[SVE][CodeGen] Lower scalable masked gathers
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
blobf3bce354624b7126ffb995d206d1b1c609941a7c
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
114 #define DEBUG_TYPE "isel"
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
120 static cl::opt<bool>
121 InsertAssertAlign("insert-assert-align", cl::init(true),
122 cl::desc("Insert the experimental `assertalign` node."),
123 cl::ReallyHidden);
125 static cl::opt<unsigned, true>
126 LimitFPPrecision("limit-float-precision",
127 cl::desc("Generate low-precision inline sequences "
128 "for some float libcalls"),
129 cl::location(LimitFloatPrecision), cl::Hidden,
130 cl::init(0));
132 static cl::opt<unsigned> SwitchPeelThreshold(
133 "switch-peel-threshold", cl::Hidden, cl::init(66),
134 cl::desc("Set the case probability threshold for peeling the case from a "
135 "switch statement. A value greater than 100 will void this "
136 "optimization"));
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155 const SDValue *Parts, unsigned NumParts,
156 MVT PartVT, EVT ValueVT, const Value *V,
157 Optional<CallingConv::ID> CC);
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent. If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165 const SDValue *Parts, unsigned NumParts,
166 MVT PartVT, EVT ValueVT, const Value *V,
167 Optional<CallingConv::ID> CC = None,
168 Optional<ISD::NodeType> AssertOp = None) {
169 // Let the target assemble the parts if it wants to
170 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172 PartVT, ValueVT, CC))
173 return Val;
175 if (ValueVT.isVector())
176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177 CC);
179 assert(NumParts > 0 && "No parts to assemble!");
180 SDValue Val = Parts[0];
182 if (NumParts > 1) {
183 // Assemble the value from multiple parts.
184 if (ValueVT.isInteger()) {
185 unsigned PartBits = PartVT.getSizeInBits();
186 unsigned ValueBits = ValueVT.getSizeInBits();
188 // Assemble the power of 2 part.
189 unsigned RoundParts =
190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191 unsigned RoundBits = PartBits * RoundParts;
192 EVT RoundVT = RoundBits == ValueBits ?
193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194 SDValue Lo, Hi;
196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
198 if (RoundParts > 2) {
199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200 PartVT, HalfVT, V);
201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202 RoundParts / 2, PartVT, HalfVT, V);
203 } else {
204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
208 if (DAG.getDataLayout().isBigEndian())
209 std::swap(Lo, Hi);
211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
213 if (RoundParts < NumParts) {
214 // Assemble the trailing non-power-of-2 part.
215 unsigned OddParts = NumParts - RoundParts;
216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218 OddVT, V, CC);
220 // Combine the round and odd parts.
221 Lo = Val;
222 if (DAG.getDataLayout().isBigEndian())
223 std::swap(Lo, Hi);
224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226 Hi =
227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228 DAG.getConstant(Lo.getValueSizeInBits(), DL,
229 TLI.getPointerTy(DAG.getDataLayout())));
230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
233 } else if (PartVT.isFloatingPoint()) {
234 // FP split into multiple FP parts (for ppcf128)
235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236 "Unexpected split");
237 SDValue Lo, Hi;
238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241 std::swap(Lo, Hi);
242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243 } else {
244 // FP split into integer parts (soft fp)
245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246 !PartVT.isVector() && "Unexpected split");
247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
252 // There is now one part, held in Val. Correct it to match ValueVT.
253 // PartEVT is the type of the register class that holds the value.
254 // ValueVT is the type of the inline asm operation.
255 EVT PartEVT = Val.getValueType();
257 if (PartEVT == ValueVT)
258 return Val;
260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261 ValueVT.bitsLT(PartEVT)) {
262 // For an FP value in an integer part, we need to truncate to the right
263 // width first.
264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
268 // Handle types that have the same size.
269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272 // Handle types with different sizes.
273 if (PartEVT.isInteger() && ValueVT.isInteger()) {
274 if (ValueVT.bitsLT(PartEVT)) {
275 // For a truncate, see if we have any information to
276 // indicate whether the truncated bits will always be
277 // zero or sign-extension.
278 if (AssertOp.hasValue())
279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280 DAG.getValueType(ValueVT));
281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287 // FP_ROUND's are always exact here.
288 if (ValueVT.bitsLT(Val.getValueType()))
289 return DAG.getNode(
290 ISD::FP_ROUND, DL, ValueVT, Val,
291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297 // then truncating.
298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299 ValueVT.bitsLT(PartEVT)) {
300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
304 report_fatal_error("Unknown mismatch in getCopyFromParts!");
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308 const Twine &ErrMsg) {
309 const Instruction *I = dyn_cast_or_null<Instruction>(V);
310 if (!V)
311 return Ctx.emitError(ErrMsg);
313 const char *AsmError = ", possible invalid constraint for vector type";
314 if (const CallInst *CI = dyn_cast<CallInst>(I))
315 if (CI->isInlineAsm())
316 return Ctx.emitError(I, ErrMsg + AsmError);
318 return Ctx.emitError(I, ErrMsg);
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent. If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327 const SDValue *Parts, unsigned NumParts,
328 MVT PartVT, EVT ValueVT, const Value *V,
329 Optional<CallingConv::ID> CallConv) {
330 assert(ValueVT.isVector() && "Not a vector value");
331 assert(NumParts > 0 && "No parts to assemble!");
332 const bool IsABIRegCopy = CallConv.hasValue();
334 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335 SDValue Val = Parts[0];
337 // Handle a multi-element vector.
338 if (NumParts > 1) {
339 EVT IntermediateVT;
340 MVT RegisterVT;
341 unsigned NumIntermediates;
342 unsigned NumRegs;
344 if (IsABIRegCopy) {
345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347 NumIntermediates, RegisterVT);
348 } else {
349 NumRegs =
350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351 NumIntermediates, RegisterVT);
354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355 NumParts = NumRegs; // Silence a compiler warning.
356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357 assert(RegisterVT.getSizeInBits() ==
358 Parts[0].getSimpleValueType().getSizeInBits() &&
359 "Part type sizes don't match!");
361 // Assemble the parts into intermediate operands.
362 SmallVector<SDValue, 8> Ops(NumIntermediates);
363 if (NumIntermediates == NumParts) {
364 // If the register was not expanded, truncate or copy the value,
365 // as appropriate.
366 for (unsigned i = 0; i != NumParts; ++i)
367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368 PartVT, IntermediateVT, V, CallConv);
369 } else if (NumParts > 0) {
370 // If the intermediate type was expanded, build the intermediate
371 // operands from the parts.
372 assert(NumParts % NumIntermediates == 0 &&
373 "Must expand into a divisible number of parts!");
374 unsigned Factor = NumParts / NumIntermediates;
375 for (unsigned i = 0; i != NumIntermediates; ++i)
376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377 PartVT, IntermediateVT, V, CallConv);
380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381 // intermediate operands.
382 EVT BuiltVectorTy =
383 IntermediateVT.isVector()
384 ? EVT::getVectorVT(
385 *DAG.getContext(), IntermediateVT.getScalarType(),
386 IntermediateVT.getVectorElementCount() * NumParts)
387 : EVT::getVectorVT(*DAG.getContext(),
388 IntermediateVT.getScalarType(),
389 NumIntermediates);
390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391 : ISD::BUILD_VECTOR,
392 DL, BuiltVectorTy, Ops);
395 // There is now one part, held in Val. Correct it to match ValueVT.
396 EVT PartEVT = Val.getValueType();
398 if (PartEVT == ValueVT)
399 return Val;
401 if (PartEVT.isVector()) {
402 // If the element type of the source/dest vectors are the same, but the
403 // parts vector has more elements than the value vector, then we have a
404 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
405 // elements we want.
406 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
407 assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408 ValueVT.getVectorElementCount().getKnownMinValue()) &&
409 (PartEVT.getVectorElementCount().isScalable() ==
410 ValueVT.getVectorElementCount().isScalable()) &&
411 "Cannot narrow, it would be a lossy transformation");
412 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
413 DAG.getVectorIdxConstant(0, DL));
416 // Vector/Vector bitcast.
417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
421 "Cannot handle this kind of promotion");
422 // Promoted vector extract
423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
427 // Trivial bitcast if the types are the same size and the destination
428 // vector type is legal.
429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
430 TLI.isTypeLegal(ValueVT))
431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
433 if (ValueVT.getVectorNumElements() != 1) {
434 // Certain ABIs require that vectors are passed as integers. For vectors
435 // are the same size, this is an obvious bitcast.
436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
438 } else if (ValueVT.bitsLT(PartEVT)) {
439 // Bitcast Val back the original type and extract the corresponding
440 // vector we want.
441 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
442 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
443 ValueVT.getVectorElementType(), Elts);
444 Val = DAG.getBitcast(WiderVecType, Val);
445 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
446 DAG.getVectorIdxConstant(0, DL));
449 diagnosePossiblyInvalidConstraint(
450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
451 return DAG.getUNDEF(ValueVT);
454 // Handle cases such as i8 -> <1 x i1>
455 EVT ValueSVT = ValueVT.getVectorElementType();
456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
459 else
460 Val = ValueVT.isFloatingPoint()
461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
465 return DAG.getBuildVector(ValueVT, DL, Val);
468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
469 SDValue Val, SDValue *Parts, unsigned NumParts,
470 MVT PartVT, const Value *V,
471 Optional<CallingConv::ID> CallConv);
473 /// getCopyToParts - Create a series of nodes that contain the specified value
474 /// split into legal parts. If the parts contain more bits than Val, then, for
475 /// integers, ExtendKind can be used to specify how to generate the extra bits.
476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
477 SDValue *Parts, unsigned NumParts, MVT PartVT,
478 const Value *V,
479 Optional<CallingConv::ID> CallConv = None,
480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
481 // Let the target split the parts if it wants to
482 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
484 CallConv))
485 return;
486 EVT ValueVT = Val.getValueType();
488 // Handle the vector case separately.
489 if (ValueVT.isVector())
490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
491 CallConv);
493 unsigned PartBits = PartVT.getSizeInBits();
494 unsigned OrigNumParts = NumParts;
495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
496 "Copying to an illegal type!");
498 if (NumParts == 0)
499 return;
501 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
502 EVT PartEVT = PartVT;
503 if (PartEVT == ValueVT) {
504 assert(NumParts == 1 && "No-op copy with multiple parts!");
505 Parts[0] = Val;
506 return;
509 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
510 // If the parts cover more bits than the value has, promote the value.
511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
512 assert(NumParts == 1 && "Do not know what to promote to!");
513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
514 } else {
515 if (ValueVT.isFloatingPoint()) {
516 // FP values need to be bitcast, then extended if they are being put
517 // into a larger container.
518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
522 ValueVT.isInteger() &&
523 "Unknown mismatch!");
524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
526 if (PartVT == MVT::x86mmx)
527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
529 } else if (PartBits == ValueVT.getSizeInBits()) {
530 // Different types of the same size.
531 assert(NumParts == 1 && PartEVT != ValueVT);
532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
534 // If the parts cover less bits than value has, truncate the value.
535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
536 ValueVT.isInteger() &&
537 "Unknown mismatch!");
538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
540 if (PartVT == MVT::x86mmx)
541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
544 // The value may have changed - recompute ValueVT.
545 ValueVT = Val.getValueType();
546 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
547 "Failed to tile the value with PartVT!");
549 if (NumParts == 1) {
550 if (PartEVT != ValueVT) {
551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
552 "scalar-to-vector conversion failed");
553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
556 Parts[0] = Val;
557 return;
560 // Expand the value into multiple parts.
561 if (NumParts & (NumParts - 1)) {
562 // The number of parts is not a power of 2. Split off and copy the tail.
563 assert(PartVT.isInteger() && ValueVT.isInteger() &&
564 "Do not know what to expand to!");
565 unsigned RoundParts = 1 << Log2_32(NumParts);
566 unsigned RoundBits = RoundParts * PartBits;
567 unsigned OddParts = NumParts - RoundParts;
568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
572 CallConv);
574 if (DAG.getDataLayout().isBigEndian())
575 // The odd parts were reversed by getCopyToParts - unreverse them.
576 std::reverse(Parts + RoundParts, Parts + NumParts);
578 NumParts = RoundParts;
579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
583 // The number of parts is a power of 2. Repeatedly bisect the value using
584 // EXTRACT_ELEMENT.
585 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
586 EVT::getIntegerVT(*DAG.getContext(),
587 ValueVT.getSizeInBits()),
588 Val);
590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
591 for (unsigned i = 0; i < NumParts; i += StepSize) {
592 unsigned ThisBits = StepSize * PartBits / 2;
593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
594 SDValue &Part0 = Parts[i];
595 SDValue &Part1 = Parts[i+StepSize/2];
597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
602 if (ThisBits == PartBits && ThisVT != PartVT) {
603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
609 if (DAG.getDataLayout().isBigEndian())
610 std::reverse(Parts, Parts + OrigNumParts);
613 static SDValue widenVectorToPartType(SelectionDAG &DAG,
614 SDValue Val, const SDLoc &DL, EVT PartVT) {
615 if (!PartVT.isFixedLengthVector())
616 return SDValue();
618 EVT ValueVT = Val.getValueType();
619 unsigned PartNumElts = PartVT.getVectorNumElements();
620 unsigned ValueNumElts = ValueVT.getVectorNumElements();
621 if (PartNumElts > ValueNumElts &&
622 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
623 EVT ElementVT = PartVT.getVectorElementType();
624 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
625 // undef elements.
626 SmallVector<SDValue, 16> Ops;
627 DAG.ExtractVectorElements(Val, Ops);
628 SDValue EltUndef = DAG.getUNDEF(ElementVT);
629 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
630 Ops.push_back(EltUndef);
632 // FIXME: Use CONCAT for 2x -> 4x.
633 return DAG.getBuildVector(PartVT, DL, Ops);
636 return SDValue();
639 /// getCopyToPartsVector - Create a series of nodes that contain the specified
640 /// value split into legal parts.
641 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
642 SDValue Val, SDValue *Parts, unsigned NumParts,
643 MVT PartVT, const Value *V,
644 Optional<CallingConv::ID> CallConv) {
645 EVT ValueVT = Val.getValueType();
646 assert(ValueVT.isVector() && "Not a vector");
647 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
648 const bool IsABIRegCopy = CallConv.hasValue();
650 if (NumParts == 1) {
651 EVT PartEVT = PartVT;
652 if (PartEVT == ValueVT) {
653 // Nothing to do.
654 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
655 // Bitconvert vector->vector case.
656 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
657 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
658 Val = Widened;
659 } else if (PartVT.isVector() &&
660 PartEVT.getVectorElementType().bitsGE(
661 ValueVT.getVectorElementType()) &&
662 PartEVT.getVectorElementCount() ==
663 ValueVT.getVectorElementCount()) {
665 // Promoted vector extract
666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
667 } else {
668 if (ValueVT.getVectorElementCount().isScalar()) {
669 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
670 DAG.getVectorIdxConstant(0, DL));
671 } else {
672 uint64_t ValueSize = ValueVT.getFixedSizeInBits();
673 assert(PartVT.getFixedSizeInBits() > ValueSize &&
674 "lossy conversion of vector to scalar type");
675 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
676 Val = DAG.getBitcast(IntermediateType, Val);
677 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
681 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
682 Parts[0] = Val;
683 return;
686 // Handle a multi-element vector.
687 EVT IntermediateVT;
688 MVT RegisterVT;
689 unsigned NumIntermediates;
690 unsigned NumRegs;
691 if (IsABIRegCopy) {
692 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
693 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
694 NumIntermediates, RegisterVT);
695 } else {
696 NumRegs =
697 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
698 NumIntermediates, RegisterVT);
701 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
702 NumParts = NumRegs; // Silence a compiler warning.
703 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
705 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
706 "Mixing scalable and fixed vectors when copying in parts");
708 Optional<ElementCount> DestEltCnt;
710 if (IntermediateVT.isVector())
711 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
712 else
713 DestEltCnt = ElementCount::getFixed(NumIntermediates);
715 EVT BuiltVectorTy = EVT::getVectorVT(
716 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
717 if (ValueVT != BuiltVectorTy) {
718 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
719 Val = Widened;
721 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
724 // Split the vector into intermediate operands.
725 SmallVector<SDValue, 8> Ops(NumIntermediates);
726 for (unsigned i = 0; i != NumIntermediates; ++i) {
727 if (IntermediateVT.isVector()) {
728 // This does something sensible for scalable vectors - see the
729 // definition of EXTRACT_SUBVECTOR for further details.
730 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
731 Ops[i] =
732 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
734 } else {
735 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736 DAG.getVectorIdxConstant(i, DL));
740 // Split the intermediate operands into legal parts.
741 if (NumParts == NumIntermediates) {
742 // If the register was not expanded, promote or copy the value,
743 // as appropriate.
744 for (unsigned i = 0; i != NumParts; ++i)
745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746 } else if (NumParts > 0) {
747 // If the intermediate type was expanded, split each the value into
748 // legal parts.
749 assert(NumIntermediates != 0 && "division by zero");
750 assert(NumParts % NumIntermediates == 0 &&
751 "Must expand into a divisible number of parts!");
752 unsigned Factor = NumParts / NumIntermediates;
753 for (unsigned i = 0; i != NumIntermediates; ++i)
754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755 CallConv);
759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760 EVT valuevt, Optional<CallingConv::ID> CC)
761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762 RegCount(1, regs.size()), CallConv(CC) {}
764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765 const DataLayout &DL, unsigned Reg, Type *Ty,
766 Optional<CallingConv::ID> CC) {
767 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
769 CallConv = CC;
771 for (EVT ValueVT : ValueVTs) {
772 unsigned NumRegs =
773 isABIMangled()
774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775 : TLI.getNumRegisters(Context, ValueVT);
776 MVT RegisterVT =
777 isABIMangled()
778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779 : TLI.getRegisterType(Context, ValueVT);
780 for (unsigned i = 0; i != NumRegs; ++i)
781 Regs.push_back(Reg + i);
782 RegVTs.push_back(RegisterVT);
783 RegCount.push_back(NumRegs);
784 Reg += NumRegs;
788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789 FunctionLoweringInfo &FuncInfo,
790 const SDLoc &dl, SDValue &Chain,
791 SDValue *Flag, const Value *V) const {
792 // A Value with type {} or [0 x %t] needs no registers.
793 if (ValueVTs.empty())
794 return SDValue();
796 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
798 // Assemble the legal parts into the final values.
799 SmallVector<SDValue, 4> Values(ValueVTs.size());
800 SmallVector<SDValue, 8> Parts;
801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802 // Copy the legal parts from the registers.
803 EVT ValueVT = ValueVTs[Value];
804 unsigned NumRegs = RegCount[Value];
805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806 *DAG.getContext(),
807 CallConv.getValue(), RegVTs[Value])
808 : RegVTs[Value];
810 Parts.resize(NumRegs);
811 for (unsigned i = 0; i != NumRegs; ++i) {
812 SDValue P;
813 if (!Flag) {
814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815 } else {
816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817 *Flag = P.getValue(2);
820 Chain = P.getValue(1);
821 Parts[i] = P;
823 // If the source register was virtual and if we know something about it,
824 // add an assert node.
825 if (!Register::isVirtualRegister(Regs[Part + i]) ||
826 !RegisterVT.isInteger())
827 continue;
829 const FunctionLoweringInfo::LiveOutInfo *LOI =
830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831 if (!LOI)
832 continue;
834 unsigned RegSize = RegisterVT.getScalarSizeInBits();
835 unsigned NumSignBits = LOI->NumSignBits;
836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
838 if (NumZeroBits == RegSize) {
839 // The current value is a zero.
840 // Explicitly express that as it would be easier for
841 // optimizations to kick in.
842 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843 continue;
846 // FIXME: We capture more information than the dag can represent. For
847 // now, just use the tightest assertzext/assertsext possible.
848 bool isSExt;
849 EVT FromVT(MVT::Other);
850 if (NumZeroBits) {
851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852 isSExt = false;
853 } else if (NumSignBits > 1) {
854 FromVT =
855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856 isSExt = true;
857 } else {
858 continue;
860 // Add an assertion node.
861 assert(FromVT != MVT::Other);
862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863 RegisterVT, P, DAG.getValueType(FromVT));
866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867 RegisterVT, ValueVT, V, CallConv);
868 Part += NumRegs;
869 Parts.clear();
872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876 const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877 const Value *V,
878 ISD::NodeType PreferredExtendType) const {
879 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880 ISD::NodeType ExtendKind = PreferredExtendType;
882 // Get the list of the values's legal parts.
883 unsigned NumRegs = Regs.size();
884 SmallVector<SDValue, 8> Parts(NumRegs);
885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886 unsigned NumParts = RegCount[Value];
888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889 *DAG.getContext(),
890 CallConv.getValue(), RegVTs[Value])
891 : RegVTs[Value];
893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894 ExtendKind = ISD::ZERO_EXTEND;
896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897 NumParts, RegisterVT, V, CallConv, ExtendKind);
898 Part += NumParts;
901 // Copy the parts into the registers.
902 SmallVector<SDValue, 8> Chains(NumRegs);
903 for (unsigned i = 0; i != NumRegs; ++i) {
904 SDValue Part;
905 if (!Flag) {
906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907 } else {
908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909 *Flag = Part.getValue(1);
912 Chains[i] = Part.getValue(0);
915 if (NumRegs == 1 || Flag)
916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917 // flagged to it. That is the CopyToReg nodes and the user are considered
918 // a single scheduling unit. If we create a TokenFactor and return it as
919 // chain, then the TokenFactor is both a predecessor (operand) of the
920 // user as well as a successor (the TF operands are flagged to the user).
921 // c1, f1 = CopyToReg
922 // c2, f2 = CopyToReg
923 // c3 = TokenFactor c1, c2
924 // ...
925 // = op c3, ..., f2
926 Chain = Chains[NumRegs-1];
927 else
928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932 unsigned MatchingIdx, const SDLoc &dl,
933 SelectionDAG &DAG,
934 std::vector<SDValue> &Ops) const {
935 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938 if (HasMatching)
939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
941 // Put the register class of the virtual registers in the flag word. That
942 // way, later passes can recompute register class constraints for inline
943 // assembly as well as normal instructions.
944 // Don't do this for tied operands that can use the regclass information
945 // from the def.
946 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
947 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
948 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
951 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
952 Ops.push_back(Res);
954 if (Code == InlineAsm::Kind_Clobber) {
955 // Clobbers should always have a 1:1 mapping with registers, and may
956 // reference registers that have illegal (e.g. vector) types. Hence, we
957 // shouldn't try to apply any sort of splitting logic to them.
958 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
959 "No 1:1 mapping from clobbers to regs?");
960 Register SP = TLI.getStackPointerRegisterToSaveRestore();
961 (void)SP;
962 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
963 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
964 assert(
965 (Regs[I] != SP ||
966 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
967 "If we clobbered the stack pointer, MFI should know about it.");
969 return;
972 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
973 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
974 MVT RegisterVT = RegVTs[Value];
975 for (unsigned i = 0; i != NumRegs; ++i) {
976 assert(Reg < Regs.size() && "Mismatch in # registers expected");
977 unsigned TheReg = Regs[Reg++];
978 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
983 SmallVector<std::pair<unsigned, TypeSize>, 4>
984 RegsForValue::getRegsAndSizes() const {
985 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
986 unsigned I = 0;
987 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
988 unsigned RegCount = std::get<0>(CountAndVT);
989 MVT RegisterVT = std::get<1>(CountAndVT);
990 TypeSize RegisterSize = RegisterVT.getSizeInBits();
991 for (unsigned E = I + RegCount; I != E; ++I)
992 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
994 return OutVec;
997 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
998 const TargetLibraryInfo *li) {
999 AA = aa;
1000 GFI = gfi;
1001 LibInfo = li;
1002 DL = &DAG.getDataLayout();
1003 Context = DAG.getContext();
1004 LPadToCallSiteMap.clear();
1005 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1008 void SelectionDAGBuilder::clear() {
1009 NodeMap.clear();
1010 UnusedArgNodeMap.clear();
1011 PendingLoads.clear();
1012 PendingExports.clear();
1013 PendingConstrainedFP.clear();
1014 PendingConstrainedFPStrict.clear();
1015 CurInst = nullptr;
1016 HasTailCall = false;
1017 SDNodeOrder = LowestSDNodeOrder;
1018 StatepointLowering.clear();
1021 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1022 DanglingDebugInfoMap.clear();
1025 // Update DAG root to include dependencies on Pending chains.
1026 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1027 SDValue Root = DAG.getRoot();
1029 if (Pending.empty())
1030 return Root;
1032 // Add current root to PendingChains, unless we already indirectly
1033 // depend on it.
1034 if (Root.getOpcode() != ISD::EntryToken) {
1035 unsigned i = 0, e = Pending.size();
1036 for (; i != e; ++i) {
1037 assert(Pending[i].getNode()->getNumOperands() > 1);
1038 if (Pending[i].getNode()->getOperand(0) == Root)
1039 break; // Don't add the root if we already indirectly depend on it.
1042 if (i == e)
1043 Pending.push_back(Root);
1046 if (Pending.size() == 1)
1047 Root = Pending[0];
1048 else
1049 Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1051 DAG.setRoot(Root);
1052 Pending.clear();
1053 return Root;
1056 SDValue SelectionDAGBuilder::getMemoryRoot() {
1057 return updateRoot(PendingLoads);
1060 SDValue SelectionDAGBuilder::getRoot() {
1061 // Chain up all pending constrained intrinsics together with all
1062 // pending loads, by simply appending them to PendingLoads and
1063 // then calling getMemoryRoot().
1064 PendingLoads.reserve(PendingLoads.size() +
1065 PendingConstrainedFP.size() +
1066 PendingConstrainedFPStrict.size());
1067 PendingLoads.append(PendingConstrainedFP.begin(),
1068 PendingConstrainedFP.end());
1069 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1070 PendingConstrainedFPStrict.end());
1071 PendingConstrainedFP.clear();
1072 PendingConstrainedFPStrict.clear();
1073 return getMemoryRoot();
1076 SDValue SelectionDAGBuilder::getControlRoot() {
1077 // We need to emit pending fpexcept.strict constrained intrinsics,
1078 // so append them to the PendingExports list.
1079 PendingExports.append(PendingConstrainedFPStrict.begin(),
1080 PendingConstrainedFPStrict.end());
1081 PendingConstrainedFPStrict.clear();
1082 return updateRoot(PendingExports);
1085 void SelectionDAGBuilder::visit(const Instruction &I) {
1086 // Set up outgoing PHI node register values before emitting the terminator.
1087 if (I.isTerminator()) {
1088 HandlePHINodesInSuccessorBlocks(I.getParent());
1091 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1092 if (!isa<DbgInfoIntrinsic>(I))
1093 ++SDNodeOrder;
1095 CurInst = &I;
1097 visit(I.getOpcode(), I);
1099 if (!I.isTerminator() && !HasTailCall &&
1100 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1101 CopyToExportRegsIfNeeded(&I);
1103 CurInst = nullptr;
1106 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1107 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1110 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1111 // Note: this doesn't use InstVisitor, because it has to work with
1112 // ConstantExpr's in addition to instructions.
1113 switch (Opcode) {
1114 default: llvm_unreachable("Unknown instruction type encountered!");
1115 // Build the switch statement using the Instruction.def file.
1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1117 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1118 #include "llvm/IR/Instruction.def"
1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1123 const DIExpression *Expr) {
1124 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1125 const DbgValueInst *DI = DDI.getDI();
1126 DIVariable *DanglingVariable = DI->getVariable();
1127 DIExpression *DanglingExpr = DI->getExpression();
1128 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1129 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1130 return true;
1132 return false;
1135 for (auto &DDIMI : DanglingDebugInfoMap) {
1136 DanglingDebugInfoVector &DDIV = DDIMI.second;
1138 // If debug info is to be dropped, run it through final checks to see
1139 // whether it can be salvaged.
1140 for (auto &DDI : DDIV)
1141 if (isMatchingDbgValue(DDI))
1142 salvageUnresolvedDbgValue(DDI);
1144 erase_if(DDIV, isMatchingDbgValue);
1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1149 // generate the debug data structures now that we've seen its definition.
1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1151 SDValue Val) {
1152 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1153 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1154 return;
1156 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1157 for (auto &DDI : DDIV) {
1158 const DbgValueInst *DI = DDI.getDI();
1159 assert(DI && "Ill-formed DanglingDebugInfo");
1160 DebugLoc dl = DDI.getdl();
1161 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1162 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1163 DILocalVariable *Variable = DI->getVariable();
1164 DIExpression *Expr = DI->getExpression();
1165 assert(Variable->isValidLocationForIntrinsic(dl) &&
1166 "Expected inlined-at fields to agree");
1167 SDDbgValue *SDV;
1168 if (Val.getNode()) {
1169 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1170 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1171 // we couldn't resolve it directly when examining the DbgValue intrinsic
1172 // in the first place we should not be more successful here). Unless we
1173 // have some test case that prove this to be correct we should avoid
1174 // calling EmitFuncArgumentDbgValue here.
1175 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1176 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1177 << DbgSDNodeOrder << "] for:\n " << *DI << "\n");
1178 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1179 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1180 // inserted after the definition of Val when emitting the instructions
1181 // after ISel. An alternative could be to teach
1182 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1183 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1184 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1185 << ValSDNodeOrder << "\n");
1186 SDV = getDbgValue(Val, Variable, Expr, dl,
1187 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1188 DAG.AddDbgValue(SDV, Val.getNode(), false);
1189 } else
1190 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1191 << "in EmitFuncArgumentDbgValue\n");
1192 } else {
1193 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1194 auto Undef =
1195 UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1196 auto SDV =
1197 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1198 DAG.AddDbgValue(SDV, nullptr, false);
1201 DDIV.clear();
1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1205 Value *V = DDI.getDI()->getValue();
1206 DILocalVariable *Var = DDI.getDI()->getVariable();
1207 DIExpression *Expr = DDI.getDI()->getExpression();
1208 DebugLoc DL = DDI.getdl();
1209 DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1210 unsigned SDOrder = DDI.getSDNodeOrder();
1212 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1213 // that DW_OP_stack_value is desired.
1214 assert(isa<DbgValueInst>(DDI.getDI()));
1215 bool StackValue = true;
1217 // Can this Value can be encoded without any further work?
1218 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1219 return;
1221 // Attempt to salvage back through as many instructions as possible. Bail if
1222 // a non-instruction is seen, such as a constant expression or global
1223 // variable. FIXME: Further work could recover those too.
1224 while (isa<Instruction>(V)) {
1225 Instruction &VAsInst = *cast<Instruction>(V);
1226 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1228 // If we cannot salvage any further, and haven't yet found a suitable debug
1229 // expression, bail out.
1230 if (!NewExpr)
1231 break;
1233 // New value and expr now represent this debuginfo.
1234 V = VAsInst.getOperand(0);
1235 Expr = NewExpr;
1237 // Some kind of simplification occurred: check whether the operand of the
1238 // salvaged debug expression can be encoded in this DAG.
1239 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1240 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n "
1241 << DDI.getDI() << "\nBy stripping back to:\n " << V);
1242 return;
1246 // This was the final opportunity to salvage this debug information, and it
1247 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1248 // any earlier variable location.
1249 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1250 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1251 DAG.AddDbgValue(SDV, nullptr, false);
1253 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI()
1254 << "\n");
1255 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0)
1256 << "\n");
1259 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1260 DIExpression *Expr, DebugLoc dl,
1261 DebugLoc InstDL, unsigned Order) {
1262 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1263 SDDbgValue *SDV;
1264 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1265 isa<ConstantPointerNull>(V)) {
1266 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1267 DAG.AddDbgValue(SDV, nullptr, false);
1268 return true;
1271 // If the Value is a frame index, we can create a FrameIndex debug value
1272 // without relying on the DAG at all.
1273 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1274 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1275 if (SI != FuncInfo.StaticAllocaMap.end()) {
1276 auto SDV =
1277 DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1278 /*IsIndirect*/ false, dl, SDNodeOrder);
1279 // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1280 // is still available even if the SDNode gets optimized out.
1281 DAG.AddDbgValue(SDV, nullptr, false);
1282 return true;
1286 // Do not use getValue() in here; we don't want to generate code at
1287 // this point if it hasn't been done yet.
1288 SDValue N = NodeMap[V];
1289 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1290 N = UnusedArgNodeMap[V];
1291 if (N.getNode()) {
1292 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1293 return true;
1294 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1295 DAG.AddDbgValue(SDV, N.getNode(), false);
1296 return true;
1299 // Special rules apply for the first dbg.values of parameter variables in a
1300 // function. Identify them by the fact they reference Argument Values, that
1301 // they're parameters, and they are parameters of the current function. We
1302 // need to let them dangle until they get an SDNode.
1303 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1304 !InstDL.getInlinedAt();
1305 if (!IsParamOfFunc) {
1306 // The value is not used in this block yet (or it would have an SDNode).
1307 // We still want the value to appear for the user if possible -- if it has
1308 // an associated VReg, we can refer to that instead.
1309 auto VMI = FuncInfo.ValueMap.find(V);
1310 if (VMI != FuncInfo.ValueMap.end()) {
1311 unsigned Reg = VMI->second;
1312 // If this is a PHI node, it may be split up into several MI PHI nodes
1313 // (in FunctionLoweringInfo::set).
1314 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1315 V->getType(), None);
1316 if (RFV.occupiesMultipleRegs()) {
1317 unsigned Offset = 0;
1318 unsigned BitsToDescribe = 0;
1319 if (auto VarSize = Var->getSizeInBits())
1320 BitsToDescribe = *VarSize;
1321 if (auto Fragment = Expr->getFragmentInfo())
1322 BitsToDescribe = Fragment->SizeInBits;
1323 for (auto RegAndSize : RFV.getRegsAndSizes()) {
1324 unsigned RegisterSize = RegAndSize.second;
1325 // Bail out if all bits are described already.
1326 if (Offset >= BitsToDescribe)
1327 break;
1328 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1329 ? BitsToDescribe - Offset
1330 : RegisterSize;
1331 auto FragmentExpr = DIExpression::createFragmentExpression(
1332 Expr, Offset, FragmentSize);
1333 if (!FragmentExpr)
1334 continue;
1335 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1336 false, dl, SDNodeOrder);
1337 DAG.AddDbgValue(SDV, nullptr, false);
1338 Offset += RegisterSize;
1340 } else {
1341 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1342 DAG.AddDbgValue(SDV, nullptr, false);
1344 return true;
1348 return false;
1351 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1352 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1353 for (auto &Pair : DanglingDebugInfoMap)
1354 for (auto &DDI : Pair.second)
1355 salvageUnresolvedDbgValue(DDI);
1356 clearDanglingDebugInfo();
1359 /// getCopyFromRegs - If there was virtual register allocated for the value V
1360 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1361 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1362 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1363 SDValue Result;
1365 if (It != FuncInfo.ValueMap.end()) {
1366 Register InReg = It->second;
1368 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1369 DAG.getDataLayout(), InReg, Ty,
1370 None); // This is not an ABI copy.
1371 SDValue Chain = DAG.getEntryNode();
1372 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1374 resolveDanglingDebugInfo(V, Result);
1377 return Result;
1380 /// getValue - Return an SDValue for the given Value.
1381 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1382 // If we already have an SDValue for this value, use it. It's important
1383 // to do this first, so that we don't create a CopyFromReg if we already
1384 // have a regular SDValue.
1385 SDValue &N = NodeMap[V];
1386 if (N.getNode()) return N;
1388 // If there's a virtual register allocated and initialized for this
1389 // value, use it.
1390 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1391 return copyFromReg;
1393 // Otherwise create a new SDValue and remember it.
1394 SDValue Val = getValueImpl(V);
1395 NodeMap[V] = Val;
1396 resolveDanglingDebugInfo(V, Val);
1397 return Val;
1400 /// getNonRegisterValue - Return an SDValue for the given Value, but
1401 /// don't look in FuncInfo.ValueMap for a virtual register.
1402 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1403 // If we already have an SDValue for this value, use it.
1404 SDValue &N = NodeMap[V];
1405 if (N.getNode()) {
1406 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1407 // Remove the debug location from the node as the node is about to be used
1408 // in a location which may differ from the original debug location. This
1409 // is relevant to Constant and ConstantFP nodes because they can appear
1410 // as constant expressions inside PHI nodes.
1411 N->setDebugLoc(DebugLoc());
1413 return N;
1416 // Otherwise create a new SDValue and remember it.
1417 SDValue Val = getValueImpl(V);
1418 NodeMap[V] = Val;
1419 resolveDanglingDebugInfo(V, Val);
1420 return Val;
1423 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1424 /// Create an SDValue for the given value.
1425 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1426 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1428 if (const Constant *C = dyn_cast<Constant>(V)) {
1429 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1431 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1432 return DAG.getConstant(*CI, getCurSDLoc(), VT);
1434 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1435 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1437 if (isa<ConstantPointerNull>(C)) {
1438 unsigned AS = V->getType()->getPointerAddressSpace();
1439 return DAG.getConstant(0, getCurSDLoc(),
1440 TLI.getPointerTy(DAG.getDataLayout(), AS));
1443 if (match(C, m_VScale(DAG.getDataLayout())))
1444 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1446 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1447 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1449 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1450 return DAG.getUNDEF(VT);
1452 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1453 visit(CE->getOpcode(), *CE);
1454 SDValue N1 = NodeMap[V];
1455 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1456 return N1;
1459 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1460 SmallVector<SDValue, 4> Constants;
1461 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1462 OI != OE; ++OI) {
1463 SDNode *Val = getValue(*OI).getNode();
1464 // If the operand is an empty aggregate, there are no values.
1465 if (!Val) continue;
1466 // Add each leaf value from the operand to the Constants list
1467 // to form a flattened list of all the values.
1468 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1469 Constants.push_back(SDValue(Val, i));
1472 return DAG.getMergeValues(Constants, getCurSDLoc());
1475 if (const ConstantDataSequential *CDS =
1476 dyn_cast<ConstantDataSequential>(C)) {
1477 SmallVector<SDValue, 4> Ops;
1478 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1479 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1480 // Add each leaf value from the operand to the Constants list
1481 // to form a flattened list of all the values.
1482 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1483 Ops.push_back(SDValue(Val, i));
1486 if (isa<ArrayType>(CDS->getType()))
1487 return DAG.getMergeValues(Ops, getCurSDLoc());
1488 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1491 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1492 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1493 "Unknown struct or array constant!");
1495 SmallVector<EVT, 4> ValueVTs;
1496 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1497 unsigned NumElts = ValueVTs.size();
1498 if (NumElts == 0)
1499 return SDValue(); // empty struct
1500 SmallVector<SDValue, 4> Constants(NumElts);
1501 for (unsigned i = 0; i != NumElts; ++i) {
1502 EVT EltVT = ValueVTs[i];
1503 if (isa<UndefValue>(C))
1504 Constants[i] = DAG.getUNDEF(EltVT);
1505 else if (EltVT.isFloatingPoint())
1506 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1507 else
1508 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1511 return DAG.getMergeValues(Constants, getCurSDLoc());
1514 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1515 return DAG.getBlockAddress(BA, VT);
1517 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1518 return getValue(Equiv->getGlobalValue());
1520 VectorType *VecTy = cast<VectorType>(V->getType());
1522 // Now that we know the number and type of the elements, get that number of
1523 // elements into the Ops array based on what kind of constant it is.
1524 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1525 SmallVector<SDValue, 16> Ops;
1526 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1527 for (unsigned i = 0; i != NumElements; ++i)
1528 Ops.push_back(getValue(CV->getOperand(i)));
1530 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1531 } else if (isa<ConstantAggregateZero>(C)) {
1532 EVT EltVT =
1533 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1535 SDValue Op;
1536 if (EltVT.isFloatingPoint())
1537 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1538 else
1539 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1541 if (isa<ScalableVectorType>(VecTy))
1542 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1543 else {
1544 SmallVector<SDValue, 16> Ops;
1545 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1546 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1549 llvm_unreachable("Unknown vector constant");
1552 // If this is a static alloca, generate it as the frameindex instead of
1553 // computation.
1554 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1555 DenseMap<const AllocaInst*, int>::iterator SI =
1556 FuncInfo.StaticAllocaMap.find(AI);
1557 if (SI != FuncInfo.StaticAllocaMap.end())
1558 return DAG.getFrameIndex(SI->second,
1559 TLI.getFrameIndexTy(DAG.getDataLayout()));
1562 // If this is an instruction which fast-isel has deferred, select it now.
1563 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1564 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1566 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1567 Inst->getType(), None);
1568 SDValue Chain = DAG.getEntryNode();
1569 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1572 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1573 return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1575 llvm_unreachable("Can't get register for value!");
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1579 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1580 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1581 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1582 bool IsSEH = isAsynchronousEHPersonality(Pers);
1583 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1584 if (!IsSEH)
1585 CatchPadMBB->setIsEHScopeEntry();
1586 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1587 if (IsMSVCCXX || IsCoreCLR)
1588 CatchPadMBB->setIsEHFuncletEntry();
1591 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1592 // Update machine-CFG edge.
1593 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1594 FuncInfo.MBB->addSuccessor(TargetMBB);
1596 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1597 bool IsSEH = isAsynchronousEHPersonality(Pers);
1598 if (IsSEH) {
1599 // If this is not a fall-through branch or optimizations are switched off,
1600 // emit the branch.
1601 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1602 TM.getOptLevel() == CodeGenOpt::None)
1603 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1604 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1605 return;
1608 // Figure out the funclet membership for the catchret's successor.
1609 // This will be used by the FuncletLayout pass to determine how to order the
1610 // BB's.
1611 // A 'catchret' returns to the outer scope's color.
1612 Value *ParentPad = I.getCatchSwitchParentPad();
1613 const BasicBlock *SuccessorColor;
1614 if (isa<ConstantTokenNone>(ParentPad))
1615 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1616 else
1617 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1618 assert(SuccessorColor && "No parent funclet for catchret!");
1619 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1620 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1622 // Create the terminator node.
1623 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1624 getControlRoot(), DAG.getBasicBlock(TargetMBB),
1625 DAG.getBasicBlock(SuccessorColorMBB));
1626 DAG.setRoot(Ret);
1629 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1630 // Don't emit any special code for the cleanuppad instruction. It just marks
1631 // the start of an EH scope/funclet.
1632 FuncInfo.MBB->setIsEHScopeEntry();
1633 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1634 if (Pers != EHPersonality::Wasm_CXX) {
1635 FuncInfo.MBB->setIsEHFuncletEntry();
1636 FuncInfo.MBB->setIsCleanupFuncletEntry();
1640 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1641 // the control flow always stops at the single catch pad, as it does for a
1642 // cleanup pad. In case the exception caught is not of the types the catch pad
1643 // catches, it will be rethrown by a rethrow.
1644 static void findWasmUnwindDestinations(
1645 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1646 BranchProbability Prob,
1647 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1648 &UnwindDests) {
1649 while (EHPadBB) {
1650 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1651 if (isa<CleanupPadInst>(Pad)) {
1652 // Stop on cleanup pads.
1653 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1654 UnwindDests.back().first->setIsEHScopeEntry();
1655 break;
1656 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1657 // Add the catchpad handlers to the possible destinations. We don't
1658 // continue to the unwind destination of the catchswitch for wasm.
1659 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1660 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1661 UnwindDests.back().first->setIsEHScopeEntry();
1663 break;
1664 } else {
1665 continue;
1670 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1671 /// many places it could ultimately go. In the IR, we have a single unwind
1672 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1673 /// This function skips over imaginary basic blocks that hold catchswitch
1674 /// instructions, and finds all the "real" machine
1675 /// basic block destinations. As those destinations may not be successors of
1676 /// EHPadBB, here we also calculate the edge probability to those destinations.
1677 /// The passed-in Prob is the edge probability to EHPadBB.
1678 static void findUnwindDestinations(
1679 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1680 BranchProbability Prob,
1681 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1682 &UnwindDests) {
1683 EHPersonality Personality =
1684 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1685 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1686 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1687 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1688 bool IsSEH = isAsynchronousEHPersonality(Personality);
1690 if (IsWasmCXX) {
1691 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1692 assert(UnwindDests.size() <= 1 &&
1693 "There should be at most one unwind destination for wasm");
1694 return;
1697 while (EHPadBB) {
1698 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1699 BasicBlock *NewEHPadBB = nullptr;
1700 if (isa<LandingPadInst>(Pad)) {
1701 // Stop on landingpads. They are not funclets.
1702 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1703 break;
1704 } else if (isa<CleanupPadInst>(Pad)) {
1705 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1706 // personalities.
1707 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1708 UnwindDests.back().first->setIsEHScopeEntry();
1709 UnwindDests.back().first->setIsEHFuncletEntry();
1710 break;
1711 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1712 // Add the catchpad handlers to the possible destinations.
1713 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1714 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1715 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1716 if (IsMSVCCXX || IsCoreCLR)
1717 UnwindDests.back().first->setIsEHFuncletEntry();
1718 if (!IsSEH)
1719 UnwindDests.back().first->setIsEHScopeEntry();
1721 NewEHPadBB = CatchSwitch->getUnwindDest();
1722 } else {
1723 continue;
1726 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1727 if (BPI && NewEHPadBB)
1728 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1729 EHPadBB = NewEHPadBB;
1733 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1734 // Update successor info.
1735 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1736 auto UnwindDest = I.getUnwindDest();
1737 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1738 BranchProbability UnwindDestProb =
1739 (BPI && UnwindDest)
1740 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1741 : BranchProbability::getZero();
1742 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1743 for (auto &UnwindDest : UnwindDests) {
1744 UnwindDest.first->setIsEHPad();
1745 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1747 FuncInfo.MBB->normalizeSuccProbs();
1749 // Create the terminator node.
1750 SDValue Ret =
1751 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1752 DAG.setRoot(Ret);
1755 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1756 report_fatal_error("visitCatchSwitch not yet implemented!");
1759 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1760 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1761 auto &DL = DAG.getDataLayout();
1762 SDValue Chain = getControlRoot();
1763 SmallVector<ISD::OutputArg, 8> Outs;
1764 SmallVector<SDValue, 8> OutVals;
1766 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1767 // lower
1769 // %val = call <ty> @llvm.experimental.deoptimize()
1770 // ret <ty> %val
1772 // differently.
1773 if (I.getParent()->getTerminatingDeoptimizeCall()) {
1774 LowerDeoptimizingReturn();
1775 return;
1778 if (!FuncInfo.CanLowerReturn) {
1779 unsigned DemoteReg = FuncInfo.DemoteRegister;
1780 const Function *F = I.getParent()->getParent();
1782 // Emit a store of the return value through the virtual register.
1783 // Leave Outs empty so that LowerReturn won't try to load return
1784 // registers the usual way.
1785 SmallVector<EVT, 1> PtrValueVTs;
1786 ComputeValueVTs(TLI, DL,
1787 F->getReturnType()->getPointerTo(
1788 DAG.getDataLayout().getAllocaAddrSpace()),
1789 PtrValueVTs);
1791 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1792 DemoteReg, PtrValueVTs[0]);
1793 SDValue RetOp = getValue(I.getOperand(0));
1795 SmallVector<EVT, 4> ValueVTs, MemVTs;
1796 SmallVector<uint64_t, 4> Offsets;
1797 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1798 &Offsets);
1799 unsigned NumValues = ValueVTs.size();
1801 SmallVector<SDValue, 4> Chains(NumValues);
1802 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1803 for (unsigned i = 0; i != NumValues; ++i) {
1804 // An aggregate return value cannot wrap around the address space, so
1805 // offsets to its parts don't wrap either.
1806 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1807 TypeSize::Fixed(Offsets[i]));
1809 SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1810 if (MemVTs[i] != ValueVTs[i])
1811 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1812 Chains[i] = DAG.getStore(
1813 Chain, getCurSDLoc(), Val,
1814 // FIXME: better loc info would be nice.
1815 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1816 commonAlignment(BaseAlign, Offsets[i]));
1819 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1820 MVT::Other, Chains);
1821 } else if (I.getNumOperands() != 0) {
1822 SmallVector<EVT, 4> ValueVTs;
1823 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1824 unsigned NumValues = ValueVTs.size();
1825 if (NumValues) {
1826 SDValue RetOp = getValue(I.getOperand(0));
1828 const Function *F = I.getParent()->getParent();
1830 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1831 I.getOperand(0)->getType(), F->getCallingConv(),
1832 /*IsVarArg*/ false);
1834 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1835 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1836 Attribute::SExt))
1837 ExtendKind = ISD::SIGN_EXTEND;
1838 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1839 Attribute::ZExt))
1840 ExtendKind = ISD::ZERO_EXTEND;
1842 LLVMContext &Context = F->getContext();
1843 bool RetInReg = F->getAttributes().hasAttribute(
1844 AttributeList::ReturnIndex, Attribute::InReg);
1846 for (unsigned j = 0; j != NumValues; ++j) {
1847 EVT VT = ValueVTs[j];
1849 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1850 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1852 CallingConv::ID CC = F->getCallingConv();
1854 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1855 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1856 SmallVector<SDValue, 4> Parts(NumParts);
1857 getCopyToParts(DAG, getCurSDLoc(),
1858 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1859 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1861 // 'inreg' on function refers to return value
1862 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1863 if (RetInReg)
1864 Flags.setInReg();
1866 if (I.getOperand(0)->getType()->isPointerTy()) {
1867 Flags.setPointer();
1868 Flags.setPointerAddrSpace(
1869 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1872 if (NeedsRegBlock) {
1873 Flags.setInConsecutiveRegs();
1874 if (j == NumValues - 1)
1875 Flags.setInConsecutiveRegsLast();
1878 // Propagate extension type if any
1879 if (ExtendKind == ISD::SIGN_EXTEND)
1880 Flags.setSExt();
1881 else if (ExtendKind == ISD::ZERO_EXTEND)
1882 Flags.setZExt();
1884 for (unsigned i = 0; i < NumParts; ++i) {
1885 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1886 VT, /*isfixed=*/true, 0, 0));
1887 OutVals.push_back(Parts[i]);
1893 // Push in swifterror virtual register as the last element of Outs. This makes
1894 // sure swifterror virtual register will be returned in the swifterror
1895 // physical register.
1896 const Function *F = I.getParent()->getParent();
1897 if (TLI.supportSwiftError() &&
1898 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1899 assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1900 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1901 Flags.setSwiftError();
1902 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1903 EVT(TLI.getPointerTy(DL)) /*argvt*/,
1904 true /*isfixed*/, 1 /*origidx*/,
1905 0 /*partOffs*/));
1906 // Create SDNode for the swifterror virtual register.
1907 OutVals.push_back(
1908 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1909 &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1910 EVT(TLI.getPointerTy(DL))));
1913 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1914 CallingConv::ID CallConv =
1915 DAG.getMachineFunction().getFunction().getCallingConv();
1916 Chain = DAG.getTargetLoweringInfo().LowerReturn(
1917 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1919 // Verify that the target's LowerReturn behaved as expected.
1920 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1921 "LowerReturn didn't return a valid chain!");
1923 // Update the DAG with the new chain value resulting from return lowering.
1924 DAG.setRoot(Chain);
1927 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1928 /// created for it, emit nodes to copy the value into the virtual
1929 /// registers.
1930 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1931 // Skip empty types
1932 if (V->getType()->isEmptyTy())
1933 return;
1935 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1936 if (VMI != FuncInfo.ValueMap.end()) {
1937 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1938 CopyValueToVirtualRegister(V, VMI->second);
1942 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1943 /// the current basic block, add it to ValueMap now so that we'll get a
1944 /// CopyTo/FromReg.
1945 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1946 // No need to export constants.
1947 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1949 // Already exported?
1950 if (FuncInfo.isExportedInst(V)) return;
1952 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1953 CopyValueToVirtualRegister(V, Reg);
1956 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1957 const BasicBlock *FromBB) {
1958 // The operands of the setcc have to be in this block. We don't know
1959 // how to export them from some other block.
1960 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1961 // Can export from current BB.
1962 if (VI->getParent() == FromBB)
1963 return true;
1965 // Is already exported, noop.
1966 return FuncInfo.isExportedInst(V);
1969 // If this is an argument, we can export it if the BB is the entry block or
1970 // if it is already exported.
1971 if (isa<Argument>(V)) {
1972 if (FromBB == &FromBB->getParent()->getEntryBlock())
1973 return true;
1975 // Otherwise, can only export this if it is already exported.
1976 return FuncInfo.isExportedInst(V);
1979 // Otherwise, constants can always be exported.
1980 return true;
1983 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1984 BranchProbability
1985 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1986 const MachineBasicBlock *Dst) const {
1987 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1988 const BasicBlock *SrcBB = Src->getBasicBlock();
1989 const BasicBlock *DstBB = Dst->getBasicBlock();
1990 if (!BPI) {
1991 // If BPI is not available, set the default probability as 1 / N, where N is
1992 // the number of successors.
1993 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1994 return BranchProbability(1, SuccSize);
1996 return BPI->getEdgeProbability(SrcBB, DstBB);
1999 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2000 MachineBasicBlock *Dst,
2001 BranchProbability Prob) {
2002 if (!FuncInfo.BPI)
2003 Src->addSuccessorWithoutProb(Dst);
2004 else {
2005 if (Prob.isUnknown())
2006 Prob = getEdgeProbability(Src, Dst);
2007 Src->addSuccessor(Dst, Prob);
2011 static bool InBlock(const Value *V, const BasicBlock *BB) {
2012 if (const Instruction *I = dyn_cast<Instruction>(V))
2013 return I->getParent() == BB;
2014 return true;
2017 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2018 /// This function emits a branch and is used at the leaves of an OR or an
2019 /// AND operator tree.
2020 void
2021 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2022 MachineBasicBlock *TBB,
2023 MachineBasicBlock *FBB,
2024 MachineBasicBlock *CurBB,
2025 MachineBasicBlock *SwitchBB,
2026 BranchProbability TProb,
2027 BranchProbability FProb,
2028 bool InvertCond) {
2029 const BasicBlock *BB = CurBB->getBasicBlock();
2031 // If the leaf of the tree is a comparison, merge the condition into
2032 // the caseblock.
2033 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2034 // The operands of the cmp have to be in this block. We don't know
2035 // how to export them from some other block. If this is the first block
2036 // of the sequence, no exporting is needed.
2037 if (CurBB == SwitchBB ||
2038 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2039 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2040 ISD::CondCode Condition;
2041 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2042 ICmpInst::Predicate Pred =
2043 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2044 Condition = getICmpCondCode(Pred);
2045 } else {
2046 const FCmpInst *FC = cast<FCmpInst>(Cond);
2047 FCmpInst::Predicate Pred =
2048 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2049 Condition = getFCmpCondCode(Pred);
2050 if (TM.Options.NoNaNsFPMath)
2051 Condition = getFCmpCodeWithoutNaN(Condition);
2054 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2055 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2056 SL->SwitchCases.push_back(CB);
2057 return;
2061 // Create a CaseBlock record representing this branch.
2062 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2063 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2064 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2065 SL->SwitchCases.push_back(CB);
2068 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2069 MachineBasicBlock *TBB,
2070 MachineBasicBlock *FBB,
2071 MachineBasicBlock *CurBB,
2072 MachineBasicBlock *SwitchBB,
2073 Instruction::BinaryOps Opc,
2074 BranchProbability TProb,
2075 BranchProbability FProb,
2076 bool InvertCond) {
2077 // Skip over not part of the tree and remember to invert op and operands at
2078 // next level.
2079 Value *NotCond;
2080 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2081 InBlock(NotCond, CurBB->getBasicBlock())) {
2082 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2083 !InvertCond);
2084 return;
2087 const Instruction *BOp = dyn_cast<Instruction>(Cond);
2088 // Compute the effective opcode for Cond, taking into account whether it needs
2089 // to be inverted, e.g.
2090 // and (not (or A, B)), C
2091 // gets lowered as
2092 // and (and (not A, not B), C)
2093 unsigned BOpc = 0;
2094 if (BOp) {
2095 BOpc = BOp->getOpcode();
2096 if (InvertCond) {
2097 if (BOpc == Instruction::And)
2098 BOpc = Instruction::Or;
2099 else if (BOpc == Instruction::Or)
2100 BOpc = Instruction::And;
2104 // If this node is not part of the or/and tree, emit it as a branch.
2105 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2106 BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2107 BOp->getParent() != CurBB->getBasicBlock() ||
2108 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2109 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2110 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2111 TProb, FProb, InvertCond);
2112 return;
2115 // Create TmpBB after CurBB.
2116 MachineFunction::iterator BBI(CurBB);
2117 MachineFunction &MF = DAG.getMachineFunction();
2118 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2119 CurBB->getParent()->insert(++BBI, TmpBB);
2121 if (Opc == Instruction::Or) {
2122 // Codegen X | Y as:
2123 // BB1:
2124 // jmp_if_X TBB
2125 // jmp TmpBB
2126 // TmpBB:
2127 // jmp_if_Y TBB
2128 // jmp FBB
2131 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2132 // The requirement is that
2133 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2134 // = TrueProb for original BB.
2135 // Assuming the original probabilities are A and B, one choice is to set
2136 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2137 // A/(1+B) and 2B/(1+B). This choice assumes that
2138 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2139 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2140 // TmpBB, but the math is more complicated.
2142 auto NewTrueProb = TProb / 2;
2143 auto NewFalseProb = TProb / 2 + FProb;
2144 // Emit the LHS condition.
2145 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2146 NewTrueProb, NewFalseProb, InvertCond);
2148 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2149 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2150 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2151 // Emit the RHS condition into TmpBB.
2152 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2153 Probs[0], Probs[1], InvertCond);
2154 } else {
2155 assert(Opc == Instruction::And && "Unknown merge op!");
2156 // Codegen X & Y as:
2157 // BB1:
2158 // jmp_if_X TmpBB
2159 // jmp FBB
2160 // TmpBB:
2161 // jmp_if_Y TBB
2162 // jmp FBB
2164 // This requires creation of TmpBB after CurBB.
2166 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2167 // The requirement is that
2168 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2169 // = FalseProb for original BB.
2170 // Assuming the original probabilities are A and B, one choice is to set
2171 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2172 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2173 // TrueProb for BB1 * FalseProb for TmpBB.
2175 auto NewTrueProb = TProb + FProb / 2;
2176 auto NewFalseProb = FProb / 2;
2177 // Emit the LHS condition.
2178 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2179 NewTrueProb, NewFalseProb, InvertCond);
2181 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2182 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2183 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2184 // Emit the RHS condition into TmpBB.
2185 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2186 Probs[0], Probs[1], InvertCond);
2190 /// If the set of cases should be emitted as a series of branches, return true.
2191 /// If we should emit this as a bunch of and/or'd together conditions, return
2192 /// false.
2193 bool
2194 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2195 if (Cases.size() != 2) return true;
2197 // If this is two comparisons of the same values or'd or and'd together, they
2198 // will get folded into a single comparison, so don't emit two blocks.
2199 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2200 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2201 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2202 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2203 return false;
2206 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2207 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2208 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2209 Cases[0].CC == Cases[1].CC &&
2210 isa<Constant>(Cases[0].CmpRHS) &&
2211 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2212 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2213 return false;
2214 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2215 return false;
2218 return true;
2221 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2222 MachineBasicBlock *BrMBB = FuncInfo.MBB;
2224 // Update machine-CFG edges.
2225 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2227 if (I.isUnconditional()) {
2228 // Update machine-CFG edges.
2229 BrMBB->addSuccessor(Succ0MBB);
2231 // If this is not a fall-through branch or optimizations are switched off,
2232 // emit the branch.
2233 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2234 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2235 MVT::Other, getControlRoot(),
2236 DAG.getBasicBlock(Succ0MBB)));
2238 return;
2241 // If this condition is one of the special cases we handle, do special stuff
2242 // now.
2243 const Value *CondVal = I.getCondition();
2244 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2246 // If this is a series of conditions that are or'd or and'd together, emit
2247 // this as a sequence of branches instead of setcc's with and/or operations.
2248 // As long as jumps are not expensive (exceptions for multi-use logic ops,
2249 // unpredictable branches, and vector extracts because those jumps are likely
2250 // expensive for any target), this should improve performance.
2251 // For example, instead of something like:
2252 // cmp A, B
2253 // C = seteq
2254 // cmp D, E
2255 // F = setle
2256 // or C, F
2257 // jnz foo
2258 // Emit:
2259 // cmp A, B
2260 // je foo
2261 // cmp D, E
2262 // jle foo
2263 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2264 Instruction::BinaryOps Opcode = BOp->getOpcode();
2265 Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1);
2266 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2267 !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2268 (Opcode == Instruction::And || Opcode == Instruction::Or) &&
2269 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2270 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2271 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2272 Opcode,
2273 getEdgeProbability(BrMBB, Succ0MBB),
2274 getEdgeProbability(BrMBB, Succ1MBB),
2275 /*InvertCond=*/false);
2276 // If the compares in later blocks need to use values not currently
2277 // exported from this block, export them now. This block should always
2278 // be the first entry.
2279 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2281 // Allow some cases to be rejected.
2282 if (ShouldEmitAsBranches(SL->SwitchCases)) {
2283 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2284 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2285 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2288 // Emit the branch for this block.
2289 visitSwitchCase(SL->SwitchCases[0], BrMBB);
2290 SL->SwitchCases.erase(SL->SwitchCases.begin());
2291 return;
2294 // Okay, we decided not to do this, remove any inserted MBB's and clear
2295 // SwitchCases.
2296 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2297 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2299 SL->SwitchCases.clear();
2303 // Create a CaseBlock record representing this branch.
2304 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2305 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2307 // Use visitSwitchCase to actually insert the fast branch sequence for this
2308 // cond branch.
2309 visitSwitchCase(CB, BrMBB);
2312 /// visitSwitchCase - Emits the necessary code to represent a single node in
2313 /// the binary search tree resulting from lowering a switch instruction.
2314 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2315 MachineBasicBlock *SwitchBB) {
2316 SDValue Cond;
2317 SDValue CondLHS = getValue(CB.CmpLHS);
2318 SDLoc dl = CB.DL;
2320 if (CB.CC == ISD::SETTRUE) {
2321 // Branch or fall through to TrueBB.
2322 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2323 SwitchBB->normalizeSuccProbs();
2324 if (CB.TrueBB != NextBlock(SwitchBB)) {
2325 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2326 DAG.getBasicBlock(CB.TrueBB)));
2328 return;
2331 auto &TLI = DAG.getTargetLoweringInfo();
2332 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2334 // Build the setcc now.
2335 if (!CB.CmpMHS) {
2336 // Fold "(X == true)" to X and "(X == false)" to !X to
2337 // handle common cases produced by branch lowering.
2338 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2339 CB.CC == ISD::SETEQ)
2340 Cond = CondLHS;
2341 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2342 CB.CC == ISD::SETEQ) {
2343 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2344 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2345 } else {
2346 SDValue CondRHS = getValue(CB.CmpRHS);
2348 // If a pointer's DAG type is larger than its memory type then the DAG
2349 // values are zero-extended. This breaks signed comparisons so truncate
2350 // back to the underlying type before doing the compare.
2351 if (CondLHS.getValueType() != MemVT) {
2352 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2353 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2355 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2357 } else {
2358 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2360 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2361 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2363 SDValue CmpOp = getValue(CB.CmpMHS);
2364 EVT VT = CmpOp.getValueType();
2366 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2367 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2368 ISD::SETLE);
2369 } else {
2370 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2371 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2372 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2373 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2377 // Update successor info
2378 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2379 // TrueBB and FalseBB are always different unless the incoming IR is
2380 // degenerate. This only happens when running llc on weird IR.
2381 if (CB.TrueBB != CB.FalseBB)
2382 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2383 SwitchBB->normalizeSuccProbs();
2385 // If the lhs block is the next block, invert the condition so that we can
2386 // fall through to the lhs instead of the rhs block.
2387 if (CB.TrueBB == NextBlock(SwitchBB)) {
2388 std::swap(CB.TrueBB, CB.FalseBB);
2389 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2390 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2393 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2394 MVT::Other, getControlRoot(), Cond,
2395 DAG.getBasicBlock(CB.TrueBB));
2397 // Insert the false branch. Do this even if it's a fall through branch,
2398 // this makes it easier to do DAG optimizations which require inverting
2399 // the branch condition.
2400 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2401 DAG.getBasicBlock(CB.FalseBB));
2403 DAG.setRoot(BrCond);
2406 /// visitJumpTable - Emit JumpTable node in the current MBB
2407 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2408 // Emit the code for the jump table
2409 assert(JT.Reg != -1U && "Should lower JT Header first!");
2410 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2411 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2412 JT.Reg, PTy);
2413 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2414 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2415 MVT::Other, Index.getValue(1),
2416 Table, Index);
2417 DAG.setRoot(BrJumpTable);
2420 /// visitJumpTableHeader - This function emits necessary code to produce index
2421 /// in the JumpTable from switch case.
2422 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2423 JumpTableHeader &JTH,
2424 MachineBasicBlock *SwitchBB) {
2425 SDLoc dl = getCurSDLoc();
2427 // Subtract the lowest switch case value from the value being switched on.
2428 SDValue SwitchOp = getValue(JTH.SValue);
2429 EVT VT = SwitchOp.getValueType();
2430 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2431 DAG.getConstant(JTH.First, dl, VT));
2433 // The SDNode we just created, which holds the value being switched on minus
2434 // the smallest case value, needs to be copied to a virtual register so it
2435 // can be used as an index into the jump table in a subsequent basic block.
2436 // This value may be smaller or larger than the target's pointer type, and
2437 // therefore require extension or truncating.
2438 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2439 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2441 unsigned JumpTableReg =
2442 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2443 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2444 JumpTableReg, SwitchOp);
2445 JT.Reg = JumpTableReg;
2447 if (!JTH.OmitRangeCheck) {
2448 // Emit the range check for the jump table, and branch to the default block
2449 // for the switch statement if the value being switched on exceeds the
2450 // largest case in the switch.
2451 SDValue CMP = DAG.getSetCC(
2452 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2453 Sub.getValueType()),
2454 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2456 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2457 MVT::Other, CopyTo, CMP,
2458 DAG.getBasicBlock(JT.Default));
2460 // Avoid emitting unnecessary branches to the next block.
2461 if (JT.MBB != NextBlock(SwitchBB))
2462 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2463 DAG.getBasicBlock(JT.MBB));
2465 DAG.setRoot(BrCond);
2466 } else {
2467 // Avoid emitting unnecessary branches to the next block.
2468 if (JT.MBB != NextBlock(SwitchBB))
2469 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2470 DAG.getBasicBlock(JT.MBB)));
2471 else
2472 DAG.setRoot(CopyTo);
2476 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2477 /// variable if there exists one.
2478 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2479 SDValue &Chain) {
2480 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2481 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2482 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2483 MachineFunction &MF = DAG.getMachineFunction();
2484 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2485 MachineSDNode *Node =
2486 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2487 if (Global) {
2488 MachinePointerInfo MPInfo(Global);
2489 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2490 MachineMemOperand::MODereferenceable;
2491 MachineMemOperand *MemRef = MF.getMachineMemOperand(
2492 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2493 DAG.setNodeMemRefs(Node, {MemRef});
2495 if (PtrTy != PtrMemTy)
2496 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2497 return SDValue(Node, 0);
2500 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2501 /// tail spliced into a stack protector check success bb.
2503 /// For a high level explanation of how this fits into the stack protector
2504 /// generation see the comment on the declaration of class
2505 /// StackProtectorDescriptor.
2506 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2507 MachineBasicBlock *ParentBB) {
2509 // First create the loads to the guard/stack slot for the comparison.
2510 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2511 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2512 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2514 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2515 int FI = MFI.getStackProtectorIndex();
2517 SDValue Guard;
2518 SDLoc dl = getCurSDLoc();
2519 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2520 const Module &M = *ParentBB->getParent()->getFunction().getParent();
2521 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2523 // Generate code to load the content of the guard slot.
2524 SDValue GuardVal = DAG.getLoad(
2525 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2526 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2527 MachineMemOperand::MOVolatile);
2529 if (TLI.useStackGuardXorFP())
2530 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2532 // Retrieve guard check function, nullptr if instrumentation is inlined.
2533 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2534 // The target provides a guard check function to validate the guard value.
2535 // Generate a call to that function with the content of the guard slot as
2536 // argument.
2537 FunctionType *FnTy = GuardCheckFn->getFunctionType();
2538 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2540 TargetLowering::ArgListTy Args;
2541 TargetLowering::ArgListEntry Entry;
2542 Entry.Node = GuardVal;
2543 Entry.Ty = FnTy->getParamType(0);
2544 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2545 Entry.IsInReg = true;
2546 Args.push_back(Entry);
2548 TargetLowering::CallLoweringInfo CLI(DAG);
2549 CLI.setDebugLoc(getCurSDLoc())
2550 .setChain(DAG.getEntryNode())
2551 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2552 getValue(GuardCheckFn), std::move(Args));
2554 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2555 DAG.setRoot(Result.second);
2556 return;
2559 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2560 // Otherwise, emit a volatile load to retrieve the stack guard value.
2561 SDValue Chain = DAG.getEntryNode();
2562 if (TLI.useLoadStackGuardNode()) {
2563 Guard = getLoadStackGuard(DAG, dl, Chain);
2564 } else {
2565 const Value *IRGuard = TLI.getSDagStackGuard(M);
2566 SDValue GuardPtr = getValue(IRGuard);
2568 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2569 MachinePointerInfo(IRGuard, 0), Align,
2570 MachineMemOperand::MOVolatile);
2573 // Perform the comparison via a getsetcc.
2574 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2575 *DAG.getContext(),
2576 Guard.getValueType()),
2577 Guard, GuardVal, ISD::SETNE);
2579 // If the guard/stackslot do not equal, branch to failure MBB.
2580 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2581 MVT::Other, GuardVal.getOperand(0),
2582 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2583 // Otherwise branch to success MBB.
2584 SDValue Br = DAG.getNode(ISD::BR, dl,
2585 MVT::Other, BrCond,
2586 DAG.getBasicBlock(SPD.getSuccessMBB()));
2588 DAG.setRoot(Br);
2591 /// Codegen the failure basic block for a stack protector check.
2593 /// A failure stack protector machine basic block consists simply of a call to
2594 /// __stack_chk_fail().
2596 /// For a high level explanation of how this fits into the stack protector
2597 /// generation see the comment on the declaration of class
2598 /// StackProtectorDescriptor.
2599 void
2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2601 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2602 TargetLowering::MakeLibCallOptions CallOptions;
2603 CallOptions.setDiscardResult(true);
2604 SDValue Chain =
2605 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2606 None, CallOptions, getCurSDLoc()).second;
2607 // On PS4, the "return address" must still be within the calling function,
2608 // even if it's at the very end, so emit an explicit TRAP here.
2609 // Passing 'true' for doesNotReturn above won't generate the trap for us.
2610 if (TM.getTargetTriple().isPS4CPU())
2611 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2612 // WebAssembly needs an unreachable instruction after a non-returning call,
2613 // because the function return type can be different from __stack_chk_fail's
2614 // return type (void).
2615 if (TM.getTargetTriple().isWasm())
2616 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2618 DAG.setRoot(Chain);
2621 /// visitBitTestHeader - This function emits necessary code to produce value
2622 /// suitable for "bit tests"
2623 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2624 MachineBasicBlock *SwitchBB) {
2625 SDLoc dl = getCurSDLoc();
2627 // Subtract the minimum value.
2628 SDValue SwitchOp = getValue(B.SValue);
2629 EVT VT = SwitchOp.getValueType();
2630 SDValue RangeSub =
2631 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2633 // Determine the type of the test operands.
2634 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2635 bool UsePtrType = false;
2636 if (!TLI.isTypeLegal(VT)) {
2637 UsePtrType = true;
2638 } else {
2639 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2640 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2641 // Switch table case range are encoded into series of masks.
2642 // Just use pointer type, it's guaranteed to fit.
2643 UsePtrType = true;
2644 break;
2647 SDValue Sub = RangeSub;
2648 if (UsePtrType) {
2649 VT = TLI.getPointerTy(DAG.getDataLayout());
2650 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2653 B.RegVT = VT.getSimpleVT();
2654 B.Reg = FuncInfo.CreateReg(B.RegVT);
2655 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2657 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2659 if (!B.OmitRangeCheck)
2660 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2661 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2662 SwitchBB->normalizeSuccProbs();
2664 SDValue Root = CopyTo;
2665 if (!B.OmitRangeCheck) {
2666 // Conditional branch to the default block.
2667 SDValue RangeCmp = DAG.getSetCC(dl,
2668 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2669 RangeSub.getValueType()),
2670 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2671 ISD::SETUGT);
2673 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2674 DAG.getBasicBlock(B.Default));
2677 // Avoid emitting unnecessary branches to the next block.
2678 if (MBB != NextBlock(SwitchBB))
2679 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2681 DAG.setRoot(Root);
2684 /// visitBitTestCase - this function produces one "bit test"
2685 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2686 MachineBasicBlock* NextMBB,
2687 BranchProbability BranchProbToNext,
2688 unsigned Reg,
2689 BitTestCase &B,
2690 MachineBasicBlock *SwitchBB) {
2691 SDLoc dl = getCurSDLoc();
2692 MVT VT = BB.RegVT;
2693 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2694 SDValue Cmp;
2695 unsigned PopCount = countPopulation(B.Mask);
2696 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2697 if (PopCount == 1) {
2698 // Testing for a single bit; just compare the shift count with what it
2699 // would need to be to shift a 1 bit in that position.
2700 Cmp = DAG.getSetCC(
2701 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2702 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2703 ISD::SETEQ);
2704 } else if (PopCount == BB.Range) {
2705 // There is only one zero bit in the range, test for it directly.
2706 Cmp = DAG.getSetCC(
2707 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2708 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2709 ISD::SETNE);
2710 } else {
2711 // Make desired shift
2712 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2713 DAG.getConstant(1, dl, VT), ShiftOp);
2715 // Emit bit tests and jumps
2716 SDValue AndOp = DAG.getNode(ISD::AND, dl,
2717 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2718 Cmp = DAG.getSetCC(
2719 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2720 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2723 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2724 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2725 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2726 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2727 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2728 // one as they are relative probabilities (and thus work more like weights),
2729 // and hence we need to normalize them to let the sum of them become one.
2730 SwitchBB->normalizeSuccProbs();
2732 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2733 MVT::Other, getControlRoot(),
2734 Cmp, DAG.getBasicBlock(B.TargetBB));
2736 // Avoid emitting unnecessary branches to the next block.
2737 if (NextMBB != NextBlock(SwitchBB))
2738 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2739 DAG.getBasicBlock(NextMBB));
2741 DAG.setRoot(BrAnd);
2744 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2745 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2747 // Retrieve successors. Look through artificial IR level blocks like
2748 // catchswitch for successors.
2749 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2750 const BasicBlock *EHPadBB = I.getSuccessor(1);
2752 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2753 // have to do anything here to lower funclet bundles.
2754 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2755 LLVMContext::OB_gc_transition,
2756 LLVMContext::OB_gc_live,
2757 LLVMContext::OB_funclet,
2758 LLVMContext::OB_cfguardtarget}) &&
2759 "Cannot lower invokes with arbitrary operand bundles yet!");
2761 const Value *Callee(I.getCalledOperand());
2762 const Function *Fn = dyn_cast<Function>(Callee);
2763 if (isa<InlineAsm>(Callee))
2764 visitInlineAsm(I);
2765 else if (Fn && Fn->isIntrinsic()) {
2766 switch (Fn->getIntrinsicID()) {
2767 default:
2768 llvm_unreachable("Cannot invoke this intrinsic");
2769 case Intrinsic::donothing:
2770 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2771 break;
2772 case Intrinsic::experimental_patchpoint_void:
2773 case Intrinsic::experimental_patchpoint_i64:
2774 visitPatchpoint(I, EHPadBB);
2775 break;
2776 case Intrinsic::experimental_gc_statepoint:
2777 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2778 break;
2779 case Intrinsic::wasm_rethrow_in_catch: {
2780 // This is usually done in visitTargetIntrinsic, but this intrinsic is
2781 // special because it can be invoked, so we manually lower it to a DAG
2782 // node here.
2783 SmallVector<SDValue, 8> Ops;
2784 Ops.push_back(getRoot()); // inchain
2785 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2786 Ops.push_back(
2787 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2788 TLI.getPointerTy(DAG.getDataLayout())));
2789 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2790 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2791 break;
2794 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2795 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2796 // Eventually we will support lowering the @llvm.experimental.deoptimize
2797 // intrinsic, and right now there are no plans to support other intrinsics
2798 // with deopt state.
2799 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2800 } else {
2801 LowerCallTo(I, getValue(Callee), false, EHPadBB);
2804 // If the value of the invoke is used outside of its defining block, make it
2805 // available as a virtual register.
2806 // We already took care of the exported value for the statepoint instruction
2807 // during call to the LowerStatepoint.
2808 if (!isa<GCStatepointInst>(I)) {
2809 CopyToExportRegsIfNeeded(&I);
2812 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2813 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2814 BranchProbability EHPadBBProb =
2815 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2816 : BranchProbability::getZero();
2817 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2819 // Update successor info.
2820 addSuccessorWithProb(InvokeMBB, Return);
2821 for (auto &UnwindDest : UnwindDests) {
2822 UnwindDest.first->setIsEHPad();
2823 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2825 InvokeMBB->normalizeSuccProbs();
2827 // Drop into normal successor.
2828 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2829 DAG.getBasicBlock(Return)));
2832 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2833 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2835 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2836 // have to do anything here to lower funclet bundles.
2837 assert(!I.hasOperandBundlesOtherThan(
2838 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2839 "Cannot lower callbrs with arbitrary operand bundles yet!");
2841 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2842 visitInlineAsm(I);
2843 CopyToExportRegsIfNeeded(&I);
2845 // Retrieve successors.
2846 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2848 // Update successor info.
2849 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2850 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2851 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2852 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2853 Target->setIsInlineAsmBrIndirectTarget();
2855 CallBrMBB->normalizeSuccProbs();
2857 // Drop into default successor.
2858 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2859 MVT::Other, getControlRoot(),
2860 DAG.getBasicBlock(Return)));
2863 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2864 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2867 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2868 assert(FuncInfo.MBB->isEHPad() &&
2869 "Call to landingpad not in landing pad!");
2871 // If there aren't registers to copy the values into (e.g., during SjLj
2872 // exceptions), then don't bother to create these DAG nodes.
2873 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2874 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2875 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2876 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2877 return;
2879 // If landingpad's return type is token type, we don't create DAG nodes
2880 // for its exception pointer and selector value. The extraction of exception
2881 // pointer or selector value from token type landingpads is not currently
2882 // supported.
2883 if (LP.getType()->isTokenTy())
2884 return;
2886 SmallVector<EVT, 2> ValueVTs;
2887 SDLoc dl = getCurSDLoc();
2888 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2889 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2891 // Get the two live-in registers as SDValues. The physregs have already been
2892 // copied into virtual registers.
2893 SDValue Ops[2];
2894 if (FuncInfo.ExceptionPointerVirtReg) {
2895 Ops[0] = DAG.getZExtOrTrunc(
2896 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2897 FuncInfo.ExceptionPointerVirtReg,
2898 TLI.getPointerTy(DAG.getDataLayout())),
2899 dl, ValueVTs[0]);
2900 } else {
2901 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2903 Ops[1] = DAG.getZExtOrTrunc(
2904 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2905 FuncInfo.ExceptionSelectorVirtReg,
2906 TLI.getPointerTy(DAG.getDataLayout())),
2907 dl, ValueVTs[1]);
2909 // Merge into one.
2910 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2911 DAG.getVTList(ValueVTs), Ops);
2912 setValue(&LP, Res);
2915 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2916 MachineBasicBlock *Last) {
2917 // Update JTCases.
2918 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2919 if (SL->JTCases[i].first.HeaderBB == First)
2920 SL->JTCases[i].first.HeaderBB = Last;
2922 // Update BitTestCases.
2923 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2924 if (SL->BitTestCases[i].Parent == First)
2925 SL->BitTestCases[i].Parent = Last;
2928 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2929 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2931 // Update machine-CFG edges with unique successors.
2932 SmallSet<BasicBlock*, 32> Done;
2933 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2934 BasicBlock *BB = I.getSuccessor(i);
2935 bool Inserted = Done.insert(BB).second;
2936 if (!Inserted)
2937 continue;
2939 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2940 addSuccessorWithProb(IndirectBrMBB, Succ);
2942 IndirectBrMBB->normalizeSuccProbs();
2944 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2945 MVT::Other, getControlRoot(),
2946 getValue(I.getAddress())));
2949 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2950 if (!DAG.getTarget().Options.TrapUnreachable)
2951 return;
2953 // We may be able to ignore unreachable behind a noreturn call.
2954 if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2955 const BasicBlock &BB = *I.getParent();
2956 if (&I != &BB.front()) {
2957 BasicBlock::const_iterator PredI =
2958 std::prev(BasicBlock::const_iterator(&I));
2959 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2960 if (Call->doesNotReturn())
2961 return;
2966 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2969 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
2970 SDNodeFlags Flags;
2972 SDValue Op = getValue(I.getOperand(0));
2973 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
2974 Op, Flags);
2975 setValue(&I, UnNodeValue);
2978 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2979 SDNodeFlags Flags;
2980 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2981 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2982 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2984 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
2985 Flags.setExact(ExactOp->isExact());
2986 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
2987 Flags.copyFMF(*FPOp);
2989 SDValue Op1 = getValue(I.getOperand(0));
2990 SDValue Op2 = getValue(I.getOperand(1));
2991 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2992 Op1, Op2, Flags);
2993 setValue(&I, BinNodeValue);
2996 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2997 SDValue Op1 = getValue(I.getOperand(0));
2998 SDValue Op2 = getValue(I.getOperand(1));
3000 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3001 Op1.getValueType(), DAG.getDataLayout());
3003 // Coerce the shift amount to the right type if we can.
3004 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3005 unsigned ShiftSize = ShiftTy.getSizeInBits();
3006 unsigned Op2Size = Op2.getValueSizeInBits();
3007 SDLoc DL = getCurSDLoc();
3009 // If the operand is smaller than the shift count type, promote it.
3010 if (ShiftSize > Op2Size)
3011 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3013 // If the operand is larger than the shift count type but the shift
3014 // count type has enough bits to represent any shift value, truncate
3015 // it now. This is a common case and it exposes the truncate to
3016 // optimization early.
3017 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3018 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3019 // Otherwise we'll need to temporarily settle for some other convenient
3020 // type. Type legalization will make adjustments once the shiftee is split.
3021 else
3022 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3025 bool nuw = false;
3026 bool nsw = false;
3027 bool exact = false;
3029 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3031 if (const OverflowingBinaryOperator *OFBinOp =
3032 dyn_cast<const OverflowingBinaryOperator>(&I)) {
3033 nuw = OFBinOp->hasNoUnsignedWrap();
3034 nsw = OFBinOp->hasNoSignedWrap();
3036 if (const PossiblyExactOperator *ExactOp =
3037 dyn_cast<const PossiblyExactOperator>(&I))
3038 exact = ExactOp->isExact();
3040 SDNodeFlags Flags;
3041 Flags.setExact(exact);
3042 Flags.setNoSignedWrap(nsw);
3043 Flags.setNoUnsignedWrap(nuw);
3044 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3045 Flags);
3046 setValue(&I, Res);
3049 void SelectionDAGBuilder::visitSDiv(const User &I) {
3050 SDValue Op1 = getValue(I.getOperand(0));
3051 SDValue Op2 = getValue(I.getOperand(1));
3053 SDNodeFlags Flags;
3054 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3055 cast<PossiblyExactOperator>(&I)->isExact());
3056 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3057 Op2, Flags));
3060 void SelectionDAGBuilder::visitICmp(const User &I) {
3061 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3062 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3063 predicate = IC->getPredicate();
3064 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3065 predicate = ICmpInst::Predicate(IC->getPredicate());
3066 SDValue Op1 = getValue(I.getOperand(0));
3067 SDValue Op2 = getValue(I.getOperand(1));
3068 ISD::CondCode Opcode = getICmpCondCode(predicate);
3070 auto &TLI = DAG.getTargetLoweringInfo();
3071 EVT MemVT =
3072 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3074 // If a pointer's DAG type is larger than its memory type then the DAG values
3075 // are zero-extended. This breaks signed comparisons so truncate back to the
3076 // underlying type before doing the compare.
3077 if (Op1.getValueType() != MemVT) {
3078 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3079 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3082 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3083 I.getType());
3084 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3087 void SelectionDAGBuilder::visitFCmp(const User &I) {
3088 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3089 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3090 predicate = FC->getPredicate();
3091 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3092 predicate = FCmpInst::Predicate(FC->getPredicate());
3093 SDValue Op1 = getValue(I.getOperand(0));
3094 SDValue Op2 = getValue(I.getOperand(1));
3096 ISD::CondCode Condition = getFCmpCondCode(predicate);
3097 auto *FPMO = cast<FPMathOperator>(&I);
3098 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3099 Condition = getFCmpCodeWithoutNaN(Condition);
3101 SDNodeFlags Flags;
3102 Flags.copyFMF(*FPMO);
3103 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3105 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3106 I.getType());
3107 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3110 // Check if the condition of the select has one use or two users that are both
3111 // selects with the same condition.
3112 static bool hasOnlySelectUsers(const Value *Cond) {
3113 return llvm::all_of(Cond->users(), [](const Value *V) {
3114 return isa<SelectInst>(V);
3118 void SelectionDAGBuilder::visitSelect(const User &I) {
3119 SmallVector<EVT, 4> ValueVTs;
3120 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3121 ValueVTs);
3122 unsigned NumValues = ValueVTs.size();
3123 if (NumValues == 0) return;
3125 SmallVector<SDValue, 4> Values(NumValues);
3126 SDValue Cond = getValue(I.getOperand(0));
3127 SDValue LHSVal = getValue(I.getOperand(1));
3128 SDValue RHSVal = getValue(I.getOperand(2));
3129 SmallVector<SDValue, 1> BaseOps(1, Cond);
3130 ISD::NodeType OpCode =
3131 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3133 bool IsUnaryAbs = false;
3134 bool Negate = false;
3136 SDNodeFlags Flags;
3137 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3138 Flags.copyFMF(*FPOp);
3140 // Min/max matching is only viable if all output VTs are the same.
3141 if (is_splat(ValueVTs)) {
3142 EVT VT = ValueVTs[0];
3143 LLVMContext &Ctx = *DAG.getContext();
3144 auto &TLI = DAG.getTargetLoweringInfo();
3146 // We care about the legality of the operation after it has been type
3147 // legalized.
3148 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3149 VT = TLI.getTypeToTransformTo(Ctx, VT);
3151 // If the vselect is legal, assume we want to leave this as a vector setcc +
3152 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3153 // min/max is legal on the scalar type.
3154 bool UseScalarMinMax = VT.isVector() &&
3155 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3157 Value *LHS, *RHS;
3158 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3159 ISD::NodeType Opc = ISD::DELETED_NODE;
3160 switch (SPR.Flavor) {
3161 case SPF_UMAX: Opc = ISD::UMAX; break;
3162 case SPF_UMIN: Opc = ISD::UMIN; break;
3163 case SPF_SMAX: Opc = ISD::SMAX; break;
3164 case SPF_SMIN: Opc = ISD::SMIN; break;
3165 case SPF_FMINNUM:
3166 switch (SPR.NaNBehavior) {
3167 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3168 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break;
3169 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3170 case SPNB_RETURNS_ANY: {
3171 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3172 Opc = ISD::FMINNUM;
3173 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3174 Opc = ISD::FMINIMUM;
3175 else if (UseScalarMinMax)
3176 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3177 ISD::FMINNUM : ISD::FMINIMUM;
3178 break;
3181 break;
3182 case SPF_FMAXNUM:
3183 switch (SPR.NaNBehavior) {
3184 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3185 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break;
3186 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3187 case SPNB_RETURNS_ANY:
3189 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3190 Opc = ISD::FMAXNUM;
3191 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3192 Opc = ISD::FMAXIMUM;
3193 else if (UseScalarMinMax)
3194 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3195 ISD::FMAXNUM : ISD::FMAXIMUM;
3196 break;
3198 break;
3199 case SPF_NABS:
3200 Negate = true;
3201 LLVM_FALLTHROUGH;
3202 case SPF_ABS:
3203 IsUnaryAbs = true;
3204 Opc = ISD::ABS;
3205 break;
3206 default: break;
3209 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3210 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3211 (UseScalarMinMax &&
3212 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3213 // If the underlying comparison instruction is used by any other
3214 // instruction, the consumed instructions won't be destroyed, so it is
3215 // not profitable to convert to a min/max.
3216 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3217 OpCode = Opc;
3218 LHSVal = getValue(LHS);
3219 RHSVal = getValue(RHS);
3220 BaseOps.clear();
3223 if (IsUnaryAbs) {
3224 OpCode = Opc;
3225 LHSVal = getValue(LHS);
3226 BaseOps.clear();
3230 if (IsUnaryAbs) {
3231 for (unsigned i = 0; i != NumValues; ++i) {
3232 SDLoc dl = getCurSDLoc();
3233 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3234 Values[i] =
3235 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3236 if (Negate)
3237 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3238 Values[i]);
3240 } else {
3241 for (unsigned i = 0; i != NumValues; ++i) {
3242 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3243 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3244 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3245 Values[i] = DAG.getNode(
3246 OpCode, getCurSDLoc(),
3247 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3251 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3252 DAG.getVTList(ValueVTs), Values));
3255 void SelectionDAGBuilder::visitTrunc(const User &I) {
3256 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3257 SDValue N = getValue(I.getOperand(0));
3258 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3259 I.getType());
3260 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3263 void SelectionDAGBuilder::visitZExt(const User &I) {
3264 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3265 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3266 SDValue N = getValue(I.getOperand(0));
3267 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3268 I.getType());
3269 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3272 void SelectionDAGBuilder::visitSExt(const User &I) {
3273 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3274 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3275 SDValue N = getValue(I.getOperand(0));
3276 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3277 I.getType());
3278 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3281 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3282 // FPTrunc is never a no-op cast, no need to check
3283 SDValue N = getValue(I.getOperand(0));
3284 SDLoc dl = getCurSDLoc();
3285 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3286 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3287 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3288 DAG.getTargetConstant(
3289 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3292 void SelectionDAGBuilder::visitFPExt(const User &I) {
3293 // FPExt is never a no-op cast, no need to check
3294 SDValue N = getValue(I.getOperand(0));
3295 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3296 I.getType());
3297 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3300 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3301 // FPToUI is never a no-op cast, no need to check
3302 SDValue N = getValue(I.getOperand(0));
3303 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3304 I.getType());
3305 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3308 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3309 // FPToSI is never a no-op cast, no need to check
3310 SDValue N = getValue(I.getOperand(0));
3311 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3312 I.getType());
3313 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3316 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3317 // UIToFP is never a no-op cast, no need to check
3318 SDValue N = getValue(I.getOperand(0));
3319 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3320 I.getType());
3321 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3324 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3325 // SIToFP is never a no-op cast, no need to check
3326 SDValue N = getValue(I.getOperand(0));
3327 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3328 I.getType());
3329 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3332 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3333 // What to do depends on the size of the integer and the size of the pointer.
3334 // We can either truncate, zero extend, or no-op, accordingly.
3335 SDValue N = getValue(I.getOperand(0));
3336 auto &TLI = DAG.getTargetLoweringInfo();
3337 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3338 I.getType());
3339 EVT PtrMemVT =
3340 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3341 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3342 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3343 setValue(&I, N);
3346 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3347 // What to do depends on the size of the integer and the size of the pointer.
3348 // We can either truncate, zero extend, or no-op, accordingly.
3349 SDValue N = getValue(I.getOperand(0));
3350 auto &TLI = DAG.getTargetLoweringInfo();
3351 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3352 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3353 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3354 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3355 setValue(&I, N);
3358 void SelectionDAGBuilder::visitBitCast(const User &I) {
3359 SDValue N = getValue(I.getOperand(0));
3360 SDLoc dl = getCurSDLoc();
3361 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3362 I.getType());
3364 // BitCast assures us that source and destination are the same size so this is
3365 // either a BITCAST or a no-op.
3366 if (DestVT != N.getValueType())
3367 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3368 DestVT, N)); // convert types.
3369 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3370 // might fold any kind of constant expression to an integer constant and that
3371 // is not what we are looking for. Only recognize a bitcast of a genuine
3372 // constant integer as an opaque constant.
3373 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3374 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3375 /*isOpaque*/true));
3376 else
3377 setValue(&I, N); // noop cast.
3380 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3381 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3382 const Value *SV = I.getOperand(0);
3383 SDValue N = getValue(SV);
3384 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3386 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3387 unsigned DestAS = I.getType()->getPointerAddressSpace();
3389 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3390 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3392 setValue(&I, N);
3395 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3396 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3397 SDValue InVec = getValue(I.getOperand(0));
3398 SDValue InVal = getValue(I.getOperand(1));
3399 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3400 TLI.getVectorIdxTy(DAG.getDataLayout()));
3401 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3402 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3403 InVec, InVal, InIdx));
3406 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3407 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3408 SDValue InVec = getValue(I.getOperand(0));
3409 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3410 TLI.getVectorIdxTy(DAG.getDataLayout()));
3411 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3412 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3413 InVec, InIdx));
3416 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3417 SDValue Src1 = getValue(I.getOperand(0));
3418 SDValue Src2 = getValue(I.getOperand(1));
3419 ArrayRef<int> Mask;
3420 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3421 Mask = SVI->getShuffleMask();
3422 else
3423 Mask = cast<ConstantExpr>(I).getShuffleMask();
3424 SDLoc DL = getCurSDLoc();
3425 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3426 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3427 EVT SrcVT = Src1.getValueType();
3429 if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3430 VT.isScalableVector()) {
3431 // Canonical splat form of first element of first input vector.
3432 SDValue FirstElt =
3433 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3434 DAG.getVectorIdxConstant(0, DL));
3435 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3436 return;
3439 // For now, we only handle splats for scalable vectors.
3440 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3441 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3442 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3444 unsigned SrcNumElts = SrcVT.getVectorNumElements();
3445 unsigned MaskNumElts = Mask.size();
3447 if (SrcNumElts == MaskNumElts) {
3448 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3449 return;
3452 // Normalize the shuffle vector since mask and vector length don't match.
3453 if (SrcNumElts < MaskNumElts) {
3454 // Mask is longer than the source vectors. We can use concatenate vector to
3455 // make the mask and vectors lengths match.
3457 if (MaskNumElts % SrcNumElts == 0) {
3458 // Mask length is a multiple of the source vector length.
3459 // Check if the shuffle is some kind of concatenation of the input
3460 // vectors.
3461 unsigned NumConcat = MaskNumElts / SrcNumElts;
3462 bool IsConcat = true;
3463 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3464 for (unsigned i = 0; i != MaskNumElts; ++i) {
3465 int Idx = Mask[i];
3466 if (Idx < 0)
3467 continue;
3468 // Ensure the indices in each SrcVT sized piece are sequential and that
3469 // the same source is used for the whole piece.
3470 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3471 (ConcatSrcs[i / SrcNumElts] >= 0 &&
3472 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3473 IsConcat = false;
3474 break;
3476 // Remember which source this index came from.
3477 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3480 // The shuffle is concatenating multiple vectors together. Just emit
3481 // a CONCAT_VECTORS operation.
3482 if (IsConcat) {
3483 SmallVector<SDValue, 8> ConcatOps;
3484 for (auto Src : ConcatSrcs) {
3485 if (Src < 0)
3486 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3487 else if (Src == 0)
3488 ConcatOps.push_back(Src1);
3489 else
3490 ConcatOps.push_back(Src2);
3492 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3493 return;
3497 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3498 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3499 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3500 PaddedMaskNumElts);
3502 // Pad both vectors with undefs to make them the same length as the mask.
3503 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3505 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3506 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3507 MOps1[0] = Src1;
3508 MOps2[0] = Src2;
3510 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3511 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3513 // Readjust mask for new input vector length.
3514 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3515 for (unsigned i = 0; i != MaskNumElts; ++i) {
3516 int Idx = Mask[i];
3517 if (Idx >= (int)SrcNumElts)
3518 Idx -= SrcNumElts - PaddedMaskNumElts;
3519 MappedOps[i] = Idx;
3522 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3524 // If the concatenated vector was padded, extract a subvector with the
3525 // correct number of elements.
3526 if (MaskNumElts != PaddedMaskNumElts)
3527 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3528 DAG.getVectorIdxConstant(0, DL));
3530 setValue(&I, Result);
3531 return;
3534 if (SrcNumElts > MaskNumElts) {
3535 // Analyze the access pattern of the vector to see if we can extract
3536 // two subvectors and do the shuffle.
3537 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from
3538 bool CanExtract = true;
3539 for (int Idx : Mask) {
3540 unsigned Input = 0;
3541 if (Idx < 0)
3542 continue;
3544 if (Idx >= (int)SrcNumElts) {
3545 Input = 1;
3546 Idx -= SrcNumElts;
3549 // If all the indices come from the same MaskNumElts sized portion of
3550 // the sources we can use extract. Also make sure the extract wouldn't
3551 // extract past the end of the source.
3552 int NewStartIdx = alignDown(Idx, MaskNumElts);
3553 if (NewStartIdx + MaskNumElts > SrcNumElts ||
3554 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3555 CanExtract = false;
3556 // Make sure we always update StartIdx as we use it to track if all
3557 // elements are undef.
3558 StartIdx[Input] = NewStartIdx;
3561 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3562 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3563 return;
3565 if (CanExtract) {
3566 // Extract appropriate subvector and generate a vector shuffle
3567 for (unsigned Input = 0; Input < 2; ++Input) {
3568 SDValue &Src = Input == 0 ? Src1 : Src2;
3569 if (StartIdx[Input] < 0)
3570 Src = DAG.getUNDEF(VT);
3571 else {
3572 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3573 DAG.getVectorIdxConstant(StartIdx[Input], DL));
3577 // Calculate new mask.
3578 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3579 for (int &Idx : MappedOps) {
3580 if (Idx >= (int)SrcNumElts)
3581 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3582 else if (Idx >= 0)
3583 Idx -= StartIdx[0];
3586 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3587 return;
3591 // We can't use either concat vectors or extract subvectors so fall back to
3592 // replacing the shuffle with extract and build vector.
3593 // to insert and build vector.
3594 EVT EltVT = VT.getVectorElementType();
3595 SmallVector<SDValue,8> Ops;
3596 for (int Idx : Mask) {
3597 SDValue Res;
3599 if (Idx < 0) {
3600 Res = DAG.getUNDEF(EltVT);
3601 } else {
3602 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3603 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3605 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3606 DAG.getVectorIdxConstant(Idx, DL));
3609 Ops.push_back(Res);
3612 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3615 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3616 ArrayRef<unsigned> Indices;
3617 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3618 Indices = IV->getIndices();
3619 else
3620 Indices = cast<ConstantExpr>(&I)->getIndices();
3622 const Value *Op0 = I.getOperand(0);
3623 const Value *Op1 = I.getOperand(1);
3624 Type *AggTy = I.getType();
3625 Type *ValTy = Op1->getType();
3626 bool IntoUndef = isa<UndefValue>(Op0);
3627 bool FromUndef = isa<UndefValue>(Op1);
3629 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3631 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3632 SmallVector<EVT, 4> AggValueVTs;
3633 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3634 SmallVector<EVT, 4> ValValueVTs;
3635 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3637 unsigned NumAggValues = AggValueVTs.size();
3638 unsigned NumValValues = ValValueVTs.size();
3639 SmallVector<SDValue, 4> Values(NumAggValues);
3641 // Ignore an insertvalue that produces an empty object
3642 if (!NumAggValues) {
3643 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3644 return;
3647 SDValue Agg = getValue(Op0);
3648 unsigned i = 0;
3649 // Copy the beginning value(s) from the original aggregate.
3650 for (; i != LinearIndex; ++i)
3651 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3652 SDValue(Agg.getNode(), Agg.getResNo() + i);
3653 // Copy values from the inserted value(s).
3654 if (NumValValues) {
3655 SDValue Val = getValue(Op1);
3656 for (; i != LinearIndex + NumValValues; ++i)
3657 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3658 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3660 // Copy remaining value(s) from the original aggregate.
3661 for (; i != NumAggValues; ++i)
3662 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3663 SDValue(Agg.getNode(), Agg.getResNo() + i);
3665 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3666 DAG.getVTList(AggValueVTs), Values));
3669 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3670 ArrayRef<unsigned> Indices;
3671 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3672 Indices = EV->getIndices();
3673 else
3674 Indices = cast<ConstantExpr>(&I)->getIndices();
3676 const Value *Op0 = I.getOperand(0);
3677 Type *AggTy = Op0->getType();
3678 Type *ValTy = I.getType();
3679 bool OutOfUndef = isa<UndefValue>(Op0);
3681 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3683 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3684 SmallVector<EVT, 4> ValValueVTs;
3685 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3687 unsigned NumValValues = ValValueVTs.size();
3689 // Ignore a extractvalue that produces an empty object
3690 if (!NumValValues) {
3691 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3692 return;
3695 SmallVector<SDValue, 4> Values(NumValValues);
3697 SDValue Agg = getValue(Op0);
3698 // Copy out the selected value(s).
3699 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3700 Values[i - LinearIndex] =
3701 OutOfUndef ?
3702 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3703 SDValue(Agg.getNode(), Agg.getResNo() + i);
3705 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3706 DAG.getVTList(ValValueVTs), Values));
3709 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3710 Value *Op0 = I.getOperand(0);
3711 // Note that the pointer operand may be a vector of pointers. Take the scalar
3712 // element which holds a pointer.
3713 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3714 SDValue N = getValue(Op0);
3715 SDLoc dl = getCurSDLoc();
3716 auto &TLI = DAG.getTargetLoweringInfo();
3718 // Normalize Vector GEP - all scalar operands should be converted to the
3719 // splat vector.
3720 bool IsVectorGEP = I.getType()->isVectorTy();
3721 ElementCount VectorElementCount =
3722 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3723 : ElementCount::getFixed(0);
3725 if (IsVectorGEP && !N.getValueType().isVector()) {
3726 LLVMContext &Context = *DAG.getContext();
3727 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3728 if (VectorElementCount.isScalable())
3729 N = DAG.getSplatVector(VT, dl, N);
3730 else
3731 N = DAG.getSplatBuildVector(VT, dl, N);
3734 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3735 GTI != E; ++GTI) {
3736 const Value *Idx = GTI.getOperand();
3737 if (StructType *StTy = GTI.getStructTypeOrNull()) {
3738 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3739 if (Field) {
3740 // N = N + Offset
3741 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3743 // In an inbounds GEP with an offset that is nonnegative even when
3744 // interpreted as signed, assume there is no unsigned overflow.
3745 SDNodeFlags Flags;
3746 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3747 Flags.setNoUnsignedWrap(true);
3749 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3750 DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3752 } else {
3753 // IdxSize is the width of the arithmetic according to IR semantics.
3754 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3755 // (and fix up the result later).
3756 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3757 MVT IdxTy = MVT::getIntegerVT(IdxSize);
3758 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3759 // We intentionally mask away the high bits here; ElementSize may not
3760 // fit in IdxTy.
3761 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3762 bool ElementScalable = ElementSize.isScalable();
3764 // If this is a scalar constant or a splat vector of constants,
3765 // handle it quickly.
3766 const auto *C = dyn_cast<Constant>(Idx);
3767 if (C && isa<VectorType>(C->getType()))
3768 C = C->getSplatValue();
3770 const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3771 if (CI && CI->isZero())
3772 continue;
3773 if (CI && !ElementScalable) {
3774 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3775 LLVMContext &Context = *DAG.getContext();
3776 SDValue OffsVal;
3777 if (IsVectorGEP)
3778 OffsVal = DAG.getConstant(
3779 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3780 else
3781 OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3783 // In an inbounds GEP with an offset that is nonnegative even when
3784 // interpreted as signed, assume there is no unsigned overflow.
3785 SDNodeFlags Flags;
3786 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3787 Flags.setNoUnsignedWrap(true);
3789 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3791 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3792 continue;
3795 // N = N + Idx * ElementMul;
3796 SDValue IdxN = getValue(Idx);
3798 if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3799 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3800 VectorElementCount);
3801 if (VectorElementCount.isScalable())
3802 IdxN = DAG.getSplatVector(VT, dl, IdxN);
3803 else
3804 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3807 // If the index is smaller or larger than intptr_t, truncate or extend
3808 // it.
3809 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3811 if (ElementScalable) {
3812 EVT VScaleTy = N.getValueType().getScalarType();
3813 SDValue VScale = DAG.getNode(
3814 ISD::VSCALE, dl, VScaleTy,
3815 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3816 if (IsVectorGEP)
3817 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3818 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3819 } else {
3820 // If this is a multiply by a power of two, turn it into a shl
3821 // immediately. This is a very common case.
3822 if (ElementMul != 1) {
3823 if (ElementMul.isPowerOf2()) {
3824 unsigned Amt = ElementMul.logBase2();
3825 IdxN = DAG.getNode(ISD::SHL, dl,
3826 N.getValueType(), IdxN,
3827 DAG.getConstant(Amt, dl, IdxN.getValueType()));
3828 } else {
3829 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3830 IdxN.getValueType());
3831 IdxN = DAG.getNode(ISD::MUL, dl,
3832 N.getValueType(), IdxN, Scale);
3837 N = DAG.getNode(ISD::ADD, dl,
3838 N.getValueType(), N, IdxN);
3842 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3843 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3844 if (IsVectorGEP) {
3845 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3846 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3849 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3850 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3852 setValue(&I, N);
3855 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3856 // If this is a fixed sized alloca in the entry block of the function,
3857 // allocate it statically on the stack.
3858 if (FuncInfo.StaticAllocaMap.count(&I))
3859 return; // getValue will auto-populate this.
3861 SDLoc dl = getCurSDLoc();
3862 Type *Ty = I.getAllocatedType();
3863 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3864 auto &DL = DAG.getDataLayout();
3865 uint64_t TySize = DL.getTypeAllocSize(Ty);
3866 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3868 SDValue AllocSize = getValue(I.getArraySize());
3870 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3871 if (AllocSize.getValueType() != IntPtr)
3872 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3874 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3875 AllocSize,
3876 DAG.getConstant(TySize, dl, IntPtr));
3878 // Handle alignment. If the requested alignment is less than or equal to
3879 // the stack alignment, ignore it. If the size is greater than or equal to
3880 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3881 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3882 if (*Alignment <= StackAlign)
3883 Alignment = None;
3885 const uint64_t StackAlignMask = StackAlign.value() - 1U;
3886 // Round the size of the allocation up to the stack alignment size
3887 // by add SA-1 to the size. This doesn't overflow because we're computing
3888 // an address inside an alloca.
3889 SDNodeFlags Flags;
3890 Flags.setNoUnsignedWrap(true);
3891 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3892 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3894 // Mask out the low bits for alignment purposes.
3895 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3896 DAG.getConstant(~StackAlignMask, dl, IntPtr));
3898 SDValue Ops[] = {
3899 getRoot(), AllocSize,
3900 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3901 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3902 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3903 setValue(&I, DSA);
3904 DAG.setRoot(DSA.getValue(1));
3906 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3909 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3910 if (I.isAtomic())
3911 return visitAtomicLoad(I);
3913 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3914 const Value *SV = I.getOperand(0);
3915 if (TLI.supportSwiftError()) {
3916 // Swifterror values can come from either a function parameter with
3917 // swifterror attribute or an alloca with swifterror attribute.
3918 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3919 if (Arg->hasSwiftErrorAttr())
3920 return visitLoadFromSwiftError(I);
3923 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3924 if (Alloca->isSwiftError())
3925 return visitLoadFromSwiftError(I);
3929 SDValue Ptr = getValue(SV);
3931 Type *Ty = I.getType();
3932 Align Alignment = I.getAlign();
3934 AAMDNodes AAInfo;
3935 I.getAAMetadata(AAInfo);
3936 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3938 SmallVector<EVT, 4> ValueVTs, MemVTs;
3939 SmallVector<uint64_t, 4> Offsets;
3940 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3941 unsigned NumValues = ValueVTs.size();
3942 if (NumValues == 0)
3943 return;
3945 bool isVolatile = I.isVolatile();
3947 SDValue Root;
3948 bool ConstantMemory = false;
3949 if (isVolatile)
3950 // Serialize volatile loads with other side effects.
3951 Root = getRoot();
3952 else if (NumValues > MaxParallelChains)
3953 Root = getMemoryRoot();
3954 else if (AA &&
3955 AA->pointsToConstantMemory(MemoryLocation(
3957 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3958 AAInfo))) {
3959 // Do not serialize (non-volatile) loads of constant memory with anything.
3960 Root = DAG.getEntryNode();
3961 ConstantMemory = true;
3962 } else {
3963 // Do not serialize non-volatile loads against each other.
3964 Root = DAG.getRoot();
3967 SDLoc dl = getCurSDLoc();
3969 if (isVolatile)
3970 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3972 // An aggregate load cannot wrap around the address space, so offsets to its
3973 // parts don't wrap either.
3974 SDNodeFlags Flags;
3975 Flags.setNoUnsignedWrap(true);
3977 SmallVector<SDValue, 4> Values(NumValues);
3978 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3979 EVT PtrVT = Ptr.getValueType();
3981 MachineMemOperand::Flags MMOFlags
3982 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
3984 unsigned ChainI = 0;
3985 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3986 // Serializing loads here may result in excessive register pressure, and
3987 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3988 // could recover a bit by hoisting nodes upward in the chain by recognizing
3989 // they are side-effect free or do not alias. The optimizer should really
3990 // avoid this case by converting large object/array copies to llvm.memcpy
3991 // (MaxParallelChains should always remain as failsafe).
3992 if (ChainI == MaxParallelChains) {
3993 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3994 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3995 makeArrayRef(Chains.data(), ChainI));
3996 Root = Chain;
3997 ChainI = 0;
3999 SDValue A = DAG.getNode(ISD::ADD, dl,
4000 PtrVT, Ptr,
4001 DAG.getConstant(Offsets[i], dl, PtrVT),
4002 Flags);
4004 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4005 MachinePointerInfo(SV, Offsets[i]), Alignment,
4006 MMOFlags, AAInfo, Ranges);
4007 Chains[ChainI] = L.getValue(1);
4009 if (MemVTs[i] != ValueVTs[i])
4010 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4012 Values[i] = L;
4015 if (!ConstantMemory) {
4016 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4017 makeArrayRef(Chains.data(), ChainI));
4018 if (isVolatile)
4019 DAG.setRoot(Chain);
4020 else
4021 PendingLoads.push_back(Chain);
4024 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4025 DAG.getVTList(ValueVTs), Values));
4028 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4029 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4030 "call visitStoreToSwiftError when backend supports swifterror");
4032 SmallVector<EVT, 4> ValueVTs;
4033 SmallVector<uint64_t, 4> Offsets;
4034 const Value *SrcV = I.getOperand(0);
4035 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4036 SrcV->getType(), ValueVTs, &Offsets);
4037 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4038 "expect a single EVT for swifterror");
4040 SDValue Src = getValue(SrcV);
4041 // Create a virtual register, then update the virtual register.
4042 Register VReg =
4043 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4044 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4045 // Chain can be getRoot or getControlRoot.
4046 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4047 SDValue(Src.getNode(), Src.getResNo()));
4048 DAG.setRoot(CopyNode);
4051 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4052 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4053 "call visitLoadFromSwiftError when backend supports swifterror");
4055 assert(!I.isVolatile() &&
4056 !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4057 !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4058 "Support volatile, non temporal, invariant for load_from_swift_error");
4060 const Value *SV = I.getOperand(0);
4061 Type *Ty = I.getType();
4062 AAMDNodes AAInfo;
4063 I.getAAMetadata(AAInfo);
4064 assert(
4065 (!AA ||
4066 !AA->pointsToConstantMemory(MemoryLocation(
4067 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4068 AAInfo))) &&
4069 "load_from_swift_error should not be constant memory");
4071 SmallVector<EVT, 4> ValueVTs;
4072 SmallVector<uint64_t, 4> Offsets;
4073 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4074 ValueVTs, &Offsets);
4075 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4076 "expect a single EVT for swifterror");
4078 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4079 SDValue L = DAG.getCopyFromReg(
4080 getRoot(), getCurSDLoc(),
4081 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4083 setValue(&I, L);
4086 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4087 if (I.isAtomic())
4088 return visitAtomicStore(I);
4090 const Value *SrcV = I.getOperand(0);
4091 const Value *PtrV = I.getOperand(1);
4093 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4094 if (TLI.supportSwiftError()) {
4095 // Swifterror values can come from either a function parameter with
4096 // swifterror attribute or an alloca with swifterror attribute.
4097 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4098 if (Arg->hasSwiftErrorAttr())
4099 return visitStoreToSwiftError(I);
4102 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4103 if (Alloca->isSwiftError())
4104 return visitStoreToSwiftError(I);
4108 SmallVector<EVT, 4> ValueVTs, MemVTs;
4109 SmallVector<uint64_t, 4> Offsets;
4110 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4111 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4112 unsigned NumValues = ValueVTs.size();
4113 if (NumValues == 0)
4114 return;
4116 // Get the lowered operands. Note that we do this after
4117 // checking if NumResults is zero, because with zero results
4118 // the operands won't have values in the map.
4119 SDValue Src = getValue(SrcV);
4120 SDValue Ptr = getValue(PtrV);
4122 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4123 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4124 SDLoc dl = getCurSDLoc();
4125 Align Alignment = I.getAlign();
4126 AAMDNodes AAInfo;
4127 I.getAAMetadata(AAInfo);
4129 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4131 // An aggregate load cannot wrap around the address space, so offsets to its
4132 // parts don't wrap either.
4133 SDNodeFlags Flags;
4134 Flags.setNoUnsignedWrap(true);
4136 unsigned ChainI = 0;
4137 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4138 // See visitLoad comments.
4139 if (ChainI == MaxParallelChains) {
4140 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4141 makeArrayRef(Chains.data(), ChainI));
4142 Root = Chain;
4143 ChainI = 0;
4145 SDValue Add =
4146 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4147 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4148 if (MemVTs[i] != ValueVTs[i])
4149 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4150 SDValue St =
4151 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4152 Alignment, MMOFlags, AAInfo);
4153 Chains[ChainI] = St;
4156 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4157 makeArrayRef(Chains.data(), ChainI));
4158 DAG.setRoot(StoreNode);
4161 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4162 bool IsCompressing) {
4163 SDLoc sdl = getCurSDLoc();
4165 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4166 MaybeAlign &Alignment) {
4167 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4168 Src0 = I.getArgOperand(0);
4169 Ptr = I.getArgOperand(1);
4170 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4171 Mask = I.getArgOperand(3);
4173 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4174 MaybeAlign &Alignment) {
4175 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4176 Src0 = I.getArgOperand(0);
4177 Ptr = I.getArgOperand(1);
4178 Mask = I.getArgOperand(2);
4179 Alignment = None;
4182 Value *PtrOperand, *MaskOperand, *Src0Operand;
4183 MaybeAlign Alignment;
4184 if (IsCompressing)
4185 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4186 else
4187 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4189 SDValue Ptr = getValue(PtrOperand);
4190 SDValue Src0 = getValue(Src0Operand);
4191 SDValue Mask = getValue(MaskOperand);
4192 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4194 EVT VT = Src0.getValueType();
4195 if (!Alignment)
4196 Alignment = DAG.getEVTAlign(VT);
4198 AAMDNodes AAInfo;
4199 I.getAAMetadata(AAInfo);
4201 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4202 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4203 // TODO: Make MachineMemOperands aware of scalable
4204 // vectors.
4205 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4206 SDValue StoreNode =
4207 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4208 ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4209 DAG.setRoot(StoreNode);
4210 setValue(&I, StoreNode);
4213 // Get a uniform base for the Gather/Scatter intrinsic.
4214 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4215 // We try to represent it as a base pointer + vector of indices.
4216 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4217 // The first operand of the GEP may be a single pointer or a vector of pointers
4218 // Example:
4219 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4220 // or
4221 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4222 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4224 // When the first GEP operand is a single pointer - it is the uniform base we
4225 // are looking for. If first operand of the GEP is a splat vector - we
4226 // extract the splat value and use it as a uniform base.
4227 // In all other cases the function returns 'false'.
4228 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4229 ISD::MemIndexType &IndexType, SDValue &Scale,
4230 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4231 SelectionDAG& DAG = SDB->DAG;
4232 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4233 const DataLayout &DL = DAG.getDataLayout();
4235 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4237 // Handle splat constant pointer.
4238 if (auto *C = dyn_cast<Constant>(Ptr)) {
4239 C = C->getSplatValue();
4240 if (!C)
4241 return false;
4243 Base = SDB->getValue(C);
4245 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4246 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4247 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4248 IndexType = ISD::SIGNED_SCALED;
4249 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4250 return true;
4253 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4254 if (!GEP || GEP->getParent() != CurBB)
4255 return false;
4257 if (GEP->getNumOperands() != 2)
4258 return false;
4260 const Value *BasePtr = GEP->getPointerOperand();
4261 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4263 // Make sure the base is scalar and the index is a vector.
4264 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4265 return false;
4267 Base = SDB->getValue(BasePtr);
4268 Index = SDB->getValue(IndexVal);
4269 IndexType = ISD::SIGNED_SCALED;
4270 Scale = DAG.getTargetConstant(
4271 DL.getTypeAllocSize(GEP->getResultElementType()),
4272 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4273 return true;
4276 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4277 SDLoc sdl = getCurSDLoc();
4279 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4280 const Value *Ptr = I.getArgOperand(1);
4281 SDValue Src0 = getValue(I.getArgOperand(0));
4282 SDValue Mask = getValue(I.getArgOperand(3));
4283 EVT VT = Src0.getValueType();
4284 Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4285 ->getMaybeAlignValue()
4286 .getValueOr(DAG.getEVTAlign(VT));
4287 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4289 AAMDNodes AAInfo;
4290 I.getAAMetadata(AAInfo);
4292 SDValue Base;
4293 SDValue Index;
4294 ISD::MemIndexType IndexType;
4295 SDValue Scale;
4296 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4297 I.getParent());
4299 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4300 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4301 MachinePointerInfo(AS), MachineMemOperand::MOStore,
4302 // TODO: Make MachineMemOperands aware of scalable
4303 // vectors.
4304 MemoryLocation::UnknownSize, Alignment, AAInfo);
4305 if (!UniformBase) {
4306 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4307 Index = getValue(Ptr);
4308 IndexType = ISD::SIGNED_UNSCALED;
4309 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4311 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4312 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4313 Ops, MMO, IndexType, false);
4314 DAG.setRoot(Scatter);
4315 setValue(&I, Scatter);
4318 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4319 SDLoc sdl = getCurSDLoc();
4321 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4322 MaybeAlign &Alignment) {
4323 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4324 Ptr = I.getArgOperand(0);
4325 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4326 Mask = I.getArgOperand(2);
4327 Src0 = I.getArgOperand(3);
4329 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4330 MaybeAlign &Alignment) {
4331 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4332 Ptr = I.getArgOperand(0);
4333 Alignment = None;
4334 Mask = I.getArgOperand(1);
4335 Src0 = I.getArgOperand(2);
4338 Value *PtrOperand, *MaskOperand, *Src0Operand;
4339 MaybeAlign Alignment;
4340 if (IsExpanding)
4341 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4342 else
4343 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4345 SDValue Ptr = getValue(PtrOperand);
4346 SDValue Src0 = getValue(Src0Operand);
4347 SDValue Mask = getValue(MaskOperand);
4348 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4350 EVT VT = Src0.getValueType();
4351 if (!Alignment)
4352 Alignment = DAG.getEVTAlign(VT);
4354 AAMDNodes AAInfo;
4355 I.getAAMetadata(AAInfo);
4356 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4358 // Do not serialize masked loads of constant memory with anything.
4359 MemoryLocation ML;
4360 if (VT.isScalableVector())
4361 ML = MemoryLocation::getAfter(PtrOperand);
4362 else
4363 ML = MemoryLocation(PtrOperand, LocationSize::precise(
4364 DAG.getDataLayout().getTypeStoreSize(I.getType())),
4365 AAInfo);
4366 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4368 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4370 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4371 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4372 // TODO: Make MachineMemOperands aware of scalable
4373 // vectors.
4374 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4376 SDValue Load =
4377 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4378 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4379 if (AddToChain)
4380 PendingLoads.push_back(Load.getValue(1));
4381 setValue(&I, Load);
4384 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4385 SDLoc sdl = getCurSDLoc();
4387 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4388 const Value *Ptr = I.getArgOperand(0);
4389 SDValue Src0 = getValue(I.getArgOperand(3));
4390 SDValue Mask = getValue(I.getArgOperand(2));
4392 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4393 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4394 Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4395 ->getMaybeAlignValue()
4396 .getValueOr(DAG.getEVTAlign(VT));
4398 AAMDNodes AAInfo;
4399 I.getAAMetadata(AAInfo);
4400 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4402 SDValue Root = DAG.getRoot();
4403 SDValue Base;
4404 SDValue Index;
4405 ISD::MemIndexType IndexType;
4406 SDValue Scale;
4407 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4408 I.getParent());
4409 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4410 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4411 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4412 // TODO: Make MachineMemOperands aware of scalable
4413 // vectors.
4414 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4416 if (!UniformBase) {
4417 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4418 Index = getValue(Ptr);
4419 IndexType = ISD::SIGNED_UNSCALED;
4420 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4422 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4423 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4424 Ops, MMO, IndexType);
4426 PendingLoads.push_back(Gather.getValue(1));
4427 setValue(&I, Gather);
4430 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4431 SDLoc dl = getCurSDLoc();
4432 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4433 AtomicOrdering FailureOrdering = I.getFailureOrdering();
4434 SyncScope::ID SSID = I.getSyncScopeID();
4436 SDValue InChain = getRoot();
4438 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4439 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4441 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4442 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4444 MachineFunction &MF = DAG.getMachineFunction();
4445 MachineMemOperand *MMO = MF.getMachineMemOperand(
4446 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4447 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4448 FailureOrdering);
4450 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4451 dl, MemVT, VTs, InChain,
4452 getValue(I.getPointerOperand()),
4453 getValue(I.getCompareOperand()),
4454 getValue(I.getNewValOperand()), MMO);
4456 SDValue OutChain = L.getValue(2);
4458 setValue(&I, L);
4459 DAG.setRoot(OutChain);
4462 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4463 SDLoc dl = getCurSDLoc();
4464 ISD::NodeType NT;
4465 switch (I.getOperation()) {
4466 default: llvm_unreachable("Unknown atomicrmw operation");
4467 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4468 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
4469 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
4470 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
4471 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4472 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
4473 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
4474 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
4475 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
4476 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4477 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4478 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4479 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4481 AtomicOrdering Ordering = I.getOrdering();
4482 SyncScope::ID SSID = I.getSyncScopeID();
4484 SDValue InChain = getRoot();
4486 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4487 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4488 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4490 MachineFunction &MF = DAG.getMachineFunction();
4491 MachineMemOperand *MMO = MF.getMachineMemOperand(
4492 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4493 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4495 SDValue L =
4496 DAG.getAtomic(NT, dl, MemVT, InChain,
4497 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4498 MMO);
4500 SDValue OutChain = L.getValue(1);
4502 setValue(&I, L);
4503 DAG.setRoot(OutChain);
4506 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4507 SDLoc dl = getCurSDLoc();
4508 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4509 SDValue Ops[3];
4510 Ops[0] = getRoot();
4511 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4512 TLI.getFenceOperandTy(DAG.getDataLayout()));
4513 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4514 TLI.getFenceOperandTy(DAG.getDataLayout()));
4515 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4518 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4519 SDLoc dl = getCurSDLoc();
4520 AtomicOrdering Order = I.getOrdering();
4521 SyncScope::ID SSID = I.getSyncScopeID();
4523 SDValue InChain = getRoot();
4525 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4526 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4527 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4529 if (!TLI.supportsUnalignedAtomics() &&
4530 I.getAlignment() < MemVT.getSizeInBits() / 8)
4531 report_fatal_error("Cannot generate unaligned atomic load");
4533 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4535 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4536 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4537 I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4539 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4541 SDValue Ptr = getValue(I.getPointerOperand());
4543 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4544 // TODO: Once this is better exercised by tests, it should be merged with
4545 // the normal path for loads to prevent future divergence.
4546 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4547 if (MemVT != VT)
4548 L = DAG.getPtrExtOrTrunc(L, dl, VT);
4550 setValue(&I, L);
4551 SDValue OutChain = L.getValue(1);
4552 if (!I.isUnordered())
4553 DAG.setRoot(OutChain);
4554 else
4555 PendingLoads.push_back(OutChain);
4556 return;
4559 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4560 Ptr, MMO);
4562 SDValue OutChain = L.getValue(1);
4563 if (MemVT != VT)
4564 L = DAG.getPtrExtOrTrunc(L, dl, VT);
4566 setValue(&I, L);
4567 DAG.setRoot(OutChain);
4570 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4571 SDLoc dl = getCurSDLoc();
4573 AtomicOrdering Ordering = I.getOrdering();
4574 SyncScope::ID SSID = I.getSyncScopeID();
4576 SDValue InChain = getRoot();
4578 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4579 EVT MemVT =
4580 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4582 if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4583 report_fatal_error("Cannot generate unaligned atomic store");
4585 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4587 MachineFunction &MF = DAG.getMachineFunction();
4588 MachineMemOperand *MMO = MF.getMachineMemOperand(
4589 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4590 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4592 SDValue Val = getValue(I.getValueOperand());
4593 if (Val.getValueType() != MemVT)
4594 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4595 SDValue Ptr = getValue(I.getPointerOperand());
4597 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4598 // TODO: Once this is better exercised by tests, it should be merged with
4599 // the normal path for stores to prevent future divergence.
4600 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4601 DAG.setRoot(S);
4602 return;
4604 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4605 Ptr, Val, MMO);
4608 DAG.setRoot(OutChain);
4611 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4612 /// node.
4613 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4614 unsigned Intrinsic) {
4615 // Ignore the callsite's attributes. A specific call site may be marked with
4616 // readnone, but the lowering code will expect the chain based on the
4617 // definition.
4618 const Function *F = I.getCalledFunction();
4619 bool HasChain = !F->doesNotAccessMemory();
4620 bool OnlyLoad = HasChain && F->onlyReadsMemory();
4622 // Build the operand list.
4623 SmallVector<SDValue, 8> Ops;
4624 if (HasChain) { // If this intrinsic has side-effects, chainify it.
4625 if (OnlyLoad) {
4626 // We don't need to serialize loads against other loads.
4627 Ops.push_back(DAG.getRoot());
4628 } else {
4629 Ops.push_back(getRoot());
4633 // Info is set by getTgtMemInstrinsic
4634 TargetLowering::IntrinsicInfo Info;
4635 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4636 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4637 DAG.getMachineFunction(),
4638 Intrinsic);
4640 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4641 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4642 Info.opc == ISD::INTRINSIC_W_CHAIN)
4643 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4644 TLI.getPointerTy(DAG.getDataLayout())));
4646 // Add all operands of the call to the operand list.
4647 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4648 const Value *Arg = I.getArgOperand(i);
4649 if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4650 Ops.push_back(getValue(Arg));
4651 continue;
4654 // Use TargetConstant instead of a regular constant for immarg.
4655 EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4656 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4657 assert(CI->getBitWidth() <= 64 &&
4658 "large intrinsic immediates not handled");
4659 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4660 } else {
4661 Ops.push_back(
4662 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4666 SmallVector<EVT, 4> ValueVTs;
4667 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4669 if (HasChain)
4670 ValueVTs.push_back(MVT::Other);
4672 SDVTList VTs = DAG.getVTList(ValueVTs);
4674 // Create the node.
4675 SDValue Result;
4676 if (IsTgtIntrinsic) {
4677 // This is target intrinsic that touches memory
4678 AAMDNodes AAInfo;
4679 I.getAAMetadata(AAInfo);
4680 Result =
4681 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4682 MachinePointerInfo(Info.ptrVal, Info.offset),
4683 Info.align, Info.flags, Info.size, AAInfo);
4684 } else if (!HasChain) {
4685 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4686 } else if (!I.getType()->isVoidTy()) {
4687 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4688 } else {
4689 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4692 if (HasChain) {
4693 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4694 if (OnlyLoad)
4695 PendingLoads.push_back(Chain);
4696 else
4697 DAG.setRoot(Chain);
4700 if (!I.getType()->isVoidTy()) {
4701 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4702 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4703 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4704 } else
4705 Result = lowerRangeToAssertZExt(DAG, I, Result);
4707 MaybeAlign Alignment = I.getRetAlign();
4708 if (!Alignment)
4709 Alignment = F->getAttributes().getRetAlignment();
4710 // Insert `assertalign` node if there's an alignment.
4711 if (InsertAssertAlign && Alignment) {
4712 Result =
4713 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4716 setValue(&I, Result);
4720 /// GetSignificand - Get the significand and build it into a floating-point
4721 /// number with exponent of 1:
4723 /// Op = (Op & 0x007fffff) | 0x3f800000;
4725 /// where Op is the hexadecimal representation of floating point value.
4726 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4727 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4728 DAG.getConstant(0x007fffff, dl, MVT::i32));
4729 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4730 DAG.getConstant(0x3f800000, dl, MVT::i32));
4731 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4734 /// GetExponent - Get the exponent:
4736 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4738 /// where Op is the hexadecimal representation of floating point value.
4739 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4740 const TargetLowering &TLI, const SDLoc &dl) {
4741 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4742 DAG.getConstant(0x7f800000, dl, MVT::i32));
4743 SDValue t1 = DAG.getNode(
4744 ISD::SRL, dl, MVT::i32, t0,
4745 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4746 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4747 DAG.getConstant(127, dl, MVT::i32));
4748 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4751 /// getF32Constant - Get 32-bit floating point constant.
4752 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4753 const SDLoc &dl) {
4754 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4755 MVT::f32);
4758 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4759 SelectionDAG &DAG) {
4760 // TODO: What fast-math-flags should be set on the floating-point nodes?
4762 // IntegerPartOfX = ((int32_t)(t0);
4763 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4765 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4766 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4767 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4769 // IntegerPartOfX <<= 23;
4770 IntegerPartOfX = DAG.getNode(
4771 ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4772 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4773 DAG.getDataLayout())));
4775 SDValue TwoToFractionalPartOfX;
4776 if (LimitFloatPrecision <= 6) {
4777 // For floating-point precision of 6:
4779 // TwoToFractionalPartOfX =
4780 // 0.997535578f +
4781 // (0.735607626f + 0.252464424f * x) * x;
4783 // error 0.0144103317, which is 6 bits
4784 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4785 getF32Constant(DAG, 0x3e814304, dl));
4786 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4787 getF32Constant(DAG, 0x3f3c50c8, dl));
4788 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4789 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4790 getF32Constant(DAG, 0x3f7f5e7e, dl));
4791 } else if (LimitFloatPrecision <= 12) {
4792 // For floating-point precision of 12:
4794 // TwoToFractionalPartOfX =
4795 // 0.999892986f +
4796 // (0.696457318f +
4797 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4799 // error 0.000107046256, which is 13 to 14 bits
4800 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4801 getF32Constant(DAG, 0x3da235e3, dl));
4802 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4803 getF32Constant(DAG, 0x3e65b8f3, dl));
4804 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4805 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4806 getF32Constant(DAG, 0x3f324b07, dl));
4807 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4808 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4809 getF32Constant(DAG, 0x3f7ff8fd, dl));
4810 } else { // LimitFloatPrecision <= 18
4811 // For floating-point precision of 18:
4813 // TwoToFractionalPartOfX =
4814 // 0.999999982f +
4815 // (0.693148872f +
4816 // (0.240227044f +
4817 // (0.554906021e-1f +
4818 // (0.961591928e-2f +
4819 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4820 // error 2.47208000*10^(-7), which is better than 18 bits
4821 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4822 getF32Constant(DAG, 0x3924b03e, dl));
4823 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4824 getF32Constant(DAG, 0x3ab24b87, dl));
4825 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4826 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4827 getF32Constant(DAG, 0x3c1d8c17, dl));
4828 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4829 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4830 getF32Constant(DAG, 0x3d634a1d, dl));
4831 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4832 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4833 getF32Constant(DAG, 0x3e75fe14, dl));
4834 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4835 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4836 getF32Constant(DAG, 0x3f317234, dl));
4837 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4838 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4839 getF32Constant(DAG, 0x3f800000, dl));
4842 // Add the exponent into the result in integer domain.
4843 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4844 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4845 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4848 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4849 /// limited-precision mode.
4850 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4851 const TargetLowering &TLI, SDNodeFlags Flags) {
4852 if (Op.getValueType() == MVT::f32 &&
4853 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4855 // Put the exponent in the right bit position for later addition to the
4856 // final result:
4858 // t0 = Op * log2(e)
4860 // TODO: What fast-math-flags should be set here?
4861 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4862 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4863 return getLimitedPrecisionExp2(t0, dl, DAG);
4866 // No special expansion.
4867 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
4870 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4871 /// limited-precision mode.
4872 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4873 const TargetLowering &TLI, SDNodeFlags Flags) {
4874 // TODO: What fast-math-flags should be set on the floating-point nodes?
4876 if (Op.getValueType() == MVT::f32 &&
4877 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4878 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4880 // Scale the exponent by log(2).
4881 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4882 SDValue LogOfExponent =
4883 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4884 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4886 // Get the significand and build it into a floating-point number with
4887 // exponent of 1.
4888 SDValue X = GetSignificand(DAG, Op1, dl);
4890 SDValue LogOfMantissa;
4891 if (LimitFloatPrecision <= 6) {
4892 // For floating-point precision of 6:
4894 // LogofMantissa =
4895 // -1.1609546f +
4896 // (1.4034025f - 0.23903021f * x) * x;
4898 // error 0.0034276066, which is better than 8 bits
4899 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4900 getF32Constant(DAG, 0xbe74c456, dl));
4901 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4902 getF32Constant(DAG, 0x3fb3a2b1, dl));
4903 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4904 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4905 getF32Constant(DAG, 0x3f949a29, dl));
4906 } else if (LimitFloatPrecision <= 12) {
4907 // For floating-point precision of 12:
4909 // LogOfMantissa =
4910 // -1.7417939f +
4911 // (2.8212026f +
4912 // (-1.4699568f +
4913 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4915 // error 0.000061011436, which is 14 bits
4916 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4917 getF32Constant(DAG, 0xbd67b6d6, dl));
4918 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4919 getF32Constant(DAG, 0x3ee4f4b8, dl));
4920 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4921 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4922 getF32Constant(DAG, 0x3fbc278b, dl));
4923 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4924 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4925 getF32Constant(DAG, 0x40348e95, dl));
4926 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4927 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4928 getF32Constant(DAG, 0x3fdef31a, dl));
4929 } else { // LimitFloatPrecision <= 18
4930 // For floating-point precision of 18:
4932 // LogOfMantissa =
4933 // -2.1072184f +
4934 // (4.2372794f +
4935 // (-3.7029485f +
4936 // (2.2781945f +
4937 // (-0.87823314f +
4938 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4940 // error 0.0000023660568, which is better than 18 bits
4941 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4942 getF32Constant(DAG, 0xbc91e5ac, dl));
4943 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4944 getF32Constant(DAG, 0x3e4350aa, dl));
4945 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4946 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4947 getF32Constant(DAG, 0x3f60d3e3, dl));
4948 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4949 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4950 getF32Constant(DAG, 0x4011cdf0, dl));
4951 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4952 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4953 getF32Constant(DAG, 0x406cfd1c, dl));
4954 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4955 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4956 getF32Constant(DAG, 0x408797cb, dl));
4957 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4958 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4959 getF32Constant(DAG, 0x4006dcab, dl));
4962 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4965 // No special expansion.
4966 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
4969 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4970 /// limited-precision mode.
4971 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4972 const TargetLowering &TLI, SDNodeFlags Flags) {
4973 // TODO: What fast-math-flags should be set on the floating-point nodes?
4975 if (Op.getValueType() == MVT::f32 &&
4976 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4977 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4979 // Get the exponent.
4980 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4982 // Get the significand and build it into a floating-point number with
4983 // exponent of 1.
4984 SDValue X = GetSignificand(DAG, Op1, dl);
4986 // Different possible minimax approximations of significand in
4987 // floating-point for various degrees of accuracy over [1,2].
4988 SDValue Log2ofMantissa;
4989 if (LimitFloatPrecision <= 6) {
4990 // For floating-point precision of 6:
4992 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4994 // error 0.0049451742, which is more than 7 bits
4995 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4996 getF32Constant(DAG, 0xbeb08fe0, dl));
4997 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4998 getF32Constant(DAG, 0x40019463, dl));
4999 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5000 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5001 getF32Constant(DAG, 0x3fd6633d, dl));
5002 } else if (LimitFloatPrecision <= 12) {
5003 // For floating-point precision of 12:
5005 // Log2ofMantissa =
5006 // -2.51285454f +
5007 // (4.07009056f +
5008 // (-2.12067489f +
5009 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5011 // error 0.0000876136000, which is better than 13 bits
5012 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5013 getF32Constant(DAG, 0xbda7262e, dl));
5014 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5015 getF32Constant(DAG, 0x3f25280b, dl));
5016 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5017 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5018 getF32Constant(DAG, 0x4007b923, dl));
5019 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5020 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5021 getF32Constant(DAG, 0x40823e2f, dl));
5022 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5023 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5024 getF32Constant(DAG, 0x4020d29c, dl));
5025 } else { // LimitFloatPrecision <= 18
5026 // For floating-point precision of 18:
5028 // Log2ofMantissa =
5029 // -3.0400495f +
5030 // (6.1129976f +
5031 // (-5.3420409f +
5032 // (3.2865683f +
5033 // (-1.2669343f +
5034 // (0.27515199f -
5035 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5037 // error 0.0000018516, which is better than 18 bits
5038 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5039 getF32Constant(DAG, 0xbcd2769e, dl));
5040 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5041 getF32Constant(DAG, 0x3e8ce0b9, dl));
5042 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5043 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5044 getF32Constant(DAG, 0x3fa22ae7, dl));
5045 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5046 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5047 getF32Constant(DAG, 0x40525723, dl));
5048 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5049 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5050 getF32Constant(DAG, 0x40aaf200, dl));
5051 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5052 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5053 getF32Constant(DAG, 0x40c39dad, dl));
5054 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5055 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5056 getF32Constant(DAG, 0x4042902c, dl));
5059 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5062 // No special expansion.
5063 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5066 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5067 /// limited-precision mode.
5068 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5069 const TargetLowering &TLI, SDNodeFlags Flags) {
5070 // TODO: What fast-math-flags should be set on the floating-point nodes?
5072 if (Op.getValueType() == MVT::f32 &&
5073 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5074 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5076 // Scale the exponent by log10(2) [0.30102999f].
5077 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5078 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5079 getF32Constant(DAG, 0x3e9a209a, dl));
5081 // Get the significand and build it into a floating-point number with
5082 // exponent of 1.
5083 SDValue X = GetSignificand(DAG, Op1, dl);
5085 SDValue Log10ofMantissa;
5086 if (LimitFloatPrecision <= 6) {
5087 // For floating-point precision of 6:
5089 // Log10ofMantissa =
5090 // -0.50419619f +
5091 // (0.60948995f - 0.10380950f * x) * x;
5093 // error 0.0014886165, which is 6 bits
5094 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5095 getF32Constant(DAG, 0xbdd49a13, dl));
5096 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5097 getF32Constant(DAG, 0x3f1c0789, dl));
5098 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5099 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5100 getF32Constant(DAG, 0x3f011300, dl));
5101 } else if (LimitFloatPrecision <= 12) {
5102 // For floating-point precision of 12:
5104 // Log10ofMantissa =
5105 // -0.64831180f +
5106 // (0.91751397f +
5107 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5109 // error 0.00019228036, which is better than 12 bits
5110 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5111 getF32Constant(DAG, 0x3d431f31, dl));
5112 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5113 getF32Constant(DAG, 0x3ea21fb2, dl));
5114 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5115 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5116 getF32Constant(DAG, 0x3f6ae232, dl));
5117 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5118 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5119 getF32Constant(DAG, 0x3f25f7c3, dl));
5120 } else { // LimitFloatPrecision <= 18
5121 // For floating-point precision of 18:
5123 // Log10ofMantissa =
5124 // -0.84299375f +
5125 // (1.5327582f +
5126 // (-1.0688956f +
5127 // (0.49102474f +
5128 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5130 // error 0.0000037995730, which is better than 18 bits
5131 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5132 getF32Constant(DAG, 0x3c5d51ce, dl));
5133 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5134 getF32Constant(DAG, 0x3e00685a, dl));
5135 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5136 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5137 getF32Constant(DAG, 0x3efb6798, dl));
5138 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5139 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5140 getF32Constant(DAG, 0x3f88d192, dl));
5141 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5142 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5143 getF32Constant(DAG, 0x3fc4316c, dl));
5144 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5145 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5146 getF32Constant(DAG, 0x3f57ce70, dl));
5149 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5152 // No special expansion.
5153 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5156 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5157 /// limited-precision mode.
5158 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5159 const TargetLowering &TLI, SDNodeFlags Flags) {
5160 if (Op.getValueType() == MVT::f32 &&
5161 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5162 return getLimitedPrecisionExp2(Op, dl, DAG);
5164 // No special expansion.
5165 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5168 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5169 /// limited-precision mode with x == 10.0f.
5170 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5171 SelectionDAG &DAG, const TargetLowering &TLI,
5172 SDNodeFlags Flags) {
5173 bool IsExp10 = false;
5174 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5175 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5176 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5177 APFloat Ten(10.0f);
5178 IsExp10 = LHSC->isExactlyValue(Ten);
5182 // TODO: What fast-math-flags should be set on the FMUL node?
5183 if (IsExp10) {
5184 // Put the exponent in the right bit position for later addition to the
5185 // final result:
5187 // #define LOG2OF10 3.3219281f
5188 // t0 = Op * LOG2OF10;
5189 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5190 getF32Constant(DAG, 0x40549a78, dl));
5191 return getLimitedPrecisionExp2(t0, dl, DAG);
5194 // No special expansion.
5195 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5198 /// ExpandPowI - Expand a llvm.powi intrinsic.
5199 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5200 SelectionDAG &DAG) {
5201 // If RHS is a constant, we can expand this out to a multiplication tree,
5202 // otherwise we end up lowering to a call to __powidf2 (for example). When
5203 // optimizing for size, we only want to do this if the expansion would produce
5204 // a small number of multiplies, otherwise we do the full expansion.
5205 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5206 // Get the exponent as a positive value.
5207 unsigned Val = RHSC->getSExtValue();
5208 if ((int)Val < 0) Val = -Val;
5210 // powi(x, 0) -> 1.0
5211 if (Val == 0)
5212 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5214 bool OptForSize = DAG.shouldOptForSize();
5215 if (!OptForSize ||
5216 // If optimizing for size, don't insert too many multiplies.
5217 // This inserts up to 5 multiplies.
5218 countPopulation(Val) + Log2_32(Val) < 7) {
5219 // We use the simple binary decomposition method to generate the multiply
5220 // sequence. There are more optimal ways to do this (for example,
5221 // powi(x,15) generates one more multiply than it should), but this has
5222 // the benefit of being both really simple and much better than a libcall.
5223 SDValue Res; // Logically starts equal to 1.0
5224 SDValue CurSquare = LHS;
5225 // TODO: Intrinsics should have fast-math-flags that propagate to these
5226 // nodes.
5227 while (Val) {
5228 if (Val & 1) {
5229 if (Res.getNode())
5230 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5231 else
5232 Res = CurSquare; // 1.0*CurSquare.
5235 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5236 CurSquare, CurSquare);
5237 Val >>= 1;
5240 // If the original was negative, invert the result, producing 1/(x*x*x).
5241 if (RHSC->getSExtValue() < 0)
5242 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5243 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5244 return Res;
5248 // Otherwise, expand to a libcall.
5249 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5252 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5253 SDValue LHS, SDValue RHS, SDValue Scale,
5254 SelectionDAG &DAG, const TargetLowering &TLI) {
5255 EVT VT = LHS.getValueType();
5256 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5257 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5258 LLVMContext &Ctx = *DAG.getContext();
5260 // If the type is legal but the operation isn't, this node might survive all
5261 // the way to operation legalization. If we end up there and we do not have
5262 // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5263 // node.
5265 // Coax the legalizer into expanding the node during type legalization instead
5266 // by bumping the size by one bit. This will force it to Promote, enabling the
5267 // early expansion and avoiding the need to expand later.
5269 // We don't have to do this if Scale is 0; that can always be expanded, unless
5270 // it's a saturating signed operation. Those can experience true integer
5271 // division overflow, a case which we must avoid.
5273 // FIXME: We wouldn't have to do this (or any of the early
5274 // expansion/promotion) if it was possible to expand a libcall of an
5275 // illegal type during operation legalization. But it's not, so things
5276 // get a bit hacky.
5277 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5278 if ((ScaleInt > 0 || (Saturating && Signed)) &&
5279 (TLI.isTypeLegal(VT) ||
5280 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5281 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5282 Opcode, VT, ScaleInt);
5283 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5284 EVT PromVT;
5285 if (VT.isScalarInteger())
5286 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5287 else if (VT.isVector()) {
5288 PromVT = VT.getVectorElementType();
5289 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5290 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5291 } else
5292 llvm_unreachable("Wrong VT for DIVFIX?");
5293 if (Signed) {
5294 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5295 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5296 } else {
5297 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5298 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5300 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5301 // For saturating operations, we need to shift up the LHS to get the
5302 // proper saturation width, and then shift down again afterwards.
5303 if (Saturating)
5304 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5305 DAG.getConstant(1, DL, ShiftTy));
5306 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5307 if (Saturating)
5308 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5309 DAG.getConstant(1, DL, ShiftTy));
5310 return DAG.getZExtOrTrunc(Res, DL, VT);
5314 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5317 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5318 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5319 static void
5320 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5321 const SDValue &N) {
5322 switch (N.getOpcode()) {
5323 case ISD::CopyFromReg: {
5324 SDValue Op = N.getOperand(1);
5325 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5326 Op.getValueType().getSizeInBits());
5327 return;
5329 case ISD::BITCAST:
5330 case ISD::AssertZext:
5331 case ISD::AssertSext:
5332 case ISD::TRUNCATE:
5333 getUnderlyingArgRegs(Regs, N.getOperand(0));
5334 return;
5335 case ISD::BUILD_PAIR:
5336 case ISD::BUILD_VECTOR:
5337 case ISD::CONCAT_VECTORS:
5338 for (SDValue Op : N->op_values())
5339 getUnderlyingArgRegs(Regs, Op);
5340 return;
5341 default:
5342 return;
5346 /// If the DbgValueInst is a dbg_value of a function argument, create the
5347 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5348 /// instruction selection, they will be inserted to the entry BB.
5349 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5350 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5351 DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5352 const Argument *Arg = dyn_cast<Argument>(V);
5353 if (!Arg)
5354 return false;
5356 if (!IsDbgDeclare) {
5357 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5358 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5359 // the entry block.
5360 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5361 if (!IsInEntryBlock)
5362 return false;
5364 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5365 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5366 // variable that also is a param.
5368 // Although, if we are at the top of the entry block already, we can still
5369 // emit using ArgDbgValue. This might catch some situations when the
5370 // dbg.value refers to an argument that isn't used in the entry block, so
5371 // any CopyToReg node would be optimized out and the only way to express
5372 // this DBG_VALUE is by using the physical reg (or FI) as done in this
5373 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
5374 // we should only emit as ArgDbgValue if the Variable is an argument to the
5375 // current function, and the dbg.value intrinsic is found in the entry
5376 // block.
5377 bool VariableIsFunctionInputArg = Variable->isParameter() &&
5378 !DL->getInlinedAt();
5379 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5380 if (!IsInPrologue && !VariableIsFunctionInputArg)
5381 return false;
5383 // Here we assume that a function argument on IR level only can be used to
5384 // describe one input parameter on source level. If we for example have
5385 // source code like this
5387 // struct A { long x, y; };
5388 // void foo(struct A a, long b) {
5389 // ...
5390 // b = a.x;
5391 // ...
5392 // }
5394 // and IR like this
5396 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
5397 // entry:
5398 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5399 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5400 // call void @llvm.dbg.value(metadata i32 %b, "b",
5401 // ...
5402 // call void @llvm.dbg.value(metadata i32 %a1, "b"
5403 // ...
5405 // then the last dbg.value is describing a parameter "b" using a value that
5406 // is an argument. But since we already has used %a1 to describe a parameter
5407 // we should not handle that last dbg.value here (that would result in an
5408 // incorrect hoisting of the DBG_VALUE to the function entry).
5409 // Notice that we allow one dbg.value per IR level argument, to accommodate
5410 // for the situation with fragments above.
5411 if (VariableIsFunctionInputArg) {
5412 unsigned ArgNo = Arg->getArgNo();
5413 if (ArgNo >= FuncInfo.DescribedArgs.size())
5414 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5415 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5416 return false;
5417 FuncInfo.DescribedArgs.set(ArgNo);
5421 MachineFunction &MF = DAG.getMachineFunction();
5422 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5424 bool IsIndirect = false;
5425 Optional<MachineOperand> Op;
5426 // Some arguments' frame index is recorded during argument lowering.
5427 int FI = FuncInfo.getArgumentFrameIndex(Arg);
5428 if (FI != std::numeric_limits<int>::max())
5429 Op = MachineOperand::CreateFI(FI);
5431 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5432 if (!Op && N.getNode()) {
5433 getUnderlyingArgRegs(ArgRegsAndSizes, N);
5434 Register Reg;
5435 if (ArgRegsAndSizes.size() == 1)
5436 Reg = ArgRegsAndSizes.front().first;
5438 if (Reg && Reg.isVirtual()) {
5439 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5440 Register PR = RegInfo.getLiveInPhysReg(Reg);
5441 if (PR)
5442 Reg = PR;
5444 if (Reg) {
5445 Op = MachineOperand::CreateReg(Reg, false);
5446 IsIndirect = IsDbgDeclare;
5450 if (!Op && N.getNode()) {
5451 // Check if frame index is available.
5452 SDValue LCandidate = peekThroughBitcasts(N);
5453 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5454 if (FrameIndexSDNode *FINode =
5455 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5456 Op = MachineOperand::CreateFI(FINode->getIndex());
5459 if (!Op) {
5460 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5461 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5462 SplitRegs) {
5463 unsigned Offset = 0;
5464 for (auto RegAndSize : SplitRegs) {
5465 // If the expression is already a fragment, the current register
5466 // offset+size might extend beyond the fragment. In this case, only
5467 // the register bits that are inside the fragment are relevant.
5468 int RegFragmentSizeInBits = RegAndSize.second;
5469 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5470 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5471 // The register is entirely outside the expression fragment,
5472 // so is irrelevant for debug info.
5473 if (Offset >= ExprFragmentSizeInBits)
5474 break;
5475 // The register is partially outside the expression fragment, only
5476 // the low bits within the fragment are relevant for debug info.
5477 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5478 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5482 auto FragmentExpr = DIExpression::createFragmentExpression(
5483 Expr, Offset, RegFragmentSizeInBits);
5484 Offset += RegAndSize.second;
5485 // If a valid fragment expression cannot be created, the variable's
5486 // correct value cannot be determined and so it is set as Undef.
5487 if (!FragmentExpr) {
5488 SDDbgValue *SDV = DAG.getConstantDbgValue(
5489 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5490 DAG.AddDbgValue(SDV, nullptr, false);
5491 continue;
5493 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5494 FuncInfo.ArgDbgValues.push_back(
5495 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5496 RegAndSize.first, Variable, *FragmentExpr));
5500 // Check if ValueMap has reg number.
5501 DenseMap<const Value *, Register>::const_iterator
5502 VMI = FuncInfo.ValueMap.find(V);
5503 if (VMI != FuncInfo.ValueMap.end()) {
5504 const auto &TLI = DAG.getTargetLoweringInfo();
5505 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5506 V->getType(), None);
5507 if (RFV.occupiesMultipleRegs()) {
5508 splitMultiRegDbgValue(RFV.getRegsAndSizes());
5509 return true;
5512 Op = MachineOperand::CreateReg(VMI->second, false);
5513 IsIndirect = IsDbgDeclare;
5514 } else if (ArgRegsAndSizes.size() > 1) {
5515 // This was split due to the calling convention, and no virtual register
5516 // mapping exists for the value.
5517 splitMultiRegDbgValue(ArgRegsAndSizes);
5518 return true;
5522 if (!Op)
5523 return false;
5525 assert(Variable->isValidLocationForIntrinsic(DL) &&
5526 "Expected inlined-at fields to agree");
5527 IsIndirect = (Op->isReg()) ? IsIndirect : true;
5528 FuncInfo.ArgDbgValues.push_back(
5529 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5530 *Op, Variable, Expr));
5532 return true;
5535 /// Return the appropriate SDDbgValue based on N.
5536 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5537 DILocalVariable *Variable,
5538 DIExpression *Expr,
5539 const DebugLoc &dl,
5540 unsigned DbgSDNodeOrder) {
5541 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5542 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5543 // stack slot locations.
5545 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5546 // debug values here after optimization:
5548 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5549 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5551 // Both describe the direct values of their associated variables.
5552 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5553 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5555 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5556 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5559 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5560 switch (Intrinsic) {
5561 case Intrinsic::smul_fix:
5562 return ISD::SMULFIX;
5563 case Intrinsic::umul_fix:
5564 return ISD::UMULFIX;
5565 case Intrinsic::smul_fix_sat:
5566 return ISD::SMULFIXSAT;
5567 case Intrinsic::umul_fix_sat:
5568 return ISD::UMULFIXSAT;
5569 case Intrinsic::sdiv_fix:
5570 return ISD::SDIVFIX;
5571 case Intrinsic::udiv_fix:
5572 return ISD::UDIVFIX;
5573 case Intrinsic::sdiv_fix_sat:
5574 return ISD::SDIVFIXSAT;
5575 case Intrinsic::udiv_fix_sat:
5576 return ISD::UDIVFIXSAT;
5577 default:
5578 llvm_unreachable("Unhandled fixed point intrinsic");
5582 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5583 const char *FunctionName) {
5584 assert(FunctionName && "FunctionName must not be nullptr");
5585 SDValue Callee = DAG.getExternalSymbol(
5586 FunctionName,
5587 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5588 LowerCallTo(I, Callee, I.isTailCall());
5591 /// Given a @llvm.call.preallocated.setup, return the corresponding
5592 /// preallocated call.
5593 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5594 assert(cast<CallBase>(PreallocatedSetup)
5595 ->getCalledFunction()
5596 ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5597 "expected call_preallocated_setup Value");
5598 for (auto *U : PreallocatedSetup->users()) {
5599 auto *UseCall = cast<CallBase>(U);
5600 const Function *Fn = UseCall->getCalledFunction();
5601 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5602 return UseCall;
5605 llvm_unreachable("expected corresponding call to preallocated setup/arg");
5608 /// Lower the call to the specified intrinsic function.
5609 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5610 unsigned Intrinsic) {
5611 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5612 SDLoc sdl = getCurSDLoc();
5613 DebugLoc dl = getCurDebugLoc();
5614 SDValue Res;
5616 SDNodeFlags Flags;
5617 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5618 Flags.copyFMF(*FPOp);
5620 switch (Intrinsic) {
5621 default:
5622 // By default, turn this into a target intrinsic node.
5623 visitTargetIntrinsic(I, Intrinsic);
5624 return;
5625 case Intrinsic::vscale: {
5626 match(&I, m_VScale(DAG.getDataLayout()));
5627 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5628 setValue(&I,
5629 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5630 return;
5632 case Intrinsic::vastart: visitVAStart(I); return;
5633 case Intrinsic::vaend: visitVAEnd(I); return;
5634 case Intrinsic::vacopy: visitVACopy(I); return;
5635 case Intrinsic::returnaddress:
5636 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5637 TLI.getPointerTy(DAG.getDataLayout()),
5638 getValue(I.getArgOperand(0))));
5639 return;
5640 case Intrinsic::addressofreturnaddress:
5641 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5642 TLI.getPointerTy(DAG.getDataLayout())));
5643 return;
5644 case Intrinsic::sponentry:
5645 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5646 TLI.getFrameIndexTy(DAG.getDataLayout())));
5647 return;
5648 case Intrinsic::frameaddress:
5649 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5650 TLI.getFrameIndexTy(DAG.getDataLayout()),
5651 getValue(I.getArgOperand(0))));
5652 return;
5653 case Intrinsic::read_volatile_register:
5654 case Intrinsic::read_register: {
5655 Value *Reg = I.getArgOperand(0);
5656 SDValue Chain = getRoot();
5657 SDValue RegName =
5658 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5659 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5660 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5661 DAG.getVTList(VT, MVT::Other), Chain, RegName);
5662 setValue(&I, Res);
5663 DAG.setRoot(Res.getValue(1));
5664 return;
5666 case Intrinsic::write_register: {
5667 Value *Reg = I.getArgOperand(0);
5668 Value *RegValue = I.getArgOperand(1);
5669 SDValue Chain = getRoot();
5670 SDValue RegName =
5671 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5672 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5673 RegName, getValue(RegValue)));
5674 return;
5676 case Intrinsic::memcpy: {
5677 const auto &MCI = cast<MemCpyInst>(I);
5678 SDValue Op1 = getValue(I.getArgOperand(0));
5679 SDValue Op2 = getValue(I.getArgOperand(1));
5680 SDValue Op3 = getValue(I.getArgOperand(2));
5681 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5682 Align DstAlign = MCI.getDestAlign().valueOrOne();
5683 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5684 Align Alignment = commonAlignment(DstAlign, SrcAlign);
5685 bool isVol = MCI.isVolatile();
5686 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5687 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5688 // node.
5689 SDValue Root = isVol ? getRoot() : getMemoryRoot();
5690 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5691 /* AlwaysInline */ false, isTC,
5692 MachinePointerInfo(I.getArgOperand(0)),
5693 MachinePointerInfo(I.getArgOperand(1)));
5694 updateDAGForMaybeTailCall(MC);
5695 return;
5697 case Intrinsic::memcpy_inline: {
5698 const auto &MCI = cast<MemCpyInlineInst>(I);
5699 SDValue Dst = getValue(I.getArgOperand(0));
5700 SDValue Src = getValue(I.getArgOperand(1));
5701 SDValue Size = getValue(I.getArgOperand(2));
5702 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5703 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5704 Align DstAlign = MCI.getDestAlign().valueOrOne();
5705 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5706 Align Alignment = commonAlignment(DstAlign, SrcAlign);
5707 bool isVol = MCI.isVolatile();
5708 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5709 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5710 // node.
5711 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5712 /* AlwaysInline */ true, isTC,
5713 MachinePointerInfo(I.getArgOperand(0)),
5714 MachinePointerInfo(I.getArgOperand(1)));
5715 updateDAGForMaybeTailCall(MC);
5716 return;
5718 case Intrinsic::memset: {
5719 const auto &MSI = cast<MemSetInst>(I);
5720 SDValue Op1 = getValue(I.getArgOperand(0));
5721 SDValue Op2 = getValue(I.getArgOperand(1));
5722 SDValue Op3 = getValue(I.getArgOperand(2));
5723 // @llvm.memset defines 0 and 1 to both mean no alignment.
5724 Align Alignment = MSI.getDestAlign().valueOrOne();
5725 bool isVol = MSI.isVolatile();
5726 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5727 SDValue Root = isVol ? getRoot() : getMemoryRoot();
5728 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5729 MachinePointerInfo(I.getArgOperand(0)));
5730 updateDAGForMaybeTailCall(MS);
5731 return;
5733 case Intrinsic::memmove: {
5734 const auto &MMI = cast<MemMoveInst>(I);
5735 SDValue Op1 = getValue(I.getArgOperand(0));
5736 SDValue Op2 = getValue(I.getArgOperand(1));
5737 SDValue Op3 = getValue(I.getArgOperand(2));
5738 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5739 Align DstAlign = MMI.getDestAlign().valueOrOne();
5740 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5741 Align Alignment = commonAlignment(DstAlign, SrcAlign);
5742 bool isVol = MMI.isVolatile();
5743 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5744 // FIXME: Support passing different dest/src alignments to the memmove DAG
5745 // node.
5746 SDValue Root = isVol ? getRoot() : getMemoryRoot();
5747 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5748 isTC, MachinePointerInfo(I.getArgOperand(0)),
5749 MachinePointerInfo(I.getArgOperand(1)));
5750 updateDAGForMaybeTailCall(MM);
5751 return;
5753 case Intrinsic::memcpy_element_unordered_atomic: {
5754 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5755 SDValue Dst = getValue(MI.getRawDest());
5756 SDValue Src = getValue(MI.getRawSource());
5757 SDValue Length = getValue(MI.getLength());
5759 unsigned DstAlign = MI.getDestAlignment();
5760 unsigned SrcAlign = MI.getSourceAlignment();
5761 Type *LengthTy = MI.getLength()->getType();
5762 unsigned ElemSz = MI.getElementSizeInBytes();
5763 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5764 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5765 SrcAlign, Length, LengthTy, ElemSz, isTC,
5766 MachinePointerInfo(MI.getRawDest()),
5767 MachinePointerInfo(MI.getRawSource()));
5768 updateDAGForMaybeTailCall(MC);
5769 return;
5771 case Intrinsic::memmove_element_unordered_atomic: {
5772 auto &MI = cast<AtomicMemMoveInst>(I);
5773 SDValue Dst = getValue(MI.getRawDest());
5774 SDValue Src = getValue(MI.getRawSource());
5775 SDValue Length = getValue(MI.getLength());
5777 unsigned DstAlign = MI.getDestAlignment();
5778 unsigned SrcAlign = MI.getSourceAlignment();
5779 Type *LengthTy = MI.getLength()->getType();
5780 unsigned ElemSz = MI.getElementSizeInBytes();
5781 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5782 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5783 SrcAlign, Length, LengthTy, ElemSz, isTC,
5784 MachinePointerInfo(MI.getRawDest()),
5785 MachinePointerInfo(MI.getRawSource()));
5786 updateDAGForMaybeTailCall(MC);
5787 return;
5789 case Intrinsic::memset_element_unordered_atomic: {
5790 auto &MI = cast<AtomicMemSetInst>(I);
5791 SDValue Dst = getValue(MI.getRawDest());
5792 SDValue Val = getValue(MI.getValue());
5793 SDValue Length = getValue(MI.getLength());
5795 unsigned DstAlign = MI.getDestAlignment();
5796 Type *LengthTy = MI.getLength()->getType();
5797 unsigned ElemSz = MI.getElementSizeInBytes();
5798 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5799 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5800 LengthTy, ElemSz, isTC,
5801 MachinePointerInfo(MI.getRawDest()));
5802 updateDAGForMaybeTailCall(MC);
5803 return;
5805 case Intrinsic::call_preallocated_setup: {
5806 const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5807 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5808 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5809 getRoot(), SrcValue);
5810 setValue(&I, Res);
5811 DAG.setRoot(Res);
5812 return;
5814 case Intrinsic::call_preallocated_arg: {
5815 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5816 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5817 SDValue Ops[3];
5818 Ops[0] = getRoot();
5819 Ops[1] = SrcValue;
5820 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5821 MVT::i32); // arg index
5822 SDValue Res = DAG.getNode(
5823 ISD::PREALLOCATED_ARG, sdl,
5824 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5825 setValue(&I, Res);
5826 DAG.setRoot(Res.getValue(1));
5827 return;
5829 case Intrinsic::dbg_addr:
5830 case Intrinsic::dbg_declare: {
5831 const auto &DI = cast<DbgVariableIntrinsic>(I);
5832 DILocalVariable *Variable = DI.getVariable();
5833 DIExpression *Expression = DI.getExpression();
5834 dropDanglingDebugInfo(Variable, Expression);
5835 assert(Variable && "Missing variable");
5836 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5837 << "\n");
5838 // Check if address has undef value.
5839 const Value *Address = DI.getVariableLocation();
5840 if (!Address || isa<UndefValue>(Address) ||
5841 (Address->use_empty() && !isa<Argument>(Address))) {
5842 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5843 << " (bad/undef/unused-arg address)\n");
5844 return;
5847 bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5849 // Check if this variable can be described by a frame index, typically
5850 // either as a static alloca or a byval parameter.
5851 int FI = std::numeric_limits<int>::max();
5852 if (const auto *AI =
5853 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5854 if (AI->isStaticAlloca()) {
5855 auto I = FuncInfo.StaticAllocaMap.find(AI);
5856 if (I != FuncInfo.StaticAllocaMap.end())
5857 FI = I->second;
5859 } else if (const auto *Arg = dyn_cast<Argument>(
5860 Address->stripInBoundsConstantOffsets())) {
5861 FI = FuncInfo.getArgumentFrameIndex(Arg);
5864 // llvm.dbg.addr is control dependent and always generates indirect
5865 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5866 // the MachineFunction variable table.
5867 if (FI != std::numeric_limits<int>::max()) {
5868 if (Intrinsic == Intrinsic::dbg_addr) {
5869 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5870 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5871 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5872 } else {
5873 LLVM_DEBUG(dbgs() << "Skipping " << DI
5874 << " (variable info stashed in MF side table)\n");
5876 return;
5879 SDValue &N = NodeMap[Address];
5880 if (!N.getNode() && isa<Argument>(Address))
5881 // Check unused arguments map.
5882 N = UnusedArgNodeMap[Address];
5883 SDDbgValue *SDV;
5884 if (N.getNode()) {
5885 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5886 Address = BCI->getOperand(0);
5887 // Parameters are handled specially.
5888 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5889 if (isParameter && FINode) {
5890 // Byval parameter. We have a frame index at this point.
5891 SDV =
5892 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5893 /*IsIndirect*/ true, dl, SDNodeOrder);
5894 } else if (isa<Argument>(Address)) {
5895 // Address is an argument, so try to emit its dbg value using
5896 // virtual register info from the FuncInfo.ValueMap.
5897 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5898 return;
5899 } else {
5900 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5901 true, dl, SDNodeOrder);
5903 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5904 } else {
5905 // If Address is an argument then try to emit its dbg value using
5906 // virtual register info from the FuncInfo.ValueMap.
5907 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5908 N)) {
5909 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5910 << " (could not emit func-arg dbg_value)\n");
5913 return;
5915 case Intrinsic::dbg_label: {
5916 const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5917 DILabel *Label = DI.getLabel();
5918 assert(Label && "Missing label");
5920 SDDbgLabel *SDV;
5921 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5922 DAG.AddDbgLabel(SDV);
5923 return;
5925 case Intrinsic::dbg_value: {
5926 const DbgValueInst &DI = cast<DbgValueInst>(I);
5927 assert(DI.getVariable() && "Missing variable");
5929 DILocalVariable *Variable = DI.getVariable();
5930 DIExpression *Expression = DI.getExpression();
5931 dropDanglingDebugInfo(Variable, Expression);
5932 const Value *V = DI.getValue();
5933 if (!V)
5934 return;
5936 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5937 SDNodeOrder))
5938 return;
5940 // TODO: Dangling debug info will eventually either be resolved or produce
5941 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5942 // between the original dbg.value location and its resolved DBG_VALUE, which
5943 // we should ideally fill with an extra Undef DBG_VALUE.
5945 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5946 return;
5949 case Intrinsic::eh_typeid_for: {
5950 // Find the type id for the given typeinfo.
5951 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5952 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5953 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5954 setValue(&I, Res);
5955 return;
5958 case Intrinsic::eh_return_i32:
5959 case Intrinsic::eh_return_i64:
5960 DAG.getMachineFunction().setCallsEHReturn(true);
5961 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5962 MVT::Other,
5963 getControlRoot(),
5964 getValue(I.getArgOperand(0)),
5965 getValue(I.getArgOperand(1))));
5966 return;
5967 case Intrinsic::eh_unwind_init:
5968 DAG.getMachineFunction().setCallsUnwindInit(true);
5969 return;
5970 case Intrinsic::eh_dwarf_cfa:
5971 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5972 TLI.getPointerTy(DAG.getDataLayout()),
5973 getValue(I.getArgOperand(0))));
5974 return;
5975 case Intrinsic::eh_sjlj_callsite: {
5976 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5977 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5978 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5979 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5981 MMI.setCurrentCallSite(CI->getZExtValue());
5982 return;
5984 case Intrinsic::eh_sjlj_functioncontext: {
5985 // Get and store the index of the function context.
5986 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5987 AllocaInst *FnCtx =
5988 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5989 int FI = FuncInfo.StaticAllocaMap[FnCtx];
5990 MFI.setFunctionContextIndex(FI);
5991 return;
5993 case Intrinsic::eh_sjlj_setjmp: {
5994 SDValue Ops[2];
5995 Ops[0] = getRoot();
5996 Ops[1] = getValue(I.getArgOperand(0));
5997 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5998 DAG.getVTList(MVT::i32, MVT::Other), Ops);
5999 setValue(&I, Op.getValue(0));
6000 DAG.setRoot(Op.getValue(1));
6001 return;
6003 case Intrinsic::eh_sjlj_longjmp:
6004 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6005 getRoot(), getValue(I.getArgOperand(0))));
6006 return;
6007 case Intrinsic::eh_sjlj_setup_dispatch:
6008 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6009 getRoot()));
6010 return;
6011 case Intrinsic::masked_gather:
6012 visitMaskedGather(I);
6013 return;
6014 case Intrinsic::masked_load:
6015 visitMaskedLoad(I);
6016 return;
6017 case Intrinsic::masked_scatter:
6018 visitMaskedScatter(I);
6019 return;
6020 case Intrinsic::masked_store:
6021 visitMaskedStore(I);
6022 return;
6023 case Intrinsic::masked_expandload:
6024 visitMaskedLoad(I, true /* IsExpanding */);
6025 return;
6026 case Intrinsic::masked_compressstore:
6027 visitMaskedStore(I, true /* IsCompressing */);
6028 return;
6029 case Intrinsic::powi:
6030 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6031 getValue(I.getArgOperand(1)), DAG));
6032 return;
6033 case Intrinsic::log:
6034 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6035 return;
6036 case Intrinsic::log2:
6037 setValue(&I,
6038 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6039 return;
6040 case Intrinsic::log10:
6041 setValue(&I,
6042 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6043 return;
6044 case Intrinsic::exp:
6045 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6046 return;
6047 case Intrinsic::exp2:
6048 setValue(&I,
6049 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6050 return;
6051 case Intrinsic::pow:
6052 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6053 getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6054 return;
6055 case Intrinsic::sqrt:
6056 case Intrinsic::fabs:
6057 case Intrinsic::sin:
6058 case Intrinsic::cos:
6059 case Intrinsic::floor:
6060 case Intrinsic::ceil:
6061 case Intrinsic::trunc:
6062 case Intrinsic::rint:
6063 case Intrinsic::nearbyint:
6064 case Intrinsic::round:
6065 case Intrinsic::roundeven:
6066 case Intrinsic::canonicalize: {
6067 unsigned Opcode;
6068 switch (Intrinsic) {
6069 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6070 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6071 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6072 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6073 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6074 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6075 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6076 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6077 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6078 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6079 case Intrinsic::round: Opcode = ISD::FROUND; break;
6080 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6081 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6084 setValue(&I, DAG.getNode(Opcode, sdl,
6085 getValue(I.getArgOperand(0)).getValueType(),
6086 getValue(I.getArgOperand(0)), Flags));
6087 return;
6089 case Intrinsic::lround:
6090 case Intrinsic::llround:
6091 case Intrinsic::lrint:
6092 case Intrinsic::llrint: {
6093 unsigned Opcode;
6094 switch (Intrinsic) {
6095 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6096 case Intrinsic::lround: Opcode = ISD::LROUND; break;
6097 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6098 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
6099 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
6102 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6103 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6104 getValue(I.getArgOperand(0))));
6105 return;
6107 case Intrinsic::minnum:
6108 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6109 getValue(I.getArgOperand(0)).getValueType(),
6110 getValue(I.getArgOperand(0)),
6111 getValue(I.getArgOperand(1)), Flags));
6112 return;
6113 case Intrinsic::maxnum:
6114 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6115 getValue(I.getArgOperand(0)).getValueType(),
6116 getValue(I.getArgOperand(0)),
6117 getValue(I.getArgOperand(1)), Flags));
6118 return;
6119 case Intrinsic::minimum:
6120 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6121 getValue(I.getArgOperand(0)).getValueType(),
6122 getValue(I.getArgOperand(0)),
6123 getValue(I.getArgOperand(1)), Flags));
6124 return;
6125 case Intrinsic::maximum:
6126 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6127 getValue(I.getArgOperand(0)).getValueType(),
6128 getValue(I.getArgOperand(0)),
6129 getValue(I.getArgOperand(1)), Flags));
6130 return;
6131 case Intrinsic::copysign:
6132 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6133 getValue(I.getArgOperand(0)).getValueType(),
6134 getValue(I.getArgOperand(0)),
6135 getValue(I.getArgOperand(1)), Flags));
6136 return;
6137 case Intrinsic::fma:
6138 setValue(&I, DAG.getNode(
6139 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6140 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6141 getValue(I.getArgOperand(2)), Flags));
6142 return;
6143 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
6144 case Intrinsic::INTRINSIC:
6145 #include "llvm/IR/ConstrainedOps.def"
6146 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6147 return;
6148 case Intrinsic::fmuladd: {
6149 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6150 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6151 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6152 setValue(&I, DAG.getNode(ISD::FMA, sdl,
6153 getValue(I.getArgOperand(0)).getValueType(),
6154 getValue(I.getArgOperand(0)),
6155 getValue(I.getArgOperand(1)),
6156 getValue(I.getArgOperand(2)), Flags));
6157 } else {
6158 // TODO: Intrinsic calls should have fast-math-flags.
6159 SDValue Mul = DAG.getNode(
6160 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6161 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6162 SDValue Add = DAG.getNode(ISD::FADD, sdl,
6163 getValue(I.getArgOperand(0)).getValueType(),
6164 Mul, getValue(I.getArgOperand(2)), Flags);
6165 setValue(&I, Add);
6167 return;
6169 case Intrinsic::convert_to_fp16:
6170 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6171 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6172 getValue(I.getArgOperand(0)),
6173 DAG.getTargetConstant(0, sdl,
6174 MVT::i32))));
6175 return;
6176 case Intrinsic::convert_from_fp16:
6177 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6178 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6179 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6180 getValue(I.getArgOperand(0)))));
6181 return;
6182 case Intrinsic::pcmarker: {
6183 SDValue Tmp = getValue(I.getArgOperand(0));
6184 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6185 return;
6187 case Intrinsic::readcyclecounter: {
6188 SDValue Op = getRoot();
6189 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6190 DAG.getVTList(MVT::i64, MVT::Other), Op);
6191 setValue(&I, Res);
6192 DAG.setRoot(Res.getValue(1));
6193 return;
6195 case Intrinsic::bitreverse:
6196 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6197 getValue(I.getArgOperand(0)).getValueType(),
6198 getValue(I.getArgOperand(0))));
6199 return;
6200 case Intrinsic::bswap:
6201 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6202 getValue(I.getArgOperand(0)).getValueType(),
6203 getValue(I.getArgOperand(0))));
6204 return;
6205 case Intrinsic::cttz: {
6206 SDValue Arg = getValue(I.getArgOperand(0));
6207 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6208 EVT Ty = Arg.getValueType();
6209 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6210 sdl, Ty, Arg));
6211 return;
6213 case Intrinsic::ctlz: {
6214 SDValue Arg = getValue(I.getArgOperand(0));
6215 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6216 EVT Ty = Arg.getValueType();
6217 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6218 sdl, Ty, Arg));
6219 return;
6221 case Intrinsic::ctpop: {
6222 SDValue Arg = getValue(I.getArgOperand(0));
6223 EVT Ty = Arg.getValueType();
6224 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6225 return;
6227 case Intrinsic::fshl:
6228 case Intrinsic::fshr: {
6229 bool IsFSHL = Intrinsic == Intrinsic::fshl;
6230 SDValue X = getValue(I.getArgOperand(0));
6231 SDValue Y = getValue(I.getArgOperand(1));
6232 SDValue Z = getValue(I.getArgOperand(2));
6233 EVT VT = X.getValueType();
6235 if (X == Y) {
6236 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6237 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6238 } else {
6239 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6240 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6242 return;
6244 case Intrinsic::sadd_sat: {
6245 SDValue Op1 = getValue(I.getArgOperand(0));
6246 SDValue Op2 = getValue(I.getArgOperand(1));
6247 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6248 return;
6250 case Intrinsic::uadd_sat: {
6251 SDValue Op1 = getValue(I.getArgOperand(0));
6252 SDValue Op2 = getValue(I.getArgOperand(1));
6253 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6254 return;
6256 case Intrinsic::ssub_sat: {
6257 SDValue Op1 = getValue(I.getArgOperand(0));
6258 SDValue Op2 = getValue(I.getArgOperand(1));
6259 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6260 return;
6262 case Intrinsic::usub_sat: {
6263 SDValue Op1 = getValue(I.getArgOperand(0));
6264 SDValue Op2 = getValue(I.getArgOperand(1));
6265 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6266 return;
6268 case Intrinsic::sshl_sat: {
6269 SDValue Op1 = getValue(I.getArgOperand(0));
6270 SDValue Op2 = getValue(I.getArgOperand(1));
6271 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6272 return;
6274 case Intrinsic::ushl_sat: {
6275 SDValue Op1 = getValue(I.getArgOperand(0));
6276 SDValue Op2 = getValue(I.getArgOperand(1));
6277 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6278 return;
6280 case Intrinsic::smul_fix:
6281 case Intrinsic::umul_fix:
6282 case Intrinsic::smul_fix_sat:
6283 case Intrinsic::umul_fix_sat: {
6284 SDValue Op1 = getValue(I.getArgOperand(0));
6285 SDValue Op2 = getValue(I.getArgOperand(1));
6286 SDValue Op3 = getValue(I.getArgOperand(2));
6287 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6288 Op1.getValueType(), Op1, Op2, Op3));
6289 return;
6291 case Intrinsic::sdiv_fix:
6292 case Intrinsic::udiv_fix:
6293 case Intrinsic::sdiv_fix_sat:
6294 case Intrinsic::udiv_fix_sat: {
6295 SDValue Op1 = getValue(I.getArgOperand(0));
6296 SDValue Op2 = getValue(I.getArgOperand(1));
6297 SDValue Op3 = getValue(I.getArgOperand(2));
6298 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6299 Op1, Op2, Op3, DAG, TLI));
6300 return;
6302 case Intrinsic::smax: {
6303 SDValue Op1 = getValue(I.getArgOperand(0));
6304 SDValue Op2 = getValue(I.getArgOperand(1));
6305 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6306 return;
6308 case Intrinsic::smin: {
6309 SDValue Op1 = getValue(I.getArgOperand(0));
6310 SDValue Op2 = getValue(I.getArgOperand(1));
6311 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6312 return;
6314 case Intrinsic::umax: {
6315 SDValue Op1 = getValue(I.getArgOperand(0));
6316 SDValue Op2 = getValue(I.getArgOperand(1));
6317 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6318 return;
6320 case Intrinsic::umin: {
6321 SDValue Op1 = getValue(I.getArgOperand(0));
6322 SDValue Op2 = getValue(I.getArgOperand(1));
6323 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6324 return;
6326 case Intrinsic::abs: {
6327 // TODO: Preserve "int min is poison" arg in SDAG?
6328 SDValue Op1 = getValue(I.getArgOperand(0));
6329 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6330 return;
6332 case Intrinsic::stacksave: {
6333 SDValue Op = getRoot();
6334 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6335 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6336 setValue(&I, Res);
6337 DAG.setRoot(Res.getValue(1));
6338 return;
6340 case Intrinsic::stackrestore:
6341 Res = getValue(I.getArgOperand(0));
6342 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6343 return;
6344 case Intrinsic::get_dynamic_area_offset: {
6345 SDValue Op = getRoot();
6346 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6347 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6348 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6349 // target.
6350 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6351 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6352 " intrinsic!");
6353 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6354 Op);
6355 DAG.setRoot(Op);
6356 setValue(&I, Res);
6357 return;
6359 case Intrinsic::stackguard: {
6360 MachineFunction &MF = DAG.getMachineFunction();
6361 const Module &M = *MF.getFunction().getParent();
6362 SDValue Chain = getRoot();
6363 if (TLI.useLoadStackGuardNode()) {
6364 Res = getLoadStackGuard(DAG, sdl, Chain);
6365 } else {
6366 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6367 const Value *Global = TLI.getSDagStackGuard(M);
6368 Align Align = DL->getPrefTypeAlign(Global->getType());
6369 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6370 MachinePointerInfo(Global, 0), Align,
6371 MachineMemOperand::MOVolatile);
6373 if (TLI.useStackGuardXorFP())
6374 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6375 DAG.setRoot(Chain);
6376 setValue(&I, Res);
6377 return;
6379 case Intrinsic::stackprotector: {
6380 // Emit code into the DAG to store the stack guard onto the stack.
6381 MachineFunction &MF = DAG.getMachineFunction();
6382 MachineFrameInfo &MFI = MF.getFrameInfo();
6383 SDValue Src, Chain = getRoot();
6385 if (TLI.useLoadStackGuardNode())
6386 Src = getLoadStackGuard(DAG, sdl, Chain);
6387 else
6388 Src = getValue(I.getArgOperand(0)); // The guard's value.
6390 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6392 int FI = FuncInfo.StaticAllocaMap[Slot];
6393 MFI.setStackProtectorIndex(FI);
6394 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6396 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6398 // Store the stack protector onto the stack.
6399 Res = DAG.getStore(
6400 Chain, sdl, Src, FIN,
6401 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6402 MaybeAlign(), MachineMemOperand::MOVolatile);
6403 setValue(&I, Res);
6404 DAG.setRoot(Res);
6405 return;
6407 case Intrinsic::objectsize:
6408 llvm_unreachable("llvm.objectsize.* should have been lowered already");
6410 case Intrinsic::is_constant:
6411 llvm_unreachable("llvm.is.constant.* should have been lowered already");
6413 case Intrinsic::annotation:
6414 case Intrinsic::ptr_annotation:
6415 case Intrinsic::launder_invariant_group:
6416 case Intrinsic::strip_invariant_group:
6417 // Drop the intrinsic, but forward the value
6418 setValue(&I, getValue(I.getOperand(0)));
6419 return;
6420 case Intrinsic::assume:
6421 case Intrinsic::var_annotation:
6422 case Intrinsic::sideeffect:
6423 // Discard annotate attributes, assumptions, and artificial side-effects.
6424 return;
6426 case Intrinsic::codeview_annotation: {
6427 // Emit a label associated with this metadata.
6428 MachineFunction &MF = DAG.getMachineFunction();
6429 MCSymbol *Label =
6430 MF.getMMI().getContext().createTempSymbol("annotation", true);
6431 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6432 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6433 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6434 DAG.setRoot(Res);
6435 return;
6438 case Intrinsic::init_trampoline: {
6439 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6441 SDValue Ops[6];
6442 Ops[0] = getRoot();
6443 Ops[1] = getValue(I.getArgOperand(0));
6444 Ops[2] = getValue(I.getArgOperand(1));
6445 Ops[3] = getValue(I.getArgOperand(2));
6446 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6447 Ops[5] = DAG.getSrcValue(F);
6449 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6451 DAG.setRoot(Res);
6452 return;
6454 case Intrinsic::adjust_trampoline:
6455 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6456 TLI.getPointerTy(DAG.getDataLayout()),
6457 getValue(I.getArgOperand(0))));
6458 return;
6459 case Intrinsic::gcroot: {
6460 assert(DAG.getMachineFunction().getFunction().hasGC() &&
6461 "only valid in functions with gc specified, enforced by Verifier");
6462 assert(GFI && "implied by previous");
6463 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6464 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6466 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6467 GFI->addStackRoot(FI->getIndex(), TypeMap);
6468 return;
6470 case Intrinsic::gcread:
6471 case Intrinsic::gcwrite:
6472 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6473 case Intrinsic::flt_rounds:
6474 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6475 setValue(&I, Res);
6476 DAG.setRoot(Res.getValue(1));
6477 return;
6479 case Intrinsic::expect:
6480 // Just replace __builtin_expect(exp, c) with EXP.
6481 setValue(&I, getValue(I.getArgOperand(0)));
6482 return;
6484 case Intrinsic::debugtrap:
6485 case Intrinsic::trap: {
6486 StringRef TrapFuncName =
6487 I.getAttributes()
6488 .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6489 .getValueAsString();
6490 if (TrapFuncName.empty()) {
6491 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6492 ISD::TRAP : ISD::DEBUGTRAP;
6493 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6494 return;
6496 TargetLowering::ArgListTy Args;
6498 TargetLowering::CallLoweringInfo CLI(DAG);
6499 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6500 CallingConv::C, I.getType(),
6501 DAG.getExternalSymbol(TrapFuncName.data(),
6502 TLI.getPointerTy(DAG.getDataLayout())),
6503 std::move(Args));
6505 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6506 DAG.setRoot(Result.second);
6507 return;
6510 case Intrinsic::uadd_with_overflow:
6511 case Intrinsic::sadd_with_overflow:
6512 case Intrinsic::usub_with_overflow:
6513 case Intrinsic::ssub_with_overflow:
6514 case Intrinsic::umul_with_overflow:
6515 case Intrinsic::smul_with_overflow: {
6516 ISD::NodeType Op;
6517 switch (Intrinsic) {
6518 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6519 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6520 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6521 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6522 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6523 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6524 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6526 SDValue Op1 = getValue(I.getArgOperand(0));
6527 SDValue Op2 = getValue(I.getArgOperand(1));
6529 EVT ResultVT = Op1.getValueType();
6530 EVT OverflowVT = MVT::i1;
6531 if (ResultVT.isVector())
6532 OverflowVT = EVT::getVectorVT(
6533 *Context, OverflowVT, ResultVT.getVectorNumElements());
6535 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6536 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6537 return;
6539 case Intrinsic::prefetch: {
6540 SDValue Ops[5];
6541 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6542 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6543 Ops[0] = DAG.getRoot();
6544 Ops[1] = getValue(I.getArgOperand(0));
6545 Ops[2] = getValue(I.getArgOperand(1));
6546 Ops[3] = getValue(I.getArgOperand(2));
6547 Ops[4] = getValue(I.getArgOperand(3));
6548 SDValue Result = DAG.getMemIntrinsicNode(
6549 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6550 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6551 /* align */ None, Flags);
6553 // Chain the prefetch in parallell with any pending loads, to stay out of
6554 // the way of later optimizations.
6555 PendingLoads.push_back(Result);
6556 Result = getRoot();
6557 DAG.setRoot(Result);
6558 return;
6560 case Intrinsic::lifetime_start:
6561 case Intrinsic::lifetime_end: {
6562 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6563 // Stack coloring is not enabled in O0, discard region information.
6564 if (TM.getOptLevel() == CodeGenOpt::None)
6565 return;
6567 const int64_t ObjectSize =
6568 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6569 Value *const ObjectPtr = I.getArgOperand(1);
6570 SmallVector<const Value *, 4> Allocas;
6571 getUnderlyingObjects(ObjectPtr, Allocas);
6573 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6574 E = Allocas.end(); Object != E; ++Object) {
6575 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6577 // Could not find an Alloca.
6578 if (!LifetimeObject)
6579 continue;
6581 // First check that the Alloca is static, otherwise it won't have a
6582 // valid frame index.
6583 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6584 if (SI == FuncInfo.StaticAllocaMap.end())
6585 return;
6587 const int FrameIndex = SI->second;
6588 int64_t Offset;
6589 if (GetPointerBaseWithConstantOffset(
6590 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6591 Offset = -1; // Cannot determine offset from alloca to lifetime object.
6592 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6593 Offset);
6594 DAG.setRoot(Res);
6596 return;
6598 case Intrinsic::pseudoprobe: {
6599 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6600 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6601 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6602 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6603 DAG.setRoot(Res);
6604 return;
6606 case Intrinsic::invariant_start:
6607 // Discard region information.
6608 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6609 return;
6610 case Intrinsic::invariant_end:
6611 // Discard region information.
6612 return;
6613 case Intrinsic::clear_cache:
6614 /// FunctionName may be null.
6615 if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6616 lowerCallToExternalSymbol(I, FunctionName);
6617 return;
6618 case Intrinsic::donothing:
6619 // ignore
6620 return;
6621 case Intrinsic::experimental_stackmap:
6622 visitStackmap(I);
6623 return;
6624 case Intrinsic::experimental_patchpoint_void:
6625 case Intrinsic::experimental_patchpoint_i64:
6626 visitPatchpoint(I);
6627 return;
6628 case Intrinsic::experimental_gc_statepoint:
6629 LowerStatepoint(cast<GCStatepointInst>(I));
6630 return;
6631 case Intrinsic::experimental_gc_result:
6632 visitGCResult(cast<GCResultInst>(I));
6633 return;
6634 case Intrinsic::experimental_gc_relocate:
6635 visitGCRelocate(cast<GCRelocateInst>(I));
6636 return;
6637 case Intrinsic::instrprof_increment:
6638 llvm_unreachable("instrprof failed to lower an increment");
6639 case Intrinsic::instrprof_value_profile:
6640 llvm_unreachable("instrprof failed to lower a value profiling call");
6641 case Intrinsic::localescape: {
6642 MachineFunction &MF = DAG.getMachineFunction();
6643 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6645 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6646 // is the same on all targets.
6647 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6648 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6649 if (isa<ConstantPointerNull>(Arg))
6650 continue; // Skip null pointers. They represent a hole in index space.
6651 AllocaInst *Slot = cast<AllocaInst>(Arg);
6652 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6653 "can only escape static allocas");
6654 int FI = FuncInfo.StaticAllocaMap[Slot];
6655 MCSymbol *FrameAllocSym =
6656 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6657 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6658 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6659 TII->get(TargetOpcode::LOCAL_ESCAPE))
6660 .addSym(FrameAllocSym)
6661 .addFrameIndex(FI);
6664 return;
6667 case Intrinsic::localrecover: {
6668 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6669 MachineFunction &MF = DAG.getMachineFunction();
6671 // Get the symbol that defines the frame offset.
6672 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6673 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6674 unsigned IdxVal =
6675 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6676 MCSymbol *FrameAllocSym =
6677 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6678 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6680 Value *FP = I.getArgOperand(1);
6681 SDValue FPVal = getValue(FP);
6682 EVT PtrVT = FPVal.getValueType();
6684 // Create a MCSymbol for the label to avoid any target lowering
6685 // that would make this PC relative.
6686 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6687 SDValue OffsetVal =
6688 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6690 // Add the offset to the FP.
6691 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6692 setValue(&I, Add);
6694 return;
6697 case Intrinsic::eh_exceptionpointer:
6698 case Intrinsic::eh_exceptioncode: {
6699 // Get the exception pointer vreg, copy from it, and resize it to fit.
6700 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6701 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6702 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6703 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6704 SDValue N =
6705 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6706 if (Intrinsic == Intrinsic::eh_exceptioncode)
6707 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6708 setValue(&I, N);
6709 return;
6711 case Intrinsic::xray_customevent: {
6712 // Here we want to make sure that the intrinsic behaves as if it has a
6713 // specific calling convention, and only for x86_64.
6714 // FIXME: Support other platforms later.
6715 const auto &Triple = DAG.getTarget().getTargetTriple();
6716 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6717 return;
6719 SDLoc DL = getCurSDLoc();
6720 SmallVector<SDValue, 8> Ops;
6722 // We want to say that we always want the arguments in registers.
6723 SDValue LogEntryVal = getValue(I.getArgOperand(0));
6724 SDValue StrSizeVal = getValue(I.getArgOperand(1));
6725 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6726 SDValue Chain = getRoot();
6727 Ops.push_back(LogEntryVal);
6728 Ops.push_back(StrSizeVal);
6729 Ops.push_back(Chain);
6731 // We need to enforce the calling convention for the callsite, so that
6732 // argument ordering is enforced correctly, and that register allocation can
6733 // see that some registers may be assumed clobbered and have to preserve
6734 // them across calls to the intrinsic.
6735 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6736 DL, NodeTys, Ops);
6737 SDValue patchableNode = SDValue(MN, 0);
6738 DAG.setRoot(patchableNode);
6739 setValue(&I, patchableNode);
6740 return;
6742 case Intrinsic::xray_typedevent: {
6743 // Here we want to make sure that the intrinsic behaves as if it has a
6744 // specific calling convention, and only for x86_64.
6745 // FIXME: Support other platforms later.
6746 const auto &Triple = DAG.getTarget().getTargetTriple();
6747 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6748 return;
6750 SDLoc DL = getCurSDLoc();
6751 SmallVector<SDValue, 8> Ops;
6753 // We want to say that we always want the arguments in registers.
6754 // It's unclear to me how manipulating the selection DAG here forces callers
6755 // to provide arguments in registers instead of on the stack.
6756 SDValue LogTypeId = getValue(I.getArgOperand(0));
6757 SDValue LogEntryVal = getValue(I.getArgOperand(1));
6758 SDValue StrSizeVal = getValue(I.getArgOperand(2));
6759 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6760 SDValue Chain = getRoot();
6761 Ops.push_back(LogTypeId);
6762 Ops.push_back(LogEntryVal);
6763 Ops.push_back(StrSizeVal);
6764 Ops.push_back(Chain);
6766 // We need to enforce the calling convention for the callsite, so that
6767 // argument ordering is enforced correctly, and that register allocation can
6768 // see that some registers may be assumed clobbered and have to preserve
6769 // them across calls to the intrinsic.
6770 MachineSDNode *MN = DAG.getMachineNode(
6771 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6772 SDValue patchableNode = SDValue(MN, 0);
6773 DAG.setRoot(patchableNode);
6774 setValue(&I, patchableNode);
6775 return;
6777 case Intrinsic::experimental_deoptimize:
6778 LowerDeoptimizeCall(&I);
6779 return;
6781 case Intrinsic::vector_reduce_fadd:
6782 case Intrinsic::vector_reduce_fmul:
6783 case Intrinsic::vector_reduce_add:
6784 case Intrinsic::vector_reduce_mul:
6785 case Intrinsic::vector_reduce_and:
6786 case Intrinsic::vector_reduce_or:
6787 case Intrinsic::vector_reduce_xor:
6788 case Intrinsic::vector_reduce_smax:
6789 case Intrinsic::vector_reduce_smin:
6790 case Intrinsic::vector_reduce_umax:
6791 case Intrinsic::vector_reduce_umin:
6792 case Intrinsic::vector_reduce_fmax:
6793 case Intrinsic::vector_reduce_fmin:
6794 visitVectorReduce(I, Intrinsic);
6795 return;
6797 case Intrinsic::icall_branch_funnel: {
6798 SmallVector<SDValue, 16> Ops;
6799 Ops.push_back(getValue(I.getArgOperand(0)));
6801 int64_t Offset;
6802 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6803 I.getArgOperand(1), Offset, DAG.getDataLayout()));
6804 if (!Base)
6805 report_fatal_error(
6806 "llvm.icall.branch.funnel operand must be a GlobalValue");
6807 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6809 struct BranchFunnelTarget {
6810 int64_t Offset;
6811 SDValue Target;
6813 SmallVector<BranchFunnelTarget, 8> Targets;
6815 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6816 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6817 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6818 if (ElemBase != Base)
6819 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6820 "to the same GlobalValue");
6822 SDValue Val = getValue(I.getArgOperand(Op + 1));
6823 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6824 if (!GA)
6825 report_fatal_error(
6826 "llvm.icall.branch.funnel operand must be a GlobalValue");
6827 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6828 GA->getGlobal(), getCurSDLoc(),
6829 Val.getValueType(), GA->getOffset())});
6831 llvm::sort(Targets,
6832 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6833 return T1.Offset < T2.Offset;
6836 for (auto &T : Targets) {
6837 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6838 Ops.push_back(T.Target);
6841 Ops.push_back(DAG.getRoot()); // Chain
6842 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6843 getCurSDLoc(), MVT::Other, Ops),
6845 DAG.setRoot(N);
6846 setValue(&I, N);
6847 HasTailCall = true;
6848 return;
6851 case Intrinsic::wasm_landingpad_index:
6852 // Information this intrinsic contained has been transferred to
6853 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6854 // delete it now.
6855 return;
6857 case Intrinsic::aarch64_settag:
6858 case Intrinsic::aarch64_settag_zero: {
6859 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6860 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6861 SDValue Val = TSI.EmitTargetCodeForSetTag(
6862 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6863 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6864 ZeroMemory);
6865 DAG.setRoot(Val);
6866 setValue(&I, Val);
6867 return;
6869 case Intrinsic::ptrmask: {
6870 SDValue Ptr = getValue(I.getOperand(0));
6871 SDValue Const = getValue(I.getOperand(1));
6873 EVT PtrVT = Ptr.getValueType();
6874 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6875 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6876 return;
6878 case Intrinsic::get_active_lane_mask: {
6879 auto DL = getCurSDLoc();
6880 SDValue Index = getValue(I.getOperand(0));
6881 SDValue TripCount = getValue(I.getOperand(1));
6882 Type *ElementTy = I.getOperand(0)->getType();
6883 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6884 unsigned VecWidth = VT.getVectorNumElements();
6886 SmallVector<SDValue, 16> OpsTripCount;
6887 SmallVector<SDValue, 16> OpsIndex;
6888 SmallVector<SDValue, 16> OpsStepConstants;
6889 for (unsigned i = 0; i < VecWidth; i++) {
6890 OpsTripCount.push_back(TripCount);
6891 OpsIndex.push_back(Index);
6892 OpsStepConstants.push_back(
6893 DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
6896 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
6898 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
6899 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6900 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6901 SDValue VectorInduction = DAG.getNode(
6902 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6903 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
6904 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6905 VectorTripCount, ISD::CondCode::SETULT);
6906 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
6907 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
6908 SetCC));
6909 return;
6914 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6915 const ConstrainedFPIntrinsic &FPI) {
6916 SDLoc sdl = getCurSDLoc();
6918 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6919 SmallVector<EVT, 4> ValueVTs;
6920 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6921 ValueVTs.push_back(MVT::Other); // Out chain
6923 // We do not need to serialize constrained FP intrinsics against
6924 // each other or against (nonvolatile) loads, so they can be
6925 // chained like loads.
6926 SDValue Chain = DAG.getRoot();
6927 SmallVector<SDValue, 4> Opers;
6928 Opers.push_back(Chain);
6929 if (FPI.isUnaryOp()) {
6930 Opers.push_back(getValue(FPI.getArgOperand(0)));
6931 } else if (FPI.isTernaryOp()) {
6932 Opers.push_back(getValue(FPI.getArgOperand(0)));
6933 Opers.push_back(getValue(FPI.getArgOperand(1)));
6934 Opers.push_back(getValue(FPI.getArgOperand(2)));
6935 } else {
6936 Opers.push_back(getValue(FPI.getArgOperand(0)));
6937 Opers.push_back(getValue(FPI.getArgOperand(1)));
6940 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6941 assert(Result.getNode()->getNumValues() == 2);
6943 // Push node to the appropriate list so that future instructions can be
6944 // chained up correctly.
6945 SDValue OutChain = Result.getValue(1);
6946 switch (EB) {
6947 case fp::ExceptionBehavior::ebIgnore:
6948 // The only reason why ebIgnore nodes still need to be chained is that
6949 // they might depend on the current rounding mode, and therefore must
6950 // not be moved across instruction that may change that mode.
6951 LLVM_FALLTHROUGH;
6952 case fp::ExceptionBehavior::ebMayTrap:
6953 // These must not be moved across calls or instructions that may change
6954 // floating-point exception masks.
6955 PendingConstrainedFP.push_back(OutChain);
6956 break;
6957 case fp::ExceptionBehavior::ebStrict:
6958 // These must not be moved across calls or instructions that may change
6959 // floating-point exception masks or read floating-point exception flags.
6960 // In addition, they cannot be optimized out even if unused.
6961 PendingConstrainedFPStrict.push_back(OutChain);
6962 break;
6966 SDVTList VTs = DAG.getVTList(ValueVTs);
6967 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
6969 SDNodeFlags Flags;
6970 if (EB == fp::ExceptionBehavior::ebIgnore)
6971 Flags.setNoFPExcept(true);
6973 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
6974 Flags.copyFMF(*FPOp);
6976 unsigned Opcode;
6977 switch (FPI.getIntrinsicID()) {
6978 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6979 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
6980 case Intrinsic::INTRINSIC: \
6981 Opcode = ISD::STRICT_##DAGN; \
6982 break;
6983 #include "llvm/IR/ConstrainedOps.def"
6984 case Intrinsic::experimental_constrained_fmuladd: {
6985 Opcode = ISD::STRICT_FMA;
6986 // Break fmuladd into fmul and fadd.
6987 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
6988 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
6989 ValueVTs[0])) {
6990 Opers.pop_back();
6991 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
6992 pushOutChain(Mul, EB);
6993 Opcode = ISD::STRICT_FADD;
6994 Opers.clear();
6995 Opers.push_back(Mul.getValue(1));
6996 Opers.push_back(Mul.getValue(0));
6997 Opers.push_back(getValue(FPI.getArgOperand(2)));
6999 break;
7003 // A few strict DAG nodes carry additional operands that are not
7004 // set up by the default code above.
7005 switch (Opcode) {
7006 default: break;
7007 case ISD::STRICT_FP_ROUND:
7008 Opers.push_back(
7009 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7010 break;
7011 case ISD::STRICT_FSETCC:
7012 case ISD::STRICT_FSETCCS: {
7013 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7014 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7015 break;
7019 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7020 pushOutChain(Result, EB);
7022 SDValue FPResult = Result.getValue(0);
7023 setValue(&FPI, FPResult);
7026 std::pair<SDValue, SDValue>
7027 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7028 const BasicBlock *EHPadBB) {
7029 MachineFunction &MF = DAG.getMachineFunction();
7030 MachineModuleInfo &MMI = MF.getMMI();
7031 MCSymbol *BeginLabel = nullptr;
7033 if (EHPadBB) {
7034 // Insert a label before the invoke call to mark the try range. This can be
7035 // used to detect deletion of the invoke via the MachineModuleInfo.
7036 BeginLabel = MMI.getContext().createTempSymbol();
7038 // For SjLj, keep track of which landing pads go with which invokes
7039 // so as to maintain the ordering of pads in the LSDA.
7040 unsigned CallSiteIndex = MMI.getCurrentCallSite();
7041 if (CallSiteIndex) {
7042 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7043 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7045 // Now that the call site is handled, stop tracking it.
7046 MMI.setCurrentCallSite(0);
7049 // Both PendingLoads and PendingExports must be flushed here;
7050 // this call might not return.
7051 (void)getRoot();
7052 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7054 CLI.setChain(getRoot());
7056 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7057 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7059 assert((CLI.IsTailCall || Result.second.getNode()) &&
7060 "Non-null chain expected with non-tail call!");
7061 assert((Result.second.getNode() || !Result.first.getNode()) &&
7062 "Null value expected with tail call!");
7064 if (!Result.second.getNode()) {
7065 // As a special case, a null chain means that a tail call has been emitted
7066 // and the DAG root is already updated.
7067 HasTailCall = true;
7069 // Since there's no actual continuation from this block, nothing can be
7070 // relying on us setting vregs for them.
7071 PendingExports.clear();
7072 } else {
7073 DAG.setRoot(Result.second);
7076 if (EHPadBB) {
7077 // Insert a label at the end of the invoke call to mark the try range. This
7078 // can be used to detect deletion of the invoke via the MachineModuleInfo.
7079 MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7080 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7082 // Inform MachineModuleInfo of range.
7083 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7084 // There is a platform (e.g. wasm) that uses funclet style IR but does not
7085 // actually use outlined funclets and their LSDA info style.
7086 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7087 assert(CLI.CB);
7088 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7089 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7090 } else if (!isScopedEHPersonality(Pers)) {
7091 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7095 return Result;
7098 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7099 bool isTailCall,
7100 const BasicBlock *EHPadBB) {
7101 auto &DL = DAG.getDataLayout();
7102 FunctionType *FTy = CB.getFunctionType();
7103 Type *RetTy = CB.getType();
7105 TargetLowering::ArgListTy Args;
7106 Args.reserve(CB.arg_size());
7108 const Value *SwiftErrorVal = nullptr;
7109 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7111 if (isTailCall) {
7112 // Avoid emitting tail calls in functions with the disable-tail-calls
7113 // attribute.
7114 auto *Caller = CB.getParent()->getParent();
7115 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7116 "true")
7117 isTailCall = false;
7119 // We can't tail call inside a function with a swifterror argument. Lowering
7120 // does not support this yet. It would have to move into the swifterror
7121 // register before the call.
7122 if (TLI.supportSwiftError() &&
7123 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7124 isTailCall = false;
7127 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7128 TargetLowering::ArgListEntry Entry;
7129 const Value *V = *I;
7131 // Skip empty types
7132 if (V->getType()->isEmptyTy())
7133 continue;
7135 SDValue ArgNode = getValue(V);
7136 Entry.Node = ArgNode; Entry.Ty = V->getType();
7138 Entry.setAttributes(&CB, I - CB.arg_begin());
7140 // Use swifterror virtual register as input to the call.
7141 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7142 SwiftErrorVal = V;
7143 // We find the virtual register for the actual swifterror argument.
7144 // Instead of using the Value, we use the virtual register instead.
7145 Entry.Node =
7146 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7147 EVT(TLI.getPointerTy(DL)));
7150 Args.push_back(Entry);
7152 // If we have an explicit sret argument that is an Instruction, (i.e., it
7153 // might point to function-local memory), we can't meaningfully tail-call.
7154 if (Entry.IsSRet && isa<Instruction>(V))
7155 isTailCall = false;
7158 // If call site has a cfguardtarget operand bundle, create and add an
7159 // additional ArgListEntry.
7160 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7161 TargetLowering::ArgListEntry Entry;
7162 Value *V = Bundle->Inputs[0];
7163 SDValue ArgNode = getValue(V);
7164 Entry.Node = ArgNode;
7165 Entry.Ty = V->getType();
7166 Entry.IsCFGuardTarget = true;
7167 Args.push_back(Entry);
7170 // Check if target-independent constraints permit a tail call here.
7171 // Target-dependent constraints are checked within TLI->LowerCallTo.
7172 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7173 isTailCall = false;
7175 // Disable tail calls if there is an swifterror argument. Targets have not
7176 // been updated to support tail calls.
7177 if (TLI.supportSwiftError() && SwiftErrorVal)
7178 isTailCall = false;
7180 TargetLowering::CallLoweringInfo CLI(DAG);
7181 CLI.setDebugLoc(getCurSDLoc())
7182 .setChain(getRoot())
7183 .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7184 .setTailCall(isTailCall)
7185 .setConvergent(CB.isConvergent())
7186 .setIsPreallocated(
7187 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7188 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7190 if (Result.first.getNode()) {
7191 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7192 setValue(&CB, Result.first);
7195 // The last element of CLI.InVals has the SDValue for swifterror return.
7196 // Here we copy it to a virtual register and update SwiftErrorMap for
7197 // book-keeping.
7198 if (SwiftErrorVal && TLI.supportSwiftError()) {
7199 // Get the last element of InVals.
7200 SDValue Src = CLI.InVals.back();
7201 Register VReg =
7202 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7203 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7204 DAG.setRoot(CopyNode);
7208 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7209 SelectionDAGBuilder &Builder) {
7210 // Check to see if this load can be trivially constant folded, e.g. if the
7211 // input is from a string literal.
7212 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7213 // Cast pointer to the type we really want to load.
7214 Type *LoadTy =
7215 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7216 if (LoadVT.isVector())
7217 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7219 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7220 PointerType::getUnqual(LoadTy));
7222 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7223 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7224 return Builder.getValue(LoadCst);
7227 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
7228 // still constant memory, the input chain can be the entry node.
7229 SDValue Root;
7230 bool ConstantMemory = false;
7232 // Do not serialize (non-volatile) loads of constant memory with anything.
7233 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7234 Root = Builder.DAG.getEntryNode();
7235 ConstantMemory = true;
7236 } else {
7237 // Do not serialize non-volatile loads against each other.
7238 Root = Builder.DAG.getRoot();
7241 SDValue Ptr = Builder.getValue(PtrVal);
7242 SDValue LoadVal =
7243 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7244 MachinePointerInfo(PtrVal), Align(1));
7246 if (!ConstantMemory)
7247 Builder.PendingLoads.push_back(LoadVal.getValue(1));
7248 return LoadVal;
7251 /// Record the value for an instruction that produces an integer result,
7252 /// converting the type where necessary.
7253 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7254 SDValue Value,
7255 bool IsSigned) {
7256 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7257 I.getType(), true);
7258 if (IsSigned)
7259 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7260 else
7261 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7262 setValue(&I, Value);
7265 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7266 /// true and lower it. Otherwise return false, and it will be lowered like a
7267 /// normal call.
7268 /// The caller already checked that \p I calls the appropriate LibFunc with a
7269 /// correct prototype.
7270 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7271 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7272 const Value *Size = I.getArgOperand(2);
7273 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7274 if (CSize && CSize->getZExtValue() == 0) {
7275 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7276 I.getType(), true);
7277 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7278 return true;
7281 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7282 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7283 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7284 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7285 if (Res.first.getNode()) {
7286 processIntegerCallValue(I, Res.first, true);
7287 PendingLoads.push_back(Res.second);
7288 return true;
7291 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
7292 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
7293 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7294 return false;
7296 // If the target has a fast compare for the given size, it will return a
7297 // preferred load type for that size. Require that the load VT is legal and
7298 // that the target supports unaligned loads of that type. Otherwise, return
7299 // INVALID.
7300 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7301 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7302 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7303 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7304 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7305 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7306 // TODO: Check alignment of src and dest ptrs.
7307 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7308 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7309 if (!TLI.isTypeLegal(LVT) ||
7310 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7311 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7312 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7315 return LVT;
7318 // This turns into unaligned loads. We only do this if the target natively
7319 // supports the MVT we'll be loading or if it is small enough (<= 4) that
7320 // we'll only produce a small number of byte loads.
7321 MVT LoadVT;
7322 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7323 switch (NumBitsToCompare) {
7324 default:
7325 return false;
7326 case 16:
7327 LoadVT = MVT::i16;
7328 break;
7329 case 32:
7330 LoadVT = MVT::i32;
7331 break;
7332 case 64:
7333 case 128:
7334 case 256:
7335 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7336 break;
7339 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7340 return false;
7342 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7343 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7345 // Bitcast to a wide integer type if the loads are vectors.
7346 if (LoadVT.isVector()) {
7347 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7348 LoadL = DAG.getBitcast(CmpVT, LoadL);
7349 LoadR = DAG.getBitcast(CmpVT, LoadR);
7352 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7353 processIntegerCallValue(I, Cmp, false);
7354 return true;
7357 /// See if we can lower a memchr call into an optimized form. If so, return
7358 /// true and lower it. Otherwise return false, and it will be lowered like a
7359 /// normal call.
7360 /// The caller already checked that \p I calls the appropriate LibFunc with a
7361 /// correct prototype.
7362 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7363 const Value *Src = I.getArgOperand(0);
7364 const Value *Char = I.getArgOperand(1);
7365 const Value *Length = I.getArgOperand(2);
7367 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7368 std::pair<SDValue, SDValue> Res =
7369 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7370 getValue(Src), getValue(Char), getValue(Length),
7371 MachinePointerInfo(Src));
7372 if (Res.first.getNode()) {
7373 setValue(&I, Res.first);
7374 PendingLoads.push_back(Res.second);
7375 return true;
7378 return false;
7381 /// See if we can lower a mempcpy call into an optimized form. If so, return
7382 /// true and lower it. Otherwise return false, and it will be lowered like a
7383 /// normal call.
7384 /// The caller already checked that \p I calls the appropriate LibFunc with a
7385 /// correct prototype.
7386 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7387 SDValue Dst = getValue(I.getArgOperand(0));
7388 SDValue Src = getValue(I.getArgOperand(1));
7389 SDValue Size = getValue(I.getArgOperand(2));
7391 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7392 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7393 // DAG::getMemcpy needs Alignment to be defined.
7394 Align Alignment = std::min(DstAlign, SrcAlign);
7396 bool isVol = false;
7397 SDLoc sdl = getCurSDLoc();
7399 // In the mempcpy context we need to pass in a false value for isTailCall
7400 // because the return pointer needs to be adjusted by the size of
7401 // the copied memory.
7402 SDValue Root = isVol ? getRoot() : getMemoryRoot();
7403 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7404 /*isTailCall=*/false,
7405 MachinePointerInfo(I.getArgOperand(0)),
7406 MachinePointerInfo(I.getArgOperand(1)));
7407 assert(MC.getNode() != nullptr &&
7408 "** memcpy should not be lowered as TailCall in mempcpy context **");
7409 DAG.setRoot(MC);
7411 // Check if Size needs to be truncated or extended.
7412 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7414 // Adjust return pointer to point just past the last dst byte.
7415 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7416 Dst, Size);
7417 setValue(&I, DstPlusSize);
7418 return true;
7421 /// See if we can lower a strcpy call into an optimized form. If so, return
7422 /// true and lower it, otherwise return false and it will be lowered like a
7423 /// normal call.
7424 /// The caller already checked that \p I calls the appropriate LibFunc with a
7425 /// correct prototype.
7426 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7427 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7429 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7430 std::pair<SDValue, SDValue> Res =
7431 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7432 getValue(Arg0), getValue(Arg1),
7433 MachinePointerInfo(Arg0),
7434 MachinePointerInfo(Arg1), isStpcpy);
7435 if (Res.first.getNode()) {
7436 setValue(&I, Res.first);
7437 DAG.setRoot(Res.second);
7438 return true;
7441 return false;
7444 /// See if we can lower a strcmp call into an optimized form. If so, return
7445 /// true and lower it, otherwise return false and it will be lowered like a
7446 /// normal call.
7447 /// The caller already checked that \p I calls the appropriate LibFunc with a
7448 /// correct prototype.
7449 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7450 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7452 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7453 std::pair<SDValue, SDValue> Res =
7454 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7455 getValue(Arg0), getValue(Arg1),
7456 MachinePointerInfo(Arg0),
7457 MachinePointerInfo(Arg1));
7458 if (Res.first.getNode()) {
7459 processIntegerCallValue(I, Res.first, true);
7460 PendingLoads.push_back(Res.second);
7461 return true;
7464 return false;
7467 /// See if we can lower a strlen call into an optimized form. If so, return
7468 /// true and lower it, otherwise return false and it will be lowered like a
7469 /// normal call.
7470 /// The caller already checked that \p I calls the appropriate LibFunc with a
7471 /// correct prototype.
7472 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7473 const Value *Arg0 = I.getArgOperand(0);
7475 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7476 std::pair<SDValue, SDValue> Res =
7477 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7478 getValue(Arg0), MachinePointerInfo(Arg0));
7479 if (Res.first.getNode()) {
7480 processIntegerCallValue(I, Res.first, false);
7481 PendingLoads.push_back(Res.second);
7482 return true;
7485 return false;
7488 /// See if we can lower a strnlen call into an optimized form. If so, return
7489 /// true and lower it, otherwise return false and it will be lowered like a
7490 /// normal call.
7491 /// The caller already checked that \p I calls the appropriate LibFunc with a
7492 /// correct prototype.
7493 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7494 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7496 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7497 std::pair<SDValue, SDValue> Res =
7498 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7499 getValue(Arg0), getValue(Arg1),
7500 MachinePointerInfo(Arg0));
7501 if (Res.first.getNode()) {
7502 processIntegerCallValue(I, Res.first, false);
7503 PendingLoads.push_back(Res.second);
7504 return true;
7507 return false;
7510 /// See if we can lower a unary floating-point operation into an SDNode with
7511 /// the specified Opcode. If so, return true and lower it, otherwise return
7512 /// false and it will be lowered like a normal call.
7513 /// The caller already checked that \p I calls the appropriate LibFunc with a
7514 /// correct prototype.
7515 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7516 unsigned Opcode) {
7517 // We already checked this call's prototype; verify it doesn't modify errno.
7518 if (!I.onlyReadsMemory())
7519 return false;
7521 SDNodeFlags Flags;
7522 Flags.copyFMF(cast<FPMathOperator>(I));
7524 SDValue Tmp = getValue(I.getArgOperand(0));
7525 setValue(&I,
7526 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7527 return true;
7530 /// See if we can lower a binary floating-point operation into an SDNode with
7531 /// the specified Opcode. If so, return true and lower it. Otherwise return
7532 /// false, and it will be lowered like a normal call.
7533 /// The caller already checked that \p I calls the appropriate LibFunc with a
7534 /// correct prototype.
7535 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7536 unsigned Opcode) {
7537 // We already checked this call's prototype; verify it doesn't modify errno.
7538 if (!I.onlyReadsMemory())
7539 return false;
7541 SDNodeFlags Flags;
7542 Flags.copyFMF(cast<FPMathOperator>(I));
7544 SDValue Tmp0 = getValue(I.getArgOperand(0));
7545 SDValue Tmp1 = getValue(I.getArgOperand(1));
7546 EVT VT = Tmp0.getValueType();
7547 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7548 return true;
7551 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7552 // Handle inline assembly differently.
7553 if (I.isInlineAsm()) {
7554 visitInlineAsm(I);
7555 return;
7558 if (Function *F = I.getCalledFunction()) {
7559 if (F->isDeclaration()) {
7560 // Is this an LLVM intrinsic or a target-specific intrinsic?
7561 unsigned IID = F->getIntrinsicID();
7562 if (!IID)
7563 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7564 IID = II->getIntrinsicID(F);
7566 if (IID) {
7567 visitIntrinsicCall(I, IID);
7568 return;
7572 // Check for well-known libc/libm calls. If the function is internal, it
7573 // can't be a library call. Don't do the check if marked as nobuiltin for
7574 // some reason or the call site requires strict floating point semantics.
7575 LibFunc Func;
7576 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7577 F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7578 LibInfo->hasOptimizedCodeGen(Func)) {
7579 switch (Func) {
7580 default: break;
7581 case LibFunc_bcmp:
7582 if (visitMemCmpBCmpCall(I))
7583 return;
7584 break;
7585 case LibFunc_copysign:
7586 case LibFunc_copysignf:
7587 case LibFunc_copysignl:
7588 // We already checked this call's prototype; verify it doesn't modify
7589 // errno.
7590 if (I.onlyReadsMemory()) {
7591 SDValue LHS = getValue(I.getArgOperand(0));
7592 SDValue RHS = getValue(I.getArgOperand(1));
7593 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7594 LHS.getValueType(), LHS, RHS));
7595 return;
7597 break;
7598 case LibFunc_fabs:
7599 case LibFunc_fabsf:
7600 case LibFunc_fabsl:
7601 if (visitUnaryFloatCall(I, ISD::FABS))
7602 return;
7603 break;
7604 case LibFunc_fmin:
7605 case LibFunc_fminf:
7606 case LibFunc_fminl:
7607 if (visitBinaryFloatCall(I, ISD::FMINNUM))
7608 return;
7609 break;
7610 case LibFunc_fmax:
7611 case LibFunc_fmaxf:
7612 case LibFunc_fmaxl:
7613 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7614 return;
7615 break;
7616 case LibFunc_sin:
7617 case LibFunc_sinf:
7618 case LibFunc_sinl:
7619 if (visitUnaryFloatCall(I, ISD::FSIN))
7620 return;
7621 break;
7622 case LibFunc_cos:
7623 case LibFunc_cosf:
7624 case LibFunc_cosl:
7625 if (visitUnaryFloatCall(I, ISD::FCOS))
7626 return;
7627 break;
7628 case LibFunc_sqrt:
7629 case LibFunc_sqrtf:
7630 case LibFunc_sqrtl:
7631 case LibFunc_sqrt_finite:
7632 case LibFunc_sqrtf_finite:
7633 case LibFunc_sqrtl_finite:
7634 if (visitUnaryFloatCall(I, ISD::FSQRT))
7635 return;
7636 break;
7637 case LibFunc_floor:
7638 case LibFunc_floorf:
7639 case LibFunc_floorl:
7640 if (visitUnaryFloatCall(I, ISD::FFLOOR))
7641 return;
7642 break;
7643 case LibFunc_nearbyint:
7644 case LibFunc_nearbyintf:
7645 case LibFunc_nearbyintl:
7646 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7647 return;
7648 break;
7649 case LibFunc_ceil:
7650 case LibFunc_ceilf:
7651 case LibFunc_ceill:
7652 if (visitUnaryFloatCall(I, ISD::FCEIL))
7653 return;
7654 break;
7655 case LibFunc_rint:
7656 case LibFunc_rintf:
7657 case LibFunc_rintl:
7658 if (visitUnaryFloatCall(I, ISD::FRINT))
7659 return;
7660 break;
7661 case LibFunc_round:
7662 case LibFunc_roundf:
7663 case LibFunc_roundl:
7664 if (visitUnaryFloatCall(I, ISD::FROUND))
7665 return;
7666 break;
7667 case LibFunc_trunc:
7668 case LibFunc_truncf:
7669 case LibFunc_truncl:
7670 if (visitUnaryFloatCall(I, ISD::FTRUNC))
7671 return;
7672 break;
7673 case LibFunc_log2:
7674 case LibFunc_log2f:
7675 case LibFunc_log2l:
7676 if (visitUnaryFloatCall(I, ISD::FLOG2))
7677 return;
7678 break;
7679 case LibFunc_exp2:
7680 case LibFunc_exp2f:
7681 case LibFunc_exp2l:
7682 if (visitUnaryFloatCall(I, ISD::FEXP2))
7683 return;
7684 break;
7685 case LibFunc_memcmp:
7686 if (visitMemCmpBCmpCall(I))
7687 return;
7688 break;
7689 case LibFunc_mempcpy:
7690 if (visitMemPCpyCall(I))
7691 return;
7692 break;
7693 case LibFunc_memchr:
7694 if (visitMemChrCall(I))
7695 return;
7696 break;
7697 case LibFunc_strcpy:
7698 if (visitStrCpyCall(I, false))
7699 return;
7700 break;
7701 case LibFunc_stpcpy:
7702 if (visitStrCpyCall(I, true))
7703 return;
7704 break;
7705 case LibFunc_strcmp:
7706 if (visitStrCmpCall(I))
7707 return;
7708 break;
7709 case LibFunc_strlen:
7710 if (visitStrLenCall(I))
7711 return;
7712 break;
7713 case LibFunc_strnlen:
7714 if (visitStrNLenCall(I))
7715 return;
7716 break;
7721 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7722 // have to do anything here to lower funclet bundles.
7723 // CFGuardTarget bundles are lowered in LowerCallTo.
7724 assert(!I.hasOperandBundlesOtherThan(
7725 {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7726 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7727 "Cannot lower calls with arbitrary operand bundles!");
7729 SDValue Callee = getValue(I.getCalledOperand());
7731 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7732 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7733 else
7734 // Check if we can potentially perform a tail call. More detailed checking
7735 // is be done within LowerCallTo, after more information about the call is
7736 // known.
7737 LowerCallTo(I, Callee, I.isTailCall());
7740 namespace {
7742 /// AsmOperandInfo - This contains information for each constraint that we are
7743 /// lowering.
7744 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7745 public:
7746 /// CallOperand - If this is the result output operand or a clobber
7747 /// this is null, otherwise it is the incoming operand to the CallInst.
7748 /// This gets modified as the asm is processed.
7749 SDValue CallOperand;
7751 /// AssignedRegs - If this is a register or register class operand, this
7752 /// contains the set of register corresponding to the operand.
7753 RegsForValue AssignedRegs;
7755 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7756 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7759 /// Whether or not this operand accesses memory
7760 bool hasMemory(const TargetLowering &TLI) const {
7761 // Indirect operand accesses access memory.
7762 if (isIndirect)
7763 return true;
7765 for (const auto &Code : Codes)
7766 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7767 return true;
7769 return false;
7772 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7773 /// corresponds to. If there is no Value* for this operand, it returns
7774 /// MVT::Other.
7775 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7776 const DataLayout &DL) const {
7777 if (!CallOperandVal) return MVT::Other;
7779 if (isa<BasicBlock>(CallOperandVal))
7780 return TLI.getProgramPointerTy(DL);
7782 llvm::Type *OpTy = CallOperandVal->getType();
7784 // FIXME: code duplicated from TargetLowering::ParseConstraints().
7785 // If this is an indirect operand, the operand is a pointer to the
7786 // accessed type.
7787 if (isIndirect) {
7788 PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7789 if (!PtrTy)
7790 report_fatal_error("Indirect operand for inline asm not a pointer!");
7791 OpTy = PtrTy->getElementType();
7794 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7795 if (StructType *STy = dyn_cast<StructType>(OpTy))
7796 if (STy->getNumElements() == 1)
7797 OpTy = STy->getElementType(0);
7799 // If OpTy is not a single value, it may be a struct/union that we
7800 // can tile with integers.
7801 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7802 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7803 switch (BitSize) {
7804 default: break;
7805 case 1:
7806 case 8:
7807 case 16:
7808 case 32:
7809 case 64:
7810 case 128:
7811 OpTy = IntegerType::get(Context, BitSize);
7812 break;
7816 return TLI.getValueType(DL, OpTy, true);
7821 } // end anonymous namespace
7823 /// Make sure that the output operand \p OpInfo and its corresponding input
7824 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7825 /// out).
7826 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7827 SDISelAsmOperandInfo &MatchingOpInfo,
7828 SelectionDAG &DAG) {
7829 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7830 return;
7832 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7833 const auto &TLI = DAG.getTargetLoweringInfo();
7835 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7836 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7837 OpInfo.ConstraintVT);
7838 std::pair<unsigned, const TargetRegisterClass *> InputRC =
7839 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7840 MatchingOpInfo.ConstraintVT);
7841 if ((OpInfo.ConstraintVT.isInteger() !=
7842 MatchingOpInfo.ConstraintVT.isInteger()) ||
7843 (MatchRC.second != InputRC.second)) {
7844 // FIXME: error out in a more elegant fashion
7845 report_fatal_error("Unsupported asm: input constraint"
7846 " with a matching output constraint of"
7847 " incompatible type!");
7849 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7852 /// Get a direct memory input to behave well as an indirect operand.
7853 /// This may introduce stores, hence the need for a \p Chain.
7854 /// \return The (possibly updated) chain.
7855 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7856 SDISelAsmOperandInfo &OpInfo,
7857 SelectionDAG &DAG) {
7858 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7860 // If we don't have an indirect input, put it in the constpool if we can,
7861 // otherwise spill it to a stack slot.
7862 // TODO: This isn't quite right. We need to handle these according to
7863 // the addressing mode that the constraint wants. Also, this may take
7864 // an additional register for the computation and we don't want that
7865 // either.
7867 // If the operand is a float, integer, or vector constant, spill to a
7868 // constant pool entry to get its address.
7869 const Value *OpVal = OpInfo.CallOperandVal;
7870 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7871 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7872 OpInfo.CallOperand = DAG.getConstantPool(
7873 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7874 return Chain;
7877 // Otherwise, create a stack slot and emit a store to it before the asm.
7878 Type *Ty = OpVal->getType();
7879 auto &DL = DAG.getDataLayout();
7880 uint64_t TySize = DL.getTypeAllocSize(Ty);
7881 MachineFunction &MF = DAG.getMachineFunction();
7882 int SSFI = MF.getFrameInfo().CreateStackObject(
7883 TySize, DL.getPrefTypeAlign(Ty), false);
7884 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7885 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7886 MachinePointerInfo::getFixedStack(MF, SSFI),
7887 TLI.getMemValueType(DL, Ty));
7888 OpInfo.CallOperand = StackSlot;
7890 return Chain;
7893 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7894 /// specified operand. We prefer to assign virtual registers, to allow the
7895 /// register allocator to handle the assignment process. However, if the asm
7896 /// uses features that we can't model on machineinstrs, we have SDISel do the
7897 /// allocation. This produces generally horrible, but correct, code.
7899 /// OpInfo describes the operand
7900 /// RefOpInfo describes the matching operand if any, the operand otherwise
7901 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7902 SDISelAsmOperandInfo &OpInfo,
7903 SDISelAsmOperandInfo &RefOpInfo) {
7904 LLVMContext &Context = *DAG.getContext();
7905 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7907 MachineFunction &MF = DAG.getMachineFunction();
7908 SmallVector<unsigned, 4> Regs;
7909 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7911 // No work to do for memory operations.
7912 if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7913 return;
7915 // If this is a constraint for a single physreg, or a constraint for a
7916 // register class, find it.
7917 unsigned AssignedReg;
7918 const TargetRegisterClass *RC;
7919 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7920 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7921 // RC is unset only on failure. Return immediately.
7922 if (!RC)
7923 return;
7925 // Get the actual register value type. This is important, because the user
7926 // may have asked for (e.g.) the AX register in i32 type. We need to
7927 // remember that AX is actually i16 to get the right extension.
7928 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7930 if (OpInfo.ConstraintVT != MVT::Other) {
7931 // If this is an FP operand in an integer register (or visa versa), or more
7932 // generally if the operand value disagrees with the register class we plan
7933 // to stick it in, fix the operand type.
7935 // If this is an input value, the bitcast to the new type is done now.
7936 // Bitcast for output value is done at the end of visitInlineAsm().
7937 if ((OpInfo.Type == InlineAsm::isOutput ||
7938 OpInfo.Type == InlineAsm::isInput) &&
7939 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7940 // Try to convert to the first EVT that the reg class contains. If the
7941 // types are identical size, use a bitcast to convert (e.g. two differing
7942 // vector types). Note: output bitcast is done at the end of
7943 // visitInlineAsm().
7944 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7945 // Exclude indirect inputs while they are unsupported because the code
7946 // to perform the load is missing and thus OpInfo.CallOperand still
7947 // refers to the input address rather than the pointed-to value.
7948 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7949 OpInfo.CallOperand =
7950 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7951 OpInfo.ConstraintVT = RegVT;
7952 // If the operand is an FP value and we want it in integer registers,
7953 // use the corresponding integer type. This turns an f64 value into
7954 // i64, which can be passed with two i32 values on a 32-bit machine.
7955 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7956 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7957 if (OpInfo.Type == InlineAsm::isInput)
7958 OpInfo.CallOperand =
7959 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7960 OpInfo.ConstraintVT = VT;
7965 // No need to allocate a matching input constraint since the constraint it's
7966 // matching to has already been allocated.
7967 if (OpInfo.isMatchingInputConstraint())
7968 return;
7970 EVT ValueVT = OpInfo.ConstraintVT;
7971 if (OpInfo.ConstraintVT == MVT::Other)
7972 ValueVT = RegVT;
7974 // Initialize NumRegs.
7975 unsigned NumRegs = 1;
7976 if (OpInfo.ConstraintVT != MVT::Other)
7977 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7979 // If this is a constraint for a specific physical register, like {r17},
7980 // assign it now.
7982 // If this associated to a specific register, initialize iterator to correct
7983 // place. If virtual, make sure we have enough registers
7985 // Initialize iterator if necessary
7986 TargetRegisterClass::iterator I = RC->begin();
7987 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7989 // Do not check for single registers.
7990 if (AssignedReg) {
7991 for (; *I != AssignedReg; ++I)
7992 assert(I != RC->end() && "AssignedReg should be member of RC");
7995 for (; NumRegs; --NumRegs, ++I) {
7996 assert(I != RC->end() && "Ran out of registers to allocate!");
7997 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7998 Regs.push_back(R);
8001 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8004 static unsigned
8005 findMatchingInlineAsmOperand(unsigned OperandNo,
8006 const std::vector<SDValue> &AsmNodeOperands) {
8007 // Scan until we find the definition we already emitted of this operand.
8008 unsigned CurOp = InlineAsm::Op_FirstOperand;
8009 for (; OperandNo; --OperandNo) {
8010 // Advance to the next operand.
8011 unsigned OpFlag =
8012 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8013 assert((InlineAsm::isRegDefKind(OpFlag) ||
8014 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8015 InlineAsm::isMemKind(OpFlag)) &&
8016 "Skipped past definitions?");
8017 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8019 return CurOp;
8022 namespace {
8024 class ExtraFlags {
8025 unsigned Flags = 0;
8027 public:
8028 explicit ExtraFlags(const CallBase &Call) {
8029 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8030 if (IA->hasSideEffects())
8031 Flags |= InlineAsm::Extra_HasSideEffects;
8032 if (IA->isAlignStack())
8033 Flags |= InlineAsm::Extra_IsAlignStack;
8034 if (Call.isConvergent())
8035 Flags |= InlineAsm::Extra_IsConvergent;
8036 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8039 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8040 // Ideally, we would only check against memory constraints. However, the
8041 // meaning of an Other constraint can be target-specific and we can't easily
8042 // reason about it. Therefore, be conservative and set MayLoad/MayStore
8043 // for Other constraints as well.
8044 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8045 OpInfo.ConstraintType == TargetLowering::C_Other) {
8046 if (OpInfo.Type == InlineAsm::isInput)
8047 Flags |= InlineAsm::Extra_MayLoad;
8048 else if (OpInfo.Type == InlineAsm::isOutput)
8049 Flags |= InlineAsm::Extra_MayStore;
8050 else if (OpInfo.Type == InlineAsm::isClobber)
8051 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8055 unsigned get() const { return Flags; }
8058 } // end anonymous namespace
8060 /// visitInlineAsm - Handle a call to an InlineAsm object.
8061 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8062 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8064 /// ConstraintOperands - Information about all of the constraints.
8065 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8067 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8068 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8069 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8071 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8072 // AsmDialect, MayLoad, MayStore).
8073 bool HasSideEffect = IA->hasSideEffects();
8074 ExtraFlags ExtraInfo(Call);
8076 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
8077 unsigned ResNo = 0; // ResNo - The result number of the next output.
8078 unsigned NumMatchingOps = 0;
8079 for (auto &T : TargetConstraints) {
8080 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8081 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8083 // Compute the value type for each operand.
8084 if (OpInfo.Type == InlineAsm::isInput ||
8085 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8086 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8088 // Process the call argument. BasicBlocks are labels, currently appearing
8089 // only in asm's.
8090 if (isa<CallBrInst>(Call) &&
8091 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8092 cast<CallBrInst>(&Call)->getNumIndirectDests() -
8093 NumMatchingOps) &&
8094 (NumMatchingOps == 0 ||
8095 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8096 NumMatchingOps))) {
8097 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8098 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8099 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8100 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8101 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8102 } else {
8103 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8106 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8107 DAG.getDataLayout());
8108 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8109 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8110 // The return value of the call is this value. As such, there is no
8111 // corresponding argument.
8112 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8113 if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8114 OpInfo.ConstraintVT = TLI.getSimpleValueType(
8115 DAG.getDataLayout(), STy->getElementType(ResNo));
8116 } else {
8117 assert(ResNo == 0 && "Asm only has one result!");
8118 OpInfo.ConstraintVT =
8119 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8121 ++ResNo;
8122 } else {
8123 OpInfo.ConstraintVT = MVT::Other;
8126 if (OpInfo.hasMatchingInput())
8127 ++NumMatchingOps;
8129 if (!HasSideEffect)
8130 HasSideEffect = OpInfo.hasMemory(TLI);
8132 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8133 // FIXME: Could we compute this on OpInfo rather than T?
8135 // Compute the constraint code and ConstraintType to use.
8136 TLI.ComputeConstraintToUse(T, SDValue());
8138 if (T.ConstraintType == TargetLowering::C_Immediate &&
8139 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8140 // We've delayed emitting a diagnostic like the "n" constraint because
8141 // inlining could cause an integer showing up.
8142 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8143 "' expects an integer constant "
8144 "expression");
8146 ExtraInfo.update(T);
8150 // We won't need to flush pending loads if this asm doesn't touch
8151 // memory and is nonvolatile.
8152 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8154 bool IsCallBr = isa<CallBrInst>(Call);
8155 if (IsCallBr) {
8156 // If this is a callbr we need to flush pending exports since inlineasm_br
8157 // is a terminator. We need to do this before nodes are glued to
8158 // the inlineasm_br node.
8159 Chain = getControlRoot();
8162 // Second pass over the constraints: compute which constraint option to use.
8163 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8164 // If this is an output operand with a matching input operand, look up the
8165 // matching input. If their types mismatch, e.g. one is an integer, the
8166 // other is floating point, or their sizes are different, flag it as an
8167 // error.
8168 if (OpInfo.hasMatchingInput()) {
8169 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8170 patchMatchingInput(OpInfo, Input, DAG);
8173 // Compute the constraint code and ConstraintType to use.
8174 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8176 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8177 OpInfo.Type == InlineAsm::isClobber)
8178 continue;
8180 // If this is a memory input, and if the operand is not indirect, do what we
8181 // need to provide an address for the memory input.
8182 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8183 !OpInfo.isIndirect) {
8184 assert((OpInfo.isMultipleAlternative ||
8185 (OpInfo.Type == InlineAsm::isInput)) &&
8186 "Can only indirectify direct input operands!");
8188 // Memory operands really want the address of the value.
8189 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8191 // There is no longer a Value* corresponding to this operand.
8192 OpInfo.CallOperandVal = nullptr;
8194 // It is now an indirect operand.
8195 OpInfo.isIndirect = true;
8200 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8201 std::vector<SDValue> AsmNodeOperands;
8202 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
8203 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8204 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8206 // If we have a !srcloc metadata node associated with it, we want to attach
8207 // this to the ultimately generated inline asm machineinstr. To do this, we
8208 // pass in the third operand as this (potentially null) inline asm MDNode.
8209 const MDNode *SrcLoc = Call.getMetadata("srcloc");
8210 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8212 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8213 // bits as operand 3.
8214 AsmNodeOperands.push_back(DAG.getTargetConstant(
8215 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8217 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8218 // this, assign virtual and physical registers for inputs and otput.
8219 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8220 // Assign Registers.
8221 SDISelAsmOperandInfo &RefOpInfo =
8222 OpInfo.isMatchingInputConstraint()
8223 ? ConstraintOperands[OpInfo.getMatchedOperand()]
8224 : OpInfo;
8225 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8227 auto DetectWriteToReservedRegister = [&]() {
8228 const MachineFunction &MF = DAG.getMachineFunction();
8229 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8230 for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8231 if (Register::isPhysicalRegister(Reg) &&
8232 TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8233 const char *RegName = TRI.getName(Reg);
8234 emitInlineAsmError(Call, "write to reserved register '" +
8235 Twine(RegName) + "'");
8236 return true;
8239 return false;
8242 switch (OpInfo.Type) {
8243 case InlineAsm::isOutput:
8244 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8245 unsigned ConstraintID =
8246 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8247 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8248 "Failed to convert memory constraint code to constraint id.");
8250 // Add information to the INLINEASM node to know about this output.
8251 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8252 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8253 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8254 MVT::i32));
8255 AsmNodeOperands.push_back(OpInfo.CallOperand);
8256 } else {
8257 // Otherwise, this outputs to a register (directly for C_Register /
8258 // C_RegisterClass, and a target-defined fashion for
8259 // C_Immediate/C_Other). Find a register that we can use.
8260 if (OpInfo.AssignedRegs.Regs.empty()) {
8261 emitInlineAsmError(
8262 Call, "couldn't allocate output register for constraint '" +
8263 Twine(OpInfo.ConstraintCode) + "'");
8264 return;
8267 if (DetectWriteToReservedRegister())
8268 return;
8270 // Add information to the INLINEASM node to know that this register is
8271 // set.
8272 OpInfo.AssignedRegs.AddInlineAsmOperands(
8273 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8274 : InlineAsm::Kind_RegDef,
8275 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8277 break;
8279 case InlineAsm::isInput: {
8280 SDValue InOperandVal = OpInfo.CallOperand;
8282 if (OpInfo.isMatchingInputConstraint()) {
8283 // If this is required to match an output register we have already set,
8284 // just use its register.
8285 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8286 AsmNodeOperands);
8287 unsigned OpFlag =
8288 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8289 if (InlineAsm::isRegDefKind(OpFlag) ||
8290 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8291 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8292 if (OpInfo.isIndirect) {
8293 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8294 emitInlineAsmError(Call, "inline asm not supported yet: "
8295 "don't know how to handle tied "
8296 "indirect register inputs");
8297 return;
8300 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8301 SmallVector<unsigned, 4> Regs;
8303 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8304 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8305 MachineRegisterInfo &RegInfo =
8306 DAG.getMachineFunction().getRegInfo();
8307 for (unsigned i = 0; i != NumRegs; ++i)
8308 Regs.push_back(RegInfo.createVirtualRegister(RC));
8309 } else {
8310 emitInlineAsmError(Call,
8311 "inline asm error: This value type register "
8312 "class is not natively supported!");
8313 return;
8316 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8318 SDLoc dl = getCurSDLoc();
8319 // Use the produced MatchedRegs object to
8320 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8321 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8322 true, OpInfo.getMatchedOperand(), dl,
8323 DAG, AsmNodeOperands);
8324 break;
8327 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8328 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8329 "Unexpected number of operands");
8330 // Add information to the INLINEASM node to know about this input.
8331 // See InlineAsm.h isUseOperandTiedToDef.
8332 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8333 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8334 OpInfo.getMatchedOperand());
8335 AsmNodeOperands.push_back(DAG.getTargetConstant(
8336 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8337 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8338 break;
8341 // Treat indirect 'X' constraint as memory.
8342 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8343 OpInfo.isIndirect)
8344 OpInfo.ConstraintType = TargetLowering::C_Memory;
8346 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8347 OpInfo.ConstraintType == TargetLowering::C_Other) {
8348 std::vector<SDValue> Ops;
8349 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8350 Ops, DAG);
8351 if (Ops.empty()) {
8352 if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8353 if (isa<ConstantSDNode>(InOperandVal)) {
8354 emitInlineAsmError(Call, "value out of range for constraint '" +
8355 Twine(OpInfo.ConstraintCode) + "'");
8356 return;
8359 emitInlineAsmError(Call,
8360 "invalid operand for inline asm constraint '" +
8361 Twine(OpInfo.ConstraintCode) + "'");
8362 return;
8365 // Add information to the INLINEASM node to know about this input.
8366 unsigned ResOpType =
8367 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8368 AsmNodeOperands.push_back(DAG.getTargetConstant(
8369 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8370 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8371 break;
8374 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8375 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8376 assert(InOperandVal.getValueType() ==
8377 TLI.getPointerTy(DAG.getDataLayout()) &&
8378 "Memory operands expect pointer values");
8380 unsigned ConstraintID =
8381 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8382 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8383 "Failed to convert memory constraint code to constraint id.");
8385 // Add information to the INLINEASM node to know about this input.
8386 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8387 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8388 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8389 getCurSDLoc(),
8390 MVT::i32));
8391 AsmNodeOperands.push_back(InOperandVal);
8392 break;
8395 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8396 OpInfo.ConstraintType == TargetLowering::C_Register) &&
8397 "Unknown constraint type!");
8399 // TODO: Support this.
8400 if (OpInfo.isIndirect) {
8401 emitInlineAsmError(
8402 Call, "Don't know how to handle indirect register inputs yet "
8403 "for constraint '" +
8404 Twine(OpInfo.ConstraintCode) + "'");
8405 return;
8408 // Copy the input into the appropriate registers.
8409 if (OpInfo.AssignedRegs.Regs.empty()) {
8410 emitInlineAsmError(Call,
8411 "couldn't allocate input reg for constraint '" +
8412 Twine(OpInfo.ConstraintCode) + "'");
8413 return;
8416 if (DetectWriteToReservedRegister())
8417 return;
8419 SDLoc dl = getCurSDLoc();
8421 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8422 &Call);
8424 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8425 dl, DAG, AsmNodeOperands);
8426 break;
8428 case InlineAsm::isClobber:
8429 // Add the clobbered value to the operand list, so that the register
8430 // allocator is aware that the physreg got clobbered.
8431 if (!OpInfo.AssignedRegs.Regs.empty())
8432 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8433 false, 0, getCurSDLoc(), DAG,
8434 AsmNodeOperands);
8435 break;
8439 // Finish up input operands. Set the input chain and add the flag last.
8440 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8441 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8443 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8444 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8445 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8446 Flag = Chain.getValue(1);
8448 // Do additional work to generate outputs.
8450 SmallVector<EVT, 1> ResultVTs;
8451 SmallVector<SDValue, 1> ResultValues;
8452 SmallVector<SDValue, 8> OutChains;
8454 llvm::Type *CallResultType = Call.getType();
8455 ArrayRef<Type *> ResultTypes;
8456 if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8457 ResultTypes = StructResult->elements();
8458 else if (!CallResultType->isVoidTy())
8459 ResultTypes = makeArrayRef(CallResultType);
8461 auto CurResultType = ResultTypes.begin();
8462 auto handleRegAssign = [&](SDValue V) {
8463 assert(CurResultType != ResultTypes.end() && "Unexpected value");
8464 assert((*CurResultType)->isSized() && "Unexpected unsized type");
8465 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8466 ++CurResultType;
8467 // If the type of the inline asm call site return value is different but has
8468 // same size as the type of the asm output bitcast it. One example of this
8469 // is for vectors with different width / number of elements. This can
8470 // happen for register classes that can contain multiple different value
8471 // types. The preg or vreg allocated may not have the same VT as was
8472 // expected.
8474 // This can also happen for a return value that disagrees with the register
8475 // class it is put in, eg. a double in a general-purpose register on a
8476 // 32-bit machine.
8477 if (ResultVT != V.getValueType() &&
8478 ResultVT.getSizeInBits() == V.getValueSizeInBits())
8479 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8480 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8481 V.getValueType().isInteger()) {
8482 // If a result value was tied to an input value, the computed result
8483 // may have a wider width than the expected result. Extract the
8484 // relevant portion.
8485 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8487 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8488 ResultVTs.push_back(ResultVT);
8489 ResultValues.push_back(V);
8492 // Deal with output operands.
8493 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8494 if (OpInfo.Type == InlineAsm::isOutput) {
8495 SDValue Val;
8496 // Skip trivial output operands.
8497 if (OpInfo.AssignedRegs.Regs.empty())
8498 continue;
8500 switch (OpInfo.ConstraintType) {
8501 case TargetLowering::C_Register:
8502 case TargetLowering::C_RegisterClass:
8503 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8504 Chain, &Flag, &Call);
8505 break;
8506 case TargetLowering::C_Immediate:
8507 case TargetLowering::C_Other:
8508 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8509 OpInfo, DAG);
8510 break;
8511 case TargetLowering::C_Memory:
8512 break; // Already handled.
8513 case TargetLowering::C_Unknown:
8514 assert(false && "Unexpected unknown constraint");
8517 // Indirect output manifest as stores. Record output chains.
8518 if (OpInfo.isIndirect) {
8519 const Value *Ptr = OpInfo.CallOperandVal;
8520 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8521 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8522 MachinePointerInfo(Ptr));
8523 OutChains.push_back(Store);
8524 } else {
8525 // generate CopyFromRegs to associated registers.
8526 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8527 if (Val.getOpcode() == ISD::MERGE_VALUES) {
8528 for (const SDValue &V : Val->op_values())
8529 handleRegAssign(V);
8530 } else
8531 handleRegAssign(Val);
8536 // Set results.
8537 if (!ResultValues.empty()) {
8538 assert(CurResultType == ResultTypes.end() &&
8539 "Mismatch in number of ResultTypes");
8540 assert(ResultValues.size() == ResultTypes.size() &&
8541 "Mismatch in number of output operands in asm result");
8543 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8544 DAG.getVTList(ResultVTs), ResultValues);
8545 setValue(&Call, V);
8548 // Collect store chains.
8549 if (!OutChains.empty())
8550 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8552 // Only Update Root if inline assembly has a memory effect.
8553 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8554 DAG.setRoot(Chain);
8557 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8558 const Twine &Message) {
8559 LLVMContext &Ctx = *DAG.getContext();
8560 Ctx.emitError(&Call, Message);
8562 // Make sure we leave the DAG in a valid state
8563 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8564 SmallVector<EVT, 1> ValueVTs;
8565 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8567 if (ValueVTs.empty())
8568 return;
8570 SmallVector<SDValue, 1> Ops;
8571 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8572 Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8574 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8577 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8578 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8579 MVT::Other, getRoot(),
8580 getValue(I.getArgOperand(0)),
8581 DAG.getSrcValue(I.getArgOperand(0))));
8584 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8585 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8586 const DataLayout &DL = DAG.getDataLayout();
8587 SDValue V = DAG.getVAArg(
8588 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8589 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8590 DL.getABITypeAlign(I.getType()).value());
8591 DAG.setRoot(V.getValue(1));
8593 if (I.getType()->isPointerTy())
8594 V = DAG.getPtrExtOrTrunc(
8595 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8596 setValue(&I, V);
8599 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8600 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8601 MVT::Other, getRoot(),
8602 getValue(I.getArgOperand(0)),
8603 DAG.getSrcValue(I.getArgOperand(0))));
8606 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8607 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8608 MVT::Other, getRoot(),
8609 getValue(I.getArgOperand(0)),
8610 getValue(I.getArgOperand(1)),
8611 DAG.getSrcValue(I.getArgOperand(0)),
8612 DAG.getSrcValue(I.getArgOperand(1))));
8615 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8616 const Instruction &I,
8617 SDValue Op) {
8618 const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8619 if (!Range)
8620 return Op;
8622 ConstantRange CR = getConstantRangeFromMetadata(*Range);
8623 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8624 return Op;
8626 APInt Lo = CR.getUnsignedMin();
8627 if (!Lo.isMinValue())
8628 return Op;
8630 APInt Hi = CR.getUnsignedMax();
8631 unsigned Bits = std::max(Hi.getActiveBits(),
8632 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8634 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8636 SDLoc SL = getCurSDLoc();
8638 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8639 DAG.getValueType(SmallVT));
8640 unsigned NumVals = Op.getNode()->getNumValues();
8641 if (NumVals == 1)
8642 return ZExt;
8644 SmallVector<SDValue, 4> Ops;
8646 Ops.push_back(ZExt);
8647 for (unsigned I = 1; I != NumVals; ++I)
8648 Ops.push_back(Op.getValue(I));
8650 return DAG.getMergeValues(Ops, SL);
8653 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8654 /// the call being lowered.
8656 /// This is a helper for lowering intrinsics that follow a target calling
8657 /// convention or require stack pointer adjustment. Only a subset of the
8658 /// intrinsic's operands need to participate in the calling convention.
8659 void SelectionDAGBuilder::populateCallLoweringInfo(
8660 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8661 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8662 bool IsPatchPoint) {
8663 TargetLowering::ArgListTy Args;
8664 Args.reserve(NumArgs);
8666 // Populate the argument list.
8667 // Attributes for args start at offset 1, after the return attribute.
8668 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8669 ArgI != ArgE; ++ArgI) {
8670 const Value *V = Call->getOperand(ArgI);
8672 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8674 TargetLowering::ArgListEntry Entry;
8675 Entry.Node = getValue(V);
8676 Entry.Ty = V->getType();
8677 Entry.setAttributes(Call, ArgI);
8678 Args.push_back(Entry);
8681 CLI.setDebugLoc(getCurSDLoc())
8682 .setChain(getRoot())
8683 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8684 .setDiscardResult(Call->use_empty())
8685 .setIsPatchPoint(IsPatchPoint)
8686 .setIsPreallocated(
8687 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8690 /// Add a stack map intrinsic call's live variable operands to a stackmap
8691 /// or patchpoint target node's operand list.
8693 /// Constants are converted to TargetConstants purely as an optimization to
8694 /// avoid constant materialization and register allocation.
8696 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8697 /// generate addess computation nodes, and so FinalizeISel can convert the
8698 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8699 /// address materialization and register allocation, but may also be required
8700 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8701 /// alloca in the entry block, then the runtime may assume that the alloca's
8702 /// StackMap location can be read immediately after compilation and that the
8703 /// location is valid at any point during execution (this is similar to the
8704 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8705 /// only available in a register, then the runtime would need to trap when
8706 /// execution reaches the StackMap in order to read the alloca's location.
8707 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8708 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8709 SelectionDAGBuilder &Builder) {
8710 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8711 SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8712 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8713 Ops.push_back(
8714 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8715 Ops.push_back(
8716 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8717 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8718 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8719 Ops.push_back(Builder.DAG.getTargetFrameIndex(
8720 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8721 } else
8722 Ops.push_back(OpVal);
8726 /// Lower llvm.experimental.stackmap directly to its target opcode.
8727 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8728 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8729 // [live variables...])
8731 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8733 SDValue Chain, InFlag, Callee, NullPtr;
8734 SmallVector<SDValue, 32> Ops;
8736 SDLoc DL = getCurSDLoc();
8737 Callee = getValue(CI.getCalledOperand());
8738 NullPtr = DAG.getIntPtrConstant(0, DL, true);
8740 // The stackmap intrinsic only records the live variables (the arguments
8741 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8742 // intrinsic, this won't be lowered to a function call. This means we don't
8743 // have to worry about calling conventions and target specific lowering code.
8744 // Instead we perform the call lowering right here.
8746 // chain, flag = CALLSEQ_START(chain, 0, 0)
8747 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8748 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8750 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8751 InFlag = Chain.getValue(1);
8753 // Add the <id> and <numBytes> constants.
8754 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8755 Ops.push_back(DAG.getTargetConstant(
8756 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8757 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8758 Ops.push_back(DAG.getTargetConstant(
8759 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8760 MVT::i32));
8762 // Push live variables for the stack map.
8763 addStackMapLiveVars(CI, 2, DL, Ops, *this);
8765 // We are not pushing any register mask info here on the operands list,
8766 // because the stackmap doesn't clobber anything.
8768 // Push the chain and the glue flag.
8769 Ops.push_back(Chain);
8770 Ops.push_back(InFlag);
8772 // Create the STACKMAP node.
8773 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8774 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8775 Chain = SDValue(SM, 0);
8776 InFlag = Chain.getValue(1);
8778 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8780 // Stackmaps don't generate values, so nothing goes into the NodeMap.
8782 // Set the root to the target-lowered call chain.
8783 DAG.setRoot(Chain);
8785 // Inform the Frame Information that we have a stackmap in this function.
8786 FuncInfo.MF->getFrameInfo().setHasStackMap();
8789 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8790 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8791 const BasicBlock *EHPadBB) {
8792 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8793 // i32 <numBytes>,
8794 // i8* <target>,
8795 // i32 <numArgs>,
8796 // [Args...],
8797 // [live variables...])
8799 CallingConv::ID CC = CB.getCallingConv();
8800 bool IsAnyRegCC = CC == CallingConv::AnyReg;
8801 bool HasDef = !CB.getType()->isVoidTy();
8802 SDLoc dl = getCurSDLoc();
8803 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8805 // Handle immediate and symbolic callees.
8806 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8807 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8808 /*isTarget=*/true);
8809 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8810 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8811 SDLoc(SymbolicCallee),
8812 SymbolicCallee->getValueType(0));
8814 // Get the real number of arguments participating in the call <numArgs>
8815 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8816 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8818 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8819 // Intrinsics include all meta-operands up to but not including CC.
8820 unsigned NumMetaOpers = PatchPointOpers::CCPos;
8821 assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8822 "Not enough arguments provided to the patchpoint intrinsic");
8824 // For AnyRegCC the arguments are lowered later on manually.
8825 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8826 Type *ReturnTy =
8827 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8829 TargetLowering::CallLoweringInfo CLI(DAG);
8830 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8831 ReturnTy, true);
8832 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8834 SDNode *CallEnd = Result.second.getNode();
8835 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8836 CallEnd = CallEnd->getOperand(0).getNode();
8838 /// Get a call instruction from the call sequence chain.
8839 /// Tail calls are not allowed.
8840 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8841 "Expected a callseq node.");
8842 SDNode *Call = CallEnd->getOperand(0).getNode();
8843 bool HasGlue = Call->getGluedNode();
8845 // Replace the target specific call node with the patchable intrinsic.
8846 SmallVector<SDValue, 8> Ops;
8848 // Add the <id> and <numBytes> constants.
8849 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8850 Ops.push_back(DAG.getTargetConstant(
8851 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8852 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8853 Ops.push_back(DAG.getTargetConstant(
8854 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8855 MVT::i32));
8857 // Add the callee.
8858 Ops.push_back(Callee);
8860 // Adjust <numArgs> to account for any arguments that have been passed on the
8861 // stack instead.
8862 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8863 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8864 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8865 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8867 // Add the calling convention
8868 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8870 // Add the arguments we omitted previously. The register allocator should
8871 // place these in any free register.
8872 if (IsAnyRegCC)
8873 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8874 Ops.push_back(getValue(CB.getArgOperand(i)));
8876 // Push the arguments from the call instruction up to the register mask.
8877 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8878 Ops.append(Call->op_begin() + 2, e);
8880 // Push live variables for the stack map.
8881 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8883 // Push the register mask info.
8884 if (HasGlue)
8885 Ops.push_back(*(Call->op_end()-2));
8886 else
8887 Ops.push_back(*(Call->op_end()-1));
8889 // Push the chain (this is originally the first operand of the call, but
8890 // becomes now the last or second to last operand).
8891 Ops.push_back(*(Call->op_begin()));
8893 // Push the glue flag (last operand).
8894 if (HasGlue)
8895 Ops.push_back(*(Call->op_end()-1));
8897 SDVTList NodeTys;
8898 if (IsAnyRegCC && HasDef) {
8899 // Create the return types based on the intrinsic definition
8900 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8901 SmallVector<EVT, 3> ValueVTs;
8902 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
8903 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8905 // There is always a chain and a glue type at the end
8906 ValueVTs.push_back(MVT::Other);
8907 ValueVTs.push_back(MVT::Glue);
8908 NodeTys = DAG.getVTList(ValueVTs);
8909 } else
8910 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8912 // Replace the target specific call node with a PATCHPOINT node.
8913 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8914 dl, NodeTys, Ops);
8916 // Update the NodeMap.
8917 if (HasDef) {
8918 if (IsAnyRegCC)
8919 setValue(&CB, SDValue(MN, 0));
8920 else
8921 setValue(&CB, Result.first);
8924 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8925 // call sequence. Furthermore the location of the chain and glue can change
8926 // when the AnyReg calling convention is used and the intrinsic returns a
8927 // value.
8928 if (IsAnyRegCC && HasDef) {
8929 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8930 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8931 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8932 } else
8933 DAG.ReplaceAllUsesWith(Call, MN);
8934 DAG.DeleteNode(Call);
8936 // Inform the Frame Information that we have a patchpoint in this function.
8937 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8940 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8941 unsigned Intrinsic) {
8942 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8943 SDValue Op1 = getValue(I.getArgOperand(0));
8944 SDValue Op2;
8945 if (I.getNumArgOperands() > 1)
8946 Op2 = getValue(I.getArgOperand(1));
8947 SDLoc dl = getCurSDLoc();
8948 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8949 SDValue Res;
8950 SDNodeFlags SDFlags;
8951 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
8952 SDFlags.copyFMF(*FPMO);
8954 switch (Intrinsic) {
8955 case Intrinsic::vector_reduce_fadd:
8956 if (SDFlags.hasAllowReassociation())
8957 Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8958 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
8959 SDFlags);
8960 else
8961 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
8962 break;
8963 case Intrinsic::vector_reduce_fmul:
8964 if (SDFlags.hasAllowReassociation())
8965 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8966 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
8967 SDFlags);
8968 else
8969 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
8970 break;
8971 case Intrinsic::vector_reduce_add:
8972 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8973 break;
8974 case Intrinsic::vector_reduce_mul:
8975 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8976 break;
8977 case Intrinsic::vector_reduce_and:
8978 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8979 break;
8980 case Intrinsic::vector_reduce_or:
8981 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8982 break;
8983 case Intrinsic::vector_reduce_xor:
8984 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8985 break;
8986 case Intrinsic::vector_reduce_smax:
8987 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8988 break;
8989 case Intrinsic::vector_reduce_smin:
8990 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8991 break;
8992 case Intrinsic::vector_reduce_umax:
8993 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8994 break;
8995 case Intrinsic::vector_reduce_umin:
8996 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8997 break;
8998 case Intrinsic::vector_reduce_fmax:
8999 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9000 break;
9001 case Intrinsic::vector_reduce_fmin:
9002 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9003 break;
9004 default:
9005 llvm_unreachable("Unhandled vector reduce intrinsic");
9007 setValue(&I, Res);
9010 /// Returns an AttributeList representing the attributes applied to the return
9011 /// value of the given call.
9012 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9013 SmallVector<Attribute::AttrKind, 2> Attrs;
9014 if (CLI.RetSExt)
9015 Attrs.push_back(Attribute::SExt);
9016 if (CLI.RetZExt)
9017 Attrs.push_back(Attribute::ZExt);
9018 if (CLI.IsInReg)
9019 Attrs.push_back(Attribute::InReg);
9021 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9022 Attrs);
9025 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9026 /// implementation, which just calls LowerCall.
9027 /// FIXME: When all targets are
9028 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9029 std::pair<SDValue, SDValue>
9030 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9031 // Handle the incoming return values from the call.
9032 CLI.Ins.clear();
9033 Type *OrigRetTy = CLI.RetTy;
9034 SmallVector<EVT, 4> RetTys;
9035 SmallVector<uint64_t, 4> Offsets;
9036 auto &DL = CLI.DAG.getDataLayout();
9037 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9039 if (CLI.IsPostTypeLegalization) {
9040 // If we are lowering a libcall after legalization, split the return type.
9041 SmallVector<EVT, 4> OldRetTys;
9042 SmallVector<uint64_t, 4> OldOffsets;
9043 RetTys.swap(OldRetTys);
9044 Offsets.swap(OldOffsets);
9046 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9047 EVT RetVT = OldRetTys[i];
9048 uint64_t Offset = OldOffsets[i];
9049 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9050 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9051 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9052 RetTys.append(NumRegs, RegisterVT);
9053 for (unsigned j = 0; j != NumRegs; ++j)
9054 Offsets.push_back(Offset + j * RegisterVTByteSZ);
9058 SmallVector<ISD::OutputArg, 4> Outs;
9059 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9061 bool CanLowerReturn =
9062 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9063 CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9065 SDValue DemoteStackSlot;
9066 int DemoteStackIdx = -100;
9067 if (!CanLowerReturn) {
9068 // FIXME: equivalent assert?
9069 // assert(!CS.hasInAllocaArgument() &&
9070 // "sret demotion is incompatible with inalloca");
9071 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9072 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9073 MachineFunction &MF = CLI.DAG.getMachineFunction();
9074 DemoteStackIdx =
9075 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9076 Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9077 DL.getAllocaAddrSpace());
9079 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9080 ArgListEntry Entry;
9081 Entry.Node = DemoteStackSlot;
9082 Entry.Ty = StackSlotPtrType;
9083 Entry.IsSExt = false;
9084 Entry.IsZExt = false;
9085 Entry.IsInReg = false;
9086 Entry.IsSRet = true;
9087 Entry.IsNest = false;
9088 Entry.IsByVal = false;
9089 Entry.IsByRef = false;
9090 Entry.IsReturned = false;
9091 Entry.IsSwiftSelf = false;
9092 Entry.IsSwiftError = false;
9093 Entry.IsCFGuardTarget = false;
9094 Entry.Alignment = Alignment;
9095 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9096 CLI.NumFixedArgs += 1;
9097 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9099 // sret demotion isn't compatible with tail-calls, since the sret argument
9100 // points into the callers stack frame.
9101 CLI.IsTailCall = false;
9102 } else {
9103 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9104 CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9105 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9106 ISD::ArgFlagsTy Flags;
9107 if (NeedsRegBlock) {
9108 Flags.setInConsecutiveRegs();
9109 if (I == RetTys.size() - 1)
9110 Flags.setInConsecutiveRegsLast();
9112 EVT VT = RetTys[I];
9113 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9114 CLI.CallConv, VT);
9115 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9116 CLI.CallConv, VT);
9117 for (unsigned i = 0; i != NumRegs; ++i) {
9118 ISD::InputArg MyFlags;
9119 MyFlags.Flags = Flags;
9120 MyFlags.VT = RegisterVT;
9121 MyFlags.ArgVT = VT;
9122 MyFlags.Used = CLI.IsReturnValueUsed;
9123 if (CLI.RetTy->isPointerTy()) {
9124 MyFlags.Flags.setPointer();
9125 MyFlags.Flags.setPointerAddrSpace(
9126 cast<PointerType>(CLI.RetTy)->getAddressSpace());
9128 if (CLI.RetSExt)
9129 MyFlags.Flags.setSExt();
9130 if (CLI.RetZExt)
9131 MyFlags.Flags.setZExt();
9132 if (CLI.IsInReg)
9133 MyFlags.Flags.setInReg();
9134 CLI.Ins.push_back(MyFlags);
9139 // We push in swifterror return as the last element of CLI.Ins.
9140 ArgListTy &Args = CLI.getArgs();
9141 if (supportSwiftError()) {
9142 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9143 if (Args[i].IsSwiftError) {
9144 ISD::InputArg MyFlags;
9145 MyFlags.VT = getPointerTy(DL);
9146 MyFlags.ArgVT = EVT(getPointerTy(DL));
9147 MyFlags.Flags.setSwiftError();
9148 CLI.Ins.push_back(MyFlags);
9153 // Handle all of the outgoing arguments.
9154 CLI.Outs.clear();
9155 CLI.OutVals.clear();
9156 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9157 SmallVector<EVT, 4> ValueVTs;
9158 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9159 // FIXME: Split arguments if CLI.IsPostTypeLegalization
9160 Type *FinalType = Args[i].Ty;
9161 if (Args[i].IsByVal)
9162 FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9163 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9164 FinalType, CLI.CallConv, CLI.IsVarArg);
9165 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9166 ++Value) {
9167 EVT VT = ValueVTs[Value];
9168 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9169 SDValue Op = SDValue(Args[i].Node.getNode(),
9170 Args[i].Node.getResNo() + Value);
9171 ISD::ArgFlagsTy Flags;
9173 // Certain targets (such as MIPS), may have a different ABI alignment
9174 // for a type depending on the context. Give the target a chance to
9175 // specify the alignment it wants.
9176 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9178 if (Args[i].Ty->isPointerTy()) {
9179 Flags.setPointer();
9180 Flags.setPointerAddrSpace(
9181 cast<PointerType>(Args[i].Ty)->getAddressSpace());
9183 if (Args[i].IsZExt)
9184 Flags.setZExt();
9185 if (Args[i].IsSExt)
9186 Flags.setSExt();
9187 if (Args[i].IsInReg) {
9188 // If we are using vectorcall calling convention, a structure that is
9189 // passed InReg - is surely an HVA
9190 if (CLI.CallConv == CallingConv::X86_VectorCall &&
9191 isa<StructType>(FinalType)) {
9192 // The first value of a structure is marked
9193 if (0 == Value)
9194 Flags.setHvaStart();
9195 Flags.setHva();
9197 // Set InReg Flag
9198 Flags.setInReg();
9200 if (Args[i].IsSRet)
9201 Flags.setSRet();
9202 if (Args[i].IsSwiftSelf)
9203 Flags.setSwiftSelf();
9204 if (Args[i].IsSwiftError)
9205 Flags.setSwiftError();
9206 if (Args[i].IsCFGuardTarget)
9207 Flags.setCFGuardTarget();
9208 if (Args[i].IsByVal)
9209 Flags.setByVal();
9210 if (Args[i].IsByRef)
9211 Flags.setByRef();
9212 if (Args[i].IsPreallocated) {
9213 Flags.setPreallocated();
9214 // Set the byval flag for CCAssignFn callbacks that don't know about
9215 // preallocated. This way we can know how many bytes we should've
9216 // allocated and how many bytes a callee cleanup function will pop. If
9217 // we port preallocated to more targets, we'll have to add custom
9218 // preallocated handling in the various CC lowering callbacks.
9219 Flags.setByVal();
9221 if (Args[i].IsInAlloca) {
9222 Flags.setInAlloca();
9223 // Set the byval flag for CCAssignFn callbacks that don't know about
9224 // inalloca. This way we can know how many bytes we should've allocated
9225 // and how many bytes a callee cleanup function will pop. If we port
9226 // inalloca to more targets, we'll have to add custom inalloca handling
9227 // in the various CC lowering callbacks.
9228 Flags.setByVal();
9230 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9231 PointerType *Ty = cast<PointerType>(Args[i].Ty);
9232 Type *ElementTy = Ty->getElementType();
9234 unsigned FrameSize = DL.getTypeAllocSize(
9235 Args[i].ByValType ? Args[i].ByValType : ElementTy);
9236 Flags.setByValSize(FrameSize);
9238 // info is not there but there are cases it cannot get right.
9239 Align FrameAlign;
9240 if (auto MA = Args[i].Alignment)
9241 FrameAlign = *MA;
9242 else
9243 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9244 Flags.setByValAlign(FrameAlign);
9246 if (Args[i].IsNest)
9247 Flags.setNest();
9248 if (NeedsRegBlock)
9249 Flags.setInConsecutiveRegs();
9250 Flags.setOrigAlign(OriginalAlignment);
9252 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9253 CLI.CallConv, VT);
9254 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9255 CLI.CallConv, VT);
9256 SmallVector<SDValue, 4> Parts(NumParts);
9257 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9259 if (Args[i].IsSExt)
9260 ExtendKind = ISD::SIGN_EXTEND;
9261 else if (Args[i].IsZExt)
9262 ExtendKind = ISD::ZERO_EXTEND;
9264 // Conservatively only handle 'returned' on non-vectors that can be lowered,
9265 // for now.
9266 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9267 CanLowerReturn) {
9268 assert((CLI.RetTy == Args[i].Ty ||
9269 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9270 CLI.RetTy->getPointerAddressSpace() ==
9271 Args[i].Ty->getPointerAddressSpace())) &&
9272 RetTys.size() == NumValues && "unexpected use of 'returned'");
9273 // Before passing 'returned' to the target lowering code, ensure that
9274 // either the register MVT and the actual EVT are the same size or that
9275 // the return value and argument are extended in the same way; in these
9276 // cases it's safe to pass the argument register value unchanged as the
9277 // return register value (although it's at the target's option whether
9278 // to do so)
9279 // TODO: allow code generation to take advantage of partially preserved
9280 // registers rather than clobbering the entire register when the
9281 // parameter extension method is not compatible with the return
9282 // extension method
9283 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9284 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9285 CLI.RetZExt == Args[i].IsZExt))
9286 Flags.setReturned();
9289 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9290 CLI.CallConv, ExtendKind);
9292 for (unsigned j = 0; j != NumParts; ++j) {
9293 // if it isn't first piece, alignment must be 1
9294 // For scalable vectors the scalable part is currently handled
9295 // by individual targets, so we just use the known minimum size here.
9296 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9297 i < CLI.NumFixedArgs, i,
9298 j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9299 if (NumParts > 1 && j == 0)
9300 MyFlags.Flags.setSplit();
9301 else if (j != 0) {
9302 MyFlags.Flags.setOrigAlign(Align(1));
9303 if (j == NumParts - 1)
9304 MyFlags.Flags.setSplitEnd();
9307 CLI.Outs.push_back(MyFlags);
9308 CLI.OutVals.push_back(Parts[j]);
9311 if (NeedsRegBlock && Value == NumValues - 1)
9312 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9316 SmallVector<SDValue, 4> InVals;
9317 CLI.Chain = LowerCall(CLI, InVals);
9319 // Update CLI.InVals to use outside of this function.
9320 CLI.InVals = InVals;
9322 // Verify that the target's LowerCall behaved as expected.
9323 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9324 "LowerCall didn't return a valid chain!");
9325 assert((!CLI.IsTailCall || InVals.empty()) &&
9326 "LowerCall emitted a return value for a tail call!");
9327 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9328 "LowerCall didn't emit the correct number of values!");
9330 // For a tail call, the return value is merely live-out and there aren't
9331 // any nodes in the DAG representing it. Return a special value to
9332 // indicate that a tail call has been emitted and no more Instructions
9333 // should be processed in the current block.
9334 if (CLI.IsTailCall) {
9335 CLI.DAG.setRoot(CLI.Chain);
9336 return std::make_pair(SDValue(), SDValue());
9339 #ifndef NDEBUG
9340 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9341 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9342 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9343 "LowerCall emitted a value with the wrong type!");
9345 #endif
9347 SmallVector<SDValue, 4> ReturnValues;
9348 if (!CanLowerReturn) {
9349 // The instruction result is the result of loading from the
9350 // hidden sret parameter.
9351 SmallVector<EVT, 1> PVTs;
9352 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9354 ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9355 assert(PVTs.size() == 1 && "Pointers should fit in one register");
9356 EVT PtrVT = PVTs[0];
9358 unsigned NumValues = RetTys.size();
9359 ReturnValues.resize(NumValues);
9360 SmallVector<SDValue, 4> Chains(NumValues);
9362 // An aggregate return value cannot wrap around the address space, so
9363 // offsets to its parts don't wrap either.
9364 SDNodeFlags Flags;
9365 Flags.setNoUnsignedWrap(true);
9367 MachineFunction &MF = CLI.DAG.getMachineFunction();
9368 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9369 for (unsigned i = 0; i < NumValues; ++i) {
9370 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9371 CLI.DAG.getConstant(Offsets[i], CLI.DL,
9372 PtrVT), Flags);
9373 SDValue L = CLI.DAG.getLoad(
9374 RetTys[i], CLI.DL, CLI.Chain, Add,
9375 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9376 DemoteStackIdx, Offsets[i]),
9377 HiddenSRetAlign);
9378 ReturnValues[i] = L;
9379 Chains[i] = L.getValue(1);
9382 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9383 } else {
9384 // Collect the legal value parts into potentially illegal values
9385 // that correspond to the original function's return values.
9386 Optional<ISD::NodeType> AssertOp;
9387 if (CLI.RetSExt)
9388 AssertOp = ISD::AssertSext;
9389 else if (CLI.RetZExt)
9390 AssertOp = ISD::AssertZext;
9391 unsigned CurReg = 0;
9392 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9393 EVT VT = RetTys[I];
9394 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9395 CLI.CallConv, VT);
9396 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9397 CLI.CallConv, VT);
9399 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9400 NumRegs, RegisterVT, VT, nullptr,
9401 CLI.CallConv, AssertOp));
9402 CurReg += NumRegs;
9405 // For a function returning void, there is no return value. We can't create
9406 // such a node, so we just return a null return value in that case. In
9407 // that case, nothing will actually look at the value.
9408 if (ReturnValues.empty())
9409 return std::make_pair(SDValue(), CLI.Chain);
9412 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9413 CLI.DAG.getVTList(RetTys), ReturnValues);
9414 return std::make_pair(Res, CLI.Chain);
9417 /// Places new result values for the node in Results (their number
9418 /// and types must exactly match those of the original return values of
9419 /// the node), or leaves Results empty, which indicates that the node is not
9420 /// to be custom lowered after all.
9421 void TargetLowering::LowerOperationWrapper(SDNode *N,
9422 SmallVectorImpl<SDValue> &Results,
9423 SelectionDAG &DAG) const {
9424 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9426 if (!Res.getNode())
9427 return;
9429 // If the original node has one result, take the return value from
9430 // LowerOperation as is. It might not be result number 0.
9431 if (N->getNumValues() == 1) {
9432 Results.push_back(Res);
9433 return;
9436 // If the original node has multiple results, then the return node should
9437 // have the same number of results.
9438 assert((N->getNumValues() == Res->getNumValues()) &&
9439 "Lowering returned the wrong number of results!");
9441 // Places new result values base on N result number.
9442 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9443 Results.push_back(Res.getValue(I));
9446 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9447 llvm_unreachable("LowerOperation not implemented for this target!");
9450 void
9451 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9452 SDValue Op = getNonRegisterValue(V);
9453 assert((Op.getOpcode() != ISD::CopyFromReg ||
9454 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9455 "Copy from a reg to the same reg!");
9456 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9458 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9459 // If this is an InlineAsm we have to match the registers required, not the
9460 // notional registers required by the type.
9462 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9463 None); // This is not an ABI copy.
9464 SDValue Chain = DAG.getEntryNode();
9466 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9467 FuncInfo.PreferredExtendType.end())
9468 ? ISD::ANY_EXTEND
9469 : FuncInfo.PreferredExtendType[V];
9470 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9471 PendingExports.push_back(Chain);
9474 #include "llvm/CodeGen/SelectionDAGISel.h"
9476 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9477 /// entry block, return true. This includes arguments used by switches, since
9478 /// the switch may expand into multiple basic blocks.
9479 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9480 // With FastISel active, we may be splitting blocks, so force creation
9481 // of virtual registers for all non-dead arguments.
9482 if (FastISel)
9483 return A->use_empty();
9485 const BasicBlock &Entry = A->getParent()->front();
9486 for (const User *U : A->users())
9487 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9488 return false; // Use not in entry block.
9490 return true;
9493 using ArgCopyElisionMapTy =
9494 DenseMap<const Argument *,
9495 std::pair<const AllocaInst *, const StoreInst *>>;
9497 /// Scan the entry block of the function in FuncInfo for arguments that look
9498 /// like copies into a local alloca. Record any copied arguments in
9499 /// ArgCopyElisionCandidates.
9500 static void
9501 findArgumentCopyElisionCandidates(const DataLayout &DL,
9502 FunctionLoweringInfo *FuncInfo,
9503 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9504 // Record the state of every static alloca used in the entry block. Argument
9505 // allocas are all used in the entry block, so we need approximately as many
9506 // entries as we have arguments.
9507 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9508 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9509 unsigned NumArgs = FuncInfo->Fn->arg_size();
9510 StaticAllocas.reserve(NumArgs * 2);
9512 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9513 if (!V)
9514 return nullptr;
9515 V = V->stripPointerCasts();
9516 const auto *AI = dyn_cast<AllocaInst>(V);
9517 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9518 return nullptr;
9519 auto Iter = StaticAllocas.insert({AI, Unknown});
9520 return &Iter.first->second;
9523 // Look for stores of arguments to static allocas. Look through bitcasts and
9524 // GEPs to handle type coercions, as long as the alloca is fully initialized
9525 // by the store. Any non-store use of an alloca escapes it and any subsequent
9526 // unanalyzed store might write it.
9527 // FIXME: Handle structs initialized with multiple stores.
9528 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9529 // Look for stores, and handle non-store uses conservatively.
9530 const auto *SI = dyn_cast<StoreInst>(&I);
9531 if (!SI) {
9532 // We will look through cast uses, so ignore them completely.
9533 if (I.isCast())
9534 continue;
9535 // Ignore debug info intrinsics, they don't escape or store to allocas.
9536 if (isa<DbgInfoIntrinsic>(I))
9537 continue;
9538 // This is an unknown instruction. Assume it escapes or writes to all
9539 // static alloca operands.
9540 for (const Use &U : I.operands()) {
9541 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9542 *Info = StaticAllocaInfo::Clobbered;
9544 continue;
9547 // If the stored value is a static alloca, mark it as escaped.
9548 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9549 *Info = StaticAllocaInfo::Clobbered;
9551 // Check if the destination is a static alloca.
9552 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9553 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9554 if (!Info)
9555 continue;
9556 const AllocaInst *AI = cast<AllocaInst>(Dst);
9558 // Skip allocas that have been initialized or clobbered.
9559 if (*Info != StaticAllocaInfo::Unknown)
9560 continue;
9562 // Check if the stored value is an argument, and that this store fully
9563 // initializes the alloca. Don't elide copies from the same argument twice.
9564 const Value *Val = SI->getValueOperand()->stripPointerCasts();
9565 const auto *Arg = dyn_cast<Argument>(Val);
9566 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9567 Arg->getType()->isEmptyTy() ||
9568 DL.getTypeStoreSize(Arg->getType()) !=
9569 DL.getTypeAllocSize(AI->getAllocatedType()) ||
9570 ArgCopyElisionCandidates.count(Arg)) {
9571 *Info = StaticAllocaInfo::Clobbered;
9572 continue;
9575 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9576 << '\n');
9578 // Mark this alloca and store for argument copy elision.
9579 *Info = StaticAllocaInfo::Elidable;
9580 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9582 // Stop scanning if we've seen all arguments. This will happen early in -O0
9583 // builds, which is useful, because -O0 builds have large entry blocks and
9584 // many allocas.
9585 if (ArgCopyElisionCandidates.size() == NumArgs)
9586 break;
9590 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9591 /// ArgVal is a load from a suitable fixed stack object.
9592 static void tryToElideArgumentCopy(
9593 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9594 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9595 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9596 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9597 SDValue ArgVal, bool &ArgHasUses) {
9598 // Check if this is a load from a fixed stack object.
9599 auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9600 if (!LNode)
9601 return;
9602 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9603 if (!FINode)
9604 return;
9606 // Check that the fixed stack object is the right size and alignment.
9607 // Look at the alignment that the user wrote on the alloca instead of looking
9608 // at the stack object.
9609 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9610 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9611 const AllocaInst *AI = ArgCopyIter->second.first;
9612 int FixedIndex = FINode->getIndex();
9613 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9614 int OldIndex = AllocaIndex;
9615 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9616 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9617 LLVM_DEBUG(
9618 dbgs() << " argument copy elision failed due to bad fixed stack "
9619 "object size\n");
9620 return;
9622 Align RequiredAlignment = AI->getAlign();
9623 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9624 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
9625 "greater than stack argument alignment ("
9626 << DebugStr(RequiredAlignment) << " vs "
9627 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9628 return;
9631 // Perform the elision. Delete the old stack object and replace its only use
9632 // in the variable info map. Mark the stack object as mutable.
9633 LLVM_DEBUG({
9634 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9635 << " Replacing frame index " << OldIndex << " with " << FixedIndex
9636 << '\n';
9638 MFI.RemoveStackObject(OldIndex);
9639 MFI.setIsImmutableObjectIndex(FixedIndex, false);
9640 AllocaIndex = FixedIndex;
9641 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9642 Chains.push_back(ArgVal.getValue(1));
9644 // Avoid emitting code for the store implementing the copy.
9645 const StoreInst *SI = ArgCopyIter->second.second;
9646 ElidedArgCopyInstrs.insert(SI);
9648 // Check for uses of the argument again so that we can avoid exporting ArgVal
9649 // if it is't used by anything other than the store.
9650 for (const Value *U : Arg.users()) {
9651 if (U != SI) {
9652 ArgHasUses = true;
9653 break;
9658 void SelectionDAGISel::LowerArguments(const Function &F) {
9659 SelectionDAG &DAG = SDB->DAG;
9660 SDLoc dl = SDB->getCurSDLoc();
9661 const DataLayout &DL = DAG.getDataLayout();
9662 SmallVector<ISD::InputArg, 16> Ins;
9664 // In Naked functions we aren't going to save any registers.
9665 if (F.hasFnAttribute(Attribute::Naked))
9666 return;
9668 if (!FuncInfo->CanLowerReturn) {
9669 // Put in an sret pointer parameter before all the other parameters.
9670 SmallVector<EVT, 1> ValueVTs;
9671 ComputeValueVTs(*TLI, DAG.getDataLayout(),
9672 F.getReturnType()->getPointerTo(
9673 DAG.getDataLayout().getAllocaAddrSpace()),
9674 ValueVTs);
9676 // NOTE: Assuming that a pointer will never break down to more than one VT
9677 // or one register.
9678 ISD::ArgFlagsTy Flags;
9679 Flags.setSRet();
9680 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9681 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9682 ISD::InputArg::NoArgIndex, 0);
9683 Ins.push_back(RetArg);
9686 // Look for stores of arguments to static allocas. Mark such arguments with a
9687 // flag to ask the target to give us the memory location of that argument if
9688 // available.
9689 ArgCopyElisionMapTy ArgCopyElisionCandidates;
9690 findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9691 ArgCopyElisionCandidates);
9693 // Set up the incoming argument description vector.
9694 for (const Argument &Arg : F.args()) {
9695 unsigned ArgNo = Arg.getArgNo();
9696 SmallVector<EVT, 4> ValueVTs;
9697 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9698 bool isArgValueUsed = !Arg.use_empty();
9699 unsigned PartBase = 0;
9700 Type *FinalType = Arg.getType();
9701 if (Arg.hasAttribute(Attribute::ByVal))
9702 FinalType = Arg.getParamByValType();
9703 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9704 FinalType, F.getCallingConv(), F.isVarArg());
9705 for (unsigned Value = 0, NumValues = ValueVTs.size();
9706 Value != NumValues; ++Value) {
9707 EVT VT = ValueVTs[Value];
9708 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9709 ISD::ArgFlagsTy Flags;
9711 // Certain targets (such as MIPS), may have a different ABI alignment
9712 // for a type depending on the context. Give the target a chance to
9713 // specify the alignment it wants.
9714 const Align OriginalAlignment(
9715 TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9717 if (Arg.getType()->isPointerTy()) {
9718 Flags.setPointer();
9719 Flags.setPointerAddrSpace(
9720 cast<PointerType>(Arg.getType())->getAddressSpace());
9722 if (Arg.hasAttribute(Attribute::ZExt))
9723 Flags.setZExt();
9724 if (Arg.hasAttribute(Attribute::SExt))
9725 Flags.setSExt();
9726 if (Arg.hasAttribute(Attribute::InReg)) {
9727 // If we are using vectorcall calling convention, a structure that is
9728 // passed InReg - is surely an HVA
9729 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9730 isa<StructType>(Arg.getType())) {
9731 // The first value of a structure is marked
9732 if (0 == Value)
9733 Flags.setHvaStart();
9734 Flags.setHva();
9736 // Set InReg Flag
9737 Flags.setInReg();
9739 if (Arg.hasAttribute(Attribute::StructRet))
9740 Flags.setSRet();
9741 if (Arg.hasAttribute(Attribute::SwiftSelf))
9742 Flags.setSwiftSelf();
9743 if (Arg.hasAttribute(Attribute::SwiftError))
9744 Flags.setSwiftError();
9745 if (Arg.hasAttribute(Attribute::ByVal))
9746 Flags.setByVal();
9747 if (Arg.hasAttribute(Attribute::ByRef))
9748 Flags.setByRef();
9749 if (Arg.hasAttribute(Attribute::InAlloca)) {
9750 Flags.setInAlloca();
9751 // Set the byval flag for CCAssignFn callbacks that don't know about
9752 // inalloca. This way we can know how many bytes we should've allocated
9753 // and how many bytes a callee cleanup function will pop. If we port
9754 // inalloca to more targets, we'll have to add custom inalloca handling
9755 // in the various CC lowering callbacks.
9756 Flags.setByVal();
9758 if (Arg.hasAttribute(Attribute::Preallocated)) {
9759 Flags.setPreallocated();
9760 // Set the byval flag for CCAssignFn callbacks that don't know about
9761 // preallocated. This way we can know how many bytes we should've
9762 // allocated and how many bytes a callee cleanup function will pop. If
9763 // we port preallocated to more targets, we'll have to add custom
9764 // preallocated handling in the various CC lowering callbacks.
9765 Flags.setByVal();
9768 Type *ArgMemTy = nullptr;
9769 if (F.getCallingConv() == CallingConv::X86_INTR) {
9770 // IA Interrupt passes frame (1st parameter) by value in the stack.
9771 if (ArgNo == 0) {
9772 Flags.setByVal();
9773 // FIXME: Dependence on pointee element type. See bug 46672.
9774 ArgMemTy = Arg.getType()->getPointerElementType();
9777 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
9778 Flags.isByRef()) {
9779 if (!ArgMemTy)
9780 ArgMemTy = Arg.getPointeeInMemoryValueType();
9782 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
9784 // For in-memory arguments, size and alignment should be passed from FE.
9785 // BE will guess if this info is not there but there are cases it cannot
9786 // get right.
9787 MaybeAlign MemAlign = Arg.getParamAlign();
9788 if (!MemAlign)
9789 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
9791 if (Flags.isByRef()) {
9792 Flags.setByRefSize(MemSize);
9793 Flags.setByRefAlign(*MemAlign);
9794 } else {
9795 Flags.setByValSize(MemSize);
9796 Flags.setByValAlign(*MemAlign);
9800 if (Arg.hasAttribute(Attribute::Nest))
9801 Flags.setNest();
9802 if (NeedsRegBlock)
9803 Flags.setInConsecutiveRegs();
9804 Flags.setOrigAlign(OriginalAlignment);
9805 if (ArgCopyElisionCandidates.count(&Arg))
9806 Flags.setCopyElisionCandidate();
9807 if (Arg.hasAttribute(Attribute::Returned))
9808 Flags.setReturned();
9810 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9811 *CurDAG->getContext(), F.getCallingConv(), VT);
9812 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9813 *CurDAG->getContext(), F.getCallingConv(), VT);
9814 for (unsigned i = 0; i != NumRegs; ++i) {
9815 // For scalable vectors, use the minimum size; individual targets
9816 // are responsible for handling scalable vector arguments and
9817 // return values.
9818 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9819 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9820 if (NumRegs > 1 && i == 0)
9821 MyFlags.Flags.setSplit();
9822 // if it isn't first piece, alignment must be 1
9823 else if (i > 0) {
9824 MyFlags.Flags.setOrigAlign(Align(1));
9825 if (i == NumRegs - 1)
9826 MyFlags.Flags.setSplitEnd();
9828 Ins.push_back(MyFlags);
9830 if (NeedsRegBlock && Value == NumValues - 1)
9831 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9832 PartBase += VT.getStoreSize().getKnownMinSize();
9836 // Call the target to set up the argument values.
9837 SmallVector<SDValue, 8> InVals;
9838 SDValue NewRoot = TLI->LowerFormalArguments(
9839 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9841 // Verify that the target's LowerFormalArguments behaved as expected.
9842 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9843 "LowerFormalArguments didn't return a valid chain!");
9844 assert(InVals.size() == Ins.size() &&
9845 "LowerFormalArguments didn't emit the correct number of values!");
9846 LLVM_DEBUG({
9847 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9848 assert(InVals[i].getNode() &&
9849 "LowerFormalArguments emitted a null value!");
9850 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9851 "LowerFormalArguments emitted a value with the wrong type!");
9855 // Update the DAG with the new chain value resulting from argument lowering.
9856 DAG.setRoot(NewRoot);
9858 // Set up the argument values.
9859 unsigned i = 0;
9860 if (!FuncInfo->CanLowerReturn) {
9861 // Create a virtual register for the sret pointer, and put in a copy
9862 // from the sret argument into it.
9863 SmallVector<EVT, 1> ValueVTs;
9864 ComputeValueVTs(*TLI, DAG.getDataLayout(),
9865 F.getReturnType()->getPointerTo(
9866 DAG.getDataLayout().getAllocaAddrSpace()),
9867 ValueVTs);
9868 MVT VT = ValueVTs[0].getSimpleVT();
9869 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9870 Optional<ISD::NodeType> AssertOp = None;
9871 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9872 nullptr, F.getCallingConv(), AssertOp);
9874 MachineFunction& MF = SDB->DAG.getMachineFunction();
9875 MachineRegisterInfo& RegInfo = MF.getRegInfo();
9876 Register SRetReg =
9877 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9878 FuncInfo->DemoteRegister = SRetReg;
9879 NewRoot =
9880 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9881 DAG.setRoot(NewRoot);
9883 // i indexes lowered arguments. Bump it past the hidden sret argument.
9884 ++i;
9887 SmallVector<SDValue, 4> Chains;
9888 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9889 for (const Argument &Arg : F.args()) {
9890 SmallVector<SDValue, 4> ArgValues;
9891 SmallVector<EVT, 4> ValueVTs;
9892 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9893 unsigned NumValues = ValueVTs.size();
9894 if (NumValues == 0)
9895 continue;
9897 bool ArgHasUses = !Arg.use_empty();
9899 // Elide the copying store if the target loaded this argument from a
9900 // suitable fixed stack object.
9901 if (Ins[i].Flags.isCopyElisionCandidate()) {
9902 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9903 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9904 InVals[i], ArgHasUses);
9907 // If this argument is unused then remember its value. It is used to generate
9908 // debugging information.
9909 bool isSwiftErrorArg =
9910 TLI->supportSwiftError() &&
9911 Arg.hasAttribute(Attribute::SwiftError);
9912 if (!ArgHasUses && !isSwiftErrorArg) {
9913 SDB->setUnusedArgValue(&Arg, InVals[i]);
9915 // Also remember any frame index for use in FastISel.
9916 if (FrameIndexSDNode *FI =
9917 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9918 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9921 for (unsigned Val = 0; Val != NumValues; ++Val) {
9922 EVT VT = ValueVTs[Val];
9923 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9924 F.getCallingConv(), VT);
9925 unsigned NumParts = TLI->getNumRegistersForCallingConv(
9926 *CurDAG->getContext(), F.getCallingConv(), VT);
9928 // Even an apparent 'unused' swifterror argument needs to be returned. So
9929 // we do generate a copy for it that can be used on return from the
9930 // function.
9931 if (ArgHasUses || isSwiftErrorArg) {
9932 Optional<ISD::NodeType> AssertOp;
9933 if (Arg.hasAttribute(Attribute::SExt))
9934 AssertOp = ISD::AssertSext;
9935 else if (Arg.hasAttribute(Attribute::ZExt))
9936 AssertOp = ISD::AssertZext;
9938 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9939 PartVT, VT, nullptr,
9940 F.getCallingConv(), AssertOp));
9943 i += NumParts;
9946 // We don't need to do anything else for unused arguments.
9947 if (ArgValues.empty())
9948 continue;
9950 // Note down frame index.
9951 if (FrameIndexSDNode *FI =
9952 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9953 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9955 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9956 SDB->getCurSDLoc());
9958 SDB->setValue(&Arg, Res);
9959 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9960 // We want to associate the argument with the frame index, among
9961 // involved operands, that correspond to the lowest address. The
9962 // getCopyFromParts function, called earlier, is swapping the order of
9963 // the operands to BUILD_PAIR depending on endianness. The result of
9964 // that swapping is that the least significant bits of the argument will
9965 // be in the first operand of the BUILD_PAIR node, and the most
9966 // significant bits will be in the second operand.
9967 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9968 if (LoadSDNode *LNode =
9969 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9970 if (FrameIndexSDNode *FI =
9971 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9972 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9975 // Analyses past this point are naive and don't expect an assertion.
9976 if (Res.getOpcode() == ISD::AssertZext)
9977 Res = Res.getOperand(0);
9979 // Update the SwiftErrorVRegDefMap.
9980 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9981 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9982 if (Register::isVirtualRegister(Reg))
9983 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9984 Reg);
9987 // If this argument is live outside of the entry block, insert a copy from
9988 // wherever we got it to the vreg that other BB's will reference it as.
9989 if (Res.getOpcode() == ISD::CopyFromReg) {
9990 // If we can, though, try to skip creating an unnecessary vreg.
9991 // FIXME: This isn't very clean... it would be nice to make this more
9992 // general.
9993 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9994 if (Register::isVirtualRegister(Reg)) {
9995 FuncInfo->ValueMap[&Arg] = Reg;
9996 continue;
9999 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10000 FuncInfo->InitializeRegForValue(&Arg);
10001 SDB->CopyToExportRegsIfNeeded(&Arg);
10005 if (!Chains.empty()) {
10006 Chains.push_back(NewRoot);
10007 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10010 DAG.setRoot(NewRoot);
10012 assert(i == InVals.size() && "Argument register count mismatch!");
10014 // If any argument copy elisions occurred and we have debug info, update the
10015 // stale frame indices used in the dbg.declare variable info table.
10016 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10017 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10018 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10019 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10020 if (I != ArgCopyElisionFrameIndexMap.end())
10021 VI.Slot = I->second;
10025 // Finally, if the target has anything special to do, allow it to do so.
10026 emitFunctionEntryCode();
10029 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
10030 /// ensure constants are generated when needed. Remember the virtual registers
10031 /// that need to be added to the Machine PHI nodes as input. We cannot just
10032 /// directly add them, because expansion might result in multiple MBB's for one
10033 /// BB. As such, the start of the BB might correspond to a different MBB than
10034 /// the end.
10035 void
10036 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10037 const Instruction *TI = LLVMBB->getTerminator();
10039 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10041 // Check PHI nodes in successors that expect a value to be available from this
10042 // block.
10043 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10044 const BasicBlock *SuccBB = TI->getSuccessor(succ);
10045 if (!isa<PHINode>(SuccBB->begin())) continue;
10046 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10048 // If this terminator has multiple identical successors (common for
10049 // switches), only handle each succ once.
10050 if (!SuccsHandled.insert(SuccMBB).second)
10051 continue;
10053 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10055 // At this point we know that there is a 1-1 correspondence between LLVM PHI
10056 // nodes and Machine PHI nodes, but the incoming operands have not been
10057 // emitted yet.
10058 for (const PHINode &PN : SuccBB->phis()) {
10059 // Ignore dead phi's.
10060 if (PN.use_empty())
10061 continue;
10063 // Skip empty types
10064 if (PN.getType()->isEmptyTy())
10065 continue;
10067 unsigned Reg;
10068 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10070 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10071 unsigned &RegOut = ConstantsOut[C];
10072 if (RegOut == 0) {
10073 RegOut = FuncInfo.CreateRegs(C);
10074 CopyValueToVirtualRegister(C, RegOut);
10076 Reg = RegOut;
10077 } else {
10078 DenseMap<const Value *, Register>::iterator I =
10079 FuncInfo.ValueMap.find(PHIOp);
10080 if (I != FuncInfo.ValueMap.end())
10081 Reg = I->second;
10082 else {
10083 assert(isa<AllocaInst>(PHIOp) &&
10084 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10085 "Didn't codegen value into a register!??");
10086 Reg = FuncInfo.CreateRegs(PHIOp);
10087 CopyValueToVirtualRegister(PHIOp, Reg);
10091 // Remember that this register needs to added to the machine PHI node as
10092 // the input for this MBB.
10093 SmallVector<EVT, 4> ValueVTs;
10094 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10095 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10096 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10097 EVT VT = ValueVTs[vti];
10098 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10099 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10100 FuncInfo.PHINodesToUpdate.push_back(
10101 std::make_pair(&*MBBI++, Reg + i));
10102 Reg += NumRegisters;
10107 ConstantsOut.clear();
10110 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10111 /// is 0.
10112 MachineBasicBlock *
10113 SelectionDAGBuilder::StackProtectorDescriptor::
10114 AddSuccessorMBB(const BasicBlock *BB,
10115 MachineBasicBlock *ParentMBB,
10116 bool IsLikely,
10117 MachineBasicBlock *SuccMBB) {
10118 // If SuccBB has not been created yet, create it.
10119 if (!SuccMBB) {
10120 MachineFunction *MF = ParentMBB->getParent();
10121 MachineFunction::iterator BBI(ParentMBB);
10122 SuccMBB = MF->CreateMachineBasicBlock(BB);
10123 MF->insert(++BBI, SuccMBB);
10125 // Add it as a successor of ParentMBB.
10126 ParentMBB->addSuccessor(
10127 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10128 return SuccMBB;
10131 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10132 MachineFunction::iterator I(MBB);
10133 if (++I == FuncInfo.MF->end())
10134 return nullptr;
10135 return &*I;
10138 /// During lowering new call nodes can be created (such as memset, etc.).
10139 /// Those will become new roots of the current DAG, but complications arise
10140 /// when they are tail calls. In such cases, the call lowering will update
10141 /// the root, but the builder still needs to know that a tail call has been
10142 /// lowered in order to avoid generating an additional return.
10143 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10144 // If the node is null, we do have a tail call.
10145 if (MaybeTC.getNode() != nullptr)
10146 DAG.setRoot(MaybeTC);
10147 else
10148 HasTailCall = true;
10151 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10152 MachineBasicBlock *SwitchMBB,
10153 MachineBasicBlock *DefaultMBB) {
10154 MachineFunction *CurMF = FuncInfo.MF;
10155 MachineBasicBlock *NextMBB = nullptr;
10156 MachineFunction::iterator BBI(W.MBB);
10157 if (++BBI != FuncInfo.MF->end())
10158 NextMBB = &*BBI;
10160 unsigned Size = W.LastCluster - W.FirstCluster + 1;
10162 BranchProbabilityInfo *BPI = FuncInfo.BPI;
10164 if (Size == 2 && W.MBB == SwitchMBB) {
10165 // If any two of the cases has the same destination, and if one value
10166 // is the same as the other, but has one bit unset that the other has set,
10167 // use bit manipulation to do two compares at once. For example:
10168 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10169 // TODO: This could be extended to merge any 2 cases in switches with 3
10170 // cases.
10171 // TODO: Handle cases where W.CaseBB != SwitchBB.
10172 CaseCluster &Small = *W.FirstCluster;
10173 CaseCluster &Big = *W.LastCluster;
10175 if (Small.Low == Small.High && Big.Low == Big.High &&
10176 Small.MBB == Big.MBB) {
10177 const APInt &SmallValue = Small.Low->getValue();
10178 const APInt &BigValue = Big.Low->getValue();
10180 // Check that there is only one bit different.
10181 APInt CommonBit = BigValue ^ SmallValue;
10182 if (CommonBit.isPowerOf2()) {
10183 SDValue CondLHS = getValue(Cond);
10184 EVT VT = CondLHS.getValueType();
10185 SDLoc DL = getCurSDLoc();
10187 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10188 DAG.getConstant(CommonBit, DL, VT));
10189 SDValue Cond = DAG.getSetCC(
10190 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10191 ISD::SETEQ);
10193 // Update successor info.
10194 // Both Small and Big will jump to Small.BB, so we sum up the
10195 // probabilities.
10196 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10197 if (BPI)
10198 addSuccessorWithProb(
10199 SwitchMBB, DefaultMBB,
10200 // The default destination is the first successor in IR.
10201 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10202 else
10203 addSuccessorWithProb(SwitchMBB, DefaultMBB);
10205 // Insert the true branch.
10206 SDValue BrCond =
10207 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10208 DAG.getBasicBlock(Small.MBB));
10209 // Insert the false branch.
10210 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10211 DAG.getBasicBlock(DefaultMBB));
10213 DAG.setRoot(BrCond);
10214 return;
10219 if (TM.getOptLevel() != CodeGenOpt::None) {
10220 // Here, we order cases by probability so the most likely case will be
10221 // checked first. However, two clusters can have the same probability in
10222 // which case their relative ordering is non-deterministic. So we use Low
10223 // as a tie-breaker as clusters are guaranteed to never overlap.
10224 llvm::sort(W.FirstCluster, W.LastCluster + 1,
10225 [](const CaseCluster &a, const CaseCluster &b) {
10226 return a.Prob != b.Prob ?
10227 a.Prob > b.Prob :
10228 a.Low->getValue().slt(b.Low->getValue());
10231 // Rearrange the case blocks so that the last one falls through if possible
10232 // without changing the order of probabilities.
10233 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10234 --I;
10235 if (I->Prob > W.LastCluster->Prob)
10236 break;
10237 if (I->Kind == CC_Range && I->MBB == NextMBB) {
10238 std::swap(*I, *W.LastCluster);
10239 break;
10244 // Compute total probability.
10245 BranchProbability DefaultProb = W.DefaultProb;
10246 BranchProbability UnhandledProbs = DefaultProb;
10247 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10248 UnhandledProbs += I->Prob;
10250 MachineBasicBlock *CurMBB = W.MBB;
10251 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10252 bool FallthroughUnreachable = false;
10253 MachineBasicBlock *Fallthrough;
10254 if (I == W.LastCluster) {
10255 // For the last cluster, fall through to the default destination.
10256 Fallthrough = DefaultMBB;
10257 FallthroughUnreachable = isa<UnreachableInst>(
10258 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10259 } else {
10260 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10261 CurMF->insert(BBI, Fallthrough);
10262 // Put Cond in a virtual register to make it available from the new blocks.
10263 ExportFromCurrentBlock(Cond);
10265 UnhandledProbs -= I->Prob;
10267 switch (I->Kind) {
10268 case CC_JumpTable: {
10269 // FIXME: Optimize away range check based on pivot comparisons.
10270 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10271 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10273 // The jump block hasn't been inserted yet; insert it here.
10274 MachineBasicBlock *JumpMBB = JT->MBB;
10275 CurMF->insert(BBI, JumpMBB);
10277 auto JumpProb = I->Prob;
10278 auto FallthroughProb = UnhandledProbs;
10280 // If the default statement is a target of the jump table, we evenly
10281 // distribute the default probability to successors of CurMBB. Also
10282 // update the probability on the edge from JumpMBB to Fallthrough.
10283 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10284 SE = JumpMBB->succ_end();
10285 SI != SE; ++SI) {
10286 if (*SI == DefaultMBB) {
10287 JumpProb += DefaultProb / 2;
10288 FallthroughProb -= DefaultProb / 2;
10289 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10290 JumpMBB->normalizeSuccProbs();
10291 break;
10295 if (FallthroughUnreachable) {
10296 // Skip the range check if the fallthrough block is unreachable.
10297 JTH->OmitRangeCheck = true;
10300 if (!JTH->OmitRangeCheck)
10301 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10302 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10303 CurMBB->normalizeSuccProbs();
10305 // The jump table header will be inserted in our current block, do the
10306 // range check, and fall through to our fallthrough block.
10307 JTH->HeaderBB = CurMBB;
10308 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10310 // If we're in the right place, emit the jump table header right now.
10311 if (CurMBB == SwitchMBB) {
10312 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10313 JTH->Emitted = true;
10315 break;
10317 case CC_BitTests: {
10318 // FIXME: Optimize away range check based on pivot comparisons.
10319 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10321 // The bit test blocks haven't been inserted yet; insert them here.
10322 for (BitTestCase &BTC : BTB->Cases)
10323 CurMF->insert(BBI, BTC.ThisBB);
10325 // Fill in fields of the BitTestBlock.
10326 BTB->Parent = CurMBB;
10327 BTB->Default = Fallthrough;
10329 BTB->DefaultProb = UnhandledProbs;
10330 // If the cases in bit test don't form a contiguous range, we evenly
10331 // distribute the probability on the edge to Fallthrough to two
10332 // successors of CurMBB.
10333 if (!BTB->ContiguousRange) {
10334 BTB->Prob += DefaultProb / 2;
10335 BTB->DefaultProb -= DefaultProb / 2;
10338 if (FallthroughUnreachable) {
10339 // Skip the range check if the fallthrough block is unreachable.
10340 BTB->OmitRangeCheck = true;
10343 // If we're in the right place, emit the bit test header right now.
10344 if (CurMBB == SwitchMBB) {
10345 visitBitTestHeader(*BTB, SwitchMBB);
10346 BTB->Emitted = true;
10348 break;
10350 case CC_Range: {
10351 const Value *RHS, *LHS, *MHS;
10352 ISD::CondCode CC;
10353 if (I->Low == I->High) {
10354 // Check Cond == I->Low.
10355 CC = ISD::SETEQ;
10356 LHS = Cond;
10357 RHS=I->Low;
10358 MHS = nullptr;
10359 } else {
10360 // Check I->Low <= Cond <= I->High.
10361 CC = ISD::SETLE;
10362 LHS = I->Low;
10363 MHS = Cond;
10364 RHS = I->High;
10367 // If Fallthrough is unreachable, fold away the comparison.
10368 if (FallthroughUnreachable)
10369 CC = ISD::SETTRUE;
10371 // The false probability is the sum of all unhandled cases.
10372 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10373 getCurSDLoc(), I->Prob, UnhandledProbs);
10375 if (CurMBB == SwitchMBB)
10376 visitSwitchCase(CB, SwitchMBB);
10377 else
10378 SL->SwitchCases.push_back(CB);
10380 break;
10383 CurMBB = Fallthrough;
10387 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10388 CaseClusterIt First,
10389 CaseClusterIt Last) {
10390 return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10391 if (X.Prob != CC.Prob)
10392 return X.Prob > CC.Prob;
10394 // Ties are broken by comparing the case value.
10395 return X.Low->getValue().slt(CC.Low->getValue());
10399 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10400 const SwitchWorkListItem &W,
10401 Value *Cond,
10402 MachineBasicBlock *SwitchMBB) {
10403 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10404 "Clusters not sorted?");
10406 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10408 // Balance the tree based on branch probabilities to create a near-optimal (in
10409 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10410 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10411 CaseClusterIt LastLeft = W.FirstCluster;
10412 CaseClusterIt FirstRight = W.LastCluster;
10413 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10414 auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10416 // Move LastLeft and FirstRight towards each other from opposite directions to
10417 // find a partitioning of the clusters which balances the probability on both
10418 // sides. If LeftProb and RightProb are equal, alternate which side is
10419 // taken to ensure 0-probability nodes are distributed evenly.
10420 unsigned I = 0;
10421 while (LastLeft + 1 < FirstRight) {
10422 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10423 LeftProb += (++LastLeft)->Prob;
10424 else
10425 RightProb += (--FirstRight)->Prob;
10426 I++;
10429 while (true) {
10430 // Our binary search tree differs from a typical BST in that ours can have up
10431 // to three values in each leaf. The pivot selection above doesn't take that
10432 // into account, which means the tree might require more nodes and be less
10433 // efficient. We compensate for this here.
10435 unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10436 unsigned NumRight = W.LastCluster - FirstRight + 1;
10438 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10439 // If one side has less than 3 clusters, and the other has more than 3,
10440 // consider taking a cluster from the other side.
10442 if (NumLeft < NumRight) {
10443 // Consider moving the first cluster on the right to the left side.
10444 CaseCluster &CC = *FirstRight;
10445 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10446 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10447 if (LeftSideRank <= RightSideRank) {
10448 // Moving the cluster to the left does not demote it.
10449 ++LastLeft;
10450 ++FirstRight;
10451 continue;
10453 } else {
10454 assert(NumRight < NumLeft);
10455 // Consider moving the last element on the left to the right side.
10456 CaseCluster &CC = *LastLeft;
10457 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10458 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10459 if (RightSideRank <= LeftSideRank) {
10460 // Moving the cluster to the right does not demot it.
10461 --LastLeft;
10462 --FirstRight;
10463 continue;
10467 break;
10470 assert(LastLeft + 1 == FirstRight);
10471 assert(LastLeft >= W.FirstCluster);
10472 assert(FirstRight <= W.LastCluster);
10474 // Use the first element on the right as pivot since we will make less-than
10475 // comparisons against it.
10476 CaseClusterIt PivotCluster = FirstRight;
10477 assert(PivotCluster > W.FirstCluster);
10478 assert(PivotCluster <= W.LastCluster);
10480 CaseClusterIt FirstLeft = W.FirstCluster;
10481 CaseClusterIt LastRight = W.LastCluster;
10483 const ConstantInt *Pivot = PivotCluster->Low;
10485 // New blocks will be inserted immediately after the current one.
10486 MachineFunction::iterator BBI(W.MBB);
10487 ++BBI;
10489 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10490 // we can branch to its destination directly if it's squeezed exactly in
10491 // between the known lower bound and Pivot - 1.
10492 MachineBasicBlock *LeftMBB;
10493 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10494 FirstLeft->Low == W.GE &&
10495 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10496 LeftMBB = FirstLeft->MBB;
10497 } else {
10498 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10499 FuncInfo.MF->insert(BBI, LeftMBB);
10500 WorkList.push_back(
10501 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10502 // Put Cond in a virtual register to make it available from the new blocks.
10503 ExportFromCurrentBlock(Cond);
10506 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10507 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10508 // directly if RHS.High equals the current upper bound.
10509 MachineBasicBlock *RightMBB;
10510 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10511 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10512 RightMBB = FirstRight->MBB;
10513 } else {
10514 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10515 FuncInfo.MF->insert(BBI, RightMBB);
10516 WorkList.push_back(
10517 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10518 // Put Cond in a virtual register to make it available from the new blocks.
10519 ExportFromCurrentBlock(Cond);
10522 // Create the CaseBlock record that will be used to lower the branch.
10523 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10524 getCurSDLoc(), LeftProb, RightProb);
10526 if (W.MBB == SwitchMBB)
10527 visitSwitchCase(CB, SwitchMBB);
10528 else
10529 SL->SwitchCases.push_back(CB);
10532 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10533 // from the swith statement.
10534 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10535 BranchProbability PeeledCaseProb) {
10536 if (PeeledCaseProb == BranchProbability::getOne())
10537 return BranchProbability::getZero();
10538 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10540 uint32_t Numerator = CaseProb.getNumerator();
10541 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10542 return BranchProbability(Numerator, std::max(Numerator, Denominator));
10545 // Try to peel the top probability case if it exceeds the threshold.
10546 // Return current MachineBasicBlock for the switch statement if the peeling
10547 // does not occur.
10548 // If the peeling is performed, return the newly created MachineBasicBlock
10549 // for the peeled switch statement. Also update Clusters to remove the peeled
10550 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10551 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10552 const SwitchInst &SI, CaseClusterVector &Clusters,
10553 BranchProbability &PeeledCaseProb) {
10554 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10555 // Don't perform if there is only one cluster or optimizing for size.
10556 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10557 TM.getOptLevel() == CodeGenOpt::None ||
10558 SwitchMBB->getParent()->getFunction().hasMinSize())
10559 return SwitchMBB;
10561 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10562 unsigned PeeledCaseIndex = 0;
10563 bool SwitchPeeled = false;
10564 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10565 CaseCluster &CC = Clusters[Index];
10566 if (CC.Prob < TopCaseProb)
10567 continue;
10568 TopCaseProb = CC.Prob;
10569 PeeledCaseIndex = Index;
10570 SwitchPeeled = true;
10572 if (!SwitchPeeled)
10573 return SwitchMBB;
10575 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10576 << TopCaseProb << "\n");
10578 // Record the MBB for the peeled switch statement.
10579 MachineFunction::iterator BBI(SwitchMBB);
10580 ++BBI;
10581 MachineBasicBlock *PeeledSwitchMBB =
10582 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10583 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10585 ExportFromCurrentBlock(SI.getCondition());
10586 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10587 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10588 nullptr, nullptr, TopCaseProb.getCompl()};
10589 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10591 Clusters.erase(PeeledCaseIt);
10592 for (CaseCluster &CC : Clusters) {
10593 LLVM_DEBUG(
10594 dbgs() << "Scale the probablity for one cluster, before scaling: "
10595 << CC.Prob << "\n");
10596 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10597 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10599 PeeledCaseProb = TopCaseProb;
10600 return PeeledSwitchMBB;
10603 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10604 // Extract cases from the switch.
10605 BranchProbabilityInfo *BPI = FuncInfo.BPI;
10606 CaseClusterVector Clusters;
10607 Clusters.reserve(SI.getNumCases());
10608 for (auto I : SI.cases()) {
10609 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10610 const ConstantInt *CaseVal = I.getCaseValue();
10611 BranchProbability Prob =
10612 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10613 : BranchProbability(1, SI.getNumCases() + 1);
10614 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10617 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10619 // Cluster adjacent cases with the same destination. We do this at all
10620 // optimization levels because it's cheap to do and will make codegen faster
10621 // if there are many clusters.
10622 sortAndRangeify(Clusters);
10624 // The branch probablity of the peeled case.
10625 BranchProbability PeeledCaseProb = BranchProbability::getZero();
10626 MachineBasicBlock *PeeledSwitchMBB =
10627 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10629 // If there is only the default destination, jump there directly.
10630 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10631 if (Clusters.empty()) {
10632 assert(PeeledSwitchMBB == SwitchMBB);
10633 SwitchMBB->addSuccessor(DefaultMBB);
10634 if (DefaultMBB != NextBlock(SwitchMBB)) {
10635 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10636 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10638 return;
10641 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10642 SL->findBitTestClusters(Clusters, &SI);
10644 LLVM_DEBUG({
10645 dbgs() << "Case clusters: ";
10646 for (const CaseCluster &C : Clusters) {
10647 if (C.Kind == CC_JumpTable)
10648 dbgs() << "JT:";
10649 if (C.Kind == CC_BitTests)
10650 dbgs() << "BT:";
10652 C.Low->getValue().print(dbgs(), true);
10653 if (C.Low != C.High) {
10654 dbgs() << '-';
10655 C.High->getValue().print(dbgs(), true);
10657 dbgs() << ' ';
10659 dbgs() << '\n';
10662 assert(!Clusters.empty());
10663 SwitchWorkList WorkList;
10664 CaseClusterIt First = Clusters.begin();
10665 CaseClusterIt Last = Clusters.end() - 1;
10666 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10667 // Scale the branchprobability for DefaultMBB if the peel occurs and
10668 // DefaultMBB is not replaced.
10669 if (PeeledCaseProb != BranchProbability::getZero() &&
10670 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10671 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10672 WorkList.push_back(
10673 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10675 while (!WorkList.empty()) {
10676 SwitchWorkListItem W = WorkList.back();
10677 WorkList.pop_back();
10678 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10680 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10681 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10682 // For optimized builds, lower large range as a balanced binary tree.
10683 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10684 continue;
10687 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10691 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10692 SmallVector<EVT, 4> ValueVTs;
10693 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10694 ValueVTs);
10695 unsigned NumValues = ValueVTs.size();
10696 if (NumValues == 0) return;
10698 SmallVector<SDValue, 4> Values(NumValues);
10699 SDValue Op = getValue(I.getOperand(0));
10701 for (unsigned i = 0; i != NumValues; ++i)
10702 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10703 SDValue(Op.getNode(), Op.getResNo() + i));
10705 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10706 DAG.getVTList(ValueVTs), Values));