93 getVersion(ctx), ".comment");
94 sec->splitIntoPieces();
95 return sec;
98 // .MIPS.abiflags section.
99 template <class ELFT>
100 MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Ctx &ctx,
101 Elf_Mips_ABIFlags flags)
102 : SyntheticSection(ctx, SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
103 flags(flags) {
104 this->entsize = sizeof(Elf_Mips_ABIFlags);
107 template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
108 memcpy(buf, &flags, sizeof(flags));
111 template <class ELFT>
112 std::unique_ptr<MipsAbiFlagsSection<ELFT>>
113 MipsAbiFlagsSection<ELFT>::create(Ctx &ctx) {
114 Elf_Mips_ABIFlags flags = {};
115 bool create = false;
117 for (InputSectionBase *sec : ctx.inputSections) {
118 if (sec->type != SHT_MIPS_ABIFLAGS)
119 continue;
120 sec->markDead();
121 create = true;
123 std::string filename = toStr(ctx, sec->file);
124 const size_t size = sec->content().size();
125 // Older version of BFD (such as the default FreeBSD linker) concatenate
126 // .MIPS.abiflags instead of merging. To allow for this case (or potential
127 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
128 if (size < sizeof(Elf_Mips_ABIFlags)) {
129 ErrAlways(ctx) << filename
130 << ": invalid size of .MIPS.abiflags section: got "
131 << Twine(size) << " instead of "
132 << Twine(sizeof(Elf_Mips_ABIFlags));
133 return nullptr;
135 auto *s =
136 reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data());
137 if (s->version != 0) {
138 ErrAlways(ctx) << filename << ": unexpected .MIPS.abiflags version "
139 << Twine(s->version);
140 return nullptr;
143 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
144 // select the highest number of ISA/Rev/Ext.
145 flags.isa_level = std::max(flags.isa_level, s->isa_level);
146 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
147 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
148 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
149 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
150 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
151 flags.ases |= s->ases;
152 flags.flags1 |= s->flags1;
153 flags.flags2 |= s->flags2;
154 flags.fp_abi =
155 elf::getMipsFpAbiFlag(ctx, flags.fp_abi, s->fp_abi, filename);
158 if (create)
159 return std::make_unique<MipsAbiFlagsSection<ELFT>>(ctx, flags);
160 return nullptr;
163 // .MIPS.options section.
164 template <class ELFT>
165 MipsOptionsSection<ELFT>::MipsOptionsSection(Ctx &ctx, Elf_Mips_RegInfo reginfo)
166 : SyntheticSection(ctx, SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
167 reginfo(reginfo) {
168 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
171 template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
172 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
173 options->kind = ODK_REGINFO;
174 options->size = getSize();
176 if (!ctx.arg.relocatable)
177 reginfo.ri_gp_value = ctx.in.mipsGot->getGp();
178 memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
181 template <class ELFT>
182 std::unique_ptr<MipsOptionsSection<ELFT>>
183 MipsOptionsSection<ELFT>::create(Ctx &ctx) {
184 // N64 ABI only.
185 if (!ELFT::Is64Bits)
186 return nullptr;
188 SmallVector<InputSectionBase *, 0> sections;
189 for (InputSectionBase *sec : ctx.inputSections)
190 if (sec->type == SHT_MIPS_OPTIONS)
191 sections.push_back(sec);
193 if (sections.empty())
194 return nullptr;
196 Elf_Mips_RegInfo reginfo = {};
197 for (InputSectionBase *sec : sections) {
198 sec->markDead();
200 std::string filename = toStr(ctx, sec->file);
201 ArrayRef<uint8_t> d = sec->content();
203 while (!d.empty()) {
204 if (d.size() < sizeof(Elf_Mips_Options)) {
205 ErrAlways(ctx) << filename << ": invalid size of .MIPS.options section";
206 break;
209 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
210 if (opt->kind == ODK_REGINFO) {
211 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
212 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
213 break;
216 if (!opt->size)
217 Fatal(ctx) << filename << ": zero option descriptor size";
218 d = d.slice(opt->size);
222 return std::make_unique<MipsOptionsSection<ELFT>>(ctx, reginfo);
225 // MIPS .reginfo section.
226 template <class ELFT>
227 MipsReginfoSection<ELFT>::MipsReginfoSection(Ctx &ctx, Elf_Mips_RegInfo reginfo)
228 : SyntheticSection(ctx, SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
229 reginfo(reginfo) {
230 this->entsize = sizeof(Elf_Mips_RegInfo);
233 template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
234 if (!ctx.arg.relocatable)
235 reginfo.ri_gp_value = ctx.in.mipsGot->getGp();
236 memcpy(buf, &reginfo, sizeof(reginfo));
239 template <class ELFT>
240 std::unique_ptr<MipsReginfoSection<ELFT>>
241 MipsReginfoSection<ELFT>::create(Ctx &ctx) {
242 // Section should be alive for O32 and N32 ABIs only.
243 if (ELFT::Is64Bits)
244 return nullptr;
246 SmallVector<InputSectionBase *, 0> sections;
247 for (InputSectionBase *sec : ctx.inputSections)
248 if (sec->type == SHT_MIPS_REGINFO)
249 sections.push_back(sec);
251 if (sections.empty())
252 return nullptr;
254 Elf_Mips_RegInfo reginfo = {};
255 for (InputSectionBase *sec : sections) {
256 sec->markDead();
258 if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) {
259 ErrAlways(ctx) << sec->file << ": invalid size of .reginfo section";
260 return nullptr;
263 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data());
264 reginfo.ri_gprmask |= r->ri_gprmask;
265 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
268 return std::make_unique<MipsReginfoSection<ELFT>>(ctx, reginfo);
271 InputSection *elf::createInterpSection(Ctx &ctx) {
272 // StringSaver guarantees that the returned string ends with '\0'.
273 StringRef s = ctx.saver.save(ctx.arg.dynamicLinker);
274 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
276 return make<InputSection>(ctx.internalFile, SHF_ALLOC, SHT_PROGBITS, 1,
277 contents, ".interp");
280 Defined *elf::addSyntheticLocal(Ctx &ctx, StringRef name, uint8_t type,
281 uint64_t value, uint64_t size,
282 InputSectionBase &section) {
283 Defined *s = makeDefined(ctx, section.file, name, STB_LOCAL, STV_DEFAULT,
284 type, value, size, &section);
285 if (ctx.in.symTab)
286 ctx.in.symTab->addSymbol(s);
288 if (ctx.arg.emachine == EM_ARM && !ctx.arg.isLE && ctx.arg.armBe8 &&
289 (section.flags & SHF_EXECINSTR))
290 // Adding Linker generated mapping symbols to the arm specific mapping
291 // symbols list.
292 addArmSyntheticSectionMappingSymbol(s);
294 return s;
297 static size_t getHashSize(Ctx &ctx) {
298 switch (ctx.arg.buildId) {
299 case BuildIdKind::Fast:
300 return 8;
301 case BuildIdKind::Md5:
302 case BuildIdKind::Uuid:
303 return 16;
304 case BuildIdKind::Sha1:
305 return 20;
306 case BuildIdKind::Hexstring:
307 return ctx.arg.buildIdVector.size();
308 default:
309 llvm_unreachable("unknown BuildIdKind");
313 // This class represents a linker-synthesized .note.gnu.property section.
315 // In x86 and AArch64, object files may contain feature flags indicating the
316 // features that they have used. The flags are stored in a .note.gnu.property
317 // section.
319 // lld reads the sections from input files and merges them by computing AND of
320 // the flags. The result is written as a new .note.gnu.property section.
322 // If the flag is zero (which indicates that the intersection of the feature
323 // sets is empty, or some input files didn't have .note.gnu.property sections),
324 // we don't create this section.
325 GnuPropertySection::GnuPropertySection(Ctx &ctx)
326 : SyntheticSection(ctx, llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
327 ctx.arg.wordsize, ".note.gnu.property") {}
329 void GnuPropertySection::writeTo(uint8_t *buf) {
330 write32(ctx, buf, 4); // Name size
331 write32(ctx, buf + 4, getSize() - 16); // Content size
332 write32(ctx, buf + 8, NT_GNU_PROPERTY_TYPE_0); // Type
333 memcpy(buf + 12, "GNU", 4); // Name string
335 uint32_t featureAndType = ctx.arg.emachine == EM_AARCH64
336 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
337 : GNU_PROPERTY_X86_FEATURE_1_AND;
339 unsigned offset = 16;
340 if (ctx.arg.andFeatures != 0) {
341 write32(ctx, buf + offset + 0, featureAndType); // Feature type
342 write32(ctx, buf + offset + 4, 4); // Feature size
343 write32(ctx, buf + offset + 8, ctx.arg.andFeatures); // Feature flags
344 if (ctx.arg.is64)
345 write32(ctx, buf + offset + 12, 0); // Padding
346 offset += 16;
349 if (!ctx.aarch64PauthAbiCoreInfo.empty()) {
350 write32(ctx, buf + offset + 0, GNU_PROPERTY_AARCH64_FEATURE_PAUTH);
351 write32(ctx, buf + offset + 4, ctx.aarch64PauthAbiCoreInfo.size());
352 memcpy(buf + offset + 8, ctx.aarch64PauthAbiCoreInfo.data(),
353 ctx.aarch64PauthAbiCoreInfo.size());
357 size_t GnuPropertySection::getSize() const {
358 uint32_t contentSize = 0;
359 if (ctx.arg.andFeatures != 0)
360 contentSize += ctx.arg.is64 ? 16 : 12;
361 if (!ctx.aarch64PauthAbiCoreInfo.empty())
362 contentSize += 4 + 4 + ctx.aarch64PauthAbiCoreInfo.size();
363 assert(contentSize != 0);
364 return contentSize + 16;
367 BuildIdSection::BuildIdSection(Ctx &ctx)
368 : SyntheticSection(ctx, SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
369 hashSize(getHashSize(ctx)) {}
371 void BuildIdSection::writeTo(uint8_t *buf) {
372 write32(ctx, buf, 4); // Name size
373 write32(ctx, buf + 4, hashSize); // Content size
374 write32(ctx, buf + 8, NT_GNU_BUILD_ID); // Type
375 memcpy(buf + 12, "GNU", 4); // Name string
376 hashBuf = buf + 16;
379 void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
380 assert(buf.size() == hashSize);
381 memcpy(hashBuf, buf.data(), hashSize);
384 BssSection::BssSection(Ctx &ctx, StringRef name, uint64_t size,
385 uint32_t alignment)
386 : SyntheticSection(ctx, SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment,
387 name) {
388 this->bss = true;
389 this->size = size;
392 EhFrameSection::EhFrameSection(Ctx &ctx)
393 : SyntheticSection(ctx, SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
395 // Search for an existing CIE record or create a new one.
396 // CIE records from input object files are uniquified by their contents
397 // and where their relocations point to.
398 template <class ELFT, class RelTy>
399 CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
400 Symbol *personality = nullptr;
401 unsigned firstRelI = cie.firstRelocation;
402 if (firstRelI != (unsigned)-1)
403 personality = &cie.sec->file->getRelocTargetSym(rels[firstRelI]);
405 // Search for an existing CIE by CIE contents/relocation target pair.
406 CieRecord *&rec = cieMap[{cie.data(), personality}];
408 // If not found, create a new one.
409 if (!rec) {
410 rec = make<CieRecord>();
411 rec->cie = &cie;
412 cieRecords.push_back(rec);
414 return rec;
417 // There is one FDE per function. Returns a non-null pointer to the function
418 // symbol if the given FDE points to a live function.
419 template <class ELFT, class RelTy>
420 Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
421 auto *sec = cast<EhInputSection>(fde.sec);
422 unsigned firstRelI = fde.firstRelocation;
424 // An FDE should point to some function because FDEs are to describe
425 // functions. That's however not always the case due to an issue of
426 // ld.gold with -r. ld.gold may discard only functions and leave their
427 // corresponding FDEs, which results in creating bad .eh_frame sections.
428 // To deal with that, we ignore such FDEs.
429 if (firstRelI == (unsigned)-1)
430 return nullptr;
432 const RelTy &rel = rels[firstRelI];
433 Symbol &b = sec->file->getRelocTargetSym(rel);
435 // FDEs for garbage-collected or merged-by-ICF sections, or sections in
436 // another partition, are dead.
437 if (auto *d = dyn_cast<Defined>(&b))
438 if (!d->folded && d->section && d->section->partition == partition)
439 return d;
440 return nullptr;
443 // .eh_frame is a sequence of CIE or FDE records. In general, there
444 // is one CIE record per input object file which is followed by
445 // a list of FDEs. This function searches an existing CIE or create a new
446 // one and associates FDEs to the CIE.
447 template <class ELFT, class RelTy>
448 void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
449 offsetToCie.clear();
450 for (EhSectionPiece &cie : sec->cies)
451 offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels);
452 for (EhSectionPiece &fde : sec->fdes) {
453 uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4);
454 CieRecord *rec = offsetToCie[fde.inputOff + 4 - id];
455 if (!rec)
456 Fatal(ctx) << sec << ": invalid CIE reference";
458 if (!isFdeLive<ELFT>(fde, rels))
459 continue;
460 rec->fdes.push_back(&fde);
461 numFdes++;
465 template <class ELFT>
466 void EhFrameSection::addSectionAux(EhInputSection *sec) {
467 if (!sec->isLive())
468 return;
469 const RelsOrRelas<ELFT> rels =
470 sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false);
471 if (rels.areRelocsRel())
472 addRecords<ELFT>(sec, rels.rels);
473 else
474 addRecords<ELFT>(sec, rels.relas);
477 // Used by ICF<ELFT>::handleLSDA(). This function is very similar to
478 // EhFrameSection::addRecords().
479 template <class ELFT, class RelTy>
480 void EhFrameSection::iterateFDEWithLSDAAux(
481 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA,
482 llvm::function_ref<void(InputSection &)> fn) {
483 for (EhSectionPiece &cie : sec.cies)
484 if (hasLSDA(cie))
485 ciesWithLSDA.insert(cie.inputOff);
486 for (EhSectionPiece &fde : sec.fdes) {
487 uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4);
488 if (!ciesWithLSDA.contains(fde.inputOff + 4 - id))
489 continue;
491 // The CIE has a LSDA argument. Call fn with d's section.
492 if (Defined *d = isFdeLive<ELFT>(fde, rels))
493 if (auto *s = dyn_cast_or_null<InputSection>(d->section))
494 fn(*s);
498 template <class ELFT>
499 void EhFrameSection::iterateFDEWithLSDA(
500 llvm::function_ref<void(InputSection &)> fn) {
501 DenseSet<size_t> ciesWithLSDA;
502 for (EhInputSection *sec : sections) {
503 ciesWithLSDA.clear();
504 const RelsOrRelas<ELFT> rels =
505 sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false);
506 if (rels.areRelocsRel())
507 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn);
508 else
509 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn);
513 static void writeCieFde(Ctx &ctx, uint8_t *buf, ArrayRef<uint8_t> d) {
514 memcpy(buf, d.data(), d.size());
515 // Fix the size field. -4 since size does not include the size field itself.
516 write32(ctx, buf, d.size() - 4);
519 void EhFrameSection::finalizeContents() {
520 assert(!this->size); // Not finalized.
522 switch (ctx.arg.ekind) {
523 case ELFNoneKind:
524 llvm_unreachable("invalid ekind");
525 case ELF32LEKind:
526 for (EhInputSection *sec : sections)
527 addSectionAux<ELF32LE>(sec);
528 break;
529 case ELF32BEKind:
530 for (EhInputSection *sec : sections)
531 addSectionAux<ELF32BE>(sec);
532 break;
533 case ELF64LEKind:
534 for (EhInputSection *sec : sections)
535 addSectionAux<ELF64LE>(sec);
536 break;
537 case ELF64BEKind:
538 for (EhInputSection *sec : sections)
539 addSectionAux<ELF64BE>(sec);
540 break;
543 size_t off = 0;
544 for (CieRecord *rec : cieRecords) {
545 rec->cie->outputOff = off;
546 off += rec->cie->size;
548 for (EhSectionPiece *fde : rec->fdes) {
549 fde->outputOff = off;
550 off += fde->size;
554 // The LSB standard does not allow a .eh_frame section with zero
555 // Call Frame Information records. glibc unwind-dw2-fde.c
556 // classify_object_over_fdes expects there is a CIE record length 0 as a
557 // terminator. Thus we add one unconditionally.
558 off += 4;
560 this->size = off;
563 // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
564 // to get an FDE from an address to which FDE is applied. This function
565 // returns a list of such pairs.
566 SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const {
567 uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff;
568 SmallVector<FdeData, 0> ret;
570 uint64_t va = getPartition(ctx).ehFrameHdr->getVA();
571 for (CieRecord *rec : cieRecords) {
572 uint8_t enc = getFdeEncoding(rec->cie);
573 for (EhSectionPiece *fde : rec->fdes) {
574 uint64_t pc = getFdePc(buf, fde->outputOff, enc);
575 uint64_t fdeVA = getParent()->addr + fde->outputOff;
576 if (!isInt<32>(pc - va)) {
577 Err(ctx) << fde->sec << ": PC offset is too large: 0x"
578 << Twine::utohexstr(pc - va);
579 continue;
581 ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
585 // Sort the FDE list by their PC and uniqueify. Usually there is only
586 // one FDE for a PC (i.e. function), but if ICF merges two functions
587 // into one, there can be more than one FDEs pointing to the address.
588 auto less = [](const FdeData &a, const FdeData &b) {
589 return a.pcRel < b.pcRel;
591 llvm::stable_sort(ret, less);
592 auto eq = [](const FdeData &a, const FdeData &b) {
593 return a.pcRel == b.pcRel;
595 ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
597 return ret;
600 static uint64_t readFdeAddr(Ctx &ctx, uint8_t *buf, int size) {
601 switch (size) {
602 case DW_EH_PE_udata2:
603 return read16(ctx, buf);
604 case DW_EH_PE_sdata2:
605 return (int16_t)read16(ctx, buf);
606 case DW_EH_PE_udata4:
607 return read32(ctx, buf);
608 case DW_EH_PE_sdata4:
609 return (int32_t)read32(ctx, buf);
610 case DW_EH_PE_udata8:
611 case DW_EH_PE_sdata8:
612 return read64(ctx, buf);
613 case DW_EH_PE_absptr:
614 return readUint(ctx, buf);
616 Err(ctx) << "unknown FDE size encoding";
617 return 0;
620 // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
621 // We need it to create .eh_frame_hdr section.
622 uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
623 uint8_t enc) const {
624 // The starting address to which this FDE applies is
625 // stored at FDE + 8 byte. And this offset is within
626 // the .eh_frame section.
627 size_t off = fdeOff + 8;
628 uint64_t addr = readFdeAddr(ctx, buf + off, enc & 0xf);
629 if ((enc & 0x70) == DW_EH_PE_absptr)
630 return ctx.arg.is64 ? addr : uint32_t(addr);
631 if ((enc & 0x70) == DW_EH_PE_pcrel)
632 return addr + getParent()->addr + off + outSecOff;
633 Err(ctx) << "unknown FDE size relative encoding";
634 return 0;
637 void EhFrameSection::writeTo(uint8_t *buf) {
638 // Write CIE and FDE records.
639 for (CieRecord *rec : cieRecords) {
640 size_t cieOffset = rec->cie->outputOff;
641 writeCieFde(ctx, buf + cieOffset, rec->cie->data());
643 for (EhSectionPiece *fde : rec->fdes) {
644 size_t off = fde->outputOff;
645 writeCieFde(ctx, buf + off, fde->data());
647 // FDE's second word should have the offset to an associated CIE.
648 // Write it.
649 write32(ctx, buf + off + 4, off + 4 - cieOffset);
653 // Apply relocations. .eh_frame section contents are not contiguous
654 // in the output buffer, but relocateAlloc() still works because
655 // getOffset() takes care of discontiguous section pieces.
656 for (EhInputSection *s : sections)
657 ctx.target->relocateAlloc(*s, buf);
659 if (getPartition(ctx).ehFrameHdr && getPartition(ctx).ehFrameHdr->getParent())
660 getPartition(ctx).ehFrameHdr->write();
663 GotSection::GotSection(Ctx &ctx)
664 : SyntheticSection(ctx, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
665 ctx.target->gotEntrySize, ".got") {
666 numEntries = ctx.target->gotHeaderEntriesNum;
669 void GotSection::addConstant(const Relocation &r) { relocations.push_back(r); }
670 void GotSection::addEntry(const Symbol &sym) {
671 assert(sym.auxIdx == ctx.symAux.size() - 1);
672 ctx.symAux.back().gotIdx = numEntries++;
675 bool GotSection::addTlsDescEntry(const Symbol &sym) {
676 assert(sym.auxIdx == ctx.symAux.size() - 1);
677 ctx.symAux.back().tlsDescIdx = numEntries;
678 numEntries += 2;
679 return true;
682 bool GotSection::addDynTlsEntry(const Symbol &sym) {
683 assert(sym.auxIdx == ctx.symAux.size() - 1);
684 ctx.symAux.back().tlsGdIdx = numEntries;
685 // Global Dynamic TLS entries take two GOT slots.
686 numEntries += 2;
687 return true;
690 // Reserves TLS entries for a TLS module ID and a TLS block offset.
691 // In total it takes two GOT slots.
692 bool GotSection::addTlsIndex() {
693 if (tlsIndexOff != uint32_t(-1))
694 return false;
695 tlsIndexOff = numEntries * ctx.arg.wordsize;
696 numEntries += 2;
697 return true;
700 uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const {
701 return sym.getTlsDescIdx(ctx) * ctx.arg.wordsize;
704 uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const {
705 return getVA() + getTlsDescOffset(sym);
708 uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
709 return this->getVA() + b.getTlsGdIdx(ctx) * ctx.arg.wordsize;
712 uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
713 return b.getTlsGdIdx(ctx) * ctx.arg.wordsize;
716 void GotSection::finalizeContents() {
717 if (ctx.arg.emachine == EM_PPC64 &&
718 numEntries <= ctx.target->gotHeaderEntriesNum &&
719 !ctx.sym.globalOffsetTable)
720 size = 0;
721 else
722 size = numEntries * ctx.arg.wordsize;
725 bool GotSection::isNeeded() const {
726 // Needed if the GOT symbol is used or the number of entries is more than just
727 // the header. A GOT with just the header may not be needed.
728 return hasGotOffRel || numEntries > ctx.target->gotHeaderEntriesNum;
731 void GotSection::writeTo(uint8_t *buf) {
732 // On PPC64 .got may be needed but empty. Skip the write.
733 if (size == 0)
734 return;
735 ctx.target->writeGotHeader(buf);
736 ctx.target->relocateAlloc(*this, buf);
739 static uint64_t getMipsPageAddr(uint64_t addr) {
740 return (addr + 0x8000) & ~0xffff;
743 static uint64_t getMipsPageCount(uint64_t size) {
744 return (size + 0xfffe) / 0xffff + 1;
747 MipsGotSection::MipsGotSection(Ctx &ctx)
748 : SyntheticSection(ctx, SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL,
749 SHT_PROGBITS, 16, ".got") {}
751 void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
752 RelExpr expr) {
753 FileGot &g = getGot(file);
754 if (expr == R_MIPS_GOT_LOCAL_PAGE) {
755 if (const OutputSection *os = sym.getOutputSection())
756 g.pagesMap.insert({os, {}});
757 else
758 g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(ctx, addend))}, 0});
759 } else if (sym.isTls())
760 g.tls.insert({&sym, 0});
761 else if (sym.isPreemptible && expr == R_ABS)
762 g.relocs.insert({&sym, 0});
763 else if (sym.isPreemptible)
764 g.global.insert({&sym, 0});
765 else if (expr == R_MIPS_GOT_OFF32)
766 g.local32.insert({{&sym, addend}, 0});
767 else
768 g.local16.insert({{&sym, addend}, 0});
771 void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
772 getGot(file).dynTlsSymbols.insert({&sym, 0});
775 void MipsGotSection::addTlsIndex(InputFile &file) {
776 getGot(file).dynTlsSymbols.insert({nullptr, 0});
779 size_t MipsGotSection::FileGot::getEntriesNum() const {
780 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
781 tls.size() + dynTlsSymbols.size() * 2;
784 size_t MipsGotSection::FileGot::getPageEntriesNum() const {
785 size_t num = 0;
786 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
787 num += p.second.count;
788 return num;
791 size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
792 size_t count = getPageEntriesNum() + local16.size() + global.size();
793 // If there are relocation-only entries in the GOT, TLS entries
794 // are allocated after them. TLS entries should be addressable
795 // by 16-bit index so count both reloc-only and TLS entries.
796 if (!tls.empty() || !dynTlsSymbols.empty())
797 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
798 return count;
801 MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
802 if (f.mipsGotIndex == uint32_t(-1)) {
803 gots.emplace_back();
804 gots.back().file = &f;
805 f.mipsGotIndex = gots.size() - 1;
807 return gots[f.mipsGotIndex];
810 uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
811 const Symbol &sym,
812 int64_t addend) const {
813 const FileGot &g = gots[f->mipsGotIndex];
814 uint64_t index = 0;
815 if (const OutputSection *outSec = sym.getOutputSection()) {
816 uint64_t secAddr = getMipsPageAddr(outSec->addr);
817 uint64_t symAddr = getMipsPageAddr(sym.getVA(ctx, addend));
818 index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
819 } else {
820 index =
821 g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(ctx, addend))});
823 return index * ctx.arg.wordsize;
826 uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
827 int64_t addend) const {
828 const FileGot &g = gots[f->mipsGotIndex];
829 Symbol *sym = const_cast<Symbol *>(&s);
830 if (sym->isTls())
831 return g.tls.lookup(sym) * ctx.arg.wordsize;
832 if (sym->isPreemptible)
833 return g.global.lookup(sym) * ctx.arg.wordsize;
834 return g.local16.lookup({sym, addend}) * ctx.arg.wordsize;
837 uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
838 const FileGot &g = gots[f->mipsGotIndex];
839 return g.dynTlsSymbols.lookup(nullptr) * ctx.arg.wordsize;
842 uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
843 const Symbol &s) const {
844 const FileGot &g = gots[f->mipsGotIndex];
845 Symbol *sym = const_cast<Symbol *>(&s);
846 return g.dynTlsSymbols.lookup(sym) * ctx.arg.wordsize;
849 const Symbol *MipsGotSection::getFirstGlobalEntry() const {
850 if (gots.empty())
851 return nullptr;
852 const FileGot &primGot = gots.front();
853 if (!primGot.global.empty())
854 return primGot.global.front().first;
855 if (!primGot.relocs.empty())
856 return primGot.relocs.front().first;
857 return nullptr;
860 unsigned MipsGotSection::getLocalEntriesNum() const {
861 if (gots.empty())
862 return headerEntriesNum;
863 return headerEntriesNum + gots.front().getPageEntriesNum() +
864 gots.front().local16.size();
867 bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
868 FileGot tmp = dst;
869 set_union(tmp.pagesMap, src.pagesMap);
870 set_union(tmp.local16, src.local16);
871 set_union(tmp.global, src.global);
872 set_union(tmp.relocs, src.relocs);
873 set_union(tmp.tls, src.tls);
874 set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
876 size_t count = isPrimary ? headerEntriesNum : 0;
877 count += tmp.getIndexedEntriesNum();
879 if (count * ctx.arg.wordsize > ctx.arg.mipsGotSize)
880 return false;
882 std::swap(tmp, dst);
883 return true;
886 void MipsGotSection::finalizeContents() { updateAllocSize(ctx); }
888 bool MipsGotSection::updateAllocSize(Ctx &ctx) {
889 size = headerEntriesNum * ctx.arg.wordsize;
890 for (const FileGot &g : gots)
891 size += g.getEntriesNum() * ctx.arg.wordsize;
892 return false;
895 void MipsGotSection::build() {
896 if (gots.empty())
897 return;
899 std::vector<FileGot> mergedGots(1);
901 // For each GOT move non-preemptible symbols from the `Global`
902 // to `Local16` list. Preemptible symbol might become non-preemptible
903 // one if, for example, it gets a related copy relocation.
904 for (FileGot &got : gots) {
905 for (auto &p: got.global)
906 if (!p.first->isPreemptible)
907 got.local16.insert({{p.first, 0}, 0});
908 got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
909 return !p.first->isPreemptible;
913 // For each GOT remove "reloc-only" entry if there is "global"
914 // entry for the same symbol. And add local entries which indexed
915 // using 32-bit value at the end of 16-bit entries.
916 for (FileGot &got : gots) {
917 got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
918 return got.global.count(p.first);
920 set_union(got.local16, got.local32);
921 got.local32.clear();
924 // Evaluate number of "reloc-only" entries in the resulting GOT.
925 // To do that put all unique "reloc-only" and "global" entries
926 // from all GOTs to the future primary GOT.
927 FileGot *primGot = &mergedGots.front();
928 for (FileGot &got : gots) {
929 set_union(primGot->relocs, got.global);
930 set_union(primGot->relocs, got.relocs);
931 got.relocs.clear();
934 // Evaluate number of "page" entries in each GOT.
935 for (FileGot &got : gots) {
936 for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
937 got.pagesMap) {
938 const OutputSection *os = p.first;
939 uint64_t secSize = 0;
940 for (SectionCommand *cmd : os->commands) {
941 if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
942 for (InputSection *isec : isd->sections) {
943 uint64_t off = alignToPowerOf2(secSize, isec->addralign);
944 secSize = off + isec->getSize();
947 p.second.count = getMipsPageCount(secSize);
951 // Merge GOTs. Try to join as much as possible GOTs but do not exceed
952 // maximum GOT size. At first, try to fill the primary GOT because
953 // the primary GOT can be accessed in the most effective way. If it
954 // is not possible, try to fill the last GOT in the list, and finally
955 // create a new GOT if both attempts failed.
956 for (FileGot &srcGot : gots) {
957 InputFile *file = srcGot.file;
958 if (tryMergeGots(mergedGots.front(), srcGot, true)) {
959 file->mipsGotIndex = 0;
960 } else {
961 // If this is the first time we failed to merge with the primary GOT,
962 // MergedGots.back() will also be the primary GOT. We must make sure not
963 // to try to merge again with isPrimary=false, as otherwise, if the
964 // inputs are just right, we could allow the primary GOT to become 1 or 2
965 // words bigger due to ignoring the header size.
966 if (mergedGots.size() == 1 ||
967 !tryMergeGots(mergedGots.back(), srcGot, false)) {
968 mergedGots.emplace_back();
969 std::swap(mergedGots.back(), srcGot);
971 file->mipsGotIndex = mergedGots.size() - 1;
974 std::swap(gots, mergedGots);
976 // Reduce number of "reloc-only" entries in the primary GOT
977 // by subtracting "global" entries in the primary GOT.
978 primGot = &gots.front();
979 primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
980 return primGot->global.count(p.first);
983 // Calculate indexes for each GOT entry.
984 size_t index = headerEntriesNum;
985 for (FileGot &got : gots) {
986 got.startIndex = &got == primGot ? 0 : index;
987 for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
988 got.pagesMap) {
989 // For each output section referenced by GOT page relocations calculate
990 // and save into pagesMap an upper bound of MIPS GOT entries required
991 // to store page addresses of local symbols. We assume the worst case -
992 // each 64kb page of the output section has at least one GOT relocation
993 // against it. And take in account the case when the section intersects
994 // page boundaries.
995 p.second.firstIndex = index;
996 index += p.second.count;
998 for (auto &p: got.local16)
999 p.second = index++;
1000 for (auto &p: got.global)
1001 p.second = index++;
1002 for (auto &p: got.relocs)
1003 p.second = index++;
1004 for (auto &p: got.tls)
1005 p.second = index++;
1006 for (auto &p: got.dynTlsSymbols) {
1007 p.second = index;
1008 index += 2;
1012 // Update SymbolAux::gotIdx field to use this
1013 // value later in the `sortMipsSymbols` function.
1014 for (auto &p : primGot->global) {
1015 if (p.first->auxIdx == 0)
1016 p.first->allocateAux(ctx);
1017 ctx.symAux.back().gotIdx = p.second;
1019 for (auto &p : primGot->relocs) {
1020 if (p.first->auxIdx == 0)
1021 p.first->allocateAux(ctx);
1022 ctx.symAux.back().gotIdx = p.second;
1025 // Create dynamic relocations.
1026 for (FileGot &got : gots) {
1027 // Create dynamic relocations for TLS entries.
1028 for (std::pair<Symbol *, size_t> &p : got.tls) {
1029 Symbol *s = p.first;
1030 uint64_t offset = p.second * ctx.arg.wordsize;
1031 // When building a shared library we still need a dynamic relocation
1032 // for the TP-relative offset as we don't know how much other data will
1033 // be allocated before us in the static TLS block.
1034 if (s->isPreemptible || ctx.arg.shared)
1035 ctx.mainPart->relaDyn->addReloc(
1036 {ctx.target->tlsGotRel, this, offset,
1037 DynamicReloc::AgainstSymbolWithTargetVA, *s, 0, R_ABS});
1039 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
1040 Symbol *s = p.first;
1041 uint64_t offset = p.second * ctx.arg.wordsize;
1042 if (s == nullptr) {
1043 if (!ctx.arg.shared)
1044 continue;
1045 ctx.mainPart->relaDyn->addReloc(
1046 {ctx.target->tlsModuleIndexRel, this, offset});
1047 } else {
1048 // When building a shared library we still need a dynamic relocation
1049 // for the module index. Therefore only checking for
1050 // S->isPreemptible is not sufficient (this happens e.g. for
1051 // thread-locals that have been marked as local through a linker script)
1052 if (!s->isPreemptible && !ctx.arg.shared)
1053 continue;
1054 ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->tlsModuleIndexRel,
1055 *this, offset, *s);
1056 // However, we can skip writing the TLS offset reloc for non-preemptible
1057 // symbols since it is known even in shared libraries
1058 if (!s->isPreemptible)
1059 continue;
1060 offset += ctx.arg.wordsize;
1061 ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->tlsOffsetRel, *this,
1062 offset, *s);
1066 // Do not create dynamic relocations for non-TLS
1067 // entries in the primary GOT.
1068 if (&got == primGot)
1069 continue;
1071 // Dynamic relocations for "global" entries.
1072 for (const std::pair<Symbol *, size_t> &p : got.global) {
1073 uint64_t offset = p.second * ctx.arg.wordsize;
1074 ctx.mainPart->relaDyn->addSymbolReloc(ctx.target->relativeRel, *this,
1075 offset, *p.first);
1077 if (!ctx.arg.isPic)
1078 continue;
1079 // Dynamic relocations for "local" entries in case of PIC.
1080 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1081 got.pagesMap) {
1082 size_t pageCount = l.second.count;
1083 for (size_t pi = 0; pi < pageCount; ++pi) {
1084 uint64_t offset = (l.second.firstIndex + pi) * ctx.arg.wordsize;
1085 ctx.mainPart->relaDyn->addReloc({ctx.target->relativeRel, this, offset,
1086 l.first, int64_t(pi * 0x10000)});
1089 for (const std::pair<GotEntry, size_t> &p : got.local16) {
1090 uint64_t offset = p.second * ctx.arg.wordsize;
1091 ctx.mainPart->relaDyn->addReloc({ctx.target->relativeRel, this, offset,
1092 DynamicReloc::AddendOnlyWithTargetVA,
1093 *p.first.first, p.first.second, R_ABS});
1098 bool MipsGotSection::isNeeded() const {
1099 // We add the .got section to the result for dynamic MIPS target because
1100 // its address and properties are mentioned in the .dynamic section.
1101 return !ctx.arg.relocatable;
1104 uint64_t MipsGotSection::getGp(const InputFile *f) const {
1105 // For files without related GOT or files refer a primary GOT
1106 // returns "common" _gp value. For secondary GOTs calculate
1107 // individual _gp values.
1108 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0)
1109 return ctx.sym.mipsGp->getVA(ctx, 0);
1110 return getVA() + gots[f->mipsGotIndex].startIndex * ctx.arg.wordsize + 0x7ff0;
1113 void MipsGotSection::writeTo(uint8_t *buf) {
1114 // Set the MSB of the second GOT slot. This is not required by any
1115 // MIPS ABI documentation, though.
1117 // There is a comment in glibc saying that "The MSB of got[1] of a
1118 // gnu object is set to identify gnu objects," and in GNU gold it
1119 // says "the second entry will be used by some runtime loaders".
1120 // But how this field is being used is unclear.
1122 // We are not really willing to mimic other linkers behaviors
1123 // without understanding why they do that, but because all files
1124 // generated by GNU tools have this special GOT value, and because
1125 // we've been doing this for years, it is probably a safe bet to
1126 // keep doing this for now. We really need to revisit this to see
1127 // if we had to do this.
1128 writeUint(ctx, buf + ctx.arg.wordsize,
1129 (uint64_t)1 << (ctx.arg.wordsize * 8 - 1));
1130 for (const FileGot &g : gots) {
1131 auto write = [&](size_t i, const Symbol *s, int64_t a) {
1132 uint64_t va = a;
1133 if (s)
1134 va = s->getVA(ctx, a);
1135 writeUint(ctx, buf + i * ctx.arg.wordsize, va);
1137 // Write 'page address' entries to the local part of the GOT.
1138 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1139 g.pagesMap) {
1140 size_t pageCount = l.second.count;
1141 uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
1142 for (size_t pi = 0; pi < pageCount; ++pi)
1143 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1145 // Local, global, TLS, reloc-only entries.
1146 // If TLS entry has a corresponding dynamic relocations, leave it
1147 // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1148 // To calculate the adjustments use offsets for thread-local storage.
1149 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL
1150 for (const std::pair<GotEntry, size_t> &p : g.local16)
1151 write(p.second, p.first.first, p.first.second);
1152 // Write VA to the primary GOT only. For secondary GOTs that
1153 // will be done by REL32 dynamic relocations.
1154 if (&g == &gots.front())
1155 for (const std::pair<Symbol *, size_t> &p : g.global)
1156 write(p.second, p.first, 0);
1157 for (const std::pair<Symbol *, size_t> &p : g.relocs)
1158 write(p.second, p.first, 0);
1159 for (const std::pair<Symbol *, size_t> &p : g.tls)
1160 write(p.second, p.first,
1161 p.first->isPreemptible || ctx.arg.shared ? 0 : -0x7000);
1162 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1163 if (p.first == nullptr && !ctx.arg.shared)
1164 write(p.second, nullptr, 1);
1165 else if (p.first && !p.first->isPreemptible) {
1166 // If we are emitting a shared library with relocations we mustn't write
1167 // anything to the GOT here. When using Elf_Rel relocations the value
1168 // one will be treated as an addend and will cause crashes at runtime
1169 if (!ctx.arg.shared)
1170 write(p.second, nullptr, 1);
1171 write(p.second + 1, p.first, -0x8000);
1177 // On PowerPC the .plt section is used to hold the table of function addresses
1178 // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1179 // section. I don't know why we have a BSS style type for the section but it is
1180 // consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
1181 GotPltSection::GotPltSection(Ctx &ctx)
1182 : SyntheticSection(ctx, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1183 ctx.arg.wordsize, ".got.plt") {
1184 if (ctx.arg.emachine == EM_PPC) {
1185 name = ".plt";
1186 } else if (ctx.arg.emachine == EM_PPC64) {
1187 type = SHT_NOBITS;
1188 name = ".plt";
1192 void GotPltSection::addEntry(Symbol &sym) {
1193 assert(sym.auxIdx == ctx.symAux.size() - 1 &&
1194 ctx.symAux.back().pltIdx == entries.size());
1195 entries.push_back(&sym);
1198 size_t GotPltSection::getSize() const {
1199 return (ctx.target->gotPltHeaderEntriesNum + entries.size()) *
1200 ctx.target->gotEntrySize;
1203 void GotPltSection::writeTo(uint8_t *buf) {
1204 ctx.target->writeGotPltHeader(buf);
1205 buf += ctx.target->gotPltHeaderEntriesNum * ctx.target->gotEntrySize;
1206 for (const Symbol *b : entries) {
1207 ctx.target->writeGotPlt(buf, *b);
1208 buf += ctx.target->gotEntrySize;
1212 bool GotPltSection::isNeeded() const {
1213 // We need to emit GOTPLT even if it's empty if there's a relocation relative
1214 // to it.
1215 return !entries.empty() || hasGotPltOffRel;
1218 static StringRef getIgotPltName(Ctx &ctx) {
1219 // On ARM the IgotPltSection is part of the GotSection.
1220 if (ctx.arg.emachine == EM_ARM)
1221 return ".got";
1223 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1224 // needs to be named the same.
1225 if (ctx.arg.emachine == EM_PPC64)
1226 return ".plt";
1228 return ".got.plt";
1231 // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1232 // with the IgotPltSection.
1233 IgotPltSection::IgotPltSection(Ctx &ctx)
1234 : SyntheticSection(ctx, SHF_ALLOC | SHF_WRITE,
1235 ctx.arg.emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1236 ctx.target->gotEntrySize, getIgotPltName(ctx)) {}
1238 void IgotPltSection::addEntry(Symbol &sym) {
1239 assert(ctx.symAux.back().pltIdx == entries.size());
1240 entries.push_back(&sym);
1243 size_t IgotPltSection::getSize() const {
1244 return entries.size() * ctx.target->gotEntrySize;
1247 void IgotPltSection::writeTo(uint8_t *buf) {
1248 for (const Symbol *b : entries) {
1249 ctx.target->writeIgotPlt(buf, *b);
1250 buf += ctx.target->gotEntrySize;
1254 StringTableSection::StringTableSection(Ctx &ctx, StringRef name, bool dynamic)
1255 : SyntheticSection(ctx, dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1,
1256 name),
1257 dynamic(dynamic) {
1258 // ELF string tables start with a NUL byte.
1259 strings.push_back("");
1260 stringMap.try_emplace(CachedHashStringRef(""), 0);
1261 size = 1;
1264 // Adds a string to the string table. If `hashIt` is true we hash and check for
1265 // duplicates. It is optional because the name of global symbols are already
1266 // uniqued and hashing them again has a big cost for a small value: uniquing
1267 // them with some other string that happens to be the same.
1268 unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1269 if (hashIt) {
1270 auto r = stringMap.try_emplace(CachedHashStringRef(s), size);
1271 if (!r.second)
1272 return r.first->second;
1274 if (s.empty())
1275 return 0;
1276 unsigned ret = this->size;
1277 this->size = this->size + s.size() + 1;
1278 strings.push_back(s);
1279 return ret;
1282 void StringTableSection::writeTo(uint8_t *buf) {
1283 for (StringRef s : strings) {
1284 memcpy(buf, s.data(), s.size());
1285 buf[s.size()] = '\0';
1286 buf += s.size() + 1;
1290 // Returns the number of entries in .gnu.version_d: the number of
1291 // non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1292 // Note that we don't support vd_cnt > 1 yet.
1293 static unsigned getVerDefNum(Ctx &ctx) {
1294 return namedVersionDefs(ctx).size() + 1;
1297 template <class ELFT>
1298 DynamicSection<ELFT>::DynamicSection(Ctx &ctx)
1299 : SyntheticSection(ctx, SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC,
1300 ctx.arg.wordsize, ".dynamic") {
1301 this->entsize = ELFT::Is64Bits ? 16 : 8;
1303 // .dynamic section is not writable on MIPS and on Fuchsia OS
1304 // which passes -z rodynamic.
1305 // See "Special Section" in Chapter 4 in the following document:
1306 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1307 if (ctx.arg.emachine == EM_MIPS || ctx.arg.zRodynamic)
1308 this->flags = SHF_ALLOC;
1311 // The output section .rela.dyn may include these synthetic sections:
1313 // - part.relaDyn
1314 // - ctx.in.relaPlt: this is included if a linker script places .rela.plt inside
1315 // .rela.dyn
1317 // DT_RELASZ is the total size of the included sections.
1318 static uint64_t addRelaSz(Ctx &ctx, const RelocationBaseSection &relaDyn) {
1319 size_t size = relaDyn.getSize();
1320 if (ctx.in.relaPlt->getParent() == relaDyn.getParent())
1321 size += ctx.in.relaPlt->getSize();
1322 return size;
1325 // A Linker script may assign the RELA relocation sections to the same
1326 // output section. When this occurs we cannot just use the OutputSection
1327 // Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1328 // overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
1329 static uint64_t addPltRelSz(Ctx &ctx) { return ctx.in.relaPlt->getSize(); }
1331 // Add remaining entries to complete .dynamic contents.
1332 template <class ELFT>
1333 std::vector<std::pair<int32_t, uint64_t>>
1334 DynamicSection<ELFT>::computeContents() {
1335 elf::Partition &part = getPartition(ctx);
1336 bool isMain = part.name.empty();
1337 std::vector<std::pair<int32_t, uint64_t>> entries;
1339 auto addInt = [&](int32_t tag, uint64_t val) {
1340 entries.emplace_back(tag, val);
1342 auto addInSec = [&](int32_t tag, const InputSection &sec) {
1343 entries.emplace_back(tag, sec.getVA());
1346 for (StringRef s : ctx.arg.filterList)
1347 addInt(DT_FILTER, part.dynStrTab->addString(s));
1348 for (StringRef s : ctx.arg.auxiliaryList)
1349 addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1351 if (!ctx.arg.rpath.empty())
1352 addInt(ctx.arg.enableNewDtags ? DT_RUNPATH : DT_RPATH,
1353 part.dynStrTab->addString(ctx.arg.rpath));
1355 for (SharedFile *file : ctx.sharedFiles)
1356 if (file->isNeeded)
1357 addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
1359 if (isMain) {
1360 if (!ctx.arg.soName.empty())
1361 addInt(DT_SONAME, part.dynStrTab->addString(ctx.arg.soName));
1362 } else {
1363 if (!ctx.arg.soName.empty())
1364 addInt(DT_NEEDED, part.dynStrTab->addString(ctx.arg.soName));
1365 addInt(DT_SONAME, part.dynStrTab->addString(part.name));
1368 // Set DT_FLAGS and DT_FLAGS_1.
1369 uint32_t dtFlags = 0;
1370 uint32_t dtFlags1 = 0;
1371 if (ctx.arg.bsymbolic == BsymbolicKind::All)
1372 dtFlags |= DF_SYMBOLIC;
1373 if (ctx.arg.zGlobal)
1374 dtFlags1 |= DF_1_GLOBAL;
1375 if (ctx.arg.zInitfirst)
1376 dtFlags1 |= DF_1_INITFIRST;
1377 if (ctx.arg.zInterpose)
1378 dtFlags1 |= DF_1_INTERPOSE;
1379 if (ctx.arg.zNodefaultlib)
1380 dtFlags1 |= DF_1_NODEFLIB;
1381 if (ctx.arg.zNodelete)
1382 dtFlags1 |= DF_1_NODELETE;
1383 if (ctx.arg.zNodlopen)
1384 dtFlags1 |= DF_1_NOOPEN;
1385 if (ctx.arg.pie)
1386 dtFlags1 |= DF_1_PIE;
1387 if (ctx.arg.zNow) {
1388 dtFlags |= DF_BIND_NOW;
1389 dtFlags1 |= DF_1_NOW;
1391 if (ctx.arg.zOrigin) {
1392 dtFlags |= DF_ORIGIN;
1393 dtFlags1 |= DF_1_ORIGIN;
1395 if (!ctx.arg.zText)
1396 dtFlags |= DF_TEXTREL;
1397 if (ctx.hasTlsIe && ctx.arg.shared)
1398 dtFlags |= DF_STATIC_TLS;
1400 if (dtFlags)
1401 addInt(DT_FLAGS, dtFlags);
1402 if (dtFlags1)
1403 addInt(DT_FLAGS_1, dtFlags1);
1405 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1406 // need it for each process, so we don't write it for DSOs. The loader writes
1407 // the pointer into this entry.
1409 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1410 // systems (currently only Fuchsia OS) provide other means to give the
1411 // debugger this information. Such systems may choose make .dynamic read-only.
1412 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1413 if (!ctx.arg.shared && !ctx.arg.relocatable && !ctx.arg.zRodynamic)
1414 addInt(DT_DEBUG, 0);
1416 if (part.relaDyn->isNeeded()) {
1417 addInSec(part.relaDyn->dynamicTag, *part.relaDyn);
1418 entries.emplace_back(part.relaDyn->sizeDynamicTag,
1419 addRelaSz(ctx, *part.relaDyn));
1421 bool isRela = ctx.arg.isRela;
1422 addInt(isRela ? DT_RELAENT : DT_RELENT,
1423 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1425 // MIPS dynamic loader does not support RELCOUNT tag.
1426 // The problem is in the tight relation between dynamic
1427 // relocations and GOT. So do not emit this tag on MIPS.
1428 if (ctx.arg.emachine != EM_MIPS) {
1429 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1430 if (ctx.arg.zCombreloc && numRelativeRels)
1431 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1434 if (part.relrDyn && part.relrDyn->getParent() &&
1435 !part.relrDyn->relocs.empty()) {
1436 addInSec(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1437 *part.relrDyn);
1438 addInt(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1439 part.relrDyn->getParent()->size);
1440 addInt(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1441 sizeof(Elf_Relr));
1443 if (part.relrAuthDyn && part.relrAuthDyn->getParent() &&
1444 !part.relrAuthDyn->relocs.empty()) {
1445 addInSec(DT_AARCH64_AUTH_RELR, *part.relrAuthDyn);
1446 addInt(DT_AARCH64_AUTH_RELRSZ, part.relrAuthDyn->getParent()->size);
1447 addInt(DT_AARCH64_AUTH_RELRENT, sizeof(Elf_Relr));
1449 if (isMain && ctx.in.relaPlt->isNeeded()) {
1450 addInSec(DT_JMPREL, *ctx.in.relaPlt);
1451 entries.emplace_back(DT_PLTRELSZ, addPltRelSz(ctx));
1452 switch (ctx.arg.emachine) {
1453 case EM_MIPS:
1454 addInSec(DT_MIPS_PLTGOT, *ctx.in.gotPlt);
1455 break;
1456 case EM_S390:
1457 addInSec(DT_PLTGOT, *ctx.in.got);
1458 break;
1459 case EM_SPARCV9:
1460 addInSec(DT_PLTGOT, *ctx.in.plt);
1461 break;
1462 case EM_AARCH64:
1463 if (llvm::find_if(ctx.in.relaPlt->relocs, [&ctx = ctx](
1464 const DynamicReloc &r) {
1465 return r.type == ctx.target->pltRel &&
1466 r.sym->stOther & STO_AARCH64_VARIANT_PCS;
1467 }) != ctx.in.relaPlt->relocs.end())
1468 addInt(DT_AARCH64_VARIANT_PCS, 0);
1469 addInSec(DT_PLTGOT, *ctx.in.gotPlt);
1470 break;
1471 case EM_RISCV:
1472 if (llvm::any_of(ctx.in.relaPlt->relocs, [&ctx = ctx](
1473 const DynamicReloc &r) {
1474 return r.type == ctx.target->pltRel &&
1475 (r.sym->stOther & STO_RISCV_VARIANT_CC);
1477 addInt(DT_RISCV_VARIANT_CC, 0);
1478 [[fallthrough]];
1479 default:
1480 addInSec(DT_PLTGOT, *ctx.in.gotPlt);
1481 break;
1483 addInt(DT_PLTREL, ctx.arg.isRela ? DT_RELA : DT_REL);
1486 if (ctx.arg.emachine == EM_AARCH64) {
1487 if (ctx.arg.andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1488 addInt(DT_AARCH64_BTI_PLT, 0);
1489 if (ctx.arg.zPacPlt)
1490 addInt(DT_AARCH64_PAC_PLT, 0);
1492 if (hasMemtag(ctx)) {
1493 addInt(DT_AARCH64_MEMTAG_MODE, ctx.arg.androidMemtagMode == NT_MEMTAG_LEVEL_ASYNC);
1494 addInt(DT_AARCH64_MEMTAG_HEAP, ctx.arg.androidMemtagHeap);
1495 addInt(DT_AARCH64_MEMTAG_STACK, ctx.arg.androidMemtagStack);
1496 if (ctx.mainPart->memtagGlobalDescriptors->isNeeded()) {
1497 addInSec(DT_AARCH64_MEMTAG_GLOBALS,
1498 *ctx.mainPart->memtagGlobalDescriptors);
1499 addInt(DT_AARCH64_MEMTAG_GLOBALSSZ,
1500 ctx.mainPart->memtagGlobalDescriptors->getSize());
1505 addInSec(DT_SYMTAB, *part.dynSymTab);
1506 addInt(DT_SYMENT, sizeof(Elf_Sym));
1507 addInSec(DT_STRTAB, *part.dynStrTab);
1508 addInt(DT_STRSZ, part.dynStrTab->getSize());
1509 if (!ctx.arg.zText)
1510 addInt(DT_TEXTREL, 0);
1511 if (part.gnuHashTab && part.gnuHashTab->getParent())
1512 addInSec(DT_GNU_HASH, *part.gnuHashTab);
1513 if (part.hashTab && part.hashTab->getParent())
1514 addInSec(DT_HASH, *part.hashTab);
1516 if (isMain) {
1517 if (ctx.out.preinitArray) {
1518 addInt(DT_PREINIT_ARRAY, ctx.out.preinitArray->addr);
1519 addInt(DT_PREINIT_ARRAYSZ, ctx.out.preinitArray->size);
1521 if (ctx.out.initArray) {
1522 addInt(DT_INIT_ARRAY, ctx.out.initArray->addr);
1523 addInt(DT_INIT_ARRAYSZ, ctx.out.initArray->size);
1525 if (ctx.out.finiArray) {
1526 addInt(DT_FINI_ARRAY, ctx.out.finiArray->addr);
1527 addInt(DT_FINI_ARRAYSZ, ctx.out.finiArray->size);
1530 if (Symbol *b = ctx.symtab->find(ctx.arg.init))
1531 if (b->isDefined())
1532 addInt(DT_INIT, b->getVA(ctx));
1533 if (Symbol *b = ctx.symtab->find(ctx.arg.fini))
1534 if (b->isDefined())
1535 addInt(DT_FINI, b->getVA(ctx));
1538 if (part.verSym && part.verSym->isNeeded())
1539 addInSec(DT_VERSYM, *part.verSym);
1540 if (part.verDef && part.verDef->isLive()) {
1541 addInSec(DT_VERDEF, *part.verDef);
1542 addInt(DT_VERDEFNUM, getVerDefNum(ctx));
1544 if (part.verNeed && part.verNeed->isNeeded()) {
1545 addInSec(DT_VERNEED, *part.verNeed);
1546 unsigned needNum = 0;
1547 for (SharedFile *f : ctx.sharedFiles)
1548 if (!f->vernauxs.empty())
1549 ++needNum;
1550 addInt(DT_VERNEEDNUM, needNum);
1553 if (ctx.arg.emachine == EM_MIPS) {
1554 addInt(DT_MIPS_RLD_VERSION, 1);
1555 addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1556 addInt(DT_MIPS_BASE_ADDRESS, ctx.target->getImageBase());
1557 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1558 addInt(DT_MIPS_LOCAL_GOTNO, ctx.in.mipsGot->getLocalEntriesNum());
1560 if (const Symbol *b = ctx.in.mipsGot->getFirstGlobalEntry())
1561 addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1562 else
1563 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1564 addInSec(DT_PLTGOT, *ctx.in.mipsGot);
1565 if (ctx.in.mipsRldMap) {
1566 if (!ctx.arg.pie)
1567 addInSec(DT_MIPS_RLD_MAP, *ctx.in.mipsRldMap);
1568 // Store the offset to the .rld_map section
1569 // relative to the address of the tag.
1570 addInt(DT_MIPS_RLD_MAP_REL,
1571 ctx.in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize));
1575 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1576 // glibc assumes the old-style BSS PLT layout which we don't support.
1577 if (ctx.arg.emachine == EM_PPC)
1578 addInSec(DT_PPC_GOT, *ctx.in.got);
1580 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1581 if (ctx.arg.emachine == EM_PPC64 && ctx.in.plt->isNeeded()) {
1582 // The Glink tag points to 32 bytes before the first lazy symbol resolution
1583 // stub, which starts directly after the header.
1584 addInt(DT_PPC64_GLINK,
1585 ctx.in.plt->getVA() + ctx.target->pltHeaderSize - 32);
1588 if (ctx.arg.emachine == EM_PPC64)
1589 addInt(DT_PPC64_OPT, ctx.target->ppc64DynamicSectionOpt);
1591 addInt(DT_NULL, 0);
1592 return entries;
1595 template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1596 if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent())
1597 getParent()->link = sec->sectionIndex;
1598 this->size = computeContents().size() * this->entsize;
1601 template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1602 auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1604 for (std::pair<int32_t, uint64_t> kv : computeContents()) {
1605 p->d_tag = kv.first;
1606 p->d_un.d_val = kv.second;
1607 ++p;
1611 uint64_t DynamicReloc::getOffset() const {
1612 return inputSec->getVA(offsetInSec);
1615 int64_t DynamicReloc::computeAddend(Ctx &ctx) const {
1616 switch (kind) {
1617 case AddendOnly:
1618 assert(sym == nullptr);
1619 return addend;
1620 case AgainstSymbol:
1621 assert(sym != nullptr);
1622 return addend;
1623 case AddendOnlyWithTargetVA:
1624 case AgainstSymbolWithTargetVA: {
1625 uint64_t ca = inputSec->getRelocTargetVA(
1626 ctx, Relocation{expr, type, 0, addend, sym}, getOffset());
1627 return ctx.arg.is64 ? ca : SignExtend64<32>(ca);
1629 case MipsMultiGotPage:
1630 assert(sym == nullptr);
1631 return getMipsPageAddr(outputSec->addr) + addend;
1633 llvm_unreachable("Unknown DynamicReloc::Kind enum");
1636 uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1637 if (!needsDynSymIndex())
1638 return 0;
1640 size_t index = symTab->getSymbolIndex(*sym);
1641 assert((index != 0 ||
1642 (type != symTab->ctx.target->gotRel &&
1643 type != symTab->ctx.target->pltRel) ||
1644 !symTab->ctx.mainPart->dynSymTab->getParent()) &&
1645 "GOT or PLT relocation must refer to symbol in dynamic symbol table");
1646 return index;
1649 RelocationBaseSection::RelocationBaseSection(Ctx &ctx, StringRef name,
1650 uint32_t type, int32_t dynamicTag,
1651 int32_t sizeDynamicTag,
1652 bool combreloc,
1653 unsigned concurrency)
1654 : SyntheticSection(ctx, SHF_ALLOC, type, ctx.arg.wordsize, name),
1655 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag),
1656 relocsVec(concurrency), combreloc(combreloc) {}
1658 void RelocationBaseSection::addSymbolReloc(
1659 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
1660 int64_t addend, std::optional<RelType> addendRelType) {
1661 addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend,
1662 R_ADDEND, addendRelType ? *addendRelType : ctx.target->noneRel);
1665 void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible(
1666 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
1667 RelType addendRelType) {
1668 // No need to write an addend to the section for preemptible symbols.
1669 if (sym.isPreemptible)
1670 addReloc({dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0,
1671 R_ABS});
1672 else
1673 addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, offsetInSec,
1674 sym, 0, R_ABS, addendRelType);
1677 void RelocationBaseSection::mergeRels() {
1678 size_t newSize = relocs.size();
1679 for (const auto &v : relocsVec)
1680 newSize += v.size();
1681 relocs.reserve(newSize);
1682 for (const auto &v : relocsVec)
1683 llvm::append_range(relocs, v);
1684 relocsVec.clear();
1687 void RelocationBaseSection::partitionRels() {
1688 if (!combreloc)
1689 return;
1690 const RelType relativeRel = ctx.target->relativeRel;
1691 numRelativeRelocs =
1692 std::stable_partition(relocs.begin(), relocs.end(),
1693 [=](auto &r) { return r.type == relativeRel; }) -
1694 relocs.begin();
1697 void RelocationBaseSection::finalizeContents() {
1698 SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get();
1700 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1701 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1702 // case.
1703 if (symTab && symTab->getParent())
1704 getParent()->link = symTab->getParent()->sectionIndex;
1705 else
1706 getParent()->link = 0;
1708 if (ctx.in.relaPlt.get() == this && ctx.in.gotPlt->getParent()) {
1709 getParent()->flags |= ELF::SHF_INFO_LINK;
1710 getParent()->info = ctx.in.gotPlt->getParent()->sectionIndex;
1714 void DynamicReloc::computeRaw(Ctx &ctx, SymbolTableBaseSection *symt) {
1715 r_offset = getOffset();
1716 r_sym = getSymIndex(symt);
1717 addend = computeAddend(ctx);
1718 kind = AddendOnly; // Catch errors
1721 void RelocationBaseSection::computeRels() {
1722 SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get();
1723 parallelForEach(relocs, [&ctx = ctx, symTab](DynamicReloc &rel) {
1724 rel.computeRaw(ctx, symTab);
1727 auto irelative = std::stable_partition(
1728 relocs.begin() + numRelativeRelocs, relocs.end(),
1729 [t = ctx.target->iRelativeRel](auto &r) { return r.type != t; });
1731 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1732 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1733 // is to make results easier to read.
1734 if (combreloc) {
1735 auto nonRelative = relocs.begin() + numRelativeRelocs;
1736 parallelSort(relocs.begin(), nonRelative,
1737 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; });
1738 // Non-relative relocations are few, so don't bother with parallelSort.
1739 llvm::sort(nonRelative, irelative, [&](auto &a, auto &b) {
1740 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset);
1745 template <class ELFT>
1746 RelocationSection<ELFT>::RelocationSection(Ctx &ctx, StringRef name,
1747 bool combreloc, unsigned concurrency)
1748 : RelocationBaseSection(ctx, name, ctx.arg.isRela ? SHT_RELA : SHT_REL,
1749 ctx.arg.isRela ? DT_RELA : DT_REL,
1750 ctx.arg.isRela ? DT_RELASZ : DT_RELSZ, combreloc,
1751 concurrency) {
1752 this->entsize = ctx.arg.isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1755 template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1756 computeRels();
1757 for (const DynamicReloc &rel : relocs) {
1758 auto *p = reinterpret_cast<Elf_Rela *>(buf);
1759 p->r_offset = rel.r_offset;
1760 p->setSymbolAndType(rel.r_sym, rel.type, ctx.arg.isMips64EL);
1761 if (ctx.arg.isRela)
1762 p->r_addend = rel.addend;
1763 buf += ctx.arg.isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1767 RelrBaseSection::RelrBaseSection(Ctx &ctx, unsigned concurrency,
1768 bool isAArch64Auth)
1769 : SyntheticSection(
1770 ctx, SHF_ALLOC,
1771 isAArch64Auth
1772 ? SHT_AARCH64_AUTH_RELR
1773 : (ctx.arg.useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR),
1774 ctx.arg.wordsize, isAArch64Auth ? ".relr.auth.dyn" : ".relr.dyn"),
1775 relocsVec(concurrency) {}
1777 void RelrBaseSection::mergeRels() {
1778 size_t newSize = relocs.size();
1779 for (const auto &v : relocsVec)
1780 newSize += v.size();
1781 relocs.reserve(newSize);
1782 for (const auto &v : relocsVec)
1783 llvm::append_range(relocs, v);
1784 relocsVec.clear();
1787 template <class ELFT>
1788 AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1789 Ctx &ctx, StringRef name, unsigned concurrency)
1790 : RelocationBaseSection(
1791 ctx, name, ctx.arg.isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1792 ctx.arg.isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1793 ctx.arg.isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ,
1794 /*combreloc=*/false, concurrency) {
1795 this->entsize = 1;
1798 template <class ELFT>
1799 bool AndroidPackedRelocationSection<ELFT>::updateAllocSize(Ctx &ctx) {
1800 // This function computes the contents of an Android-format packed relocation
1801 // section.
1803 // This format compresses relocations by using relocation groups to factor out
1804 // fields that are common between relocations and storing deltas from previous
1805 // relocations in SLEB128 format (which has a short representation for small
1806 // numbers). A good example of a relocation type with common fields is
1807 // R_*_RELATIVE, which is normally used to represent function pointers in
1808 // vtables. In the REL format, each relative relocation has the same r_info
1809 // field, and is only different from other relative relocations in terms of
1810 // the r_offset field. By sorting relocations by offset, grouping them by
1811 // r_info and representing each relocation with only the delta from the
1812 // previous offset, each 8-byte relocation can be compressed to as little as 1
1813 // byte (or less with run-length encoding). This relocation packer was able to
1814 // reduce the size of the relocation section in an Android Chromium DSO from
1815 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1817 // A relocation section consists of a header containing the literal bytes
1818 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1819 // elements are the total number of relocations in the section and an initial
1820 // r_offset value. The remaining elements define a sequence of relocation
1821 // groups. Each relocation group starts with a header consisting of the
1822 // following elements:
1824 // - the number of relocations in the relocation group
1825 // - flags for the relocation group
1826 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1827 // for each relocation in the group.
1828 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1829 // field for each relocation in the group.
1830 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1831 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1832 // each relocation in the group.
1834 // Following the relocation group header are descriptions of each of the
1835 // relocations in the group. They consist of the following elements:
1837 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1838 // delta for this relocation.
1839 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1840 // field for this relocation.
1841 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1842 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1843 // this relocation.
1845 size_t oldSize = relocData.size();
1847 relocData = {'A', 'P', 'S', '2'};
1848 raw_svector_ostream os(relocData);
1849 auto add = [&](int64_t v) { encodeSLEB128(v, os); };
1851 // The format header includes the number of relocations and the initial
1852 // offset (we set this to zero because the first relocation group will
1853 // perform the initial adjustment).
1854 add(relocs.size());
1855 add(0);
1857 std::vector<Elf_Rela> relatives, nonRelatives;
1859 for (const DynamicReloc &rel : relocs) {
1860 Elf_Rela r;
1861 r.r_offset = rel.getOffset();
1862 r.setSymbolAndType(rel.getSymIndex(getPartition(ctx).dynSymTab.get()),
1863 rel.type, false);
1864 r.r_addend = ctx.arg.isRela ? rel.computeAddend(ctx) : 0;
1866 if (r.getType(ctx.arg.isMips64EL) == ctx.target->relativeRel)
1867 relatives.push_back(r);
1868 else
1869 nonRelatives.push_back(r);
1872 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1873 return a.r_offset < b.r_offset;
1876 // Try to find groups of relative relocations which are spaced one word
1877 // apart from one another. These generally correspond to vtable entries. The
1878 // format allows these groups to be encoded using a sort of run-length
1879 // encoding, but each group will cost 7 bytes in addition to the offset from
1880 // the previous group, so it is only profitable to do this for groups of
1881 // size 8 or larger.
1882 std::vector<Elf_Rela> ungroupedRelatives;
1883 std::vector<std::vector<Elf_Rela>> relativeGroups;
1884 for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1885 std::vector<Elf_Rela> group;
1886 do {
1887 group.push_back(*i++);
1888 } while (i != e && (i - 1)->r_offset + ctx.arg.wordsize == i->r_offset);
1890 if (group.size() < 8)
1891 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1892 group.end());
1893 else
1894 relativeGroups.emplace_back(std::move(group));
1897 // For non-relative relocations, we would like to:
1898 // 1. Have relocations with the same symbol offset to be consecutive, so
1899 // that the runtime linker can speed-up symbol lookup by implementing an
1900 // 1-entry cache.
1901 // 2. Group relocations by r_info to reduce the size of the relocation
1902 // section.
1903 // Since the symbol offset is the high bits in r_info, sorting by r_info
1904 // allows us to do both.
1906 // For Rela, we also want to sort by r_addend when r_info is the same. This
1907 // enables us to group by r_addend as well.
1908 llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1909 if (a.r_info != b.r_info)
1910 return a.r_info < b.r_info;
1911 if (a.r_addend != b.r_addend)
1912 return a.r_addend < b.r_addend;
1913 return a.r_offset < b.r_offset;
1916 // Group relocations with the same r_info. Note that each group emits a group
1917 // header and that may make the relocation section larger. It is hard to
1918 // estimate the size of a group header as the encoded size of that varies
1919 // based on r_info. However, we can approximate this trade-off by the number
1920 // of values encoded. Each group header contains 3 values, and each relocation
1921 // in a group encodes one less value, as compared to when it is not grouped.
1922 // Therefore, we only group relocations if there are 3 or more of them with
1923 // the same r_info.
1925 // For Rela, the addend for most non-relative relocations is zero, and thus we
1926 // can usually get a smaller relocation section if we group relocations with 0
1927 // addend as well.
1928 std::vector<Elf_Rela> ungroupedNonRelatives;
1929 std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1930 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1931 auto j = i + 1;
1932 while (j != e && i->r_info == j->r_info &&
1933 (!ctx.arg.isRela || i->r_addend == j->r_addend))
1934 ++j;
1935 if (j - i < 3 || (ctx.arg.isRela && i->r_addend != 0))
1936 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1937 else
1938 nonRelativeGroups.emplace_back(i, j);
1939 i = j;
1942 // Sort ungrouped relocations by offset to minimize the encoded length.
1943 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1944 return a.r_offset < b.r_offset;
1947 unsigned hasAddendIfRela =
1948 ctx.arg.isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1950 uint64_t offset = 0;
1951 uint64_t addend = 0;
1953 // Emit the run-length encoding for the groups of adjacent relative
1954 // relocations. Each group is represented using two groups in the packed
1955 // format. The first is used to set the current offset to the start of the
1956 // group (and also encodes the first relocation), and the second encodes the
1957 // remaining relocations.
1958 for (std::vector<Elf_Rela> &g : relativeGroups) {
1959 // The first relocation in the group.
1960 add(1);
1961 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1962 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1963 add(g[0].r_offset - offset);
1964 add(ctx.target->relativeRel);
1965 if (ctx.arg.isRela) {
1966 add(g[0].r_addend - addend);
1967 addend = g[0].r_addend;
1970 // The remaining relocations.
1971 add(g.size() - 1);
1972 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1973 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1974 add(ctx.arg.wordsize);
1975 add(ctx.target->relativeRel);
1976 if (ctx.arg.isRela) {
1977 for (const auto &i : llvm::drop_begin(g)) {
1978 add(i.r_addend - addend);
1979 addend = i.r_addend;
1983 offset = g.back().r_offset;
1986 // Now the ungrouped relatives.
1987 if (!ungroupedRelatives.empty()) {
1988 add(ungroupedRelatives.size());
1989 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1990 add(ctx.target->relativeRel);
1991 for (Elf_Rela &r : ungroupedRelatives) {
1992 add(r.r_offset - offset);
1993 offset = r.r_offset;
1994 if (ctx.arg.isRela) {
1995 add(r.r_addend - addend);
1996 addend = r.r_addend;
2001 // Grouped non-relatives.
2002 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
2003 add(g.size());
2004 add(RELOCATION_GROUPED_BY_INFO_FLAG);
2005 add(g[0].r_info);
2006 for (const Elf_Rela &r : g) {
2007 add(r.r_offset - offset);
2008 offset = r.r_offset;
2010 addend = 0;
2013 // Finally the ungrouped non-relative relocations.
2014 if (!ungroupedNonRelatives.empty()) {
2015 add(ungroupedNonRelatives.size());
2016 add(hasAddendIfRela);
2017 for (Elf_Rela &r : ungroupedNonRelatives) {
2018 add(r.r_offset - offset);
2019 offset = r.r_offset;
2020 add(r.r_info);
2021 if (ctx.arg.isRela) {
2022 add(r.r_addend - addend);
2023 addend = r.r_addend;
2028 // Don't allow the section to shrink; otherwise the size of the section can
2029 // oscillate infinitely.
2030 if (relocData.size() < oldSize)
2031 relocData.append(oldSize - relocData.size(), 0);
2033 // Returns whether the section size changed. We need to keep recomputing both
2034 // section layout and the contents of this section until the size converges
2035 // because changing this section's size can affect section layout, which in
2036 // turn can affect the sizes of the LEB-encoded integers stored in this
2037 // section.
2038 return relocData.size() != oldSize;
2041 template <class ELFT>
2042 RelrSection<ELFT>::RelrSection(Ctx &ctx, unsigned concurrency,
2043 bool isAArch64Auth)
2044 : RelrBaseSection(ctx, concurrency, isAArch64Auth) {
2045 this->entsize = ctx.arg.wordsize;
2048 template <class ELFT> bool RelrSection<ELFT>::updateAllocSize(Ctx &ctx) {
2049 // This function computes the contents of an SHT_RELR packed relocation
2050 // section.
2052 // Proposal for adding SHT_RELR sections to generic-abi is here:
2053 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
2055 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
2056 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
2058 // i.e. start with an address, followed by any number of bitmaps. The address
2059 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
2060 // relocations each, at subsequent offsets following the last address entry.
2062 // The bitmap entries must have 1 in the least significant bit. The assumption
2063 // here is that an address cannot have 1 in lsb. Odd addresses are not
2064 // supported.
2066 // Excluding the least significant bit in the bitmap, each non-zero bit in
2067 // the bitmap represents a relocation to be applied to a corresponding machine
2068 // word that follows the base address word. The second least significant bit
2069 // represents the machine word immediately following the initial address, and
2070 // each bit that follows represents the next word, in linear order. As such,
2071 // a single bitmap can encode up to 31 relocations in a 32-bit object, and
2072 // 63 relocations in a 64-bit object.
2074 // This encoding has a couple of interesting properties:
2075 // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
2076 // even means address, odd means bitmap.
2077 // 2. Just a simple list of addresses is a valid encoding.
2079 size_t oldSize = relrRelocs.size();
2080 relrRelocs.clear();
2082 const size_t wordsize = sizeof(typename ELFT::uint);
2084 // Number of bits to use for the relocation offsets bitmap.
2085 // Must be either 63 or 31.
2086 const size_t nBits = wordsize * 8 - 1;
2088 // Get offsets for all relative relocations and sort them.
2089 std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]);
2090 for (auto [i, r] : llvm::enumerate(relocs))
2091 offsets[i] = r.getOffset();
2092 llvm::sort(offsets.get(), offsets.get() + relocs.size());
2094 // For each leading relocation, find following ones that can be folded
2095 // as a bitmap and fold them.
2096 for (size_t i = 0, e = relocs.size(); i != e;) {
2097 // Add a leading relocation.
2098 relrRelocs.push_back(Elf_Relr(offsets[i]));
2099 uint64_t base = offsets[i] + wordsize;
2100 ++i;
2102 // Find foldable relocations to construct bitmaps.
2103 for (;;) {
2104 uint64_t bitmap = 0;
2105 for (; i != e; ++i) {
2106 uint64_t d = offsets[i] - base;
2107 if (d >= nBits * wordsize || d % wordsize)
2108 break;
2109 bitmap |= uint64_t(1) << (d / wordsize);
2111 if (!bitmap)
2112 break;
2113 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
2114 base += nBits * wordsize;
2118 // Don't allow the section to shrink; otherwise the size of the section can
2119 // oscillate infinitely. Trailing 1s do not decode to more relocations.
2120 if (relrRelocs.size() < oldSize) {
2121 Log(ctx) << ".relr.dyn needs " << Twine(oldSize - relrRelocs.size()) <<
2122 " padding word(s)";
2123 relrRelocs.resize(oldSize, Elf_Relr(1));
2126 return relrRelocs.size() != oldSize;
2129 SymbolTableBaseSection::SymbolTableBaseSection(Ctx &ctx,
2130 StringTableSection &strTabSec)
2131 : SyntheticSection(ctx, strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
2132 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
2133 ctx.arg.wordsize,
2134 strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
2135 strTabSec(strTabSec) {}
2137 // Orders symbols according to their positions in the GOT,
2138 // in compliance with MIPS ABI rules.
2139 // See "Global Offset Table" in Chapter 5 in the following document
2140 // for detailed description:
2141 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2142 static void sortMipsSymbols(Ctx &ctx, SmallVector<SymbolTableEntry, 0> &syms) {
2143 llvm::stable_sort(syms,
2144 [&](const SymbolTableEntry &l, const SymbolTableEntry &r) {
2145 // Sort entries related to non-local preemptible symbols
2146 // by GOT indexes. All other entries go to the beginning
2147 // of a dynsym in arbitrary order.
2148 if (l.sym->isInGot(ctx) && r.sym->isInGot(ctx))
2149 return l.sym->getGotIdx(ctx) < r.sym->getGotIdx(ctx);
2150 if (!l.sym->isInGot(ctx) && !r.sym->isInGot(ctx))
2151 return false;
2152 return !l.sym->isInGot(ctx);
2156 void SymbolTableBaseSection::finalizeContents() {
2157 if (OutputSection *sec = strTabSec.getParent())
2158 getParent()->link = sec->sectionIndex;
2160 if (this->type != SHT_DYNSYM) {
2161 sortSymTabSymbols();
2162 return;
2165 // If it is a .dynsym, there should be no local symbols, but we need
2166 // to do a few things for the dynamic linker.
2168 // Section's Info field has the index of the first non-local symbol.
2169 // Because the first symbol entry is a null entry, 1 is the first.
2170 getParent()->info = 1;
2172 if (getPartition(ctx).gnuHashTab) {
2173 // NB: It also sorts Symbols to meet the GNU hash table requirements.
2174 getPartition(ctx).gnuHashTab->addSymbols(symbols);
2175 } else if (ctx.arg.emachine == EM_MIPS) {
2176 sortMipsSymbols(ctx, symbols);
2179 // Only the main partition's dynsym indexes are stored in the symbols
2180 // themselves. All other partitions use a lookup table.
2181 if (this == ctx.mainPart->dynSymTab.get()) {
2182 size_t i = 0;
2183 for (const SymbolTableEntry &s : symbols)
2184 s.sym->dynsymIndex = ++i;
2188 // The ELF spec requires that all local symbols precede global symbols, so we
2189 // sort symbol entries in this function. (For .dynsym, we don't do that because
2190 // symbols for dynamic linking are inherently all globals.)
2192 // Aside from above, we put local symbols in groups starting with the STT_FILE
2193 // symbol. That is convenient for purpose of identifying where are local symbols
2194 // coming from.
2195 void SymbolTableBaseSection::sortSymTabSymbols() {
2196 // Move all local symbols before global symbols.
2197 auto e = std::stable_partition(
2198 symbols.begin(), symbols.end(),
2199 [](const SymbolTableEntry &s) { return s.sym->isLocal(); });
2200 size_t numLocals = e - symbols.begin();
2201 getParent()->info = numLocals + 1;
2203 // We want to group the local symbols by file. For that we rebuild the local
2204 // part of the symbols vector. We do not need to care about the STT_FILE
2205 // symbols, they are already naturally placed first in each group. That
2206 // happens because STT_FILE is always the first symbol in the object and hence
2207 // precede all other local symbols we add for a file.
2208 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr;
2209 for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
2210 arr[s.sym->file].push_back(s);
2212 auto i = symbols.begin();
2213 for (auto &p : arr)
2214 for (SymbolTableEntry &entry : p.second)
2215 *i++ = entry;
2218 void SymbolTableBaseSection::addSymbol(Symbol *b) {
2219 // Adding a local symbol to a .dynsym is a bug.
2220 assert(this->type != SHT_DYNSYM || !b->isLocal());
2221 symbols.push_back({b, strTabSec.addString(b->getName(), false)});
2224 size_t SymbolTableBaseSection::getSymbolIndex(const Symbol &sym) {
2225 if (this == ctx.mainPart->dynSymTab.get())
2226 return sym.dynsymIndex;
2228 // Initializes symbol lookup tables lazily. This is used only for -r,
2229 // --emit-relocs and dynsyms in partitions other than the main one.
2230 llvm::call_once(onceFlag, [&] {
2231 symbolIndexMap.reserve(symbols.size());
2232 size_t i = 0;
2233 for (const SymbolTableEntry &e : symbols) {
2234 if (e.sym->type == STT_SECTION)
2235 sectionIndexMap[e.sym->getOutputSection()] = ++i;
2236 else
2237 symbolIndexMap[e.sym] = ++i;
2241 // Section symbols are mapped based on their output sections
2242 // to maintain their semantics.
2243 if (sym.type == STT_SECTION)
2244 return sectionIndexMap.lookup(sym.getOutputSection());
2245 return symbolIndexMap.lookup(&sym);
2248 template <class ELFT>
2249 SymbolTableSection<ELFT>::SymbolTableSection(Ctx &ctx,
2250 StringTableSection &strTabSec)
2251 : SymbolTableBaseSection(ctx, strTabSec) {
2252 this->entsize = sizeof(Elf_Sym);
2255 static BssSection *getCommonSec(bool relocatable, Symbol *sym) {
2256 if (relocatable)
2257 if (auto *d = dyn_cast<Defined>(sym))
2258 return dyn_cast_or_null<BssSection>(d->section);
2259 return nullptr;
2262 static uint32_t getSymSectionIndex(Symbol *sym) {
2263 assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject()));
2264 if (!isa<Defined>(sym) || sym->hasFlag(NEEDS_COPY))
2265 return SHN_UNDEF;
2266 if (const OutputSection *os = sym->getOutputSection())
2267 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2268 : os->sectionIndex;
2269 return SHN_ABS;
2272 // Write the internal symbol table contents to the output symbol table.
2273 template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2274 // The first entry is a null entry as per the ELF spec.
2275 buf += sizeof(Elf_Sym);
2277 auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2278 bool relocatable = ctx.arg.relocatable;
2279 for (SymbolTableEntry &ent : symbols) {
2280 Symbol *sym = ent.sym;
2281 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2283 // Set st_name, st_info and st_other.
2284 eSym->st_name = ent.strTabOffset;
2285 eSym->setBindingAndType(sym->binding, sym->type);
2286 eSym->st_other = sym->stOther;
2288 if (BssSection *commonSec = getCommonSec(relocatable, sym)) {
2289 // When -r is specified, a COMMON symbol is not allocated. Its st_shndx
2290 // holds SHN_COMMON and st_value holds the alignment.
2291 eSym->st_shndx = SHN_COMMON;
2292 eSym->st_value = commonSec->addralign;
2293 eSym->st_size = cast<Defined>(sym)->size;
2294 } else {
2295 const uint32_t shndx = getSymSectionIndex(sym);
2296 if (isDefinedHere) {
2297 eSym->st_shndx = shndx;
2298 eSym->st_value = sym->getVA(ctx);
2299 // Copy symbol size if it is a defined symbol. st_size is not
2300 // significant for undefined symbols, so whether copying it or not is up
2301 // to us if that's the case. We'll leave it as zero because by not
2302 // setting a value, we can get the exact same outputs for two sets of
2303 // input files that differ only in undefined symbol size in DSOs.
2304 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0;
2305 } else {
2306 eSym->st_shndx = 0;
2307 eSym->st_value = 0;
2308 eSym->st_size = 0;
2312 ++eSym;
2315 // On MIPS we need to mark symbol which has a PLT entry and requires
2316 // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2317 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2318 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2319 if (ctx.arg.emachine == EM_MIPS) {
2320 auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2322 for (SymbolTableEntry &ent : symbols) {
2323 Symbol *sym = ent.sym;
2324 if (sym->isInPlt(ctx) && sym->hasFlag(NEEDS_COPY))
2325 eSym->st_other |= STO_MIPS_PLT;
2326 if (isMicroMips(ctx)) {
2327 // We already set the less-significant bit for symbols
2328 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2329 // records. That allows us to distinguish such symbols in
2330 // the `MIPS<ELFT>::relocate()` routine. Now we should
2331 // clear that bit for non-dynamic symbol table, so tools
2332 // like `objdump` will be able to deal with a correct
2333 // symbol position.
2334 if (sym->isDefined() &&
2335 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(NEEDS_COPY))) {
2336 if (!strTabSec.isDynamic())
2337 eSym->st_value &= ~1;
2338 eSym->st_other |= STO_MIPS_MICROMIPS;
2341 if (ctx.arg.relocatable)
2342 if (auto *d = dyn_cast<Defined>(sym))
2343 if (isMipsPIC<ELFT>(d))
2344 eSym->st_other |= STO_MIPS_PIC;
2345 ++eSym;
2350 SymtabShndxSection::SymtabShndxSection(Ctx &ctx)
2351 : SyntheticSection(ctx, 0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
2352 this->entsize = 4;
2355 void SymtabShndxSection::writeTo(uint8_t *buf) {
2356 // We write an array of 32 bit values, where each value has 1:1 association
2357 // with an entry in ctx.in.symTab if the corresponding entry contains
2358 // SHN_XINDEX, we need to write actual index, otherwise, we must write
2359 // SHN_UNDEF(0).
2360 buf += 4; // Ignore .symtab[0] entry.
2361 bool relocatable = ctx.arg.relocatable;
2362 for (const SymbolTableEntry &entry : ctx.in.symTab->getSymbols()) {
2363 if (!getCommonSec(relocatable, entry.sym) &&
2364 getSymSectionIndex(entry.sym) == SHN_XINDEX)
2365 write32(ctx, buf, entry.sym->getOutputSection()->sectionIndex);
2366 buf += 4;
2370 bool SymtabShndxSection::isNeeded() const {
2371 // SHT_SYMTAB can hold symbols with section indices values up to
2372 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2373 // section. Problem is that we reveal the final section indices a bit too
2374 // late, and we do not know them here. For simplicity, we just always create
2375 // a .symtab_shndx section when the amount of output sections is huge.
2376 size_t size = 0;
2377 for (SectionCommand *cmd : ctx.script->sectionCommands)
2378 if (isa<OutputDesc>(cmd))
2379 ++size;
2380 return size >= SHN_LORESERVE;
2383 void SymtabShndxSection::finalizeContents() {
2384 getParent()->link = ctx.in.symTab->getParent()->sectionIndex;
2387 size_t SymtabShndxSection::getSize() const {
2388 return ctx.in.symTab->getNumSymbols() * 4;
2391 // .hash and .gnu.hash sections contain on-disk hash tables that map
2392 // symbol names to their dynamic symbol table indices. Their purpose
2393 // is to help the dynamic linker resolve symbols quickly. If ELF files
2394 // don't have them, the dynamic linker has to do linear search on all
2395 // dynamic symbols, which makes programs slower. Therefore, a .hash
2396 // section is added to a DSO by default.
2398 // The Unix semantics of resolving dynamic symbols is somewhat expensive.
2399 // Each ELF file has a list of DSOs that the ELF file depends on and a
2400 // list of dynamic symbols that need to be resolved from any of the
2401 // DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2402 // where m is the number of DSOs and n is the number of dynamic
2403 // symbols. For modern large programs, both m and n are large. So
2404 // making each step faster by using hash tables substantially
2405 // improves time to load programs.
2407 // (Note that this is not the only way to design the shared library.
2408 // For instance, the Windows DLL takes a different approach. On
2409 // Windows, each dynamic symbol has a name of DLL from which the symbol
2410 // has to be resolved. That makes the cost of symbol resolution O(n).
2411 // This disables some hacky techniques you can use on Unix such as
2412 // LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2414 // Due to historical reasons, we have two different hash tables, .hash
2415 // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2416 // and better version of .hash. .hash is just an on-disk hash table, but
2417 // .gnu.hash has a bloom filter in addition to a hash table to skip
2418 // DSOs very quickly. If you are sure that your dynamic linker knows
2419 // about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a
2420 // safe bet is to specify --hash-style=both for backward compatibility.
2421 GnuHashTableSection::GnuHashTableSection(Ctx &ctx)
2422 : SyntheticSection(ctx, SHF_ALLOC, SHT_GNU_HASH, ctx.arg.wordsize,
2423 ".gnu.hash") {}
2425 void GnuHashTableSection::finalizeContents() {
2426 if (OutputSection *sec = getPartition(ctx).dynSymTab->getParent())
2427 getParent()->link = sec->sectionIndex;
2429 // Computes bloom filter size in word size. We want to allocate 12
2430 // bits for each symbol. It must be a power of two.
2431 if (symbols.empty()) {
2432 maskWords = 1;
2433 } else {
2434 uint64_t numBits = symbols.size() * 12;
2435 maskWords = NextPowerOf2(numBits / (ctx.arg.wordsize * 8));
2438 size = 16; // Header
2439 size += ctx.arg.wordsize * maskWords; // Bloom filter
2440 size += nBuckets * 4; // Hash buckets
2441 size += symbols.size() * 4; // Hash values
2444 void GnuHashTableSection::writeTo(uint8_t *buf) {
2445 // Write a header.
2446 write32(ctx, buf, nBuckets);
2447 write32(ctx, buf + 4,
2448 getPartition(ctx).dynSymTab->getNumSymbols() - symbols.size());
2449 write32(ctx, buf + 8, maskWords);
2450 write32(ctx, buf + 12, Shift2);
2451 buf += 16;
2453 // Write the 2-bit bloom filter.
2454 const unsigned c = ctx.arg.is64 ? 64 : 32;
2455 for (const Entry &sym : symbols) {
2456 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2457 // the word using bits [0:5] and [26:31].
2458 size_t i = (sym.hash / c) & (maskWords - 1);
2459 uint64_t val = readUint(ctx, buf + i * ctx.arg.wordsize);
2460 val |= uint64_t(1) << (sym.hash % c);
2461 val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2462 writeUint(ctx, buf + i * ctx.arg.wordsize, val);
2464 buf += ctx.arg.wordsize * maskWords;
2466 // Write the hash table.
2467 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2468 uint32_t oldBucket = -1;
2469 uint32_t *values = buckets + nBuckets;
2470 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2471 // Write a hash value. It represents a sequence of chains that share the
2472 // same hash modulo value. The last element of each chain is terminated by
2473 // LSB 1.
2474 uint32_t hash = i->hash;
2475 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2476 hash = isLastInChain ? hash | 1 : hash & ~1;
2477 write32(ctx, values++, hash);
2479 if (i->bucketIdx == oldBucket)
2480 continue;
2481 // Write a hash bucket. Hash buckets contain indices in the following hash
2482 // value table.
2483 write32(ctx, buckets + i->bucketIdx,
2484 getPartition(ctx).dynSymTab->getSymbolIndex(*i->sym));
2485 oldBucket = i->bucketIdx;
2489 // Add symbols to this symbol hash table. Note that this function
2490 // destructively sort a given vector -- which is needed because
2491 // GNU-style hash table places some sorting requirements.
2492 void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) {
2493 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2494 // its type correctly.
2495 auto mid =
2496 std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
2497 return !s.sym->isDefined() || s.sym->partition != partition;
2500 // We chose load factor 4 for the on-disk hash table. For each hash
2501 // collision, the dynamic linker will compare a uint32_t hash value.
2502 // Since the integer comparison is quite fast, we believe we can
2503 // make the load factor even larger. 4 is just a conservative choice.
2505 // Note that we don't want to create a zero-sized hash table because
2506 // Android loader as of 2018 doesn't like a .gnu.hash containing such
2507 // table. If that's the case, we create a hash table with one unused
2508 // dummy slot.
2509 nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
2511 if (mid == v.end())
2512 return;
2514 for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
2515 Symbol *b = ent.sym;
2516 uint32_t hash = hashGnu(b->getName());
2517 uint32_t bucketIdx = hash % nBuckets;
2518 symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
2521 llvm::sort(symbols, [](const Entry &l, const Entry &r) {
2522 return std::tie(l.bucketIdx, l.strTabOffset) <
2523 std::tie(r.bucketIdx, r.strTabOffset);
2526 v.erase(mid, v.end());
2527 for (const Entry &ent : symbols)
2528 v.push_back({ent.sym, ent.strTabOffset});
2531 HashTableSection::HashTableSection(Ctx &ctx)
2532 : SyntheticSection(ctx, SHF_ALLOC, SHT_HASH, 4, ".hash") {
2533 this->entsize = 4;
2536 void HashTableSection::finalizeContents() {
2537 SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get();
2539 if (OutputSection *sec = symTab->getParent())
2540 getParent()->link = sec->sectionIndex;
2542 unsigned numEntries = 2; // nbucket and nchain.
2543 numEntries += symTab->getNumSymbols(); // The chain entries.
2545 // Create as many buckets as there are symbols.
2546 numEntries += symTab->getNumSymbols();
2547 this->size = numEntries * 4;
2550 void HashTableSection::writeTo(uint8_t *buf) {
2551 SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get();
2552 unsigned numSymbols = symTab->getNumSymbols();
2554 uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2555 write32(ctx, p++, numSymbols); // nbucket
2556 write32(ctx, p++, numSymbols); // nchain
2558 uint32_t *buckets = p;
2559 uint32_t *chains = p + numSymbols;
2561 for (const SymbolTableEntry &s : symTab->getSymbols()) {
2562 Symbol *sym = s.sym;
2563 StringRef name = sym->getName();
2564 unsigned i = sym->dynsymIndex;
2565 uint32_t hash = hashSysV(name) % numSymbols;
2566 chains[i] = buckets[hash];
2567 write32(ctx, buckets + hash, i);
2571 PltSection::PltSection(Ctx &ctx)
2572 : SyntheticSection(ctx, SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16,
2573 ".plt"),
2574 headerSize(ctx.target->pltHeaderSize) {
2575 // On PowerPC, this section contains lazy symbol resolvers.
2576 if (ctx.arg.emachine == EM_PPC64) {
2577 name = ".glink";
2578 addralign = 4;
2581 // On x86 when IBT is enabled, this section contains the second PLT (lazy
2582 // symbol resolvers).
2583 if ((ctx.arg.emachine == EM_386 || ctx.arg.emachine == EM_X86_64) &&
2584 (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2585 name = ".plt.sec";
2587 // The PLT needs to be writable on SPARC as the dynamic linker will
2588 // modify the instructions in the PLT entries.
2589 if (ctx.arg.emachine == EM_SPARCV9)
2590 this->flags |= SHF_WRITE;
2593 void PltSection::writeTo(uint8_t *buf) {
2594 // At beginning of PLT, we have code to call the dynamic
2595 // linker to resolve dynsyms at runtime. Write such code.
2596 ctx.target->writePltHeader(buf);
2597 size_t off = headerSize;
2599 for (const Symbol *sym : entries) {
2600 ctx.target->writePlt(buf + off, *sym, getVA() + off);
2601 off += ctx.target->pltEntrySize;
2605 void PltSection::addEntry(Symbol &sym) {
2606 assert(sym.auxIdx == ctx.symAux.size() - 1);
2607 ctx.symAux.back().pltIdx = entries.size();
2608 entries.push_back(&sym);
2611 size_t PltSection::getSize() const {
2612 return headerSize + entries.size() * ctx.target->pltEntrySize;
2615 bool PltSection::isNeeded() const {
2616 // For -z retpolineplt, .iplt needs the .plt header.
2617 return !entries.empty() || (ctx.arg.zRetpolineplt && ctx.in.iplt->isNeeded());
2620 // Used by ARM to add mapping symbols in the PLT section, which aid
2621 // disassembly.
2622 void PltSection::addSymbols() {
2623 ctx.target->addPltHeaderSymbols(*this);
2625 size_t off = headerSize;
2626 for (size_t i = 0; i < entries.size(); ++i) {
2627 ctx.target->addPltSymbols(*this, off);
2628 off += ctx.target->pltEntrySize;
2632 IpltSection::IpltSection(Ctx &ctx)
2633 : SyntheticSection(ctx, SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16,
2634 ".iplt") {
2635 if (ctx.arg.emachine == EM_PPC || ctx.arg.emachine == EM_PPC64) {
2636 name = ".glink";
2637 addralign = 4;
2641 void IpltSection::writeTo(uint8_t *buf) {
2642 uint32_t off = 0;
2643 for (const Symbol *sym : entries) {
2644 ctx.target->writeIplt(buf + off, *sym, getVA() + off);
2645 off += ctx.target->ipltEntrySize;
2649 size_t IpltSection::getSize() const {
2650 return entries.size() * ctx.target->ipltEntrySize;
2653 void IpltSection::addEntry(Symbol &sym) {
2654 assert(sym.auxIdx == ctx.symAux.size() - 1);
2655 ctx.symAux.back().pltIdx = entries.size();
2656 entries.push_back(&sym);
2659 // ARM uses mapping symbols to aid disassembly.
2660 void IpltSection::addSymbols() {
2661 size_t off = 0;
2662 for (size_t i = 0, e = entries.size(); i != e; ++i) {
2663 ctx.target->addPltSymbols(*this, off);
2664 off += ctx.target->pltEntrySize;
2668 PPC32GlinkSection::PPC32GlinkSection(Ctx &ctx) : PltSection(ctx) {
2669 name = ".glink";
2670 addralign = 4;
2673 void PPC32GlinkSection::writeTo(uint8_t *buf) {
2674 writePPC32GlinkSection(ctx, buf, entries.size());
2677 size_t PPC32GlinkSection::getSize() const {
2678 return headerSize + entries.size() * ctx.target->pltEntrySize + footerSize;
2681 // This is an x86-only extra PLT section and used only when a security
2682 // enhancement feature called CET is enabled. In this comment, I'll explain what
2683 // the feature is and why we have two PLT sections if CET is enabled.
2685 // So, what does CET do? CET introduces a new restriction to indirect jump
2686 // instructions. CET works this way. Assume that CET is enabled. Then, if you
2687 // execute an indirect jump instruction, the processor verifies that a special
2688 // "landing pad" instruction (which is actually a repurposed NOP instruction and
2689 // now called "endbr32" or "endbr64") is at the jump target. If the jump target
2690 // does not start with that instruction, the processor raises an exception
2691 // instead of continuing executing code.
2693 // If CET is enabled, the compiler emits endbr to all locations where indirect
2694 // jumps may jump to.
2696 // This mechanism makes it extremely hard to transfer the control to a middle of
2697 // a function that is not supporsed to be a indirect jump target, preventing
2698 // certain types of attacks such as ROP or JOP.
2700 // Note that the processors in the market as of 2019 don't actually support the
2701 // feature. Only the spec is available at the moment.
2703 // Now, I'll explain why we have this extra PLT section for CET.
2705 // Since you can indirectly jump to a PLT entry, we have to make PLT entries
2706 // start with endbr. The problem is there's no extra space for endbr (which is 4
2707 // bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2708 // used.
2710 // In order to deal with the issue, we split a PLT entry into two PLT entries.
2711 // Remember that each PLT entry contains code to jump to an address read from
2712 // .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2713 // the former code is written to .plt.sec, and the latter code is written to
2714 // .plt.
2716 // Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2717 // that the regular .plt is now called .plt.sec and .plt is repurposed to
2718 // contain only code for lazy symbol resolution.
2720 // In other words, this is how the 2-PLT scheme works. Application code is
2721 // supposed to jump to .plt.sec to call an external function. Each .plt.sec
2722 // entry contains code to read an address from a corresponding .got.plt entry
2723 // and jump to that address. Addresses in .got.plt initially point to .plt, so
2724 // when an application calls an external function for the first time, the
2725 // control is transferred to a function that resolves a symbol name from
2726 // external shared object files. That function then rewrites a .got.plt entry
2727 // with a resolved address, so that the subsequent function calls directly jump
2728 // to a desired location from .plt.sec.
2730 // There is an open question as to whether the 2-PLT scheme was desirable or
2731 // not. We could have simply extended the PLT entry size to 32-bytes to
2732 // accommodate endbr, and that scheme would have been much simpler than the
2733 // 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2734 // code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2735 // that the optimization actually makes a difference.
2737 // That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2738 // depend on it, so we implement the ABI.
2739 IBTPltSection::IBTPltSection(Ctx &ctx)
2740 : SyntheticSection(ctx, SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16,
2741 ".plt") {}
2743 void IBTPltSection::writeTo(uint8_t *buf) {
2744 ctx.target->writeIBTPlt(buf, ctx.in.plt->getNumEntries());
2747 size_t IBTPltSection::getSize() const {
2748 // 16 is the header size of .plt.
2749 return 16 + ctx.in.plt->getNumEntries() * ctx.target->pltEntrySize;
2752 bool IBTPltSection::isNeeded() const { return ctx.in.plt->getNumEntries() > 0; }
2754 RelroPaddingSection::RelroPaddingSection(Ctx &ctx)
2755 : SyntheticSection(ctx, SHF_ALLOC | SHF_WRITE, SHT_NOBITS, 1,
2756 ".relro_padding") {}
2758 // The string hash function for .gdb_index.
2759 static uint32_t computeGdbHash(StringRef s) {
2760 uint32_t h = 0;
2761 for (uint8_t c : s)
2762 h = h * 67 + toLower(c) - 113;
2763 return h;
2766 // 4-byte alignment ensures that values in the hash lookup table and the name
2767 // table are aligned.
2768 DebugNamesBaseSection::DebugNamesBaseSection(Ctx &ctx)
2769 : SyntheticSection(ctx, 0, SHT_PROGBITS, 4, ".debug_names") {}
2771 // Get the size of the .debug_names section header in bytes for DWARF32:
2772 static uint32_t getDebugNamesHeaderSize(uint32_t augmentationStringSize) {
2773 return /* unit length */ 4 +
2774 /* version */ 2 +
2775 /* padding */ 2 +
2776 /* CU count */ 4 +
2777 /* TU count */ 4 +
2778 /* Foreign TU count */ 4 +
2779 /* Bucket Count */ 4 +
2780 /* Name Count */ 4 +
2781 /* Abbrev table size */ 4 +
2782 /* Augmentation string size */ 4 +
2783 /* Augmentation string */ augmentationStringSize;
2786 static Expected<DebugNamesBaseSection::IndexEntry *>
2787 readEntry(uint64_t &offset, const DWARFDebugNames::NameIndex &ni,
2788 uint64_t entriesBase, DWARFDataExtractor &namesExtractor,
2789 const LLDDWARFSection &namesSec) {
2790 auto ie = makeThreadLocal<DebugNamesBaseSection::IndexEntry>();
2791 ie->poolOffset = offset;
2792 Error err = Error::success();
2793 uint64_t ulebVal = namesExtractor.getULEB128(&offset, &err);
2794 if (err)
2795 return createStringError(inconvertibleErrorCode(),
2796 "invalid abbrev code: %s",
2797 llvm::toString(std::move(err)).c_str());
2798 if (!isUInt<32>(ulebVal))
2799 return createStringError(inconvertibleErrorCode(),
2800 "abbrev code too large for DWARF32: %" PRIu64,
2801 ulebVal);
2802 ie->abbrevCode = static_cast<uint32_t>(ulebVal);
2803 auto it = ni.getAbbrevs().find_as(ie->abbrevCode);
2804 if (it == ni.getAbbrevs().end())
2805 return createStringError(inconvertibleErrorCode(),
2806 "abbrev code not found in abbrev table: %" PRIu32,
2807 ie->abbrevCode);
2809 DebugNamesBaseSection::AttrValue attr, cuAttr = {0, 0};
2810 for (DWARFDebugNames::AttributeEncoding a : it->Attributes) {
2811 if (a.Index == dwarf::DW_IDX_parent) {
2812 if (a.Form == dwarf::DW_FORM_ref4) {
2813 attr.attrValue = namesExtractor.getU32(&offset, &err);
2814 attr.attrSize = 4;
2815 ie->parentOffset = entriesBase + attr.attrValue;
2816 } else if (a.Form != DW_FORM_flag_present)
2817 return createStringError(inconvertibleErrorCode(),
2818 "invalid form for DW_IDX_parent");
2819 } else {
2820 switch (a.Form) {
2821 case DW_FORM_data1:
2822 case DW_FORM_ref1: {
2823 attr.attrValue = namesExtractor.getU8(&offset, &err);
2824 attr.attrSize = 1;
2825 break;
2827 case DW_FORM_data2:
2828 case DW_FORM_ref2: {
2829 attr.attrValue = namesExtractor.getU16(&offset, &err);
2830 attr.attrSize = 2;
2831 break;
2833 case DW_FORM_data4:
2834 case DW_FORM_ref4: {
2835 attr.attrValue = namesExtractor.getU32(&offset, &err);
2836 attr.attrSize = 4;
2837 break;
2839 default:
2840 return createStringError(
2841 inconvertibleErrorCode(),
2842 "unrecognized form encoding %d in abbrev table", a.Form);
2845 if (err)
2846 return createStringError(inconvertibleErrorCode(),
2847 "error while reading attributes: %s",
2848 llvm::toString(std::move(err)).c_str());
2849 if (a.Index == DW_IDX_compile_unit)
2850 cuAttr = attr;
2851 else if (a.Form != DW_FORM_flag_present)
2852 ie->attrValues.push_back(attr);
2854 // Canonicalize abbrev by placing the CU/TU index at the end.
2855 ie->attrValues.push_back(cuAttr);
2856 return ie;
2859 void DebugNamesBaseSection::parseDebugNames(
2860 Ctx &ctx, InputChunk &inputChunk, OutputChunk &chunk,
2861 DWARFDataExtractor &namesExtractor, DataExtractor &strExtractor,
2862 function_ref<SmallVector<uint32_t, 0>(
2863 uint32_t numCus, const DWARFDebugNames::Header &,
2864 const DWARFDebugNames::DWARFDebugNamesOffsets &)>
2865 readOffsets) {
2866 const LLDDWARFSection &namesSec = inputChunk.section;
2867 DenseMap<uint32_t, IndexEntry *> offsetMap;
2868 // Number of CUs seen in previous NameIndex sections within current chunk.
2869 uint32_t numCus = 0;
2870 for (const DWARFDebugNames::NameIndex &ni : *inputChunk.llvmDebugNames) {
2871 NameData &nd = inputChunk.nameData.emplace_back();
2872 nd.hdr = ni.getHeader();
2873 if (nd.hdr.Format != DwarfFormat::DWARF32) {
2874 Err(ctx) << namesSec.sec
2875 << Twine(": found DWARF64, which is currently unsupported");
2876 return;
2878 if (nd.hdr.Version != 5) {
2879 Err(ctx) << namesSec.sec << ": unsupported version: " << nd.hdr.Version;
2880 return;
2882 uint32_t dwarfSize = dwarf::getDwarfOffsetByteSize(DwarfFormat::DWARF32);
2883 DWARFDebugNames::DWARFDebugNamesOffsets locs = ni.getOffsets();
2884 if (locs.EntriesBase > namesExtractor.getData().size()) {
2885 Err(ctx) << namesSec.sec
2886 << Twine(": entry pool start is beyond end of section");
2887 return;
2890 SmallVector<uint32_t, 0> entryOffsets = readOffsets(numCus, nd.hdr, locs);
2892 // Read the entry pool.
2893 offsetMap.clear();
2894 nd.nameEntries.resize(nd.hdr.NameCount);
2895 for (auto i : seq(nd.hdr.NameCount)) {
2896 NameEntry &ne = nd.nameEntries[i];
2897 uint64_t strOffset = locs.StringOffsetsBase + i * dwarfSize;
2898 ne.stringOffset = strOffset;
2899 uint64_t strp = namesExtractor.getRelocatedValue(dwarfSize, &strOffset);
2900 StringRef name = strExtractor.getCStrRef(&strp);
2901 ne.name = name.data();
2902 ne.hashValue = caseFoldingDjbHash(name);
2904 // Read a series of index entries that end with abbreviation code 0.
2905 uint64_t offset = locs.EntriesBase + entryOffsets[i];
2906 while (offset < namesSec.Data.size() && namesSec.Data[offset] != 0) {
2907 // Read & store all entries (for the same string).
2908 Expected<IndexEntry *> ieOrErr =
2909 readEntry(offset, ni, locs.EntriesBase, namesExtractor, namesSec);
2910 if (!ieOrErr) {
2911 Err(ctx) << namesSec.sec << ": " << ieOrErr.takeError();
2912 return;
2914 ne.indexEntries.push_back(std::move(*ieOrErr));
2916 if (offset >= namesSec.Data.size())
2917 Err(ctx) << namesSec.sec << ": index entry is out of bounds";
2919 for (IndexEntry &ie : ne.entries())
2920 offsetMap[ie.poolOffset] = &ie;
2923 // Assign parent pointers, which will be used to update DW_IDX_parent index
2924 // attributes. Note: offsetMap[0] does not exist, so parentOffset == 0 will
2925 // get parentEntry == null as well.
2926 for (NameEntry &ne : nd.nameEntries)
2927 for (IndexEntry &ie : ne.entries())
2928 ie.parentEntry = offsetMap.lookup(ie.parentOffset);
2929 numCus += nd.hdr.CompUnitCount;
2933 // Compute the form for output DW_IDX_compile_unit attributes, similar to
2934 // DIEInteger::BestForm. The input form (often DW_FORM_data1) may not hold all
2935 // the merged CU indices.
2936 std::pair<uint8_t, dwarf::Form> static getMergedCuCountForm(
2937 uint32_t compUnitCount) {
2938 if (compUnitCount > UINT16_MAX)
2939 return {4, DW_FORM_data4};
2940 if (compUnitCount > UINT8_MAX)
2941 return {2, DW_FORM_data2};
2942 return {1, DW_FORM_data1};
2945 void DebugNamesBaseSection::computeHdrAndAbbrevTable(
2946 MutableArrayRef<InputChunk> inputChunks) {
2947 TimeTraceScope timeScope("Merge .debug_names", "hdr and abbrev table");
2948 size_t numCu = 0;
2949 hdr.Format = DwarfFormat::DWARF32;
2950 hdr.Version = 5;
2951 hdr.CompUnitCount = 0;
2952 hdr.LocalTypeUnitCount = 0;
2953 hdr.ForeignTypeUnitCount = 0;
2954 hdr.AugmentationStringSize = 0;
2956 // Compute CU and TU counts.
2957 for (auto i : seq(numChunks)) {
2958 InputChunk &inputChunk = inputChunks[i];
2959 inputChunk.baseCuIdx = numCu;
2960 numCu += chunks[i].compUnits.size();
2961 for (const NameData &nd : inputChunk.nameData) {
2962 hdr.CompUnitCount += nd.hdr.CompUnitCount;
2963 // TODO: We don't handle type units yet, so LocalTypeUnitCount &
2964 // ForeignTypeUnitCount are left as 0.
2965 if (nd.hdr.LocalTypeUnitCount || nd.hdr.ForeignTypeUnitCount)
2966 Warn(ctx) << inputChunk.section.sec
2967 << Twine(": type units are not implemented");
2968 // If augmentation strings are not identical, use an empty string.
2969 if (i == 0) {
2970 hdr.AugmentationStringSize = nd.hdr.AugmentationStringSize;
2971 hdr.AugmentationString = nd.hdr.AugmentationString;
2972 } else if (hdr.AugmentationString != nd.hdr.AugmentationString) {
2973 // There are conflicting augmentation strings, so it's best for the
2974 // merged index to not use an augmentation string.
2975 hdr.AugmentationStringSize = 0;
2976 hdr.AugmentationString.clear();
2981 // Create the merged abbrev table, uniquifyinng the input abbrev tables and
2982 // computing mapping from old (per-cu) abbrev codes to new (merged) abbrev
2983 // codes.
2984 FoldingSet<Abbrev> abbrevSet;
2985 // Determine the form for the DW_IDX_compile_unit attributes in the merged
2986 // index. The input form may not be big enough for all CU indices.
2987 dwarf::Form cuAttrForm = getMergedCuCountForm(hdr.CompUnitCount).second;
2988 for (InputChunk &inputChunk : inputChunks) {
2989 for (auto [i, ni] : enumerate(*inputChunk.llvmDebugNames)) {
2990 for (const DWARFDebugNames::Abbrev &oldAbbrev : ni.getAbbrevs()) {
2991 // Canonicalize abbrev by placing the CU/TU index at the end,
2992 // similar to 'parseDebugNames'.
2993 Abbrev abbrev;
2994 DWARFDebugNames::AttributeEncoding cuAttr(DW_IDX_compile_unit,
2995 cuAttrForm);
2996 abbrev.code = oldAbbrev.Code;
2997 abbrev.tag = oldAbbrev.Tag;
2998 for (DWARFDebugNames::AttributeEncoding a : oldAbbrev.Attributes) {
2999 if (a.Index == DW_IDX_compile_unit)
3000 cuAttr.Index = a.Index;
3001 else
3002 abbrev.attributes.push_back({a.Index, a.Form});
3004 // Put the CU/TU index at the end of the attributes list.
3005 abbrev.attributes.push_back(cuAttr);
3007 // Profile the abbrev, get or assign a new code, then record the abbrev
3008 // code mapping.
3009 FoldingSetNodeID id;
3010 abbrev.Profile(id);
3011 uint32_t newCode;
3012 void *insertPos;
3013 if (Abbrev *existing = abbrevSet.FindNodeOrInsertPos(id, insertPos)) {
3014 // Found it; we've already seen an identical abbreviation.
3015 newCode = existing->code;
3016 } else {
3017 Abbrev *abbrev2 =
3018 new (abbrevAlloc.Allocate()) Abbrev(std::move(abbrev));
3019 abbrevSet.InsertNode(abbrev2, insertPos);
3020 abbrevTable.push_back(abbrev2);
3021 newCode = abbrevTable.size();
3022 abbrev2->code = newCode;
3024 inputChunk.nameData[i].abbrevCodeMap[oldAbbrev.Code] = newCode;
3029 // Compute the merged abbrev table.
3030 raw_svector_ostream os(abbrevTableBuf);
3031 for (Abbrev *abbrev : abbrevTable) {
3032 encodeULEB128(abbrev->code, os);
3033 encodeULEB128(abbrev->tag, os);
3034 for (DWARFDebugNames::AttributeEncoding a : abbrev->attributes) {
3035 encodeULEB128(a.Index, os);
3036 encodeULEB128(a.Form, os);
3038 os.write("\0", 2); // attribute specification end
3040 os.write(0); // abbrev table end
3041 hdr.AbbrevTableSize = abbrevTableBuf.size();
3044 void DebugNamesBaseSection::Abbrev::Profile(FoldingSetNodeID &id) const {
3045 id.AddInteger(tag);
3046 for (const DWARFDebugNames::AttributeEncoding &attr : attributes) {
3047 id.AddInteger(attr.Index);
3048 id.AddInteger(attr.Form);
3052 std::pair<uint32_t, uint32_t> DebugNamesBaseSection::computeEntryPool(
3053 MutableArrayRef<InputChunk> inputChunks) {
3054 TimeTraceScope timeScope("Merge .debug_names", "entry pool");
3055 // Collect and de-duplicate all the names (preserving all the entries).
3056 // Speed it up using multithreading, as the number of symbols can be in the
3057 // order of millions.
3058 const size_t concurrency =
3059 bit_floor(std::min<size_t>(ctx.arg.threadCount, numShards));
3060 const size_t shift = 32 - countr_zero(numShards);
3061 const uint8_t cuAttrSize = getMergedCuCountForm(hdr.CompUnitCount).first;
3062 DenseMap<CachedHashStringRef, size_t> maps[numShards];
3064 parallelFor(0, concurrency, [&](size_t threadId) {
3065 for (auto i : seq(numChunks)) {
3066 InputChunk &inputChunk = inputChunks[i];
3067 for (auto j : seq(inputChunk.nameData.size())) {
3068 NameData &nd = inputChunk.nameData[j];
3069 // Deduplicate the NameEntry records (based on the string/name),
3070 // appending all IndexEntries from duplicate NameEntry records to
3071 // the single preserved copy.
3072 for (NameEntry &ne : nd.nameEntries) {
3073 auto shardId = ne.hashValue >> shift;
3074 if ((shardId & (concurrency - 1)) != threadId)
3075 continue;
3077 ne.chunkIdx = i;
3078 for (IndexEntry &ie : ne.entries()) {
3079 // Update the IndexEntry's abbrev code to match the merged
3080 // abbreviations.
3081 ie.abbrevCode = nd.abbrevCodeMap[ie.abbrevCode];
3082 // Update the DW_IDX_compile_unit attribute (the last one after
3083 // canonicalization) to have correct merged offset value and size.
3084 auto &back = ie.attrValues.back();
3085 back.attrValue += inputChunk.baseCuIdx + j;
3086 back.attrSize = cuAttrSize;
3089 auto &nameVec = nameVecs[shardId];
3090 auto [it, inserted] = maps[shardId].try_emplace(
3091 CachedHashStringRef(ne.name, ne.hashValue), nameVec.size());
3092 if (inserted)
3093 nameVec.push_back(std::move(ne));
3094 else
3095 nameVec[it->second].indexEntries.append(std::move(ne.indexEntries));
3101 // Compute entry offsets in parallel. First, compute offsets relative to the
3102 // current shard.
3103 uint32_t offsets[numShards];
3104 parallelFor(0, numShards, [&](size_t shard) {
3105 uint32_t offset = 0;
3106 for (NameEntry &ne : nameVecs[shard]) {
3107 ne.entryOffset = offset;
3108 for (IndexEntry &ie : ne.entries()) {
3109 ie.poolOffset = offset;
3110 offset += getULEB128Size(ie.abbrevCode);
3111 for (AttrValue value : ie.attrValues)
3112 offset += value.attrSize;
3114 ++offset; // index entry sentinel
3116 offsets[shard] = offset;
3118 // Then add shard offsets.
3119 std::partial_sum(offsets, std::end(offsets), offsets);
3120 parallelFor(1, numShards, [&](size_t shard) {
3121 uint32_t offset = offsets[shard - 1];
3122 for (NameEntry &ne : nameVecs[shard]) {
3123 ne.entryOffset += offset;
3124 for (IndexEntry &ie : ne.entries())
3125 ie.poolOffset += offset;
3129 // Update the DW_IDX_parent entries that refer to real parents (have
3130 // DW_FORM_ref4).
3131 parallelFor(0, numShards, [&](size_t shard) {
3132 for (NameEntry &ne : nameVecs[shard]) {
3133 for (IndexEntry &ie : ne.entries()) {
3134 if (!ie.parentEntry)
3135 continue;
3136 // Abbrevs are indexed starting at 1; vector starts at 0. (abbrevCode
3137 // corresponds to position in the merged table vector).
3138 const Abbrev *abbrev = abbrevTable[ie.abbrevCode - 1];
3139 for (const auto &[a, v] : zip_equal(abbrev->attributes, ie.attrValues))
3140 if (a.Index == DW_IDX_parent && a.Form == DW_FORM_ref4)
3141 v.attrValue = ie.parentEntry->poolOffset;
3146 // Return (entry pool size, number of entries).
3147 uint32_t num = 0;
3148 for (auto &map : maps)
3149 num += map.size();
3150 return {offsets[numShards - 1], num};
3153 void DebugNamesBaseSection::init(
3154 function_ref<void(InputFile *, InputChunk &, OutputChunk &)> parseFile) {
3155 TimeTraceScope timeScope("Merge .debug_names");
3156 // Collect and remove input .debug_names sections. Save InputSection pointers
3157 // to relocate string offsets in `writeTo`.
3158 SetVector<InputFile *> files;
3159 for (InputSectionBase *s : ctx.inputSections) {
3160 InputSection *isec = dyn_cast<InputSection>(s);
3161 if (!isec)
3162 continue;
3163 if (!(s->flags & SHF_ALLOC) && s->name == ".debug_names") {
3164 s->markDead();
3165 inputSections.push_back(isec);
3166 files.insert(isec->file);
3170 // Parse input .debug_names sections and extract InputChunk and OutputChunk
3171 // data. OutputChunk contains CU information, which will be needed by
3172 // `writeTo`.
3173 auto inputChunksPtr = std::make_unique<InputChunk[]>(files.size());
3174 MutableArrayRef<InputChunk> inputChunks(inputChunksPtr.get(), files.size());
3175 numChunks = files.size();
3176 chunks = std::make_unique<OutputChunk[]>(files.size());
3178 TimeTraceScope timeScope("Merge .debug_names", "parse");
3179 parallelFor(0, files.size(), [&](size_t i) {
3180 parseFile(files[i], inputChunks[i], chunks[i]);
3184 // Compute section header (except unit_length), abbrev table, and entry pool.
3185 computeHdrAndAbbrevTable(inputChunks);
3186 uint32_t entryPoolSize;
3187 std::tie(entryPoolSize, hdr.NameCount) = computeEntryPool(inputChunks);
3188 hdr.BucketCount = dwarf::getDebugNamesBucketCount(hdr.NameCount);
3190 // Compute the section size. Subtract 4 to get the unit_length for DWARF32.
3191 uint32_t hdrSize = getDebugNamesHeaderSize(hdr.AugmentationStringSize);
3192 size = findDebugNamesOffsets(hdrSize, hdr).EntriesBase + entryPoolSize;
3193 hdr.UnitLength = size - 4;
3196 template <class ELFT>
3197 DebugNamesSection<ELFT>::DebugNamesSection(Ctx &ctx)
3198 : DebugNamesBaseSection(ctx) {
3199 init([&](InputFile *f, InputChunk &inputChunk, OutputChunk &chunk) {
3200 auto *file = cast<ObjFile<ELFT>>(f);
3201 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
3202 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
3203 chunk.infoSec = dobj.getInfoSection();
3204 DWARFDataExtractor namesExtractor(dobj, dobj.getNamesSection(),
3205 ELFT::Endianness == endianness::little,
3206 ELFT::Is64Bits ? 8 : 4);
3207 // .debug_str is needed to get symbol names from string offsets.
3208 DataExtractor strExtractor(dobj.getStrSection(),
3209 ELFT::Endianness == endianness::little,
3210 ELFT::Is64Bits ? 8 : 4);
3211 inputChunk.section = dobj.getNamesSection();
3213 inputChunk.llvmDebugNames.emplace(namesExtractor, strExtractor);
3214 if (Error e = inputChunk.llvmDebugNames->extract()) {
3215 Err(ctx) << dobj.getNamesSection().sec << ": " << std::move(e);
3217 parseDebugNames(
3218 ctx, inputChunk, chunk, namesExtractor, strExtractor,
3219 [&chunk, namesData = dobj.getNamesSection().Data.data()](
3220 uint32_t numCus, const DWARFDebugNames::Header &hdr,
3221 const DWARFDebugNames::DWARFDebugNamesOffsets &locs) {
3222 // Read CU offsets, which are relocated by .debug_info + X
3223 // relocations. Record the section offset to be relocated by
3224 // `finalizeContents`.
3225 chunk.compUnits.resize_for_overwrite(numCus + hdr.CompUnitCount);
3226 for (auto i : seq(hdr.CompUnitCount))
3227 chunk.compUnits[numCus + i] = locs.CUsBase + i * 4;
3229 // Read entry offsets.
3230 const char *p = namesData + locs.EntryOffsetsBase;
3231 SmallVector<uint32_t, 0> entryOffsets;
3232 entryOffsets.resize_for_overwrite(hdr.NameCount);
3233 for (uint32_t &offset : entryOffsets)
3234 offset = endian::readNext<uint32_t, ELFT::Endianness, unaligned>(p);
3235 return entryOffsets;
3240 template <class ELFT>
3241 template <class RelTy>
3242 void DebugNamesSection<ELFT>::getNameRelocs(
3243 const InputFile &file, DenseMap<uint32_t, uint32_t> &relocs,
3244 Relocs<RelTy> rels) {
3245 for (const RelTy &rel : rels) {
3246 Symbol &sym = file.getRelocTargetSym(rel);
3247 relocs[rel.r_offset] = sym.getVA(ctx, getAddend<ELFT>(rel));
3251 template <class ELFT> void DebugNamesSection<ELFT>::finalizeContents() {
3252 // Get relocations of .debug_names sections.
3253 auto relocs = std::make_unique<DenseMap<uint32_t, uint32_t>[]>(numChunks);
3254 parallelFor(0, numChunks, [&](size_t i) {
3255 InputSection *sec = inputSections[i];
3256 invokeOnRelocs(*sec, getNameRelocs, *sec->file, relocs.get()[i]);
3258 // Relocate CU offsets with .debug_info + X relocations.
3259 OutputChunk &chunk = chunks.get()[i];
3260 for (auto [j, cuOffset] : enumerate(chunk.compUnits))
3261 cuOffset = relocs.get()[i].lookup(cuOffset);
3264 // Relocate string offsets in the name table with .debug_str + X relocations.
3265 parallelForEach(nameVecs, [&](auto &nameVec) {
3266 for (NameEntry &ne : nameVec)
3267 ne.stringOffset = relocs.get()[ne.chunkIdx].lookup(ne.stringOffset);
3271 template <class ELFT> void DebugNamesSection<ELFT>::writeTo(uint8_t *buf) {
3272 [[maybe_unused]] const uint8_t *const beginBuf = buf;
3273 // Write the header.
3274 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.UnitLength);
3275 endian::writeNext<uint16_t, ELFT::Endianness>(buf, hdr.Version);
3276 buf += 2; // padding
3277 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.CompUnitCount);
3278 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.LocalTypeUnitCount);
3279 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.ForeignTypeUnitCount);
3280 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.BucketCount);
3281 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.NameCount);
3282 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.AbbrevTableSize);
3283 endian::writeNext<uint32_t, ELFT::Endianness>(buf,
3284 hdr.AugmentationStringSize);
3285 memcpy(buf, hdr.AugmentationString.c_str(), hdr.AugmentationString.size());
3286 buf += hdr.AugmentationStringSize;
3288 // Write the CU list.
3289 for (auto &chunk : getChunks())
3290 for (uint32_t cuOffset : chunk.compUnits)
3291 endian::writeNext<uint32_t, ELFT::Endianness>(buf, cuOffset);
3293 // TODO: Write the local TU list, then the foreign TU list..
3295 // Write the hash lookup table.
3296 SmallVector<SmallVector<NameEntry *, 0>, 0> buckets(hdr.BucketCount);
3297 // Symbols enter into a bucket whose index is the hash modulo bucket_count.
3298 for (auto &nameVec : nameVecs)
3299 for (NameEntry &ne : nameVec)
3300 buckets[ne.hashValue % hdr.BucketCount].push_back(&ne);
3302 // Write buckets (accumulated bucket counts).
3303 uint32_t bucketIdx = 1;
3304 for (const SmallVector<NameEntry *, 0> &bucket : buckets) {
3305 if (!bucket.empty())
3306 endian::write32<ELFT::Endianness>(buf, bucketIdx);
3307 buf += 4;
3308 bucketIdx += bucket.size();
3310 // Write the hashes.
3311 for (const SmallVector<NameEntry *, 0> &bucket : buckets)
3312 for (const NameEntry *e : bucket)
3313 endian::writeNext<uint32_t, ELFT::Endianness>(buf, e->hashValue);
3315 // Write the name table. The name entries are ordered by bucket_idx and
3316 // correspond one-to-one with the hash lookup table.
3318 // First, write the relocated string offsets.
3319 for (const SmallVector<NameEntry *, 0> &bucket : buckets)
3320 for (const NameEntry *ne : bucket)
3321 endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->stringOffset);
3323 // Then write the entry offsets.
3324 for (const SmallVector<NameEntry *, 0> &bucket : buckets)
3325 for (const NameEntry *ne : bucket)
3326 endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->entryOffset);
3328 // Write the abbrev table.
3329 buf = llvm::copy(abbrevTableBuf, buf);
3331 // Write the entry pool. Unlike the name table, the name entries follow the
3332 // nameVecs order computed by `computeEntryPool`.
3333 for (auto &nameVec : nameVecs) {
3334 for (NameEntry &ne : nameVec) {
3335 // Write all the entries for the string.
3336 for (const IndexEntry &ie : ne.entries()) {
3337 buf += encodeULEB128(ie.abbrevCode, buf);
3338 for (AttrValue value : ie.attrValues) {
3339 switch (value.attrSize) {
3340 case 1:
3341 *buf++ = value.attrValue;
3342 break;
3343 case 2:
3344 endian::writeNext<uint16_t, ELFT::Endianness>(buf, value.attrValue);
3345 break;
3346 case 4:
3347 endian::writeNext<uint32_t, ELFT::Endianness>(buf, value.attrValue);
3348 break;
3349 default:
3350 llvm_unreachable("invalid attrSize");
3354 ++buf; // index entry sentinel
3357 assert(uint64_t(buf - beginBuf) == size);
3360 GdbIndexSection::GdbIndexSection(Ctx &ctx)
3361 : SyntheticSection(ctx, 0, SHT_PROGBITS, 1, ".gdb_index") {}
3363 // Returns the desired size of an on-disk hash table for a .gdb_index section.
3364 // There's a tradeoff between size and collision rate. We aim 75% utilization.
3365 size_t GdbIndexSection::computeSymtabSize() const {
3366 return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
3369 static SmallVector<GdbIndexSection::CuEntry, 0>
3370 readCuList(DWARFContext &dwarf) {
3371 SmallVector<GdbIndexSection::CuEntry, 0> ret;
3372 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
3373 ret.push_back({cu->getOffset(), cu->getLength() + 4});
3374 return ret;
3377 static SmallVector<GdbIndexSection::AddressEntry, 0>
3378 readAddressAreas(Ctx &ctx, DWARFContext &dwarf, InputSection *sec) {
3379 SmallVector<GdbIndexSection::AddressEntry, 0> ret;
3381 uint32_t cuIdx = 0;
3382 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
3383 if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
3384 Warn(ctx) << sec << ": " << std::move(e);
3385 return {};
3387 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
3388 if (!ranges) {
3389 Warn(ctx) << sec << ": " << ranges.takeError();
3390 return {};
3393 ArrayRef<InputSectionBase *> sections = sec->file->getSections();
3394 for (DWARFAddressRange &r : *ranges) {
3395 if (r.SectionIndex == -1ULL)
3396 continue;
3397 // Range list with zero size has no effect.
3398 InputSectionBase *s = sections[r.SectionIndex];
3399 if (s && s != &InputSection::discarded && s->isLive())
3400 if (r.LowPC != r.HighPC)
3401 ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
3403 ++cuIdx;
3406 return ret;
3409 template <class ELFT>
3410 static SmallVector<GdbIndexSection::NameAttrEntry, 0>
3411 readPubNamesAndTypes(Ctx &ctx, const LLDDwarfObj<ELFT> &obj,
3412 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) {
3413 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
3414 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
3416 SmallVector<GdbIndexSection::NameAttrEntry, 0> ret;
3417 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
3418 DWARFDataExtractor data(obj, *pub, ELFT::Endianness == endianness::little,
3419 ELFT::Is64Bits ? 8 : 4);
3420 DWARFDebugPubTable table;
3421 table.extract(data, /*GnuStyle=*/true, [&](Error e) {
3422 Warn(ctx) << pub->sec << ": " << std::move(e);
3424 for (const DWARFDebugPubTable::Set &set : table.getData()) {
3425 // The value written into the constant pool is kind << 24 | cuIndex. As we
3426 // don't know how many compilation units precede this object to compute
3427 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
3428 // the number of preceding compilation units later.
3429 uint32_t i = llvm::partition_point(cus,
3430 [&](GdbIndexSection::CuEntry cu) {
3431 return cu.cuOffset < set.Offset;
3432 }) -
3433 cus.begin();
3434 for (const DWARFDebugPubTable::Entry &ent : set.Entries)
3435 ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
3436 (ent.Descriptor.toBits() << 24) | i});
3439 return ret;
3442 // Create a list of symbols from a given list of symbol names and types
3443 // by uniquifying them by name.
3444 static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t>
3445 createSymbols(
3446 Ctx &ctx,
3447 ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs,
3448 const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) {
3449 using GdbSymbol = GdbIndexSection::GdbSymbol;
3450 using NameAttrEntry = GdbIndexSection::NameAttrEntry;
3452 // For each chunk, compute the number of compilation units preceding it.
3453 uint32_t cuIdx = 0;
3454 std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]);
3455 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
3456 cuIdxs[i] = cuIdx;
3457 cuIdx += chunks[i].compilationUnits.size();
3460 // Collect the compilation unitss for each unique name. Speed it up using
3461 // multi-threading as the number of symbols can be in the order of millions.
3462 // Shard GdbSymbols by hash's high bits.
3463 constexpr size_t numShards = 32;
3464 const size_t concurrency =
3465 llvm::bit_floor(std::min<size_t>(ctx.arg.threadCount, numShards));
3466 const size_t shift = 32 - llvm::countr_zero(numShards);
3467 auto map =
3468 std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards);
3469 auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards);
3470 parallelFor(0, concurrency, [&](size_t threadId) {
3471 uint32_t i = 0;
3472 for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
3473 for (const NameAttrEntry &ent : entries) {
3474 size_t shardId = ent.name.hash() >> shift;
3475 if ((shardId & (concurrency - 1)) != threadId)
3476 continue;
3478 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
3479 auto [it, inserted] =
3480 map[shardId].try_emplace(ent.name, symbols[shardId].size());
3481 if (inserted)
3482 symbols[shardId].push_back({ent.name, {v}, 0, 0});
3483 else
3484 symbols[shardId][it->second].cuVector.push_back(v);
3486 ++i;
3490 size_t numSymbols = 0;
3491 for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards))
3492 numSymbols += v.size();
3494 // The return type is a flattened vector, so we'll copy each vector
3495 // contents to Ret.
3496 SmallVector<GdbSymbol, 0> ret;
3497 ret.reserve(numSymbols);
3498 for (SmallVector<GdbSymbol, 0> &vec :
3499 MutableArrayRef(symbols.get(), numShards))
3500 for (GdbSymbol &sym : vec)
3501 ret.push_back(std::move(sym));
3503 // CU vectors and symbol names are adjacent in the output file.
3504 // We can compute their offsets in the output file now.
3505 size_t off = 0;
3506 for (GdbSymbol &sym : ret) {
3507 sym.cuVectorOff = off;
3508 off += (sym.cuVector.size() + 1) * 4;
3510 for (GdbSymbol &sym : ret) {
3511 sym.nameOff = off;
3512 off += sym.name.size() + 1;
3514 // If off overflows, the last symbol's nameOff likely overflows.
3515 if (!isUInt<32>(off))
3516 Err(ctx) << "--gdb-index: constant pool size (" << off
3517 << ") exceeds UINT32_MAX";
3519 return {ret, off};
3522 // Returns a newly-created .gdb_index section.
3523 template <class ELFT>
3524 std::unique_ptr<GdbIndexSection> GdbIndexSection::create(Ctx &ctx) {
3525 llvm::TimeTraceScope timeScope("Create gdb index");
3527 // Collect InputFiles with .debug_info. See the comment in
3528 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
3529 // note that isec->data() may uncompress the full content, which should be
3530 // parallelized.
3531 SetVector<InputFile *> files;
3532 for (InputSectionBase *s : ctx.inputSections) {
3533 InputSection *isec = dyn_cast<InputSection>(s);
3534 if (!isec)
3535 continue;
3536 // .debug_gnu_pub{names,types} are useless in executables.
3537 // They are present in input object files solely for creating
3538 // a .gdb_index. So we can remove them from the output.
3539 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
3540 s->markDead();
3541 else if (isec->name == ".debug_info")
3542 files.insert(isec->file);
3544 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs.
3545 llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
3546 if (auto *isec = dyn_cast<InputSection>(s))
3547 if (InputSectionBase *rel = isec->getRelocatedSection())
3548 return !rel->isLive();
3549 return !s->isLive();
3552 SmallVector<GdbChunk, 0> chunks(files.size());
3553 SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size());
3555 parallelFor(0, files.size(), [&](size_t i) {
3556 // To keep memory usage low, we don't want to keep cached DWARFContext, so
3557 // avoid getDwarf() here.
3558 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
3559 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
3560 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
3562 // If the are multiple compile units .debug_info (very rare ld -r --unique),
3563 // this only picks the last one. Other address ranges are lost.
3564 chunks[i].sec = dobj.getInfoSection();
3565 chunks[i].compilationUnits = readCuList(dwarf);
3566 chunks[i].addressAreas = readAddressAreas(ctx, dwarf, chunks[i].sec);
3567 nameAttrs[i] =
3568 readPubNamesAndTypes<ELFT>(ctx, dobj, chunks[i].compilationUnits);
3571 auto ret = std::make_unique<GdbIndexSection>(ctx);
3572 ret->chunks = std::move(chunks);
3573 std::tie(ret->symbols, ret->size) =
3574 createSymbols(ctx, nameAttrs, ret->chunks);
3576 // Count the areas other than the constant pool.
3577 ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8;
3578 for (GdbChunk &chunk : ret->chunks)
3579 ret->size +=
3580 chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
3582 return ret;
3585 void GdbIndexSection::writeTo(uint8_t *buf) {
3586 // Write the header.
3587 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
3588 uint8_t *start = buf;
3589 hdr->version = 7;
3590 buf += sizeof(*hdr);
3592 // Write the CU list.
3593 hdr->cuListOff = buf - start;
3594 for (GdbChunk &chunk : chunks) {
3595 for (CuEntry &cu : chunk.compilationUnits) {
3596 write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
3597 write64le(buf + 8, cu.cuLength);
3598 buf += 16;
3602 // Write the address area.
3603 hdr->cuTypesOff = buf - start;
3604 hdr->addressAreaOff = buf - start;
3605 uint32_t cuOff = 0;
3606 for (GdbChunk &chunk : chunks) {
3607 for (AddressEntry &e : chunk.addressAreas) {
3608 // In the case of ICF there may be duplicate address range entries.
3609 const uint64_t baseAddr = e.section->repl->getVA(0);
3610 write64le(buf, baseAddr + e.lowAddress);
3611 write64le(buf + 8, baseAddr + e.highAddress);
3612 write32le(buf + 16, e.cuIndex + cuOff);
3613 buf += 20;
3615 cuOff += chunk.compilationUnits.size();
3618 // Write the on-disk open-addressing hash table containing symbols.
3619 hdr->symtabOff = buf - start;
3620 size_t symtabSize = computeSymtabSize();
3621 uint32_t mask = symtabSize - 1;
3623 for (GdbSymbol &sym : symbols) {
3624 uint32_t h = sym.name.hash();
3625 uint32_t i = h & mask;
3626 uint32_t step = ((h * 17) & mask) | 1;
3628 while (read32le(buf + i * 8))
3629 i = (i + step) & mask;
3631 write32le(buf + i * 8, sym.nameOff);
3632 write32le(buf + i * 8 + 4, sym.cuVectorOff);
3635 buf += symtabSize * 8;
3637 // Write the string pool.
3638 hdr->constantPoolOff = buf - start;
3639 parallelForEach(symbols, [&](GdbSymbol &sym) {
3640 memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
3643 // Write the CU vectors.
3644 for (GdbSymbol &sym : symbols) {
3645 write32le(buf, sym.cuVector.size());
3646 buf += 4;
3647 for (uint32_t val : sym.cuVector) {
3648 write32le(buf, val);
3649 buf += 4;
3654 bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
3656 EhFrameHeader::EhFrameHeader(Ctx &ctx)
3657 : SyntheticSection(ctx, SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
3659 void EhFrameHeader::writeTo(uint8_t *buf) {
3660 // Unlike most sections, the EhFrameHeader section is written while writing
3661 // another section, namely EhFrameSection, which calls the write() function
3662 // below from its writeTo() function. This is necessary because the contents
3663 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
3664 // don't know which order the sections will be written in.
3667 // .eh_frame_hdr contains a binary search table of pointers to FDEs.
3668 // Each entry of the search table consists of two values,
3669 // the starting PC from where FDEs covers, and the FDE's address.
3670 // It is sorted by PC.
3671 void EhFrameHeader::write() {
3672 uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff;
3673 using FdeData = EhFrameSection::FdeData;
3674 SmallVector<FdeData, 0> fdes = getPartition(ctx).ehFrame->getFdeData();
3676 buf[0] = 1;
3677 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
3678 buf[2] = DW_EH_PE_udata4;
3679 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
3680 write32(ctx, buf + 4,
3681 getPartition(ctx).ehFrame->getParent()->addr - this->getVA() - 4);
3682 write32(ctx, buf + 8, fdes.size());
3683 buf += 12;
3685 for (FdeData &fde : fdes) {
3686 write32(ctx, buf, fde.pcRel);
3687 write32(ctx, buf + 4, fde.fdeVARel);
3688 buf += 8;
3692 size_t EhFrameHeader::getSize() const {
3693 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
3694 return 12 + getPartition(ctx).ehFrame->numFdes * 8;
3697 bool EhFrameHeader::isNeeded() const {
3698 return isLive() && getPartition(ctx).ehFrame->isNeeded();
3701 VersionDefinitionSection::VersionDefinitionSection(Ctx &ctx)
3702 : SyntheticSection(ctx, SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
3703 ".gnu.version_d") {}
3705 StringRef VersionDefinitionSection::getFileDefName() {
3706 if (!getPartition(ctx).name.empty())
3707 return getPartition(ctx).name;
3708 if (!ctx.arg.soName.empty())
3709 return ctx.arg.soName;
3710 return ctx.arg.outputFile;
3713 void VersionDefinitionSection::finalizeContents() {
3714 fileDefNameOff = getPartition(ctx).dynStrTab->addString(getFileDefName());
3715 for (const VersionDefinition &v : namedVersionDefs(ctx))
3716 verDefNameOffs.push_back(getPartition(ctx).dynStrTab->addString(v.name));
3718 if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent())
3719 getParent()->link = sec->sectionIndex;
3721 // sh_info should be set to the number of definitions. This fact is missed in
3722 // documentation, but confirmed by binutils community:
3723 // https://sourceware.org/ml/binutils/2014-11/msg00355.html
3724 getParent()->info = getVerDefNum(ctx);
3727 void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
3728 StringRef name, size_t nameOff) {
3729 uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
3731 // Write a verdef.
3732 write16(ctx, buf, 1); // vd_version
3733 write16(ctx, buf + 2, flags); // vd_flags
3734 write16(ctx, buf + 4, index); // vd_ndx
3735 write16(ctx, buf + 6, 1); // vd_cnt
3736 write32(ctx, buf + 8, hashSysV(name)); // vd_hash
3737 write32(ctx, buf + 12, 20); // vd_aux
3738 write32(ctx, buf + 16, 28); // vd_next
3740 // Write a veraux.
3741 write32(ctx, buf + 20, nameOff); // vda_name
3742 write32(ctx, buf + 24, 0); // vda_next
3745 void VersionDefinitionSection::writeTo(uint8_t *buf) {
3746 writeOne(buf, 1, getFileDefName(), fileDefNameOff);
3748 auto nameOffIt = verDefNameOffs.begin();
3749 for (const VersionDefinition &v : namedVersionDefs(ctx)) {
3750 buf += EntrySize;
3751 writeOne(buf, v.id, v.name, *nameOffIt++);
3754 // Need to terminate the last version definition.
3755 write32(ctx, buf + 16, 0); // vd_next
3758 size_t VersionDefinitionSection::getSize() const {
3759 return EntrySize * getVerDefNum(ctx);
3762 // .gnu.version is a table where each entry is 2 byte long.
3763 VersionTableSection::VersionTableSection(Ctx &ctx)
3764 : SyntheticSection(ctx, SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
3765 ".gnu.version") {
3766 this->entsize = 2;
3769 void VersionTableSection::finalizeContents() {
3770 // At the moment of june 2016 GNU docs does not mention that sh_link field
3771 // should be set, but Sun docs do. Also readelf relies on this field.
3772 getParent()->link = getPartition(ctx).dynSymTab->getParent()->sectionIndex;
3775 size_t VersionTableSection::getSize() const {
3776 return (getPartition(ctx).dynSymTab->getSymbols().size() + 1) * 2;
3779 void VersionTableSection::writeTo(uint8_t *buf) {
3780 buf += 2;
3781 for (const SymbolTableEntry &s : getPartition(ctx).dynSymTab->getSymbols()) {
3782 // For an unextracted lazy symbol (undefined weak), it must have been
3783 // converted to Undefined and have VER_NDX_GLOBAL version here.
3784 assert(!s.sym->isLazy());
3785 write16(ctx, buf, s.sym->versionId);
3786 buf += 2;
3790 bool VersionTableSection::isNeeded() const {
3791 return isLive() &&
3792 (getPartition(ctx).verDef || getPartition(ctx).verNeed->isNeeded());
3795 void elf::addVerneed(Ctx &ctx, Symbol &ss) {
3796 auto &file = cast<SharedFile>(*ss.file);
3797 if (ss.versionId == VER_NDX_GLOBAL)
3798 return;
3800 if (file.vernauxs.empty())
3801 file.vernauxs.resize(file.verdefs.size());
3803 // Select a version identifier for the vernaux data structure, if we haven't
3804 // already allocated one. The verdef identifiers cover the range
3805 // [1..getVerDefNum(ctx)]; this causes the vernaux identifiers to start from
3806 // getVerDefNum(ctx)+1.
3807 if (file.vernauxs[ss.versionId] == 0)
3808 file.vernauxs[ss.versionId] = ++ctx.vernauxNum + getVerDefNum(ctx);
3810 ss.versionId = file.vernauxs[ss.versionId];
3813 template <class ELFT>
3814 VersionNeedSection<ELFT>::VersionNeedSection(Ctx &ctx)
3815 : SyntheticSection(ctx, SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
3816 ".gnu.version_r") {}
3818 template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3819 for (SharedFile *f : ctx.sharedFiles) {
3820 if (f->vernauxs.empty())
3821 continue;
3822 verneeds.emplace_back();
3823 Verneed &vn = verneeds.back();
3824 vn.nameStrTab = getPartition(ctx).dynStrTab->addString(f->soName);
3825 bool isLibc = ctx.arg.relrGlibc && f->soName.starts_with("libc.so.");
3826 bool isGlibc2 = false;
3827 for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3828 if (f->vernauxs[i] == 0)
3829 continue;
3830 auto *verdef =
3831 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3832 StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name);
3833 if (isLibc && ver.starts_with("GLIBC_2."))
3834 isGlibc2 = true;
3835 vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i],
3836 getPartition(ctx).dynStrTab->addString(ver)});
3838 if (isGlibc2) {
3839 const char *ver = "GLIBC_ABI_DT_RELR";
3840 vn.vernauxs.push_back({hashSysV(ver),
3841 ++ctx.vernauxNum + getVerDefNum(ctx),
3842 getPartition(ctx).dynStrTab->addString(ver)});
3846 if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent())
3847 getParent()->link = sec->sectionIndex;
3848 getParent()->info = verneeds.size();
3851 template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3852 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3853 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3854 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3856 for (auto &vn : verneeds) {
3857 // Create an Elf_Verneed for this DSO.
3858 verneed->vn_version = 1;
3859 verneed->vn_cnt = vn.vernauxs.size();
3860 verneed->vn_file = vn.nameStrTab;
3861 verneed->vn_aux =
3862 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3863 verneed->vn_next = sizeof(Elf_Verneed);
3864 ++verneed;
3866 // Create the Elf_Vernauxs for this Elf_Verneed.
3867 for (auto &vna : vn.vernauxs) {
3868 vernaux->vna_hash = vna.hash;
3869 vernaux->vna_flags = 0;
3870 vernaux->vna_other = vna.verneedIndex;
3871 vernaux->vna_name = vna.nameStrTab;
3872 vernaux->vna_next = sizeof(Elf_Vernaux);
3873 ++vernaux;
3876 vernaux[-1].vna_next = 0;
3878 verneed[-1].vn_next = 0;
3881 template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3882 return verneeds.size() * sizeof(Elf_Verneed) +
3883 ctx.vernauxNum * sizeof(Elf_Vernaux);
3886 template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3887 return isLive() && ctx.vernauxNum != 0;
3890 void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3891 ms->parent = this;
3892 sections.push_back(ms);
3893 assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS));
3894 addralign = std::max(addralign, ms->addralign);
3897 MergeTailSection::MergeTailSection(Ctx &ctx, StringRef name, uint32_t type,
3898 uint64_t flags, uint32_t alignment)
3899 : MergeSyntheticSection(ctx, name, type, flags, alignment),
3900 builder(StringTableBuilder::RAW, llvm::Align(alignment)) {}
3902 size_t MergeTailSection::getSize() const { return builder.getSize(); }
3904 void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
3906 void MergeTailSection::finalizeContents() {
3907 // Add all string pieces to the string table builder to create section
3908 // contents.
3909 for (MergeInputSection *sec : sections)
3910 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3911 if (sec->pieces[i].live)
3912 builder.add(sec->getData(i));
3914 // Fix the string table content. After this, the contents will never change.
3915 builder.finalize();
3917 // finalize() fixed tail-optimized strings, so we can now get
3918 // offsets of strings. Get an offset for each string and save it
3919 // to a corresponding SectionPiece for easy access.
3920 for (MergeInputSection *sec : sections)
3921 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3922 if (sec->pieces[i].live)
3923 sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
3926 void MergeNoTailSection::writeTo(uint8_t *buf) {
3927 parallelFor(0, numShards,
3928 [&](size_t i) { shards[i].write(buf + shardOffsets[i]); });
3931 // This function is very hot (i.e. it can take several seconds to finish)
3932 // because sometimes the number of inputs is in an order of magnitude of
3933 // millions. So, we use multi-threading.
3935 // For any strings S and T, we know S is not mergeable with T if S's hash
3936 // value is different from T's. If that's the case, we can safely put S and
3937 // T into different string builders without worrying about merge misses.
3938 // We do it in parallel.
3939 void MergeNoTailSection::finalizeContents() {
3940 // Initializes string table builders.
3941 for (size_t i = 0; i < numShards; ++i)
3942 shards.emplace_back(StringTableBuilder::RAW, llvm::Align(addralign));
3944 // Concurrency level. Must be a power of 2 to avoid expensive modulo
3945 // operations in the following tight loop.
3946 const size_t concurrency =
3947 llvm::bit_floor(std::min<size_t>(ctx.arg.threadCount, numShards));
3949 // Add section pieces to the builders.
3950 parallelFor(0, concurrency, [&](size_t threadId) {
3951 for (MergeInputSection *sec : sections) {
3952 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
3953 if (!sec->pieces[i].live)
3954 continue;
3955 size_t shardId = getShardId(sec->pieces[i].hash);
3956 if ((shardId & (concurrency - 1)) == threadId)
3957 sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
3962 // Compute an in-section offset for each shard.
3963 size_t off = 0;
3964 for (size_t i = 0; i < numShards; ++i) {
3965 shards[i].finalizeInOrder();
3966 if (shards[i].getSize() > 0)
3967 off = alignToPowerOf2(off, addralign);
3968 shardOffsets[i] = off;
3969 off += shards[i].getSize();
3971 size = off;
3973 // So far, section pieces have offsets from beginning of shards, but
3974 // we want offsets from beginning of the whole section. Fix them.
3975 parallelForEach(sections, [&](MergeInputSection *sec) {
3976 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3977 if (sec->pieces[i].live)
3978 sec->pieces[i].outputOff +=
3979 shardOffsets[getShardId(sec->pieces[i].hash)];
3983 template <class ELFT> void elf::splitSections(Ctx &ctx) {
3984 llvm::TimeTraceScope timeScope("Split sections");
3985 // splitIntoPieces needs to be called on each MergeInputSection
3986 // before calling finalizeContents().
3987 parallelForEach(ctx.objectFiles, [](ELFFileBase *file) {
3988 for (InputSectionBase *sec : file->getSections()) {
3989 if (!sec)
3990 continue;
3991 if (auto *s = dyn_cast<MergeInputSection>(sec))
3992 s->splitIntoPieces();
3993 else if (auto *eh = dyn_cast<EhInputSection>(sec))
3994 eh->split<ELFT>();
3999 void elf::combineEhSections(Ctx &ctx) {
4000 llvm::TimeTraceScope timeScope("Combine EH sections");
4001 for (EhInputSection *sec : ctx.ehInputSections) {
4002 EhFrameSection &eh = *sec->getPartition(ctx).ehFrame;
4003 sec->parent = &eh;
4004 eh.addralign = std::max(eh.addralign, sec->addralign);
4005 eh.sections.push_back(sec);
4006 llvm::append_range(eh.dependentSections, sec->dependentSections);
4009 if (!ctx.mainPart->armExidx)
4010 return;
4011 llvm::erase_if(ctx.inputSections, [&](InputSectionBase *s) {
4012 // Ignore dead sections and the partition end marker (.part.end),
4013 // whose partition number is out of bounds.
4014 if (!s->isLive() || s->partition == 255)
4015 return false;
4016 Partition &part = s->getPartition(ctx);
4017 return s->kind() == SectionBase::Regular && part.armExidx &&
4018 part.armExidx->addSection(cast<InputSection>(s));
4022 MipsRldMapSection::MipsRldMapSection(Ctx &ctx)
4023 : SyntheticSection(ctx, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
4024 ctx.arg.wordsize, ".rld_map") {}
4026 ARMExidxSyntheticSection::ARMExidxSyntheticSection(Ctx &ctx)
4027 : SyntheticSection(ctx, SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
4028 ctx.arg.wordsize, ".ARM.exidx") {}
4030 static InputSection *findExidxSection(InputSection *isec) {
4031 for (InputSection *d : isec->dependentSections)
4032 if (d->type == SHT_ARM_EXIDX && d->isLive())
4033 return d;
4034 return nullptr;
4037 static bool isValidExidxSectionDep(InputSection *isec) {
4038 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
4039 isec->getSize() > 0;
4042 bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
4043 if (isec->type == SHT_ARM_EXIDX) {
4044 if (InputSection *dep = isec->getLinkOrderDep())
4045 if (isValidExidxSectionDep(dep)) {
4046 exidxSections.push_back(isec);
4047 // Every exidxSection is 8 bytes, we need an estimate of
4048 // size before assignAddresses can be called. Final size
4049 // will only be known after finalize is called.
4050 size += 8;
4052 return true;
4055 if (isValidExidxSectionDep(isec)) {
4056 executableSections.push_back(isec);
4057 return false;
4060 // FIXME: we do not output a relocation section when --emit-relocs is used
4061 // as we do not have relocation sections for linker generated table entries
4062 // and we would have to erase at a late stage relocations from merged entries.
4063 // Given that exception tables are already position independent and a binary
4064 // analyzer could derive the relocations we choose to erase the relocations.
4065 if (ctx.arg.emitRelocs && isec->type == SHT_REL)
4066 if (InputSectionBase *ex = isec->getRelocatedSection())
4067 if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
4068 return true;
4070 return false;
4073 // References to .ARM.Extab Sections have bit 31 clear and are not the
4074 // special EXIDX_CANTUNWIND bit-pattern.
4075 static bool isExtabRef(uint32_t unwind) {
4076 return (unwind & 0x80000000) == 0 && unwind != 0x1;
4079 // Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
4080 // section Prev, where Cur follows Prev in the table. This can be done if the
4081 // unwinding instructions in Cur are identical to Prev. Linker generated
4082 // EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
4083 // InputSection.
4084 static bool isDuplicateArmExidxSec(Ctx &ctx, InputSection *prev,
4085 InputSection *cur) {
4086 // Get the last table Entry from the previous .ARM.exidx section. If Prev is
4087 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
4088 uint32_t prevUnwind = 1;
4089 if (prev)
4090 prevUnwind =
4091 read32(ctx, prev->content().data() + prev->content().size() - 4);
4092 if (isExtabRef(prevUnwind))
4093 return false;
4095 // We consider the unwind instructions of an .ARM.exidx table entry
4096 // a duplicate if the previous unwind instructions if:
4097 // - Both are the special EXIDX_CANTUNWIND.
4098 // - Both are the same inline unwind instructions.
4099 // We do not attempt to follow and check links into .ARM.extab tables as
4100 // consecutive identical entries are rare and the effort to check that they
4101 // are identical is high.
4103 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
4104 if (cur == nullptr)
4105 return prevUnwind == 1;
4107 for (uint32_t offset = 4; offset < (uint32_t)cur->content().size(); offset +=8) {
4108 uint32_t curUnwind = read32(ctx, cur->content().data() + offset);
4109 if (isExtabRef(curUnwind) || curUnwind != prevUnwind)
4110 return false;
4112 // All table entries in this .ARM.exidx Section can be merged into the
4113 // previous Section.
4114 return true;
4117 // The .ARM.exidx table must be sorted in ascending order of the address of the
4118 // functions the table describes. std::optionally duplicate adjacent table
4119 // entries can be removed. At the end of the function the executableSections
4120 // must be sorted in ascending order of address, Sentinel is set to the
4121 // InputSection with the highest address and any InputSections that have
4122 // mergeable .ARM.exidx table entries are removed from it.
4123 void ARMExidxSyntheticSection::finalizeContents() {
4124 // Ensure that any fixed-point iterations after the first see the original set
4125 // of sections.
4126 if (!originalExecutableSections.empty())
4127 executableSections = originalExecutableSections;
4128 else if (ctx.arg.enableNonContiguousRegions)
4129 originalExecutableSections = executableSections;
4131 // The executableSections and exidxSections that we use to derive the final
4132 // contents of this SyntheticSection are populated before
4133 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
4134 // ICF may remove executable InputSections and their dependent .ARM.exidx
4135 // section that we recorded earlier.
4136 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
4137 llvm::erase_if(exidxSections, isDiscarded);
4138 // We need to remove discarded InputSections and InputSections without
4139 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
4140 // of range.
4141 auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
4142 if (!isec->isLive())
4143 return true;
4144 if (findExidxSection(isec))
4145 return false;
4146 int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
4147 return off != llvm::SignExtend64(off, 31);
4149 llvm::erase_if(executableSections, isDiscardedOrOutOfRange);
4151 // Sort the executable sections that may or may not have associated
4152 // .ARM.exidx sections by order of ascending address. This requires the
4153 // relative positions of InputSections and OutputSections to be known.
4154 auto compareByFilePosition = [](const InputSection *a,
4155 const InputSection *b) {
4156 OutputSection *aOut = a->getParent();
4157 OutputSection *bOut = b->getParent();
4159 if (aOut != bOut)
4160 return aOut->addr < bOut->addr;
4161 return a->outSecOff < b->outSecOff;
4163 llvm::stable_sort(executableSections, compareByFilePosition);
4164 sentinel = executableSections.back();
4165 // std::optionally merge adjacent duplicate entries.
4166 if (ctx.arg.mergeArmExidx) {
4167 SmallVector<InputSection *, 0> selectedSections;
4168 selectedSections.reserve(executableSections.size());
4169 selectedSections.push_back(executableSections[0]);
4170 size_t prev = 0;
4171 for (size_t i = 1; i < executableSections.size(); ++i) {
4172 InputSection *ex1 = findExidxSection(executableSections[prev]);
4173 InputSection *ex2 = findExidxSection(executableSections[i]);
4174 if (!isDuplicateArmExidxSec(ctx, ex1, ex2)) {
4175 selectedSections.push_back(executableSections[i]);
4176 prev = i;
4179 executableSections = std::move(selectedSections);
4181 // offset is within the SyntheticSection.
4182 size_t offset = 0;
4183 size = 0;
4184 for (InputSection *isec : executableSections) {
4185 if (InputSection *d = findExidxSection(isec)) {
4186 d->outSecOff = offset;
4187 d->parent = getParent();
4188 offset += d->getSize();
4189 } else {
4190 offset += 8;
4193 // Size includes Sentinel.
4194 size = offset + 8;
4197 InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
4198 return executableSections.front();
4201 // To write the .ARM.exidx table from the ExecutableSections we have three cases
4202 // 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
4203 // We write the .ARM.exidx section contents and apply its relocations.
4204 // 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
4205 // must write the contents of an EXIDX_CANTUNWIND directly. We use the
4206 // start of the InputSection as the purpose of the linker generated
4207 // section is to terminate the address range of the previous entry.
4208 // 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
4209 // the table to terminate the address range of the final entry.
4210 void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
4212 // A linker generated CANTUNWIND entry is made up of two words:
4213 // 0x0 with R_ARM_PREL31 relocation to target.
4214 // 0x1 with EXIDX_CANTUNWIND.
4215 uint64_t offset = 0;
4216 for (InputSection *isec : executableSections) {
4217 assert(isec->getParent() != nullptr);
4218 if (InputSection *d = findExidxSection(isec)) {
4219 for (int dataOffset = 0; dataOffset != (int)d->content().size();
4220 dataOffset += 4)
4221 write32(ctx, buf + offset + dataOffset,
4222 read32(ctx, d->content().data() + dataOffset));
4223 // Recalculate outSecOff as finalizeAddressDependentContent()
4224 // may have altered syntheticSection outSecOff.
4225 d->outSecOff = offset + outSecOff;
4226 ctx.target->relocateAlloc(*d, buf + offset);
4227 offset += d->getSize();
4228 } else {
4229 // A Linker generated CANTUNWIND section.
4230 write32(ctx, buf + offset + 0, 0x0);
4231 write32(ctx, buf + offset + 4, 0x1);
4232 uint64_t s = isec->getVA();
4233 uint64_t p = getVA() + offset;
4234 ctx.target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
4235 offset += 8;
4238 // Write Sentinel CANTUNWIND entry.
4239 write32(ctx, buf + offset + 0, 0x0);
4240 write32(ctx, buf + offset + 4, 0x1);
4241 uint64_t s = sentinel->getVA(sentinel->getSize());
4242 uint64_t p = getVA() + offset;
4243 ctx.target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
4244 assert(size == offset + 8);
4247 bool ARMExidxSyntheticSection::isNeeded() const {
4248 return llvm::any_of(exidxSections,
4249 [](InputSection *isec) { return isec->isLive(); });
4252 ThunkSection::ThunkSection(Ctx &ctx, OutputSection *os, uint64_t off)
4253 : SyntheticSection(ctx, SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS,
4254 ctx.arg.emachine == EM_PPC64 ? 16 : 4, ".text.thunk") {
4255 this->parent = os;
4256 this->outSecOff = off;
4259 size_t ThunkSection::getSize() const {
4260 if (roundUpSizeForErrata)
4261 return alignTo(size, 4096);
4262 return size;
4265 void ThunkSection::addThunk(Thunk *t) {
4266 thunks.push_back(t);
4267 t->addSymbols(*this);
4270 void ThunkSection::writeTo(uint8_t *buf) {
4271 for (Thunk *t : thunks)
4272 t->writeTo(buf + t->offset);
4275 InputSection *ThunkSection::getTargetInputSection() const {
4276 if (thunks.empty())
4277 return nullptr;
4278 const Thunk *t = thunks.front();
4279 return t->getTargetInputSection();
4282 bool ThunkSection::assignOffsets() {
4283 uint64_t off = 0;
4284 for (Thunk *t : thunks) {
4285 off = alignToPowerOf2(off, t->alignment);
4286 t->setOffset(off);
4287 uint32_t size = t->size();
4288 t->getThunkTargetSym()->size = size;
4289 off += size;
4291 bool changed = off != size;
4292 size = off;
4293 return changed;
4296 PPC32Got2Section::PPC32Got2Section(Ctx &ctx)
4297 : SyntheticSection(ctx, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
4299 bool PPC32Got2Section::isNeeded() const {
4300 // See the comment below. This is not needed if there is no other
4301 // InputSection.
4302 for (SectionCommand *cmd : getParent()->commands)
4303 if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
4304 for (InputSection *isec : isd->sections)
4305 if (isec != this)
4306 return true;
4307 return false;
4310 void PPC32Got2Section::finalizeContents() {
4311 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
4312 // .got2 . This function computes outSecOff of each .got2 to be used in
4313 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
4314 // to collect input sections named ".got2".
4315 for (SectionCommand *cmd : getParent()->commands)
4316 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
4317 for (InputSection *isec : isd->sections) {
4318 // isec->file may be nullptr for MergeSyntheticSection.
4319 if (isec != this && isec->file)
4320 isec->file->ppc32Got2 = isec;
4325 // If linking position-dependent code then the table will store the addresses
4326 // directly in the binary so the section has type SHT_PROGBITS. If linking
4327 // position-independent code the section has type SHT_NOBITS since it will be
4328 // allocated and filled in by the dynamic linker.
4329 PPC64LongBranchTargetSection::PPC64LongBranchTargetSection(Ctx &ctx)
4330 : SyntheticSection(ctx, SHF_ALLOC | SHF_WRITE,
4331 ctx.arg.isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
4332 ".branch_lt") {}
4334 uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
4335 int64_t addend) {
4336 return getVA() + entry_index.find({sym, addend})->second * 8;
4339 std::optional<uint32_t>
4340 PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) {
4341 auto res =
4342 entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
4343 if (!res.second)
4344 return std::nullopt;
4345 entries.emplace_back(sym, addend);
4346 return res.first->second;
4349 size_t PPC64LongBranchTargetSection::getSize() const {
4350 return entries.size() * 8;
4353 void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
4354 // If linking non-pic we have the final addresses of the targets and they get
4355 // written to the table directly. For pic the dynamic linker will allocate
4356 // the section and fill it.
4357 if (ctx.arg.isPic)
4358 return;
4360 for (auto entry : entries) {
4361 const Symbol *sym = entry.first;
4362 int64_t addend = entry.second;
4363 assert(sym->getVA(ctx));
4364 // Need calls to branch to the local entry-point since a long-branch
4365 // must be a local-call.
4366 write64(ctx, buf,
4367 sym->getVA(ctx, addend) +
4368 getPPC64GlobalEntryToLocalEntryOffset(ctx, sym->stOther));
4369 buf += 8;
4373 bool PPC64LongBranchTargetSection::isNeeded() const {
4374 // `removeUnusedSyntheticSections()` is called before thunk allocation which
4375 // is too early to determine if this section will be empty or not. We need
4376 // Finalized to keep the section alive until after thunk creation. Finalized
4377 // only gets set to true once `finalizeSections()` is called after thunk
4378 // creation. Because of this, if we don't create any long-branch thunks we end
4379 // up with an empty .branch_lt section in the binary.
4380 return !finalized || !entries.empty();
4383 static uint8_t getAbiVersion(Ctx &ctx) {
4384 // MIPS non-PIC executable gets ABI version 1.
4385 if (ctx.arg.emachine == EM_MIPS) {
4386 if (!ctx.arg.isPic && !ctx.arg.relocatable &&
4387 (ctx.arg.eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
4388 return 1;
4389 return 0;
4392 if (ctx.arg.emachine == EM_AMDGPU && !ctx.objectFiles.empty()) {
4393 uint8_t ver = ctx.objectFiles[0]->abiVersion;
4394 for (InputFile *file : ArrayRef(ctx.objectFiles).slice(1))
4395 if (file->abiVersion != ver)
4396 ErrAlways(ctx) << "incompatible ABI version: " << file;
4397 return ver;
4400 return 0;
4403 template <typename ELFT>
4404 void elf::writeEhdr(Ctx &ctx, uint8_t *buf, Partition &part) {
4405 memcpy(buf, "\177ELF", 4);
4407 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
4408 eHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
4409 eHdr->e_ident[EI_DATA] =
4410 ELFT::Endianness == endianness::little ? ELFDATA2LSB : ELFDATA2MSB;
4411 eHdr->e_ident[EI_VERSION] = EV_CURRENT;
4412 eHdr->e_ident[EI_OSABI] = ctx.arg.osabi;
4413 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(ctx);
4414 eHdr->e_machine = ctx.arg.emachine;
4415 eHdr->e_version = EV_CURRENT;
4416 eHdr->e_flags = ctx.arg.eflags;
4417 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
4418 eHdr->e_phnum = part.phdrs.size();
4419 eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
4421 if (!ctx.arg.relocatable) {
4422 eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
4423 eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
4427 template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
4428 // Write the program header table.
4429 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
4430 for (std::unique_ptr<PhdrEntry> &p : part.phdrs) {
4431 hBuf->p_type = p->p_type;
4432 hBuf->p_flags = p->p_flags;
4433 hBuf->p_offset = p->p_offset;
4434 hBuf->p_vaddr = p->p_vaddr;
4435 hBuf->p_paddr = p->p_paddr;
4436 hBuf->p_filesz = p->p_filesz;
4437 hBuf->p_memsz = p->p_memsz;
4438 hBuf->p_align = p->p_align;
4439 ++hBuf;
4443 template <typename ELFT>
4444 PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection(Ctx &ctx)
4445 : SyntheticSection(ctx, SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
4447 template <typename ELFT>
4448 size_t PartitionElfHeaderSection<ELFT>::getSize() const {
4449 return sizeof(typename ELFT::Ehdr);
4452 template <typename ELFT>
4453 void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
4454 writeEhdr<ELFT>(ctx, buf, getPartition(ctx));
4456 // Loadable partitions are always ET_DYN.
4457 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
4458 eHdr->e_type = ET_DYN;
4461 template <typename ELFT>
4462 PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection(Ctx &ctx)
4463 : SyntheticSection(ctx, SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
4465 template <typename ELFT>
4466 size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
4467 return sizeof(typename ELFT::Phdr) * getPartition(ctx).phdrs.size();
4470 template <typename ELFT>
4471 void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
4472 writePhdrs<ELFT>(buf, getPartition(ctx));
4475 PartitionIndexSection::PartitionIndexSection(Ctx &ctx)
4476 : SyntheticSection(ctx, SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
4478 size_t PartitionIndexSection::getSize() const {
4479 return 12 * (ctx.partitions.size() - 1);
4482 void PartitionIndexSection::finalizeContents() {
4483 for (size_t i = 1; i != ctx.partitions.size(); ++i)
4484 ctx.partitions[i].nameStrTab =
4485 ctx.mainPart->dynStrTab->addString(ctx.partitions[i].name);
4488 void PartitionIndexSection::writeTo(uint8_t *buf) {
4489 uint64_t va = getVA();
4490 for (size_t i = 1; i != ctx.partitions.size(); ++i) {
4491 write32(ctx, buf,
4492 ctx.mainPart->dynStrTab->getVA() + ctx.partitions[i].nameStrTab -
4493 va);
4494 write32(ctx, buf + 4, ctx.partitions[i].elfHeader->getVA() - (va + 4));
4496 SyntheticSection *next = i == ctx.partitions.size() - 1
4497 ? ctx.in.partEnd.get()
4498 : ctx.partitions[i + 1].elfHeader.get();
4499 write32(ctx, buf + 8, next->getVA() - ctx.partitions[i].elfHeader->getVA());
4501 va += 12;
4502 buf += 12;
4506 static bool needsInterpSection(Ctx &ctx) {
4507 return !ctx.arg.relocatable && !ctx.arg.shared &&
4508 !ctx.arg.dynamicLinker.empty() && ctx.script->needsInterpSection();
4511 bool elf::hasMemtag(Ctx &ctx) {
4512 return ctx.arg.emachine == EM_AARCH64 &&
4513 ctx.arg.androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE;
4516 // Fully static executables don't support MTE globals at this point in time, as
4517 // we currently rely on:
4518 // - A dynamic loader to process relocations, and
4519 // - Dynamic entries.
4520 // This restriction could be removed in future by re-using some of the ideas
4521 // that ifuncs use in fully static executables.
4522 bool elf::canHaveMemtagGlobals(Ctx &ctx) {
4523 return hasMemtag(ctx) &&
4524 (ctx.arg.relocatable || ctx.arg.shared || needsInterpSection(ctx));
4527 constexpr char kMemtagAndroidNoteName[] = "Android";
4528 void MemtagAndroidNote::writeTo(uint8_t *buf) {
4529 static_assert(
4530 sizeof(kMemtagAndroidNoteName) == 8,
4531 "Android 11 & 12 have an ABI that the note name is 8 bytes long. Keep it "
4532 "that way for backwards compatibility.");
4534 write32(ctx, buf, sizeof(kMemtagAndroidNoteName));
4535 write32(ctx, buf + 4, sizeof(uint32_t));
4536 write32(ctx, buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG);
4537 memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName));
4538 buf += 12 + alignTo(sizeof(kMemtagAndroidNoteName), 4);
4540 uint32_t value = 0;
4541 value |= ctx.arg.androidMemtagMode;
4542 if (ctx.arg.androidMemtagHeap)
4543 value |= ELF::NT_MEMTAG_HEAP;
4544 // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled
4545 // binary on Android 11 or 12 will result in a checkfail in the loader.
4546 if (ctx.arg.androidMemtagStack)
4547 value |= ELF::NT_MEMTAG_STACK;
4548 write32(ctx, buf, value); // note value
4551 size_t MemtagAndroidNote::getSize() const {
4552 return sizeof(llvm::ELF::Elf64_Nhdr) +
4553 /*namesz=*/alignTo(sizeof(kMemtagAndroidNoteName), 4) +
4554 /*descsz=*/sizeof(uint32_t);
4557 void PackageMetadataNote::writeTo(uint8_t *buf) {
4558 write32(ctx, buf, 4);
4559 write32(ctx, buf + 4, ctx.arg.packageMetadata.size() + 1);
4560 write32(ctx, buf + 8, FDO_PACKAGING_METADATA);
4561 memcpy(buf + 12, "FDO", 4);
4562 memcpy(buf + 16, ctx.arg.packageMetadata.data(),
4563 ctx.arg.packageMetadata.size());
4566 size_t PackageMetadataNote::getSize() const {
4567 return sizeof(llvm::ELF::Elf64_Nhdr) + 4 +
4568 alignTo(ctx.arg.packageMetadata.size() + 1, 4);
4571 // Helper function, return the size of the ULEB128 for 'v', optionally writing
4572 // it to `*(buf + offset)` if `buf` is non-null.
4573 static size_t computeOrWriteULEB128(uint64_t v, uint8_t *buf, size_t offset) {
4574 if (buf)
4575 return encodeULEB128(v, buf + offset);
4576 return getULEB128Size(v);
4579 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
4580 constexpr uint64_t kMemtagStepSizeBits = 3;
4581 constexpr uint64_t kMemtagGranuleSize = 16;
4582 static size_t
4583 createMemtagGlobalDescriptors(Ctx &ctx,
4584 const SmallVector<const Symbol *, 0> &symbols,
4585 uint8_t *buf = nullptr) {
4586 size_t sectionSize = 0;
4587 uint64_t lastGlobalEnd = 0;
4589 for (const Symbol *sym : symbols) {
4590 if (!includeInSymtab(ctx, *sym))
4591 continue;
4592 const uint64_t addr = sym->getVA(ctx);
4593 const uint64_t size = sym->getSize();
4595 if (addr <= kMemtagGranuleSize && buf != nullptr)
4596 Err(ctx) << "address of the tagged symbol \"" << sym->getName()
4597 << "\" falls in the ELF header. This is indicative of a "
4598 "compiler/linker bug";
4599 if (addr % kMemtagGranuleSize != 0)
4600 Err(ctx) << "address of the tagged symbol \"" << sym->getName()
4601 << "\" at 0x" << Twine::utohexstr(addr)
4602 << "\" is not granule (16-byte) aligned";
4603 if (size == 0)
4604 Err(ctx) << "size of the tagged symbol \"" << sym->getName()
4605 << "\" is not allowed to be zero";
4606 if (size % kMemtagGranuleSize != 0)
4607 Err(ctx) << "size of the tagged symbol \"" << sym->getName()
4608 << "\" (size 0x" << Twine::utohexstr(size)
4609 << ") is not granule (16-byte) aligned";
4611 const uint64_t sizeToEncode = size / kMemtagGranuleSize;
4612 const uint64_t stepToEncode = ((addr - lastGlobalEnd) / kMemtagGranuleSize)
4613 << kMemtagStepSizeBits;
4614 if (sizeToEncode < (1 << kMemtagStepSizeBits)) {
4615 sectionSize += computeOrWriteULEB128(stepToEncode | sizeToEncode, buf, sectionSize);
4616 } else {
4617 sectionSize += computeOrWriteULEB128(stepToEncode, buf, sectionSize);
4618 sectionSize += computeOrWriteULEB128(sizeToEncode - 1, buf, sectionSize);
4620 lastGlobalEnd = addr + size;
4623 return sectionSize;
4626 bool MemtagGlobalDescriptors::updateAllocSize(Ctx &ctx) {
4627 size_t oldSize = getSize();
4628 std::stable_sort(symbols.begin(), symbols.end(),
4629 [&ctx = ctx](const Symbol *s1, const Symbol *s2) {
4630 return s1->getVA(ctx) < s2->getVA(ctx);
4632 return oldSize != getSize();
4635 void MemtagGlobalDescriptors::writeTo(uint8_t *buf) {
4636 createMemtagGlobalDescriptors(ctx, symbols, buf);
4639 size_t MemtagGlobalDescriptors::getSize() const {
4640 return createMemtagGlobalDescriptors(ctx, symbols);
4643 static OutputSection *findSection(Ctx &ctx, StringRef name) {
4644 for (SectionCommand *cmd : ctx.script->sectionCommands)
4645 if (auto *osd = dyn_cast<OutputDesc>(cmd))
4646 if (osd->osec.name == name)
4647 return &osd->osec;
4648 return nullptr;
4651 static Defined *addOptionalRegular(Ctx &ctx, StringRef name, SectionBase *sec,
4652 uint64_t val, uint8_t stOther = STV_HIDDEN) {
4653 Symbol *s = ctx.symtab->find(name);
4654 if (!s || s->isDefined() || s->isCommon())
4655 return nullptr;
4657 s->resolve(ctx, Defined{ctx, ctx.internalFile, StringRef(), STB_GLOBAL,
4658 stOther, STT_NOTYPE, val,
4659 /*size=*/0, sec});
4660 s->isUsedInRegularObj = true;
4661 return cast<Defined>(s);
4664 template <class ELFT> void elf::createSyntheticSections(Ctx &ctx) {
4665 // Add the .interp section first because it is not a SyntheticSection.
4666 // The removeUnusedSyntheticSections() function relies on the
4667 // SyntheticSections coming last.
4668 if (needsInterpSection(ctx)) {
4669 for (size_t i = 1; i <= ctx.partitions.size(); ++i) {
4670 InputSection *sec = createInterpSection(ctx);
4671 sec->partition = i;
4672 ctx.inputSections.push_back(sec);
4676 auto add = [&](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); };
4678 if (ctx.arg.zSectionHeader)
4679 ctx.in.shStrTab =
4680 std::make_unique<StringTableSection>(ctx, ".shstrtab", false);
4682 ctx.out.programHeaders =
4683 std::make_unique<OutputSection>(ctx, "", 0, SHF_ALLOC);
4684 ctx.out.programHeaders->addralign = ctx.arg.wordsize;
4686 if (ctx.arg.strip != StripPolicy::All) {
4687 ctx.in.strTab = std::make_unique<StringTableSection>(ctx, ".strtab", false);
4688 ctx.in.symTab =
4689 std::make_unique<SymbolTableSection<ELFT>>(ctx, *ctx.in.strTab);
4690 ctx.in.symTabShndx = std::make_unique<SymtabShndxSection>(ctx);
4693 ctx.in.bss = std::make_unique<BssSection>(ctx, ".bss", 0, 1);
4694 add(*ctx.in.bss);
4696 // If there is a SECTIONS command and a .data.rel.ro section name use name
4697 // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
4698 // This makes sure our relro is contiguous.
4699 bool hasDataRelRo =
4700 ctx.script->hasSectionsCommand && findSection(ctx, ".data.rel.ro");
4701 ctx.in.bssRelRo = std::make_unique<BssSection>(
4702 ctx, hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
4703 add(*ctx.in.bssRelRo);
4705 // Add MIPS-specific sections.
4706 if (ctx.arg.emachine == EM_MIPS) {
4707 if (!ctx.arg.shared && ctx.arg.hasDynSymTab) {
4708 ctx.in.mipsRldMap = std::make_unique<MipsRldMapSection>(ctx);
4709 add(*ctx.in.mipsRldMap);
4711 if ((ctx.in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create(ctx)))
4712 add(*ctx.in.mipsAbiFlags);
4713 if ((ctx.in.mipsOptions = MipsOptionsSection<ELFT>::create(ctx)))
4714 add(*ctx.in.mipsOptions);
4715 if ((ctx.in.mipsReginfo = MipsReginfoSection<ELFT>::create(ctx)))
4716 add(*ctx.in.mipsReginfo);
4719 StringRef relaDynName = ctx.arg.isRela ? ".rela.dyn" : ".rel.dyn";
4721 const unsigned threadCount = ctx.arg.threadCount;
4722 for (Partition &part : ctx.partitions) {
4723 auto add = [&](SyntheticSection &sec) {
4724 sec.partition = part.getNumber(ctx);
4725 ctx.inputSections.push_back(&sec);
4728 if (!part.name.empty()) {
4729 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(ctx);
4730 part.elfHeader->name = part.name;
4731 add(*part.elfHeader);
4733 part.programHeaders =
4734 std::make_unique<PartitionProgramHeadersSection<ELFT>>(ctx);
4735 add(*part.programHeaders);
4738 if (ctx.arg.buildId != BuildIdKind::None) {
4739 part.buildId = std::make_unique<BuildIdSection>(ctx);
4740 add(*part.buildId);
4743 // dynSymTab is always present to simplify sym->includeInDynsym(ctx) in
4744 // finalizeSections.
4745 part.dynStrTab = std::make_unique<StringTableSection>(ctx, ".dynstr", true);
4746 part.dynSymTab =
4747 std::make_unique<SymbolTableSection<ELFT>>(ctx, *part.dynStrTab);
4749 if (ctx.arg.relocatable)
4750 continue;
4751 part.dynamic = std::make_unique<DynamicSection<ELFT>>(ctx);
4753 if (hasMemtag(ctx)) {
4754 part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(ctx);
4755 add(*part.memtagAndroidNote);
4756 if (canHaveMemtagGlobals(ctx)) {
4757 part.memtagGlobalDescriptors =
4758 std::make_unique<MemtagGlobalDescriptors>(ctx);
4759 add(*part.memtagGlobalDescriptors);
4763 if (ctx.arg.androidPackDynRelocs)
4764 part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>(
4765 ctx, relaDynName, threadCount);
4766 else
4767 part.relaDyn = std::make_unique<RelocationSection<ELFT>>(
4768 ctx, relaDynName, ctx.arg.zCombreloc, threadCount);
4770 if (ctx.arg.hasDynSymTab) {
4771 add(*part.dynSymTab);
4773 part.verSym = std::make_unique<VersionTableSection>(ctx);
4774 add(*part.verSym);
4776 if (!namedVersionDefs(ctx).empty()) {
4777 part.verDef = std::make_unique<VersionDefinitionSection>(ctx);
4778 add(*part.verDef);
4781 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(ctx);
4782 add(*part.verNeed);
4784 if (ctx.arg.gnuHash) {
4785 part.gnuHashTab = std::make_unique<GnuHashTableSection>(ctx);
4786 add(*part.gnuHashTab);
4789 if (ctx.arg.sysvHash) {
4790 part.hashTab = std::make_unique<HashTableSection>(ctx);
4791 add(*part.hashTab);
4794 add(*part.dynamic);
4795 add(*part.dynStrTab);
4797 add(*part.relaDyn);
4799 if (ctx.arg.relrPackDynRelocs) {
4800 part.relrDyn = std::make_unique<RelrSection<ELFT>>(ctx, threadCount);
4801 add(*part.relrDyn);
4802 part.relrAuthDyn = std::make_unique<RelrSection<ELFT>>(
4803 ctx, threadCount, /*isAArch64Auth=*/true);
4804 add(*part.relrAuthDyn);
4807 if (ctx.arg.ehFrameHdr) {
4808 part.ehFrameHdr = std::make_unique<EhFrameHeader>(ctx);
4809 add(*part.ehFrameHdr);
4811 part.ehFrame = std::make_unique<EhFrameSection>(ctx);
4812 add(*part.ehFrame);
4814 if (ctx.arg.emachine == EM_ARM) {
4815 // This section replaces all the individual .ARM.exidx InputSections.
4816 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(ctx);
4817 add(*part.armExidx);
4820 if (!ctx.arg.packageMetadata.empty()) {
4821 part.packageMetadataNote = std::make_unique<PackageMetadataNote>(ctx);
4822 add(*part.packageMetadataNote);
4826 if (ctx.partitions.size() != 1) {
4827 // Create the partition end marker. This needs to be in partition number 255
4828 // so that it is sorted after all other partitions. It also has other
4829 // special handling (see createPhdrs() and combineEhSections()).
4830 ctx.in.partEnd =
4831 std::make_unique<BssSection>(ctx, ".part.end", ctx.arg.maxPageSize, 1);
4832 ctx.in.partEnd->partition = 255;
4833 add(*ctx.in.partEnd);
4835 ctx.in.partIndex = std::make_unique<PartitionIndexSection>(ctx);
4836 addOptionalRegular(ctx, "__part_index_begin", ctx.in.partIndex.get(), 0);
4837 addOptionalRegular(ctx, "__part_index_end", ctx.in.partIndex.get(),
4838 ctx.in.partIndex->getSize());
4839 add(*ctx.in.partIndex);
4842 // Add .got. MIPS' .got is so different from the other archs,
4843 // it has its own class.
4844 if (ctx.arg.emachine == EM_MIPS) {
4845 ctx.in.mipsGot = std::make_unique<MipsGotSection>(ctx);
4846 add(*ctx.in.mipsGot);
4847 } else {
4848 ctx.in.got = std::make_unique<GotSection>(ctx);
4849 add(*ctx.in.got);
4852 if (ctx.arg.emachine == EM_PPC) {
4853 ctx.in.ppc32Got2 = std::make_unique<PPC32Got2Section>(ctx);
4854 add(*ctx.in.ppc32Got2);
4857 if (ctx.arg.emachine == EM_PPC64) {
4858 ctx.in.ppc64LongBranchTarget =
4859 std::make_unique<PPC64LongBranchTargetSection>(ctx);
4860 add(*ctx.in.ppc64LongBranchTarget);
4863 ctx.in.gotPlt = std::make_unique<GotPltSection>(ctx);
4864 add(*ctx.in.gotPlt);
4865 ctx.in.igotPlt = std::make_unique<IgotPltSection>(ctx);
4866 add(*ctx.in.igotPlt);
4867 // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the
4868 // section in the absence of PHDRS/SECTIONS commands.
4869 if (ctx.arg.zRelro &&
4870 ((ctx.script->phdrsCommands.empty() && !ctx.script->hasSectionsCommand) ||
4871 ctx.script->seenRelroEnd)) {
4872 ctx.in.relroPadding = std::make_unique<RelroPaddingSection>(ctx);
4873 add(*ctx.in.relroPadding);
4876 if (ctx.arg.emachine == EM_ARM) {
4877 ctx.in.armCmseSGSection = std::make_unique<ArmCmseSGSection>(ctx);
4878 add(*ctx.in.armCmseSGSection);
4881 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
4882 // it as a relocation and ensure the referenced section is created.
4883 if (ctx.sym.globalOffsetTable && ctx.arg.emachine != EM_MIPS) {
4884 if (ctx.target->gotBaseSymInGotPlt)
4885 ctx.in.gotPlt->hasGotPltOffRel = true;
4886 else
4887 ctx.in.got->hasGotOffRel = true;
4890 // We always need to add rel[a].plt to output if it has entries.
4891 // Even for static linking it can contain R_[*]_IRELATIVE relocations.
4892 ctx.in.relaPlt = std::make_unique<RelocationSection<ELFT>>(
4893 ctx, ctx.arg.isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false,
4894 /*threadCount=*/1);
4895 add(*ctx.in.relaPlt);
4897 if ((ctx.arg.emachine == EM_386 || ctx.arg.emachine == EM_X86_64) &&
4898 (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
4899 ctx.in.ibtPlt = std::make_unique<IBTPltSection>(ctx);
4900 add(*ctx.in.ibtPlt);
4903 if (ctx.arg.emachine == EM_PPC)
4904 ctx.in.plt = std::make_unique<PPC32GlinkSection>(ctx);
4905 else
4906 ctx.in.plt = std::make_unique<PltSection>(ctx);
4907 add(*ctx.in.plt);
4908 ctx.in.iplt = std::make_unique<IpltSection>(ctx);
4909 add(*ctx.in.iplt);
4911 if (ctx.arg.andFeatures || !ctx.aarch64PauthAbiCoreInfo.empty()) {
4912 ctx.in.gnuProperty = std::make_unique<GnuPropertySection>(ctx);
4913 add(*ctx.in.gnuProperty);
4916 if (ctx.arg.debugNames) {
4917 ctx.in.debugNames = std::make_unique<DebugNamesSection<ELFT>>(ctx);
4918 add(*ctx.in.debugNames);
4921 if (ctx.arg.gdbIndex) {
4922 ctx.in.gdbIndex = GdbIndexSection::create<ELFT>(ctx);
4923 add(*ctx.in.gdbIndex);
4926 // .note.GNU-stack is always added when we are creating a re-linkable
4927 // object file. Other linkers are using the presence of this marker
4928 // section to control the executable-ness of the stack area, but that
4929 // is irrelevant these days. Stack area should always be non-executable
4930 // by default. So we emit this section unconditionally.
4931 if (ctx.arg.relocatable) {
4932 ctx.in.gnuStack = std::make_unique<GnuStackSection>(ctx);
4933 add(*ctx.in.gnuStack);
4936 if (ctx.in.symTab)
4937 add(*ctx.in.symTab);
4938 if (ctx.in.symTabShndx)
4939 add(*ctx.in.symTabShndx);
4940 if (ctx.in.shStrTab)
4941 add(*ctx.in.shStrTab);
4942 if (ctx.in.strTab)
4943 add(*ctx.in.strTab);
4946 template void elf::splitSections<ELF32LE>(Ctx &);
4947 template void elf::splitSections<ELF32BE>(Ctx &);
4948 template void elf::splitSections<ELF64LE>(Ctx &);
4949 template void elf::splitSections<ELF64BE>(Ctx &);
4951 template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>(
4952 function_ref<void(InputSection &)>);
4953 template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>(
4954 function_ref<void(InputSection &)>);
4955 template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>(
4956 function_ref<void(InputSection &)>);
4957 template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>(
4958 function_ref<void(InputSection &)>);
4960 template class elf::SymbolTableSection<ELF32LE>;
4961 template class elf::SymbolTableSection<ELF32BE>;
4962 template class elf::SymbolTableSection<ELF64LE>;
4963 template class elf::SymbolTableSection<ELF64BE>;
4965 template void elf::writeEhdr<ELF32LE>(Ctx &, uint8_t *Buf, Partition &Part);
4966 template void elf::writeEhdr<ELF32BE>(Ctx &, uint8_t *Buf, Partition &Part);
4967 template void elf::writeEhdr<ELF64LE>(Ctx &, uint8_t *Buf, Partition &Part);
4968 template void elf::writeEhdr<ELF64BE>(Ctx &, uint8_t *Buf, Partition &Part);
4970 template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
4971 template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
4972 template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
4973 template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
4975 template void elf::createSyntheticSections<ELF32LE>(Ctx &);
4976 template void elf::createSyntheticSections<ELF32BE>(Ctx &);
4977 template void elf::createSyntheticSections<ELF64LE>(Ctx &);
4978 template void elf::createSyntheticSections<ELF64BE>(Ctx &);