1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
110 using namespace llvm
;
111 using namespace PatternMatch
;
112 using namespace SwitchCG
;
114 #define DEBUG_TYPE "isel"
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision
;
121 InsertAssertAlign("insert-assert-align", cl::init(true),
122 cl::desc("Insert the experimental `assertalign` node."),
125 static cl::opt
<unsigned, true>
126 LimitFPPrecision("limit-float-precision",
127 cl::desc("Generate low-precision inline sequences "
128 "for some float libcalls"),
129 cl::location(LimitFloatPrecision
), cl::Hidden
,
132 static cl::opt
<unsigned> SwitchPeelThreshold(
133 "switch-peel-threshold", cl::Hidden
, cl::init(66),
134 cl::desc("Set the case probability threshold for peeling the case from a "
135 "switch statement. A value greater than 100 will void this "
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains
= 64;
154 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
155 const SDValue
*Parts
, unsigned NumParts
,
156 MVT PartVT
, EVT ValueVT
, const Value
*V
,
157 Optional
<CallingConv::ID
> CC
);
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent. If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue
getCopyFromParts(SelectionDAG
&DAG
, const SDLoc
&DL
,
165 const SDValue
*Parts
, unsigned NumParts
,
166 MVT PartVT
, EVT ValueVT
, const Value
*V
,
167 Optional
<CallingConv::ID
> CC
= None
,
168 Optional
<ISD::NodeType
> AssertOp
= None
) {
169 // Let the target assemble the parts if it wants to
170 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
171 if (SDValue Val
= TLI
.joinRegisterPartsIntoValue(DAG
, DL
, Parts
, NumParts
,
172 PartVT
, ValueVT
, CC
))
175 if (ValueVT
.isVector())
176 return getCopyFromPartsVector(DAG
, DL
, Parts
, NumParts
, PartVT
, ValueVT
, V
,
179 assert(NumParts
> 0 && "No parts to assemble!");
180 SDValue Val
= Parts
[0];
183 // Assemble the value from multiple parts.
184 if (ValueVT
.isInteger()) {
185 unsigned PartBits
= PartVT
.getSizeInBits();
186 unsigned ValueBits
= ValueVT
.getSizeInBits();
188 // Assemble the power of 2 part.
189 unsigned RoundParts
=
190 (NumParts
& (NumParts
- 1)) ? 1 << Log2_32(NumParts
) : NumParts
;
191 unsigned RoundBits
= PartBits
* RoundParts
;
192 EVT RoundVT
= RoundBits
== ValueBits
?
193 ValueVT
: EVT::getIntegerVT(*DAG
.getContext(), RoundBits
);
196 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundBits
/2);
198 if (RoundParts
> 2) {
199 Lo
= getCopyFromParts(DAG
, DL
, Parts
, RoundParts
/ 2,
201 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
/ 2,
202 RoundParts
/ 2, PartVT
, HalfVT
, V
);
204 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[0]);
205 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[1]);
208 if (DAG
.getDataLayout().isBigEndian())
211 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, RoundVT
, Lo
, Hi
);
213 if (RoundParts
< NumParts
) {
214 // Assemble the trailing non-power-of-2 part.
215 unsigned OddParts
= NumParts
- RoundParts
;
216 EVT OddVT
= EVT::getIntegerVT(*DAG
.getContext(), OddParts
* PartBits
);
217 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
, OddParts
, PartVT
,
220 // Combine the round and odd parts.
222 if (DAG
.getDataLayout().isBigEndian())
224 EVT TotalVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
225 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, TotalVT
, Hi
);
227 DAG
.getNode(ISD::SHL
, DL
, TotalVT
, Hi
,
228 DAG
.getConstant(Lo
.getValueSizeInBits(), DL
,
229 TLI
.getPointerTy(DAG
.getDataLayout())));
230 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TotalVT
, Lo
);
231 Val
= DAG
.getNode(ISD::OR
, DL
, TotalVT
, Lo
, Hi
);
233 } else if (PartVT
.isFloatingPoint()) {
234 // FP split into multiple FP parts (for ppcf128)
235 assert(ValueVT
== EVT(MVT::ppcf128
) && PartVT
== MVT::f64
&&
238 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[0]);
239 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[1]);
240 if (TLI
.hasBigEndianPartOrdering(ValueVT
, DAG
.getDataLayout()))
242 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, ValueVT
, Lo
, Hi
);
244 // FP split into integer parts (soft fp)
245 assert(ValueVT
.isFloatingPoint() && PartVT
.isInteger() &&
246 !PartVT
.isVector() && "Unexpected split");
247 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
248 Val
= getCopyFromParts(DAG
, DL
, Parts
, NumParts
, PartVT
, IntVT
, V
, CC
);
252 // There is now one part, held in Val. Correct it to match ValueVT.
253 // PartEVT is the type of the register class that holds the value.
254 // ValueVT is the type of the inline asm operation.
255 EVT PartEVT
= Val
.getValueType();
257 if (PartEVT
== ValueVT
)
260 if (PartEVT
.isInteger() && ValueVT
.isFloatingPoint() &&
261 ValueVT
.bitsLT(PartEVT
)) {
262 // For an FP value in an integer part, we need to truncate to the right
264 PartEVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
265 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, PartEVT
, Val
);
268 // Handle types that have the same size.
269 if (PartEVT
.getSizeInBits() == ValueVT
.getSizeInBits())
270 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
272 // Handle types with different sizes.
273 if (PartEVT
.isInteger() && ValueVT
.isInteger()) {
274 if (ValueVT
.bitsLT(PartEVT
)) {
275 // For a truncate, see if we have any information to
276 // indicate whether the truncated bits will always be
277 // zero or sign-extension.
278 if (AssertOp
.hasValue())
279 Val
= DAG
.getNode(*AssertOp
, DL
, PartEVT
, Val
,
280 DAG
.getValueType(ValueVT
));
281 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
283 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, ValueVT
, Val
);
286 if (PartEVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
287 // FP_ROUND's are always exact here.
288 if (ValueVT
.bitsLT(Val
.getValueType()))
290 ISD::FP_ROUND
, DL
, ValueVT
, Val
,
291 DAG
.getTargetConstant(1, DL
, TLI
.getPointerTy(DAG
.getDataLayout())));
293 return DAG
.getNode(ISD::FP_EXTEND
, DL
, ValueVT
, Val
);
296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
298 if (PartEVT
== MVT::x86mmx
&& ValueVT
.isInteger() &&
299 ValueVT
.bitsLT(PartEVT
)) {
300 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Val
);
301 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
304 report_fatal_error("Unknown mismatch in getCopyFromParts!");
307 static void diagnosePossiblyInvalidConstraint(LLVMContext
&Ctx
, const Value
*V
,
308 const Twine
&ErrMsg
) {
309 const Instruction
*I
= dyn_cast_or_null
<Instruction
>(V
);
311 return Ctx
.emitError(ErrMsg
);
313 const char *AsmError
= ", possible invalid constraint for vector type";
314 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
315 if (CI
->isInlineAsm())
316 return Ctx
.emitError(I
, ErrMsg
+ AsmError
);
318 return Ctx
.emitError(I
, ErrMsg
);
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent. If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
327 const SDValue
*Parts
, unsigned NumParts
,
328 MVT PartVT
, EVT ValueVT
, const Value
*V
,
329 Optional
<CallingConv::ID
> CallConv
) {
330 assert(ValueVT
.isVector() && "Not a vector value");
331 assert(NumParts
> 0 && "No parts to assemble!");
332 const bool IsABIRegCopy
= CallConv
.hasValue();
334 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
335 SDValue Val
= Parts
[0];
337 // Handle a multi-element vector.
341 unsigned NumIntermediates
;
345 NumRegs
= TLI
.getVectorTypeBreakdownForCallingConv(
346 *DAG
.getContext(), CallConv
.getValue(), ValueVT
, IntermediateVT
,
347 NumIntermediates
, RegisterVT
);
350 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
351 NumIntermediates
, RegisterVT
);
354 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
355 NumParts
= NumRegs
; // Silence a compiler warning.
356 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
357 assert(RegisterVT
.getSizeInBits() ==
358 Parts
[0].getSimpleValueType().getSizeInBits() &&
359 "Part type sizes don't match!");
361 // Assemble the parts into intermediate operands.
362 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
363 if (NumIntermediates
== NumParts
) {
364 // If the register was not expanded, truncate or copy the value,
366 for (unsigned i
= 0; i
!= NumParts
; ++i
)
367 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
], 1,
368 PartVT
, IntermediateVT
, V
, CallConv
);
369 } else if (NumParts
> 0) {
370 // If the intermediate type was expanded, build the intermediate
371 // operands from the parts.
372 assert(NumParts
% NumIntermediates
== 0 &&
373 "Must expand into a divisible number of parts!");
374 unsigned Factor
= NumParts
/ NumIntermediates
;
375 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
376 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
* Factor
], Factor
,
377 PartVT
, IntermediateVT
, V
, CallConv
);
380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381 // intermediate operands.
383 IntermediateVT
.isVector()
385 *DAG
.getContext(), IntermediateVT
.getScalarType(),
386 IntermediateVT
.getVectorElementCount() * NumParts
)
387 : EVT::getVectorVT(*DAG
.getContext(),
388 IntermediateVT
.getScalarType(),
390 Val
= DAG
.getNode(IntermediateVT
.isVector() ? ISD::CONCAT_VECTORS
392 DL
, BuiltVectorTy
, Ops
);
395 // There is now one part, held in Val. Correct it to match ValueVT.
396 EVT PartEVT
= Val
.getValueType();
398 if (PartEVT
== ValueVT
)
401 if (PartEVT
.isVector()) {
402 // If the element type of the source/dest vectors are the same, but the
403 // parts vector has more elements than the value vector, then we have a
404 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
406 if (PartEVT
.getVectorElementType() == ValueVT
.getVectorElementType()) {
407 assert((PartEVT
.getVectorElementCount().getKnownMinValue() >
408 ValueVT
.getVectorElementCount().getKnownMinValue()) &&
409 (PartEVT
.getVectorElementCount().isScalable() ==
410 ValueVT
.getVectorElementCount().isScalable()) &&
411 "Cannot narrow, it would be a lossy transformation");
412 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, ValueVT
, Val
,
413 DAG
.getVectorIdxConstant(0, DL
));
416 // Vector/Vector bitcast.
417 if (ValueVT
.getSizeInBits() == PartEVT
.getSizeInBits())
418 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
420 assert(PartEVT
.getVectorElementCount() == ValueVT
.getVectorElementCount() &&
421 "Cannot handle this kind of promotion");
422 // Promoted vector extract
423 return DAG
.getAnyExtOrTrunc(Val
, DL
, ValueVT
);
427 // Trivial bitcast if the types are the same size and the destination
428 // vector type is legal.
429 if (PartEVT
.getSizeInBits() == ValueVT
.getSizeInBits() &&
430 TLI
.isTypeLegal(ValueVT
))
431 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
433 if (ValueVT
.getVectorNumElements() != 1) {
434 // Certain ABIs require that vectors are passed as integers. For vectors
435 // are the same size, this is an obvious bitcast.
436 if (ValueVT
.getSizeInBits() == PartEVT
.getSizeInBits()) {
437 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
438 } else if (ValueVT
.bitsLT(PartEVT
)) {
439 // Bitcast Val back the original type and extract the corresponding
441 unsigned Elts
= PartEVT
.getSizeInBits() / ValueVT
.getScalarSizeInBits();
442 EVT WiderVecType
= EVT::getVectorVT(*DAG
.getContext(),
443 ValueVT
.getVectorElementType(), Elts
);
444 Val
= DAG
.getBitcast(WiderVecType
, Val
);
445 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, ValueVT
, Val
,
446 DAG
.getVectorIdxConstant(0, DL
));
449 diagnosePossiblyInvalidConstraint(
450 *DAG
.getContext(), V
, "non-trivial scalar-to-vector conversion");
451 return DAG
.getUNDEF(ValueVT
);
454 // Handle cases such as i8 -> <1 x i1>
455 EVT ValueSVT
= ValueVT
.getVectorElementType();
456 if (ValueVT
.getVectorNumElements() == 1 && ValueSVT
!= PartEVT
) {
457 if (ValueSVT
.getSizeInBits() == PartEVT
.getSizeInBits())
458 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValueSVT
, Val
);
460 Val
= ValueVT
.isFloatingPoint()
461 ? DAG
.getFPExtendOrRound(Val
, DL
, ValueSVT
)
462 : DAG
.getAnyExtOrTrunc(Val
, DL
, ValueSVT
);
465 return DAG
.getBuildVector(ValueVT
, DL
, Val
);
468 static void getCopyToPartsVector(SelectionDAG
&DAG
, const SDLoc
&dl
,
469 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
470 MVT PartVT
, const Value
*V
,
471 Optional
<CallingConv::ID
> CallConv
);
473 /// getCopyToParts - Create a series of nodes that contain the specified value
474 /// split into legal parts. If the parts contain more bits than Val, then, for
475 /// integers, ExtendKind can be used to specify how to generate the extra bits.
476 static void getCopyToParts(SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Val
,
477 SDValue
*Parts
, unsigned NumParts
, MVT PartVT
,
479 Optional
<CallingConv::ID
> CallConv
= None
,
480 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
) {
481 // Let the target split the parts if it wants to
482 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
483 if (TLI
.splitValueIntoRegisterParts(DAG
, DL
, Val
, Parts
, NumParts
, PartVT
,
486 EVT ValueVT
= Val
.getValueType();
488 // Handle the vector case separately.
489 if (ValueVT
.isVector())
490 return getCopyToPartsVector(DAG
, DL
, Val
, Parts
, NumParts
, PartVT
, V
,
493 unsigned PartBits
= PartVT
.getSizeInBits();
494 unsigned OrigNumParts
= NumParts
;
495 assert(DAG
.getTargetLoweringInfo().isTypeLegal(PartVT
) &&
496 "Copying to an illegal type!");
501 assert(!ValueVT
.isVector() && "Vector case handled elsewhere");
502 EVT PartEVT
= PartVT
;
503 if (PartEVT
== ValueVT
) {
504 assert(NumParts
== 1 && "No-op copy with multiple parts!");
509 if (NumParts
* PartBits
> ValueVT
.getSizeInBits()) {
510 // If the parts cover more bits than the value has, promote the value.
511 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
512 assert(NumParts
== 1 && "Do not know what to promote to!");
513 Val
= DAG
.getNode(ISD::FP_EXTEND
, DL
, PartVT
, Val
);
515 if (ValueVT
.isFloatingPoint()) {
516 // FP values need to be bitcast, then extended if they are being put
517 // into a larger container.
518 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
519 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
521 assert((PartVT
.isInteger() || PartVT
== MVT::x86mmx
) &&
522 ValueVT
.isInteger() &&
523 "Unknown mismatch!");
524 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
525 Val
= DAG
.getNode(ExtendKind
, DL
, ValueVT
, Val
);
526 if (PartVT
== MVT::x86mmx
)
527 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
529 } else if (PartBits
== ValueVT
.getSizeInBits()) {
530 // Different types of the same size.
531 assert(NumParts
== 1 && PartEVT
!= ValueVT
);
532 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
533 } else if (NumParts
* PartBits
< ValueVT
.getSizeInBits()) {
534 // If the parts cover less bits than value has, truncate the value.
535 assert((PartVT
.isInteger() || PartVT
== MVT::x86mmx
) &&
536 ValueVT
.isInteger() &&
537 "Unknown mismatch!");
538 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
539 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
540 if (PartVT
== MVT::x86mmx
)
541 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
544 // The value may have changed - recompute ValueVT.
545 ValueVT
= Val
.getValueType();
546 assert(NumParts
* PartBits
== ValueVT
.getSizeInBits() &&
547 "Failed to tile the value with PartVT!");
550 if (PartEVT
!= ValueVT
) {
551 diagnosePossiblyInvalidConstraint(*DAG
.getContext(), V
,
552 "scalar-to-vector conversion failed");
553 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
560 // Expand the value into multiple parts.
561 if (NumParts
& (NumParts
- 1)) {
562 // The number of parts is not a power of 2. Split off and copy the tail.
563 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
564 "Do not know what to expand to!");
565 unsigned RoundParts
= 1 << Log2_32(NumParts
);
566 unsigned RoundBits
= RoundParts
* PartBits
;
567 unsigned OddParts
= NumParts
- RoundParts
;
568 SDValue OddVal
= DAG
.getNode(ISD::SRL
, DL
, ValueVT
, Val
,
569 DAG
.getShiftAmountConstant(RoundBits
, ValueVT
, DL
, /*LegalTypes*/false));
571 getCopyToParts(DAG
, DL
, OddVal
, Parts
+ RoundParts
, OddParts
, PartVT
, V
,
574 if (DAG
.getDataLayout().isBigEndian())
575 // The odd parts were reversed by getCopyToParts - unreverse them.
576 std::reverse(Parts
+ RoundParts
, Parts
+ NumParts
);
578 NumParts
= RoundParts
;
579 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
580 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
583 // The number of parts is a power of 2. Repeatedly bisect the value using
585 Parts
[0] = DAG
.getNode(ISD::BITCAST
, DL
,
586 EVT::getIntegerVT(*DAG
.getContext(),
587 ValueVT
.getSizeInBits()),
590 for (unsigned StepSize
= NumParts
; StepSize
> 1; StepSize
/= 2) {
591 for (unsigned i
= 0; i
< NumParts
; i
+= StepSize
) {
592 unsigned ThisBits
= StepSize
* PartBits
/ 2;
593 EVT ThisVT
= EVT::getIntegerVT(*DAG
.getContext(), ThisBits
);
594 SDValue
&Part0
= Parts
[i
];
595 SDValue
&Part1
= Parts
[i
+StepSize
/2];
597 Part1
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
598 ThisVT
, Part0
, DAG
.getIntPtrConstant(1, DL
));
599 Part0
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
600 ThisVT
, Part0
, DAG
.getIntPtrConstant(0, DL
));
602 if (ThisBits
== PartBits
&& ThisVT
!= PartVT
) {
603 Part0
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part0
);
604 Part1
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part1
);
609 if (DAG
.getDataLayout().isBigEndian())
610 std::reverse(Parts
, Parts
+ OrigNumParts
);
613 static SDValue
widenVectorToPartType(SelectionDAG
&DAG
,
614 SDValue Val
, const SDLoc
&DL
, EVT PartVT
) {
615 if (!PartVT
.isFixedLengthVector())
618 EVT ValueVT
= Val
.getValueType();
619 unsigned PartNumElts
= PartVT
.getVectorNumElements();
620 unsigned ValueNumElts
= ValueVT
.getVectorNumElements();
621 if (PartNumElts
> ValueNumElts
&&
622 PartVT
.getVectorElementType() == ValueVT
.getVectorElementType()) {
623 EVT ElementVT
= PartVT
.getVectorElementType();
624 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
626 SmallVector
<SDValue
, 16> Ops
;
627 DAG
.ExtractVectorElements(Val
, Ops
);
628 SDValue EltUndef
= DAG
.getUNDEF(ElementVT
);
629 for (unsigned i
= ValueNumElts
, e
= PartNumElts
; i
!= e
; ++i
)
630 Ops
.push_back(EltUndef
);
632 // FIXME: Use CONCAT for 2x -> 4x.
633 return DAG
.getBuildVector(PartVT
, DL
, Ops
);
639 /// getCopyToPartsVector - Create a series of nodes that contain the specified
640 /// value split into legal parts.
641 static void getCopyToPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
642 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
643 MVT PartVT
, const Value
*V
,
644 Optional
<CallingConv::ID
> CallConv
) {
645 EVT ValueVT
= Val
.getValueType();
646 assert(ValueVT
.isVector() && "Not a vector");
647 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
648 const bool IsABIRegCopy
= CallConv
.hasValue();
651 EVT PartEVT
= PartVT
;
652 if (PartEVT
== ValueVT
) {
654 } else if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits()) {
655 // Bitconvert vector->vector case.
656 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
657 } else if (SDValue Widened
= widenVectorToPartType(DAG
, Val
, DL
, PartVT
)) {
659 } else if (PartVT
.isVector() &&
660 PartEVT
.getVectorElementType().bitsGE(
661 ValueVT
.getVectorElementType()) &&
662 PartEVT
.getVectorElementCount() ==
663 ValueVT
.getVectorElementCount()) {
665 // Promoted vector extract
666 Val
= DAG
.getAnyExtOrTrunc(Val
, DL
, PartVT
);
668 if (ValueVT
.getVectorElementCount().isScalar()) {
669 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, PartVT
, Val
,
670 DAG
.getVectorIdxConstant(0, DL
));
672 uint64_t ValueSize
= ValueVT
.getFixedSizeInBits();
673 assert(PartVT
.getFixedSizeInBits() > ValueSize
&&
674 "lossy conversion of vector to scalar type");
675 EVT IntermediateType
= EVT::getIntegerVT(*DAG
.getContext(), ValueSize
);
676 Val
= DAG
.getBitcast(IntermediateType
, Val
);
677 Val
= DAG
.getAnyExtOrTrunc(Val
, DL
, PartVT
);
681 assert(Val
.getValueType() == PartVT
&& "Unexpected vector part value type");
686 // Handle a multi-element vector.
689 unsigned NumIntermediates
;
692 NumRegs
= TLI
.getVectorTypeBreakdownForCallingConv(
693 *DAG
.getContext(), CallConv
.getValue(), ValueVT
, IntermediateVT
,
694 NumIntermediates
, RegisterVT
);
697 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
698 NumIntermediates
, RegisterVT
);
701 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
702 NumParts
= NumRegs
; // Silence a compiler warning.
703 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
705 assert(IntermediateVT
.isScalableVector() == ValueVT
.isScalableVector() &&
706 "Mixing scalable and fixed vectors when copying in parts");
708 Optional
<ElementCount
> DestEltCnt
;
710 if (IntermediateVT
.isVector())
711 DestEltCnt
= IntermediateVT
.getVectorElementCount() * NumIntermediates
;
713 DestEltCnt
= ElementCount::getFixed(NumIntermediates
);
715 EVT BuiltVectorTy
= EVT::getVectorVT(
716 *DAG
.getContext(), IntermediateVT
.getScalarType(), DestEltCnt
.getValue());
717 if (ValueVT
!= BuiltVectorTy
) {
718 if (SDValue Widened
= widenVectorToPartType(DAG
, Val
, DL
, BuiltVectorTy
))
721 Val
= DAG
.getNode(ISD::BITCAST
, DL
, BuiltVectorTy
, Val
);
724 // Split the vector into intermediate operands.
725 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
726 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
) {
727 if (IntermediateVT
.isVector()) {
728 // This does something sensible for scalable vectors - see the
729 // definition of EXTRACT_SUBVECTOR for further details.
730 unsigned IntermediateNumElts
= IntermediateVT
.getVectorMinNumElements();
732 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, IntermediateVT
, Val
,
733 DAG
.getVectorIdxConstant(i
* IntermediateNumElts
, DL
));
735 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, IntermediateVT
, Val
,
736 DAG
.getVectorIdxConstant(i
, DL
));
740 // Split the intermediate operands into legal parts.
741 if (NumParts
== NumIntermediates
) {
742 // If the register was not expanded, promote or copy the value,
744 for (unsigned i
= 0; i
!= NumParts
; ++i
)
745 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
], 1, PartVT
, V
, CallConv
);
746 } else if (NumParts
> 0) {
747 // If the intermediate type was expanded, split each the value into
749 assert(NumIntermediates
!= 0 && "division by zero");
750 assert(NumParts
% NumIntermediates
== 0 &&
751 "Must expand into a divisible number of parts!");
752 unsigned Factor
= NumParts
/ NumIntermediates
;
753 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
754 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
* Factor
], Factor
, PartVT
, V
,
759 RegsForValue::RegsForValue(const SmallVector
<unsigned, 4> ®s
, MVT regvt
,
760 EVT valuevt
, Optional
<CallingConv::ID
> CC
)
761 : ValueVTs(1, valuevt
), RegVTs(1, regvt
), Regs(regs
),
762 RegCount(1, regs
.size()), CallConv(CC
) {}
764 RegsForValue::RegsForValue(LLVMContext
&Context
, const TargetLowering
&TLI
,
765 const DataLayout
&DL
, unsigned Reg
, Type
*Ty
,
766 Optional
<CallingConv::ID
> CC
) {
767 ComputeValueVTs(TLI
, DL
, Ty
, ValueVTs
);
771 for (EVT ValueVT
: ValueVTs
) {
774 ? TLI
.getNumRegistersForCallingConv(Context
, CC
.getValue(), ValueVT
)
775 : TLI
.getNumRegisters(Context
, ValueVT
);
778 ? TLI
.getRegisterTypeForCallingConv(Context
, CC
.getValue(), ValueVT
)
779 : TLI
.getRegisterType(Context
, ValueVT
);
780 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
781 Regs
.push_back(Reg
+ i
);
782 RegVTs
.push_back(RegisterVT
);
783 RegCount
.push_back(NumRegs
);
788 SDValue
RegsForValue::getCopyFromRegs(SelectionDAG
&DAG
,
789 FunctionLoweringInfo
&FuncInfo
,
790 const SDLoc
&dl
, SDValue
&Chain
,
791 SDValue
*Flag
, const Value
*V
) const {
792 // A Value with type {} or [0 x %t] needs no registers.
793 if (ValueVTs
.empty())
796 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
798 // Assemble the legal parts into the final values.
799 SmallVector
<SDValue
, 4> Values(ValueVTs
.size());
800 SmallVector
<SDValue
, 8> Parts
;
801 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
802 // Copy the legal parts from the registers.
803 EVT ValueVT
= ValueVTs
[Value
];
804 unsigned NumRegs
= RegCount
[Value
];
805 MVT RegisterVT
= isABIMangled() ? TLI
.getRegisterTypeForCallingConv(
807 CallConv
.getValue(), RegVTs
[Value
])
810 Parts
.resize(NumRegs
);
811 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
814 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
);
816 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
, *Flag
);
817 *Flag
= P
.getValue(2);
820 Chain
= P
.getValue(1);
823 // If the source register was virtual and if we know something about it,
824 // add an assert node.
825 if (!Register::isVirtualRegister(Regs
[Part
+ i
]) ||
826 !RegisterVT
.isInteger())
829 const FunctionLoweringInfo::LiveOutInfo
*LOI
=
830 FuncInfo
.GetLiveOutRegInfo(Regs
[Part
+i
]);
834 unsigned RegSize
= RegisterVT
.getScalarSizeInBits();
835 unsigned NumSignBits
= LOI
->NumSignBits
;
836 unsigned NumZeroBits
= LOI
->Known
.countMinLeadingZeros();
838 if (NumZeroBits
== RegSize
) {
839 // The current value is a zero.
840 // Explicitly express that as it would be easier for
841 // optimizations to kick in.
842 Parts
[i
] = DAG
.getConstant(0, dl
, RegisterVT
);
846 // FIXME: We capture more information than the dag can represent. For
847 // now, just use the tightest assertzext/assertsext possible.
849 EVT
FromVT(MVT::Other
);
851 FromVT
= EVT::getIntegerVT(*DAG
.getContext(), RegSize
- NumZeroBits
);
853 } else if (NumSignBits
> 1) {
855 EVT::getIntegerVT(*DAG
.getContext(), RegSize
- NumSignBits
+ 1);
860 // Add an assertion node.
861 assert(FromVT
!= MVT::Other
);
862 Parts
[i
] = DAG
.getNode(isSExt
? ISD::AssertSext
: ISD::AssertZext
, dl
,
863 RegisterVT
, P
, DAG
.getValueType(FromVT
));
866 Values
[Value
] = getCopyFromParts(DAG
, dl
, Parts
.begin(), NumRegs
,
867 RegisterVT
, ValueVT
, V
, CallConv
);
872 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(ValueVTs
), Values
);
875 void RegsForValue::getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
,
876 const SDLoc
&dl
, SDValue
&Chain
, SDValue
*Flag
,
878 ISD::NodeType PreferredExtendType
) const {
879 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
880 ISD::NodeType ExtendKind
= PreferredExtendType
;
882 // Get the list of the values's legal parts.
883 unsigned NumRegs
= Regs
.size();
884 SmallVector
<SDValue
, 8> Parts(NumRegs
);
885 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
886 unsigned NumParts
= RegCount
[Value
];
888 MVT RegisterVT
= isABIMangled() ? TLI
.getRegisterTypeForCallingConv(
890 CallConv
.getValue(), RegVTs
[Value
])
893 if (ExtendKind
== ISD::ANY_EXTEND
&& TLI
.isZExtFree(Val
, RegisterVT
))
894 ExtendKind
= ISD::ZERO_EXTEND
;
896 getCopyToParts(DAG
, dl
, Val
.getValue(Val
.getResNo() + Value
), &Parts
[Part
],
897 NumParts
, RegisterVT
, V
, CallConv
, ExtendKind
);
901 // Copy the parts into the registers.
902 SmallVector
<SDValue
, 8> Chains(NumRegs
);
903 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
906 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
]);
908 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
], *Flag
);
909 *Flag
= Part
.getValue(1);
912 Chains
[i
] = Part
.getValue(0);
915 if (NumRegs
== 1 || Flag
)
916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917 // flagged to it. That is the CopyToReg nodes and the user are considered
918 // a single scheduling unit. If we create a TokenFactor and return it as
919 // chain, then the TokenFactor is both a predecessor (operand) of the
920 // user as well as a successor (the TF operands are flagged to the user).
921 // c1, f1 = CopyToReg
922 // c2, f2 = CopyToReg
923 // c3 = TokenFactor c1, c2
926 Chain
= Chains
[NumRegs
-1];
928 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chains
);
931 void RegsForValue::AddInlineAsmOperands(unsigned Code
, bool HasMatching
,
932 unsigned MatchingIdx
, const SDLoc
&dl
,
934 std::vector
<SDValue
> &Ops
) const {
935 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
937 unsigned Flag
= InlineAsm::getFlagWord(Code
, Regs
.size());
939 Flag
= InlineAsm::getFlagWordForMatchingOp(Flag
, MatchingIdx
);
940 else if (!Regs
.empty() && Register::isVirtualRegister(Regs
.front())) {
941 // Put the register class of the virtual registers in the flag word. That
942 // way, later passes can recompute register class constraints for inline
943 // assembly as well as normal instructions.
944 // Don't do this for tied operands that can use the regclass information
946 const MachineRegisterInfo
&MRI
= DAG
.getMachineFunction().getRegInfo();
947 const TargetRegisterClass
*RC
= MRI
.getRegClass(Regs
.front());
948 Flag
= InlineAsm::getFlagWordForRegClass(Flag
, RC
->getID());
951 SDValue Res
= DAG
.getTargetConstant(Flag
, dl
, MVT::i32
);
954 if (Code
== InlineAsm::Kind_Clobber
) {
955 // Clobbers should always have a 1:1 mapping with registers, and may
956 // reference registers that have illegal (e.g. vector) types. Hence, we
957 // shouldn't try to apply any sort of splitting logic to them.
958 assert(Regs
.size() == RegVTs
.size() && Regs
.size() == ValueVTs
.size() &&
959 "No 1:1 mapping from clobbers to regs?");
960 Register SP
= TLI
.getStackPointerRegisterToSaveRestore();
962 for (unsigned I
= 0, E
= ValueVTs
.size(); I
!= E
; ++I
) {
963 Ops
.push_back(DAG
.getRegister(Regs
[I
], RegVTs
[I
]));
966 DAG
.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
967 "If we clobbered the stack pointer, MFI should know about it.");
972 for (unsigned Value
= 0, Reg
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
973 unsigned NumRegs
= TLI
.getNumRegisters(*DAG
.getContext(), ValueVTs
[Value
]);
974 MVT RegisterVT
= RegVTs
[Value
];
975 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
976 assert(Reg
< Regs
.size() && "Mismatch in # registers expected");
977 unsigned TheReg
= Regs
[Reg
++];
978 Ops
.push_back(DAG
.getRegister(TheReg
, RegisterVT
));
983 SmallVector
<std::pair
<unsigned, TypeSize
>, 4>
984 RegsForValue::getRegsAndSizes() const {
985 SmallVector
<std::pair
<unsigned, TypeSize
>, 4> OutVec
;
987 for (auto CountAndVT
: zip_first(RegCount
, RegVTs
)) {
988 unsigned RegCount
= std::get
<0>(CountAndVT
);
989 MVT RegisterVT
= std::get
<1>(CountAndVT
);
990 TypeSize RegisterSize
= RegisterVT
.getSizeInBits();
991 for (unsigned E
= I
+ RegCount
; I
!= E
; ++I
)
992 OutVec
.push_back(std::make_pair(Regs
[I
], RegisterSize
));
997 void SelectionDAGBuilder::init(GCFunctionInfo
*gfi
, AliasAnalysis
*aa
,
998 const TargetLibraryInfo
*li
) {
1002 DL
= &DAG
.getDataLayout();
1003 Context
= DAG
.getContext();
1004 LPadToCallSiteMap
.clear();
1005 SL
->init(DAG
.getTargetLoweringInfo(), TM
, DAG
.getDataLayout());
1008 void SelectionDAGBuilder::clear() {
1010 UnusedArgNodeMap
.clear();
1011 PendingLoads
.clear();
1012 PendingExports
.clear();
1013 PendingConstrainedFP
.clear();
1014 PendingConstrainedFPStrict
.clear();
1016 HasTailCall
= false;
1017 SDNodeOrder
= LowestSDNodeOrder
;
1018 StatepointLowering
.clear();
1021 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1022 DanglingDebugInfoMap
.clear();
1025 // Update DAG root to include dependencies on Pending chains.
1026 SDValue
SelectionDAGBuilder::updateRoot(SmallVectorImpl
<SDValue
> &Pending
) {
1027 SDValue Root
= DAG
.getRoot();
1029 if (Pending
.empty())
1032 // Add current root to PendingChains, unless we already indirectly
1034 if (Root
.getOpcode() != ISD::EntryToken
) {
1035 unsigned i
= 0, e
= Pending
.size();
1036 for (; i
!= e
; ++i
) {
1037 assert(Pending
[i
].getNode()->getNumOperands() > 1);
1038 if (Pending
[i
].getNode()->getOperand(0) == Root
)
1039 break; // Don't add the root if we already indirectly depend on it.
1043 Pending
.push_back(Root
);
1046 if (Pending
.size() == 1)
1049 Root
= DAG
.getTokenFactor(getCurSDLoc(), Pending
);
1056 SDValue
SelectionDAGBuilder::getMemoryRoot() {
1057 return updateRoot(PendingLoads
);
1060 SDValue
SelectionDAGBuilder::getRoot() {
1061 // Chain up all pending constrained intrinsics together with all
1062 // pending loads, by simply appending them to PendingLoads and
1063 // then calling getMemoryRoot().
1064 PendingLoads
.reserve(PendingLoads
.size() +
1065 PendingConstrainedFP
.size() +
1066 PendingConstrainedFPStrict
.size());
1067 PendingLoads
.append(PendingConstrainedFP
.begin(),
1068 PendingConstrainedFP
.end());
1069 PendingLoads
.append(PendingConstrainedFPStrict
.begin(),
1070 PendingConstrainedFPStrict
.end());
1071 PendingConstrainedFP
.clear();
1072 PendingConstrainedFPStrict
.clear();
1073 return getMemoryRoot();
1076 SDValue
SelectionDAGBuilder::getControlRoot() {
1077 // We need to emit pending fpexcept.strict constrained intrinsics,
1078 // so append them to the PendingExports list.
1079 PendingExports
.append(PendingConstrainedFPStrict
.begin(),
1080 PendingConstrainedFPStrict
.end());
1081 PendingConstrainedFPStrict
.clear();
1082 return updateRoot(PendingExports
);
1085 void SelectionDAGBuilder::visit(const Instruction
&I
) {
1086 // Set up outgoing PHI node register values before emitting the terminator.
1087 if (I
.isTerminator()) {
1088 HandlePHINodesInSuccessorBlocks(I
.getParent());
1091 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1092 if (!isa
<DbgInfoIntrinsic
>(I
))
1097 visit(I
.getOpcode(), I
);
1099 if (!I
.isTerminator() && !HasTailCall
&&
1100 !isa
<GCStatepointInst
>(I
)) // statepoints handle their exports internally
1101 CopyToExportRegsIfNeeded(&I
);
1106 void SelectionDAGBuilder::visitPHI(const PHINode
&) {
1107 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1110 void SelectionDAGBuilder::visit(unsigned Opcode
, const User
&I
) {
1111 // Note: this doesn't use InstVisitor, because it has to work with
1112 // ConstantExpr's in addition to instructions.
1114 default: llvm_unreachable("Unknown instruction type encountered!");
1115 // Build the switch statement using the Instruction.def file.
1116 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1117 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1118 #include "llvm/IR/Instruction.def"
1122 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable
*Variable
,
1123 const DIExpression
*Expr
) {
1124 auto isMatchingDbgValue
= [&](DanglingDebugInfo
&DDI
) {
1125 const DbgValueInst
*DI
= DDI
.getDI();
1126 DIVariable
*DanglingVariable
= DI
->getVariable();
1127 DIExpression
*DanglingExpr
= DI
->getExpression();
1128 if (DanglingVariable
== Variable
&& Expr
->fragmentsOverlap(DanglingExpr
)) {
1129 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI
<< "\n");
1135 for (auto &DDIMI
: DanglingDebugInfoMap
) {
1136 DanglingDebugInfoVector
&DDIV
= DDIMI
.second
;
1138 // If debug info is to be dropped, run it through final checks to see
1139 // whether it can be salvaged.
1140 for (auto &DDI
: DDIV
)
1141 if (isMatchingDbgValue(DDI
))
1142 salvageUnresolvedDbgValue(DDI
);
1144 erase_if(DDIV
, isMatchingDbgValue
);
1148 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1149 // generate the debug data structures now that we've seen its definition.
1150 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value
*V
,
1152 auto DanglingDbgInfoIt
= DanglingDebugInfoMap
.find(V
);
1153 if (DanglingDbgInfoIt
== DanglingDebugInfoMap
.end())
1156 DanglingDebugInfoVector
&DDIV
= DanglingDbgInfoIt
->second
;
1157 for (auto &DDI
: DDIV
) {
1158 const DbgValueInst
*DI
= DDI
.getDI();
1159 assert(DI
&& "Ill-formed DanglingDebugInfo");
1160 DebugLoc dl
= DDI
.getdl();
1161 unsigned ValSDNodeOrder
= Val
.getNode()->getIROrder();
1162 unsigned DbgSDNodeOrder
= DDI
.getSDNodeOrder();
1163 DILocalVariable
*Variable
= DI
->getVariable();
1164 DIExpression
*Expr
= DI
->getExpression();
1165 assert(Variable
->isValidLocationForIntrinsic(dl
) &&
1166 "Expected inlined-at fields to agree");
1168 if (Val
.getNode()) {
1169 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1170 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1171 // we couldn't resolve it directly when examining the DbgValue intrinsic
1172 // in the first place we should not be more successful here). Unless we
1173 // have some test case that prove this to be correct we should avoid
1174 // calling EmitFuncArgumentDbgValue here.
1175 if (!EmitFuncArgumentDbgValue(V
, Variable
, Expr
, dl
, false, Val
)) {
1176 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1177 << DbgSDNodeOrder
<< "] for:\n " << *DI
<< "\n");
1178 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val
.dump());
1179 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1180 // inserted after the definition of Val when emitting the instructions
1181 // after ISel. An alternative could be to teach
1182 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1183 LLVM_DEBUG(if (ValSDNodeOrder
> DbgSDNodeOrder
) dbgs()
1184 << "changing SDNodeOrder from " << DbgSDNodeOrder
<< " to "
1185 << ValSDNodeOrder
<< "\n");
1186 SDV
= getDbgValue(Val
, Variable
, Expr
, dl
,
1187 std::max(DbgSDNodeOrder
, ValSDNodeOrder
));
1188 DAG
.AddDbgValue(SDV
, Val
.getNode(), false);
1190 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1191 << "in EmitFuncArgumentDbgValue\n");
1193 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
<< "\n");
1195 UndefValue::get(DDI
.getDI()->getVariableLocation()->getType());
1197 DAG
.getConstantDbgValue(Variable
, Expr
, Undef
, dl
, DbgSDNodeOrder
);
1198 DAG
.AddDbgValue(SDV
, nullptr, false);
1204 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo
&DDI
) {
1205 Value
*V
= DDI
.getDI()->getValue();
1206 DILocalVariable
*Var
= DDI
.getDI()->getVariable();
1207 DIExpression
*Expr
= DDI
.getDI()->getExpression();
1208 DebugLoc DL
= DDI
.getdl();
1209 DebugLoc InstDL
= DDI
.getDI()->getDebugLoc();
1210 unsigned SDOrder
= DDI
.getSDNodeOrder();
1212 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1213 // that DW_OP_stack_value is desired.
1214 assert(isa
<DbgValueInst
>(DDI
.getDI()));
1215 bool StackValue
= true;
1217 // Can this Value can be encoded without any further work?
1218 if (handleDebugValue(V
, Var
, Expr
, DL
, InstDL
, SDOrder
))
1221 // Attempt to salvage back through as many instructions as possible. Bail if
1222 // a non-instruction is seen, such as a constant expression or global
1223 // variable. FIXME: Further work could recover those too.
1224 while (isa
<Instruction
>(V
)) {
1225 Instruction
&VAsInst
= *cast
<Instruction
>(V
);
1226 DIExpression
*NewExpr
= salvageDebugInfoImpl(VAsInst
, Expr
, StackValue
);
1228 // If we cannot salvage any further, and haven't yet found a suitable debug
1229 // expression, bail out.
1233 // New value and expr now represent this debuginfo.
1234 V
= VAsInst
.getOperand(0);
1237 // Some kind of simplification occurred: check whether the operand of the
1238 // salvaged debug expression can be encoded in this DAG.
1239 if (handleDebugValue(V
, Var
, Expr
, DL
, InstDL
, SDOrder
)) {
1240 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n "
1241 << DDI
.getDI() << "\nBy stripping back to:\n " << V
);
1246 // This was the final opportunity to salvage this debug information, and it
1247 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1248 // any earlier variable location.
1249 auto Undef
= UndefValue::get(DDI
.getDI()->getVariableLocation()->getType());
1250 auto SDV
= DAG
.getConstantDbgValue(Var
, Expr
, Undef
, DL
, SDNodeOrder
);
1251 DAG
.AddDbgValue(SDV
, nullptr, false);
1253 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI
.getDI()
1255 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI
.getDI()->getOperand(0)
1259 bool SelectionDAGBuilder::handleDebugValue(const Value
*V
, DILocalVariable
*Var
,
1260 DIExpression
*Expr
, DebugLoc dl
,
1261 DebugLoc InstDL
, unsigned Order
) {
1262 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1264 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
) || isa
<UndefValue
>(V
) ||
1265 isa
<ConstantPointerNull
>(V
)) {
1266 SDV
= DAG
.getConstantDbgValue(Var
, Expr
, V
, dl
, SDNodeOrder
);
1267 DAG
.AddDbgValue(SDV
, nullptr, false);
1271 // If the Value is a frame index, we can create a FrameIndex debug value
1272 // without relying on the DAG at all.
1273 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1274 auto SI
= FuncInfo
.StaticAllocaMap
.find(AI
);
1275 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
1277 DAG
.getFrameIndexDbgValue(Var
, Expr
, SI
->second
,
1278 /*IsIndirect*/ false, dl
, SDNodeOrder
);
1279 // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1280 // is still available even if the SDNode gets optimized out.
1281 DAG
.AddDbgValue(SDV
, nullptr, false);
1286 // Do not use getValue() in here; we don't want to generate code at
1287 // this point if it hasn't been done yet.
1288 SDValue N
= NodeMap
[V
];
1289 if (!N
.getNode() && isa
<Argument
>(V
)) // Check unused arguments map.
1290 N
= UnusedArgNodeMap
[V
];
1292 if (EmitFuncArgumentDbgValue(V
, Var
, Expr
, dl
, false, N
))
1294 SDV
= getDbgValue(N
, Var
, Expr
, dl
, SDNodeOrder
);
1295 DAG
.AddDbgValue(SDV
, N
.getNode(), false);
1299 // Special rules apply for the first dbg.values of parameter variables in a
1300 // function. Identify them by the fact they reference Argument Values, that
1301 // they're parameters, and they are parameters of the current function. We
1302 // need to let them dangle until they get an SDNode.
1303 bool IsParamOfFunc
= isa
<Argument
>(V
) && Var
->isParameter() &&
1304 !InstDL
.getInlinedAt();
1305 if (!IsParamOfFunc
) {
1306 // The value is not used in this block yet (or it would have an SDNode).
1307 // We still want the value to appear for the user if possible -- if it has
1308 // an associated VReg, we can refer to that instead.
1309 auto VMI
= FuncInfo
.ValueMap
.find(V
);
1310 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1311 unsigned Reg
= VMI
->second
;
1312 // If this is a PHI node, it may be split up into several MI PHI nodes
1313 // (in FunctionLoweringInfo::set).
1314 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), Reg
,
1315 V
->getType(), None
);
1316 if (RFV
.occupiesMultipleRegs()) {
1317 unsigned Offset
= 0;
1318 unsigned BitsToDescribe
= 0;
1319 if (auto VarSize
= Var
->getSizeInBits())
1320 BitsToDescribe
= *VarSize
;
1321 if (auto Fragment
= Expr
->getFragmentInfo())
1322 BitsToDescribe
= Fragment
->SizeInBits
;
1323 for (auto RegAndSize
: RFV
.getRegsAndSizes()) {
1324 unsigned RegisterSize
= RegAndSize
.second
;
1325 // Bail out if all bits are described already.
1326 if (Offset
>= BitsToDescribe
)
1328 unsigned FragmentSize
= (Offset
+ RegisterSize
> BitsToDescribe
)
1329 ? BitsToDescribe
- Offset
1331 auto FragmentExpr
= DIExpression::createFragmentExpression(
1332 Expr
, Offset
, FragmentSize
);
1335 SDV
= DAG
.getVRegDbgValue(Var
, *FragmentExpr
, RegAndSize
.first
,
1336 false, dl
, SDNodeOrder
);
1337 DAG
.AddDbgValue(SDV
, nullptr, false);
1338 Offset
+= RegisterSize
;
1341 SDV
= DAG
.getVRegDbgValue(Var
, Expr
, Reg
, false, dl
, SDNodeOrder
);
1342 DAG
.AddDbgValue(SDV
, nullptr, false);
1351 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1352 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1353 for (auto &Pair
: DanglingDebugInfoMap
)
1354 for (auto &DDI
: Pair
.second
)
1355 salvageUnresolvedDbgValue(DDI
);
1356 clearDanglingDebugInfo();
1359 /// getCopyFromRegs - If there was virtual register allocated for the value V
1360 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1361 SDValue
SelectionDAGBuilder::getCopyFromRegs(const Value
*V
, Type
*Ty
) {
1362 DenseMap
<const Value
*, Register
>::iterator It
= FuncInfo
.ValueMap
.find(V
);
1365 if (It
!= FuncInfo
.ValueMap
.end()) {
1366 Register InReg
= It
->second
;
1368 RegsForValue
RFV(*DAG
.getContext(), DAG
.getTargetLoweringInfo(),
1369 DAG
.getDataLayout(), InReg
, Ty
,
1370 None
); // This is not an ABI copy.
1371 SDValue Chain
= DAG
.getEntryNode();
1372 Result
= RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(), Chain
, nullptr,
1374 resolveDanglingDebugInfo(V
, Result
);
1380 /// getValue - Return an SDValue for the given Value.
1381 SDValue
SelectionDAGBuilder::getValue(const Value
*V
) {
1382 // If we already have an SDValue for this value, use it. It's important
1383 // to do this first, so that we don't create a CopyFromReg if we already
1384 // have a regular SDValue.
1385 SDValue
&N
= NodeMap
[V
];
1386 if (N
.getNode()) return N
;
1388 // If there's a virtual register allocated and initialized for this
1390 if (SDValue copyFromReg
= getCopyFromRegs(V
, V
->getType()))
1393 // Otherwise create a new SDValue and remember it.
1394 SDValue Val
= getValueImpl(V
);
1396 resolveDanglingDebugInfo(V
, Val
);
1400 /// getNonRegisterValue - Return an SDValue for the given Value, but
1401 /// don't look in FuncInfo.ValueMap for a virtual register.
1402 SDValue
SelectionDAGBuilder::getNonRegisterValue(const Value
*V
) {
1403 // If we already have an SDValue for this value, use it.
1404 SDValue
&N
= NodeMap
[V
];
1406 if (isa
<ConstantSDNode
>(N
) || isa
<ConstantFPSDNode
>(N
)) {
1407 // Remove the debug location from the node as the node is about to be used
1408 // in a location which may differ from the original debug location. This
1409 // is relevant to Constant and ConstantFP nodes because they can appear
1410 // as constant expressions inside PHI nodes.
1411 N
->setDebugLoc(DebugLoc());
1416 // Otherwise create a new SDValue and remember it.
1417 SDValue Val
= getValueImpl(V
);
1419 resolveDanglingDebugInfo(V
, Val
);
1423 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1424 /// Create an SDValue for the given value.
1425 SDValue
SelectionDAGBuilder::getValueImpl(const Value
*V
) {
1426 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1428 if (const Constant
*C
= dyn_cast
<Constant
>(V
)) {
1429 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), V
->getType(), true);
1431 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
1432 return DAG
.getConstant(*CI
, getCurSDLoc(), VT
);
1434 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
1435 return DAG
.getGlobalAddress(GV
, getCurSDLoc(), VT
);
1437 if (isa
<ConstantPointerNull
>(C
)) {
1438 unsigned AS
= V
->getType()->getPointerAddressSpace();
1439 return DAG
.getConstant(0, getCurSDLoc(),
1440 TLI
.getPointerTy(DAG
.getDataLayout(), AS
));
1443 if (match(C
, m_VScale(DAG
.getDataLayout())))
1444 return DAG
.getVScale(getCurSDLoc(), VT
, APInt(VT
.getSizeInBits(), 1));
1446 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
1447 return DAG
.getConstantFP(*CFP
, getCurSDLoc(), VT
);
1449 if (isa
<UndefValue
>(C
) && !V
->getType()->isAggregateType())
1450 return DAG
.getUNDEF(VT
);
1452 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
1453 visit(CE
->getOpcode(), *CE
);
1454 SDValue N1
= NodeMap
[V
];
1455 assert(N1
.getNode() && "visit didn't populate the NodeMap!");
1459 if (isa
<ConstantStruct
>(C
) || isa
<ConstantArray
>(C
)) {
1460 SmallVector
<SDValue
, 4> Constants
;
1461 for (User::const_op_iterator OI
= C
->op_begin(), OE
= C
->op_end();
1463 SDNode
*Val
= getValue(*OI
).getNode();
1464 // If the operand is an empty aggregate, there are no values.
1466 // Add each leaf value from the operand to the Constants list
1467 // to form a flattened list of all the values.
1468 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1469 Constants
.push_back(SDValue(Val
, i
));
1472 return DAG
.getMergeValues(Constants
, getCurSDLoc());
1475 if (const ConstantDataSequential
*CDS
=
1476 dyn_cast
<ConstantDataSequential
>(C
)) {
1477 SmallVector
<SDValue
, 4> Ops
;
1478 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
1479 SDNode
*Val
= getValue(CDS
->getElementAsConstant(i
)).getNode();
1480 // Add each leaf value from the operand to the Constants list
1481 // to form a flattened list of all the values.
1482 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1483 Ops
.push_back(SDValue(Val
, i
));
1486 if (isa
<ArrayType
>(CDS
->getType()))
1487 return DAG
.getMergeValues(Ops
, getCurSDLoc());
1488 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1491 if (C
->getType()->isStructTy() || C
->getType()->isArrayTy()) {
1492 assert((isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
)) &&
1493 "Unknown struct or array constant!");
1495 SmallVector
<EVT
, 4> ValueVTs
;
1496 ComputeValueVTs(TLI
, DAG
.getDataLayout(), C
->getType(), ValueVTs
);
1497 unsigned NumElts
= ValueVTs
.size();
1499 return SDValue(); // empty struct
1500 SmallVector
<SDValue
, 4> Constants(NumElts
);
1501 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1502 EVT EltVT
= ValueVTs
[i
];
1503 if (isa
<UndefValue
>(C
))
1504 Constants
[i
] = DAG
.getUNDEF(EltVT
);
1505 else if (EltVT
.isFloatingPoint())
1506 Constants
[i
] = DAG
.getConstantFP(0, getCurSDLoc(), EltVT
);
1508 Constants
[i
] = DAG
.getConstant(0, getCurSDLoc(), EltVT
);
1511 return DAG
.getMergeValues(Constants
, getCurSDLoc());
1514 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
))
1515 return DAG
.getBlockAddress(BA
, VT
);
1517 if (const auto *Equiv
= dyn_cast
<DSOLocalEquivalent
>(C
))
1518 return getValue(Equiv
->getGlobalValue());
1520 VectorType
*VecTy
= cast
<VectorType
>(V
->getType());
1522 // Now that we know the number and type of the elements, get that number of
1523 // elements into the Ops array based on what kind of constant it is.
1524 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
)) {
1525 SmallVector
<SDValue
, 16> Ops
;
1526 unsigned NumElements
= cast
<FixedVectorType
>(VecTy
)->getNumElements();
1527 for (unsigned i
= 0; i
!= NumElements
; ++i
)
1528 Ops
.push_back(getValue(CV
->getOperand(i
)));
1530 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1531 } else if (isa
<ConstantAggregateZero
>(C
)) {
1533 TLI
.getValueType(DAG
.getDataLayout(), VecTy
->getElementType());
1536 if (EltVT
.isFloatingPoint())
1537 Op
= DAG
.getConstantFP(0, getCurSDLoc(), EltVT
);
1539 Op
= DAG
.getConstant(0, getCurSDLoc(), EltVT
);
1541 if (isa
<ScalableVectorType
>(VecTy
))
1542 return NodeMap
[V
] = DAG
.getSplatVector(VT
, getCurSDLoc(), Op
);
1544 SmallVector
<SDValue
, 16> Ops
;
1545 Ops
.assign(cast
<FixedVectorType
>(VecTy
)->getNumElements(), Op
);
1546 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1549 llvm_unreachable("Unknown vector constant");
1552 // If this is a static alloca, generate it as the frameindex instead of
1554 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1555 DenseMap
<const AllocaInst
*, int>::iterator SI
=
1556 FuncInfo
.StaticAllocaMap
.find(AI
);
1557 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
1558 return DAG
.getFrameIndex(SI
->second
,
1559 TLI
.getFrameIndexTy(DAG
.getDataLayout()));
1562 // If this is an instruction which fast-isel has deferred, select it now.
1563 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
1564 unsigned InReg
= FuncInfo
.InitializeRegForValue(Inst
);
1566 RegsForValue
RFV(*DAG
.getContext(), TLI
, DAG
.getDataLayout(), InReg
,
1567 Inst
->getType(), None
);
1568 SDValue Chain
= DAG
.getEntryNode();
1569 return RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(), Chain
, nullptr, V
);
1572 if (const MetadataAsValue
*MD
= dyn_cast
<MetadataAsValue
>(V
)) {
1573 return DAG
.getMDNode(cast
<MDNode
>(MD
->getMetadata()));
1575 llvm_unreachable("Can't get register for value!");
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst
&I
) {
1579 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1580 bool IsMSVCCXX
= Pers
== EHPersonality::MSVC_CXX
;
1581 bool IsCoreCLR
= Pers
== EHPersonality::CoreCLR
;
1582 bool IsSEH
= isAsynchronousEHPersonality(Pers
);
1583 MachineBasicBlock
*CatchPadMBB
= FuncInfo
.MBB
;
1585 CatchPadMBB
->setIsEHScopeEntry();
1586 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1587 if (IsMSVCCXX
|| IsCoreCLR
)
1588 CatchPadMBB
->setIsEHFuncletEntry();
1591 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst
&I
) {
1592 // Update machine-CFG edge.
1593 MachineBasicBlock
*TargetMBB
= FuncInfo
.MBBMap
[I
.getSuccessor()];
1594 FuncInfo
.MBB
->addSuccessor(TargetMBB
);
1596 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1597 bool IsSEH
= isAsynchronousEHPersonality(Pers
);
1599 // If this is not a fall-through branch or optimizations are switched off,
1601 if (TargetMBB
!= NextBlock(FuncInfo
.MBB
) ||
1602 TM
.getOptLevel() == CodeGenOpt::None
)
1603 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
,
1604 getControlRoot(), DAG
.getBasicBlock(TargetMBB
)));
1608 // Figure out the funclet membership for the catchret's successor.
1609 // This will be used by the FuncletLayout pass to determine how to order the
1611 // A 'catchret' returns to the outer scope's color.
1612 Value
*ParentPad
= I
.getCatchSwitchParentPad();
1613 const BasicBlock
*SuccessorColor
;
1614 if (isa
<ConstantTokenNone
>(ParentPad
))
1615 SuccessorColor
= &FuncInfo
.Fn
->getEntryBlock();
1617 SuccessorColor
= cast
<Instruction
>(ParentPad
)->getParent();
1618 assert(SuccessorColor
&& "No parent funclet for catchret!");
1619 MachineBasicBlock
*SuccessorColorMBB
= FuncInfo
.MBBMap
[SuccessorColor
];
1620 assert(SuccessorColorMBB
&& "No MBB for SuccessorColor!");
1622 // Create the terminator node.
1623 SDValue Ret
= DAG
.getNode(ISD::CATCHRET
, getCurSDLoc(), MVT::Other
,
1624 getControlRoot(), DAG
.getBasicBlock(TargetMBB
),
1625 DAG
.getBasicBlock(SuccessorColorMBB
));
1629 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst
&CPI
) {
1630 // Don't emit any special code for the cleanuppad instruction. It just marks
1631 // the start of an EH scope/funclet.
1632 FuncInfo
.MBB
->setIsEHScopeEntry();
1633 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1634 if (Pers
!= EHPersonality::Wasm_CXX
) {
1635 FuncInfo
.MBB
->setIsEHFuncletEntry();
1636 FuncInfo
.MBB
->setIsCleanupFuncletEntry();
1640 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1641 // the control flow always stops at the single catch pad, as it does for a
1642 // cleanup pad. In case the exception caught is not of the types the catch pad
1643 // catches, it will be rethrown by a rethrow.
1644 static void findWasmUnwindDestinations(
1645 FunctionLoweringInfo
&FuncInfo
, const BasicBlock
*EHPadBB
,
1646 BranchProbability Prob
,
1647 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
1650 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
1651 if (isa
<CleanupPadInst
>(Pad
)) {
1652 // Stop on cleanup pads.
1653 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1654 UnwindDests
.back().first
->setIsEHScopeEntry();
1656 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
1657 // Add the catchpad handlers to the possible destinations. We don't
1658 // continue to the unwind destination of the catchswitch for wasm.
1659 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
1660 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[CatchPadBB
], Prob
);
1661 UnwindDests
.back().first
->setIsEHScopeEntry();
1670 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1671 /// many places it could ultimately go. In the IR, we have a single unwind
1672 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1673 /// This function skips over imaginary basic blocks that hold catchswitch
1674 /// instructions, and finds all the "real" machine
1675 /// basic block destinations. As those destinations may not be successors of
1676 /// EHPadBB, here we also calculate the edge probability to those destinations.
1677 /// The passed-in Prob is the edge probability to EHPadBB.
1678 static void findUnwindDestinations(
1679 FunctionLoweringInfo
&FuncInfo
, const BasicBlock
*EHPadBB
,
1680 BranchProbability Prob
,
1681 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
1683 EHPersonality Personality
=
1684 classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1685 bool IsMSVCCXX
= Personality
== EHPersonality::MSVC_CXX
;
1686 bool IsCoreCLR
= Personality
== EHPersonality::CoreCLR
;
1687 bool IsWasmCXX
= Personality
== EHPersonality::Wasm_CXX
;
1688 bool IsSEH
= isAsynchronousEHPersonality(Personality
);
1691 findWasmUnwindDestinations(FuncInfo
, EHPadBB
, Prob
, UnwindDests
);
1692 assert(UnwindDests
.size() <= 1 &&
1693 "There should be at most one unwind destination for wasm");
1698 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
1699 BasicBlock
*NewEHPadBB
= nullptr;
1700 if (isa
<LandingPadInst
>(Pad
)) {
1701 // Stop on landingpads. They are not funclets.
1702 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1704 } else if (isa
<CleanupPadInst
>(Pad
)) {
1705 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1707 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1708 UnwindDests
.back().first
->setIsEHScopeEntry();
1709 UnwindDests
.back().first
->setIsEHFuncletEntry();
1711 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
1712 // Add the catchpad handlers to the possible destinations.
1713 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
1714 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[CatchPadBB
], Prob
);
1715 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1716 if (IsMSVCCXX
|| IsCoreCLR
)
1717 UnwindDests
.back().first
->setIsEHFuncletEntry();
1719 UnwindDests
.back().first
->setIsEHScopeEntry();
1721 NewEHPadBB
= CatchSwitch
->getUnwindDest();
1726 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1727 if (BPI
&& NewEHPadBB
)
1728 Prob
*= BPI
->getEdgeProbability(EHPadBB
, NewEHPadBB
);
1729 EHPadBB
= NewEHPadBB
;
1733 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst
&I
) {
1734 // Update successor info.
1735 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
1736 auto UnwindDest
= I
.getUnwindDest();
1737 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1738 BranchProbability UnwindDestProb
=
1740 ? BPI
->getEdgeProbability(FuncInfo
.MBB
->getBasicBlock(), UnwindDest
)
1741 : BranchProbability::getZero();
1742 findUnwindDestinations(FuncInfo
, UnwindDest
, UnwindDestProb
, UnwindDests
);
1743 for (auto &UnwindDest
: UnwindDests
) {
1744 UnwindDest
.first
->setIsEHPad();
1745 addSuccessorWithProb(FuncInfo
.MBB
, UnwindDest
.first
, UnwindDest
.second
);
1747 FuncInfo
.MBB
->normalizeSuccProbs();
1749 // Create the terminator node.
1751 DAG
.getNode(ISD::CLEANUPRET
, getCurSDLoc(), MVT::Other
, getControlRoot());
1755 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst
&CSI
) {
1756 report_fatal_error("visitCatchSwitch not yet implemented!");
1759 void SelectionDAGBuilder::visitRet(const ReturnInst
&I
) {
1760 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1761 auto &DL
= DAG
.getDataLayout();
1762 SDValue Chain
= getControlRoot();
1763 SmallVector
<ISD::OutputArg
, 8> Outs
;
1764 SmallVector
<SDValue
, 8> OutVals
;
1766 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1769 // %val = call <ty> @llvm.experimental.deoptimize()
1773 if (I
.getParent()->getTerminatingDeoptimizeCall()) {
1774 LowerDeoptimizingReturn();
1778 if (!FuncInfo
.CanLowerReturn
) {
1779 unsigned DemoteReg
= FuncInfo
.DemoteRegister
;
1780 const Function
*F
= I
.getParent()->getParent();
1782 // Emit a store of the return value through the virtual register.
1783 // Leave Outs empty so that LowerReturn won't try to load return
1784 // registers the usual way.
1785 SmallVector
<EVT
, 1> PtrValueVTs
;
1786 ComputeValueVTs(TLI
, DL
,
1787 F
->getReturnType()->getPointerTo(
1788 DAG
.getDataLayout().getAllocaAddrSpace()),
1791 SDValue RetPtr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), getCurSDLoc(),
1792 DemoteReg
, PtrValueVTs
[0]);
1793 SDValue RetOp
= getValue(I
.getOperand(0));
1795 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
1796 SmallVector
<uint64_t, 4> Offsets
;
1797 ComputeValueVTs(TLI
, DL
, I
.getOperand(0)->getType(), ValueVTs
, &MemVTs
,
1799 unsigned NumValues
= ValueVTs
.size();
1801 SmallVector
<SDValue
, 4> Chains(NumValues
);
1802 Align BaseAlign
= DL
.getPrefTypeAlign(I
.getOperand(0)->getType());
1803 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
1804 // An aggregate return value cannot wrap around the address space, so
1805 // offsets to its parts don't wrap either.
1806 SDValue Ptr
= DAG
.getObjectPtrOffset(getCurSDLoc(), RetPtr
,
1807 TypeSize::Fixed(Offsets
[i
]));
1809 SDValue Val
= RetOp
.getValue(RetOp
.getResNo() + i
);
1810 if (MemVTs
[i
] != ValueVTs
[i
])
1811 Val
= DAG
.getPtrExtOrTrunc(Val
, getCurSDLoc(), MemVTs
[i
]);
1812 Chains
[i
] = DAG
.getStore(
1813 Chain
, getCurSDLoc(), Val
,
1814 // FIXME: better loc info would be nice.
1815 Ptr
, MachinePointerInfo::getUnknownStack(DAG
.getMachineFunction()),
1816 commonAlignment(BaseAlign
, Offsets
[i
]));
1819 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(),
1820 MVT::Other
, Chains
);
1821 } else if (I
.getNumOperands() != 0) {
1822 SmallVector
<EVT
, 4> ValueVTs
;
1823 ComputeValueVTs(TLI
, DL
, I
.getOperand(0)->getType(), ValueVTs
);
1824 unsigned NumValues
= ValueVTs
.size();
1826 SDValue RetOp
= getValue(I
.getOperand(0));
1828 const Function
*F
= I
.getParent()->getParent();
1830 bool NeedsRegBlock
= TLI
.functionArgumentNeedsConsecutiveRegisters(
1831 I
.getOperand(0)->getType(), F
->getCallingConv(),
1832 /*IsVarArg*/ false);
1834 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
1835 if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1837 ExtendKind
= ISD::SIGN_EXTEND
;
1838 else if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1840 ExtendKind
= ISD::ZERO_EXTEND
;
1842 LLVMContext
&Context
= F
->getContext();
1843 bool RetInReg
= F
->getAttributes().hasAttribute(
1844 AttributeList::ReturnIndex
, Attribute::InReg
);
1846 for (unsigned j
= 0; j
!= NumValues
; ++j
) {
1847 EVT VT
= ValueVTs
[j
];
1849 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger())
1850 VT
= TLI
.getTypeForExtReturn(Context
, VT
, ExtendKind
);
1852 CallingConv::ID CC
= F
->getCallingConv();
1854 unsigned NumParts
= TLI
.getNumRegistersForCallingConv(Context
, CC
, VT
);
1855 MVT PartVT
= TLI
.getRegisterTypeForCallingConv(Context
, CC
, VT
);
1856 SmallVector
<SDValue
, 4> Parts(NumParts
);
1857 getCopyToParts(DAG
, getCurSDLoc(),
1858 SDValue(RetOp
.getNode(), RetOp
.getResNo() + j
),
1859 &Parts
[0], NumParts
, PartVT
, &I
, CC
, ExtendKind
);
1861 // 'inreg' on function refers to return value
1862 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1866 if (I
.getOperand(0)->getType()->isPointerTy()) {
1868 Flags
.setPointerAddrSpace(
1869 cast
<PointerType
>(I
.getOperand(0)->getType())->getAddressSpace());
1872 if (NeedsRegBlock
) {
1873 Flags
.setInConsecutiveRegs();
1874 if (j
== NumValues
- 1)
1875 Flags
.setInConsecutiveRegsLast();
1878 // Propagate extension type if any
1879 if (ExtendKind
== ISD::SIGN_EXTEND
)
1881 else if (ExtendKind
== ISD::ZERO_EXTEND
)
1884 for (unsigned i
= 0; i
< NumParts
; ++i
) {
1885 Outs
.push_back(ISD::OutputArg(Flags
, Parts
[i
].getValueType(),
1886 VT
, /*isfixed=*/true, 0, 0));
1887 OutVals
.push_back(Parts
[i
]);
1893 // Push in swifterror virtual register as the last element of Outs. This makes
1894 // sure swifterror virtual register will be returned in the swifterror
1895 // physical register.
1896 const Function
*F
= I
.getParent()->getParent();
1897 if (TLI
.supportSwiftError() &&
1898 F
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
)) {
1899 assert(SwiftError
.getFunctionArg() && "Need a swift error argument");
1900 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1901 Flags
.setSwiftError();
1902 Outs
.push_back(ISD::OutputArg(Flags
, EVT(TLI
.getPointerTy(DL
)) /*vt*/,
1903 EVT(TLI
.getPointerTy(DL
)) /*argvt*/,
1904 true /*isfixed*/, 1 /*origidx*/,
1906 // Create SDNode for the swifterror virtual register.
1908 DAG
.getRegister(SwiftError
.getOrCreateVRegUseAt(
1909 &I
, FuncInfo
.MBB
, SwiftError
.getFunctionArg()),
1910 EVT(TLI
.getPointerTy(DL
))));
1913 bool isVarArg
= DAG
.getMachineFunction().getFunction().isVarArg();
1914 CallingConv::ID CallConv
=
1915 DAG
.getMachineFunction().getFunction().getCallingConv();
1916 Chain
= DAG
.getTargetLoweringInfo().LowerReturn(
1917 Chain
, CallConv
, isVarArg
, Outs
, OutVals
, getCurSDLoc(), DAG
);
1919 // Verify that the target's LowerReturn behaved as expected.
1920 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
1921 "LowerReturn didn't return a valid chain!");
1923 // Update the DAG with the new chain value resulting from return lowering.
1927 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1928 /// created for it, emit nodes to copy the value into the virtual
1930 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value
*V
) {
1932 if (V
->getType()->isEmptyTy())
1935 DenseMap
<const Value
*, Register
>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
1936 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1937 assert(!V
->use_empty() && "Unused value assigned virtual registers!");
1938 CopyValueToVirtualRegister(V
, VMI
->second
);
1942 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1943 /// the current basic block, add it to ValueMap now so that we'll get a
1945 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value
*V
) {
1946 // No need to export constants.
1947 if (!isa
<Instruction
>(V
) && !isa
<Argument
>(V
)) return;
1949 // Already exported?
1950 if (FuncInfo
.isExportedInst(V
)) return;
1952 unsigned Reg
= FuncInfo
.InitializeRegForValue(V
);
1953 CopyValueToVirtualRegister(V
, Reg
);
1956 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value
*V
,
1957 const BasicBlock
*FromBB
) {
1958 // The operands of the setcc have to be in this block. We don't know
1959 // how to export them from some other block.
1960 if (const Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
1961 // Can export from current BB.
1962 if (VI
->getParent() == FromBB
)
1965 // Is already exported, noop.
1966 return FuncInfo
.isExportedInst(V
);
1969 // If this is an argument, we can export it if the BB is the entry block or
1970 // if it is already exported.
1971 if (isa
<Argument
>(V
)) {
1972 if (FromBB
== &FromBB
->getParent()->getEntryBlock())
1975 // Otherwise, can only export this if it is already exported.
1976 return FuncInfo
.isExportedInst(V
);
1979 // Otherwise, constants can always be exported.
1983 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1985 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock
*Src
,
1986 const MachineBasicBlock
*Dst
) const {
1987 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1988 const BasicBlock
*SrcBB
= Src
->getBasicBlock();
1989 const BasicBlock
*DstBB
= Dst
->getBasicBlock();
1991 // If BPI is not available, set the default probability as 1 / N, where N is
1992 // the number of successors.
1993 auto SuccSize
= std::max
<uint32_t>(succ_size(SrcBB
), 1);
1994 return BranchProbability(1, SuccSize
);
1996 return BPI
->getEdgeProbability(SrcBB
, DstBB
);
1999 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock
*Src
,
2000 MachineBasicBlock
*Dst
,
2001 BranchProbability Prob
) {
2003 Src
->addSuccessorWithoutProb(Dst
);
2005 if (Prob
.isUnknown())
2006 Prob
= getEdgeProbability(Src
, Dst
);
2007 Src
->addSuccessor(Dst
, Prob
);
2011 static bool InBlock(const Value
*V
, const BasicBlock
*BB
) {
2012 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
2013 return I
->getParent() == BB
;
2017 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2018 /// This function emits a branch and is used at the leaves of an OR or an
2019 /// AND operator tree.
2021 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value
*Cond
,
2022 MachineBasicBlock
*TBB
,
2023 MachineBasicBlock
*FBB
,
2024 MachineBasicBlock
*CurBB
,
2025 MachineBasicBlock
*SwitchBB
,
2026 BranchProbability TProb
,
2027 BranchProbability FProb
,
2029 const BasicBlock
*BB
= CurBB
->getBasicBlock();
2031 // If the leaf of the tree is a comparison, merge the condition into
2033 if (const CmpInst
*BOp
= dyn_cast
<CmpInst
>(Cond
)) {
2034 // The operands of the cmp have to be in this block. We don't know
2035 // how to export them from some other block. If this is the first block
2036 // of the sequence, no exporting is needed.
2037 if (CurBB
== SwitchBB
||
2038 (isExportableFromCurrentBlock(BOp
->getOperand(0), BB
) &&
2039 isExportableFromCurrentBlock(BOp
->getOperand(1), BB
))) {
2040 ISD::CondCode Condition
;
2041 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(Cond
)) {
2042 ICmpInst::Predicate Pred
=
2043 InvertCond
? IC
->getInversePredicate() : IC
->getPredicate();
2044 Condition
= getICmpCondCode(Pred
);
2046 const FCmpInst
*FC
= cast
<FCmpInst
>(Cond
);
2047 FCmpInst::Predicate Pred
=
2048 InvertCond
? FC
->getInversePredicate() : FC
->getPredicate();
2049 Condition
= getFCmpCondCode(Pred
);
2050 if (TM
.Options
.NoNaNsFPMath
)
2051 Condition
= getFCmpCodeWithoutNaN(Condition
);
2054 CaseBlock
CB(Condition
, BOp
->getOperand(0), BOp
->getOperand(1), nullptr,
2055 TBB
, FBB
, CurBB
, getCurSDLoc(), TProb
, FProb
);
2056 SL
->SwitchCases
.push_back(CB
);
2061 // Create a CaseBlock record representing this branch.
2062 ISD::CondCode Opc
= InvertCond
? ISD::SETNE
: ISD::SETEQ
;
2063 CaseBlock
CB(Opc
, Cond
, ConstantInt::getTrue(*DAG
.getContext()),
2064 nullptr, TBB
, FBB
, CurBB
, getCurSDLoc(), TProb
, FProb
);
2065 SL
->SwitchCases
.push_back(CB
);
2068 void SelectionDAGBuilder::FindMergedConditions(const Value
*Cond
,
2069 MachineBasicBlock
*TBB
,
2070 MachineBasicBlock
*FBB
,
2071 MachineBasicBlock
*CurBB
,
2072 MachineBasicBlock
*SwitchBB
,
2073 Instruction::BinaryOps Opc
,
2074 BranchProbability TProb
,
2075 BranchProbability FProb
,
2077 // Skip over not part of the tree and remember to invert op and operands at
2080 if (match(Cond
, m_OneUse(m_Not(m_Value(NotCond
)))) &&
2081 InBlock(NotCond
, CurBB
->getBasicBlock())) {
2082 FindMergedConditions(NotCond
, TBB
, FBB
, CurBB
, SwitchBB
, Opc
, TProb
, FProb
,
2087 const Instruction
*BOp
= dyn_cast
<Instruction
>(Cond
);
2088 // Compute the effective opcode for Cond, taking into account whether it needs
2089 // to be inverted, e.g.
2090 // and (not (or A, B)), C
2092 // and (and (not A, not B), C)
2095 BOpc
= BOp
->getOpcode();
2097 if (BOpc
== Instruction::And
)
2098 BOpc
= Instruction::Or
;
2099 else if (BOpc
== Instruction::Or
)
2100 BOpc
= Instruction::And
;
2104 // If this node is not part of the or/and tree, emit it as a branch.
2105 if (!BOp
|| !(isa
<BinaryOperator
>(BOp
) || isa
<CmpInst
>(BOp
)) ||
2106 BOpc
!= unsigned(Opc
) || !BOp
->hasOneUse() ||
2107 BOp
->getParent() != CurBB
->getBasicBlock() ||
2108 !InBlock(BOp
->getOperand(0), CurBB
->getBasicBlock()) ||
2109 !InBlock(BOp
->getOperand(1), CurBB
->getBasicBlock())) {
2110 EmitBranchForMergedCondition(Cond
, TBB
, FBB
, CurBB
, SwitchBB
,
2111 TProb
, FProb
, InvertCond
);
2115 // Create TmpBB after CurBB.
2116 MachineFunction::iterator
BBI(CurBB
);
2117 MachineFunction
&MF
= DAG
.getMachineFunction();
2118 MachineBasicBlock
*TmpBB
= MF
.CreateMachineBasicBlock(CurBB
->getBasicBlock());
2119 CurBB
->getParent()->insert(++BBI
, TmpBB
);
2121 if (Opc
== Instruction::Or
) {
2122 // Codegen X | Y as:
2131 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2132 // The requirement is that
2133 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2134 // = TrueProb for original BB.
2135 // Assuming the original probabilities are A and B, one choice is to set
2136 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2137 // A/(1+B) and 2B/(1+B). This choice assumes that
2138 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2139 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2140 // TmpBB, but the math is more complicated.
2142 auto NewTrueProb
= TProb
/ 2;
2143 auto NewFalseProb
= TProb
/ 2 + FProb
;
2144 // Emit the LHS condition.
2145 FindMergedConditions(BOp
->getOperand(0), TBB
, TmpBB
, CurBB
, SwitchBB
, Opc
,
2146 NewTrueProb
, NewFalseProb
, InvertCond
);
2148 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2149 SmallVector
<BranchProbability
, 2> Probs
{TProb
/ 2, FProb
};
2150 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
2151 // Emit the RHS condition into TmpBB.
2152 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
,
2153 Probs
[0], Probs
[1], InvertCond
);
2155 assert(Opc
== Instruction::And
&& "Unknown merge op!");
2156 // Codegen X & Y as:
2164 // This requires creation of TmpBB after CurBB.
2166 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2167 // The requirement is that
2168 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2169 // = FalseProb for original BB.
2170 // Assuming the original probabilities are A and B, one choice is to set
2171 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2172 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2173 // TrueProb for BB1 * FalseProb for TmpBB.
2175 auto NewTrueProb
= TProb
+ FProb
/ 2;
2176 auto NewFalseProb
= FProb
/ 2;
2177 // Emit the LHS condition.
2178 FindMergedConditions(BOp
->getOperand(0), TmpBB
, FBB
, CurBB
, SwitchBB
, Opc
,
2179 NewTrueProb
, NewFalseProb
, InvertCond
);
2181 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2182 SmallVector
<BranchProbability
, 2> Probs
{TProb
, FProb
/ 2};
2183 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
2184 // Emit the RHS condition into TmpBB.
2185 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
,
2186 Probs
[0], Probs
[1], InvertCond
);
2190 /// If the set of cases should be emitted as a series of branches, return true.
2191 /// If we should emit this as a bunch of and/or'd together conditions, return
2194 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector
<CaseBlock
> &Cases
) {
2195 if (Cases
.size() != 2) return true;
2197 // If this is two comparisons of the same values or'd or and'd together, they
2198 // will get folded into a single comparison, so don't emit two blocks.
2199 if ((Cases
[0].CmpLHS
== Cases
[1].CmpLHS
&&
2200 Cases
[0].CmpRHS
== Cases
[1].CmpRHS
) ||
2201 (Cases
[0].CmpRHS
== Cases
[1].CmpLHS
&&
2202 Cases
[0].CmpLHS
== Cases
[1].CmpRHS
)) {
2206 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2207 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2208 if (Cases
[0].CmpRHS
== Cases
[1].CmpRHS
&&
2209 Cases
[0].CC
== Cases
[1].CC
&&
2210 isa
<Constant
>(Cases
[0].CmpRHS
) &&
2211 cast
<Constant
>(Cases
[0].CmpRHS
)->isNullValue()) {
2212 if (Cases
[0].CC
== ISD::SETEQ
&& Cases
[0].TrueBB
== Cases
[1].ThisBB
)
2214 if (Cases
[0].CC
== ISD::SETNE
&& Cases
[0].FalseBB
== Cases
[1].ThisBB
)
2221 void SelectionDAGBuilder::visitBr(const BranchInst
&I
) {
2222 MachineBasicBlock
*BrMBB
= FuncInfo
.MBB
;
2224 // Update machine-CFG edges.
2225 MachineBasicBlock
*Succ0MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
2227 if (I
.isUnconditional()) {
2228 // Update machine-CFG edges.
2229 BrMBB
->addSuccessor(Succ0MBB
);
2231 // If this is not a fall-through branch or optimizations are switched off,
2233 if (Succ0MBB
!= NextBlock(BrMBB
) || TM
.getOptLevel() == CodeGenOpt::None
)
2234 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(),
2235 MVT::Other
, getControlRoot(),
2236 DAG
.getBasicBlock(Succ0MBB
)));
2241 // If this condition is one of the special cases we handle, do special stuff
2243 const Value
*CondVal
= I
.getCondition();
2244 MachineBasicBlock
*Succ1MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
2246 // If this is a series of conditions that are or'd or and'd together, emit
2247 // this as a sequence of branches instead of setcc's with and/or operations.
2248 // As long as jumps are not expensive (exceptions for multi-use logic ops,
2249 // unpredictable branches, and vector extracts because those jumps are likely
2250 // expensive for any target), this should improve performance.
2251 // For example, instead of something like:
2263 if (const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(CondVal
)) {
2264 Instruction::BinaryOps Opcode
= BOp
->getOpcode();
2265 Value
*Vec
, *BOp0
= BOp
->getOperand(0), *BOp1
= BOp
->getOperand(1);
2266 if (!DAG
.getTargetLoweringInfo().isJumpExpensive() && BOp
->hasOneUse() &&
2267 !I
.hasMetadata(LLVMContext::MD_unpredictable
) &&
2268 (Opcode
== Instruction::And
|| Opcode
== Instruction::Or
) &&
2269 !(match(BOp0
, m_ExtractElt(m_Value(Vec
), m_Value())) &&
2270 match(BOp1
, m_ExtractElt(m_Specific(Vec
), m_Value())))) {
2271 FindMergedConditions(BOp
, Succ0MBB
, Succ1MBB
, BrMBB
, BrMBB
,
2273 getEdgeProbability(BrMBB
, Succ0MBB
),
2274 getEdgeProbability(BrMBB
, Succ1MBB
),
2275 /*InvertCond=*/false);
2276 // If the compares in later blocks need to use values not currently
2277 // exported from this block, export them now. This block should always
2278 // be the first entry.
2279 assert(SL
->SwitchCases
[0].ThisBB
== BrMBB
&& "Unexpected lowering!");
2281 // Allow some cases to be rejected.
2282 if (ShouldEmitAsBranches(SL
->SwitchCases
)) {
2283 for (unsigned i
= 1, e
= SL
->SwitchCases
.size(); i
!= e
; ++i
) {
2284 ExportFromCurrentBlock(SL
->SwitchCases
[i
].CmpLHS
);
2285 ExportFromCurrentBlock(SL
->SwitchCases
[i
].CmpRHS
);
2288 // Emit the branch for this block.
2289 visitSwitchCase(SL
->SwitchCases
[0], BrMBB
);
2290 SL
->SwitchCases
.erase(SL
->SwitchCases
.begin());
2294 // Okay, we decided not to do this, remove any inserted MBB's and clear
2296 for (unsigned i
= 1, e
= SL
->SwitchCases
.size(); i
!= e
; ++i
)
2297 FuncInfo
.MF
->erase(SL
->SwitchCases
[i
].ThisBB
);
2299 SL
->SwitchCases
.clear();
2303 // Create a CaseBlock record representing this branch.
2304 CaseBlock
CB(ISD::SETEQ
, CondVal
, ConstantInt::getTrue(*DAG
.getContext()),
2305 nullptr, Succ0MBB
, Succ1MBB
, BrMBB
, getCurSDLoc());
2307 // Use visitSwitchCase to actually insert the fast branch sequence for this
2309 visitSwitchCase(CB
, BrMBB
);
2312 /// visitSwitchCase - Emits the necessary code to represent a single node in
2313 /// the binary search tree resulting from lowering a switch instruction.
2314 void SelectionDAGBuilder::visitSwitchCase(CaseBlock
&CB
,
2315 MachineBasicBlock
*SwitchBB
) {
2317 SDValue CondLHS
= getValue(CB
.CmpLHS
);
2320 if (CB
.CC
== ISD::SETTRUE
) {
2321 // Branch or fall through to TrueBB.
2322 addSuccessorWithProb(SwitchBB
, CB
.TrueBB
, CB
.TrueProb
);
2323 SwitchBB
->normalizeSuccProbs();
2324 if (CB
.TrueBB
!= NextBlock(SwitchBB
)) {
2325 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, getControlRoot(),
2326 DAG
.getBasicBlock(CB
.TrueBB
)));
2331 auto &TLI
= DAG
.getTargetLoweringInfo();
2332 EVT MemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), CB
.CmpLHS
->getType());
2334 // Build the setcc now.
2336 // Fold "(X == true)" to X and "(X == false)" to !X to
2337 // handle common cases produced by branch lowering.
2338 if (CB
.CmpRHS
== ConstantInt::getTrue(*DAG
.getContext()) &&
2339 CB
.CC
== ISD::SETEQ
)
2341 else if (CB
.CmpRHS
== ConstantInt::getFalse(*DAG
.getContext()) &&
2342 CB
.CC
== ISD::SETEQ
) {
2343 SDValue True
= DAG
.getConstant(1, dl
, CondLHS
.getValueType());
2344 Cond
= DAG
.getNode(ISD::XOR
, dl
, CondLHS
.getValueType(), CondLHS
, True
);
2346 SDValue CondRHS
= getValue(CB
.CmpRHS
);
2348 // If a pointer's DAG type is larger than its memory type then the DAG
2349 // values are zero-extended. This breaks signed comparisons so truncate
2350 // back to the underlying type before doing the compare.
2351 if (CondLHS
.getValueType() != MemVT
) {
2352 CondLHS
= DAG
.getPtrExtOrTrunc(CondLHS
, getCurSDLoc(), MemVT
);
2353 CondRHS
= DAG
.getPtrExtOrTrunc(CondRHS
, getCurSDLoc(), MemVT
);
2355 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CondLHS
, CondRHS
, CB
.CC
);
2358 assert(CB
.CC
== ISD::SETLE
&& "Can handle only LE ranges now");
2360 const APInt
& Low
= cast
<ConstantInt
>(CB
.CmpLHS
)->getValue();
2361 const APInt
& High
= cast
<ConstantInt
>(CB
.CmpRHS
)->getValue();
2363 SDValue CmpOp
= getValue(CB
.CmpMHS
);
2364 EVT VT
= CmpOp
.getValueType();
2366 if (cast
<ConstantInt
>(CB
.CmpLHS
)->isMinValue(true)) {
2367 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CmpOp
, DAG
.getConstant(High
, dl
, VT
),
2370 SDValue SUB
= DAG
.getNode(ISD::SUB
, dl
,
2371 VT
, CmpOp
, DAG
.getConstant(Low
, dl
, VT
));
2372 Cond
= DAG
.getSetCC(dl
, MVT::i1
, SUB
,
2373 DAG
.getConstant(High
-Low
, dl
, VT
), ISD::SETULE
);
2377 // Update successor info
2378 addSuccessorWithProb(SwitchBB
, CB
.TrueBB
, CB
.TrueProb
);
2379 // TrueBB and FalseBB are always different unless the incoming IR is
2380 // degenerate. This only happens when running llc on weird IR.
2381 if (CB
.TrueBB
!= CB
.FalseBB
)
2382 addSuccessorWithProb(SwitchBB
, CB
.FalseBB
, CB
.FalseProb
);
2383 SwitchBB
->normalizeSuccProbs();
2385 // If the lhs block is the next block, invert the condition so that we can
2386 // fall through to the lhs instead of the rhs block.
2387 if (CB
.TrueBB
== NextBlock(SwitchBB
)) {
2388 std::swap(CB
.TrueBB
, CB
.FalseBB
);
2389 SDValue True
= DAG
.getConstant(1, dl
, Cond
.getValueType());
2390 Cond
= DAG
.getNode(ISD::XOR
, dl
, Cond
.getValueType(), Cond
, True
);
2393 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2394 MVT::Other
, getControlRoot(), Cond
,
2395 DAG
.getBasicBlock(CB
.TrueBB
));
2397 // Insert the false branch. Do this even if it's a fall through branch,
2398 // this makes it easier to do DAG optimizations which require inverting
2399 // the branch condition.
2400 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
2401 DAG
.getBasicBlock(CB
.FalseBB
));
2403 DAG
.setRoot(BrCond
);
2406 /// visitJumpTable - Emit JumpTable node in the current MBB
2407 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable
&JT
) {
2408 // Emit the code for the jump table
2409 assert(JT
.Reg
!= -1U && "Should lower JT Header first!");
2410 EVT PTy
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2411 SDValue Index
= DAG
.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2413 SDValue Table
= DAG
.getJumpTable(JT
.JTI
, PTy
);
2414 SDValue BrJumpTable
= DAG
.getNode(ISD::BR_JT
, getCurSDLoc(),
2415 MVT::Other
, Index
.getValue(1),
2417 DAG
.setRoot(BrJumpTable
);
2420 /// visitJumpTableHeader - This function emits necessary code to produce index
2421 /// in the JumpTable from switch case.
2422 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable
&JT
,
2423 JumpTableHeader
&JTH
,
2424 MachineBasicBlock
*SwitchBB
) {
2425 SDLoc dl
= getCurSDLoc();
2427 // Subtract the lowest switch case value from the value being switched on.
2428 SDValue SwitchOp
= getValue(JTH
.SValue
);
2429 EVT VT
= SwitchOp
.getValueType();
2430 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, SwitchOp
,
2431 DAG
.getConstant(JTH
.First
, dl
, VT
));
2433 // The SDNode we just created, which holds the value being switched on minus
2434 // the smallest case value, needs to be copied to a virtual register so it
2435 // can be used as an index into the jump table in a subsequent basic block.
2436 // This value may be smaller or larger than the target's pointer type, and
2437 // therefore require extension or truncating.
2438 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2439 SwitchOp
= DAG
.getZExtOrTrunc(Sub
, dl
, TLI
.getPointerTy(DAG
.getDataLayout()));
2441 unsigned JumpTableReg
=
2442 FuncInfo
.CreateReg(TLI
.getPointerTy(DAG
.getDataLayout()));
2443 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), dl
,
2444 JumpTableReg
, SwitchOp
);
2445 JT
.Reg
= JumpTableReg
;
2447 if (!JTH
.OmitRangeCheck
) {
2448 // Emit the range check for the jump table, and branch to the default block
2449 // for the switch statement if the value being switched on exceeds the
2450 // largest case in the switch.
2451 SDValue CMP
= DAG
.getSetCC(
2452 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
2453 Sub
.getValueType()),
2454 Sub
, DAG
.getConstant(JTH
.Last
- JTH
.First
, dl
, VT
), ISD::SETUGT
);
2456 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2457 MVT::Other
, CopyTo
, CMP
,
2458 DAG
.getBasicBlock(JT
.Default
));
2460 // Avoid emitting unnecessary branches to the next block.
2461 if (JT
.MBB
!= NextBlock(SwitchBB
))
2462 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
2463 DAG
.getBasicBlock(JT
.MBB
));
2465 DAG
.setRoot(BrCond
);
2467 // Avoid emitting unnecessary branches to the next block.
2468 if (JT
.MBB
!= NextBlock(SwitchBB
))
2469 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, CopyTo
,
2470 DAG
.getBasicBlock(JT
.MBB
)));
2472 DAG
.setRoot(CopyTo
);
2476 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2477 /// variable if there exists one.
2478 static SDValue
getLoadStackGuard(SelectionDAG
&DAG
, const SDLoc
&DL
,
2480 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2481 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
2482 EVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout());
2483 MachineFunction
&MF
= DAG
.getMachineFunction();
2484 Value
*Global
= TLI
.getSDagStackGuard(*MF
.getFunction().getParent());
2485 MachineSDNode
*Node
=
2486 DAG
.getMachineNode(TargetOpcode::LOAD_STACK_GUARD
, DL
, PtrTy
, Chain
);
2488 MachinePointerInfo
MPInfo(Global
);
2489 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOInvariant
|
2490 MachineMemOperand::MODereferenceable
;
2491 MachineMemOperand
*MemRef
= MF
.getMachineMemOperand(
2492 MPInfo
, Flags
, PtrTy
.getSizeInBits() / 8, DAG
.getEVTAlign(PtrTy
));
2493 DAG
.setNodeMemRefs(Node
, {MemRef
});
2495 if (PtrTy
!= PtrMemTy
)
2496 return DAG
.getPtrExtOrTrunc(SDValue(Node
, 0), DL
, PtrMemTy
);
2497 return SDValue(Node
, 0);
2500 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2501 /// tail spliced into a stack protector check success bb.
2503 /// For a high level explanation of how this fits into the stack protector
2504 /// generation see the comment on the declaration of class
2505 /// StackProtectorDescriptor.
2506 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor
&SPD
,
2507 MachineBasicBlock
*ParentBB
) {
2509 // First create the loads to the guard/stack slot for the comparison.
2510 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2511 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
2512 EVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout());
2514 MachineFrameInfo
&MFI
= ParentBB
->getParent()->getFrameInfo();
2515 int FI
= MFI
.getStackProtectorIndex();
2518 SDLoc dl
= getCurSDLoc();
2519 SDValue StackSlotPtr
= DAG
.getFrameIndex(FI
, PtrTy
);
2520 const Module
&M
= *ParentBB
->getParent()->getFunction().getParent();
2521 Align Align
= DL
->getPrefTypeAlign(Type::getInt8PtrTy(M
.getContext()));
2523 // Generate code to load the content of the guard slot.
2524 SDValue GuardVal
= DAG
.getLoad(
2525 PtrMemTy
, dl
, DAG
.getEntryNode(), StackSlotPtr
,
2526 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
), Align
,
2527 MachineMemOperand::MOVolatile
);
2529 if (TLI
.useStackGuardXorFP())
2530 GuardVal
= TLI
.emitStackGuardXorFP(DAG
, GuardVal
, dl
);
2532 // Retrieve guard check function, nullptr if instrumentation is inlined.
2533 if (const Function
*GuardCheckFn
= TLI
.getSSPStackGuardCheck(M
)) {
2534 // The target provides a guard check function to validate the guard value.
2535 // Generate a call to that function with the content of the guard slot as
2537 FunctionType
*FnTy
= GuardCheckFn
->getFunctionType();
2538 assert(FnTy
->getNumParams() == 1 && "Invalid function signature");
2540 TargetLowering::ArgListTy Args
;
2541 TargetLowering::ArgListEntry Entry
;
2542 Entry
.Node
= GuardVal
;
2543 Entry
.Ty
= FnTy
->getParamType(0);
2544 if (GuardCheckFn
->hasAttribute(1, Attribute::AttrKind::InReg
))
2545 Entry
.IsInReg
= true;
2546 Args
.push_back(Entry
);
2548 TargetLowering::CallLoweringInfo
CLI(DAG
);
2549 CLI
.setDebugLoc(getCurSDLoc())
2550 .setChain(DAG
.getEntryNode())
2551 .setCallee(GuardCheckFn
->getCallingConv(), FnTy
->getReturnType(),
2552 getValue(GuardCheckFn
), std::move(Args
));
2554 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
2555 DAG
.setRoot(Result
.second
);
2559 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2560 // Otherwise, emit a volatile load to retrieve the stack guard value.
2561 SDValue Chain
= DAG
.getEntryNode();
2562 if (TLI
.useLoadStackGuardNode()) {
2563 Guard
= getLoadStackGuard(DAG
, dl
, Chain
);
2565 const Value
*IRGuard
= TLI
.getSDagStackGuard(M
);
2566 SDValue GuardPtr
= getValue(IRGuard
);
2568 Guard
= DAG
.getLoad(PtrMemTy
, dl
, Chain
, GuardPtr
,
2569 MachinePointerInfo(IRGuard
, 0), Align
,
2570 MachineMemOperand::MOVolatile
);
2573 // Perform the comparison via a getsetcc.
2574 SDValue Cmp
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(),
2576 Guard
.getValueType()),
2577 Guard
, GuardVal
, ISD::SETNE
);
2579 // If the guard/stackslot do not equal, branch to failure MBB.
2580 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2581 MVT::Other
, GuardVal
.getOperand(0),
2582 Cmp
, DAG
.getBasicBlock(SPD
.getFailureMBB()));
2583 // Otherwise branch to success MBB.
2584 SDValue Br
= DAG
.getNode(ISD::BR
, dl
,
2586 DAG
.getBasicBlock(SPD
.getSuccessMBB()));
2591 /// Codegen the failure basic block for a stack protector check.
2593 /// A failure stack protector machine basic block consists simply of a call to
2594 /// __stack_chk_fail().
2596 /// For a high level explanation of how this fits into the stack protector
2597 /// generation see the comment on the declaration of class
2598 /// StackProtectorDescriptor.
2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor
&SPD
) {
2601 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2602 TargetLowering::MakeLibCallOptions CallOptions
;
2603 CallOptions
.setDiscardResult(true);
2605 TLI
.makeLibCall(DAG
, RTLIB::STACKPROTECTOR_CHECK_FAIL
, MVT::isVoid
,
2606 None
, CallOptions
, getCurSDLoc()).second
;
2607 // On PS4, the "return address" must still be within the calling function,
2608 // even if it's at the very end, so emit an explicit TRAP here.
2609 // Passing 'true' for doesNotReturn above won't generate the trap for us.
2610 if (TM
.getTargetTriple().isPS4CPU())
2611 Chain
= DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, Chain
);
2612 // WebAssembly needs an unreachable instruction after a non-returning call,
2613 // because the function return type can be different from __stack_chk_fail's
2614 // return type (void).
2615 if (TM
.getTargetTriple().isWasm())
2616 Chain
= DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, Chain
);
2621 /// visitBitTestHeader - This function emits necessary code to produce value
2622 /// suitable for "bit tests"
2623 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock
&B
,
2624 MachineBasicBlock
*SwitchBB
) {
2625 SDLoc dl
= getCurSDLoc();
2627 // Subtract the minimum value.
2628 SDValue SwitchOp
= getValue(B
.SValue
);
2629 EVT VT
= SwitchOp
.getValueType();
2631 DAG
.getNode(ISD::SUB
, dl
, VT
, SwitchOp
, DAG
.getConstant(B
.First
, dl
, VT
));
2633 // Determine the type of the test operands.
2634 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2635 bool UsePtrType
= false;
2636 if (!TLI
.isTypeLegal(VT
)) {
2639 for (unsigned i
= 0, e
= B
.Cases
.size(); i
!= e
; ++i
)
2640 if (!isUIntN(VT
.getSizeInBits(), B
.Cases
[i
].Mask
)) {
2641 // Switch table case range are encoded into series of masks.
2642 // Just use pointer type, it's guaranteed to fit.
2647 SDValue Sub
= RangeSub
;
2649 VT
= TLI
.getPointerTy(DAG
.getDataLayout());
2650 Sub
= DAG
.getZExtOrTrunc(Sub
, dl
, VT
);
2653 B
.RegVT
= VT
.getSimpleVT();
2654 B
.Reg
= FuncInfo
.CreateReg(B
.RegVT
);
2655 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), dl
, B
.Reg
, Sub
);
2657 MachineBasicBlock
* MBB
= B
.Cases
[0].ThisBB
;
2659 if (!B
.OmitRangeCheck
)
2660 addSuccessorWithProb(SwitchBB
, B
.Default
, B
.DefaultProb
);
2661 addSuccessorWithProb(SwitchBB
, MBB
, B
.Prob
);
2662 SwitchBB
->normalizeSuccProbs();
2664 SDValue Root
= CopyTo
;
2665 if (!B
.OmitRangeCheck
) {
2666 // Conditional branch to the default block.
2667 SDValue RangeCmp
= DAG
.getSetCC(dl
,
2668 TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
2669 RangeSub
.getValueType()),
2670 RangeSub
, DAG
.getConstant(B
.Range
, dl
, RangeSub
.getValueType()),
2673 Root
= DAG
.getNode(ISD::BRCOND
, dl
, MVT::Other
, Root
, RangeCmp
,
2674 DAG
.getBasicBlock(B
.Default
));
2677 // Avoid emitting unnecessary branches to the next block.
2678 if (MBB
!= NextBlock(SwitchBB
))
2679 Root
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, Root
, DAG
.getBasicBlock(MBB
));
2684 /// visitBitTestCase - this function produces one "bit test"
2685 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock
&BB
,
2686 MachineBasicBlock
* NextMBB
,
2687 BranchProbability BranchProbToNext
,
2690 MachineBasicBlock
*SwitchBB
) {
2691 SDLoc dl
= getCurSDLoc();
2693 SDValue ShiftOp
= DAG
.getCopyFromReg(getControlRoot(), dl
, Reg
, VT
);
2695 unsigned PopCount
= countPopulation(B
.Mask
);
2696 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2697 if (PopCount
== 1) {
2698 // Testing for a single bit; just compare the shift count with what it
2699 // would need to be to shift a 1 bit in that position.
2701 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2702 ShiftOp
, DAG
.getConstant(countTrailingZeros(B
.Mask
), dl
, VT
),
2704 } else if (PopCount
== BB
.Range
) {
2705 // There is only one zero bit in the range, test for it directly.
2707 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2708 ShiftOp
, DAG
.getConstant(countTrailingOnes(B
.Mask
), dl
, VT
),
2711 // Make desired shift
2712 SDValue SwitchVal
= DAG
.getNode(ISD::SHL
, dl
, VT
,
2713 DAG
.getConstant(1, dl
, VT
), ShiftOp
);
2715 // Emit bit tests and jumps
2716 SDValue AndOp
= DAG
.getNode(ISD::AND
, dl
,
2717 VT
, SwitchVal
, DAG
.getConstant(B
.Mask
, dl
, VT
));
2719 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2720 AndOp
, DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
2723 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2724 addSuccessorWithProb(SwitchBB
, B
.TargetBB
, B
.ExtraProb
);
2725 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2726 addSuccessorWithProb(SwitchBB
, NextMBB
, BranchProbToNext
);
2727 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2728 // one as they are relative probabilities (and thus work more like weights),
2729 // and hence we need to normalize them to let the sum of them become one.
2730 SwitchBB
->normalizeSuccProbs();
2732 SDValue BrAnd
= DAG
.getNode(ISD::BRCOND
, dl
,
2733 MVT::Other
, getControlRoot(),
2734 Cmp
, DAG
.getBasicBlock(B
.TargetBB
));
2736 // Avoid emitting unnecessary branches to the next block.
2737 if (NextMBB
!= NextBlock(SwitchBB
))
2738 BrAnd
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrAnd
,
2739 DAG
.getBasicBlock(NextMBB
));
2744 void SelectionDAGBuilder::visitInvoke(const InvokeInst
&I
) {
2745 MachineBasicBlock
*InvokeMBB
= FuncInfo
.MBB
;
2747 // Retrieve successors. Look through artificial IR level blocks like
2748 // catchswitch for successors.
2749 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
2750 const BasicBlock
*EHPadBB
= I
.getSuccessor(1);
2752 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2753 // have to do anything here to lower funclet bundles.
2754 assert(!I
.hasOperandBundlesOtherThan({LLVMContext::OB_deopt
,
2755 LLVMContext::OB_gc_transition
,
2756 LLVMContext::OB_gc_live
,
2757 LLVMContext::OB_funclet
,
2758 LLVMContext::OB_cfguardtarget
}) &&
2759 "Cannot lower invokes with arbitrary operand bundles yet!");
2761 const Value
*Callee(I
.getCalledOperand());
2762 const Function
*Fn
= dyn_cast
<Function
>(Callee
);
2763 if (isa
<InlineAsm
>(Callee
))
2765 else if (Fn
&& Fn
->isIntrinsic()) {
2766 switch (Fn
->getIntrinsicID()) {
2768 llvm_unreachable("Cannot invoke this intrinsic");
2769 case Intrinsic::donothing
:
2770 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2772 case Intrinsic::experimental_patchpoint_void
:
2773 case Intrinsic::experimental_patchpoint_i64
:
2774 visitPatchpoint(I
, EHPadBB
);
2776 case Intrinsic::experimental_gc_statepoint
:
2777 LowerStatepoint(cast
<GCStatepointInst
>(I
), EHPadBB
);
2779 case Intrinsic::wasm_rethrow_in_catch
: {
2780 // This is usually done in visitTargetIntrinsic, but this intrinsic is
2781 // special because it can be invoked, so we manually lower it to a DAG
2783 SmallVector
<SDValue
, 8> Ops
;
2784 Ops
.push_back(getRoot()); // inchain
2785 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2787 DAG
.getTargetConstant(Intrinsic::wasm_rethrow_in_catch
, getCurSDLoc(),
2788 TLI
.getPointerTy(DAG
.getDataLayout())));
2789 SDVTList VTs
= DAG
.getVTList(ArrayRef
<EVT
>({MVT::Other
})); // outchain
2790 DAG
.setRoot(DAG
.getNode(ISD::INTRINSIC_VOID
, getCurSDLoc(), VTs
, Ops
));
2794 } else if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
)) {
2795 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2796 // Eventually we will support lowering the @llvm.experimental.deoptimize
2797 // intrinsic, and right now there are no plans to support other intrinsics
2798 // with deopt state.
2799 LowerCallSiteWithDeoptBundle(&I
, getValue(Callee
), EHPadBB
);
2801 LowerCallTo(I
, getValue(Callee
), false, EHPadBB
);
2804 // If the value of the invoke is used outside of its defining block, make it
2805 // available as a virtual register.
2806 // We already took care of the exported value for the statepoint instruction
2807 // during call to the LowerStatepoint.
2808 if (!isa
<GCStatepointInst
>(I
)) {
2809 CopyToExportRegsIfNeeded(&I
);
2812 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
2813 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
2814 BranchProbability EHPadBBProb
=
2815 BPI
? BPI
->getEdgeProbability(InvokeMBB
->getBasicBlock(), EHPadBB
)
2816 : BranchProbability::getZero();
2817 findUnwindDestinations(FuncInfo
, EHPadBB
, EHPadBBProb
, UnwindDests
);
2819 // Update successor info.
2820 addSuccessorWithProb(InvokeMBB
, Return
);
2821 for (auto &UnwindDest
: UnwindDests
) {
2822 UnwindDest
.first
->setIsEHPad();
2823 addSuccessorWithProb(InvokeMBB
, UnwindDest
.first
, UnwindDest
.second
);
2825 InvokeMBB
->normalizeSuccProbs();
2827 // Drop into normal successor.
2828 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
, getControlRoot(),
2829 DAG
.getBasicBlock(Return
)));
2832 void SelectionDAGBuilder::visitCallBr(const CallBrInst
&I
) {
2833 MachineBasicBlock
*CallBrMBB
= FuncInfo
.MBB
;
2835 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2836 // have to do anything here to lower funclet bundles.
2837 assert(!I
.hasOperandBundlesOtherThan(
2838 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
2839 "Cannot lower callbrs with arbitrary operand bundles yet!");
2841 assert(I
.isInlineAsm() && "Only know how to handle inlineasm callbr");
2843 CopyToExportRegsIfNeeded(&I
);
2845 // Retrieve successors.
2846 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getDefaultDest()];
2848 // Update successor info.
2849 addSuccessorWithProb(CallBrMBB
, Return
, BranchProbability::getOne());
2850 for (unsigned i
= 0, e
= I
.getNumIndirectDests(); i
< e
; ++i
) {
2851 MachineBasicBlock
*Target
= FuncInfo
.MBBMap
[I
.getIndirectDest(i
)];
2852 addSuccessorWithProb(CallBrMBB
, Target
, BranchProbability::getZero());
2853 Target
->setIsInlineAsmBrIndirectTarget();
2855 CallBrMBB
->normalizeSuccProbs();
2857 // Drop into default successor.
2858 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(),
2859 MVT::Other
, getControlRoot(),
2860 DAG
.getBasicBlock(Return
)));
2863 void SelectionDAGBuilder::visitResume(const ResumeInst
&RI
) {
2864 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2867 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst
&LP
) {
2868 assert(FuncInfo
.MBB
->isEHPad() &&
2869 "Call to landingpad not in landing pad!");
2871 // If there aren't registers to copy the values into (e.g., during SjLj
2872 // exceptions), then don't bother to create these DAG nodes.
2873 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2874 const Constant
*PersonalityFn
= FuncInfo
.Fn
->getPersonalityFn();
2875 if (TLI
.getExceptionPointerRegister(PersonalityFn
) == 0 &&
2876 TLI
.getExceptionSelectorRegister(PersonalityFn
) == 0)
2879 // If landingpad's return type is token type, we don't create DAG nodes
2880 // for its exception pointer and selector value. The extraction of exception
2881 // pointer or selector value from token type landingpads is not currently
2883 if (LP
.getType()->isTokenTy())
2886 SmallVector
<EVT
, 2> ValueVTs
;
2887 SDLoc dl
= getCurSDLoc();
2888 ComputeValueVTs(TLI
, DAG
.getDataLayout(), LP
.getType(), ValueVTs
);
2889 assert(ValueVTs
.size() == 2 && "Only two-valued landingpads are supported");
2891 // Get the two live-in registers as SDValues. The physregs have already been
2892 // copied into virtual registers.
2894 if (FuncInfo
.ExceptionPointerVirtReg
) {
2895 Ops
[0] = DAG
.getZExtOrTrunc(
2896 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
2897 FuncInfo
.ExceptionPointerVirtReg
,
2898 TLI
.getPointerTy(DAG
.getDataLayout())),
2901 Ops
[0] = DAG
.getConstant(0, dl
, TLI
.getPointerTy(DAG
.getDataLayout()));
2903 Ops
[1] = DAG
.getZExtOrTrunc(
2904 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
2905 FuncInfo
.ExceptionSelectorVirtReg
,
2906 TLI
.getPointerTy(DAG
.getDataLayout())),
2910 SDValue Res
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
2911 DAG
.getVTList(ValueVTs
), Ops
);
2915 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock
*First
,
2916 MachineBasicBlock
*Last
) {
2918 for (unsigned i
= 0, e
= SL
->JTCases
.size(); i
!= e
; ++i
)
2919 if (SL
->JTCases
[i
].first
.HeaderBB
== First
)
2920 SL
->JTCases
[i
].first
.HeaderBB
= Last
;
2922 // Update BitTestCases.
2923 for (unsigned i
= 0, e
= SL
->BitTestCases
.size(); i
!= e
; ++i
)
2924 if (SL
->BitTestCases
[i
].Parent
== First
)
2925 SL
->BitTestCases
[i
].Parent
= Last
;
2928 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst
&I
) {
2929 MachineBasicBlock
*IndirectBrMBB
= FuncInfo
.MBB
;
2931 // Update machine-CFG edges with unique successors.
2932 SmallSet
<BasicBlock
*, 32> Done
;
2933 for (unsigned i
= 0, e
= I
.getNumSuccessors(); i
!= e
; ++i
) {
2934 BasicBlock
*BB
= I
.getSuccessor(i
);
2935 bool Inserted
= Done
.insert(BB
).second
;
2939 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[BB
];
2940 addSuccessorWithProb(IndirectBrMBB
, Succ
);
2942 IndirectBrMBB
->normalizeSuccProbs();
2944 DAG
.setRoot(DAG
.getNode(ISD::BRIND
, getCurSDLoc(),
2945 MVT::Other
, getControlRoot(),
2946 getValue(I
.getAddress())));
2949 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst
&I
) {
2950 if (!DAG
.getTarget().Options
.TrapUnreachable
)
2953 // We may be able to ignore unreachable behind a noreturn call.
2954 if (DAG
.getTarget().Options
.NoTrapAfterNoreturn
) {
2955 const BasicBlock
&BB
= *I
.getParent();
2956 if (&I
!= &BB
.front()) {
2957 BasicBlock::const_iterator PredI
=
2958 std::prev(BasicBlock::const_iterator(&I
));
2959 if (const CallInst
*Call
= dyn_cast
<CallInst
>(&*PredI
)) {
2960 if (Call
->doesNotReturn())
2966 DAG
.setRoot(DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, DAG
.getRoot()));
2969 void SelectionDAGBuilder::visitUnary(const User
&I
, unsigned Opcode
) {
2972 SDValue Op
= getValue(I
.getOperand(0));
2973 SDValue UnNodeValue
= DAG
.getNode(Opcode
, getCurSDLoc(), Op
.getValueType(),
2975 setValue(&I
, UnNodeValue
);
2978 void SelectionDAGBuilder::visitBinary(const User
&I
, unsigned Opcode
) {
2980 if (auto *OFBinOp
= dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
2981 Flags
.setNoSignedWrap(OFBinOp
->hasNoSignedWrap());
2982 Flags
.setNoUnsignedWrap(OFBinOp
->hasNoUnsignedWrap());
2984 if (auto *ExactOp
= dyn_cast
<PossiblyExactOperator
>(&I
))
2985 Flags
.setExact(ExactOp
->isExact());
2986 if (auto *FPOp
= dyn_cast
<FPMathOperator
>(&I
))
2987 Flags
.copyFMF(*FPOp
);
2989 SDValue Op1
= getValue(I
.getOperand(0));
2990 SDValue Op2
= getValue(I
.getOperand(1));
2991 SDValue BinNodeValue
= DAG
.getNode(Opcode
, getCurSDLoc(), Op1
.getValueType(),
2993 setValue(&I
, BinNodeValue
);
2996 void SelectionDAGBuilder::visitShift(const User
&I
, unsigned Opcode
) {
2997 SDValue Op1
= getValue(I
.getOperand(0));
2998 SDValue Op2
= getValue(I
.getOperand(1));
3000 EVT ShiftTy
= DAG
.getTargetLoweringInfo().getShiftAmountTy(
3001 Op1
.getValueType(), DAG
.getDataLayout());
3003 // Coerce the shift amount to the right type if we can.
3004 if (!I
.getType()->isVectorTy() && Op2
.getValueType() != ShiftTy
) {
3005 unsigned ShiftSize
= ShiftTy
.getSizeInBits();
3006 unsigned Op2Size
= Op2
.getValueSizeInBits();
3007 SDLoc DL
= getCurSDLoc();
3009 // If the operand is smaller than the shift count type, promote it.
3010 if (ShiftSize
> Op2Size
)
3011 Op2
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, ShiftTy
, Op2
);
3013 // If the operand is larger than the shift count type but the shift
3014 // count type has enough bits to represent any shift value, truncate
3015 // it now. This is a common case and it exposes the truncate to
3016 // optimization early.
3017 else if (ShiftSize
>= Log2_32_Ceil(Op2
.getValueSizeInBits()))
3018 Op2
= DAG
.getNode(ISD::TRUNCATE
, DL
, ShiftTy
, Op2
);
3019 // Otherwise we'll need to temporarily settle for some other convenient
3020 // type. Type legalization will make adjustments once the shiftee is split.
3022 Op2
= DAG
.getZExtOrTrunc(Op2
, DL
, MVT::i32
);
3029 if (Opcode
== ISD::SRL
|| Opcode
== ISD::SRA
|| Opcode
== ISD::SHL
) {
3031 if (const OverflowingBinaryOperator
*OFBinOp
=
3032 dyn_cast
<const OverflowingBinaryOperator
>(&I
)) {
3033 nuw
= OFBinOp
->hasNoUnsignedWrap();
3034 nsw
= OFBinOp
->hasNoSignedWrap();
3036 if (const PossiblyExactOperator
*ExactOp
=
3037 dyn_cast
<const PossiblyExactOperator
>(&I
))
3038 exact
= ExactOp
->isExact();
3041 Flags
.setExact(exact
);
3042 Flags
.setNoSignedWrap(nsw
);
3043 Flags
.setNoUnsignedWrap(nuw
);
3044 SDValue Res
= DAG
.getNode(Opcode
, getCurSDLoc(), Op1
.getValueType(), Op1
, Op2
,
3049 void SelectionDAGBuilder::visitSDiv(const User
&I
) {
3050 SDValue Op1
= getValue(I
.getOperand(0));
3051 SDValue Op2
= getValue(I
.getOperand(1));
3054 Flags
.setExact(isa
<PossiblyExactOperator
>(&I
) &&
3055 cast
<PossiblyExactOperator
>(&I
)->isExact());
3056 setValue(&I
, DAG
.getNode(ISD::SDIV
, getCurSDLoc(), Op1
.getValueType(), Op1
,
3060 void SelectionDAGBuilder::visitICmp(const User
&I
) {
3061 ICmpInst::Predicate predicate
= ICmpInst::BAD_ICMP_PREDICATE
;
3062 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(&I
))
3063 predicate
= IC
->getPredicate();
3064 else if (const ConstantExpr
*IC
= dyn_cast
<ConstantExpr
>(&I
))
3065 predicate
= ICmpInst::Predicate(IC
->getPredicate());
3066 SDValue Op1
= getValue(I
.getOperand(0));
3067 SDValue Op2
= getValue(I
.getOperand(1));
3068 ISD::CondCode Opcode
= getICmpCondCode(predicate
);
3070 auto &TLI
= DAG
.getTargetLoweringInfo();
3072 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getOperand(0)->getType());
3074 // If a pointer's DAG type is larger than its memory type then the DAG values
3075 // are zero-extended. This breaks signed comparisons so truncate back to the
3076 // underlying type before doing the compare.
3077 if (Op1
.getValueType() != MemVT
) {
3078 Op1
= DAG
.getPtrExtOrTrunc(Op1
, getCurSDLoc(), MemVT
);
3079 Op2
= DAG
.getPtrExtOrTrunc(Op2
, getCurSDLoc(), MemVT
);
3082 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3084 setValue(&I
, DAG
.getSetCC(getCurSDLoc(), DestVT
, Op1
, Op2
, Opcode
));
3087 void SelectionDAGBuilder::visitFCmp(const User
&I
) {
3088 FCmpInst::Predicate predicate
= FCmpInst::BAD_FCMP_PREDICATE
;
3089 if (const FCmpInst
*FC
= dyn_cast
<FCmpInst
>(&I
))
3090 predicate
= FC
->getPredicate();
3091 else if (const ConstantExpr
*FC
= dyn_cast
<ConstantExpr
>(&I
))
3092 predicate
= FCmpInst::Predicate(FC
->getPredicate());
3093 SDValue Op1
= getValue(I
.getOperand(0));
3094 SDValue Op2
= getValue(I
.getOperand(1));
3096 ISD::CondCode Condition
= getFCmpCondCode(predicate
);
3097 auto *FPMO
= cast
<FPMathOperator
>(&I
);
3098 if (FPMO
->hasNoNaNs() || TM
.Options
.NoNaNsFPMath
)
3099 Condition
= getFCmpCodeWithoutNaN(Condition
);
3102 Flags
.copyFMF(*FPMO
);
3103 SelectionDAG::FlagInserter
FlagsInserter(DAG
, Flags
);
3105 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3107 setValue(&I
, DAG
.getSetCC(getCurSDLoc(), DestVT
, Op1
, Op2
, Condition
));
3110 // Check if the condition of the select has one use or two users that are both
3111 // selects with the same condition.
3112 static bool hasOnlySelectUsers(const Value
*Cond
) {
3113 return llvm::all_of(Cond
->users(), [](const Value
*V
) {
3114 return isa
<SelectInst
>(V
);
3118 void SelectionDAGBuilder::visitSelect(const User
&I
) {
3119 SmallVector
<EVT
, 4> ValueVTs
;
3120 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), I
.getType(),
3122 unsigned NumValues
= ValueVTs
.size();
3123 if (NumValues
== 0) return;
3125 SmallVector
<SDValue
, 4> Values(NumValues
);
3126 SDValue Cond
= getValue(I
.getOperand(0));
3127 SDValue LHSVal
= getValue(I
.getOperand(1));
3128 SDValue RHSVal
= getValue(I
.getOperand(2));
3129 SmallVector
<SDValue
, 1> BaseOps(1, Cond
);
3130 ISD::NodeType OpCode
=
3131 Cond
.getValueType().isVector() ? ISD::VSELECT
: ISD::SELECT
;
3133 bool IsUnaryAbs
= false;
3134 bool Negate
= false;
3137 if (auto *FPOp
= dyn_cast
<FPMathOperator
>(&I
))
3138 Flags
.copyFMF(*FPOp
);
3140 // Min/max matching is only viable if all output VTs are the same.
3141 if (is_splat(ValueVTs
)) {
3142 EVT VT
= ValueVTs
[0];
3143 LLVMContext
&Ctx
= *DAG
.getContext();
3144 auto &TLI
= DAG
.getTargetLoweringInfo();
3146 // We care about the legality of the operation after it has been type
3148 while (TLI
.getTypeAction(Ctx
, VT
) != TargetLoweringBase::TypeLegal
)
3149 VT
= TLI
.getTypeToTransformTo(Ctx
, VT
);
3151 // If the vselect is legal, assume we want to leave this as a vector setcc +
3152 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3153 // min/max is legal on the scalar type.
3154 bool UseScalarMinMax
= VT
.isVector() &&
3155 !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
);
3158 auto SPR
= matchSelectPattern(const_cast<User
*>(&I
), LHS
, RHS
);
3159 ISD::NodeType Opc
= ISD::DELETED_NODE
;
3160 switch (SPR
.Flavor
) {
3161 case SPF_UMAX
: Opc
= ISD::UMAX
; break;
3162 case SPF_UMIN
: Opc
= ISD::UMIN
; break;
3163 case SPF_SMAX
: Opc
= ISD::SMAX
; break;
3164 case SPF_SMIN
: Opc
= ISD::SMIN
; break;
3166 switch (SPR
.NaNBehavior
) {
3167 case SPNB_NA
: llvm_unreachable("No NaN behavior for FP op?");
3168 case SPNB_RETURNS_NAN
: Opc
= ISD::FMINIMUM
; break;
3169 case SPNB_RETURNS_OTHER
: Opc
= ISD::FMINNUM
; break;
3170 case SPNB_RETURNS_ANY
: {
3171 if (TLI
.isOperationLegalOrCustom(ISD::FMINNUM
, VT
))
3173 else if (TLI
.isOperationLegalOrCustom(ISD::FMINIMUM
, VT
))
3174 Opc
= ISD::FMINIMUM
;
3175 else if (UseScalarMinMax
)
3176 Opc
= TLI
.isOperationLegalOrCustom(ISD::FMINNUM
, VT
.getScalarType()) ?
3177 ISD::FMINNUM
: ISD::FMINIMUM
;
3183 switch (SPR
.NaNBehavior
) {
3184 case SPNB_NA
: llvm_unreachable("No NaN behavior for FP op?");
3185 case SPNB_RETURNS_NAN
: Opc
= ISD::FMAXIMUM
; break;
3186 case SPNB_RETURNS_OTHER
: Opc
= ISD::FMAXNUM
; break;
3187 case SPNB_RETURNS_ANY
:
3189 if (TLI
.isOperationLegalOrCustom(ISD::FMAXNUM
, VT
))
3191 else if (TLI
.isOperationLegalOrCustom(ISD::FMAXIMUM
, VT
))
3192 Opc
= ISD::FMAXIMUM
;
3193 else if (UseScalarMinMax
)
3194 Opc
= TLI
.isOperationLegalOrCustom(ISD::FMAXNUM
, VT
.getScalarType()) ?
3195 ISD::FMAXNUM
: ISD::FMAXIMUM
;
3209 if (!IsUnaryAbs
&& Opc
!= ISD::DELETED_NODE
&&
3210 (TLI
.isOperationLegalOrCustom(Opc
, VT
) ||
3212 TLI
.isOperationLegalOrCustom(Opc
, VT
.getScalarType()))) &&
3213 // If the underlying comparison instruction is used by any other
3214 // instruction, the consumed instructions won't be destroyed, so it is
3215 // not profitable to convert to a min/max.
3216 hasOnlySelectUsers(cast
<SelectInst
>(I
).getCondition())) {
3218 LHSVal
= getValue(LHS
);
3219 RHSVal
= getValue(RHS
);
3225 LHSVal
= getValue(LHS
);
3231 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3232 SDLoc dl
= getCurSDLoc();
3233 EVT VT
= LHSVal
.getNode()->getValueType(LHSVal
.getResNo() + i
);
3235 DAG
.getNode(OpCode
, dl
, VT
, LHSVal
.getValue(LHSVal
.getResNo() + i
));
3237 Values
[i
] = DAG
.getNode(ISD::SUB
, dl
, VT
, DAG
.getConstant(0, dl
, VT
),
3241 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3242 SmallVector
<SDValue
, 3> Ops(BaseOps
.begin(), BaseOps
.end());
3243 Ops
.push_back(SDValue(LHSVal
.getNode(), LHSVal
.getResNo() + i
));
3244 Ops
.push_back(SDValue(RHSVal
.getNode(), RHSVal
.getResNo() + i
));
3245 Values
[i
] = DAG
.getNode(
3246 OpCode
, getCurSDLoc(),
3247 LHSVal
.getNode()->getValueType(LHSVal
.getResNo() + i
), Ops
, Flags
);
3251 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3252 DAG
.getVTList(ValueVTs
), Values
));
3255 void SelectionDAGBuilder::visitTrunc(const User
&I
) {
3256 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3257 SDValue N
= getValue(I
.getOperand(0));
3258 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3260 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurSDLoc(), DestVT
, N
));
3263 void SelectionDAGBuilder::visitZExt(const User
&I
) {
3264 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3265 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3266 SDValue N
= getValue(I
.getOperand(0));
3267 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3269 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurSDLoc(), DestVT
, N
));
3272 void SelectionDAGBuilder::visitSExt(const User
&I
) {
3273 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3274 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3275 SDValue N
= getValue(I
.getOperand(0));
3276 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3278 setValue(&I
, DAG
.getNode(ISD::SIGN_EXTEND
, getCurSDLoc(), DestVT
, N
));
3281 void SelectionDAGBuilder::visitFPTrunc(const User
&I
) {
3282 // FPTrunc is never a no-op cast, no need to check
3283 SDValue N
= getValue(I
.getOperand(0));
3284 SDLoc dl
= getCurSDLoc();
3285 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3286 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3287 setValue(&I
, DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, N
,
3288 DAG
.getTargetConstant(
3289 0, dl
, TLI
.getPointerTy(DAG
.getDataLayout()))));
3292 void SelectionDAGBuilder::visitFPExt(const User
&I
) {
3293 // FPExt is never a no-op cast, no need to check
3294 SDValue N
= getValue(I
.getOperand(0));
3295 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3297 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, getCurSDLoc(), DestVT
, N
));
3300 void SelectionDAGBuilder::visitFPToUI(const User
&I
) {
3301 // FPToUI is never a no-op cast, no need to check
3302 SDValue N
= getValue(I
.getOperand(0));
3303 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3305 setValue(&I
, DAG
.getNode(ISD::FP_TO_UINT
, getCurSDLoc(), DestVT
, N
));
3308 void SelectionDAGBuilder::visitFPToSI(const User
&I
) {
3309 // FPToSI is never a no-op cast, no need to check
3310 SDValue N
= getValue(I
.getOperand(0));
3311 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3313 setValue(&I
, DAG
.getNode(ISD::FP_TO_SINT
, getCurSDLoc(), DestVT
, N
));
3316 void SelectionDAGBuilder::visitUIToFP(const User
&I
) {
3317 // UIToFP is never a no-op cast, no need to check
3318 SDValue N
= getValue(I
.getOperand(0));
3319 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3321 setValue(&I
, DAG
.getNode(ISD::UINT_TO_FP
, getCurSDLoc(), DestVT
, N
));
3324 void SelectionDAGBuilder::visitSIToFP(const User
&I
) {
3325 // SIToFP is never a no-op cast, no need to check
3326 SDValue N
= getValue(I
.getOperand(0));
3327 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3329 setValue(&I
, DAG
.getNode(ISD::SINT_TO_FP
, getCurSDLoc(), DestVT
, N
));
3332 void SelectionDAGBuilder::visitPtrToInt(const User
&I
) {
3333 // What to do depends on the size of the integer and the size of the pointer.
3334 // We can either truncate, zero extend, or no-op, accordingly.
3335 SDValue N
= getValue(I
.getOperand(0));
3336 auto &TLI
= DAG
.getTargetLoweringInfo();
3337 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3340 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getOperand(0)->getType());
3341 N
= DAG
.getPtrExtOrTrunc(N
, getCurSDLoc(), PtrMemVT
);
3342 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), DestVT
);
3346 void SelectionDAGBuilder::visitIntToPtr(const User
&I
) {
3347 // What to do depends on the size of the integer and the size of the pointer.
3348 // We can either truncate, zero extend, or no-op, accordingly.
3349 SDValue N
= getValue(I
.getOperand(0));
3350 auto &TLI
= DAG
.getTargetLoweringInfo();
3351 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3352 EVT PtrMemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType());
3353 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), PtrMemVT
);
3354 N
= DAG
.getPtrExtOrTrunc(N
, getCurSDLoc(), DestVT
);
3358 void SelectionDAGBuilder::visitBitCast(const User
&I
) {
3359 SDValue N
= getValue(I
.getOperand(0));
3360 SDLoc dl
= getCurSDLoc();
3361 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3364 // BitCast assures us that source and destination are the same size so this is
3365 // either a BITCAST or a no-op.
3366 if (DestVT
!= N
.getValueType())
3367 setValue(&I
, DAG
.getNode(ISD::BITCAST
, dl
,
3368 DestVT
, N
)); // convert types.
3369 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3370 // might fold any kind of constant expression to an integer constant and that
3371 // is not what we are looking for. Only recognize a bitcast of a genuine
3372 // constant integer as an opaque constant.
3373 else if(ConstantInt
*C
= dyn_cast
<ConstantInt
>(I
.getOperand(0)))
3374 setValue(&I
, DAG
.getConstant(C
->getValue(), dl
, DestVT
, /*isTarget=*/false,
3377 setValue(&I
, N
); // noop cast.
3380 void SelectionDAGBuilder::visitAddrSpaceCast(const User
&I
) {
3381 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3382 const Value
*SV
= I
.getOperand(0);
3383 SDValue N
= getValue(SV
);
3384 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3386 unsigned SrcAS
= SV
->getType()->getPointerAddressSpace();
3387 unsigned DestAS
= I
.getType()->getPointerAddressSpace();
3389 if (!TM
.isNoopAddrSpaceCast(SrcAS
, DestAS
))
3390 N
= DAG
.getAddrSpaceCast(getCurSDLoc(), DestVT
, N
, SrcAS
, DestAS
);
3395 void SelectionDAGBuilder::visitInsertElement(const User
&I
) {
3396 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3397 SDValue InVec
= getValue(I
.getOperand(0));
3398 SDValue InVal
= getValue(I
.getOperand(1));
3399 SDValue InIdx
= DAG
.getSExtOrTrunc(getValue(I
.getOperand(2)), getCurSDLoc(),
3400 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
3401 setValue(&I
, DAG
.getNode(ISD::INSERT_VECTOR_ELT
, getCurSDLoc(),
3402 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
3403 InVec
, InVal
, InIdx
));
3406 void SelectionDAGBuilder::visitExtractElement(const User
&I
) {
3407 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3408 SDValue InVec
= getValue(I
.getOperand(0));
3409 SDValue InIdx
= DAG
.getSExtOrTrunc(getValue(I
.getOperand(1)), getCurSDLoc(),
3410 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
3411 setValue(&I
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurSDLoc(),
3412 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
3416 void SelectionDAGBuilder::visitShuffleVector(const User
&I
) {
3417 SDValue Src1
= getValue(I
.getOperand(0));
3418 SDValue Src2
= getValue(I
.getOperand(1));
3420 if (auto *SVI
= dyn_cast
<ShuffleVectorInst
>(&I
))
3421 Mask
= SVI
->getShuffleMask();
3423 Mask
= cast
<ConstantExpr
>(I
).getShuffleMask();
3424 SDLoc DL
= getCurSDLoc();
3425 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3426 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3427 EVT SrcVT
= Src1
.getValueType();
3429 if (all_of(Mask
, [](int Elem
) { return Elem
== 0; }) &&
3430 VT
.isScalableVector()) {
3431 // Canonical splat form of first element of first input vector.
3433 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, SrcVT
.getScalarType(), Src1
,
3434 DAG
.getVectorIdxConstant(0, DL
));
3435 setValue(&I
, DAG
.getNode(ISD::SPLAT_VECTOR
, DL
, VT
, FirstElt
));
3439 // For now, we only handle splats for scalable vectors.
3440 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3441 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3442 assert(!VT
.isScalableVector() && "Unsupported scalable vector shuffle");
3444 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
3445 unsigned MaskNumElts
= Mask
.size();
3447 if (SrcNumElts
== MaskNumElts
) {
3448 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, Src1
, Src2
, Mask
));
3452 // Normalize the shuffle vector since mask and vector length don't match.
3453 if (SrcNumElts
< MaskNumElts
) {
3454 // Mask is longer than the source vectors. We can use concatenate vector to
3455 // make the mask and vectors lengths match.
3457 if (MaskNumElts
% SrcNumElts
== 0) {
3458 // Mask length is a multiple of the source vector length.
3459 // Check if the shuffle is some kind of concatenation of the input
3461 unsigned NumConcat
= MaskNumElts
/ SrcNumElts
;
3462 bool IsConcat
= true;
3463 SmallVector
<int, 8> ConcatSrcs(NumConcat
, -1);
3464 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
3468 // Ensure the indices in each SrcVT sized piece are sequential and that
3469 // the same source is used for the whole piece.
3470 if ((Idx
% SrcNumElts
!= (i
% SrcNumElts
)) ||
3471 (ConcatSrcs
[i
/ SrcNumElts
] >= 0 &&
3472 ConcatSrcs
[i
/ SrcNumElts
] != (int)(Idx
/ SrcNumElts
))) {
3476 // Remember which source this index came from.
3477 ConcatSrcs
[i
/ SrcNumElts
] = Idx
/ SrcNumElts
;
3480 // The shuffle is concatenating multiple vectors together. Just emit
3481 // a CONCAT_VECTORS operation.
3483 SmallVector
<SDValue
, 8> ConcatOps
;
3484 for (auto Src
: ConcatSrcs
) {
3486 ConcatOps
.push_back(DAG
.getUNDEF(SrcVT
));
3488 ConcatOps
.push_back(Src1
);
3490 ConcatOps
.push_back(Src2
);
3492 setValue(&I
, DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
));
3497 unsigned PaddedMaskNumElts
= alignTo(MaskNumElts
, SrcNumElts
);
3498 unsigned NumConcat
= PaddedMaskNumElts
/ SrcNumElts
;
3499 EVT PaddedVT
= EVT::getVectorVT(*DAG
.getContext(), VT
.getScalarType(),
3502 // Pad both vectors with undefs to make them the same length as the mask.
3503 SDValue UndefVal
= DAG
.getUNDEF(SrcVT
);
3505 SmallVector
<SDValue
, 8> MOps1(NumConcat
, UndefVal
);
3506 SmallVector
<SDValue
, 8> MOps2(NumConcat
, UndefVal
);
3510 Src1
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, PaddedVT
, MOps1
);
3511 Src2
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, PaddedVT
, MOps2
);
3513 // Readjust mask for new input vector length.
3514 SmallVector
<int, 8> MappedOps(PaddedMaskNumElts
, -1);
3515 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
3517 if (Idx
>= (int)SrcNumElts
)
3518 Idx
-= SrcNumElts
- PaddedMaskNumElts
;
3522 SDValue Result
= DAG
.getVectorShuffle(PaddedVT
, DL
, Src1
, Src2
, MappedOps
);
3524 // If the concatenated vector was padded, extract a subvector with the
3525 // correct number of elements.
3526 if (MaskNumElts
!= PaddedMaskNumElts
)
3527 Result
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Result
,
3528 DAG
.getVectorIdxConstant(0, DL
));
3530 setValue(&I
, Result
);
3534 if (SrcNumElts
> MaskNumElts
) {
3535 // Analyze the access pattern of the vector to see if we can extract
3536 // two subvectors and do the shuffle.
3537 int StartIdx
[2] = { -1, -1 }; // StartIdx to extract from
3538 bool CanExtract
= true;
3539 for (int Idx
: Mask
) {
3544 if (Idx
>= (int)SrcNumElts
) {
3549 // If all the indices come from the same MaskNumElts sized portion of
3550 // the sources we can use extract. Also make sure the extract wouldn't
3551 // extract past the end of the source.
3552 int NewStartIdx
= alignDown(Idx
, MaskNumElts
);
3553 if (NewStartIdx
+ MaskNumElts
> SrcNumElts
||
3554 (StartIdx
[Input
] >= 0 && StartIdx
[Input
] != NewStartIdx
))
3556 // Make sure we always update StartIdx as we use it to track if all
3557 // elements are undef.
3558 StartIdx
[Input
] = NewStartIdx
;
3561 if (StartIdx
[0] < 0 && StartIdx
[1] < 0) {
3562 setValue(&I
, DAG
.getUNDEF(VT
)); // Vectors are not used.
3566 // Extract appropriate subvector and generate a vector shuffle
3567 for (unsigned Input
= 0; Input
< 2; ++Input
) {
3568 SDValue
&Src
= Input
== 0 ? Src1
: Src2
;
3569 if (StartIdx
[Input
] < 0)
3570 Src
= DAG
.getUNDEF(VT
);
3572 Src
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Src
,
3573 DAG
.getVectorIdxConstant(StartIdx
[Input
], DL
));
3577 // Calculate new mask.
3578 SmallVector
<int, 8> MappedOps(Mask
.begin(), Mask
.end());
3579 for (int &Idx
: MappedOps
) {
3580 if (Idx
>= (int)SrcNumElts
)
3581 Idx
-= SrcNumElts
+ StartIdx
[1] - MaskNumElts
;
3586 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, Src1
, Src2
, MappedOps
));
3591 // We can't use either concat vectors or extract subvectors so fall back to
3592 // replacing the shuffle with extract and build vector.
3593 // to insert and build vector.
3594 EVT EltVT
= VT
.getVectorElementType();
3595 SmallVector
<SDValue
,8> Ops
;
3596 for (int Idx
: Mask
) {
3600 Res
= DAG
.getUNDEF(EltVT
);
3602 SDValue
&Src
= Idx
< (int)SrcNumElts
? Src1
: Src2
;
3603 if (Idx
>= (int)SrcNumElts
) Idx
-= SrcNumElts
;
3605 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, Src
,
3606 DAG
.getVectorIdxConstant(Idx
, DL
));
3612 setValue(&I
, DAG
.getBuildVector(VT
, DL
, Ops
));
3615 void SelectionDAGBuilder::visitInsertValue(const User
&I
) {
3616 ArrayRef
<unsigned> Indices
;
3617 if (const InsertValueInst
*IV
= dyn_cast
<InsertValueInst
>(&I
))
3618 Indices
= IV
->getIndices();
3620 Indices
= cast
<ConstantExpr
>(&I
)->getIndices();
3622 const Value
*Op0
= I
.getOperand(0);
3623 const Value
*Op1
= I
.getOperand(1);
3624 Type
*AggTy
= I
.getType();
3625 Type
*ValTy
= Op1
->getType();
3626 bool IntoUndef
= isa
<UndefValue
>(Op0
);
3627 bool FromUndef
= isa
<UndefValue
>(Op1
);
3629 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, Indices
);
3631 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3632 SmallVector
<EVT
, 4> AggValueVTs
;
3633 ComputeValueVTs(TLI
, DAG
.getDataLayout(), AggTy
, AggValueVTs
);
3634 SmallVector
<EVT
, 4> ValValueVTs
;
3635 ComputeValueVTs(TLI
, DAG
.getDataLayout(), ValTy
, ValValueVTs
);
3637 unsigned NumAggValues
= AggValueVTs
.size();
3638 unsigned NumValValues
= ValValueVTs
.size();
3639 SmallVector
<SDValue
, 4> Values(NumAggValues
);
3641 // Ignore an insertvalue that produces an empty object
3642 if (!NumAggValues
) {
3643 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
3647 SDValue Agg
= getValue(Op0
);
3649 // Copy the beginning value(s) from the original aggregate.
3650 for (; i
!= LinearIndex
; ++i
)
3651 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3652 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3653 // Copy values from the inserted value(s).
3655 SDValue Val
= getValue(Op1
);
3656 for (; i
!= LinearIndex
+ NumValValues
; ++i
)
3657 Values
[i
] = FromUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3658 SDValue(Val
.getNode(), Val
.getResNo() + i
- LinearIndex
);
3660 // Copy remaining value(s) from the original aggregate.
3661 for (; i
!= NumAggValues
; ++i
)
3662 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3663 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3665 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3666 DAG
.getVTList(AggValueVTs
), Values
));
3669 void SelectionDAGBuilder::visitExtractValue(const User
&I
) {
3670 ArrayRef
<unsigned> Indices
;
3671 if (const ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(&I
))
3672 Indices
= EV
->getIndices();
3674 Indices
= cast
<ConstantExpr
>(&I
)->getIndices();
3676 const Value
*Op0
= I
.getOperand(0);
3677 Type
*AggTy
= Op0
->getType();
3678 Type
*ValTy
= I
.getType();
3679 bool OutOfUndef
= isa
<UndefValue
>(Op0
);
3681 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, Indices
);
3683 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3684 SmallVector
<EVT
, 4> ValValueVTs
;
3685 ComputeValueVTs(TLI
, DAG
.getDataLayout(), ValTy
, ValValueVTs
);
3687 unsigned NumValValues
= ValValueVTs
.size();
3689 // Ignore a extractvalue that produces an empty object
3690 if (!NumValValues
) {
3691 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
3695 SmallVector
<SDValue
, 4> Values(NumValValues
);
3697 SDValue Agg
= getValue(Op0
);
3698 // Copy out the selected value(s).
3699 for (unsigned i
= LinearIndex
; i
!= LinearIndex
+ NumValValues
; ++i
)
3700 Values
[i
- LinearIndex
] =
3702 DAG
.getUNDEF(Agg
.getNode()->getValueType(Agg
.getResNo() + i
)) :
3703 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3705 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3706 DAG
.getVTList(ValValueVTs
), Values
));
3709 void SelectionDAGBuilder::visitGetElementPtr(const User
&I
) {
3710 Value
*Op0
= I
.getOperand(0);
3711 // Note that the pointer operand may be a vector of pointers. Take the scalar
3712 // element which holds a pointer.
3713 unsigned AS
= Op0
->getType()->getScalarType()->getPointerAddressSpace();
3714 SDValue N
= getValue(Op0
);
3715 SDLoc dl
= getCurSDLoc();
3716 auto &TLI
= DAG
.getTargetLoweringInfo();
3718 // Normalize Vector GEP - all scalar operands should be converted to the
3720 bool IsVectorGEP
= I
.getType()->isVectorTy();
3721 ElementCount VectorElementCount
=
3722 IsVectorGEP
? cast
<VectorType
>(I
.getType())->getElementCount()
3723 : ElementCount::getFixed(0);
3725 if (IsVectorGEP
&& !N
.getValueType().isVector()) {
3726 LLVMContext
&Context
= *DAG
.getContext();
3727 EVT VT
= EVT::getVectorVT(Context
, N
.getValueType(), VectorElementCount
);
3728 if (VectorElementCount
.isScalable())
3729 N
= DAG
.getSplatVector(VT
, dl
, N
);
3731 N
= DAG
.getSplatBuildVector(VT
, dl
, N
);
3734 for (gep_type_iterator GTI
= gep_type_begin(&I
), E
= gep_type_end(&I
);
3736 const Value
*Idx
= GTI
.getOperand();
3737 if (StructType
*StTy
= GTI
.getStructTypeOrNull()) {
3738 unsigned Field
= cast
<Constant
>(Idx
)->getUniqueInteger().getZExtValue();
3741 uint64_t Offset
= DL
->getStructLayout(StTy
)->getElementOffset(Field
);
3743 // In an inbounds GEP with an offset that is nonnegative even when
3744 // interpreted as signed, assume there is no unsigned overflow.
3746 if (int64_t(Offset
) >= 0 && cast
<GEPOperator
>(I
).isInBounds())
3747 Flags
.setNoUnsignedWrap(true);
3749 N
= DAG
.getNode(ISD::ADD
, dl
, N
.getValueType(), N
,
3750 DAG
.getConstant(Offset
, dl
, N
.getValueType()), Flags
);
3753 // IdxSize is the width of the arithmetic according to IR semantics.
3754 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3755 // (and fix up the result later).
3756 unsigned IdxSize
= DAG
.getDataLayout().getIndexSizeInBits(AS
);
3757 MVT IdxTy
= MVT::getIntegerVT(IdxSize
);
3758 TypeSize ElementSize
= DL
->getTypeAllocSize(GTI
.getIndexedType());
3759 // We intentionally mask away the high bits here; ElementSize may not
3761 APInt
ElementMul(IdxSize
, ElementSize
.getKnownMinSize());
3762 bool ElementScalable
= ElementSize
.isScalable();
3764 // If this is a scalar constant or a splat vector of constants,
3765 // handle it quickly.
3766 const auto *C
= dyn_cast
<Constant
>(Idx
);
3767 if (C
&& isa
<VectorType
>(C
->getType()))
3768 C
= C
->getSplatValue();
3770 const auto *CI
= dyn_cast_or_null
<ConstantInt
>(C
);
3771 if (CI
&& CI
->isZero())
3773 if (CI
&& !ElementScalable
) {
3774 APInt Offs
= ElementMul
* CI
->getValue().sextOrTrunc(IdxSize
);
3775 LLVMContext
&Context
= *DAG
.getContext();
3778 OffsVal
= DAG
.getConstant(
3779 Offs
, dl
, EVT::getVectorVT(Context
, IdxTy
, VectorElementCount
));
3781 OffsVal
= DAG
.getConstant(Offs
, dl
, IdxTy
);
3783 // In an inbounds GEP with an offset that is nonnegative even when
3784 // interpreted as signed, assume there is no unsigned overflow.
3786 if (Offs
.isNonNegative() && cast
<GEPOperator
>(I
).isInBounds())
3787 Flags
.setNoUnsignedWrap(true);
3789 OffsVal
= DAG
.getSExtOrTrunc(OffsVal
, dl
, N
.getValueType());
3791 N
= DAG
.getNode(ISD::ADD
, dl
, N
.getValueType(), N
, OffsVal
, Flags
);
3795 // N = N + Idx * ElementMul;
3796 SDValue IdxN
= getValue(Idx
);
3798 if (!IdxN
.getValueType().isVector() && IsVectorGEP
) {
3799 EVT VT
= EVT::getVectorVT(*Context
, IdxN
.getValueType(),
3800 VectorElementCount
);
3801 if (VectorElementCount
.isScalable())
3802 IdxN
= DAG
.getSplatVector(VT
, dl
, IdxN
);
3804 IdxN
= DAG
.getSplatBuildVector(VT
, dl
, IdxN
);
3807 // If the index is smaller or larger than intptr_t, truncate or extend
3809 IdxN
= DAG
.getSExtOrTrunc(IdxN
, dl
, N
.getValueType());
3811 if (ElementScalable
) {
3812 EVT VScaleTy
= N
.getValueType().getScalarType();
3813 SDValue VScale
= DAG
.getNode(
3814 ISD::VSCALE
, dl
, VScaleTy
,
3815 DAG
.getConstant(ElementMul
.getZExtValue(), dl
, VScaleTy
));
3817 VScale
= DAG
.getSplatVector(N
.getValueType(), dl
, VScale
);
3818 IdxN
= DAG
.getNode(ISD::MUL
, dl
, N
.getValueType(), IdxN
, VScale
);
3820 // If this is a multiply by a power of two, turn it into a shl
3821 // immediately. This is a very common case.
3822 if (ElementMul
!= 1) {
3823 if (ElementMul
.isPowerOf2()) {
3824 unsigned Amt
= ElementMul
.logBase2();
3825 IdxN
= DAG
.getNode(ISD::SHL
, dl
,
3826 N
.getValueType(), IdxN
,
3827 DAG
.getConstant(Amt
, dl
, IdxN
.getValueType()));
3829 SDValue Scale
= DAG
.getConstant(ElementMul
.getZExtValue(), dl
,
3830 IdxN
.getValueType());
3831 IdxN
= DAG
.getNode(ISD::MUL
, dl
,
3832 N
.getValueType(), IdxN
, Scale
);
3837 N
= DAG
.getNode(ISD::ADD
, dl
,
3838 N
.getValueType(), N
, IdxN
);
3842 MVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout(), AS
);
3843 MVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout(), AS
);
3845 PtrTy
= MVT::getVectorVT(PtrTy
, VectorElementCount
);
3846 PtrMemTy
= MVT::getVectorVT(PtrMemTy
, VectorElementCount
);
3849 if (PtrMemTy
!= PtrTy
&& !cast
<GEPOperator
>(I
).isInBounds())
3850 N
= DAG
.getPtrExtendInReg(N
, dl
, PtrMemTy
);
3855 void SelectionDAGBuilder::visitAlloca(const AllocaInst
&I
) {
3856 // If this is a fixed sized alloca in the entry block of the function,
3857 // allocate it statically on the stack.
3858 if (FuncInfo
.StaticAllocaMap
.count(&I
))
3859 return; // getValue will auto-populate this.
3861 SDLoc dl
= getCurSDLoc();
3862 Type
*Ty
= I
.getAllocatedType();
3863 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3864 auto &DL
= DAG
.getDataLayout();
3865 uint64_t TySize
= DL
.getTypeAllocSize(Ty
);
3866 MaybeAlign Alignment
= std::max(DL
.getPrefTypeAlign(Ty
), I
.getAlign());
3868 SDValue AllocSize
= getValue(I
.getArraySize());
3870 EVT IntPtr
= TLI
.getPointerTy(DAG
.getDataLayout(), DL
.getAllocaAddrSpace());
3871 if (AllocSize
.getValueType() != IntPtr
)
3872 AllocSize
= DAG
.getZExtOrTrunc(AllocSize
, dl
, IntPtr
);
3874 AllocSize
= DAG
.getNode(ISD::MUL
, dl
, IntPtr
,
3876 DAG
.getConstant(TySize
, dl
, IntPtr
));
3878 // Handle alignment. If the requested alignment is less than or equal to
3879 // the stack alignment, ignore it. If the size is greater than or equal to
3880 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3881 Align StackAlign
= DAG
.getSubtarget().getFrameLowering()->getStackAlign();
3882 if (*Alignment
<= StackAlign
)
3885 const uint64_t StackAlignMask
= StackAlign
.value() - 1U;
3886 // Round the size of the allocation up to the stack alignment size
3887 // by add SA-1 to the size. This doesn't overflow because we're computing
3888 // an address inside an alloca.
3890 Flags
.setNoUnsignedWrap(true);
3891 AllocSize
= DAG
.getNode(ISD::ADD
, dl
, AllocSize
.getValueType(), AllocSize
,
3892 DAG
.getConstant(StackAlignMask
, dl
, IntPtr
), Flags
);
3894 // Mask out the low bits for alignment purposes.
3895 AllocSize
= DAG
.getNode(ISD::AND
, dl
, AllocSize
.getValueType(), AllocSize
,
3896 DAG
.getConstant(~StackAlignMask
, dl
, IntPtr
));
3899 getRoot(), AllocSize
,
3900 DAG
.getConstant(Alignment
? Alignment
->value() : 0, dl
, IntPtr
)};
3901 SDVTList VTs
= DAG
.getVTList(AllocSize
.getValueType(), MVT::Other
);
3902 SDValue DSA
= DAG
.getNode(ISD::DYNAMIC_STACKALLOC
, dl
, VTs
, Ops
);
3904 DAG
.setRoot(DSA
.getValue(1));
3906 assert(FuncInfo
.MF
->getFrameInfo().hasVarSizedObjects());
3909 void SelectionDAGBuilder::visitLoad(const LoadInst
&I
) {
3911 return visitAtomicLoad(I
);
3913 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3914 const Value
*SV
= I
.getOperand(0);
3915 if (TLI
.supportSwiftError()) {
3916 // Swifterror values can come from either a function parameter with
3917 // swifterror attribute or an alloca with swifterror attribute.
3918 if (const Argument
*Arg
= dyn_cast
<Argument
>(SV
)) {
3919 if (Arg
->hasSwiftErrorAttr())
3920 return visitLoadFromSwiftError(I
);
3923 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(SV
)) {
3924 if (Alloca
->isSwiftError())
3925 return visitLoadFromSwiftError(I
);
3929 SDValue Ptr
= getValue(SV
);
3931 Type
*Ty
= I
.getType();
3932 Align Alignment
= I
.getAlign();
3935 I
.getAAMetadata(AAInfo
);
3936 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
3938 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
3939 SmallVector
<uint64_t, 4> Offsets
;
3940 ComputeValueVTs(TLI
, DAG
.getDataLayout(), Ty
, ValueVTs
, &MemVTs
, &Offsets
);
3941 unsigned NumValues
= ValueVTs
.size();
3945 bool isVolatile
= I
.isVolatile();
3948 bool ConstantMemory
= false;
3950 // Serialize volatile loads with other side effects.
3952 else if (NumValues
> MaxParallelChains
)
3953 Root
= getMemoryRoot();
3955 AA
->pointsToConstantMemory(MemoryLocation(
3957 LocationSize::precise(DAG
.getDataLayout().getTypeStoreSize(Ty
)),
3959 // Do not serialize (non-volatile) loads of constant memory with anything.
3960 Root
= DAG
.getEntryNode();
3961 ConstantMemory
= true;
3963 // Do not serialize non-volatile loads against each other.
3964 Root
= DAG
.getRoot();
3967 SDLoc dl
= getCurSDLoc();
3970 Root
= TLI
.prepareVolatileOrAtomicLoad(Root
, dl
, DAG
);
3972 // An aggregate load cannot wrap around the address space, so offsets to its
3973 // parts don't wrap either.
3975 Flags
.setNoUnsignedWrap(true);
3977 SmallVector
<SDValue
, 4> Values(NumValues
);
3978 SmallVector
<SDValue
, 4> Chains(std::min(MaxParallelChains
, NumValues
));
3979 EVT PtrVT
= Ptr
.getValueType();
3981 MachineMemOperand::Flags MMOFlags
3982 = TLI
.getLoadMemOperandFlags(I
, DAG
.getDataLayout());
3984 unsigned ChainI
= 0;
3985 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
3986 // Serializing loads here may result in excessive register pressure, and
3987 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3988 // could recover a bit by hoisting nodes upward in the chain by recognizing
3989 // they are side-effect free or do not alias. The optimizer should really
3990 // avoid this case by converting large object/array copies to llvm.memcpy
3991 // (MaxParallelChains should always remain as failsafe).
3992 if (ChainI
== MaxParallelChains
) {
3993 assert(PendingLoads
.empty() && "PendingLoads must be serialized first");
3994 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3995 makeArrayRef(Chains
.data(), ChainI
));
3999 SDValue A
= DAG
.getNode(ISD::ADD
, dl
,
4001 DAG
.getConstant(Offsets
[i
], dl
, PtrVT
),
4004 SDValue L
= DAG
.getLoad(MemVTs
[i
], dl
, Root
, A
,
4005 MachinePointerInfo(SV
, Offsets
[i
]), Alignment
,
4006 MMOFlags
, AAInfo
, Ranges
);
4007 Chains
[ChainI
] = L
.getValue(1);
4009 if (MemVTs
[i
] != ValueVTs
[i
])
4010 L
= DAG
.getZExtOrTrunc(L
, dl
, ValueVTs
[i
]);
4015 if (!ConstantMemory
) {
4016 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4017 makeArrayRef(Chains
.data(), ChainI
));
4021 PendingLoads
.push_back(Chain
);
4024 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4025 DAG
.getVTList(ValueVTs
), Values
));
4028 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst
&I
) {
4029 assert(DAG
.getTargetLoweringInfo().supportSwiftError() &&
4030 "call visitStoreToSwiftError when backend supports swifterror");
4032 SmallVector
<EVT
, 4> ValueVTs
;
4033 SmallVector
<uint64_t, 4> Offsets
;
4034 const Value
*SrcV
= I
.getOperand(0);
4035 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(),
4036 SrcV
->getType(), ValueVTs
, &Offsets
);
4037 assert(ValueVTs
.size() == 1 && Offsets
[0] == 0 &&
4038 "expect a single EVT for swifterror");
4040 SDValue Src
= getValue(SrcV
);
4041 // Create a virtual register, then update the virtual register.
4043 SwiftError
.getOrCreateVRegDefAt(&I
, FuncInfo
.MBB
, I
.getPointerOperand());
4044 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4045 // Chain can be getRoot or getControlRoot.
4046 SDValue CopyNode
= DAG
.getCopyToReg(getRoot(), getCurSDLoc(), VReg
,
4047 SDValue(Src
.getNode(), Src
.getResNo()));
4048 DAG
.setRoot(CopyNode
);
4051 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst
&I
) {
4052 assert(DAG
.getTargetLoweringInfo().supportSwiftError() &&
4053 "call visitLoadFromSwiftError when backend supports swifterror");
4055 assert(!I
.isVolatile() &&
4056 !I
.hasMetadata(LLVMContext::MD_nontemporal
) &&
4057 !I
.hasMetadata(LLVMContext::MD_invariant_load
) &&
4058 "Support volatile, non temporal, invariant for load_from_swift_error");
4060 const Value
*SV
= I
.getOperand(0);
4061 Type
*Ty
= I
.getType();
4063 I
.getAAMetadata(AAInfo
);
4066 !AA
->pointsToConstantMemory(MemoryLocation(
4067 SV
, LocationSize::precise(DAG
.getDataLayout().getTypeStoreSize(Ty
)),
4069 "load_from_swift_error should not be constant memory");
4071 SmallVector
<EVT
, 4> ValueVTs
;
4072 SmallVector
<uint64_t, 4> Offsets
;
4073 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), Ty
,
4074 ValueVTs
, &Offsets
);
4075 assert(ValueVTs
.size() == 1 && Offsets
[0] == 0 &&
4076 "expect a single EVT for swifterror");
4078 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4079 SDValue L
= DAG
.getCopyFromReg(
4080 getRoot(), getCurSDLoc(),
4081 SwiftError
.getOrCreateVRegUseAt(&I
, FuncInfo
.MBB
, SV
), ValueVTs
[0]);
4086 void SelectionDAGBuilder::visitStore(const StoreInst
&I
) {
4088 return visitAtomicStore(I
);
4090 const Value
*SrcV
= I
.getOperand(0);
4091 const Value
*PtrV
= I
.getOperand(1);
4093 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4094 if (TLI
.supportSwiftError()) {
4095 // Swifterror values can come from either a function parameter with
4096 // swifterror attribute or an alloca with swifterror attribute.
4097 if (const Argument
*Arg
= dyn_cast
<Argument
>(PtrV
)) {
4098 if (Arg
->hasSwiftErrorAttr())
4099 return visitStoreToSwiftError(I
);
4102 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(PtrV
)) {
4103 if (Alloca
->isSwiftError())
4104 return visitStoreToSwiftError(I
);
4108 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
4109 SmallVector
<uint64_t, 4> Offsets
;
4110 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(),
4111 SrcV
->getType(), ValueVTs
, &MemVTs
, &Offsets
);
4112 unsigned NumValues
= ValueVTs
.size();
4116 // Get the lowered operands. Note that we do this after
4117 // checking if NumResults is zero, because with zero results
4118 // the operands won't have values in the map.
4119 SDValue Src
= getValue(SrcV
);
4120 SDValue Ptr
= getValue(PtrV
);
4122 SDValue Root
= I
.isVolatile() ? getRoot() : getMemoryRoot();
4123 SmallVector
<SDValue
, 4> Chains(std::min(MaxParallelChains
, NumValues
));
4124 SDLoc dl
= getCurSDLoc();
4125 Align Alignment
= I
.getAlign();
4127 I
.getAAMetadata(AAInfo
);
4129 auto MMOFlags
= TLI
.getStoreMemOperandFlags(I
, DAG
.getDataLayout());
4131 // An aggregate load cannot wrap around the address space, so offsets to its
4132 // parts don't wrap either.
4134 Flags
.setNoUnsignedWrap(true);
4136 unsigned ChainI
= 0;
4137 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
4138 // See visitLoad comments.
4139 if (ChainI
== MaxParallelChains
) {
4140 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4141 makeArrayRef(Chains
.data(), ChainI
));
4146 DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(Offsets
[i
]), dl
, Flags
);
4147 SDValue Val
= SDValue(Src
.getNode(), Src
.getResNo() + i
);
4148 if (MemVTs
[i
] != ValueVTs
[i
])
4149 Val
= DAG
.getPtrExtOrTrunc(Val
, dl
, MemVTs
[i
]);
4151 DAG
.getStore(Root
, dl
, Val
, Add
, MachinePointerInfo(PtrV
, Offsets
[i
]),
4152 Alignment
, MMOFlags
, AAInfo
);
4153 Chains
[ChainI
] = St
;
4156 SDValue StoreNode
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4157 makeArrayRef(Chains
.data(), ChainI
));
4158 DAG
.setRoot(StoreNode
);
4161 void SelectionDAGBuilder::visitMaskedStore(const CallInst
&I
,
4162 bool IsCompressing
) {
4163 SDLoc sdl
= getCurSDLoc();
4165 auto getMaskedStoreOps
= [&](Value
*&Ptr
, Value
*&Mask
, Value
*&Src0
,
4166 MaybeAlign
&Alignment
) {
4167 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4168 Src0
= I
.getArgOperand(0);
4169 Ptr
= I
.getArgOperand(1);
4170 Alignment
= cast
<ConstantInt
>(I
.getArgOperand(2))->getMaybeAlignValue();
4171 Mask
= I
.getArgOperand(3);
4173 auto getCompressingStoreOps
= [&](Value
*&Ptr
, Value
*&Mask
, Value
*&Src0
,
4174 MaybeAlign
&Alignment
) {
4175 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4176 Src0
= I
.getArgOperand(0);
4177 Ptr
= I
.getArgOperand(1);
4178 Mask
= I
.getArgOperand(2);
4182 Value
*PtrOperand
, *MaskOperand
, *Src0Operand
;
4183 MaybeAlign Alignment
;
4185 getCompressingStoreOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4187 getMaskedStoreOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4189 SDValue Ptr
= getValue(PtrOperand
);
4190 SDValue Src0
= getValue(Src0Operand
);
4191 SDValue Mask
= getValue(MaskOperand
);
4192 SDValue Offset
= DAG
.getUNDEF(Ptr
.getValueType());
4194 EVT VT
= Src0
.getValueType();
4196 Alignment
= DAG
.getEVTAlign(VT
);
4199 I
.getAAMetadata(AAInfo
);
4201 MachineMemOperand
*MMO
= DAG
.getMachineFunction().getMachineMemOperand(
4202 MachinePointerInfo(PtrOperand
), MachineMemOperand::MOStore
,
4203 // TODO: Make MachineMemOperands aware of scalable
4205 VT
.getStoreSize().getKnownMinSize(), *Alignment
, AAInfo
);
4207 DAG
.getMaskedStore(getMemoryRoot(), sdl
, Src0
, Ptr
, Offset
, Mask
, VT
, MMO
,
4208 ISD::UNINDEXED
, false /* Truncating */, IsCompressing
);
4209 DAG
.setRoot(StoreNode
);
4210 setValue(&I
, StoreNode
);
4213 // Get a uniform base for the Gather/Scatter intrinsic.
4214 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4215 // We try to represent it as a base pointer + vector of indices.
4216 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4217 // The first operand of the GEP may be a single pointer or a vector of pointers
4219 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4221 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4222 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4224 // When the first GEP operand is a single pointer - it is the uniform base we
4225 // are looking for. If first operand of the GEP is a splat vector - we
4226 // extract the splat value and use it as a uniform base.
4227 // In all other cases the function returns 'false'.
4228 static bool getUniformBase(const Value
*Ptr
, SDValue
&Base
, SDValue
&Index
,
4229 ISD::MemIndexType
&IndexType
, SDValue
&Scale
,
4230 SelectionDAGBuilder
*SDB
, const BasicBlock
*CurBB
) {
4231 SelectionDAG
& DAG
= SDB
->DAG
;
4232 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4233 const DataLayout
&DL
= DAG
.getDataLayout();
4235 assert(Ptr
->getType()->isVectorTy() && "Uexpected pointer type");
4237 // Handle splat constant pointer.
4238 if (auto *C
= dyn_cast
<Constant
>(Ptr
)) {
4239 C
= C
->getSplatValue();
4243 Base
= SDB
->getValue(C
);
4245 unsigned NumElts
= cast
<FixedVectorType
>(Ptr
->getType())->getNumElements();
4246 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), TLI
.getPointerTy(DL
), NumElts
);
4247 Index
= DAG
.getConstant(0, SDB
->getCurSDLoc(), VT
);
4248 IndexType
= ISD::SIGNED_SCALED
;
4249 Scale
= DAG
.getTargetConstant(1, SDB
->getCurSDLoc(), TLI
.getPointerTy(DL
));
4253 const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
4254 if (!GEP
|| GEP
->getParent() != CurBB
)
4257 if (GEP
->getNumOperands() != 2)
4260 const Value
*BasePtr
= GEP
->getPointerOperand();
4261 const Value
*IndexVal
= GEP
->getOperand(GEP
->getNumOperands() - 1);
4263 // Make sure the base is scalar and the index is a vector.
4264 if (BasePtr
->getType()->isVectorTy() || !IndexVal
->getType()->isVectorTy())
4267 Base
= SDB
->getValue(BasePtr
);
4268 Index
= SDB
->getValue(IndexVal
);
4269 IndexType
= ISD::SIGNED_SCALED
;
4270 Scale
= DAG
.getTargetConstant(
4271 DL
.getTypeAllocSize(GEP
->getResultElementType()),
4272 SDB
->getCurSDLoc(), TLI
.getPointerTy(DL
));
4276 void SelectionDAGBuilder::visitMaskedScatter(const CallInst
&I
) {
4277 SDLoc sdl
= getCurSDLoc();
4279 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4280 const Value
*Ptr
= I
.getArgOperand(1);
4281 SDValue Src0
= getValue(I
.getArgOperand(0));
4282 SDValue Mask
= getValue(I
.getArgOperand(3));
4283 EVT VT
= Src0
.getValueType();
4284 Align Alignment
= cast
<ConstantInt
>(I
.getArgOperand(2))
4285 ->getMaybeAlignValue()
4286 .getValueOr(DAG
.getEVTAlign(VT
));
4287 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4290 I
.getAAMetadata(AAInfo
);
4294 ISD::MemIndexType IndexType
;
4296 bool UniformBase
= getUniformBase(Ptr
, Base
, Index
, IndexType
, Scale
, this,
4299 unsigned AS
= Ptr
->getType()->getScalarType()->getPointerAddressSpace();
4300 MachineMemOperand
*MMO
= DAG
.getMachineFunction().getMachineMemOperand(
4301 MachinePointerInfo(AS
), MachineMemOperand::MOStore
,
4302 // TODO: Make MachineMemOperands aware of scalable
4304 MemoryLocation::UnknownSize
, Alignment
, AAInfo
);
4306 Base
= DAG
.getConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4307 Index
= getValue(Ptr
);
4308 IndexType
= ISD::SIGNED_UNSCALED
;
4309 Scale
= DAG
.getTargetConstant(1, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4311 SDValue Ops
[] = { getMemoryRoot(), Src0
, Mask
, Base
, Index
, Scale
};
4312 SDValue Scatter
= DAG
.getMaskedScatter(DAG
.getVTList(MVT::Other
), VT
, sdl
,
4313 Ops
, MMO
, IndexType
, false);
4314 DAG
.setRoot(Scatter
);
4315 setValue(&I
, Scatter
);
4318 void SelectionDAGBuilder::visitMaskedLoad(const CallInst
&I
, bool IsExpanding
) {
4319 SDLoc sdl
= getCurSDLoc();
4321 auto getMaskedLoadOps
= [&](Value
*&Ptr
, Value
*&Mask
, Value
*&Src0
,
4322 MaybeAlign
&Alignment
) {
4323 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4324 Ptr
= I
.getArgOperand(0);
4325 Alignment
= cast
<ConstantInt
>(I
.getArgOperand(1))->getMaybeAlignValue();
4326 Mask
= I
.getArgOperand(2);
4327 Src0
= I
.getArgOperand(3);
4329 auto getExpandingLoadOps
= [&](Value
*&Ptr
, Value
*&Mask
, Value
*&Src0
,
4330 MaybeAlign
&Alignment
) {
4331 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4332 Ptr
= I
.getArgOperand(0);
4334 Mask
= I
.getArgOperand(1);
4335 Src0
= I
.getArgOperand(2);
4338 Value
*PtrOperand
, *MaskOperand
, *Src0Operand
;
4339 MaybeAlign Alignment
;
4341 getExpandingLoadOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4343 getMaskedLoadOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4345 SDValue Ptr
= getValue(PtrOperand
);
4346 SDValue Src0
= getValue(Src0Operand
);
4347 SDValue Mask
= getValue(MaskOperand
);
4348 SDValue Offset
= DAG
.getUNDEF(Ptr
.getValueType());
4350 EVT VT
= Src0
.getValueType();
4352 Alignment
= DAG
.getEVTAlign(VT
);
4355 I
.getAAMetadata(AAInfo
);
4356 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4358 // Do not serialize masked loads of constant memory with anything.
4360 if (VT
.isScalableVector())
4361 ML
= MemoryLocation::getAfter(PtrOperand
);
4363 ML
= MemoryLocation(PtrOperand
, LocationSize::precise(
4364 DAG
.getDataLayout().getTypeStoreSize(I
.getType())),
4366 bool AddToChain
= !AA
|| !AA
->pointsToConstantMemory(ML
);
4368 SDValue InChain
= AddToChain
? DAG
.getRoot() : DAG
.getEntryNode();
4370 MachineMemOperand
*MMO
= DAG
.getMachineFunction().getMachineMemOperand(
4371 MachinePointerInfo(PtrOperand
), MachineMemOperand::MOLoad
,
4372 // TODO: Make MachineMemOperands aware of scalable
4374 VT
.getStoreSize().getKnownMinSize(), *Alignment
, AAInfo
, Ranges
);
4377 DAG
.getMaskedLoad(VT
, sdl
, InChain
, Ptr
, Offset
, Mask
, Src0
, VT
, MMO
,
4378 ISD::UNINDEXED
, ISD::NON_EXTLOAD
, IsExpanding
);
4380 PendingLoads
.push_back(Load
.getValue(1));
4384 void SelectionDAGBuilder::visitMaskedGather(const CallInst
&I
) {
4385 SDLoc sdl
= getCurSDLoc();
4387 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4388 const Value
*Ptr
= I
.getArgOperand(0);
4389 SDValue Src0
= getValue(I
.getArgOperand(3));
4390 SDValue Mask
= getValue(I
.getArgOperand(2));
4392 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4393 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
4394 Align Alignment
= cast
<ConstantInt
>(I
.getArgOperand(1))
4395 ->getMaybeAlignValue()
4396 .getValueOr(DAG
.getEVTAlign(VT
));
4399 I
.getAAMetadata(AAInfo
);
4400 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4402 SDValue Root
= DAG
.getRoot();
4405 ISD::MemIndexType IndexType
;
4407 bool UniformBase
= getUniformBase(Ptr
, Base
, Index
, IndexType
, Scale
, this,
4409 unsigned AS
= Ptr
->getType()->getScalarType()->getPointerAddressSpace();
4410 MachineMemOperand
*MMO
= DAG
.getMachineFunction().getMachineMemOperand(
4411 MachinePointerInfo(AS
), MachineMemOperand::MOLoad
,
4412 // TODO: Make MachineMemOperands aware of scalable
4414 MemoryLocation::UnknownSize
, Alignment
, AAInfo
, Ranges
);
4417 Base
= DAG
.getConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4418 Index
= getValue(Ptr
);
4419 IndexType
= ISD::SIGNED_UNSCALED
;
4420 Scale
= DAG
.getTargetConstant(1, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4422 SDValue Ops
[] = { Root
, Src0
, Mask
, Base
, Index
, Scale
};
4423 SDValue Gather
= DAG
.getMaskedGather(DAG
.getVTList(VT
, MVT::Other
), VT
, sdl
,
4424 Ops
, MMO
, IndexType
);
4426 PendingLoads
.push_back(Gather
.getValue(1));
4427 setValue(&I
, Gather
);
4430 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst
&I
) {
4431 SDLoc dl
= getCurSDLoc();
4432 AtomicOrdering SuccessOrdering
= I
.getSuccessOrdering();
4433 AtomicOrdering FailureOrdering
= I
.getFailureOrdering();
4434 SyncScope::ID SSID
= I
.getSyncScopeID();
4436 SDValue InChain
= getRoot();
4438 MVT MemVT
= getValue(I
.getCompareOperand()).getSimpleValueType();
4439 SDVTList VTs
= DAG
.getVTList(MemVT
, MVT::i1
, MVT::Other
);
4441 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4442 auto Flags
= TLI
.getAtomicMemOperandFlags(I
, DAG
.getDataLayout());
4444 MachineFunction
&MF
= DAG
.getMachineFunction();
4445 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
4446 MachinePointerInfo(I
.getPointerOperand()), Flags
, MemVT
.getStoreSize(),
4447 DAG
.getEVTAlign(MemVT
), AAMDNodes(), nullptr, SSID
, SuccessOrdering
,
4450 SDValue L
= DAG
.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
,
4451 dl
, MemVT
, VTs
, InChain
,
4452 getValue(I
.getPointerOperand()),
4453 getValue(I
.getCompareOperand()),
4454 getValue(I
.getNewValOperand()), MMO
);
4456 SDValue OutChain
= L
.getValue(2);
4459 DAG
.setRoot(OutChain
);
4462 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst
&I
) {
4463 SDLoc dl
= getCurSDLoc();
4465 switch (I
.getOperation()) {
4466 default: llvm_unreachable("Unknown atomicrmw operation");
4467 case AtomicRMWInst::Xchg
: NT
= ISD::ATOMIC_SWAP
; break;
4468 case AtomicRMWInst::Add
: NT
= ISD::ATOMIC_LOAD_ADD
; break;
4469 case AtomicRMWInst::Sub
: NT
= ISD::ATOMIC_LOAD_SUB
; break;
4470 case AtomicRMWInst::And
: NT
= ISD::ATOMIC_LOAD_AND
; break;
4471 case AtomicRMWInst::Nand
: NT
= ISD::ATOMIC_LOAD_NAND
; break;
4472 case AtomicRMWInst::Or
: NT
= ISD::ATOMIC_LOAD_OR
; break;
4473 case AtomicRMWInst::Xor
: NT
= ISD::ATOMIC_LOAD_XOR
; break;
4474 case AtomicRMWInst::Max
: NT
= ISD::ATOMIC_LOAD_MAX
; break;
4475 case AtomicRMWInst::Min
: NT
= ISD::ATOMIC_LOAD_MIN
; break;
4476 case AtomicRMWInst::UMax
: NT
= ISD::ATOMIC_LOAD_UMAX
; break;
4477 case AtomicRMWInst::UMin
: NT
= ISD::ATOMIC_LOAD_UMIN
; break;
4478 case AtomicRMWInst::FAdd
: NT
= ISD::ATOMIC_LOAD_FADD
; break;
4479 case AtomicRMWInst::FSub
: NT
= ISD::ATOMIC_LOAD_FSUB
; break;
4481 AtomicOrdering Ordering
= I
.getOrdering();
4482 SyncScope::ID SSID
= I
.getSyncScopeID();
4484 SDValue InChain
= getRoot();
4486 auto MemVT
= getValue(I
.getValOperand()).getSimpleValueType();
4487 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4488 auto Flags
= TLI
.getAtomicMemOperandFlags(I
, DAG
.getDataLayout());
4490 MachineFunction
&MF
= DAG
.getMachineFunction();
4491 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
4492 MachinePointerInfo(I
.getPointerOperand()), Flags
, MemVT
.getStoreSize(),
4493 DAG
.getEVTAlign(MemVT
), AAMDNodes(), nullptr, SSID
, Ordering
);
4496 DAG
.getAtomic(NT
, dl
, MemVT
, InChain
,
4497 getValue(I
.getPointerOperand()), getValue(I
.getValOperand()),
4500 SDValue OutChain
= L
.getValue(1);
4503 DAG
.setRoot(OutChain
);
4506 void SelectionDAGBuilder::visitFence(const FenceInst
&I
) {
4507 SDLoc dl
= getCurSDLoc();
4508 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4511 Ops
[1] = DAG
.getTargetConstant((unsigned)I
.getOrdering(), dl
,
4512 TLI
.getFenceOperandTy(DAG
.getDataLayout()));
4513 Ops
[2] = DAG
.getTargetConstant(I
.getSyncScopeID(), dl
,
4514 TLI
.getFenceOperandTy(DAG
.getDataLayout()));
4515 DAG
.setRoot(DAG
.getNode(ISD::ATOMIC_FENCE
, dl
, MVT::Other
, Ops
));
4518 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst
&I
) {
4519 SDLoc dl
= getCurSDLoc();
4520 AtomicOrdering Order
= I
.getOrdering();
4521 SyncScope::ID SSID
= I
.getSyncScopeID();
4523 SDValue InChain
= getRoot();
4525 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4526 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
4527 EVT MemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType());
4529 if (!TLI
.supportsUnalignedAtomics() &&
4530 I
.getAlignment() < MemVT
.getSizeInBits() / 8)
4531 report_fatal_error("Cannot generate unaligned atomic load");
4533 auto Flags
= TLI
.getLoadMemOperandFlags(I
, DAG
.getDataLayout());
4535 MachineMemOperand
*MMO
= DAG
.getMachineFunction().getMachineMemOperand(
4536 MachinePointerInfo(I
.getPointerOperand()), Flags
, MemVT
.getStoreSize(),
4537 I
.getAlign(), AAMDNodes(), nullptr, SSID
, Order
);
4539 InChain
= TLI
.prepareVolatileOrAtomicLoad(InChain
, dl
, DAG
);
4541 SDValue Ptr
= getValue(I
.getPointerOperand());
4543 if (TLI
.lowerAtomicLoadAsLoadSDNode(I
)) {
4544 // TODO: Once this is better exercised by tests, it should be merged with
4545 // the normal path for loads to prevent future divergence.
4546 SDValue L
= DAG
.getLoad(MemVT
, dl
, InChain
, Ptr
, MMO
);
4548 L
= DAG
.getPtrExtOrTrunc(L
, dl
, VT
);
4551 SDValue OutChain
= L
.getValue(1);
4552 if (!I
.isUnordered())
4553 DAG
.setRoot(OutChain
);
4555 PendingLoads
.push_back(OutChain
);
4559 SDValue L
= DAG
.getAtomic(ISD::ATOMIC_LOAD
, dl
, MemVT
, MemVT
, InChain
,
4562 SDValue OutChain
= L
.getValue(1);
4564 L
= DAG
.getPtrExtOrTrunc(L
, dl
, VT
);
4567 DAG
.setRoot(OutChain
);
4570 void SelectionDAGBuilder::visitAtomicStore(const StoreInst
&I
) {
4571 SDLoc dl
= getCurSDLoc();
4573 AtomicOrdering Ordering
= I
.getOrdering();
4574 SyncScope::ID SSID
= I
.getSyncScopeID();
4576 SDValue InChain
= getRoot();
4578 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4580 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getValueOperand()->getType());
4582 if (I
.getAlignment() < MemVT
.getSizeInBits() / 8)
4583 report_fatal_error("Cannot generate unaligned atomic store");
4585 auto Flags
= TLI
.getStoreMemOperandFlags(I
, DAG
.getDataLayout());
4587 MachineFunction
&MF
= DAG
.getMachineFunction();
4588 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
4589 MachinePointerInfo(I
.getPointerOperand()), Flags
, MemVT
.getStoreSize(),
4590 I
.getAlign(), AAMDNodes(), nullptr, SSID
, Ordering
);
4592 SDValue Val
= getValue(I
.getValueOperand());
4593 if (Val
.getValueType() != MemVT
)
4594 Val
= DAG
.getPtrExtOrTrunc(Val
, dl
, MemVT
);
4595 SDValue Ptr
= getValue(I
.getPointerOperand());
4597 if (TLI
.lowerAtomicStoreAsStoreSDNode(I
)) {
4598 // TODO: Once this is better exercised by tests, it should be merged with
4599 // the normal path for stores to prevent future divergence.
4600 SDValue S
= DAG
.getStore(InChain
, dl
, Val
, Ptr
, MMO
);
4604 SDValue OutChain
= DAG
.getAtomic(ISD::ATOMIC_STORE
, dl
, MemVT
, InChain
,
4608 DAG
.setRoot(OutChain
);
4611 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4613 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst
&I
,
4614 unsigned Intrinsic
) {
4615 // Ignore the callsite's attributes. A specific call site may be marked with
4616 // readnone, but the lowering code will expect the chain based on the
4618 const Function
*F
= I
.getCalledFunction();
4619 bool HasChain
= !F
->doesNotAccessMemory();
4620 bool OnlyLoad
= HasChain
&& F
->onlyReadsMemory();
4622 // Build the operand list.
4623 SmallVector
<SDValue
, 8> Ops
;
4624 if (HasChain
) { // If this intrinsic has side-effects, chainify it.
4626 // We don't need to serialize loads against other loads.
4627 Ops
.push_back(DAG
.getRoot());
4629 Ops
.push_back(getRoot());
4633 // Info is set by getTgtMemInstrinsic
4634 TargetLowering::IntrinsicInfo Info
;
4635 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4636 bool IsTgtIntrinsic
= TLI
.getTgtMemIntrinsic(Info
, I
,
4637 DAG
.getMachineFunction(),
4640 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4641 if (!IsTgtIntrinsic
|| Info
.opc
== ISD::INTRINSIC_VOID
||
4642 Info
.opc
== ISD::INTRINSIC_W_CHAIN
)
4643 Ops
.push_back(DAG
.getTargetConstant(Intrinsic
, getCurSDLoc(),
4644 TLI
.getPointerTy(DAG
.getDataLayout())));
4646 // Add all operands of the call to the operand list.
4647 for (unsigned i
= 0, e
= I
.getNumArgOperands(); i
!= e
; ++i
) {
4648 const Value
*Arg
= I
.getArgOperand(i
);
4649 if (!I
.paramHasAttr(i
, Attribute::ImmArg
)) {
4650 Ops
.push_back(getValue(Arg
));
4654 // Use TargetConstant instead of a regular constant for immarg.
4655 EVT VT
= TLI
.getValueType(*DL
, Arg
->getType(), true);
4656 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Arg
)) {
4657 assert(CI
->getBitWidth() <= 64 &&
4658 "large intrinsic immediates not handled");
4659 Ops
.push_back(DAG
.getTargetConstant(*CI
, SDLoc(), VT
));
4662 DAG
.getTargetConstantFP(*cast
<ConstantFP
>(Arg
), SDLoc(), VT
));
4666 SmallVector
<EVT
, 4> ValueVTs
;
4667 ComputeValueVTs(TLI
, DAG
.getDataLayout(), I
.getType(), ValueVTs
);
4670 ValueVTs
.push_back(MVT::Other
);
4672 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
4676 if (IsTgtIntrinsic
) {
4677 // This is target intrinsic that touches memory
4679 I
.getAAMetadata(AAInfo
);
4681 DAG
.getMemIntrinsicNode(Info
.opc
, getCurSDLoc(), VTs
, Ops
, Info
.memVT
,
4682 MachinePointerInfo(Info
.ptrVal
, Info
.offset
),
4683 Info
.align
, Info
.flags
, Info
.size
, AAInfo
);
4684 } else if (!HasChain
) {
4685 Result
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, getCurSDLoc(), VTs
, Ops
);
4686 } else if (!I
.getType()->isVoidTy()) {
4687 Result
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, getCurSDLoc(), VTs
, Ops
);
4689 Result
= DAG
.getNode(ISD::INTRINSIC_VOID
, getCurSDLoc(), VTs
, Ops
);
4693 SDValue Chain
= Result
.getValue(Result
.getNode()->getNumValues()-1);
4695 PendingLoads
.push_back(Chain
);
4700 if (!I
.getType()->isVoidTy()) {
4701 if (VectorType
*PTy
= dyn_cast
<VectorType
>(I
.getType())) {
4702 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), PTy
);
4703 Result
= DAG
.getNode(ISD::BITCAST
, getCurSDLoc(), VT
, Result
);
4705 Result
= lowerRangeToAssertZExt(DAG
, I
, Result
);
4707 MaybeAlign Alignment
= I
.getRetAlign();
4709 Alignment
= F
->getAttributes().getRetAlignment();
4710 // Insert `assertalign` node if there's an alignment.
4711 if (InsertAssertAlign
&& Alignment
) {
4713 DAG
.getAssertAlign(getCurSDLoc(), Result
, Alignment
.valueOrOne());
4716 setValue(&I
, Result
);
4720 /// GetSignificand - Get the significand and build it into a floating-point
4721 /// number with exponent of 1:
4723 /// Op = (Op & 0x007fffff) | 0x3f800000;
4725 /// where Op is the hexadecimal representation of floating point value.
4726 static SDValue
GetSignificand(SelectionDAG
&DAG
, SDValue Op
, const SDLoc
&dl
) {
4727 SDValue t1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
4728 DAG
.getConstant(0x007fffff, dl
, MVT::i32
));
4729 SDValue t2
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, t1
,
4730 DAG
.getConstant(0x3f800000, dl
, MVT::i32
));
4731 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
, t2
);
4734 /// GetExponent - Get the exponent:
4736 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4738 /// where Op is the hexadecimal representation of floating point value.
4739 static SDValue
GetExponent(SelectionDAG
&DAG
, SDValue Op
,
4740 const TargetLowering
&TLI
, const SDLoc
&dl
) {
4741 SDValue t0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
4742 DAG
.getConstant(0x7f800000, dl
, MVT::i32
));
4743 SDValue t1
= DAG
.getNode(
4744 ISD::SRL
, dl
, MVT::i32
, t0
,
4745 DAG
.getConstant(23, dl
, TLI
.getPointerTy(DAG
.getDataLayout())));
4746 SDValue t2
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, t1
,
4747 DAG
.getConstant(127, dl
, MVT::i32
));
4748 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, t2
);
4751 /// getF32Constant - Get 32-bit floating point constant.
4752 static SDValue
getF32Constant(SelectionDAG
&DAG
, unsigned Flt
,
4754 return DAG
.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt
)), dl
,
4758 static SDValue
getLimitedPrecisionExp2(SDValue t0
, const SDLoc
&dl
,
4759 SelectionDAG
&DAG
) {
4760 // TODO: What fast-math-flags should be set on the floating-point nodes?
4762 // IntegerPartOfX = ((int32_t)(t0);
4763 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
4765 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4766 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
4767 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
4769 // IntegerPartOfX <<= 23;
4770 IntegerPartOfX
= DAG
.getNode(
4771 ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
4772 DAG
.getConstant(23, dl
, DAG
.getTargetLoweringInfo().getPointerTy(
4773 DAG
.getDataLayout())));
4775 SDValue TwoToFractionalPartOfX
;
4776 if (LimitFloatPrecision
<= 6) {
4777 // For floating-point precision of 6:
4779 // TwoToFractionalPartOfX =
4781 // (0.735607626f + 0.252464424f * x) * x;
4783 // error 0.0144103317, which is 6 bits
4784 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4785 getF32Constant(DAG
, 0x3e814304, dl
));
4786 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4787 getF32Constant(DAG
, 0x3f3c50c8, dl
));
4788 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4789 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4790 getF32Constant(DAG
, 0x3f7f5e7e, dl
));
4791 } else if (LimitFloatPrecision
<= 12) {
4792 // For floating-point precision of 12:
4794 // TwoToFractionalPartOfX =
4797 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4799 // error 0.000107046256, which is 13 to 14 bits
4800 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4801 getF32Constant(DAG
, 0x3da235e3, dl
));
4802 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4803 getF32Constant(DAG
, 0x3e65b8f3, dl
));
4804 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4805 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4806 getF32Constant(DAG
, 0x3f324b07, dl
));
4807 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4808 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4809 getF32Constant(DAG
, 0x3f7ff8fd, dl
));
4810 } else { // LimitFloatPrecision <= 18
4811 // For floating-point precision of 18:
4813 // TwoToFractionalPartOfX =
4817 // (0.554906021e-1f +
4818 // (0.961591928e-2f +
4819 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4820 // error 2.47208000*10^(-7), which is better than 18 bits
4821 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4822 getF32Constant(DAG
, 0x3924b03e, dl
));
4823 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4824 getF32Constant(DAG
, 0x3ab24b87, dl
));
4825 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4826 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4827 getF32Constant(DAG
, 0x3c1d8c17, dl
));
4828 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4829 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4830 getF32Constant(DAG
, 0x3d634a1d, dl
));
4831 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
4832 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
4833 getF32Constant(DAG
, 0x3e75fe14, dl
));
4834 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
4835 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
4836 getF32Constant(DAG
, 0x3f317234, dl
));
4837 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
4838 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
4839 getF32Constant(DAG
, 0x3f800000, dl
));
4842 // Add the exponent into the result in integer domain.
4843 SDValue t13
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, TwoToFractionalPartOfX
);
4844 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
4845 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t13
, IntegerPartOfX
));
4848 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4849 /// limited-precision mode.
4850 static SDValue
expandExp(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
4851 const TargetLowering
&TLI
, SDNodeFlags Flags
) {
4852 if (Op
.getValueType() == MVT::f32
&&
4853 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
4855 // Put the exponent in the right bit position for later addition to the
4858 // t0 = Op * log2(e)
4860 // TODO: What fast-math-flags should be set here?
4861 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
4862 DAG
.getConstantFP(numbers::log2ef
, dl
, MVT::f32
));
4863 return getLimitedPrecisionExp2(t0
, dl
, DAG
);
4866 // No special expansion.
4867 return DAG
.getNode(ISD::FEXP
, dl
, Op
.getValueType(), Op
, Flags
);
4870 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4871 /// limited-precision mode.
4872 static SDValue
expandLog(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
4873 const TargetLowering
&TLI
, SDNodeFlags Flags
) {
4874 // TODO: What fast-math-flags should be set on the floating-point nodes?
4876 if (Op
.getValueType() == MVT::f32
&&
4877 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
4878 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
4880 // Scale the exponent by log(2).
4881 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
4882 SDValue LogOfExponent
=
4883 DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
4884 DAG
.getConstantFP(numbers::ln2f
, dl
, MVT::f32
));
4886 // Get the significand and build it into a floating-point number with
4888 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
4890 SDValue LogOfMantissa
;
4891 if (LimitFloatPrecision
<= 6) {
4892 // For floating-point precision of 6:
4896 // (1.4034025f - 0.23903021f * x) * x;
4898 // error 0.0034276066, which is better than 8 bits
4899 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4900 getF32Constant(DAG
, 0xbe74c456, dl
));
4901 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
4902 getF32Constant(DAG
, 0x3fb3a2b1, dl
));
4903 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
4904 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
4905 getF32Constant(DAG
, 0x3f949a29, dl
));
4906 } else if (LimitFloatPrecision
<= 12) {
4907 // For floating-point precision of 12:
4913 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4915 // error 0.000061011436, which is 14 bits
4916 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4917 getF32Constant(DAG
, 0xbd67b6d6, dl
));
4918 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
4919 getF32Constant(DAG
, 0x3ee4f4b8, dl
));
4920 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
4921 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
4922 getF32Constant(DAG
, 0x3fbc278b, dl
));
4923 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4924 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4925 getF32Constant(DAG
, 0x40348e95, dl
));
4926 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4927 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
4928 getF32Constant(DAG
, 0x3fdef31a, dl
));
4929 } else { // LimitFloatPrecision <= 18
4930 // For floating-point precision of 18:
4938 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4940 // error 0.0000023660568, which is better than 18 bits
4941 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4942 getF32Constant(DAG
, 0xbc91e5ac, dl
));
4943 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
4944 getF32Constant(DAG
, 0x3e4350aa, dl
));
4945 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
4946 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
4947 getF32Constant(DAG
, 0x3f60d3e3, dl
));
4948 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4949 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4950 getF32Constant(DAG
, 0x4011cdf0, dl
));
4951 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4952 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
4953 getF32Constant(DAG
, 0x406cfd1c, dl
));
4954 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
4955 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
4956 getF32Constant(DAG
, 0x408797cb, dl
));
4957 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
4958 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
4959 getF32Constant(DAG
, 0x4006dcab, dl
));
4962 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, LogOfMantissa
);
4965 // No special expansion.
4966 return DAG
.getNode(ISD::FLOG
, dl
, Op
.getValueType(), Op
, Flags
);
4969 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4970 /// limited-precision mode.
4971 static SDValue
expandLog2(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
4972 const TargetLowering
&TLI
, SDNodeFlags Flags
) {
4973 // TODO: What fast-math-flags should be set on the floating-point nodes?
4975 if (Op
.getValueType() == MVT::f32
&&
4976 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
4977 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
4979 // Get the exponent.
4980 SDValue LogOfExponent
= GetExponent(DAG
, Op1
, TLI
, dl
);
4982 // Get the significand and build it into a floating-point number with
4984 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
4986 // Different possible minimax approximations of significand in
4987 // floating-point for various degrees of accuracy over [1,2].
4988 SDValue Log2ofMantissa
;
4989 if (LimitFloatPrecision
<= 6) {
4990 // For floating-point precision of 6:
4992 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4994 // error 0.0049451742, which is more than 7 bits
4995 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4996 getF32Constant(DAG
, 0xbeb08fe0, dl
));
4997 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
4998 getF32Constant(DAG
, 0x40019463, dl
));
4999 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5000 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5001 getF32Constant(DAG
, 0x3fd6633d, dl
));
5002 } else if (LimitFloatPrecision
<= 12) {
5003 // For floating-point precision of 12:
5009 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5011 // error 0.0000876136000, which is better than 13 bits
5012 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5013 getF32Constant(DAG
, 0xbda7262e, dl
));
5014 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5015 getF32Constant(DAG
, 0x3f25280b, dl
));
5016 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5017 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5018 getF32Constant(DAG
, 0x4007b923, dl
));
5019 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5020 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5021 getF32Constant(DAG
, 0x40823e2f, dl
));
5022 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5023 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5024 getF32Constant(DAG
, 0x4020d29c, dl
));
5025 } else { // LimitFloatPrecision <= 18
5026 // For floating-point precision of 18:
5035 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5037 // error 0.0000018516, which is better than 18 bits
5038 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5039 getF32Constant(DAG
, 0xbcd2769e, dl
));
5040 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5041 getF32Constant(DAG
, 0x3e8ce0b9, dl
));
5042 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5043 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5044 getF32Constant(DAG
, 0x3fa22ae7, dl
));
5045 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5046 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5047 getF32Constant(DAG
, 0x40525723, dl
));
5048 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5049 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5050 getF32Constant(DAG
, 0x40aaf200, dl
));
5051 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5052 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
5053 getF32Constant(DAG
, 0x40c39dad, dl
));
5054 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
5055 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
5056 getF32Constant(DAG
, 0x4042902c, dl
));
5059 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, Log2ofMantissa
);
5062 // No special expansion.
5063 return DAG
.getNode(ISD::FLOG2
, dl
, Op
.getValueType(), Op
, Flags
);
5066 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5067 /// limited-precision mode.
5068 static SDValue
expandLog10(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5069 const TargetLowering
&TLI
, SDNodeFlags Flags
) {
5070 // TODO: What fast-math-flags should be set on the floating-point nodes?
5072 if (Op
.getValueType() == MVT::f32
&&
5073 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5074 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
5076 // Scale the exponent by log10(2) [0.30102999f].
5077 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
5078 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
5079 getF32Constant(DAG
, 0x3e9a209a, dl
));
5081 // Get the significand and build it into a floating-point number with
5083 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
5085 SDValue Log10ofMantissa
;
5086 if (LimitFloatPrecision
<= 6) {
5087 // For floating-point precision of 6:
5089 // Log10ofMantissa =
5091 // (0.60948995f - 0.10380950f * x) * x;
5093 // error 0.0014886165, which is 6 bits
5094 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5095 getF32Constant(DAG
, 0xbdd49a13, dl
));
5096 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5097 getF32Constant(DAG
, 0x3f1c0789, dl
));
5098 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5099 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5100 getF32Constant(DAG
, 0x3f011300, dl
));
5101 } else if (LimitFloatPrecision
<= 12) {
5102 // For floating-point precision of 12:
5104 // Log10ofMantissa =
5107 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5109 // error 0.00019228036, which is better than 12 bits
5110 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5111 getF32Constant(DAG
, 0x3d431f31, dl
));
5112 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
5113 getF32Constant(DAG
, 0x3ea21fb2, dl
));
5114 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5115 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
5116 getF32Constant(DAG
, 0x3f6ae232, dl
));
5117 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5118 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
5119 getF32Constant(DAG
, 0x3f25f7c3, dl
));
5120 } else { // LimitFloatPrecision <= 18
5121 // For floating-point precision of 18:
5123 // Log10ofMantissa =
5128 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5130 // error 0.0000037995730, which is better than 18 bits
5131 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5132 getF32Constant(DAG
, 0x3c5d51ce, dl
));
5133 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
5134 getF32Constant(DAG
, 0x3e00685a, dl
));
5135 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5136 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
5137 getF32Constant(DAG
, 0x3efb6798, dl
));
5138 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5139 SDValue t5
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
5140 getF32Constant(DAG
, 0x3f88d192, dl
));
5141 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5142 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
5143 getF32Constant(DAG
, 0x3fc4316c, dl
));
5144 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5145 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t8
,
5146 getF32Constant(DAG
, 0x3f57ce70, dl
));
5149 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, Log10ofMantissa
);
5152 // No special expansion.
5153 return DAG
.getNode(ISD::FLOG10
, dl
, Op
.getValueType(), Op
, Flags
);
5156 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5157 /// limited-precision mode.
5158 static SDValue
expandExp2(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5159 const TargetLowering
&TLI
, SDNodeFlags Flags
) {
5160 if (Op
.getValueType() == MVT::f32
&&
5161 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18)
5162 return getLimitedPrecisionExp2(Op
, dl
, DAG
);
5164 // No special expansion.
5165 return DAG
.getNode(ISD::FEXP2
, dl
, Op
.getValueType(), Op
, Flags
);
5168 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5169 /// limited-precision mode with x == 10.0f.
5170 static SDValue
expandPow(const SDLoc
&dl
, SDValue LHS
, SDValue RHS
,
5171 SelectionDAG
&DAG
, const TargetLowering
&TLI
,
5172 SDNodeFlags Flags
) {
5173 bool IsExp10
= false;
5174 if (LHS
.getValueType() == MVT::f32
&& RHS
.getValueType() == MVT::f32
&&
5175 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5176 if (ConstantFPSDNode
*LHSC
= dyn_cast
<ConstantFPSDNode
>(LHS
)) {
5178 IsExp10
= LHSC
->isExactlyValue(Ten
);
5182 // TODO: What fast-math-flags should be set on the FMUL node?
5184 // Put the exponent in the right bit position for later addition to the
5187 // #define LOG2OF10 3.3219281f
5188 // t0 = Op * LOG2OF10;
5189 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, RHS
,
5190 getF32Constant(DAG
, 0x40549a78, dl
));
5191 return getLimitedPrecisionExp2(t0
, dl
, DAG
);
5194 // No special expansion.
5195 return DAG
.getNode(ISD::FPOW
, dl
, LHS
.getValueType(), LHS
, RHS
, Flags
);
5198 /// ExpandPowI - Expand a llvm.powi intrinsic.
5199 static SDValue
ExpandPowI(const SDLoc
&DL
, SDValue LHS
, SDValue RHS
,
5200 SelectionDAG
&DAG
) {
5201 // If RHS is a constant, we can expand this out to a multiplication tree,
5202 // otherwise we end up lowering to a call to __powidf2 (for example). When
5203 // optimizing for size, we only want to do this if the expansion would produce
5204 // a small number of multiplies, otherwise we do the full expansion.
5205 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
5206 // Get the exponent as a positive value.
5207 unsigned Val
= RHSC
->getSExtValue();
5208 if ((int)Val
< 0) Val
= -Val
;
5210 // powi(x, 0) -> 1.0
5212 return DAG
.getConstantFP(1.0, DL
, LHS
.getValueType());
5214 bool OptForSize
= DAG
.shouldOptForSize();
5216 // If optimizing for size, don't insert too many multiplies.
5217 // This inserts up to 5 multiplies.
5218 countPopulation(Val
) + Log2_32(Val
) < 7) {
5219 // We use the simple binary decomposition method to generate the multiply
5220 // sequence. There are more optimal ways to do this (for example,
5221 // powi(x,15) generates one more multiply than it should), but this has
5222 // the benefit of being both really simple and much better than a libcall.
5223 SDValue Res
; // Logically starts equal to 1.0
5224 SDValue CurSquare
= LHS
;
5225 // TODO: Intrinsics should have fast-math-flags that propagate to these
5230 Res
= DAG
.getNode(ISD::FMUL
, DL
,Res
.getValueType(), Res
, CurSquare
);
5232 Res
= CurSquare
; // 1.0*CurSquare.
5235 CurSquare
= DAG
.getNode(ISD::FMUL
, DL
, CurSquare
.getValueType(),
5236 CurSquare
, CurSquare
);
5240 // If the original was negative, invert the result, producing 1/(x*x*x).
5241 if (RHSC
->getSExtValue() < 0)
5242 Res
= DAG
.getNode(ISD::FDIV
, DL
, LHS
.getValueType(),
5243 DAG
.getConstantFP(1.0, DL
, LHS
.getValueType()), Res
);
5248 // Otherwise, expand to a libcall.
5249 return DAG
.getNode(ISD::FPOWI
, DL
, LHS
.getValueType(), LHS
, RHS
);
5252 static SDValue
expandDivFix(unsigned Opcode
, const SDLoc
&DL
,
5253 SDValue LHS
, SDValue RHS
, SDValue Scale
,
5254 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
5255 EVT VT
= LHS
.getValueType();
5256 bool Signed
= Opcode
== ISD::SDIVFIX
|| Opcode
== ISD::SDIVFIXSAT
;
5257 bool Saturating
= Opcode
== ISD::SDIVFIXSAT
|| Opcode
== ISD::UDIVFIXSAT
;
5258 LLVMContext
&Ctx
= *DAG
.getContext();
5260 // If the type is legal but the operation isn't, this node might survive all
5261 // the way to operation legalization. If we end up there and we do not have
5262 // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5265 // Coax the legalizer into expanding the node during type legalization instead
5266 // by bumping the size by one bit. This will force it to Promote, enabling the
5267 // early expansion and avoiding the need to expand later.
5269 // We don't have to do this if Scale is 0; that can always be expanded, unless
5270 // it's a saturating signed operation. Those can experience true integer
5271 // division overflow, a case which we must avoid.
5273 // FIXME: We wouldn't have to do this (or any of the early
5274 // expansion/promotion) if it was possible to expand a libcall of an
5275 // illegal type during operation legalization. But it's not, so things
5277 unsigned ScaleInt
= cast
<ConstantSDNode
>(Scale
)->getZExtValue();
5278 if ((ScaleInt
> 0 || (Saturating
&& Signed
)) &&
5279 (TLI
.isTypeLegal(VT
) ||
5280 (VT
.isVector() && TLI
.isTypeLegal(VT
.getVectorElementType())))) {
5281 TargetLowering::LegalizeAction Action
= TLI
.getFixedPointOperationAction(
5282 Opcode
, VT
, ScaleInt
);
5283 if (Action
!= TargetLowering::Legal
&& Action
!= TargetLowering::Custom
) {
5285 if (VT
.isScalarInteger())
5286 PromVT
= EVT::getIntegerVT(Ctx
, VT
.getSizeInBits() + 1);
5287 else if (VT
.isVector()) {
5288 PromVT
= VT
.getVectorElementType();
5289 PromVT
= EVT::getIntegerVT(Ctx
, PromVT
.getSizeInBits() + 1);
5290 PromVT
= EVT::getVectorVT(Ctx
, PromVT
, VT
.getVectorElementCount());
5292 llvm_unreachable("Wrong VT for DIVFIX?");
5294 LHS
= DAG
.getSExtOrTrunc(LHS
, DL
, PromVT
);
5295 RHS
= DAG
.getSExtOrTrunc(RHS
, DL
, PromVT
);
5297 LHS
= DAG
.getZExtOrTrunc(LHS
, DL
, PromVT
);
5298 RHS
= DAG
.getZExtOrTrunc(RHS
, DL
, PromVT
);
5300 EVT ShiftTy
= TLI
.getShiftAmountTy(PromVT
, DAG
.getDataLayout());
5301 // For saturating operations, we need to shift up the LHS to get the
5302 // proper saturation width, and then shift down again afterwards.
5304 LHS
= DAG
.getNode(ISD::SHL
, DL
, PromVT
, LHS
,
5305 DAG
.getConstant(1, DL
, ShiftTy
));
5306 SDValue Res
= DAG
.getNode(Opcode
, DL
, PromVT
, LHS
, RHS
, Scale
);
5308 Res
= DAG
.getNode(Signed
? ISD::SRA
: ISD::SRL
, DL
, PromVT
, Res
,
5309 DAG
.getConstant(1, DL
, ShiftTy
));
5310 return DAG
.getZExtOrTrunc(Res
, DL
, VT
);
5314 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
, Scale
);
5317 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5318 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5320 getUnderlyingArgRegs(SmallVectorImpl
<std::pair
<unsigned, TypeSize
>> &Regs
,
5322 switch (N
.getOpcode()) {
5323 case ISD::CopyFromReg
: {
5324 SDValue Op
= N
.getOperand(1);
5325 Regs
.emplace_back(cast
<RegisterSDNode
>(Op
)->getReg(),
5326 Op
.getValueType().getSizeInBits());
5330 case ISD::AssertZext
:
5331 case ISD::AssertSext
:
5333 getUnderlyingArgRegs(Regs
, N
.getOperand(0));
5335 case ISD::BUILD_PAIR
:
5336 case ISD::BUILD_VECTOR
:
5337 case ISD::CONCAT_VECTORS
:
5338 for (SDValue Op
: N
->op_values())
5339 getUnderlyingArgRegs(Regs
, Op
);
5346 /// If the DbgValueInst is a dbg_value of a function argument, create the
5347 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5348 /// instruction selection, they will be inserted to the entry BB.
5349 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5350 const Value
*V
, DILocalVariable
*Variable
, DIExpression
*Expr
,
5351 DILocation
*DL
, bool IsDbgDeclare
, const SDValue
&N
) {
5352 const Argument
*Arg
= dyn_cast
<Argument
>(V
);
5356 if (!IsDbgDeclare
) {
5357 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5358 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5360 bool IsInEntryBlock
= FuncInfo
.MBB
== &FuncInfo
.MF
->front();
5361 if (!IsInEntryBlock
)
5364 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5365 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5366 // variable that also is a param.
5368 // Although, if we are at the top of the entry block already, we can still
5369 // emit using ArgDbgValue. This might catch some situations when the
5370 // dbg.value refers to an argument that isn't used in the entry block, so
5371 // any CopyToReg node would be optimized out and the only way to express
5372 // this DBG_VALUE is by using the physical reg (or FI) as done in this
5373 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
5374 // we should only emit as ArgDbgValue if the Variable is an argument to the
5375 // current function, and the dbg.value intrinsic is found in the entry
5377 bool VariableIsFunctionInputArg
= Variable
->isParameter() &&
5378 !DL
->getInlinedAt();
5379 bool IsInPrologue
= SDNodeOrder
== LowestSDNodeOrder
;
5380 if (!IsInPrologue
&& !VariableIsFunctionInputArg
)
5383 // Here we assume that a function argument on IR level only can be used to
5384 // describe one input parameter on source level. If we for example have
5385 // source code like this
5387 // struct A { long x, y; };
5388 // void foo(struct A a, long b) {
5396 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
5398 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5399 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5400 // call void @llvm.dbg.value(metadata i32 %b, "b",
5402 // call void @llvm.dbg.value(metadata i32 %a1, "b"
5405 // then the last dbg.value is describing a parameter "b" using a value that
5406 // is an argument. But since we already has used %a1 to describe a parameter
5407 // we should not handle that last dbg.value here (that would result in an
5408 // incorrect hoisting of the DBG_VALUE to the function entry).
5409 // Notice that we allow one dbg.value per IR level argument, to accommodate
5410 // for the situation with fragments above.
5411 if (VariableIsFunctionInputArg
) {
5412 unsigned ArgNo
= Arg
->getArgNo();
5413 if (ArgNo
>= FuncInfo
.DescribedArgs
.size())
5414 FuncInfo
.DescribedArgs
.resize(ArgNo
+ 1, false);
5415 else if (!IsInPrologue
&& FuncInfo
.DescribedArgs
.test(ArgNo
))
5417 FuncInfo
.DescribedArgs
.set(ArgNo
);
5421 MachineFunction
&MF
= DAG
.getMachineFunction();
5422 const TargetInstrInfo
*TII
= DAG
.getSubtarget().getInstrInfo();
5424 bool IsIndirect
= false;
5425 Optional
<MachineOperand
> Op
;
5426 // Some arguments' frame index is recorded during argument lowering.
5427 int FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
5428 if (FI
!= std::numeric_limits
<int>::max())
5429 Op
= MachineOperand::CreateFI(FI
);
5431 SmallVector
<std::pair
<unsigned, TypeSize
>, 8> ArgRegsAndSizes
;
5432 if (!Op
&& N
.getNode()) {
5433 getUnderlyingArgRegs(ArgRegsAndSizes
, N
);
5435 if (ArgRegsAndSizes
.size() == 1)
5436 Reg
= ArgRegsAndSizes
.front().first
;
5438 if (Reg
&& Reg
.isVirtual()) {
5439 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
5440 Register PR
= RegInfo
.getLiveInPhysReg(Reg
);
5445 Op
= MachineOperand::CreateReg(Reg
, false);
5446 IsIndirect
= IsDbgDeclare
;
5450 if (!Op
&& N
.getNode()) {
5451 // Check if frame index is available.
5452 SDValue LCandidate
= peekThroughBitcasts(N
);
5453 if (LoadSDNode
*LNode
= dyn_cast
<LoadSDNode
>(LCandidate
.getNode()))
5454 if (FrameIndexSDNode
*FINode
=
5455 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode()))
5456 Op
= MachineOperand::CreateFI(FINode
->getIndex());
5460 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5461 auto splitMultiRegDbgValue
= [&](ArrayRef
<std::pair
<unsigned, TypeSize
>>
5463 unsigned Offset
= 0;
5464 for (auto RegAndSize
: SplitRegs
) {
5465 // If the expression is already a fragment, the current register
5466 // offset+size might extend beyond the fragment. In this case, only
5467 // the register bits that are inside the fragment are relevant.
5468 int RegFragmentSizeInBits
= RegAndSize
.second
;
5469 if (auto ExprFragmentInfo
= Expr
->getFragmentInfo()) {
5470 uint64_t ExprFragmentSizeInBits
= ExprFragmentInfo
->SizeInBits
;
5471 // The register is entirely outside the expression fragment,
5472 // so is irrelevant for debug info.
5473 if (Offset
>= ExprFragmentSizeInBits
)
5475 // The register is partially outside the expression fragment, only
5476 // the low bits within the fragment are relevant for debug info.
5477 if (Offset
+ RegFragmentSizeInBits
> ExprFragmentSizeInBits
) {
5478 RegFragmentSizeInBits
= ExprFragmentSizeInBits
- Offset
;
5482 auto FragmentExpr
= DIExpression::createFragmentExpression(
5483 Expr
, Offset
, RegFragmentSizeInBits
);
5484 Offset
+= RegAndSize
.second
;
5485 // If a valid fragment expression cannot be created, the variable's
5486 // correct value cannot be determined and so it is set as Undef.
5487 if (!FragmentExpr
) {
5488 SDDbgValue
*SDV
= DAG
.getConstantDbgValue(
5489 Variable
, Expr
, UndefValue::get(V
->getType()), DL
, SDNodeOrder
);
5490 DAG
.AddDbgValue(SDV
, nullptr, false);
5493 assert(!IsDbgDeclare
&& "DbgDeclare operand is not in memory?");
5494 FuncInfo
.ArgDbgValues
.push_back(
5495 BuildMI(MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsDbgDeclare
,
5496 RegAndSize
.first
, Variable
, *FragmentExpr
));
5500 // Check if ValueMap has reg number.
5501 DenseMap
<const Value
*, Register
>::const_iterator
5502 VMI
= FuncInfo
.ValueMap
.find(V
);
5503 if (VMI
!= FuncInfo
.ValueMap
.end()) {
5504 const auto &TLI
= DAG
.getTargetLoweringInfo();
5505 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), VMI
->second
,
5506 V
->getType(), None
);
5507 if (RFV
.occupiesMultipleRegs()) {
5508 splitMultiRegDbgValue(RFV
.getRegsAndSizes());
5512 Op
= MachineOperand::CreateReg(VMI
->second
, false);
5513 IsIndirect
= IsDbgDeclare
;
5514 } else if (ArgRegsAndSizes
.size() > 1) {
5515 // This was split due to the calling convention, and no virtual register
5516 // mapping exists for the value.
5517 splitMultiRegDbgValue(ArgRegsAndSizes
);
5525 assert(Variable
->isValidLocationForIntrinsic(DL
) &&
5526 "Expected inlined-at fields to agree");
5527 IsIndirect
= (Op
->isReg()) ? IsIndirect
: true;
5528 FuncInfo
.ArgDbgValues
.push_back(
5529 BuildMI(MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsIndirect
,
5530 *Op
, Variable
, Expr
));
5535 /// Return the appropriate SDDbgValue based on N.
5536 SDDbgValue
*SelectionDAGBuilder::getDbgValue(SDValue N
,
5537 DILocalVariable
*Variable
,
5540 unsigned DbgSDNodeOrder
) {
5541 if (auto *FISDN
= dyn_cast
<FrameIndexSDNode
>(N
.getNode())) {
5542 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5543 // stack slot locations.
5545 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5546 // debug values here after optimization:
5548 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5549 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5551 // Both describe the direct values of their associated variables.
5552 return DAG
.getFrameIndexDbgValue(Variable
, Expr
, FISDN
->getIndex(),
5553 /*IsIndirect*/ false, dl
, DbgSDNodeOrder
);
5555 return DAG
.getDbgValue(Variable
, Expr
, N
.getNode(), N
.getResNo(),
5556 /*IsIndirect*/ false, dl
, DbgSDNodeOrder
);
5559 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic
) {
5560 switch (Intrinsic
) {
5561 case Intrinsic::smul_fix
:
5562 return ISD::SMULFIX
;
5563 case Intrinsic::umul_fix
:
5564 return ISD::UMULFIX
;
5565 case Intrinsic::smul_fix_sat
:
5566 return ISD::SMULFIXSAT
;
5567 case Intrinsic::umul_fix_sat
:
5568 return ISD::UMULFIXSAT
;
5569 case Intrinsic::sdiv_fix
:
5570 return ISD::SDIVFIX
;
5571 case Intrinsic::udiv_fix
:
5572 return ISD::UDIVFIX
;
5573 case Intrinsic::sdiv_fix_sat
:
5574 return ISD::SDIVFIXSAT
;
5575 case Intrinsic::udiv_fix_sat
:
5576 return ISD::UDIVFIXSAT
;
5578 llvm_unreachable("Unhandled fixed point intrinsic");
5582 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst
&I
,
5583 const char *FunctionName
) {
5584 assert(FunctionName
&& "FunctionName must not be nullptr");
5585 SDValue Callee
= DAG
.getExternalSymbol(
5587 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout()));
5588 LowerCallTo(I
, Callee
, I
.isTailCall());
5591 /// Given a @llvm.call.preallocated.setup, return the corresponding
5592 /// preallocated call.
5593 static const CallBase
*FindPreallocatedCall(const Value
*PreallocatedSetup
) {
5594 assert(cast
<CallBase
>(PreallocatedSetup
)
5595 ->getCalledFunction()
5596 ->getIntrinsicID() == Intrinsic::call_preallocated_setup
&&
5597 "expected call_preallocated_setup Value");
5598 for (auto *U
: PreallocatedSetup
->users()) {
5599 auto *UseCall
= cast
<CallBase
>(U
);
5600 const Function
*Fn
= UseCall
->getCalledFunction();
5601 if (!Fn
|| Fn
->getIntrinsicID() != Intrinsic::call_preallocated_arg
) {
5605 llvm_unreachable("expected corresponding call to preallocated setup/arg");
5608 /// Lower the call to the specified intrinsic function.
5609 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst
&I
,
5610 unsigned Intrinsic
) {
5611 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5612 SDLoc sdl
= getCurSDLoc();
5613 DebugLoc dl
= getCurDebugLoc();
5617 if (auto *FPOp
= dyn_cast
<FPMathOperator
>(&I
))
5618 Flags
.copyFMF(*FPOp
);
5620 switch (Intrinsic
) {
5622 // By default, turn this into a target intrinsic node.
5623 visitTargetIntrinsic(I
, Intrinsic
);
5625 case Intrinsic::vscale
: {
5626 match(&I
, m_VScale(DAG
.getDataLayout()));
5627 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
5629 DAG
.getVScale(getCurSDLoc(), VT
, APInt(VT
.getSizeInBits(), 1)));
5632 case Intrinsic::vastart
: visitVAStart(I
); return;
5633 case Intrinsic::vaend
: visitVAEnd(I
); return;
5634 case Intrinsic::vacopy
: visitVACopy(I
); return;
5635 case Intrinsic::returnaddress
:
5636 setValue(&I
, DAG
.getNode(ISD::RETURNADDR
, sdl
,
5637 TLI
.getPointerTy(DAG
.getDataLayout()),
5638 getValue(I
.getArgOperand(0))));
5640 case Intrinsic::addressofreturnaddress
:
5641 setValue(&I
, DAG
.getNode(ISD::ADDROFRETURNADDR
, sdl
,
5642 TLI
.getPointerTy(DAG
.getDataLayout())));
5644 case Intrinsic::sponentry
:
5645 setValue(&I
, DAG
.getNode(ISD::SPONENTRY
, sdl
,
5646 TLI
.getFrameIndexTy(DAG
.getDataLayout())));
5648 case Intrinsic::frameaddress
:
5649 setValue(&I
, DAG
.getNode(ISD::FRAMEADDR
, sdl
,
5650 TLI
.getFrameIndexTy(DAG
.getDataLayout()),
5651 getValue(I
.getArgOperand(0))));
5653 case Intrinsic::read_volatile_register
:
5654 case Intrinsic::read_register
: {
5655 Value
*Reg
= I
.getArgOperand(0);
5656 SDValue Chain
= getRoot();
5658 DAG
.getMDNode(cast
<MDNode
>(cast
<MetadataAsValue
>(Reg
)->getMetadata()));
5659 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
5660 Res
= DAG
.getNode(ISD::READ_REGISTER
, sdl
,
5661 DAG
.getVTList(VT
, MVT::Other
), Chain
, RegName
);
5663 DAG
.setRoot(Res
.getValue(1));
5666 case Intrinsic::write_register
: {
5667 Value
*Reg
= I
.getArgOperand(0);
5668 Value
*RegValue
= I
.getArgOperand(1);
5669 SDValue Chain
= getRoot();
5671 DAG
.getMDNode(cast
<MDNode
>(cast
<MetadataAsValue
>(Reg
)->getMetadata()));
5672 DAG
.setRoot(DAG
.getNode(ISD::WRITE_REGISTER
, sdl
, MVT::Other
, Chain
,
5673 RegName
, getValue(RegValue
)));
5676 case Intrinsic::memcpy
: {
5677 const auto &MCI
= cast
<MemCpyInst
>(I
);
5678 SDValue Op1
= getValue(I
.getArgOperand(0));
5679 SDValue Op2
= getValue(I
.getArgOperand(1));
5680 SDValue Op3
= getValue(I
.getArgOperand(2));
5681 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5682 Align DstAlign
= MCI
.getDestAlign().valueOrOne();
5683 Align SrcAlign
= MCI
.getSourceAlign().valueOrOne();
5684 Align Alignment
= commonAlignment(DstAlign
, SrcAlign
);
5685 bool isVol
= MCI
.isVolatile();
5686 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5687 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5689 SDValue Root
= isVol
? getRoot() : getMemoryRoot();
5690 SDValue MC
= DAG
.getMemcpy(Root
, sdl
, Op1
, Op2
, Op3
, Alignment
, isVol
,
5691 /* AlwaysInline */ false, isTC
,
5692 MachinePointerInfo(I
.getArgOperand(0)),
5693 MachinePointerInfo(I
.getArgOperand(1)));
5694 updateDAGForMaybeTailCall(MC
);
5697 case Intrinsic::memcpy_inline
: {
5698 const auto &MCI
= cast
<MemCpyInlineInst
>(I
);
5699 SDValue Dst
= getValue(I
.getArgOperand(0));
5700 SDValue Src
= getValue(I
.getArgOperand(1));
5701 SDValue Size
= getValue(I
.getArgOperand(2));
5702 assert(isa
<ConstantSDNode
>(Size
) && "memcpy_inline needs constant size");
5703 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5704 Align DstAlign
= MCI
.getDestAlign().valueOrOne();
5705 Align SrcAlign
= MCI
.getSourceAlign().valueOrOne();
5706 Align Alignment
= commonAlignment(DstAlign
, SrcAlign
);
5707 bool isVol
= MCI
.isVolatile();
5708 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5709 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5711 SDValue MC
= DAG
.getMemcpy(getRoot(), sdl
, Dst
, Src
, Size
, Alignment
, isVol
,
5712 /* AlwaysInline */ true, isTC
,
5713 MachinePointerInfo(I
.getArgOperand(0)),
5714 MachinePointerInfo(I
.getArgOperand(1)));
5715 updateDAGForMaybeTailCall(MC
);
5718 case Intrinsic::memset
: {
5719 const auto &MSI
= cast
<MemSetInst
>(I
);
5720 SDValue Op1
= getValue(I
.getArgOperand(0));
5721 SDValue Op2
= getValue(I
.getArgOperand(1));
5722 SDValue Op3
= getValue(I
.getArgOperand(2));
5723 // @llvm.memset defines 0 and 1 to both mean no alignment.
5724 Align Alignment
= MSI
.getDestAlign().valueOrOne();
5725 bool isVol
= MSI
.isVolatile();
5726 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5727 SDValue Root
= isVol
? getRoot() : getMemoryRoot();
5728 SDValue MS
= DAG
.getMemset(Root
, sdl
, Op1
, Op2
, Op3
, Alignment
, isVol
, isTC
,
5729 MachinePointerInfo(I
.getArgOperand(0)));
5730 updateDAGForMaybeTailCall(MS
);
5733 case Intrinsic::memmove
: {
5734 const auto &MMI
= cast
<MemMoveInst
>(I
);
5735 SDValue Op1
= getValue(I
.getArgOperand(0));
5736 SDValue Op2
= getValue(I
.getArgOperand(1));
5737 SDValue Op3
= getValue(I
.getArgOperand(2));
5738 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5739 Align DstAlign
= MMI
.getDestAlign().valueOrOne();
5740 Align SrcAlign
= MMI
.getSourceAlign().valueOrOne();
5741 Align Alignment
= commonAlignment(DstAlign
, SrcAlign
);
5742 bool isVol
= MMI
.isVolatile();
5743 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5744 // FIXME: Support passing different dest/src alignments to the memmove DAG
5746 SDValue Root
= isVol
? getRoot() : getMemoryRoot();
5747 SDValue MM
= DAG
.getMemmove(Root
, sdl
, Op1
, Op2
, Op3
, Alignment
, isVol
,
5748 isTC
, MachinePointerInfo(I
.getArgOperand(0)),
5749 MachinePointerInfo(I
.getArgOperand(1)));
5750 updateDAGForMaybeTailCall(MM
);
5753 case Intrinsic::memcpy_element_unordered_atomic
: {
5754 const AtomicMemCpyInst
&MI
= cast
<AtomicMemCpyInst
>(I
);
5755 SDValue Dst
= getValue(MI
.getRawDest());
5756 SDValue Src
= getValue(MI
.getRawSource());
5757 SDValue Length
= getValue(MI
.getLength());
5759 unsigned DstAlign
= MI
.getDestAlignment();
5760 unsigned SrcAlign
= MI
.getSourceAlignment();
5761 Type
*LengthTy
= MI
.getLength()->getType();
5762 unsigned ElemSz
= MI
.getElementSizeInBytes();
5763 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5764 SDValue MC
= DAG
.getAtomicMemcpy(getRoot(), sdl
, Dst
, DstAlign
, Src
,
5765 SrcAlign
, Length
, LengthTy
, ElemSz
, isTC
,
5766 MachinePointerInfo(MI
.getRawDest()),
5767 MachinePointerInfo(MI
.getRawSource()));
5768 updateDAGForMaybeTailCall(MC
);
5771 case Intrinsic::memmove_element_unordered_atomic
: {
5772 auto &MI
= cast
<AtomicMemMoveInst
>(I
);
5773 SDValue Dst
= getValue(MI
.getRawDest());
5774 SDValue Src
= getValue(MI
.getRawSource());
5775 SDValue Length
= getValue(MI
.getLength());
5777 unsigned DstAlign
= MI
.getDestAlignment();
5778 unsigned SrcAlign
= MI
.getSourceAlignment();
5779 Type
*LengthTy
= MI
.getLength()->getType();
5780 unsigned ElemSz
= MI
.getElementSizeInBytes();
5781 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5782 SDValue MC
= DAG
.getAtomicMemmove(getRoot(), sdl
, Dst
, DstAlign
, Src
,
5783 SrcAlign
, Length
, LengthTy
, ElemSz
, isTC
,
5784 MachinePointerInfo(MI
.getRawDest()),
5785 MachinePointerInfo(MI
.getRawSource()));
5786 updateDAGForMaybeTailCall(MC
);
5789 case Intrinsic::memset_element_unordered_atomic
: {
5790 auto &MI
= cast
<AtomicMemSetInst
>(I
);
5791 SDValue Dst
= getValue(MI
.getRawDest());
5792 SDValue Val
= getValue(MI
.getValue());
5793 SDValue Length
= getValue(MI
.getLength());
5795 unsigned DstAlign
= MI
.getDestAlignment();
5796 Type
*LengthTy
= MI
.getLength()->getType();
5797 unsigned ElemSz
= MI
.getElementSizeInBytes();
5798 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5799 SDValue MC
= DAG
.getAtomicMemset(getRoot(), sdl
, Dst
, DstAlign
, Val
, Length
,
5800 LengthTy
, ElemSz
, isTC
,
5801 MachinePointerInfo(MI
.getRawDest()));
5802 updateDAGForMaybeTailCall(MC
);
5805 case Intrinsic::call_preallocated_setup
: {
5806 const CallBase
*PreallocatedCall
= FindPreallocatedCall(&I
);
5807 SDValue SrcValue
= DAG
.getSrcValue(PreallocatedCall
);
5808 SDValue Res
= DAG
.getNode(ISD::PREALLOCATED_SETUP
, sdl
, MVT::Other
,
5809 getRoot(), SrcValue
);
5814 case Intrinsic::call_preallocated_arg
: {
5815 const CallBase
*PreallocatedCall
= FindPreallocatedCall(I
.getOperand(0));
5816 SDValue SrcValue
= DAG
.getSrcValue(PreallocatedCall
);
5820 Ops
[2] = DAG
.getTargetConstant(*cast
<ConstantInt
>(I
.getArgOperand(1)), sdl
,
5821 MVT::i32
); // arg index
5822 SDValue Res
= DAG
.getNode(
5823 ISD::PREALLOCATED_ARG
, sdl
,
5824 DAG
.getVTList(TLI
.getPointerTy(DAG
.getDataLayout()), MVT::Other
), Ops
);
5826 DAG
.setRoot(Res
.getValue(1));
5829 case Intrinsic::dbg_addr
:
5830 case Intrinsic::dbg_declare
: {
5831 const auto &DI
= cast
<DbgVariableIntrinsic
>(I
);
5832 DILocalVariable
*Variable
= DI
.getVariable();
5833 DIExpression
*Expression
= DI
.getExpression();
5834 dropDanglingDebugInfo(Variable
, Expression
);
5835 assert(Variable
&& "Missing variable");
5836 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5838 // Check if address has undef value.
5839 const Value
*Address
= DI
.getVariableLocation();
5840 if (!Address
|| isa
<UndefValue
>(Address
) ||
5841 (Address
->use_empty() && !isa
<Argument
>(Address
))) {
5842 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5843 << " (bad/undef/unused-arg address)\n");
5847 bool isParameter
= Variable
->isParameter() || isa
<Argument
>(Address
);
5849 // Check if this variable can be described by a frame index, typically
5850 // either as a static alloca or a byval parameter.
5851 int FI
= std::numeric_limits
<int>::max();
5852 if (const auto *AI
=
5853 dyn_cast
<AllocaInst
>(Address
->stripInBoundsConstantOffsets())) {
5854 if (AI
->isStaticAlloca()) {
5855 auto I
= FuncInfo
.StaticAllocaMap
.find(AI
);
5856 if (I
!= FuncInfo
.StaticAllocaMap
.end())
5859 } else if (const auto *Arg
= dyn_cast
<Argument
>(
5860 Address
->stripInBoundsConstantOffsets())) {
5861 FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
5864 // llvm.dbg.addr is control dependent and always generates indirect
5865 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5866 // the MachineFunction variable table.
5867 if (FI
!= std::numeric_limits
<int>::max()) {
5868 if (Intrinsic
== Intrinsic::dbg_addr
) {
5869 SDDbgValue
*SDV
= DAG
.getFrameIndexDbgValue(
5870 Variable
, Expression
, FI
, /*IsIndirect*/ true, dl
, SDNodeOrder
);
5871 DAG
.AddDbgValue(SDV
, getRoot().getNode(), isParameter
);
5873 LLVM_DEBUG(dbgs() << "Skipping " << DI
5874 << " (variable info stashed in MF side table)\n");
5879 SDValue
&N
= NodeMap
[Address
];
5880 if (!N
.getNode() && isa
<Argument
>(Address
))
5881 // Check unused arguments map.
5882 N
= UnusedArgNodeMap
[Address
];
5885 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
5886 Address
= BCI
->getOperand(0);
5887 // Parameters are handled specially.
5888 auto FINode
= dyn_cast
<FrameIndexSDNode
>(N
.getNode());
5889 if (isParameter
&& FINode
) {
5890 // Byval parameter. We have a frame index at this point.
5892 DAG
.getFrameIndexDbgValue(Variable
, Expression
, FINode
->getIndex(),
5893 /*IsIndirect*/ true, dl
, SDNodeOrder
);
5894 } else if (isa
<Argument
>(Address
)) {
5895 // Address is an argument, so try to emit its dbg value using
5896 // virtual register info from the FuncInfo.ValueMap.
5897 EmitFuncArgumentDbgValue(Address
, Variable
, Expression
, dl
, true, N
);
5900 SDV
= DAG
.getDbgValue(Variable
, Expression
, N
.getNode(), N
.getResNo(),
5901 true, dl
, SDNodeOrder
);
5903 DAG
.AddDbgValue(SDV
, N
.getNode(), isParameter
);
5905 // If Address is an argument then try to emit its dbg value using
5906 // virtual register info from the FuncInfo.ValueMap.
5907 if (!EmitFuncArgumentDbgValue(Address
, Variable
, Expression
, dl
, true,
5909 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5910 << " (could not emit func-arg dbg_value)\n");
5915 case Intrinsic::dbg_label
: {
5916 const DbgLabelInst
&DI
= cast
<DbgLabelInst
>(I
);
5917 DILabel
*Label
= DI
.getLabel();
5918 assert(Label
&& "Missing label");
5921 SDV
= DAG
.getDbgLabel(Label
, dl
, SDNodeOrder
);
5922 DAG
.AddDbgLabel(SDV
);
5925 case Intrinsic::dbg_value
: {
5926 const DbgValueInst
&DI
= cast
<DbgValueInst
>(I
);
5927 assert(DI
.getVariable() && "Missing variable");
5929 DILocalVariable
*Variable
= DI
.getVariable();
5930 DIExpression
*Expression
= DI
.getExpression();
5931 dropDanglingDebugInfo(Variable
, Expression
);
5932 const Value
*V
= DI
.getValue();
5936 if (handleDebugValue(V
, Variable
, Expression
, dl
, DI
.getDebugLoc(),
5940 // TODO: Dangling debug info will eventually either be resolved or produce
5941 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5942 // between the original dbg.value location and its resolved DBG_VALUE, which
5943 // we should ideally fill with an extra Undef DBG_VALUE.
5945 DanglingDebugInfoMap
[V
].emplace_back(&DI
, dl
, SDNodeOrder
);
5949 case Intrinsic::eh_typeid_for
: {
5950 // Find the type id for the given typeinfo.
5951 GlobalValue
*GV
= ExtractTypeInfo(I
.getArgOperand(0));
5952 unsigned TypeID
= DAG
.getMachineFunction().getTypeIDFor(GV
);
5953 Res
= DAG
.getConstant(TypeID
, sdl
, MVT::i32
);
5958 case Intrinsic::eh_return_i32
:
5959 case Intrinsic::eh_return_i64
:
5960 DAG
.getMachineFunction().setCallsEHReturn(true);
5961 DAG
.setRoot(DAG
.getNode(ISD::EH_RETURN
, sdl
,
5964 getValue(I
.getArgOperand(0)),
5965 getValue(I
.getArgOperand(1))));
5967 case Intrinsic::eh_unwind_init
:
5968 DAG
.getMachineFunction().setCallsUnwindInit(true);
5970 case Intrinsic::eh_dwarf_cfa
:
5971 setValue(&I
, DAG
.getNode(ISD::EH_DWARF_CFA
, sdl
,
5972 TLI
.getPointerTy(DAG
.getDataLayout()),
5973 getValue(I
.getArgOperand(0))));
5975 case Intrinsic::eh_sjlj_callsite
: {
5976 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
5977 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(0));
5978 assert(CI
&& "Non-constant call site value in eh.sjlj.callsite!");
5979 assert(MMI
.getCurrentCallSite() == 0 && "Overlapping call sites!");
5981 MMI
.setCurrentCallSite(CI
->getZExtValue());
5984 case Intrinsic::eh_sjlj_functioncontext
: {
5985 // Get and store the index of the function context.
5986 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
5988 cast
<AllocaInst
>(I
.getArgOperand(0)->stripPointerCasts());
5989 int FI
= FuncInfo
.StaticAllocaMap
[FnCtx
];
5990 MFI
.setFunctionContextIndex(FI
);
5993 case Intrinsic::eh_sjlj_setjmp
: {
5996 Ops
[1] = getValue(I
.getArgOperand(0));
5997 SDValue Op
= DAG
.getNode(ISD::EH_SJLJ_SETJMP
, sdl
,
5998 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
5999 setValue(&I
, Op
.getValue(0));
6000 DAG
.setRoot(Op
.getValue(1));
6003 case Intrinsic::eh_sjlj_longjmp
:
6004 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_LONGJMP
, sdl
, MVT::Other
,
6005 getRoot(), getValue(I
.getArgOperand(0))));
6007 case Intrinsic::eh_sjlj_setup_dispatch
:
6008 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_SETUP_DISPATCH
, sdl
, MVT::Other
,
6011 case Intrinsic::masked_gather
:
6012 visitMaskedGather(I
);
6014 case Intrinsic::masked_load
:
6017 case Intrinsic::masked_scatter
:
6018 visitMaskedScatter(I
);
6020 case Intrinsic::masked_store
:
6021 visitMaskedStore(I
);
6023 case Intrinsic::masked_expandload
:
6024 visitMaskedLoad(I
, true /* IsExpanding */);
6026 case Intrinsic::masked_compressstore
:
6027 visitMaskedStore(I
, true /* IsCompressing */);
6029 case Intrinsic::powi
:
6030 setValue(&I
, ExpandPowI(sdl
, getValue(I
.getArgOperand(0)),
6031 getValue(I
.getArgOperand(1)), DAG
));
6033 case Intrinsic::log
:
6034 setValue(&I
, expandLog(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
, Flags
));
6036 case Intrinsic::log2
:
6038 expandLog2(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
, Flags
));
6040 case Intrinsic::log10
:
6042 expandLog10(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
, Flags
));
6044 case Intrinsic::exp
:
6045 setValue(&I
, expandExp(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
, Flags
));
6047 case Intrinsic::exp2
:
6049 expandExp2(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
, Flags
));
6051 case Intrinsic::pow
:
6052 setValue(&I
, expandPow(sdl
, getValue(I
.getArgOperand(0)),
6053 getValue(I
.getArgOperand(1)), DAG
, TLI
, Flags
));
6055 case Intrinsic::sqrt
:
6056 case Intrinsic::fabs
:
6057 case Intrinsic::sin
:
6058 case Intrinsic::cos
:
6059 case Intrinsic::floor
:
6060 case Intrinsic::ceil
:
6061 case Intrinsic::trunc
:
6062 case Intrinsic::rint
:
6063 case Intrinsic::nearbyint
:
6064 case Intrinsic::round
:
6065 case Intrinsic::roundeven
:
6066 case Intrinsic::canonicalize
: {
6068 switch (Intrinsic
) {
6069 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6070 case Intrinsic::sqrt
: Opcode
= ISD::FSQRT
; break;
6071 case Intrinsic::fabs
: Opcode
= ISD::FABS
; break;
6072 case Intrinsic::sin
: Opcode
= ISD::FSIN
; break;
6073 case Intrinsic::cos
: Opcode
= ISD::FCOS
; break;
6074 case Intrinsic::floor
: Opcode
= ISD::FFLOOR
; break;
6075 case Intrinsic::ceil
: Opcode
= ISD::FCEIL
; break;
6076 case Intrinsic::trunc
: Opcode
= ISD::FTRUNC
; break;
6077 case Intrinsic::rint
: Opcode
= ISD::FRINT
; break;
6078 case Intrinsic::nearbyint
: Opcode
= ISD::FNEARBYINT
; break;
6079 case Intrinsic::round
: Opcode
= ISD::FROUND
; break;
6080 case Intrinsic::roundeven
: Opcode
= ISD::FROUNDEVEN
; break;
6081 case Intrinsic::canonicalize
: Opcode
= ISD::FCANONICALIZE
; break;
6084 setValue(&I
, DAG
.getNode(Opcode
, sdl
,
6085 getValue(I
.getArgOperand(0)).getValueType(),
6086 getValue(I
.getArgOperand(0)), Flags
));
6089 case Intrinsic::lround
:
6090 case Intrinsic::llround
:
6091 case Intrinsic::lrint
:
6092 case Intrinsic::llrint
: {
6094 switch (Intrinsic
) {
6095 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6096 case Intrinsic::lround
: Opcode
= ISD::LROUND
; break;
6097 case Intrinsic::llround
: Opcode
= ISD::LLROUND
; break;
6098 case Intrinsic::lrint
: Opcode
= ISD::LRINT
; break;
6099 case Intrinsic::llrint
: Opcode
= ISD::LLRINT
; break;
6102 EVT RetVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6103 setValue(&I
, DAG
.getNode(Opcode
, sdl
, RetVT
,
6104 getValue(I
.getArgOperand(0))));
6107 case Intrinsic::minnum
:
6108 setValue(&I
, DAG
.getNode(ISD::FMINNUM
, sdl
,
6109 getValue(I
.getArgOperand(0)).getValueType(),
6110 getValue(I
.getArgOperand(0)),
6111 getValue(I
.getArgOperand(1)), Flags
));
6113 case Intrinsic::maxnum
:
6114 setValue(&I
, DAG
.getNode(ISD::FMAXNUM
, sdl
,
6115 getValue(I
.getArgOperand(0)).getValueType(),
6116 getValue(I
.getArgOperand(0)),
6117 getValue(I
.getArgOperand(1)), Flags
));
6119 case Intrinsic::minimum
:
6120 setValue(&I
, DAG
.getNode(ISD::FMINIMUM
, sdl
,
6121 getValue(I
.getArgOperand(0)).getValueType(),
6122 getValue(I
.getArgOperand(0)),
6123 getValue(I
.getArgOperand(1)), Flags
));
6125 case Intrinsic::maximum
:
6126 setValue(&I
, DAG
.getNode(ISD::FMAXIMUM
, sdl
,
6127 getValue(I
.getArgOperand(0)).getValueType(),
6128 getValue(I
.getArgOperand(0)),
6129 getValue(I
.getArgOperand(1)), Flags
));
6131 case Intrinsic::copysign
:
6132 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, sdl
,
6133 getValue(I
.getArgOperand(0)).getValueType(),
6134 getValue(I
.getArgOperand(0)),
6135 getValue(I
.getArgOperand(1)), Flags
));
6137 case Intrinsic::fma
:
6138 setValue(&I
, DAG
.getNode(
6139 ISD::FMA
, sdl
, getValue(I
.getArgOperand(0)).getValueType(),
6140 getValue(I
.getArgOperand(0)), getValue(I
.getArgOperand(1)),
6141 getValue(I
.getArgOperand(2)), Flags
));
6143 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
6144 case Intrinsic::INTRINSIC:
6145 #include "llvm/IR/ConstrainedOps.def"
6146 visitConstrainedFPIntrinsic(cast
<ConstrainedFPIntrinsic
>(I
));
6148 case Intrinsic::fmuladd
: {
6149 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6150 if (TM
.Options
.AllowFPOpFusion
!= FPOpFusion::Strict
&&
6151 TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(), VT
)) {
6152 setValue(&I
, DAG
.getNode(ISD::FMA
, sdl
,
6153 getValue(I
.getArgOperand(0)).getValueType(),
6154 getValue(I
.getArgOperand(0)),
6155 getValue(I
.getArgOperand(1)),
6156 getValue(I
.getArgOperand(2)), Flags
));
6158 // TODO: Intrinsic calls should have fast-math-flags.
6159 SDValue Mul
= DAG
.getNode(
6160 ISD::FMUL
, sdl
, getValue(I
.getArgOperand(0)).getValueType(),
6161 getValue(I
.getArgOperand(0)), getValue(I
.getArgOperand(1)), Flags
);
6162 SDValue Add
= DAG
.getNode(ISD::FADD
, sdl
,
6163 getValue(I
.getArgOperand(0)).getValueType(),
6164 Mul
, getValue(I
.getArgOperand(2)), Flags
);
6169 case Intrinsic::convert_to_fp16
:
6170 setValue(&I
, DAG
.getNode(ISD::BITCAST
, sdl
, MVT::i16
,
6171 DAG
.getNode(ISD::FP_ROUND
, sdl
, MVT::f16
,
6172 getValue(I
.getArgOperand(0)),
6173 DAG
.getTargetConstant(0, sdl
,
6176 case Intrinsic::convert_from_fp16
:
6177 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, sdl
,
6178 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
6179 DAG
.getNode(ISD::BITCAST
, sdl
, MVT::f16
,
6180 getValue(I
.getArgOperand(0)))));
6182 case Intrinsic::pcmarker
: {
6183 SDValue Tmp
= getValue(I
.getArgOperand(0));
6184 DAG
.setRoot(DAG
.getNode(ISD::PCMARKER
, sdl
, MVT::Other
, getRoot(), Tmp
));
6187 case Intrinsic::readcyclecounter
: {
6188 SDValue Op
= getRoot();
6189 Res
= DAG
.getNode(ISD::READCYCLECOUNTER
, sdl
,
6190 DAG
.getVTList(MVT::i64
, MVT::Other
), Op
);
6192 DAG
.setRoot(Res
.getValue(1));
6195 case Intrinsic::bitreverse
:
6196 setValue(&I
, DAG
.getNode(ISD::BITREVERSE
, sdl
,
6197 getValue(I
.getArgOperand(0)).getValueType(),
6198 getValue(I
.getArgOperand(0))));
6200 case Intrinsic::bswap
:
6201 setValue(&I
, DAG
.getNode(ISD::BSWAP
, sdl
,
6202 getValue(I
.getArgOperand(0)).getValueType(),
6203 getValue(I
.getArgOperand(0))));
6205 case Intrinsic::cttz
: {
6206 SDValue Arg
= getValue(I
.getArgOperand(0));
6207 ConstantInt
*CI
= cast
<ConstantInt
>(I
.getArgOperand(1));
6208 EVT Ty
= Arg
.getValueType();
6209 setValue(&I
, DAG
.getNode(CI
->isZero() ? ISD::CTTZ
: ISD::CTTZ_ZERO_UNDEF
,
6213 case Intrinsic::ctlz
: {
6214 SDValue Arg
= getValue(I
.getArgOperand(0));
6215 ConstantInt
*CI
= cast
<ConstantInt
>(I
.getArgOperand(1));
6216 EVT Ty
= Arg
.getValueType();
6217 setValue(&I
, DAG
.getNode(CI
->isZero() ? ISD::CTLZ
: ISD::CTLZ_ZERO_UNDEF
,
6221 case Intrinsic::ctpop
: {
6222 SDValue Arg
= getValue(I
.getArgOperand(0));
6223 EVT Ty
= Arg
.getValueType();
6224 setValue(&I
, DAG
.getNode(ISD::CTPOP
, sdl
, Ty
, Arg
));
6227 case Intrinsic::fshl
:
6228 case Intrinsic::fshr
: {
6229 bool IsFSHL
= Intrinsic
== Intrinsic::fshl
;
6230 SDValue X
= getValue(I
.getArgOperand(0));
6231 SDValue Y
= getValue(I
.getArgOperand(1));
6232 SDValue Z
= getValue(I
.getArgOperand(2));
6233 EVT VT
= X
.getValueType();
6236 auto RotateOpcode
= IsFSHL
? ISD::ROTL
: ISD::ROTR
;
6237 setValue(&I
, DAG
.getNode(RotateOpcode
, sdl
, VT
, X
, Z
));
6239 auto FunnelOpcode
= IsFSHL
? ISD::FSHL
: ISD::FSHR
;
6240 setValue(&I
, DAG
.getNode(FunnelOpcode
, sdl
, VT
, X
, Y
, Z
));
6244 case Intrinsic::sadd_sat
: {
6245 SDValue Op1
= getValue(I
.getArgOperand(0));
6246 SDValue Op2
= getValue(I
.getArgOperand(1));
6247 setValue(&I
, DAG
.getNode(ISD::SADDSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6250 case Intrinsic::uadd_sat
: {
6251 SDValue Op1
= getValue(I
.getArgOperand(0));
6252 SDValue Op2
= getValue(I
.getArgOperand(1));
6253 setValue(&I
, DAG
.getNode(ISD::UADDSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6256 case Intrinsic::ssub_sat
: {
6257 SDValue Op1
= getValue(I
.getArgOperand(0));
6258 SDValue Op2
= getValue(I
.getArgOperand(1));
6259 setValue(&I
, DAG
.getNode(ISD::SSUBSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6262 case Intrinsic::usub_sat
: {
6263 SDValue Op1
= getValue(I
.getArgOperand(0));
6264 SDValue Op2
= getValue(I
.getArgOperand(1));
6265 setValue(&I
, DAG
.getNode(ISD::USUBSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6268 case Intrinsic::sshl_sat
: {
6269 SDValue Op1
= getValue(I
.getArgOperand(0));
6270 SDValue Op2
= getValue(I
.getArgOperand(1));
6271 setValue(&I
, DAG
.getNode(ISD::SSHLSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6274 case Intrinsic::ushl_sat
: {
6275 SDValue Op1
= getValue(I
.getArgOperand(0));
6276 SDValue Op2
= getValue(I
.getArgOperand(1));
6277 setValue(&I
, DAG
.getNode(ISD::USHLSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6280 case Intrinsic::smul_fix
:
6281 case Intrinsic::umul_fix
:
6282 case Intrinsic::smul_fix_sat
:
6283 case Intrinsic::umul_fix_sat
: {
6284 SDValue Op1
= getValue(I
.getArgOperand(0));
6285 SDValue Op2
= getValue(I
.getArgOperand(1));
6286 SDValue Op3
= getValue(I
.getArgOperand(2));
6287 setValue(&I
, DAG
.getNode(FixedPointIntrinsicToOpcode(Intrinsic
), sdl
,
6288 Op1
.getValueType(), Op1
, Op2
, Op3
));
6291 case Intrinsic::sdiv_fix
:
6292 case Intrinsic::udiv_fix
:
6293 case Intrinsic::sdiv_fix_sat
:
6294 case Intrinsic::udiv_fix_sat
: {
6295 SDValue Op1
= getValue(I
.getArgOperand(0));
6296 SDValue Op2
= getValue(I
.getArgOperand(1));
6297 SDValue Op3
= getValue(I
.getArgOperand(2));
6298 setValue(&I
, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic
), sdl
,
6299 Op1
, Op2
, Op3
, DAG
, TLI
));
6302 case Intrinsic::smax
: {
6303 SDValue Op1
= getValue(I
.getArgOperand(0));
6304 SDValue Op2
= getValue(I
.getArgOperand(1));
6305 setValue(&I
, DAG
.getNode(ISD::SMAX
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6308 case Intrinsic::smin
: {
6309 SDValue Op1
= getValue(I
.getArgOperand(0));
6310 SDValue Op2
= getValue(I
.getArgOperand(1));
6311 setValue(&I
, DAG
.getNode(ISD::SMIN
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6314 case Intrinsic::umax
: {
6315 SDValue Op1
= getValue(I
.getArgOperand(0));
6316 SDValue Op2
= getValue(I
.getArgOperand(1));
6317 setValue(&I
, DAG
.getNode(ISD::UMAX
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6320 case Intrinsic::umin
: {
6321 SDValue Op1
= getValue(I
.getArgOperand(0));
6322 SDValue Op2
= getValue(I
.getArgOperand(1));
6323 setValue(&I
, DAG
.getNode(ISD::UMIN
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6326 case Intrinsic::abs
: {
6327 // TODO: Preserve "int min is poison" arg in SDAG?
6328 SDValue Op1
= getValue(I
.getArgOperand(0));
6329 setValue(&I
, DAG
.getNode(ISD::ABS
, sdl
, Op1
.getValueType(), Op1
));
6332 case Intrinsic::stacksave
: {
6333 SDValue Op
= getRoot();
6334 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6335 Res
= DAG
.getNode(ISD::STACKSAVE
, sdl
, DAG
.getVTList(VT
, MVT::Other
), Op
);
6337 DAG
.setRoot(Res
.getValue(1));
6340 case Intrinsic::stackrestore
:
6341 Res
= getValue(I
.getArgOperand(0));
6342 DAG
.setRoot(DAG
.getNode(ISD::STACKRESTORE
, sdl
, MVT::Other
, getRoot(), Res
));
6344 case Intrinsic::get_dynamic_area_offset
: {
6345 SDValue Op
= getRoot();
6346 EVT PtrTy
= TLI
.getFrameIndexTy(DAG
.getDataLayout());
6347 EVT ResTy
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6348 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6350 if (PtrTy
.getFixedSizeInBits() < ResTy
.getFixedSizeInBits())
6351 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6353 Res
= DAG
.getNode(ISD::GET_DYNAMIC_AREA_OFFSET
, sdl
, DAG
.getVTList(ResTy
),
6359 case Intrinsic::stackguard
: {
6360 MachineFunction
&MF
= DAG
.getMachineFunction();
6361 const Module
&M
= *MF
.getFunction().getParent();
6362 SDValue Chain
= getRoot();
6363 if (TLI
.useLoadStackGuardNode()) {
6364 Res
= getLoadStackGuard(DAG
, sdl
, Chain
);
6366 EVT PtrTy
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6367 const Value
*Global
= TLI
.getSDagStackGuard(M
);
6368 Align Align
= DL
->getPrefTypeAlign(Global
->getType());
6369 Res
= DAG
.getLoad(PtrTy
, sdl
, Chain
, getValue(Global
),
6370 MachinePointerInfo(Global
, 0), Align
,
6371 MachineMemOperand::MOVolatile
);
6373 if (TLI
.useStackGuardXorFP())
6374 Res
= TLI
.emitStackGuardXorFP(DAG
, Res
, sdl
);
6379 case Intrinsic::stackprotector
: {
6380 // Emit code into the DAG to store the stack guard onto the stack.
6381 MachineFunction
&MF
= DAG
.getMachineFunction();
6382 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6383 SDValue Src
, Chain
= getRoot();
6385 if (TLI
.useLoadStackGuardNode())
6386 Src
= getLoadStackGuard(DAG
, sdl
, Chain
);
6388 Src
= getValue(I
.getArgOperand(0)); // The guard's value.
6390 AllocaInst
*Slot
= cast
<AllocaInst
>(I
.getArgOperand(1));
6392 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
6393 MFI
.setStackProtectorIndex(FI
);
6394 EVT PtrTy
= TLI
.getFrameIndexTy(DAG
.getDataLayout());
6396 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
6398 // Store the stack protector onto the stack.
6400 Chain
, sdl
, Src
, FIN
,
6401 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
),
6402 MaybeAlign(), MachineMemOperand::MOVolatile
);
6407 case Intrinsic::objectsize
:
6408 llvm_unreachable("llvm.objectsize.* should have been lowered already");
6410 case Intrinsic::is_constant
:
6411 llvm_unreachable("llvm.is.constant.* should have been lowered already");
6413 case Intrinsic::annotation
:
6414 case Intrinsic::ptr_annotation
:
6415 case Intrinsic::launder_invariant_group
:
6416 case Intrinsic::strip_invariant_group
:
6417 // Drop the intrinsic, but forward the value
6418 setValue(&I
, getValue(I
.getOperand(0)));
6420 case Intrinsic::assume
:
6421 case Intrinsic::var_annotation
:
6422 case Intrinsic::sideeffect
:
6423 // Discard annotate attributes, assumptions, and artificial side-effects.
6426 case Intrinsic::codeview_annotation
: {
6427 // Emit a label associated with this metadata.
6428 MachineFunction
&MF
= DAG
.getMachineFunction();
6430 MF
.getMMI().getContext().createTempSymbol("annotation", true);
6431 Metadata
*MD
= cast
<MetadataAsValue
>(I
.getArgOperand(0))->getMetadata();
6432 MF
.addCodeViewAnnotation(Label
, cast
<MDNode
>(MD
));
6433 Res
= DAG
.getLabelNode(ISD::ANNOTATION_LABEL
, sdl
, getRoot(), Label
);
6438 case Intrinsic::init_trampoline
: {
6439 const Function
*F
= cast
<Function
>(I
.getArgOperand(1)->stripPointerCasts());
6443 Ops
[1] = getValue(I
.getArgOperand(0));
6444 Ops
[2] = getValue(I
.getArgOperand(1));
6445 Ops
[3] = getValue(I
.getArgOperand(2));
6446 Ops
[4] = DAG
.getSrcValue(I
.getArgOperand(0));
6447 Ops
[5] = DAG
.getSrcValue(F
);
6449 Res
= DAG
.getNode(ISD::INIT_TRAMPOLINE
, sdl
, MVT::Other
, Ops
);
6454 case Intrinsic::adjust_trampoline
:
6455 setValue(&I
, DAG
.getNode(ISD::ADJUST_TRAMPOLINE
, sdl
,
6456 TLI
.getPointerTy(DAG
.getDataLayout()),
6457 getValue(I
.getArgOperand(0))));
6459 case Intrinsic::gcroot
: {
6460 assert(DAG
.getMachineFunction().getFunction().hasGC() &&
6461 "only valid in functions with gc specified, enforced by Verifier");
6462 assert(GFI
&& "implied by previous");
6463 const Value
*Alloca
= I
.getArgOperand(0)->stripPointerCasts();
6464 const Constant
*TypeMap
= cast
<Constant
>(I
.getArgOperand(1));
6466 FrameIndexSDNode
*FI
= cast
<FrameIndexSDNode
>(getValue(Alloca
).getNode());
6467 GFI
->addStackRoot(FI
->getIndex(), TypeMap
);
6470 case Intrinsic::gcread
:
6471 case Intrinsic::gcwrite
:
6472 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6473 case Intrinsic::flt_rounds
:
6474 Res
= DAG
.getNode(ISD::FLT_ROUNDS_
, sdl
, {MVT::i32
, MVT::Other
}, getRoot());
6476 DAG
.setRoot(Res
.getValue(1));
6479 case Intrinsic::expect
:
6480 // Just replace __builtin_expect(exp, c) with EXP.
6481 setValue(&I
, getValue(I
.getArgOperand(0)));
6484 case Intrinsic::debugtrap
:
6485 case Intrinsic::trap
: {
6486 StringRef TrapFuncName
=
6488 .getAttribute(AttributeList::FunctionIndex
, "trap-func-name")
6489 .getValueAsString();
6490 if (TrapFuncName
.empty()) {
6491 ISD::NodeType Op
= (Intrinsic
== Intrinsic::trap
) ?
6492 ISD::TRAP
: ISD::DEBUGTRAP
;
6493 DAG
.setRoot(DAG
.getNode(Op
, sdl
,MVT::Other
, getRoot()));
6496 TargetLowering::ArgListTy Args
;
6498 TargetLowering::CallLoweringInfo
CLI(DAG
);
6499 CLI
.setDebugLoc(sdl
).setChain(getRoot()).setLibCallee(
6500 CallingConv::C
, I
.getType(),
6501 DAG
.getExternalSymbol(TrapFuncName
.data(),
6502 TLI
.getPointerTy(DAG
.getDataLayout())),
6505 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
6506 DAG
.setRoot(Result
.second
);
6510 case Intrinsic::uadd_with_overflow
:
6511 case Intrinsic::sadd_with_overflow
:
6512 case Intrinsic::usub_with_overflow
:
6513 case Intrinsic::ssub_with_overflow
:
6514 case Intrinsic::umul_with_overflow
:
6515 case Intrinsic::smul_with_overflow
: {
6517 switch (Intrinsic
) {
6518 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6519 case Intrinsic::uadd_with_overflow
: Op
= ISD::UADDO
; break;
6520 case Intrinsic::sadd_with_overflow
: Op
= ISD::SADDO
; break;
6521 case Intrinsic::usub_with_overflow
: Op
= ISD::USUBO
; break;
6522 case Intrinsic::ssub_with_overflow
: Op
= ISD::SSUBO
; break;
6523 case Intrinsic::umul_with_overflow
: Op
= ISD::UMULO
; break;
6524 case Intrinsic::smul_with_overflow
: Op
= ISD::SMULO
; break;
6526 SDValue Op1
= getValue(I
.getArgOperand(0));
6527 SDValue Op2
= getValue(I
.getArgOperand(1));
6529 EVT ResultVT
= Op1
.getValueType();
6530 EVT OverflowVT
= MVT::i1
;
6531 if (ResultVT
.isVector())
6532 OverflowVT
= EVT::getVectorVT(
6533 *Context
, OverflowVT
, ResultVT
.getVectorNumElements());
6535 SDVTList VTs
= DAG
.getVTList(ResultVT
, OverflowVT
);
6536 setValue(&I
, DAG
.getNode(Op
, sdl
, VTs
, Op1
, Op2
));
6539 case Intrinsic::prefetch
: {
6541 unsigned rw
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
6542 auto Flags
= rw
== 0 ? MachineMemOperand::MOLoad
:MachineMemOperand::MOStore
;
6543 Ops
[0] = DAG
.getRoot();
6544 Ops
[1] = getValue(I
.getArgOperand(0));
6545 Ops
[2] = getValue(I
.getArgOperand(1));
6546 Ops
[3] = getValue(I
.getArgOperand(2));
6547 Ops
[4] = getValue(I
.getArgOperand(3));
6548 SDValue Result
= DAG
.getMemIntrinsicNode(
6549 ISD::PREFETCH
, sdl
, DAG
.getVTList(MVT::Other
), Ops
,
6550 EVT::getIntegerVT(*Context
, 8), MachinePointerInfo(I
.getArgOperand(0)),
6551 /* align */ None
, Flags
);
6553 // Chain the prefetch in parallell with any pending loads, to stay out of
6554 // the way of later optimizations.
6555 PendingLoads
.push_back(Result
);
6557 DAG
.setRoot(Result
);
6560 case Intrinsic::lifetime_start
:
6561 case Intrinsic::lifetime_end
: {
6562 bool IsStart
= (Intrinsic
== Intrinsic::lifetime_start
);
6563 // Stack coloring is not enabled in O0, discard region information.
6564 if (TM
.getOptLevel() == CodeGenOpt::None
)
6567 const int64_t ObjectSize
=
6568 cast
<ConstantInt
>(I
.getArgOperand(0))->getSExtValue();
6569 Value
*const ObjectPtr
= I
.getArgOperand(1);
6570 SmallVector
<const Value
*, 4> Allocas
;
6571 getUnderlyingObjects(ObjectPtr
, Allocas
);
6573 for (SmallVectorImpl
<const Value
*>::iterator Object
= Allocas
.begin(),
6574 E
= Allocas
.end(); Object
!= E
; ++Object
) {
6575 const AllocaInst
*LifetimeObject
= dyn_cast_or_null
<AllocaInst
>(*Object
);
6577 // Could not find an Alloca.
6578 if (!LifetimeObject
)
6581 // First check that the Alloca is static, otherwise it won't have a
6582 // valid frame index.
6583 auto SI
= FuncInfo
.StaticAllocaMap
.find(LifetimeObject
);
6584 if (SI
== FuncInfo
.StaticAllocaMap
.end())
6587 const int FrameIndex
= SI
->second
;
6589 if (GetPointerBaseWithConstantOffset(
6590 ObjectPtr
, Offset
, DAG
.getDataLayout()) != LifetimeObject
)
6591 Offset
= -1; // Cannot determine offset from alloca to lifetime object.
6592 Res
= DAG
.getLifetimeNode(IsStart
, sdl
, getRoot(), FrameIndex
, ObjectSize
,
6598 case Intrinsic::pseudoprobe
: {
6599 auto Guid
= cast
<ConstantInt
>(I
.getArgOperand(0))->getZExtValue();
6600 auto Index
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
6601 auto Attr
= cast
<ConstantInt
>(I
.getArgOperand(2))->getZExtValue();
6602 Res
= DAG
.getPseudoProbeNode(sdl
, getRoot(), Guid
, Index
, Attr
);
6606 case Intrinsic::invariant_start
:
6607 // Discard region information.
6608 setValue(&I
, DAG
.getUNDEF(TLI
.getPointerTy(DAG
.getDataLayout())));
6610 case Intrinsic::invariant_end
:
6611 // Discard region information.
6613 case Intrinsic::clear_cache
:
6614 /// FunctionName may be null.
6615 if (const char *FunctionName
= TLI
.getClearCacheBuiltinName())
6616 lowerCallToExternalSymbol(I
, FunctionName
);
6618 case Intrinsic::donothing
:
6621 case Intrinsic::experimental_stackmap
:
6624 case Intrinsic::experimental_patchpoint_void
:
6625 case Intrinsic::experimental_patchpoint_i64
:
6628 case Intrinsic::experimental_gc_statepoint
:
6629 LowerStatepoint(cast
<GCStatepointInst
>(I
));
6631 case Intrinsic::experimental_gc_result
:
6632 visitGCResult(cast
<GCResultInst
>(I
));
6634 case Intrinsic::experimental_gc_relocate
:
6635 visitGCRelocate(cast
<GCRelocateInst
>(I
));
6637 case Intrinsic::instrprof_increment
:
6638 llvm_unreachable("instrprof failed to lower an increment");
6639 case Intrinsic::instrprof_value_profile
:
6640 llvm_unreachable("instrprof failed to lower a value profiling call");
6641 case Intrinsic::localescape
: {
6642 MachineFunction
&MF
= DAG
.getMachineFunction();
6643 const TargetInstrInfo
*TII
= DAG
.getSubtarget().getInstrInfo();
6645 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6646 // is the same on all targets.
6647 for (unsigned Idx
= 0, E
= I
.getNumArgOperands(); Idx
< E
; ++Idx
) {
6648 Value
*Arg
= I
.getArgOperand(Idx
)->stripPointerCasts();
6649 if (isa
<ConstantPointerNull
>(Arg
))
6650 continue; // Skip null pointers. They represent a hole in index space.
6651 AllocaInst
*Slot
= cast
<AllocaInst
>(Arg
);
6652 assert(FuncInfo
.StaticAllocaMap
.count(Slot
) &&
6653 "can only escape static allocas");
6654 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
6655 MCSymbol
*FrameAllocSym
=
6656 MF
.getMMI().getContext().getOrCreateFrameAllocSymbol(
6657 GlobalValue::dropLLVMManglingEscape(MF
.getName()), Idx
);
6658 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, dl
,
6659 TII
->get(TargetOpcode::LOCAL_ESCAPE
))
6660 .addSym(FrameAllocSym
)
6667 case Intrinsic::localrecover
: {
6668 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6669 MachineFunction
&MF
= DAG
.getMachineFunction();
6671 // Get the symbol that defines the frame offset.
6672 auto *Fn
= cast
<Function
>(I
.getArgOperand(0)->stripPointerCasts());
6673 auto *Idx
= cast
<ConstantInt
>(I
.getArgOperand(2));
6675 unsigned(Idx
->getLimitedValue(std::numeric_limits
<int>::max()));
6676 MCSymbol
*FrameAllocSym
=
6677 MF
.getMMI().getContext().getOrCreateFrameAllocSymbol(
6678 GlobalValue::dropLLVMManglingEscape(Fn
->getName()), IdxVal
);
6680 Value
*FP
= I
.getArgOperand(1);
6681 SDValue FPVal
= getValue(FP
);
6682 EVT PtrVT
= FPVal
.getValueType();
6684 // Create a MCSymbol for the label to avoid any target lowering
6685 // that would make this PC relative.
6686 SDValue OffsetSym
= DAG
.getMCSymbol(FrameAllocSym
, PtrVT
);
6688 DAG
.getNode(ISD::LOCAL_RECOVER
, sdl
, PtrVT
, OffsetSym
);
6690 // Add the offset to the FP.
6691 SDValue Add
= DAG
.getMemBasePlusOffset(FPVal
, OffsetVal
, sdl
);
6697 case Intrinsic::eh_exceptionpointer
:
6698 case Intrinsic::eh_exceptioncode
: {
6699 // Get the exception pointer vreg, copy from it, and resize it to fit.
6700 const auto *CPI
= cast
<CatchPadInst
>(I
.getArgOperand(0));
6701 MVT PtrVT
= TLI
.getPointerTy(DAG
.getDataLayout());
6702 const TargetRegisterClass
*PtrRC
= TLI
.getRegClassFor(PtrVT
);
6703 unsigned VReg
= FuncInfo
.getCatchPadExceptionPointerVReg(CPI
, PtrRC
);
6705 DAG
.getCopyFromReg(DAG
.getEntryNode(), getCurSDLoc(), VReg
, PtrVT
);
6706 if (Intrinsic
== Intrinsic::eh_exceptioncode
)
6707 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), MVT::i32
);
6711 case Intrinsic::xray_customevent
: {
6712 // Here we want to make sure that the intrinsic behaves as if it has a
6713 // specific calling convention, and only for x86_64.
6714 // FIXME: Support other platforms later.
6715 const auto &Triple
= DAG
.getTarget().getTargetTriple();
6716 if (Triple
.getArch() != Triple::x86_64
|| !Triple
.isOSLinux())
6719 SDLoc DL
= getCurSDLoc();
6720 SmallVector
<SDValue
, 8> Ops
;
6722 // We want to say that we always want the arguments in registers.
6723 SDValue LogEntryVal
= getValue(I
.getArgOperand(0));
6724 SDValue StrSizeVal
= getValue(I
.getArgOperand(1));
6725 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
6726 SDValue Chain
= getRoot();
6727 Ops
.push_back(LogEntryVal
);
6728 Ops
.push_back(StrSizeVal
);
6729 Ops
.push_back(Chain
);
6731 // We need to enforce the calling convention for the callsite, so that
6732 // argument ordering is enforced correctly, and that register allocation can
6733 // see that some registers may be assumed clobbered and have to preserve
6734 // them across calls to the intrinsic.
6735 MachineSDNode
*MN
= DAG
.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL
,
6737 SDValue patchableNode
= SDValue(MN
, 0);
6738 DAG
.setRoot(patchableNode
);
6739 setValue(&I
, patchableNode
);
6742 case Intrinsic::xray_typedevent
: {
6743 // Here we want to make sure that the intrinsic behaves as if it has a
6744 // specific calling convention, and only for x86_64.
6745 // FIXME: Support other platforms later.
6746 const auto &Triple
= DAG
.getTarget().getTargetTriple();
6747 if (Triple
.getArch() != Triple::x86_64
|| !Triple
.isOSLinux())
6750 SDLoc DL
= getCurSDLoc();
6751 SmallVector
<SDValue
, 8> Ops
;
6753 // We want to say that we always want the arguments in registers.
6754 // It's unclear to me how manipulating the selection DAG here forces callers
6755 // to provide arguments in registers instead of on the stack.
6756 SDValue LogTypeId
= getValue(I
.getArgOperand(0));
6757 SDValue LogEntryVal
= getValue(I
.getArgOperand(1));
6758 SDValue StrSizeVal
= getValue(I
.getArgOperand(2));
6759 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
6760 SDValue Chain
= getRoot();
6761 Ops
.push_back(LogTypeId
);
6762 Ops
.push_back(LogEntryVal
);
6763 Ops
.push_back(StrSizeVal
);
6764 Ops
.push_back(Chain
);
6766 // We need to enforce the calling convention for the callsite, so that
6767 // argument ordering is enforced correctly, and that register allocation can
6768 // see that some registers may be assumed clobbered and have to preserve
6769 // them across calls to the intrinsic.
6770 MachineSDNode
*MN
= DAG
.getMachineNode(
6771 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL
, DL
, NodeTys
, Ops
);
6772 SDValue patchableNode
= SDValue(MN
, 0);
6773 DAG
.setRoot(patchableNode
);
6774 setValue(&I
, patchableNode
);
6777 case Intrinsic::experimental_deoptimize
:
6778 LowerDeoptimizeCall(&I
);
6781 case Intrinsic::vector_reduce_fadd
:
6782 case Intrinsic::vector_reduce_fmul
:
6783 case Intrinsic::vector_reduce_add
:
6784 case Intrinsic::vector_reduce_mul
:
6785 case Intrinsic::vector_reduce_and
:
6786 case Intrinsic::vector_reduce_or
:
6787 case Intrinsic::vector_reduce_xor
:
6788 case Intrinsic::vector_reduce_smax
:
6789 case Intrinsic::vector_reduce_smin
:
6790 case Intrinsic::vector_reduce_umax
:
6791 case Intrinsic::vector_reduce_umin
:
6792 case Intrinsic::vector_reduce_fmax
:
6793 case Intrinsic::vector_reduce_fmin
:
6794 visitVectorReduce(I
, Intrinsic
);
6797 case Intrinsic::icall_branch_funnel
: {
6798 SmallVector
<SDValue
, 16> Ops
;
6799 Ops
.push_back(getValue(I
.getArgOperand(0)));
6802 auto *Base
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
6803 I
.getArgOperand(1), Offset
, DAG
.getDataLayout()));
6806 "llvm.icall.branch.funnel operand must be a GlobalValue");
6807 Ops
.push_back(DAG
.getTargetGlobalAddress(Base
, getCurSDLoc(), MVT::i64
, 0));
6809 struct BranchFunnelTarget
{
6813 SmallVector
<BranchFunnelTarget
, 8> Targets
;
6815 for (unsigned Op
= 1, N
= I
.getNumArgOperands(); Op
!= N
; Op
+= 2) {
6816 auto *ElemBase
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
6817 I
.getArgOperand(Op
), Offset
, DAG
.getDataLayout()));
6818 if (ElemBase
!= Base
)
6819 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6820 "to the same GlobalValue");
6822 SDValue Val
= getValue(I
.getArgOperand(Op
+ 1));
6823 auto *GA
= dyn_cast
<GlobalAddressSDNode
>(Val
);
6826 "llvm.icall.branch.funnel operand must be a GlobalValue");
6827 Targets
.push_back({Offset
, DAG
.getTargetGlobalAddress(
6828 GA
->getGlobal(), getCurSDLoc(),
6829 Val
.getValueType(), GA
->getOffset())});
6832 [](const BranchFunnelTarget
&T1
, const BranchFunnelTarget
&T2
) {
6833 return T1
.Offset
< T2
.Offset
;
6836 for (auto &T
: Targets
) {
6837 Ops
.push_back(DAG
.getTargetConstant(T
.Offset
, getCurSDLoc(), MVT::i32
));
6838 Ops
.push_back(T
.Target
);
6841 Ops
.push_back(DAG
.getRoot()); // Chain
6842 SDValue
N(DAG
.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL
,
6843 getCurSDLoc(), MVT::Other
, Ops
),
6851 case Intrinsic::wasm_landingpad_index
:
6852 // Information this intrinsic contained has been transferred to
6853 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6857 case Intrinsic::aarch64_settag
:
6858 case Intrinsic::aarch64_settag_zero
: {
6859 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
6860 bool ZeroMemory
= Intrinsic
== Intrinsic::aarch64_settag_zero
;
6861 SDValue Val
= TSI
.EmitTargetCodeForSetTag(
6862 DAG
, getCurSDLoc(), getRoot(), getValue(I
.getArgOperand(0)),
6863 getValue(I
.getArgOperand(1)), MachinePointerInfo(I
.getArgOperand(0)),
6869 case Intrinsic::ptrmask
: {
6870 SDValue Ptr
= getValue(I
.getOperand(0));
6871 SDValue Const
= getValue(I
.getOperand(1));
6873 EVT PtrVT
= Ptr
.getValueType();
6874 setValue(&I
, DAG
.getNode(ISD::AND
, getCurSDLoc(), PtrVT
, Ptr
,
6875 DAG
.getZExtOrTrunc(Const
, getCurSDLoc(), PtrVT
)));
6878 case Intrinsic::get_active_lane_mask
: {
6879 auto DL
= getCurSDLoc();
6880 SDValue Index
= getValue(I
.getOperand(0));
6881 SDValue TripCount
= getValue(I
.getOperand(1));
6882 Type
*ElementTy
= I
.getOperand(0)->getType();
6883 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6884 unsigned VecWidth
= VT
.getVectorNumElements();
6886 SmallVector
<SDValue
, 16> OpsTripCount
;
6887 SmallVector
<SDValue
, 16> OpsIndex
;
6888 SmallVector
<SDValue
, 16> OpsStepConstants
;
6889 for (unsigned i
= 0; i
< VecWidth
; i
++) {
6890 OpsTripCount
.push_back(TripCount
);
6891 OpsIndex
.push_back(Index
);
6892 OpsStepConstants
.push_back(
6893 DAG
.getConstant(i
, DL
, EVT::getEVT(ElementTy
)));
6896 EVT CCVT
= EVT::getVectorVT(I
.getContext(), MVT::i1
, VecWidth
);
6898 auto VecTy
= EVT::getEVT(FixedVectorType::get(ElementTy
, VecWidth
));
6899 SDValue VectorIndex
= DAG
.getBuildVector(VecTy
, DL
, OpsIndex
);
6900 SDValue VectorStep
= DAG
.getBuildVector(VecTy
, DL
, OpsStepConstants
);
6901 SDValue VectorInduction
= DAG
.getNode(
6902 ISD::UADDO
, DL
, DAG
.getVTList(VecTy
, CCVT
), VectorIndex
, VectorStep
);
6903 SDValue VectorTripCount
= DAG
.getBuildVector(VecTy
, DL
, OpsTripCount
);
6904 SDValue SetCC
= DAG
.getSetCC(DL
, CCVT
, VectorInduction
.getValue(0),
6905 VectorTripCount
, ISD::CondCode::SETULT
);
6906 setValue(&I
, DAG
.getNode(ISD::AND
, DL
, CCVT
,
6907 DAG
.getNOT(DL
, VectorInduction
.getValue(1), CCVT
),
6914 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6915 const ConstrainedFPIntrinsic
&FPI
) {
6916 SDLoc sdl
= getCurSDLoc();
6918 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6919 SmallVector
<EVT
, 4> ValueVTs
;
6920 ComputeValueVTs(TLI
, DAG
.getDataLayout(), FPI
.getType(), ValueVTs
);
6921 ValueVTs
.push_back(MVT::Other
); // Out chain
6923 // We do not need to serialize constrained FP intrinsics against
6924 // each other or against (nonvolatile) loads, so they can be
6925 // chained like loads.
6926 SDValue Chain
= DAG
.getRoot();
6927 SmallVector
<SDValue
, 4> Opers
;
6928 Opers
.push_back(Chain
);
6929 if (FPI
.isUnaryOp()) {
6930 Opers
.push_back(getValue(FPI
.getArgOperand(0)));
6931 } else if (FPI
.isTernaryOp()) {
6932 Opers
.push_back(getValue(FPI
.getArgOperand(0)));
6933 Opers
.push_back(getValue(FPI
.getArgOperand(1)));
6934 Opers
.push_back(getValue(FPI
.getArgOperand(2)));
6936 Opers
.push_back(getValue(FPI
.getArgOperand(0)));
6937 Opers
.push_back(getValue(FPI
.getArgOperand(1)));
6940 auto pushOutChain
= [this](SDValue Result
, fp::ExceptionBehavior EB
) {
6941 assert(Result
.getNode()->getNumValues() == 2);
6943 // Push node to the appropriate list so that future instructions can be
6944 // chained up correctly.
6945 SDValue OutChain
= Result
.getValue(1);
6947 case fp::ExceptionBehavior::ebIgnore
:
6948 // The only reason why ebIgnore nodes still need to be chained is that
6949 // they might depend on the current rounding mode, and therefore must
6950 // not be moved across instruction that may change that mode.
6952 case fp::ExceptionBehavior::ebMayTrap
:
6953 // These must not be moved across calls or instructions that may change
6954 // floating-point exception masks.
6955 PendingConstrainedFP
.push_back(OutChain
);
6957 case fp::ExceptionBehavior::ebStrict
:
6958 // These must not be moved across calls or instructions that may change
6959 // floating-point exception masks or read floating-point exception flags.
6960 // In addition, they cannot be optimized out even if unused.
6961 PendingConstrainedFPStrict
.push_back(OutChain
);
6966 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
6967 fp::ExceptionBehavior EB
= FPI
.getExceptionBehavior().getValue();
6970 if (EB
== fp::ExceptionBehavior::ebIgnore
)
6971 Flags
.setNoFPExcept(true);
6973 if (auto *FPOp
= dyn_cast
<FPMathOperator
>(&FPI
))
6974 Flags
.copyFMF(*FPOp
);
6977 switch (FPI
.getIntrinsicID()) {
6978 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6979 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
6980 case Intrinsic::INTRINSIC: \
6981 Opcode = ISD::STRICT_##DAGN; \
6983 #include "llvm/IR/ConstrainedOps.def"
6984 case Intrinsic::experimental_constrained_fmuladd
: {
6985 Opcode
= ISD::STRICT_FMA
;
6986 // Break fmuladd into fmul and fadd.
6987 if (TM
.Options
.AllowFPOpFusion
== FPOpFusion::Strict
||
6988 !TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(),
6991 SDValue Mul
= DAG
.getNode(ISD::STRICT_FMUL
, sdl
, VTs
, Opers
, Flags
);
6992 pushOutChain(Mul
, EB
);
6993 Opcode
= ISD::STRICT_FADD
;
6995 Opers
.push_back(Mul
.getValue(1));
6996 Opers
.push_back(Mul
.getValue(0));
6997 Opers
.push_back(getValue(FPI
.getArgOperand(2)));
7003 // A few strict DAG nodes carry additional operands that are not
7004 // set up by the default code above.
7007 case ISD::STRICT_FP_ROUND
:
7009 DAG
.getTargetConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout())));
7011 case ISD::STRICT_FSETCC
:
7012 case ISD::STRICT_FSETCCS
: {
7013 auto *FPCmp
= dyn_cast
<ConstrainedFPCmpIntrinsic
>(&FPI
);
7014 Opers
.push_back(DAG
.getCondCode(getFCmpCondCode(FPCmp
->getPredicate())));
7019 SDValue Result
= DAG
.getNode(Opcode
, sdl
, VTs
, Opers
, Flags
);
7020 pushOutChain(Result
, EB
);
7022 SDValue FPResult
= Result
.getValue(0);
7023 setValue(&FPI
, FPResult
);
7026 std::pair
<SDValue
, SDValue
>
7027 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo
&CLI
,
7028 const BasicBlock
*EHPadBB
) {
7029 MachineFunction
&MF
= DAG
.getMachineFunction();
7030 MachineModuleInfo
&MMI
= MF
.getMMI();
7031 MCSymbol
*BeginLabel
= nullptr;
7034 // Insert a label before the invoke call to mark the try range. This can be
7035 // used to detect deletion of the invoke via the MachineModuleInfo.
7036 BeginLabel
= MMI
.getContext().createTempSymbol();
7038 // For SjLj, keep track of which landing pads go with which invokes
7039 // so as to maintain the ordering of pads in the LSDA.
7040 unsigned CallSiteIndex
= MMI
.getCurrentCallSite();
7041 if (CallSiteIndex
) {
7042 MF
.setCallSiteBeginLabel(BeginLabel
, CallSiteIndex
);
7043 LPadToCallSiteMap
[FuncInfo
.MBBMap
[EHPadBB
]].push_back(CallSiteIndex
);
7045 // Now that the call site is handled, stop tracking it.
7046 MMI
.setCurrentCallSite(0);
7049 // Both PendingLoads and PendingExports must be flushed here;
7050 // this call might not return.
7052 DAG
.setRoot(DAG
.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel
));
7054 CLI
.setChain(getRoot());
7056 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7057 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
7059 assert((CLI
.IsTailCall
|| Result
.second
.getNode()) &&
7060 "Non-null chain expected with non-tail call!");
7061 assert((Result
.second
.getNode() || !Result
.first
.getNode()) &&
7062 "Null value expected with tail call!");
7064 if (!Result
.second
.getNode()) {
7065 // As a special case, a null chain means that a tail call has been emitted
7066 // and the DAG root is already updated.
7069 // Since there's no actual continuation from this block, nothing can be
7070 // relying on us setting vregs for them.
7071 PendingExports
.clear();
7073 DAG
.setRoot(Result
.second
);
7077 // Insert a label at the end of the invoke call to mark the try range. This
7078 // can be used to detect deletion of the invoke via the MachineModuleInfo.
7079 MCSymbol
*EndLabel
= MMI
.getContext().createTempSymbol();
7080 DAG
.setRoot(DAG
.getEHLabel(getCurSDLoc(), getRoot(), EndLabel
));
7082 // Inform MachineModuleInfo of range.
7083 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
7084 // There is a platform (e.g. wasm) that uses funclet style IR but does not
7085 // actually use outlined funclets and their LSDA info style.
7086 if (MF
.hasEHFunclets() && isFuncletEHPersonality(Pers
)) {
7088 WinEHFuncInfo
*EHInfo
= DAG
.getMachineFunction().getWinEHFuncInfo();
7089 EHInfo
->addIPToStateRange(cast
<InvokeInst
>(CLI
.CB
), BeginLabel
, EndLabel
);
7090 } else if (!isScopedEHPersonality(Pers
)) {
7091 MF
.addInvoke(FuncInfo
.MBBMap
[EHPadBB
], BeginLabel
, EndLabel
);
7098 void SelectionDAGBuilder::LowerCallTo(const CallBase
&CB
, SDValue Callee
,
7100 const BasicBlock
*EHPadBB
) {
7101 auto &DL
= DAG
.getDataLayout();
7102 FunctionType
*FTy
= CB
.getFunctionType();
7103 Type
*RetTy
= CB
.getType();
7105 TargetLowering::ArgListTy Args
;
7106 Args
.reserve(CB
.arg_size());
7108 const Value
*SwiftErrorVal
= nullptr;
7109 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7112 // Avoid emitting tail calls in functions with the disable-tail-calls
7114 auto *Caller
= CB
.getParent()->getParent();
7115 if (Caller
->getFnAttribute("disable-tail-calls").getValueAsString() ==
7119 // We can't tail call inside a function with a swifterror argument. Lowering
7120 // does not support this yet. It would have to move into the swifterror
7121 // register before the call.
7122 if (TLI
.supportSwiftError() &&
7123 Caller
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
))
7127 for (auto I
= CB
.arg_begin(), E
= CB
.arg_end(); I
!= E
; ++I
) {
7128 TargetLowering::ArgListEntry Entry
;
7129 const Value
*V
= *I
;
7132 if (V
->getType()->isEmptyTy())
7135 SDValue ArgNode
= getValue(V
);
7136 Entry
.Node
= ArgNode
; Entry
.Ty
= V
->getType();
7138 Entry
.setAttributes(&CB
, I
- CB
.arg_begin());
7140 // Use swifterror virtual register as input to the call.
7141 if (Entry
.IsSwiftError
&& TLI
.supportSwiftError()) {
7143 // We find the virtual register for the actual swifterror argument.
7144 // Instead of using the Value, we use the virtual register instead.
7146 DAG
.getRegister(SwiftError
.getOrCreateVRegUseAt(&CB
, FuncInfo
.MBB
, V
),
7147 EVT(TLI
.getPointerTy(DL
)));
7150 Args
.push_back(Entry
);
7152 // If we have an explicit sret argument that is an Instruction, (i.e., it
7153 // might point to function-local memory), we can't meaningfully tail-call.
7154 if (Entry
.IsSRet
&& isa
<Instruction
>(V
))
7158 // If call site has a cfguardtarget operand bundle, create and add an
7159 // additional ArgListEntry.
7160 if (auto Bundle
= CB
.getOperandBundle(LLVMContext::OB_cfguardtarget
)) {
7161 TargetLowering::ArgListEntry Entry
;
7162 Value
*V
= Bundle
->Inputs
[0];
7163 SDValue ArgNode
= getValue(V
);
7164 Entry
.Node
= ArgNode
;
7165 Entry
.Ty
= V
->getType();
7166 Entry
.IsCFGuardTarget
= true;
7167 Args
.push_back(Entry
);
7170 // Check if target-independent constraints permit a tail call here.
7171 // Target-dependent constraints are checked within TLI->LowerCallTo.
7172 if (isTailCall
&& !isInTailCallPosition(CB
, DAG
.getTarget()))
7175 // Disable tail calls if there is an swifterror argument. Targets have not
7176 // been updated to support tail calls.
7177 if (TLI
.supportSwiftError() && SwiftErrorVal
)
7180 TargetLowering::CallLoweringInfo
CLI(DAG
);
7181 CLI
.setDebugLoc(getCurSDLoc())
7182 .setChain(getRoot())
7183 .setCallee(RetTy
, FTy
, Callee
, std::move(Args
), CB
)
7184 .setTailCall(isTailCall
)
7185 .setConvergent(CB
.isConvergent())
7187 CB
.countOperandBundlesOfType(LLVMContext::OB_preallocated
) != 0);
7188 std::pair
<SDValue
, SDValue
> Result
= lowerInvokable(CLI
, EHPadBB
);
7190 if (Result
.first
.getNode()) {
7191 Result
.first
= lowerRangeToAssertZExt(DAG
, CB
, Result
.first
);
7192 setValue(&CB
, Result
.first
);
7195 // The last element of CLI.InVals has the SDValue for swifterror return.
7196 // Here we copy it to a virtual register and update SwiftErrorMap for
7198 if (SwiftErrorVal
&& TLI
.supportSwiftError()) {
7199 // Get the last element of InVals.
7200 SDValue Src
= CLI
.InVals
.back();
7202 SwiftError
.getOrCreateVRegDefAt(&CB
, FuncInfo
.MBB
, SwiftErrorVal
);
7203 SDValue CopyNode
= CLI
.DAG
.getCopyToReg(Result
.second
, CLI
.DL
, VReg
, Src
);
7204 DAG
.setRoot(CopyNode
);
7208 static SDValue
getMemCmpLoad(const Value
*PtrVal
, MVT LoadVT
,
7209 SelectionDAGBuilder
&Builder
) {
7210 // Check to see if this load can be trivially constant folded, e.g. if the
7211 // input is from a string literal.
7212 if (const Constant
*LoadInput
= dyn_cast
<Constant
>(PtrVal
)) {
7213 // Cast pointer to the type we really want to load.
7215 Type::getIntNTy(PtrVal
->getContext(), LoadVT
.getScalarSizeInBits());
7216 if (LoadVT
.isVector())
7217 LoadTy
= FixedVectorType::get(LoadTy
, LoadVT
.getVectorNumElements());
7219 LoadInput
= ConstantExpr::getBitCast(const_cast<Constant
*>(LoadInput
),
7220 PointerType::getUnqual(LoadTy
));
7222 if (const Constant
*LoadCst
= ConstantFoldLoadFromConstPtr(
7223 const_cast<Constant
*>(LoadInput
), LoadTy
, *Builder
.DL
))
7224 return Builder
.getValue(LoadCst
);
7227 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
7228 // still constant memory, the input chain can be the entry node.
7230 bool ConstantMemory
= false;
7232 // Do not serialize (non-volatile) loads of constant memory with anything.
7233 if (Builder
.AA
&& Builder
.AA
->pointsToConstantMemory(PtrVal
)) {
7234 Root
= Builder
.DAG
.getEntryNode();
7235 ConstantMemory
= true;
7237 // Do not serialize non-volatile loads against each other.
7238 Root
= Builder
.DAG
.getRoot();
7241 SDValue Ptr
= Builder
.getValue(PtrVal
);
7243 Builder
.DAG
.getLoad(LoadVT
, Builder
.getCurSDLoc(), Root
, Ptr
,
7244 MachinePointerInfo(PtrVal
), Align(1));
7246 if (!ConstantMemory
)
7247 Builder
.PendingLoads
.push_back(LoadVal
.getValue(1));
7251 /// Record the value for an instruction that produces an integer result,
7252 /// converting the type where necessary.
7253 void SelectionDAGBuilder::processIntegerCallValue(const Instruction
&I
,
7256 EVT VT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
7259 Value
= DAG
.getSExtOrTrunc(Value
, getCurSDLoc(), VT
);
7261 Value
= DAG
.getZExtOrTrunc(Value
, getCurSDLoc(), VT
);
7262 setValue(&I
, Value
);
7265 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7266 /// true and lower it. Otherwise return false, and it will be lowered like a
7268 /// The caller already checked that \p I calls the appropriate LibFunc with a
7269 /// correct prototype.
7270 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst
&I
) {
7271 const Value
*LHS
= I
.getArgOperand(0), *RHS
= I
.getArgOperand(1);
7272 const Value
*Size
= I
.getArgOperand(2);
7273 const ConstantInt
*CSize
= dyn_cast
<ConstantInt
>(Size
);
7274 if (CSize
&& CSize
->getZExtValue() == 0) {
7275 EVT CallVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
7277 setValue(&I
, DAG
.getConstant(0, getCurSDLoc(), CallVT
));
7281 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7282 std::pair
<SDValue
, SDValue
> Res
= TSI
.EmitTargetCodeForMemcmp(
7283 DAG
, getCurSDLoc(), DAG
.getRoot(), getValue(LHS
), getValue(RHS
),
7284 getValue(Size
), MachinePointerInfo(LHS
), MachinePointerInfo(RHS
));
7285 if (Res
.first
.getNode()) {
7286 processIntegerCallValue(I
, Res
.first
, true);
7287 PendingLoads
.push_back(Res
.second
);
7291 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
7292 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
7293 if (!CSize
|| !isOnlyUsedInZeroEqualityComparison(&I
))
7296 // If the target has a fast compare for the given size, it will return a
7297 // preferred load type for that size. Require that the load VT is legal and
7298 // that the target supports unaligned loads of that type. Otherwise, return
7300 auto hasFastLoadsAndCompare
= [&](unsigned NumBits
) {
7301 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7302 MVT LVT
= TLI
.hasFastEqualityCompare(NumBits
);
7303 if (LVT
!= MVT::INVALID_SIMPLE_VALUE_TYPE
) {
7304 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7305 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7306 // TODO: Check alignment of src and dest ptrs.
7307 unsigned DstAS
= LHS
->getType()->getPointerAddressSpace();
7308 unsigned SrcAS
= RHS
->getType()->getPointerAddressSpace();
7309 if (!TLI
.isTypeLegal(LVT
) ||
7310 !TLI
.allowsMisalignedMemoryAccesses(LVT
, SrcAS
) ||
7311 !TLI
.allowsMisalignedMemoryAccesses(LVT
, DstAS
))
7312 LVT
= MVT::INVALID_SIMPLE_VALUE_TYPE
;
7318 // This turns into unaligned loads. We only do this if the target natively
7319 // supports the MVT we'll be loading or if it is small enough (<= 4) that
7320 // we'll only produce a small number of byte loads.
7322 unsigned NumBitsToCompare
= CSize
->getZExtValue() * 8;
7323 switch (NumBitsToCompare
) {
7335 LoadVT
= hasFastLoadsAndCompare(NumBitsToCompare
);
7339 if (LoadVT
== MVT::INVALID_SIMPLE_VALUE_TYPE
)
7342 SDValue LoadL
= getMemCmpLoad(LHS
, LoadVT
, *this);
7343 SDValue LoadR
= getMemCmpLoad(RHS
, LoadVT
, *this);
7345 // Bitcast to a wide integer type if the loads are vectors.
7346 if (LoadVT
.isVector()) {
7347 EVT CmpVT
= EVT::getIntegerVT(LHS
->getContext(), LoadVT
.getSizeInBits());
7348 LoadL
= DAG
.getBitcast(CmpVT
, LoadL
);
7349 LoadR
= DAG
.getBitcast(CmpVT
, LoadR
);
7352 SDValue Cmp
= DAG
.getSetCC(getCurSDLoc(), MVT::i1
, LoadL
, LoadR
, ISD::SETNE
);
7353 processIntegerCallValue(I
, Cmp
, false);
7357 /// See if we can lower a memchr call into an optimized form. If so, return
7358 /// true and lower it. Otherwise return false, and it will be lowered like a
7360 /// The caller already checked that \p I calls the appropriate LibFunc with a
7361 /// correct prototype.
7362 bool SelectionDAGBuilder::visitMemChrCall(const CallInst
&I
) {
7363 const Value
*Src
= I
.getArgOperand(0);
7364 const Value
*Char
= I
.getArgOperand(1);
7365 const Value
*Length
= I
.getArgOperand(2);
7367 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7368 std::pair
<SDValue
, SDValue
> Res
=
7369 TSI
.EmitTargetCodeForMemchr(DAG
, getCurSDLoc(), DAG
.getRoot(),
7370 getValue(Src
), getValue(Char
), getValue(Length
),
7371 MachinePointerInfo(Src
));
7372 if (Res
.first
.getNode()) {
7373 setValue(&I
, Res
.first
);
7374 PendingLoads
.push_back(Res
.second
);
7381 /// See if we can lower a mempcpy call into an optimized form. If so, return
7382 /// true and lower it. Otherwise return false, and it will be lowered like a
7384 /// The caller already checked that \p I calls the appropriate LibFunc with a
7385 /// correct prototype.
7386 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst
&I
) {
7387 SDValue Dst
= getValue(I
.getArgOperand(0));
7388 SDValue Src
= getValue(I
.getArgOperand(1));
7389 SDValue Size
= getValue(I
.getArgOperand(2));
7391 Align DstAlign
= DAG
.InferPtrAlign(Dst
).valueOrOne();
7392 Align SrcAlign
= DAG
.InferPtrAlign(Src
).valueOrOne();
7393 // DAG::getMemcpy needs Alignment to be defined.
7394 Align Alignment
= std::min(DstAlign
, SrcAlign
);
7397 SDLoc sdl
= getCurSDLoc();
7399 // In the mempcpy context we need to pass in a false value for isTailCall
7400 // because the return pointer needs to be adjusted by the size of
7401 // the copied memory.
7402 SDValue Root
= isVol
? getRoot() : getMemoryRoot();
7403 SDValue MC
= DAG
.getMemcpy(Root
, sdl
, Dst
, Src
, Size
, Alignment
, isVol
, false,
7404 /*isTailCall=*/false,
7405 MachinePointerInfo(I
.getArgOperand(0)),
7406 MachinePointerInfo(I
.getArgOperand(1)));
7407 assert(MC
.getNode() != nullptr &&
7408 "** memcpy should not be lowered as TailCall in mempcpy context **");
7411 // Check if Size needs to be truncated or extended.
7412 Size
= DAG
.getSExtOrTrunc(Size
, sdl
, Dst
.getValueType());
7414 // Adjust return pointer to point just past the last dst byte.
7415 SDValue DstPlusSize
= DAG
.getNode(ISD::ADD
, sdl
, Dst
.getValueType(),
7417 setValue(&I
, DstPlusSize
);
7421 /// See if we can lower a strcpy call into an optimized form. If so, return
7422 /// true and lower it, otherwise return false and it will be lowered like a
7424 /// The caller already checked that \p I calls the appropriate LibFunc with a
7425 /// correct prototype.
7426 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst
&I
, bool isStpcpy
) {
7427 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7429 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7430 std::pair
<SDValue
, SDValue
> Res
=
7431 TSI
.EmitTargetCodeForStrcpy(DAG
, getCurSDLoc(), getRoot(),
7432 getValue(Arg0
), getValue(Arg1
),
7433 MachinePointerInfo(Arg0
),
7434 MachinePointerInfo(Arg1
), isStpcpy
);
7435 if (Res
.first
.getNode()) {
7436 setValue(&I
, Res
.first
);
7437 DAG
.setRoot(Res
.second
);
7444 /// See if we can lower a strcmp call into an optimized form. If so, return
7445 /// true and lower it, otherwise return false and it will be lowered like a
7447 /// The caller already checked that \p I calls the appropriate LibFunc with a
7448 /// correct prototype.
7449 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst
&I
) {
7450 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7452 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7453 std::pair
<SDValue
, SDValue
> Res
=
7454 TSI
.EmitTargetCodeForStrcmp(DAG
, getCurSDLoc(), DAG
.getRoot(),
7455 getValue(Arg0
), getValue(Arg1
),
7456 MachinePointerInfo(Arg0
),
7457 MachinePointerInfo(Arg1
));
7458 if (Res
.first
.getNode()) {
7459 processIntegerCallValue(I
, Res
.first
, true);
7460 PendingLoads
.push_back(Res
.second
);
7467 /// See if we can lower a strlen call into an optimized form. If so, return
7468 /// true and lower it, otherwise return false and it will be lowered like a
7470 /// The caller already checked that \p I calls the appropriate LibFunc with a
7471 /// correct prototype.
7472 bool SelectionDAGBuilder::visitStrLenCall(const CallInst
&I
) {
7473 const Value
*Arg0
= I
.getArgOperand(0);
7475 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7476 std::pair
<SDValue
, SDValue
> Res
=
7477 TSI
.EmitTargetCodeForStrlen(DAG
, getCurSDLoc(), DAG
.getRoot(),
7478 getValue(Arg0
), MachinePointerInfo(Arg0
));
7479 if (Res
.first
.getNode()) {
7480 processIntegerCallValue(I
, Res
.first
, false);
7481 PendingLoads
.push_back(Res
.second
);
7488 /// See if we can lower a strnlen call into an optimized form. If so, return
7489 /// true and lower it, otherwise return false and it will be lowered like a
7491 /// The caller already checked that \p I calls the appropriate LibFunc with a
7492 /// correct prototype.
7493 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst
&I
) {
7494 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7496 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7497 std::pair
<SDValue
, SDValue
> Res
=
7498 TSI
.EmitTargetCodeForStrnlen(DAG
, getCurSDLoc(), DAG
.getRoot(),
7499 getValue(Arg0
), getValue(Arg1
),
7500 MachinePointerInfo(Arg0
));
7501 if (Res
.first
.getNode()) {
7502 processIntegerCallValue(I
, Res
.first
, false);
7503 PendingLoads
.push_back(Res
.second
);
7510 /// See if we can lower a unary floating-point operation into an SDNode with
7511 /// the specified Opcode. If so, return true and lower it, otherwise return
7512 /// false and it will be lowered like a normal call.
7513 /// The caller already checked that \p I calls the appropriate LibFunc with a
7514 /// correct prototype.
7515 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst
&I
,
7517 // We already checked this call's prototype; verify it doesn't modify errno.
7518 if (!I
.onlyReadsMemory())
7522 Flags
.copyFMF(cast
<FPMathOperator
>(I
));
7524 SDValue Tmp
= getValue(I
.getArgOperand(0));
7526 DAG
.getNode(Opcode
, getCurSDLoc(), Tmp
.getValueType(), Tmp
, Flags
));
7530 /// See if we can lower a binary floating-point operation into an SDNode with
7531 /// the specified Opcode. If so, return true and lower it. Otherwise return
7532 /// false, and it will be lowered like a normal call.
7533 /// The caller already checked that \p I calls the appropriate LibFunc with a
7534 /// correct prototype.
7535 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst
&I
,
7537 // We already checked this call's prototype; verify it doesn't modify errno.
7538 if (!I
.onlyReadsMemory())
7542 Flags
.copyFMF(cast
<FPMathOperator
>(I
));
7544 SDValue Tmp0
= getValue(I
.getArgOperand(0));
7545 SDValue Tmp1
= getValue(I
.getArgOperand(1));
7546 EVT VT
= Tmp0
.getValueType();
7547 setValue(&I
, DAG
.getNode(Opcode
, getCurSDLoc(), VT
, Tmp0
, Tmp1
, Flags
));
7551 void SelectionDAGBuilder::visitCall(const CallInst
&I
) {
7552 // Handle inline assembly differently.
7553 if (I
.isInlineAsm()) {
7558 if (Function
*F
= I
.getCalledFunction()) {
7559 if (F
->isDeclaration()) {
7560 // Is this an LLVM intrinsic or a target-specific intrinsic?
7561 unsigned IID
= F
->getIntrinsicID();
7563 if (const TargetIntrinsicInfo
*II
= TM
.getIntrinsicInfo())
7564 IID
= II
->getIntrinsicID(F
);
7567 visitIntrinsicCall(I
, IID
);
7572 // Check for well-known libc/libm calls. If the function is internal, it
7573 // can't be a library call. Don't do the check if marked as nobuiltin for
7574 // some reason or the call site requires strict floating point semantics.
7576 if (!I
.isNoBuiltin() && !I
.isStrictFP() && !F
->hasLocalLinkage() &&
7577 F
->hasName() && LibInfo
->getLibFunc(*F
, Func
) &&
7578 LibInfo
->hasOptimizedCodeGen(Func
)) {
7582 if (visitMemCmpBCmpCall(I
))
7585 case LibFunc_copysign
:
7586 case LibFunc_copysignf
:
7587 case LibFunc_copysignl
:
7588 // We already checked this call's prototype; verify it doesn't modify
7590 if (I
.onlyReadsMemory()) {
7591 SDValue LHS
= getValue(I
.getArgOperand(0));
7592 SDValue RHS
= getValue(I
.getArgOperand(1));
7593 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, getCurSDLoc(),
7594 LHS
.getValueType(), LHS
, RHS
));
7601 if (visitUnaryFloatCall(I
, ISD::FABS
))
7607 if (visitBinaryFloatCall(I
, ISD::FMINNUM
))
7613 if (visitBinaryFloatCall(I
, ISD::FMAXNUM
))
7619 if (visitUnaryFloatCall(I
, ISD::FSIN
))
7625 if (visitUnaryFloatCall(I
, ISD::FCOS
))
7631 case LibFunc_sqrt_finite
:
7632 case LibFunc_sqrtf_finite
:
7633 case LibFunc_sqrtl_finite
:
7634 if (visitUnaryFloatCall(I
, ISD::FSQRT
))
7638 case LibFunc_floorf
:
7639 case LibFunc_floorl
:
7640 if (visitUnaryFloatCall(I
, ISD::FFLOOR
))
7643 case LibFunc_nearbyint
:
7644 case LibFunc_nearbyintf
:
7645 case LibFunc_nearbyintl
:
7646 if (visitUnaryFloatCall(I
, ISD::FNEARBYINT
))
7652 if (visitUnaryFloatCall(I
, ISD::FCEIL
))
7658 if (visitUnaryFloatCall(I
, ISD::FRINT
))
7662 case LibFunc_roundf
:
7663 case LibFunc_roundl
:
7664 if (visitUnaryFloatCall(I
, ISD::FROUND
))
7668 case LibFunc_truncf
:
7669 case LibFunc_truncl
:
7670 if (visitUnaryFloatCall(I
, ISD::FTRUNC
))
7676 if (visitUnaryFloatCall(I
, ISD::FLOG2
))
7682 if (visitUnaryFloatCall(I
, ISD::FEXP2
))
7685 case LibFunc_memcmp
:
7686 if (visitMemCmpBCmpCall(I
))
7689 case LibFunc_mempcpy
:
7690 if (visitMemPCpyCall(I
))
7693 case LibFunc_memchr
:
7694 if (visitMemChrCall(I
))
7697 case LibFunc_strcpy
:
7698 if (visitStrCpyCall(I
, false))
7701 case LibFunc_stpcpy
:
7702 if (visitStrCpyCall(I
, true))
7705 case LibFunc_strcmp
:
7706 if (visitStrCmpCall(I
))
7709 case LibFunc_strlen
:
7710 if (visitStrLenCall(I
))
7713 case LibFunc_strnlen
:
7714 if (visitStrNLenCall(I
))
7721 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7722 // have to do anything here to lower funclet bundles.
7723 // CFGuardTarget bundles are lowered in LowerCallTo.
7724 assert(!I
.hasOperandBundlesOtherThan(
7725 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
,
7726 LLVMContext::OB_cfguardtarget
, LLVMContext::OB_preallocated
}) &&
7727 "Cannot lower calls with arbitrary operand bundles!");
7729 SDValue Callee
= getValue(I
.getCalledOperand());
7731 if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
))
7732 LowerCallSiteWithDeoptBundle(&I
, Callee
, nullptr);
7734 // Check if we can potentially perform a tail call. More detailed checking
7735 // is be done within LowerCallTo, after more information about the call is
7737 LowerCallTo(I
, Callee
, I
.isTailCall());
7742 /// AsmOperandInfo - This contains information for each constraint that we are
7744 class SDISelAsmOperandInfo
: public TargetLowering::AsmOperandInfo
{
7746 /// CallOperand - If this is the result output operand or a clobber
7747 /// this is null, otherwise it is the incoming operand to the CallInst.
7748 /// This gets modified as the asm is processed.
7749 SDValue CallOperand
;
7751 /// AssignedRegs - If this is a register or register class operand, this
7752 /// contains the set of register corresponding to the operand.
7753 RegsForValue AssignedRegs
;
7755 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo
&info
)
7756 : TargetLowering::AsmOperandInfo(info
), CallOperand(nullptr, 0) {
7759 /// Whether or not this operand accesses memory
7760 bool hasMemory(const TargetLowering
&TLI
) const {
7761 // Indirect operand accesses access memory.
7765 for (const auto &Code
: Codes
)
7766 if (TLI
.getConstraintType(Code
) == TargetLowering::C_Memory
)
7772 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7773 /// corresponds to. If there is no Value* for this operand, it returns
7775 EVT
getCallOperandValEVT(LLVMContext
&Context
, const TargetLowering
&TLI
,
7776 const DataLayout
&DL
) const {
7777 if (!CallOperandVal
) return MVT::Other
;
7779 if (isa
<BasicBlock
>(CallOperandVal
))
7780 return TLI
.getProgramPointerTy(DL
);
7782 llvm::Type
*OpTy
= CallOperandVal
->getType();
7784 // FIXME: code duplicated from TargetLowering::ParseConstraints().
7785 // If this is an indirect operand, the operand is a pointer to the
7788 PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
7790 report_fatal_error("Indirect operand for inline asm not a pointer!");
7791 OpTy
= PtrTy
->getElementType();
7794 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7795 if (StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
7796 if (STy
->getNumElements() == 1)
7797 OpTy
= STy
->getElementType(0);
7799 // If OpTy is not a single value, it may be a struct/union that we
7800 // can tile with integers.
7801 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
7802 unsigned BitSize
= DL
.getTypeSizeInBits(OpTy
);
7811 OpTy
= IntegerType::get(Context
, BitSize
);
7816 return TLI
.getValueType(DL
, OpTy
, true);
7821 } // end anonymous namespace
7823 /// Make sure that the output operand \p OpInfo and its corresponding input
7824 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7826 static void patchMatchingInput(const SDISelAsmOperandInfo
&OpInfo
,
7827 SDISelAsmOperandInfo
&MatchingOpInfo
,
7828 SelectionDAG
&DAG
) {
7829 if (OpInfo
.ConstraintVT
== MatchingOpInfo
.ConstraintVT
)
7832 const TargetRegisterInfo
*TRI
= DAG
.getSubtarget().getRegisterInfo();
7833 const auto &TLI
= DAG
.getTargetLoweringInfo();
7835 std::pair
<unsigned, const TargetRegisterClass
*> MatchRC
=
7836 TLI
.getRegForInlineAsmConstraint(TRI
, OpInfo
.ConstraintCode
,
7837 OpInfo
.ConstraintVT
);
7838 std::pair
<unsigned, const TargetRegisterClass
*> InputRC
=
7839 TLI
.getRegForInlineAsmConstraint(TRI
, MatchingOpInfo
.ConstraintCode
,
7840 MatchingOpInfo
.ConstraintVT
);
7841 if ((OpInfo
.ConstraintVT
.isInteger() !=
7842 MatchingOpInfo
.ConstraintVT
.isInteger()) ||
7843 (MatchRC
.second
!= InputRC
.second
)) {
7844 // FIXME: error out in a more elegant fashion
7845 report_fatal_error("Unsupported asm: input constraint"
7846 " with a matching output constraint of"
7847 " incompatible type!");
7849 MatchingOpInfo
.ConstraintVT
= OpInfo
.ConstraintVT
;
7852 /// Get a direct memory input to behave well as an indirect operand.
7853 /// This may introduce stores, hence the need for a \p Chain.
7854 /// \return The (possibly updated) chain.
7855 static SDValue
getAddressForMemoryInput(SDValue Chain
, const SDLoc
&Location
,
7856 SDISelAsmOperandInfo
&OpInfo
,
7857 SelectionDAG
&DAG
) {
7858 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7860 // If we don't have an indirect input, put it in the constpool if we can,
7861 // otherwise spill it to a stack slot.
7862 // TODO: This isn't quite right. We need to handle these according to
7863 // the addressing mode that the constraint wants. Also, this may take
7864 // an additional register for the computation and we don't want that
7867 // If the operand is a float, integer, or vector constant, spill to a
7868 // constant pool entry to get its address.
7869 const Value
*OpVal
= OpInfo
.CallOperandVal
;
7870 if (isa
<ConstantFP
>(OpVal
) || isa
<ConstantInt
>(OpVal
) ||
7871 isa
<ConstantVector
>(OpVal
) || isa
<ConstantDataVector
>(OpVal
)) {
7872 OpInfo
.CallOperand
= DAG
.getConstantPool(
7873 cast
<Constant
>(OpVal
), TLI
.getPointerTy(DAG
.getDataLayout()));
7877 // Otherwise, create a stack slot and emit a store to it before the asm.
7878 Type
*Ty
= OpVal
->getType();
7879 auto &DL
= DAG
.getDataLayout();
7880 uint64_t TySize
= DL
.getTypeAllocSize(Ty
);
7881 MachineFunction
&MF
= DAG
.getMachineFunction();
7882 int SSFI
= MF
.getFrameInfo().CreateStackObject(
7883 TySize
, DL
.getPrefTypeAlign(Ty
), false);
7884 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, TLI
.getFrameIndexTy(DL
));
7885 Chain
= DAG
.getTruncStore(Chain
, Location
, OpInfo
.CallOperand
, StackSlot
,
7886 MachinePointerInfo::getFixedStack(MF
, SSFI
),
7887 TLI
.getMemValueType(DL
, Ty
));
7888 OpInfo
.CallOperand
= StackSlot
;
7893 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7894 /// specified operand. We prefer to assign virtual registers, to allow the
7895 /// register allocator to handle the assignment process. However, if the asm
7896 /// uses features that we can't model on machineinstrs, we have SDISel do the
7897 /// allocation. This produces generally horrible, but correct, code.
7899 /// OpInfo describes the operand
7900 /// RefOpInfo describes the matching operand if any, the operand otherwise
7901 static void GetRegistersForValue(SelectionDAG
&DAG
, const SDLoc
&DL
,
7902 SDISelAsmOperandInfo
&OpInfo
,
7903 SDISelAsmOperandInfo
&RefOpInfo
) {
7904 LLVMContext
&Context
= *DAG
.getContext();
7905 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7907 MachineFunction
&MF
= DAG
.getMachineFunction();
7908 SmallVector
<unsigned, 4> Regs
;
7909 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
7911 // No work to do for memory operations.
7912 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
)
7915 // If this is a constraint for a single physreg, or a constraint for a
7916 // register class, find it.
7917 unsigned AssignedReg
;
7918 const TargetRegisterClass
*RC
;
7919 std::tie(AssignedReg
, RC
) = TLI
.getRegForInlineAsmConstraint(
7920 &TRI
, RefOpInfo
.ConstraintCode
, RefOpInfo
.ConstraintVT
);
7921 // RC is unset only on failure. Return immediately.
7925 // Get the actual register value type. This is important, because the user
7926 // may have asked for (e.g.) the AX register in i32 type. We need to
7927 // remember that AX is actually i16 to get the right extension.
7928 const MVT RegVT
= *TRI
.legalclasstypes_begin(*RC
);
7930 if (OpInfo
.ConstraintVT
!= MVT::Other
) {
7931 // If this is an FP operand in an integer register (or visa versa), or more
7932 // generally if the operand value disagrees with the register class we plan
7933 // to stick it in, fix the operand type.
7935 // If this is an input value, the bitcast to the new type is done now.
7936 // Bitcast for output value is done at the end of visitInlineAsm().
7937 if ((OpInfo
.Type
== InlineAsm::isOutput
||
7938 OpInfo
.Type
== InlineAsm::isInput
) &&
7939 !TRI
.isTypeLegalForClass(*RC
, OpInfo
.ConstraintVT
)) {
7940 // Try to convert to the first EVT that the reg class contains. If the
7941 // types are identical size, use a bitcast to convert (e.g. two differing
7942 // vector types). Note: output bitcast is done at the end of
7943 // visitInlineAsm().
7944 if (RegVT
.getSizeInBits() == OpInfo
.ConstraintVT
.getSizeInBits()) {
7945 // Exclude indirect inputs while they are unsupported because the code
7946 // to perform the load is missing and thus OpInfo.CallOperand still
7947 // refers to the input address rather than the pointed-to value.
7948 if (OpInfo
.Type
== InlineAsm::isInput
&& !OpInfo
.isIndirect
)
7949 OpInfo
.CallOperand
=
7950 DAG
.getNode(ISD::BITCAST
, DL
, RegVT
, OpInfo
.CallOperand
);
7951 OpInfo
.ConstraintVT
= RegVT
;
7952 // If the operand is an FP value and we want it in integer registers,
7953 // use the corresponding integer type. This turns an f64 value into
7954 // i64, which can be passed with two i32 values on a 32-bit machine.
7955 } else if (RegVT
.isInteger() && OpInfo
.ConstraintVT
.isFloatingPoint()) {
7956 MVT VT
= MVT::getIntegerVT(OpInfo
.ConstraintVT
.getSizeInBits());
7957 if (OpInfo
.Type
== InlineAsm::isInput
)
7958 OpInfo
.CallOperand
=
7959 DAG
.getNode(ISD::BITCAST
, DL
, VT
, OpInfo
.CallOperand
);
7960 OpInfo
.ConstraintVT
= VT
;
7965 // No need to allocate a matching input constraint since the constraint it's
7966 // matching to has already been allocated.
7967 if (OpInfo
.isMatchingInputConstraint())
7970 EVT ValueVT
= OpInfo
.ConstraintVT
;
7971 if (OpInfo
.ConstraintVT
== MVT::Other
)
7974 // Initialize NumRegs.
7975 unsigned NumRegs
= 1;
7976 if (OpInfo
.ConstraintVT
!= MVT::Other
)
7977 NumRegs
= TLI
.getNumRegisters(Context
, OpInfo
.ConstraintVT
);
7979 // If this is a constraint for a specific physical register, like {r17},
7982 // If this associated to a specific register, initialize iterator to correct
7983 // place. If virtual, make sure we have enough registers
7985 // Initialize iterator if necessary
7986 TargetRegisterClass::iterator I
= RC
->begin();
7987 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
7989 // Do not check for single registers.
7991 for (; *I
!= AssignedReg
; ++I
)
7992 assert(I
!= RC
->end() && "AssignedReg should be member of RC");
7995 for (; NumRegs
; --NumRegs
, ++I
) {
7996 assert(I
!= RC
->end() && "Ran out of registers to allocate!");
7997 Register R
= AssignedReg
? Register(*I
) : RegInfo
.createVirtualRegister(RC
);
8001 OpInfo
.AssignedRegs
= RegsForValue(Regs
, RegVT
, ValueVT
);
8005 findMatchingInlineAsmOperand(unsigned OperandNo
,
8006 const std::vector
<SDValue
> &AsmNodeOperands
) {
8007 // Scan until we find the definition we already emitted of this operand.
8008 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
8009 for (; OperandNo
; --OperandNo
) {
8010 // Advance to the next operand.
8012 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
8013 assert((InlineAsm::isRegDefKind(OpFlag
) ||
8014 InlineAsm::isRegDefEarlyClobberKind(OpFlag
) ||
8015 InlineAsm::isMemKind(OpFlag
)) &&
8016 "Skipped past definitions?");
8017 CurOp
+= InlineAsm::getNumOperandRegisters(OpFlag
) + 1;
8028 explicit ExtraFlags(const CallBase
&Call
) {
8029 const InlineAsm
*IA
= cast
<InlineAsm
>(Call
.getCalledOperand());
8030 if (IA
->hasSideEffects())
8031 Flags
|= InlineAsm::Extra_HasSideEffects
;
8032 if (IA
->isAlignStack())
8033 Flags
|= InlineAsm::Extra_IsAlignStack
;
8034 if (Call
.isConvergent())
8035 Flags
|= InlineAsm::Extra_IsConvergent
;
8036 Flags
|= IA
->getDialect() * InlineAsm::Extra_AsmDialect
;
8039 void update(const TargetLowering::AsmOperandInfo
&OpInfo
) {
8040 // Ideally, we would only check against memory constraints. However, the
8041 // meaning of an Other constraint can be target-specific and we can't easily
8042 // reason about it. Therefore, be conservative and set MayLoad/MayStore
8043 // for Other constraints as well.
8044 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
||
8045 OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
8046 if (OpInfo
.Type
== InlineAsm::isInput
)
8047 Flags
|= InlineAsm::Extra_MayLoad
;
8048 else if (OpInfo
.Type
== InlineAsm::isOutput
)
8049 Flags
|= InlineAsm::Extra_MayStore
;
8050 else if (OpInfo
.Type
== InlineAsm::isClobber
)
8051 Flags
|= (InlineAsm::Extra_MayLoad
| InlineAsm::Extra_MayStore
);
8055 unsigned get() const { return Flags
; }
8058 } // end anonymous namespace
8060 /// visitInlineAsm - Handle a call to an InlineAsm object.
8061 void SelectionDAGBuilder::visitInlineAsm(const CallBase
&Call
) {
8062 const InlineAsm
*IA
= cast
<InlineAsm
>(Call
.getCalledOperand());
8064 /// ConstraintOperands - Information about all of the constraints.
8065 SmallVector
<SDISelAsmOperandInfo
, 16> ConstraintOperands
;
8067 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8068 TargetLowering::AsmOperandInfoVector TargetConstraints
= TLI
.ParseConstraints(
8069 DAG
.getDataLayout(), DAG
.getSubtarget().getRegisterInfo(), Call
);
8071 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8072 // AsmDialect, MayLoad, MayStore).
8073 bool HasSideEffect
= IA
->hasSideEffects();
8074 ExtraFlags
ExtraInfo(Call
);
8076 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
8077 unsigned ResNo
= 0; // ResNo - The result number of the next output.
8078 unsigned NumMatchingOps
= 0;
8079 for (auto &T
: TargetConstraints
) {
8080 ConstraintOperands
.push_back(SDISelAsmOperandInfo(T
));
8081 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
8083 // Compute the value type for each operand.
8084 if (OpInfo
.Type
== InlineAsm::isInput
||
8085 (OpInfo
.Type
== InlineAsm::isOutput
&& OpInfo
.isIndirect
)) {
8086 OpInfo
.CallOperandVal
= Call
.getArgOperand(ArgNo
++);
8088 // Process the call argument. BasicBlocks are labels, currently appearing
8090 if (isa
<CallBrInst
>(Call
) &&
8091 ArgNo
- 1 >= (cast
<CallBrInst
>(&Call
)->getNumArgOperands() -
8092 cast
<CallBrInst
>(&Call
)->getNumIndirectDests() -
8094 (NumMatchingOps
== 0 ||
8095 ArgNo
- 1 < (cast
<CallBrInst
>(&Call
)->getNumArgOperands() -
8097 const auto *BA
= cast
<BlockAddress
>(OpInfo
.CallOperandVal
);
8098 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), BA
->getType(), true);
8099 OpInfo
.CallOperand
= DAG
.getTargetBlockAddress(BA
, VT
);
8100 } else if (const auto *BB
= dyn_cast
<BasicBlock
>(OpInfo
.CallOperandVal
)) {
8101 OpInfo
.CallOperand
= DAG
.getBasicBlock(FuncInfo
.MBBMap
[BB
]);
8103 OpInfo
.CallOperand
= getValue(OpInfo
.CallOperandVal
);
8106 EVT VT
= OpInfo
.getCallOperandValEVT(*DAG
.getContext(), TLI
,
8107 DAG
.getDataLayout());
8108 OpInfo
.ConstraintVT
= VT
.isSimple() ? VT
.getSimpleVT() : MVT::Other
;
8109 } else if (OpInfo
.Type
== InlineAsm::isOutput
&& !OpInfo
.isIndirect
) {
8110 // The return value of the call is this value. As such, there is no
8111 // corresponding argument.
8112 assert(!Call
.getType()->isVoidTy() && "Bad inline asm!");
8113 if (StructType
*STy
= dyn_cast
<StructType
>(Call
.getType())) {
8114 OpInfo
.ConstraintVT
= TLI
.getSimpleValueType(
8115 DAG
.getDataLayout(), STy
->getElementType(ResNo
));
8117 assert(ResNo
== 0 && "Asm only has one result!");
8118 OpInfo
.ConstraintVT
=
8119 TLI
.getSimpleValueType(DAG
.getDataLayout(), Call
.getType());
8123 OpInfo
.ConstraintVT
= MVT::Other
;
8126 if (OpInfo
.hasMatchingInput())
8130 HasSideEffect
= OpInfo
.hasMemory(TLI
);
8132 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8133 // FIXME: Could we compute this on OpInfo rather than T?
8135 // Compute the constraint code and ConstraintType to use.
8136 TLI
.ComputeConstraintToUse(T
, SDValue());
8138 if (T
.ConstraintType
== TargetLowering::C_Immediate
&&
8139 OpInfo
.CallOperand
&& !isa
<ConstantSDNode
>(OpInfo
.CallOperand
))
8140 // We've delayed emitting a diagnostic like the "n" constraint because
8141 // inlining could cause an integer showing up.
8142 return emitInlineAsmError(Call
, "constraint '" + Twine(T
.ConstraintCode
) +
8143 "' expects an integer constant "
8146 ExtraInfo
.update(T
);
8150 // We won't need to flush pending loads if this asm doesn't touch
8151 // memory and is nonvolatile.
8152 SDValue Flag
, Chain
= (HasSideEffect
) ? getRoot() : DAG
.getRoot();
8154 bool IsCallBr
= isa
<CallBrInst
>(Call
);
8156 // If this is a callbr we need to flush pending exports since inlineasm_br
8157 // is a terminator. We need to do this before nodes are glued to
8158 // the inlineasm_br node.
8159 Chain
= getControlRoot();
8162 // Second pass over the constraints: compute which constraint option to use.
8163 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8164 // If this is an output operand with a matching input operand, look up the
8165 // matching input. If their types mismatch, e.g. one is an integer, the
8166 // other is floating point, or their sizes are different, flag it as an
8168 if (OpInfo
.hasMatchingInput()) {
8169 SDISelAsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
8170 patchMatchingInput(OpInfo
, Input
, DAG
);
8173 // Compute the constraint code and ConstraintType to use.
8174 TLI
.ComputeConstraintToUse(OpInfo
, OpInfo
.CallOperand
, &DAG
);
8176 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
8177 OpInfo
.Type
== InlineAsm::isClobber
)
8180 // If this is a memory input, and if the operand is not indirect, do what we
8181 // need to provide an address for the memory input.
8182 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
8183 !OpInfo
.isIndirect
) {
8184 assert((OpInfo
.isMultipleAlternative
||
8185 (OpInfo
.Type
== InlineAsm::isInput
)) &&
8186 "Can only indirectify direct input operands!");
8188 // Memory operands really want the address of the value.
8189 Chain
= getAddressForMemoryInput(Chain
, getCurSDLoc(), OpInfo
, DAG
);
8191 // There is no longer a Value* corresponding to this operand.
8192 OpInfo
.CallOperandVal
= nullptr;
8194 // It is now an indirect operand.
8195 OpInfo
.isIndirect
= true;
8200 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8201 std::vector
<SDValue
> AsmNodeOperands
;
8202 AsmNodeOperands
.push_back(SDValue()); // reserve space for input chain
8203 AsmNodeOperands
.push_back(DAG
.getTargetExternalSymbol(
8204 IA
->getAsmString().c_str(), TLI
.getProgramPointerTy(DAG
.getDataLayout())));
8206 // If we have a !srcloc metadata node associated with it, we want to attach
8207 // this to the ultimately generated inline asm machineinstr. To do this, we
8208 // pass in the third operand as this (potentially null) inline asm MDNode.
8209 const MDNode
*SrcLoc
= Call
.getMetadata("srcloc");
8210 AsmNodeOperands
.push_back(DAG
.getMDNode(SrcLoc
));
8212 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8213 // bits as operand 3.
8214 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8215 ExtraInfo
.get(), getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8217 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8218 // this, assign virtual and physical registers for inputs and otput.
8219 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8220 // Assign Registers.
8221 SDISelAsmOperandInfo
&RefOpInfo
=
8222 OpInfo
.isMatchingInputConstraint()
8223 ? ConstraintOperands
[OpInfo
.getMatchedOperand()]
8225 GetRegistersForValue(DAG
, getCurSDLoc(), OpInfo
, RefOpInfo
);
8227 auto DetectWriteToReservedRegister
= [&]() {
8228 const MachineFunction
&MF
= DAG
.getMachineFunction();
8229 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
8230 for (unsigned Reg
: OpInfo
.AssignedRegs
.Regs
) {
8231 if (Register::isPhysicalRegister(Reg
) &&
8232 TRI
.isInlineAsmReadOnlyReg(MF
, Reg
)) {
8233 const char *RegName
= TRI
.getName(Reg
);
8234 emitInlineAsmError(Call
, "write to reserved register '" +
8235 Twine(RegName
) + "'");
8242 switch (OpInfo
.Type
) {
8243 case InlineAsm::isOutput
:
8244 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
8245 unsigned ConstraintID
=
8246 TLI
.getInlineAsmMemConstraint(OpInfo
.ConstraintCode
);
8247 assert(ConstraintID
!= InlineAsm::Constraint_Unknown
&&
8248 "Failed to convert memory constraint code to constraint id.");
8250 // Add information to the INLINEASM node to know about this output.
8251 unsigned OpFlags
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
8252 OpFlags
= InlineAsm::getFlagWordForMem(OpFlags
, ConstraintID
);
8253 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlags
, getCurSDLoc(),
8255 AsmNodeOperands
.push_back(OpInfo
.CallOperand
);
8257 // Otherwise, this outputs to a register (directly for C_Register /
8258 // C_RegisterClass, and a target-defined fashion for
8259 // C_Immediate/C_Other). Find a register that we can use.
8260 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
8262 Call
, "couldn't allocate output register for constraint '" +
8263 Twine(OpInfo
.ConstraintCode
) + "'");
8267 if (DetectWriteToReservedRegister())
8270 // Add information to the INLINEASM node to know that this register is
8272 OpInfo
.AssignedRegs
.AddInlineAsmOperands(
8273 OpInfo
.isEarlyClobber
? InlineAsm::Kind_RegDefEarlyClobber
8274 : InlineAsm::Kind_RegDef
,
8275 false, 0, getCurSDLoc(), DAG
, AsmNodeOperands
);
8279 case InlineAsm::isInput
: {
8280 SDValue InOperandVal
= OpInfo
.CallOperand
;
8282 if (OpInfo
.isMatchingInputConstraint()) {
8283 // If this is required to match an output register we have already set,
8284 // just use its register.
8285 auto CurOp
= findMatchingInlineAsmOperand(OpInfo
.getMatchedOperand(),
8288 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
8289 if (InlineAsm::isRegDefKind(OpFlag
) ||
8290 InlineAsm::isRegDefEarlyClobberKind(OpFlag
)) {
8291 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8292 if (OpInfo
.isIndirect
) {
8293 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8294 emitInlineAsmError(Call
, "inline asm not supported yet: "
8295 "don't know how to handle tied "
8296 "indirect register inputs");
8300 MVT RegVT
= AsmNodeOperands
[CurOp
+1].getSimpleValueType();
8301 SmallVector
<unsigned, 4> Regs
;
8303 if (const TargetRegisterClass
*RC
= TLI
.getRegClassFor(RegVT
)) {
8304 unsigned NumRegs
= InlineAsm::getNumOperandRegisters(OpFlag
);
8305 MachineRegisterInfo
&RegInfo
=
8306 DAG
.getMachineFunction().getRegInfo();
8307 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
8308 Regs
.push_back(RegInfo
.createVirtualRegister(RC
));
8310 emitInlineAsmError(Call
,
8311 "inline asm error: This value type register "
8312 "class is not natively supported!");
8316 RegsForValue
MatchedRegs(Regs
, RegVT
, InOperandVal
.getValueType());
8318 SDLoc dl
= getCurSDLoc();
8319 // Use the produced MatchedRegs object to
8320 MatchedRegs
.getCopyToRegs(InOperandVal
, DAG
, dl
, Chain
, &Flag
, &Call
);
8321 MatchedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
,
8322 true, OpInfo
.getMatchedOperand(), dl
,
8323 DAG
, AsmNodeOperands
);
8327 assert(InlineAsm::isMemKind(OpFlag
) && "Unknown matching constraint!");
8328 assert(InlineAsm::getNumOperandRegisters(OpFlag
) == 1 &&
8329 "Unexpected number of operands");
8330 // Add information to the INLINEASM node to know about this input.
8331 // See InlineAsm.h isUseOperandTiedToDef.
8332 OpFlag
= InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag
);
8333 OpFlag
= InlineAsm::getFlagWordForMatchingOp(OpFlag
,
8334 OpInfo
.getMatchedOperand());
8335 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8336 OpFlag
, getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8337 AsmNodeOperands
.push_back(AsmNodeOperands
[CurOp
+1]);
8341 // Treat indirect 'X' constraint as memory.
8342 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
&&
8344 OpInfo
.ConstraintType
= TargetLowering::C_Memory
;
8346 if (OpInfo
.ConstraintType
== TargetLowering::C_Immediate
||
8347 OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
8348 std::vector
<SDValue
> Ops
;
8349 TLI
.LowerAsmOperandForConstraint(InOperandVal
, OpInfo
.ConstraintCode
,
8352 if (OpInfo
.ConstraintType
== TargetLowering::C_Immediate
)
8353 if (isa
<ConstantSDNode
>(InOperandVal
)) {
8354 emitInlineAsmError(Call
, "value out of range for constraint '" +
8355 Twine(OpInfo
.ConstraintCode
) + "'");
8359 emitInlineAsmError(Call
,
8360 "invalid operand for inline asm constraint '" +
8361 Twine(OpInfo
.ConstraintCode
) + "'");
8365 // Add information to the INLINEASM node to know about this input.
8366 unsigned ResOpType
=
8367 InlineAsm::getFlagWord(InlineAsm::Kind_Imm
, Ops
.size());
8368 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8369 ResOpType
, getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8370 AsmNodeOperands
.insert(AsmNodeOperands
.end(), Ops
.begin(), Ops
.end());
8374 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
8375 assert(OpInfo
.isIndirect
&& "Operand must be indirect to be a mem!");
8376 assert(InOperandVal
.getValueType() ==
8377 TLI
.getPointerTy(DAG
.getDataLayout()) &&
8378 "Memory operands expect pointer values");
8380 unsigned ConstraintID
=
8381 TLI
.getInlineAsmMemConstraint(OpInfo
.ConstraintCode
);
8382 assert(ConstraintID
!= InlineAsm::Constraint_Unknown
&&
8383 "Failed to convert memory constraint code to constraint id.");
8385 // Add information to the INLINEASM node to know about this input.
8386 unsigned ResOpType
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
8387 ResOpType
= InlineAsm::getFlagWordForMem(ResOpType
, ConstraintID
);
8388 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
8391 AsmNodeOperands
.push_back(InOperandVal
);
8395 assert((OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
||
8396 OpInfo
.ConstraintType
== TargetLowering::C_Register
) &&
8397 "Unknown constraint type!");
8399 // TODO: Support this.
8400 if (OpInfo
.isIndirect
) {
8402 Call
, "Don't know how to handle indirect register inputs yet "
8403 "for constraint '" +
8404 Twine(OpInfo
.ConstraintCode
) + "'");
8408 // Copy the input into the appropriate registers.
8409 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
8410 emitInlineAsmError(Call
,
8411 "couldn't allocate input reg for constraint '" +
8412 Twine(OpInfo
.ConstraintCode
) + "'");
8416 if (DetectWriteToReservedRegister())
8419 SDLoc dl
= getCurSDLoc();
8421 OpInfo
.AssignedRegs
.getCopyToRegs(InOperandVal
, DAG
, dl
, Chain
, &Flag
,
8424 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
, false, 0,
8425 dl
, DAG
, AsmNodeOperands
);
8428 case InlineAsm::isClobber
:
8429 // Add the clobbered value to the operand list, so that the register
8430 // allocator is aware that the physreg got clobbered.
8431 if (!OpInfo
.AssignedRegs
.Regs
.empty())
8432 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_Clobber
,
8433 false, 0, getCurSDLoc(), DAG
,
8439 // Finish up input operands. Set the input chain and add the flag last.
8440 AsmNodeOperands
[InlineAsm::Op_InputChain
] = Chain
;
8441 if (Flag
.getNode()) AsmNodeOperands
.push_back(Flag
);
8443 unsigned ISDOpc
= IsCallBr
? ISD::INLINEASM_BR
: ISD::INLINEASM
;
8444 Chain
= DAG
.getNode(ISDOpc
, getCurSDLoc(),
8445 DAG
.getVTList(MVT::Other
, MVT::Glue
), AsmNodeOperands
);
8446 Flag
= Chain
.getValue(1);
8448 // Do additional work to generate outputs.
8450 SmallVector
<EVT
, 1> ResultVTs
;
8451 SmallVector
<SDValue
, 1> ResultValues
;
8452 SmallVector
<SDValue
, 8> OutChains
;
8454 llvm::Type
*CallResultType
= Call
.getType();
8455 ArrayRef
<Type
*> ResultTypes
;
8456 if (StructType
*StructResult
= dyn_cast
<StructType
>(CallResultType
))
8457 ResultTypes
= StructResult
->elements();
8458 else if (!CallResultType
->isVoidTy())
8459 ResultTypes
= makeArrayRef(CallResultType
);
8461 auto CurResultType
= ResultTypes
.begin();
8462 auto handleRegAssign
= [&](SDValue V
) {
8463 assert(CurResultType
!= ResultTypes
.end() && "Unexpected value");
8464 assert((*CurResultType
)->isSized() && "Unexpected unsized type");
8465 EVT ResultVT
= TLI
.getValueType(DAG
.getDataLayout(), *CurResultType
);
8467 // If the type of the inline asm call site return value is different but has
8468 // same size as the type of the asm output bitcast it. One example of this
8469 // is for vectors with different width / number of elements. This can
8470 // happen for register classes that can contain multiple different value
8471 // types. The preg or vreg allocated may not have the same VT as was
8474 // This can also happen for a return value that disagrees with the register
8475 // class it is put in, eg. a double in a general-purpose register on a
8477 if (ResultVT
!= V
.getValueType() &&
8478 ResultVT
.getSizeInBits() == V
.getValueSizeInBits())
8479 V
= DAG
.getNode(ISD::BITCAST
, getCurSDLoc(), ResultVT
, V
);
8480 else if (ResultVT
!= V
.getValueType() && ResultVT
.isInteger() &&
8481 V
.getValueType().isInteger()) {
8482 // If a result value was tied to an input value, the computed result
8483 // may have a wider width than the expected result. Extract the
8484 // relevant portion.
8485 V
= DAG
.getNode(ISD::TRUNCATE
, getCurSDLoc(), ResultVT
, V
);
8487 assert(ResultVT
== V
.getValueType() && "Asm result value mismatch!");
8488 ResultVTs
.push_back(ResultVT
);
8489 ResultValues
.push_back(V
);
8492 // Deal with output operands.
8493 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8494 if (OpInfo
.Type
== InlineAsm::isOutput
) {
8496 // Skip trivial output operands.
8497 if (OpInfo
.AssignedRegs
.Regs
.empty())
8500 switch (OpInfo
.ConstraintType
) {
8501 case TargetLowering::C_Register
:
8502 case TargetLowering::C_RegisterClass
:
8503 Val
= OpInfo
.AssignedRegs
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(),
8504 Chain
, &Flag
, &Call
);
8506 case TargetLowering::C_Immediate
:
8507 case TargetLowering::C_Other
:
8508 Val
= TLI
.LowerAsmOutputForConstraint(Chain
, Flag
, getCurSDLoc(),
8511 case TargetLowering::C_Memory
:
8512 break; // Already handled.
8513 case TargetLowering::C_Unknown
:
8514 assert(false && "Unexpected unknown constraint");
8517 // Indirect output manifest as stores. Record output chains.
8518 if (OpInfo
.isIndirect
) {
8519 const Value
*Ptr
= OpInfo
.CallOperandVal
;
8520 assert(Ptr
&& "Expected value CallOperandVal for indirect asm operand");
8521 SDValue Store
= DAG
.getStore(Chain
, getCurSDLoc(), Val
, getValue(Ptr
),
8522 MachinePointerInfo(Ptr
));
8523 OutChains
.push_back(Store
);
8525 // generate CopyFromRegs to associated registers.
8526 assert(!Call
.getType()->isVoidTy() && "Bad inline asm!");
8527 if (Val
.getOpcode() == ISD::MERGE_VALUES
) {
8528 for (const SDValue
&V
: Val
->op_values())
8531 handleRegAssign(Val
);
8537 if (!ResultValues
.empty()) {
8538 assert(CurResultType
== ResultTypes
.end() &&
8539 "Mismatch in number of ResultTypes");
8540 assert(ResultValues
.size() == ResultTypes
.size() &&
8541 "Mismatch in number of output operands in asm result");
8543 SDValue V
= DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
8544 DAG
.getVTList(ResultVTs
), ResultValues
);
8548 // Collect store chains.
8549 if (!OutChains
.empty())
8550 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(), MVT::Other
, OutChains
);
8552 // Only Update Root if inline assembly has a memory effect.
8553 if (ResultValues
.empty() || HasSideEffect
|| !OutChains
.empty() || IsCallBr
)
8557 void SelectionDAGBuilder::emitInlineAsmError(const CallBase
&Call
,
8558 const Twine
&Message
) {
8559 LLVMContext
&Ctx
= *DAG
.getContext();
8560 Ctx
.emitError(&Call
, Message
);
8562 // Make sure we leave the DAG in a valid state
8563 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8564 SmallVector
<EVT
, 1> ValueVTs
;
8565 ComputeValueVTs(TLI
, DAG
.getDataLayout(), Call
.getType(), ValueVTs
);
8567 if (ValueVTs
.empty())
8570 SmallVector
<SDValue
, 1> Ops
;
8571 for (unsigned i
= 0, e
= ValueVTs
.size(); i
!= e
; ++i
)
8572 Ops
.push_back(DAG
.getUNDEF(ValueVTs
[i
]));
8574 setValue(&Call
, DAG
.getMergeValues(Ops
, getCurSDLoc()));
8577 void SelectionDAGBuilder::visitVAStart(const CallInst
&I
) {
8578 DAG
.setRoot(DAG
.getNode(ISD::VASTART
, getCurSDLoc(),
8579 MVT::Other
, getRoot(),
8580 getValue(I
.getArgOperand(0)),
8581 DAG
.getSrcValue(I
.getArgOperand(0))));
8584 void SelectionDAGBuilder::visitVAArg(const VAArgInst
&I
) {
8585 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8586 const DataLayout
&DL
= DAG
.getDataLayout();
8587 SDValue V
= DAG
.getVAArg(
8588 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType()), getCurSDLoc(),
8589 getRoot(), getValue(I
.getOperand(0)), DAG
.getSrcValue(I
.getOperand(0)),
8590 DL
.getABITypeAlign(I
.getType()).value());
8591 DAG
.setRoot(V
.getValue(1));
8593 if (I
.getType()->isPointerTy())
8594 V
= DAG
.getPtrExtOrTrunc(
8595 V
, getCurSDLoc(), TLI
.getValueType(DAG
.getDataLayout(), I
.getType()));
8599 void SelectionDAGBuilder::visitVAEnd(const CallInst
&I
) {
8600 DAG
.setRoot(DAG
.getNode(ISD::VAEND
, getCurSDLoc(),
8601 MVT::Other
, getRoot(),
8602 getValue(I
.getArgOperand(0)),
8603 DAG
.getSrcValue(I
.getArgOperand(0))));
8606 void SelectionDAGBuilder::visitVACopy(const CallInst
&I
) {
8607 DAG
.setRoot(DAG
.getNode(ISD::VACOPY
, getCurSDLoc(),
8608 MVT::Other
, getRoot(),
8609 getValue(I
.getArgOperand(0)),
8610 getValue(I
.getArgOperand(1)),
8611 DAG
.getSrcValue(I
.getArgOperand(0)),
8612 DAG
.getSrcValue(I
.getArgOperand(1))));
8615 SDValue
SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG
&DAG
,
8616 const Instruction
&I
,
8618 const MDNode
*Range
= I
.getMetadata(LLVMContext::MD_range
);
8622 ConstantRange CR
= getConstantRangeFromMetadata(*Range
);
8623 if (CR
.isFullSet() || CR
.isEmptySet() || CR
.isUpperWrapped())
8626 APInt Lo
= CR
.getUnsignedMin();
8627 if (!Lo
.isMinValue())
8630 APInt Hi
= CR
.getUnsignedMax();
8631 unsigned Bits
= std::max(Hi
.getActiveBits(),
8632 static_cast<unsigned>(IntegerType::MIN_INT_BITS
));
8634 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), Bits
);
8636 SDLoc SL
= getCurSDLoc();
8638 SDValue ZExt
= DAG
.getNode(ISD::AssertZext
, SL
, Op
.getValueType(), Op
,
8639 DAG
.getValueType(SmallVT
));
8640 unsigned NumVals
= Op
.getNode()->getNumValues();
8644 SmallVector
<SDValue
, 4> Ops
;
8646 Ops
.push_back(ZExt
);
8647 for (unsigned I
= 1; I
!= NumVals
; ++I
)
8648 Ops
.push_back(Op
.getValue(I
));
8650 return DAG
.getMergeValues(Ops
, SL
);
8653 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8654 /// the call being lowered.
8656 /// This is a helper for lowering intrinsics that follow a target calling
8657 /// convention or require stack pointer adjustment. Only a subset of the
8658 /// intrinsic's operands need to participate in the calling convention.
8659 void SelectionDAGBuilder::populateCallLoweringInfo(
8660 TargetLowering::CallLoweringInfo
&CLI
, const CallBase
*Call
,
8661 unsigned ArgIdx
, unsigned NumArgs
, SDValue Callee
, Type
*ReturnTy
,
8662 bool IsPatchPoint
) {
8663 TargetLowering::ArgListTy Args
;
8664 Args
.reserve(NumArgs
);
8666 // Populate the argument list.
8667 // Attributes for args start at offset 1, after the return attribute.
8668 for (unsigned ArgI
= ArgIdx
, ArgE
= ArgIdx
+ NumArgs
;
8669 ArgI
!= ArgE
; ++ArgI
) {
8670 const Value
*V
= Call
->getOperand(ArgI
);
8672 assert(!V
->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8674 TargetLowering::ArgListEntry Entry
;
8675 Entry
.Node
= getValue(V
);
8676 Entry
.Ty
= V
->getType();
8677 Entry
.setAttributes(Call
, ArgI
);
8678 Args
.push_back(Entry
);
8681 CLI
.setDebugLoc(getCurSDLoc())
8682 .setChain(getRoot())
8683 .setCallee(Call
->getCallingConv(), ReturnTy
, Callee
, std::move(Args
))
8684 .setDiscardResult(Call
->use_empty())
8685 .setIsPatchPoint(IsPatchPoint
)
8687 Call
->countOperandBundlesOfType(LLVMContext::OB_preallocated
) != 0);
8690 /// Add a stack map intrinsic call's live variable operands to a stackmap
8691 /// or patchpoint target node's operand list.
8693 /// Constants are converted to TargetConstants purely as an optimization to
8694 /// avoid constant materialization and register allocation.
8696 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8697 /// generate addess computation nodes, and so FinalizeISel can convert the
8698 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8699 /// address materialization and register allocation, but may also be required
8700 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8701 /// alloca in the entry block, then the runtime may assume that the alloca's
8702 /// StackMap location can be read immediately after compilation and that the
8703 /// location is valid at any point during execution (this is similar to the
8704 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8705 /// only available in a register, then the runtime would need to trap when
8706 /// execution reaches the StackMap in order to read the alloca's location.
8707 static void addStackMapLiveVars(const CallBase
&Call
, unsigned StartIdx
,
8708 const SDLoc
&DL
, SmallVectorImpl
<SDValue
> &Ops
,
8709 SelectionDAGBuilder
&Builder
) {
8710 for (unsigned i
= StartIdx
, e
= Call
.arg_size(); i
!= e
; ++i
) {
8711 SDValue OpVal
= Builder
.getValue(Call
.getArgOperand(i
));
8712 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
8714 Builder
.DAG
.getTargetConstant(StackMaps::ConstantOp
, DL
, MVT::i64
));
8716 Builder
.DAG
.getTargetConstant(C
->getSExtValue(), DL
, MVT::i64
));
8717 } else if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(OpVal
)) {
8718 const TargetLowering
&TLI
= Builder
.DAG
.getTargetLoweringInfo();
8719 Ops
.push_back(Builder
.DAG
.getTargetFrameIndex(
8720 FI
->getIndex(), TLI
.getFrameIndexTy(Builder
.DAG
.getDataLayout())));
8722 Ops
.push_back(OpVal
);
8726 /// Lower llvm.experimental.stackmap directly to its target opcode.
8727 void SelectionDAGBuilder::visitStackmap(const CallInst
&CI
) {
8728 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8729 // [live variables...])
8731 assert(CI
.getType()->isVoidTy() && "Stackmap cannot return a value.");
8733 SDValue Chain
, InFlag
, Callee
, NullPtr
;
8734 SmallVector
<SDValue
, 32> Ops
;
8736 SDLoc DL
= getCurSDLoc();
8737 Callee
= getValue(CI
.getCalledOperand());
8738 NullPtr
= DAG
.getIntPtrConstant(0, DL
, true);
8740 // The stackmap intrinsic only records the live variables (the arguments
8741 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8742 // intrinsic, this won't be lowered to a function call. This means we don't
8743 // have to worry about calling conventions and target specific lowering code.
8744 // Instead we perform the call lowering right here.
8746 // chain, flag = CALLSEQ_START(chain, 0, 0)
8747 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8748 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8750 Chain
= DAG
.getCALLSEQ_START(getRoot(), 0, 0, DL
);
8751 InFlag
= Chain
.getValue(1);
8753 // Add the <id> and <numBytes> constants.
8754 SDValue IDVal
= getValue(CI
.getOperand(PatchPointOpers::IDPos
));
8755 Ops
.push_back(DAG
.getTargetConstant(
8756 cast
<ConstantSDNode
>(IDVal
)->getZExtValue(), DL
, MVT::i64
));
8757 SDValue NBytesVal
= getValue(CI
.getOperand(PatchPointOpers::NBytesPos
));
8758 Ops
.push_back(DAG
.getTargetConstant(
8759 cast
<ConstantSDNode
>(NBytesVal
)->getZExtValue(), DL
,
8762 // Push live variables for the stack map.
8763 addStackMapLiveVars(CI
, 2, DL
, Ops
, *this);
8765 // We are not pushing any register mask info here on the operands list,
8766 // because the stackmap doesn't clobber anything.
8768 // Push the chain and the glue flag.
8769 Ops
.push_back(Chain
);
8770 Ops
.push_back(InFlag
);
8772 // Create the STACKMAP node.
8773 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
8774 SDNode
*SM
= DAG
.getMachineNode(TargetOpcode::STACKMAP
, DL
, NodeTys
, Ops
);
8775 Chain
= SDValue(SM
, 0);
8776 InFlag
= Chain
.getValue(1);
8778 Chain
= DAG
.getCALLSEQ_END(Chain
, NullPtr
, NullPtr
, InFlag
, DL
);
8780 // Stackmaps don't generate values, so nothing goes into the NodeMap.
8782 // Set the root to the target-lowered call chain.
8785 // Inform the Frame Information that we have a stackmap in this function.
8786 FuncInfo
.MF
->getFrameInfo().setHasStackMap();
8789 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8790 void SelectionDAGBuilder::visitPatchpoint(const CallBase
&CB
,
8791 const BasicBlock
*EHPadBB
) {
8792 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8797 // [live variables...])
8799 CallingConv::ID CC
= CB
.getCallingConv();
8800 bool IsAnyRegCC
= CC
== CallingConv::AnyReg
;
8801 bool HasDef
= !CB
.getType()->isVoidTy();
8802 SDLoc dl
= getCurSDLoc();
8803 SDValue Callee
= getValue(CB
.getArgOperand(PatchPointOpers::TargetPos
));
8805 // Handle immediate and symbolic callees.
8806 if (auto* ConstCallee
= dyn_cast
<ConstantSDNode
>(Callee
))
8807 Callee
= DAG
.getIntPtrConstant(ConstCallee
->getZExtValue(), dl
,
8809 else if (auto* SymbolicCallee
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
8810 Callee
= DAG
.getTargetGlobalAddress(SymbolicCallee
->getGlobal(),
8811 SDLoc(SymbolicCallee
),
8812 SymbolicCallee
->getValueType(0));
8814 // Get the real number of arguments participating in the call <numArgs>
8815 SDValue NArgVal
= getValue(CB
.getArgOperand(PatchPointOpers::NArgPos
));
8816 unsigned NumArgs
= cast
<ConstantSDNode
>(NArgVal
)->getZExtValue();
8818 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8819 // Intrinsics include all meta-operands up to but not including CC.
8820 unsigned NumMetaOpers
= PatchPointOpers::CCPos
;
8821 assert(CB
.arg_size() >= NumMetaOpers
+ NumArgs
&&
8822 "Not enough arguments provided to the patchpoint intrinsic");
8824 // For AnyRegCC the arguments are lowered later on manually.
8825 unsigned NumCallArgs
= IsAnyRegCC
? 0 : NumArgs
;
8827 IsAnyRegCC
? Type::getVoidTy(*DAG
.getContext()) : CB
.getType();
8829 TargetLowering::CallLoweringInfo
CLI(DAG
);
8830 populateCallLoweringInfo(CLI
, &CB
, NumMetaOpers
, NumCallArgs
, Callee
,
8832 std::pair
<SDValue
, SDValue
> Result
= lowerInvokable(CLI
, EHPadBB
);
8834 SDNode
*CallEnd
= Result
.second
.getNode();
8835 if (HasDef
&& (CallEnd
->getOpcode() == ISD::CopyFromReg
))
8836 CallEnd
= CallEnd
->getOperand(0).getNode();
8838 /// Get a call instruction from the call sequence chain.
8839 /// Tail calls are not allowed.
8840 assert(CallEnd
->getOpcode() == ISD::CALLSEQ_END
&&
8841 "Expected a callseq node.");
8842 SDNode
*Call
= CallEnd
->getOperand(0).getNode();
8843 bool HasGlue
= Call
->getGluedNode();
8845 // Replace the target specific call node with the patchable intrinsic.
8846 SmallVector
<SDValue
, 8> Ops
;
8848 // Add the <id> and <numBytes> constants.
8849 SDValue IDVal
= getValue(CB
.getArgOperand(PatchPointOpers::IDPos
));
8850 Ops
.push_back(DAG
.getTargetConstant(
8851 cast
<ConstantSDNode
>(IDVal
)->getZExtValue(), dl
, MVT::i64
));
8852 SDValue NBytesVal
= getValue(CB
.getArgOperand(PatchPointOpers::NBytesPos
));
8853 Ops
.push_back(DAG
.getTargetConstant(
8854 cast
<ConstantSDNode
>(NBytesVal
)->getZExtValue(), dl
,
8858 Ops
.push_back(Callee
);
8860 // Adjust <numArgs> to account for any arguments that have been passed on the
8862 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8863 unsigned NumCallRegArgs
= Call
->getNumOperands() - (HasGlue
? 4 : 3);
8864 NumCallRegArgs
= IsAnyRegCC
? NumArgs
: NumCallRegArgs
;
8865 Ops
.push_back(DAG
.getTargetConstant(NumCallRegArgs
, dl
, MVT::i32
));
8867 // Add the calling convention
8868 Ops
.push_back(DAG
.getTargetConstant((unsigned)CC
, dl
, MVT::i32
));
8870 // Add the arguments we omitted previously. The register allocator should
8871 // place these in any free register.
8873 for (unsigned i
= NumMetaOpers
, e
= NumMetaOpers
+ NumArgs
; i
!= e
; ++i
)
8874 Ops
.push_back(getValue(CB
.getArgOperand(i
)));
8876 // Push the arguments from the call instruction up to the register mask.
8877 SDNode::op_iterator e
= HasGlue
? Call
->op_end()-2 : Call
->op_end()-1;
8878 Ops
.append(Call
->op_begin() + 2, e
);
8880 // Push live variables for the stack map.
8881 addStackMapLiveVars(CB
, NumMetaOpers
+ NumArgs
, dl
, Ops
, *this);
8883 // Push the register mask info.
8885 Ops
.push_back(*(Call
->op_end()-2));
8887 Ops
.push_back(*(Call
->op_end()-1));
8889 // Push the chain (this is originally the first operand of the call, but
8890 // becomes now the last or second to last operand).
8891 Ops
.push_back(*(Call
->op_begin()));
8893 // Push the glue flag (last operand).
8895 Ops
.push_back(*(Call
->op_end()-1));
8898 if (IsAnyRegCC
&& HasDef
) {
8899 // Create the return types based on the intrinsic definition
8900 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8901 SmallVector
<EVT
, 3> ValueVTs
;
8902 ComputeValueVTs(TLI
, DAG
.getDataLayout(), CB
.getType(), ValueVTs
);
8903 assert(ValueVTs
.size() == 1 && "Expected only one return value type.");
8905 // There is always a chain and a glue type at the end
8906 ValueVTs
.push_back(MVT::Other
);
8907 ValueVTs
.push_back(MVT::Glue
);
8908 NodeTys
= DAG
.getVTList(ValueVTs
);
8910 NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
8912 // Replace the target specific call node with a PATCHPOINT node.
8913 MachineSDNode
*MN
= DAG
.getMachineNode(TargetOpcode::PATCHPOINT
,
8916 // Update the NodeMap.
8919 setValue(&CB
, SDValue(MN
, 0));
8921 setValue(&CB
, Result
.first
);
8924 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8925 // call sequence. Furthermore the location of the chain and glue can change
8926 // when the AnyReg calling convention is used and the intrinsic returns a
8928 if (IsAnyRegCC
&& HasDef
) {
8929 SDValue From
[] = {SDValue(Call
, 0), SDValue(Call
, 1)};
8930 SDValue To
[] = {SDValue(MN
, 1), SDValue(MN
, 2)};
8931 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
8933 DAG
.ReplaceAllUsesWith(Call
, MN
);
8934 DAG
.DeleteNode(Call
);
8936 // Inform the Frame Information that we have a patchpoint in this function.
8937 FuncInfo
.MF
->getFrameInfo().setHasPatchPoint();
8940 void SelectionDAGBuilder::visitVectorReduce(const CallInst
&I
,
8941 unsigned Intrinsic
) {
8942 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8943 SDValue Op1
= getValue(I
.getArgOperand(0));
8945 if (I
.getNumArgOperands() > 1)
8946 Op2
= getValue(I
.getArgOperand(1));
8947 SDLoc dl
= getCurSDLoc();
8948 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
8950 SDNodeFlags SDFlags
;
8951 if (auto *FPMO
= dyn_cast
<FPMathOperator
>(&I
))
8952 SDFlags
.copyFMF(*FPMO
);
8954 switch (Intrinsic
) {
8955 case Intrinsic::vector_reduce_fadd
:
8956 if (SDFlags
.hasAllowReassociation())
8957 Res
= DAG
.getNode(ISD::FADD
, dl
, VT
, Op1
,
8958 DAG
.getNode(ISD::VECREDUCE_FADD
, dl
, VT
, Op2
, SDFlags
),
8961 Res
= DAG
.getNode(ISD::VECREDUCE_SEQ_FADD
, dl
, VT
, Op1
, Op2
, SDFlags
);
8963 case Intrinsic::vector_reduce_fmul
:
8964 if (SDFlags
.hasAllowReassociation())
8965 Res
= DAG
.getNode(ISD::FMUL
, dl
, VT
, Op1
,
8966 DAG
.getNode(ISD::VECREDUCE_FMUL
, dl
, VT
, Op2
, SDFlags
),
8969 Res
= DAG
.getNode(ISD::VECREDUCE_SEQ_FMUL
, dl
, VT
, Op1
, Op2
, SDFlags
);
8971 case Intrinsic::vector_reduce_add
:
8972 Res
= DAG
.getNode(ISD::VECREDUCE_ADD
, dl
, VT
, Op1
);
8974 case Intrinsic::vector_reduce_mul
:
8975 Res
= DAG
.getNode(ISD::VECREDUCE_MUL
, dl
, VT
, Op1
);
8977 case Intrinsic::vector_reduce_and
:
8978 Res
= DAG
.getNode(ISD::VECREDUCE_AND
, dl
, VT
, Op1
);
8980 case Intrinsic::vector_reduce_or
:
8981 Res
= DAG
.getNode(ISD::VECREDUCE_OR
, dl
, VT
, Op1
);
8983 case Intrinsic::vector_reduce_xor
:
8984 Res
= DAG
.getNode(ISD::VECREDUCE_XOR
, dl
, VT
, Op1
);
8986 case Intrinsic::vector_reduce_smax
:
8987 Res
= DAG
.getNode(ISD::VECREDUCE_SMAX
, dl
, VT
, Op1
);
8989 case Intrinsic::vector_reduce_smin
:
8990 Res
= DAG
.getNode(ISD::VECREDUCE_SMIN
, dl
, VT
, Op1
);
8992 case Intrinsic::vector_reduce_umax
:
8993 Res
= DAG
.getNode(ISD::VECREDUCE_UMAX
, dl
, VT
, Op1
);
8995 case Intrinsic::vector_reduce_umin
:
8996 Res
= DAG
.getNode(ISD::VECREDUCE_UMIN
, dl
, VT
, Op1
);
8998 case Intrinsic::vector_reduce_fmax
:
8999 Res
= DAG
.getNode(ISD::VECREDUCE_FMAX
, dl
, VT
, Op1
, SDFlags
);
9001 case Intrinsic::vector_reduce_fmin
:
9002 Res
= DAG
.getNode(ISD::VECREDUCE_FMIN
, dl
, VT
, Op1
, SDFlags
);
9005 llvm_unreachable("Unhandled vector reduce intrinsic");
9010 /// Returns an AttributeList representing the attributes applied to the return
9011 /// value of the given call.
9012 static AttributeList
getReturnAttrs(TargetLowering::CallLoweringInfo
&CLI
) {
9013 SmallVector
<Attribute::AttrKind
, 2> Attrs
;
9015 Attrs
.push_back(Attribute::SExt
);
9017 Attrs
.push_back(Attribute::ZExt
);
9019 Attrs
.push_back(Attribute::InReg
);
9021 return AttributeList::get(CLI
.RetTy
->getContext(), AttributeList::ReturnIndex
,
9025 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9026 /// implementation, which just calls LowerCall.
9027 /// FIXME: When all targets are
9028 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9029 std::pair
<SDValue
, SDValue
>
9030 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo
&CLI
) const {
9031 // Handle the incoming return values from the call.
9033 Type
*OrigRetTy
= CLI
.RetTy
;
9034 SmallVector
<EVT
, 4> RetTys
;
9035 SmallVector
<uint64_t, 4> Offsets
;
9036 auto &DL
= CLI
.DAG
.getDataLayout();
9037 ComputeValueVTs(*this, DL
, CLI
.RetTy
, RetTys
, &Offsets
);
9039 if (CLI
.IsPostTypeLegalization
) {
9040 // If we are lowering a libcall after legalization, split the return type.
9041 SmallVector
<EVT
, 4> OldRetTys
;
9042 SmallVector
<uint64_t, 4> OldOffsets
;
9043 RetTys
.swap(OldRetTys
);
9044 Offsets
.swap(OldOffsets
);
9046 for (size_t i
= 0, e
= OldRetTys
.size(); i
!= e
; ++i
) {
9047 EVT RetVT
= OldRetTys
[i
];
9048 uint64_t Offset
= OldOffsets
[i
];
9049 MVT RegisterVT
= getRegisterType(CLI
.RetTy
->getContext(), RetVT
);
9050 unsigned NumRegs
= getNumRegisters(CLI
.RetTy
->getContext(), RetVT
);
9051 unsigned RegisterVTByteSZ
= RegisterVT
.getSizeInBits() / 8;
9052 RetTys
.append(NumRegs
, RegisterVT
);
9053 for (unsigned j
= 0; j
!= NumRegs
; ++j
)
9054 Offsets
.push_back(Offset
+ j
* RegisterVTByteSZ
);
9058 SmallVector
<ISD::OutputArg
, 4> Outs
;
9059 GetReturnInfo(CLI
.CallConv
, CLI
.RetTy
, getReturnAttrs(CLI
), Outs
, *this, DL
);
9061 bool CanLowerReturn
=
9062 this->CanLowerReturn(CLI
.CallConv
, CLI
.DAG
.getMachineFunction(),
9063 CLI
.IsVarArg
, Outs
, CLI
.RetTy
->getContext());
9065 SDValue DemoteStackSlot
;
9066 int DemoteStackIdx
= -100;
9067 if (!CanLowerReturn
) {
9068 // FIXME: equivalent assert?
9069 // assert(!CS.hasInAllocaArgument() &&
9070 // "sret demotion is incompatible with inalloca");
9071 uint64_t TySize
= DL
.getTypeAllocSize(CLI
.RetTy
);
9072 Align Alignment
= DL
.getPrefTypeAlign(CLI
.RetTy
);
9073 MachineFunction
&MF
= CLI
.DAG
.getMachineFunction();
9075 MF
.getFrameInfo().CreateStackObject(TySize
, Alignment
, false);
9076 Type
*StackSlotPtrType
= PointerType::get(CLI
.RetTy
,
9077 DL
.getAllocaAddrSpace());
9079 DemoteStackSlot
= CLI
.DAG
.getFrameIndex(DemoteStackIdx
, getFrameIndexTy(DL
));
9081 Entry
.Node
= DemoteStackSlot
;
9082 Entry
.Ty
= StackSlotPtrType
;
9083 Entry
.IsSExt
= false;
9084 Entry
.IsZExt
= false;
9085 Entry
.IsInReg
= false;
9086 Entry
.IsSRet
= true;
9087 Entry
.IsNest
= false;
9088 Entry
.IsByVal
= false;
9089 Entry
.IsByRef
= false;
9090 Entry
.IsReturned
= false;
9091 Entry
.IsSwiftSelf
= false;
9092 Entry
.IsSwiftError
= false;
9093 Entry
.IsCFGuardTarget
= false;
9094 Entry
.Alignment
= Alignment
;
9095 CLI
.getArgs().insert(CLI
.getArgs().begin(), Entry
);
9096 CLI
.NumFixedArgs
+= 1;
9097 CLI
.RetTy
= Type::getVoidTy(CLI
.RetTy
->getContext());
9099 // sret demotion isn't compatible with tail-calls, since the sret argument
9100 // points into the callers stack frame.
9101 CLI
.IsTailCall
= false;
9103 bool NeedsRegBlock
= functionArgumentNeedsConsecutiveRegisters(
9104 CLI
.RetTy
, CLI
.CallConv
, CLI
.IsVarArg
);
9105 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
9106 ISD::ArgFlagsTy Flags
;
9107 if (NeedsRegBlock
) {
9108 Flags
.setInConsecutiveRegs();
9109 if (I
== RetTys
.size() - 1)
9110 Flags
.setInConsecutiveRegsLast();
9113 MVT RegisterVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9115 unsigned NumRegs
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9117 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
9118 ISD::InputArg MyFlags
;
9119 MyFlags
.Flags
= Flags
;
9120 MyFlags
.VT
= RegisterVT
;
9122 MyFlags
.Used
= CLI
.IsReturnValueUsed
;
9123 if (CLI
.RetTy
->isPointerTy()) {
9124 MyFlags
.Flags
.setPointer();
9125 MyFlags
.Flags
.setPointerAddrSpace(
9126 cast
<PointerType
>(CLI
.RetTy
)->getAddressSpace());
9129 MyFlags
.Flags
.setSExt();
9131 MyFlags
.Flags
.setZExt();
9133 MyFlags
.Flags
.setInReg();
9134 CLI
.Ins
.push_back(MyFlags
);
9139 // We push in swifterror return as the last element of CLI.Ins.
9140 ArgListTy
&Args
= CLI
.getArgs();
9141 if (supportSwiftError()) {
9142 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
9143 if (Args
[i
].IsSwiftError
) {
9144 ISD::InputArg MyFlags
;
9145 MyFlags
.VT
= getPointerTy(DL
);
9146 MyFlags
.ArgVT
= EVT(getPointerTy(DL
));
9147 MyFlags
.Flags
.setSwiftError();
9148 CLI
.Ins
.push_back(MyFlags
);
9153 // Handle all of the outgoing arguments.
9155 CLI
.OutVals
.clear();
9156 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
9157 SmallVector
<EVT
, 4> ValueVTs
;
9158 ComputeValueVTs(*this, DL
, Args
[i
].Ty
, ValueVTs
);
9159 // FIXME: Split arguments if CLI.IsPostTypeLegalization
9160 Type
*FinalType
= Args
[i
].Ty
;
9161 if (Args
[i
].IsByVal
)
9162 FinalType
= cast
<PointerType
>(Args
[i
].Ty
)->getElementType();
9163 bool NeedsRegBlock
= functionArgumentNeedsConsecutiveRegisters(
9164 FinalType
, CLI
.CallConv
, CLI
.IsVarArg
);
9165 for (unsigned Value
= 0, NumValues
= ValueVTs
.size(); Value
!= NumValues
;
9167 EVT VT
= ValueVTs
[Value
];
9168 Type
*ArgTy
= VT
.getTypeForEVT(CLI
.RetTy
->getContext());
9169 SDValue Op
= SDValue(Args
[i
].Node
.getNode(),
9170 Args
[i
].Node
.getResNo() + Value
);
9171 ISD::ArgFlagsTy Flags
;
9173 // Certain targets (such as MIPS), may have a different ABI alignment
9174 // for a type depending on the context. Give the target a chance to
9175 // specify the alignment it wants.
9176 const Align
OriginalAlignment(getABIAlignmentForCallingConv(ArgTy
, DL
));
9178 if (Args
[i
].Ty
->isPointerTy()) {
9180 Flags
.setPointerAddrSpace(
9181 cast
<PointerType
>(Args
[i
].Ty
)->getAddressSpace());
9187 if (Args
[i
].IsInReg
) {
9188 // If we are using vectorcall calling convention, a structure that is
9189 // passed InReg - is surely an HVA
9190 if (CLI
.CallConv
== CallingConv::X86_VectorCall
&&
9191 isa
<StructType
>(FinalType
)) {
9192 // The first value of a structure is marked
9194 Flags
.setHvaStart();
9202 if (Args
[i
].IsSwiftSelf
)
9203 Flags
.setSwiftSelf();
9204 if (Args
[i
].IsSwiftError
)
9205 Flags
.setSwiftError();
9206 if (Args
[i
].IsCFGuardTarget
)
9207 Flags
.setCFGuardTarget();
9208 if (Args
[i
].IsByVal
)
9210 if (Args
[i
].IsByRef
)
9212 if (Args
[i
].IsPreallocated
) {
9213 Flags
.setPreallocated();
9214 // Set the byval flag for CCAssignFn callbacks that don't know about
9215 // preallocated. This way we can know how many bytes we should've
9216 // allocated and how many bytes a callee cleanup function will pop. If
9217 // we port preallocated to more targets, we'll have to add custom
9218 // preallocated handling in the various CC lowering callbacks.
9221 if (Args
[i
].IsInAlloca
) {
9222 Flags
.setInAlloca();
9223 // Set the byval flag for CCAssignFn callbacks that don't know about
9224 // inalloca. This way we can know how many bytes we should've allocated
9225 // and how many bytes a callee cleanup function will pop. If we port
9226 // inalloca to more targets, we'll have to add custom inalloca handling
9227 // in the various CC lowering callbacks.
9230 if (Args
[i
].IsByVal
|| Args
[i
].IsInAlloca
|| Args
[i
].IsPreallocated
) {
9231 PointerType
*Ty
= cast
<PointerType
>(Args
[i
].Ty
);
9232 Type
*ElementTy
= Ty
->getElementType();
9234 unsigned FrameSize
= DL
.getTypeAllocSize(
9235 Args
[i
].ByValType
? Args
[i
].ByValType
: ElementTy
);
9236 Flags
.setByValSize(FrameSize
);
9238 // info is not there but there are cases it cannot get right.
9240 if (auto MA
= Args
[i
].Alignment
)
9243 FrameAlign
= Align(getByValTypeAlignment(ElementTy
, DL
));
9244 Flags
.setByValAlign(FrameAlign
);
9249 Flags
.setInConsecutiveRegs();
9250 Flags
.setOrigAlign(OriginalAlignment
);
9252 MVT PartVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9254 unsigned NumParts
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9256 SmallVector
<SDValue
, 4> Parts(NumParts
);
9257 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
9260 ExtendKind
= ISD::SIGN_EXTEND
;
9261 else if (Args
[i
].IsZExt
)
9262 ExtendKind
= ISD::ZERO_EXTEND
;
9264 // Conservatively only handle 'returned' on non-vectors that can be lowered,
9266 if (Args
[i
].IsReturned
&& !Op
.getValueType().isVector() &&
9268 assert((CLI
.RetTy
== Args
[i
].Ty
||
9269 (CLI
.RetTy
->isPointerTy() && Args
[i
].Ty
->isPointerTy() &&
9270 CLI
.RetTy
->getPointerAddressSpace() ==
9271 Args
[i
].Ty
->getPointerAddressSpace())) &&
9272 RetTys
.size() == NumValues
&& "unexpected use of 'returned'");
9273 // Before passing 'returned' to the target lowering code, ensure that
9274 // either the register MVT and the actual EVT are the same size or that
9275 // the return value and argument are extended in the same way; in these
9276 // cases it's safe to pass the argument register value unchanged as the
9277 // return register value (although it's at the target's option whether
9279 // TODO: allow code generation to take advantage of partially preserved
9280 // registers rather than clobbering the entire register when the
9281 // parameter extension method is not compatible with the return
9283 if ((NumParts
* PartVT
.getSizeInBits() == VT
.getSizeInBits()) ||
9284 (ExtendKind
!= ISD::ANY_EXTEND
&& CLI
.RetSExt
== Args
[i
].IsSExt
&&
9285 CLI
.RetZExt
== Args
[i
].IsZExt
))
9286 Flags
.setReturned();
9289 getCopyToParts(CLI
.DAG
, CLI
.DL
, Op
, &Parts
[0], NumParts
, PartVT
, CLI
.CB
,
9290 CLI
.CallConv
, ExtendKind
);
9292 for (unsigned j
= 0; j
!= NumParts
; ++j
) {
9293 // if it isn't first piece, alignment must be 1
9294 // For scalable vectors the scalable part is currently handled
9295 // by individual targets, so we just use the known minimum size here.
9296 ISD::OutputArg
MyFlags(Flags
, Parts
[j
].getValueType(), VT
,
9297 i
< CLI
.NumFixedArgs
, i
,
9298 j
*Parts
[j
].getValueType().getStoreSize().getKnownMinSize());
9299 if (NumParts
> 1 && j
== 0)
9300 MyFlags
.Flags
.setSplit();
9302 MyFlags
.Flags
.setOrigAlign(Align(1));
9303 if (j
== NumParts
- 1)
9304 MyFlags
.Flags
.setSplitEnd();
9307 CLI
.Outs
.push_back(MyFlags
);
9308 CLI
.OutVals
.push_back(Parts
[j
]);
9311 if (NeedsRegBlock
&& Value
== NumValues
- 1)
9312 CLI
.Outs
[CLI
.Outs
.size() - 1].Flags
.setInConsecutiveRegsLast();
9316 SmallVector
<SDValue
, 4> InVals
;
9317 CLI
.Chain
= LowerCall(CLI
, InVals
);
9319 // Update CLI.InVals to use outside of this function.
9320 CLI
.InVals
= InVals
;
9322 // Verify that the target's LowerCall behaved as expected.
9323 assert(CLI
.Chain
.getNode() && CLI
.Chain
.getValueType() == MVT::Other
&&
9324 "LowerCall didn't return a valid chain!");
9325 assert((!CLI
.IsTailCall
|| InVals
.empty()) &&
9326 "LowerCall emitted a return value for a tail call!");
9327 assert((CLI
.IsTailCall
|| InVals
.size() == CLI
.Ins
.size()) &&
9328 "LowerCall didn't emit the correct number of values!");
9330 // For a tail call, the return value is merely live-out and there aren't
9331 // any nodes in the DAG representing it. Return a special value to
9332 // indicate that a tail call has been emitted and no more Instructions
9333 // should be processed in the current block.
9334 if (CLI
.IsTailCall
) {
9335 CLI
.DAG
.setRoot(CLI
.Chain
);
9336 return std::make_pair(SDValue(), SDValue());
9340 for (unsigned i
= 0, e
= CLI
.Ins
.size(); i
!= e
; ++i
) {
9341 assert(InVals
[i
].getNode() && "LowerCall emitted a null value!");
9342 assert(EVT(CLI
.Ins
[i
].VT
) == InVals
[i
].getValueType() &&
9343 "LowerCall emitted a value with the wrong type!");
9347 SmallVector
<SDValue
, 4> ReturnValues
;
9348 if (!CanLowerReturn
) {
9349 // The instruction result is the result of loading from the
9350 // hidden sret parameter.
9351 SmallVector
<EVT
, 1> PVTs
;
9352 Type
*PtrRetTy
= OrigRetTy
->getPointerTo(DL
.getAllocaAddrSpace());
9354 ComputeValueVTs(*this, DL
, PtrRetTy
, PVTs
);
9355 assert(PVTs
.size() == 1 && "Pointers should fit in one register");
9356 EVT PtrVT
= PVTs
[0];
9358 unsigned NumValues
= RetTys
.size();
9359 ReturnValues
.resize(NumValues
);
9360 SmallVector
<SDValue
, 4> Chains(NumValues
);
9362 // An aggregate return value cannot wrap around the address space, so
9363 // offsets to its parts don't wrap either.
9365 Flags
.setNoUnsignedWrap(true);
9367 MachineFunction
&MF
= CLI
.DAG
.getMachineFunction();
9368 Align HiddenSRetAlign
= MF
.getFrameInfo().getObjectAlign(DemoteStackIdx
);
9369 for (unsigned i
= 0; i
< NumValues
; ++i
) {
9370 SDValue Add
= CLI
.DAG
.getNode(ISD::ADD
, CLI
.DL
, PtrVT
, DemoteStackSlot
,
9371 CLI
.DAG
.getConstant(Offsets
[i
], CLI
.DL
,
9373 SDValue L
= CLI
.DAG
.getLoad(
9374 RetTys
[i
], CLI
.DL
, CLI
.Chain
, Add
,
9375 MachinePointerInfo::getFixedStack(CLI
.DAG
.getMachineFunction(),
9376 DemoteStackIdx
, Offsets
[i
]),
9378 ReturnValues
[i
] = L
;
9379 Chains
[i
] = L
.getValue(1);
9382 CLI
.Chain
= CLI
.DAG
.getNode(ISD::TokenFactor
, CLI
.DL
, MVT::Other
, Chains
);
9384 // Collect the legal value parts into potentially illegal values
9385 // that correspond to the original function's return values.
9386 Optional
<ISD::NodeType
> AssertOp
;
9388 AssertOp
= ISD::AssertSext
;
9389 else if (CLI
.RetZExt
)
9390 AssertOp
= ISD::AssertZext
;
9391 unsigned CurReg
= 0;
9392 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
9394 MVT RegisterVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9396 unsigned NumRegs
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9399 ReturnValues
.push_back(getCopyFromParts(CLI
.DAG
, CLI
.DL
, &InVals
[CurReg
],
9400 NumRegs
, RegisterVT
, VT
, nullptr,
9401 CLI
.CallConv
, AssertOp
));
9405 // For a function returning void, there is no return value. We can't create
9406 // such a node, so we just return a null return value in that case. In
9407 // that case, nothing will actually look at the value.
9408 if (ReturnValues
.empty())
9409 return std::make_pair(SDValue(), CLI
.Chain
);
9412 SDValue Res
= CLI
.DAG
.getNode(ISD::MERGE_VALUES
, CLI
.DL
,
9413 CLI
.DAG
.getVTList(RetTys
), ReturnValues
);
9414 return std::make_pair(Res
, CLI
.Chain
);
9417 /// Places new result values for the node in Results (their number
9418 /// and types must exactly match those of the original return values of
9419 /// the node), or leaves Results empty, which indicates that the node is not
9420 /// to be custom lowered after all.
9421 void TargetLowering::LowerOperationWrapper(SDNode
*N
,
9422 SmallVectorImpl
<SDValue
> &Results
,
9423 SelectionDAG
&DAG
) const {
9424 SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
);
9429 // If the original node has one result, take the return value from
9430 // LowerOperation as is. It might not be result number 0.
9431 if (N
->getNumValues() == 1) {
9432 Results
.push_back(Res
);
9436 // If the original node has multiple results, then the return node should
9437 // have the same number of results.
9438 assert((N
->getNumValues() == Res
->getNumValues()) &&
9439 "Lowering returned the wrong number of results!");
9441 // Places new result values base on N result number.
9442 for (unsigned I
= 0, E
= N
->getNumValues(); I
!= E
; ++I
)
9443 Results
.push_back(Res
.getValue(I
));
9446 SDValue
TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
9447 llvm_unreachable("LowerOperation not implemented for this target!");
9451 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value
*V
, unsigned Reg
) {
9452 SDValue Op
= getNonRegisterValue(V
);
9453 assert((Op
.getOpcode() != ISD::CopyFromReg
||
9454 cast
<RegisterSDNode
>(Op
.getOperand(1))->getReg() != Reg
) &&
9455 "Copy from a reg to the same reg!");
9456 assert(!Register::isPhysicalRegister(Reg
) && "Is a physreg");
9458 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9459 // If this is an InlineAsm we have to match the registers required, not the
9460 // notional registers required by the type.
9462 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), Reg
, V
->getType(),
9463 None
); // This is not an ABI copy.
9464 SDValue Chain
= DAG
.getEntryNode();
9466 ISD::NodeType ExtendType
= (FuncInfo
.PreferredExtendType
.find(V
) ==
9467 FuncInfo
.PreferredExtendType
.end())
9469 : FuncInfo
.PreferredExtendType
[V
];
9470 RFV
.getCopyToRegs(Op
, DAG
, getCurSDLoc(), Chain
, nullptr, V
, ExtendType
);
9471 PendingExports
.push_back(Chain
);
9474 #include "llvm/CodeGen/SelectionDAGISel.h"
9476 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9477 /// entry block, return true. This includes arguments used by switches, since
9478 /// the switch may expand into multiple basic blocks.
9479 static bool isOnlyUsedInEntryBlock(const Argument
*A
, bool FastISel
) {
9480 // With FastISel active, we may be splitting blocks, so force creation
9481 // of virtual registers for all non-dead arguments.
9483 return A
->use_empty();
9485 const BasicBlock
&Entry
= A
->getParent()->front();
9486 for (const User
*U
: A
->users())
9487 if (cast
<Instruction
>(U
)->getParent() != &Entry
|| isa
<SwitchInst
>(U
))
9488 return false; // Use not in entry block.
9493 using ArgCopyElisionMapTy
=
9494 DenseMap
<const Argument
*,
9495 std::pair
<const AllocaInst
*, const StoreInst
*>>;
9497 /// Scan the entry block of the function in FuncInfo for arguments that look
9498 /// like copies into a local alloca. Record any copied arguments in
9499 /// ArgCopyElisionCandidates.
9501 findArgumentCopyElisionCandidates(const DataLayout
&DL
,
9502 FunctionLoweringInfo
*FuncInfo
,
9503 ArgCopyElisionMapTy
&ArgCopyElisionCandidates
) {
9504 // Record the state of every static alloca used in the entry block. Argument
9505 // allocas are all used in the entry block, so we need approximately as many
9506 // entries as we have arguments.
9507 enum StaticAllocaInfo
{ Unknown
, Clobbered
, Elidable
};
9508 SmallDenseMap
<const AllocaInst
*, StaticAllocaInfo
, 8> StaticAllocas
;
9509 unsigned NumArgs
= FuncInfo
->Fn
->arg_size();
9510 StaticAllocas
.reserve(NumArgs
* 2);
9512 auto GetInfoIfStaticAlloca
= [&](const Value
*V
) -> StaticAllocaInfo
* {
9515 V
= V
->stripPointerCasts();
9516 const auto *AI
= dyn_cast
<AllocaInst
>(V
);
9517 if (!AI
|| !AI
->isStaticAlloca() || !FuncInfo
->StaticAllocaMap
.count(AI
))
9519 auto Iter
= StaticAllocas
.insert({AI
, Unknown
});
9520 return &Iter
.first
->second
;
9523 // Look for stores of arguments to static allocas. Look through bitcasts and
9524 // GEPs to handle type coercions, as long as the alloca is fully initialized
9525 // by the store. Any non-store use of an alloca escapes it and any subsequent
9526 // unanalyzed store might write it.
9527 // FIXME: Handle structs initialized with multiple stores.
9528 for (const Instruction
&I
: FuncInfo
->Fn
->getEntryBlock()) {
9529 // Look for stores, and handle non-store uses conservatively.
9530 const auto *SI
= dyn_cast
<StoreInst
>(&I
);
9532 // We will look through cast uses, so ignore them completely.
9535 // Ignore debug info intrinsics, they don't escape or store to allocas.
9536 if (isa
<DbgInfoIntrinsic
>(I
))
9538 // This is an unknown instruction. Assume it escapes or writes to all
9539 // static alloca operands.
9540 for (const Use
&U
: I
.operands()) {
9541 if (StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(U
))
9542 *Info
= StaticAllocaInfo::Clobbered
;
9547 // If the stored value is a static alloca, mark it as escaped.
9548 if (StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(SI
->getValueOperand()))
9549 *Info
= StaticAllocaInfo::Clobbered
;
9551 // Check if the destination is a static alloca.
9552 const Value
*Dst
= SI
->getPointerOperand()->stripPointerCasts();
9553 StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(Dst
);
9556 const AllocaInst
*AI
= cast
<AllocaInst
>(Dst
);
9558 // Skip allocas that have been initialized or clobbered.
9559 if (*Info
!= StaticAllocaInfo::Unknown
)
9562 // Check if the stored value is an argument, and that this store fully
9563 // initializes the alloca. Don't elide copies from the same argument twice.
9564 const Value
*Val
= SI
->getValueOperand()->stripPointerCasts();
9565 const auto *Arg
= dyn_cast
<Argument
>(Val
);
9566 if (!Arg
|| Arg
->hasPassPointeeByValueCopyAttr() ||
9567 Arg
->getType()->isEmptyTy() ||
9568 DL
.getTypeStoreSize(Arg
->getType()) !=
9569 DL
.getTypeAllocSize(AI
->getAllocatedType()) ||
9570 ArgCopyElisionCandidates
.count(Arg
)) {
9571 *Info
= StaticAllocaInfo::Clobbered
;
9575 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9578 // Mark this alloca and store for argument copy elision.
9579 *Info
= StaticAllocaInfo::Elidable
;
9580 ArgCopyElisionCandidates
.insert({Arg
, {AI
, SI
}});
9582 // Stop scanning if we've seen all arguments. This will happen early in -O0
9583 // builds, which is useful, because -O0 builds have large entry blocks and
9585 if (ArgCopyElisionCandidates
.size() == NumArgs
)
9590 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9591 /// ArgVal is a load from a suitable fixed stack object.
9592 static void tryToElideArgumentCopy(
9593 FunctionLoweringInfo
&FuncInfo
, SmallVectorImpl
<SDValue
> &Chains
,
9594 DenseMap
<int, int> &ArgCopyElisionFrameIndexMap
,
9595 SmallPtrSetImpl
<const Instruction
*> &ElidedArgCopyInstrs
,
9596 ArgCopyElisionMapTy
&ArgCopyElisionCandidates
, const Argument
&Arg
,
9597 SDValue ArgVal
, bool &ArgHasUses
) {
9598 // Check if this is a load from a fixed stack object.
9599 auto *LNode
= dyn_cast
<LoadSDNode
>(ArgVal
);
9602 auto *FINode
= dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode());
9606 // Check that the fixed stack object is the right size and alignment.
9607 // Look at the alignment that the user wrote on the alloca instead of looking
9608 // at the stack object.
9609 auto ArgCopyIter
= ArgCopyElisionCandidates
.find(&Arg
);
9610 assert(ArgCopyIter
!= ArgCopyElisionCandidates
.end());
9611 const AllocaInst
*AI
= ArgCopyIter
->second
.first
;
9612 int FixedIndex
= FINode
->getIndex();
9613 int &AllocaIndex
= FuncInfo
.StaticAllocaMap
[AI
];
9614 int OldIndex
= AllocaIndex
;
9615 MachineFrameInfo
&MFI
= FuncInfo
.MF
->getFrameInfo();
9616 if (MFI
.getObjectSize(FixedIndex
) != MFI
.getObjectSize(OldIndex
)) {
9618 dbgs() << " argument copy elision failed due to bad fixed stack "
9622 Align RequiredAlignment
= AI
->getAlign();
9623 if (MFI
.getObjectAlign(FixedIndex
) < RequiredAlignment
) {
9624 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
9625 "greater than stack argument alignment ("
9626 << DebugStr(RequiredAlignment
) << " vs "
9627 << DebugStr(MFI
.getObjectAlign(FixedIndex
)) << ")\n");
9631 // Perform the elision. Delete the old stack object and replace its only use
9632 // in the variable info map. Mark the stack object as mutable.
9634 dbgs() << "Eliding argument copy from " << Arg
<< " to " << *AI
<< '\n'
9635 << " Replacing frame index " << OldIndex
<< " with " << FixedIndex
9638 MFI
.RemoveStackObject(OldIndex
);
9639 MFI
.setIsImmutableObjectIndex(FixedIndex
, false);
9640 AllocaIndex
= FixedIndex
;
9641 ArgCopyElisionFrameIndexMap
.insert({OldIndex
, FixedIndex
});
9642 Chains
.push_back(ArgVal
.getValue(1));
9644 // Avoid emitting code for the store implementing the copy.
9645 const StoreInst
*SI
= ArgCopyIter
->second
.second
;
9646 ElidedArgCopyInstrs
.insert(SI
);
9648 // Check for uses of the argument again so that we can avoid exporting ArgVal
9649 // if it is't used by anything other than the store.
9650 for (const Value
*U
: Arg
.users()) {
9658 void SelectionDAGISel::LowerArguments(const Function
&F
) {
9659 SelectionDAG
&DAG
= SDB
->DAG
;
9660 SDLoc dl
= SDB
->getCurSDLoc();
9661 const DataLayout
&DL
= DAG
.getDataLayout();
9662 SmallVector
<ISD::InputArg
, 16> Ins
;
9664 // In Naked functions we aren't going to save any registers.
9665 if (F
.hasFnAttribute(Attribute::Naked
))
9668 if (!FuncInfo
->CanLowerReturn
) {
9669 // Put in an sret pointer parameter before all the other parameters.
9670 SmallVector
<EVT
, 1> ValueVTs
;
9671 ComputeValueVTs(*TLI
, DAG
.getDataLayout(),
9672 F
.getReturnType()->getPointerTo(
9673 DAG
.getDataLayout().getAllocaAddrSpace()),
9676 // NOTE: Assuming that a pointer will never break down to more than one VT
9678 ISD::ArgFlagsTy Flags
;
9680 MVT RegisterVT
= TLI
->getRegisterType(*DAG
.getContext(), ValueVTs
[0]);
9681 ISD::InputArg
RetArg(Flags
, RegisterVT
, ValueVTs
[0], true,
9682 ISD::InputArg::NoArgIndex
, 0);
9683 Ins
.push_back(RetArg
);
9686 // Look for stores of arguments to static allocas. Mark such arguments with a
9687 // flag to ask the target to give us the memory location of that argument if
9689 ArgCopyElisionMapTy ArgCopyElisionCandidates
;
9690 findArgumentCopyElisionCandidates(DL
, FuncInfo
.get(),
9691 ArgCopyElisionCandidates
);
9693 // Set up the incoming argument description vector.
9694 for (const Argument
&Arg
: F
.args()) {
9695 unsigned ArgNo
= Arg
.getArgNo();
9696 SmallVector
<EVT
, 4> ValueVTs
;
9697 ComputeValueVTs(*TLI
, DAG
.getDataLayout(), Arg
.getType(), ValueVTs
);
9698 bool isArgValueUsed
= !Arg
.use_empty();
9699 unsigned PartBase
= 0;
9700 Type
*FinalType
= Arg
.getType();
9701 if (Arg
.hasAttribute(Attribute::ByVal
))
9702 FinalType
= Arg
.getParamByValType();
9703 bool NeedsRegBlock
= TLI
->functionArgumentNeedsConsecutiveRegisters(
9704 FinalType
, F
.getCallingConv(), F
.isVarArg());
9705 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
9706 Value
!= NumValues
; ++Value
) {
9707 EVT VT
= ValueVTs
[Value
];
9708 Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
9709 ISD::ArgFlagsTy Flags
;
9711 // Certain targets (such as MIPS), may have a different ABI alignment
9712 // for a type depending on the context. Give the target a chance to
9713 // specify the alignment it wants.
9714 const Align
OriginalAlignment(
9715 TLI
->getABIAlignmentForCallingConv(ArgTy
, DL
));
9717 if (Arg
.getType()->isPointerTy()) {
9719 Flags
.setPointerAddrSpace(
9720 cast
<PointerType
>(Arg
.getType())->getAddressSpace());
9722 if (Arg
.hasAttribute(Attribute::ZExt
))
9724 if (Arg
.hasAttribute(Attribute::SExt
))
9726 if (Arg
.hasAttribute(Attribute::InReg
)) {
9727 // If we are using vectorcall calling convention, a structure that is
9728 // passed InReg - is surely an HVA
9729 if (F
.getCallingConv() == CallingConv::X86_VectorCall
&&
9730 isa
<StructType
>(Arg
.getType())) {
9731 // The first value of a structure is marked
9733 Flags
.setHvaStart();
9739 if (Arg
.hasAttribute(Attribute::StructRet
))
9741 if (Arg
.hasAttribute(Attribute::SwiftSelf
))
9742 Flags
.setSwiftSelf();
9743 if (Arg
.hasAttribute(Attribute::SwiftError
))
9744 Flags
.setSwiftError();
9745 if (Arg
.hasAttribute(Attribute::ByVal
))
9747 if (Arg
.hasAttribute(Attribute::ByRef
))
9749 if (Arg
.hasAttribute(Attribute::InAlloca
)) {
9750 Flags
.setInAlloca();
9751 // Set the byval flag for CCAssignFn callbacks that don't know about
9752 // inalloca. This way we can know how many bytes we should've allocated
9753 // and how many bytes a callee cleanup function will pop. If we port
9754 // inalloca to more targets, we'll have to add custom inalloca handling
9755 // in the various CC lowering callbacks.
9758 if (Arg
.hasAttribute(Attribute::Preallocated
)) {
9759 Flags
.setPreallocated();
9760 // Set the byval flag for CCAssignFn callbacks that don't know about
9761 // preallocated. This way we can know how many bytes we should've
9762 // allocated and how many bytes a callee cleanup function will pop. If
9763 // we port preallocated to more targets, we'll have to add custom
9764 // preallocated handling in the various CC lowering callbacks.
9768 Type
*ArgMemTy
= nullptr;
9769 if (F
.getCallingConv() == CallingConv::X86_INTR
) {
9770 // IA Interrupt passes frame (1st parameter) by value in the stack.
9773 // FIXME: Dependence on pointee element type. See bug 46672.
9774 ArgMemTy
= Arg
.getType()->getPointerElementType();
9777 if (Flags
.isByVal() || Flags
.isInAlloca() || Flags
.isPreallocated() ||
9780 ArgMemTy
= Arg
.getPointeeInMemoryValueType();
9782 uint64_t MemSize
= DL
.getTypeAllocSize(ArgMemTy
);
9784 // For in-memory arguments, size and alignment should be passed from FE.
9785 // BE will guess if this info is not there but there are cases it cannot
9787 MaybeAlign MemAlign
= Arg
.getParamAlign();
9789 MemAlign
= Align(TLI
->getByValTypeAlignment(ArgMemTy
, DL
));
9791 if (Flags
.isByRef()) {
9792 Flags
.setByRefSize(MemSize
);
9793 Flags
.setByRefAlign(*MemAlign
);
9795 Flags
.setByValSize(MemSize
);
9796 Flags
.setByValAlign(*MemAlign
);
9800 if (Arg
.hasAttribute(Attribute::Nest
))
9803 Flags
.setInConsecutiveRegs();
9804 Flags
.setOrigAlign(OriginalAlignment
);
9805 if (ArgCopyElisionCandidates
.count(&Arg
))
9806 Flags
.setCopyElisionCandidate();
9807 if (Arg
.hasAttribute(Attribute::Returned
))
9808 Flags
.setReturned();
9810 MVT RegisterVT
= TLI
->getRegisterTypeForCallingConv(
9811 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9812 unsigned NumRegs
= TLI
->getNumRegistersForCallingConv(
9813 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9814 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
9815 // For scalable vectors, use the minimum size; individual targets
9816 // are responsible for handling scalable vector arguments and
9818 ISD::InputArg
MyFlags(Flags
, RegisterVT
, VT
, isArgValueUsed
,
9819 ArgNo
, PartBase
+i
*RegisterVT
.getStoreSize().getKnownMinSize());
9820 if (NumRegs
> 1 && i
== 0)
9821 MyFlags
.Flags
.setSplit();
9822 // if it isn't first piece, alignment must be 1
9824 MyFlags
.Flags
.setOrigAlign(Align(1));
9825 if (i
== NumRegs
- 1)
9826 MyFlags
.Flags
.setSplitEnd();
9828 Ins
.push_back(MyFlags
);
9830 if (NeedsRegBlock
&& Value
== NumValues
- 1)
9831 Ins
[Ins
.size() - 1].Flags
.setInConsecutiveRegsLast();
9832 PartBase
+= VT
.getStoreSize().getKnownMinSize();
9836 // Call the target to set up the argument values.
9837 SmallVector
<SDValue
, 8> InVals
;
9838 SDValue NewRoot
= TLI
->LowerFormalArguments(
9839 DAG
.getRoot(), F
.getCallingConv(), F
.isVarArg(), Ins
, dl
, DAG
, InVals
);
9841 // Verify that the target's LowerFormalArguments behaved as expected.
9842 assert(NewRoot
.getNode() && NewRoot
.getValueType() == MVT::Other
&&
9843 "LowerFormalArguments didn't return a valid chain!");
9844 assert(InVals
.size() == Ins
.size() &&
9845 "LowerFormalArguments didn't emit the correct number of values!");
9847 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
9848 assert(InVals
[i
].getNode() &&
9849 "LowerFormalArguments emitted a null value!");
9850 assert(EVT(Ins
[i
].VT
) == InVals
[i
].getValueType() &&
9851 "LowerFormalArguments emitted a value with the wrong type!");
9855 // Update the DAG with the new chain value resulting from argument lowering.
9856 DAG
.setRoot(NewRoot
);
9858 // Set up the argument values.
9860 if (!FuncInfo
->CanLowerReturn
) {
9861 // Create a virtual register for the sret pointer, and put in a copy
9862 // from the sret argument into it.
9863 SmallVector
<EVT
, 1> ValueVTs
;
9864 ComputeValueVTs(*TLI
, DAG
.getDataLayout(),
9865 F
.getReturnType()->getPointerTo(
9866 DAG
.getDataLayout().getAllocaAddrSpace()),
9868 MVT VT
= ValueVTs
[0].getSimpleVT();
9869 MVT RegVT
= TLI
->getRegisterType(*CurDAG
->getContext(), VT
);
9870 Optional
<ISD::NodeType
> AssertOp
= None
;
9871 SDValue ArgValue
= getCopyFromParts(DAG
, dl
, &InVals
[0], 1, RegVT
, VT
,
9872 nullptr, F
.getCallingConv(), AssertOp
);
9874 MachineFunction
& MF
= SDB
->DAG
.getMachineFunction();
9875 MachineRegisterInfo
& RegInfo
= MF
.getRegInfo();
9877 RegInfo
.createVirtualRegister(TLI
->getRegClassFor(RegVT
));
9878 FuncInfo
->DemoteRegister
= SRetReg
;
9880 SDB
->DAG
.getCopyToReg(NewRoot
, SDB
->getCurSDLoc(), SRetReg
, ArgValue
);
9881 DAG
.setRoot(NewRoot
);
9883 // i indexes lowered arguments. Bump it past the hidden sret argument.
9887 SmallVector
<SDValue
, 4> Chains
;
9888 DenseMap
<int, int> ArgCopyElisionFrameIndexMap
;
9889 for (const Argument
&Arg
: F
.args()) {
9890 SmallVector
<SDValue
, 4> ArgValues
;
9891 SmallVector
<EVT
, 4> ValueVTs
;
9892 ComputeValueVTs(*TLI
, DAG
.getDataLayout(), Arg
.getType(), ValueVTs
);
9893 unsigned NumValues
= ValueVTs
.size();
9897 bool ArgHasUses
= !Arg
.use_empty();
9899 // Elide the copying store if the target loaded this argument from a
9900 // suitable fixed stack object.
9901 if (Ins
[i
].Flags
.isCopyElisionCandidate()) {
9902 tryToElideArgumentCopy(*FuncInfo
, Chains
, ArgCopyElisionFrameIndexMap
,
9903 ElidedArgCopyInstrs
, ArgCopyElisionCandidates
, Arg
,
9904 InVals
[i
], ArgHasUses
);
9907 // If this argument is unused then remember its value. It is used to generate
9908 // debugging information.
9909 bool isSwiftErrorArg
=
9910 TLI
->supportSwiftError() &&
9911 Arg
.hasAttribute(Attribute::SwiftError
);
9912 if (!ArgHasUses
&& !isSwiftErrorArg
) {
9913 SDB
->setUnusedArgValue(&Arg
, InVals
[i
]);
9915 // Also remember any frame index for use in FastISel.
9916 if (FrameIndexSDNode
*FI
=
9917 dyn_cast
<FrameIndexSDNode
>(InVals
[i
].getNode()))
9918 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9921 for (unsigned Val
= 0; Val
!= NumValues
; ++Val
) {
9922 EVT VT
= ValueVTs
[Val
];
9923 MVT PartVT
= TLI
->getRegisterTypeForCallingConv(*CurDAG
->getContext(),
9924 F
.getCallingConv(), VT
);
9925 unsigned NumParts
= TLI
->getNumRegistersForCallingConv(
9926 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9928 // Even an apparent 'unused' swifterror argument needs to be returned. So
9929 // we do generate a copy for it that can be used on return from the
9931 if (ArgHasUses
|| isSwiftErrorArg
) {
9932 Optional
<ISD::NodeType
> AssertOp
;
9933 if (Arg
.hasAttribute(Attribute::SExt
))
9934 AssertOp
= ISD::AssertSext
;
9935 else if (Arg
.hasAttribute(Attribute::ZExt
))
9936 AssertOp
= ISD::AssertZext
;
9938 ArgValues
.push_back(getCopyFromParts(DAG
, dl
, &InVals
[i
], NumParts
,
9939 PartVT
, VT
, nullptr,
9940 F
.getCallingConv(), AssertOp
));
9946 // We don't need to do anything else for unused arguments.
9947 if (ArgValues
.empty())
9950 // Note down frame index.
9951 if (FrameIndexSDNode
*FI
=
9952 dyn_cast
<FrameIndexSDNode
>(ArgValues
[0].getNode()))
9953 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9955 SDValue Res
= DAG
.getMergeValues(makeArrayRef(ArgValues
.data(), NumValues
),
9956 SDB
->getCurSDLoc());
9958 SDB
->setValue(&Arg
, Res
);
9959 if (!TM
.Options
.EnableFastISel
&& Res
.getOpcode() == ISD::BUILD_PAIR
) {
9960 // We want to associate the argument with the frame index, among
9961 // involved operands, that correspond to the lowest address. The
9962 // getCopyFromParts function, called earlier, is swapping the order of
9963 // the operands to BUILD_PAIR depending on endianness. The result of
9964 // that swapping is that the least significant bits of the argument will
9965 // be in the first operand of the BUILD_PAIR node, and the most
9966 // significant bits will be in the second operand.
9967 unsigned LowAddressOp
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
9968 if (LoadSDNode
*LNode
=
9969 dyn_cast
<LoadSDNode
>(Res
.getOperand(LowAddressOp
).getNode()))
9970 if (FrameIndexSDNode
*FI
=
9971 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode()))
9972 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9975 // Analyses past this point are naive and don't expect an assertion.
9976 if (Res
.getOpcode() == ISD::AssertZext
)
9977 Res
= Res
.getOperand(0);
9979 // Update the SwiftErrorVRegDefMap.
9980 if (Res
.getOpcode() == ISD::CopyFromReg
&& isSwiftErrorArg
) {
9981 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
9982 if (Register::isVirtualRegister(Reg
))
9983 SwiftError
->setCurrentVReg(FuncInfo
->MBB
, SwiftError
->getFunctionArg(),
9987 // If this argument is live outside of the entry block, insert a copy from
9988 // wherever we got it to the vreg that other BB's will reference it as.
9989 if (Res
.getOpcode() == ISD::CopyFromReg
) {
9990 // If we can, though, try to skip creating an unnecessary vreg.
9991 // FIXME: This isn't very clean... it would be nice to make this more
9993 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
9994 if (Register::isVirtualRegister(Reg
)) {
9995 FuncInfo
->ValueMap
[&Arg
] = Reg
;
9999 if (!isOnlyUsedInEntryBlock(&Arg
, TM
.Options
.EnableFastISel
)) {
10000 FuncInfo
->InitializeRegForValue(&Arg
);
10001 SDB
->CopyToExportRegsIfNeeded(&Arg
);
10005 if (!Chains
.empty()) {
10006 Chains
.push_back(NewRoot
);
10007 NewRoot
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chains
);
10010 DAG
.setRoot(NewRoot
);
10012 assert(i
== InVals
.size() && "Argument register count mismatch!");
10014 // If any argument copy elisions occurred and we have debug info, update the
10015 // stale frame indices used in the dbg.declare variable info table.
10016 MachineFunction::VariableDbgInfoMapTy
&DbgDeclareInfo
= MF
->getVariableDbgInfo();
10017 if (!DbgDeclareInfo
.empty() && !ArgCopyElisionFrameIndexMap
.empty()) {
10018 for (MachineFunction::VariableDbgInfo
&VI
: DbgDeclareInfo
) {
10019 auto I
= ArgCopyElisionFrameIndexMap
.find(VI
.Slot
);
10020 if (I
!= ArgCopyElisionFrameIndexMap
.end())
10021 VI
.Slot
= I
->second
;
10025 // Finally, if the target has anything special to do, allow it to do so.
10026 emitFunctionEntryCode();
10029 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
10030 /// ensure constants are generated when needed. Remember the virtual registers
10031 /// that need to be added to the Machine PHI nodes as input. We cannot just
10032 /// directly add them, because expansion might result in multiple MBB's for one
10033 /// BB. As such, the start of the BB might correspond to a different MBB than
10036 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock
*LLVMBB
) {
10037 const Instruction
*TI
= LLVMBB
->getTerminator();
10039 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
10041 // Check PHI nodes in successors that expect a value to be available from this
10043 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
10044 const BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
10045 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
10046 MachineBasicBlock
*SuccMBB
= FuncInfo
.MBBMap
[SuccBB
];
10048 // If this terminator has multiple identical successors (common for
10049 // switches), only handle each succ once.
10050 if (!SuccsHandled
.insert(SuccMBB
).second
)
10053 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
10055 // At this point we know that there is a 1-1 correspondence between LLVM PHI
10056 // nodes and Machine PHI nodes, but the incoming operands have not been
10058 for (const PHINode
&PN
: SuccBB
->phis()) {
10059 // Ignore dead phi's.
10060 if (PN
.use_empty())
10063 // Skip empty types
10064 if (PN
.getType()->isEmptyTy())
10068 const Value
*PHIOp
= PN
.getIncomingValueForBlock(LLVMBB
);
10070 if (const Constant
*C
= dyn_cast
<Constant
>(PHIOp
)) {
10071 unsigned &RegOut
= ConstantsOut
[C
];
10073 RegOut
= FuncInfo
.CreateRegs(C
);
10074 CopyValueToVirtualRegister(C
, RegOut
);
10078 DenseMap
<const Value
*, Register
>::iterator I
=
10079 FuncInfo
.ValueMap
.find(PHIOp
);
10080 if (I
!= FuncInfo
.ValueMap
.end())
10083 assert(isa
<AllocaInst
>(PHIOp
) &&
10084 FuncInfo
.StaticAllocaMap
.count(cast
<AllocaInst
>(PHIOp
)) &&
10085 "Didn't codegen value into a register!??");
10086 Reg
= FuncInfo
.CreateRegs(PHIOp
);
10087 CopyValueToVirtualRegister(PHIOp
, Reg
);
10091 // Remember that this register needs to added to the machine PHI node as
10092 // the input for this MBB.
10093 SmallVector
<EVT
, 4> ValueVTs
;
10094 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10095 ComputeValueVTs(TLI
, DAG
.getDataLayout(), PN
.getType(), ValueVTs
);
10096 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
10097 EVT VT
= ValueVTs
[vti
];
10098 unsigned NumRegisters
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
10099 for (unsigned i
= 0, e
= NumRegisters
; i
!= e
; ++i
)
10100 FuncInfo
.PHINodesToUpdate
.push_back(
10101 std::make_pair(&*MBBI
++, Reg
+ i
));
10102 Reg
+= NumRegisters
;
10107 ConstantsOut
.clear();
10110 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10112 MachineBasicBlock
*
10113 SelectionDAGBuilder::StackProtectorDescriptor::
10114 AddSuccessorMBB(const BasicBlock
*BB
,
10115 MachineBasicBlock
*ParentMBB
,
10117 MachineBasicBlock
*SuccMBB
) {
10118 // If SuccBB has not been created yet, create it.
10120 MachineFunction
*MF
= ParentMBB
->getParent();
10121 MachineFunction::iterator
BBI(ParentMBB
);
10122 SuccMBB
= MF
->CreateMachineBasicBlock(BB
);
10123 MF
->insert(++BBI
, SuccMBB
);
10125 // Add it as a successor of ParentMBB.
10126 ParentMBB
->addSuccessor(
10127 SuccMBB
, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely
));
10131 MachineBasicBlock
*SelectionDAGBuilder::NextBlock(MachineBasicBlock
*MBB
) {
10132 MachineFunction::iterator
I(MBB
);
10133 if (++I
== FuncInfo
.MF
->end())
10138 /// During lowering new call nodes can be created (such as memset, etc.).
10139 /// Those will become new roots of the current DAG, but complications arise
10140 /// when they are tail calls. In such cases, the call lowering will update
10141 /// the root, but the builder still needs to know that a tail call has been
10142 /// lowered in order to avoid generating an additional return.
10143 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC
) {
10144 // If the node is null, we do have a tail call.
10145 if (MaybeTC
.getNode() != nullptr)
10146 DAG
.setRoot(MaybeTC
);
10148 HasTailCall
= true;
10151 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W
, Value
*Cond
,
10152 MachineBasicBlock
*SwitchMBB
,
10153 MachineBasicBlock
*DefaultMBB
) {
10154 MachineFunction
*CurMF
= FuncInfo
.MF
;
10155 MachineBasicBlock
*NextMBB
= nullptr;
10156 MachineFunction::iterator
BBI(W
.MBB
);
10157 if (++BBI
!= FuncInfo
.MF
->end())
10160 unsigned Size
= W
.LastCluster
- W
.FirstCluster
+ 1;
10162 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
10164 if (Size
== 2 && W
.MBB
== SwitchMBB
) {
10165 // If any two of the cases has the same destination, and if one value
10166 // is the same as the other, but has one bit unset that the other has set,
10167 // use bit manipulation to do two compares at once. For example:
10168 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10169 // TODO: This could be extended to merge any 2 cases in switches with 3
10171 // TODO: Handle cases where W.CaseBB != SwitchBB.
10172 CaseCluster
&Small
= *W
.FirstCluster
;
10173 CaseCluster
&Big
= *W
.LastCluster
;
10175 if (Small
.Low
== Small
.High
&& Big
.Low
== Big
.High
&&
10176 Small
.MBB
== Big
.MBB
) {
10177 const APInt
&SmallValue
= Small
.Low
->getValue();
10178 const APInt
&BigValue
= Big
.Low
->getValue();
10180 // Check that there is only one bit different.
10181 APInt CommonBit
= BigValue
^ SmallValue
;
10182 if (CommonBit
.isPowerOf2()) {
10183 SDValue CondLHS
= getValue(Cond
);
10184 EVT VT
= CondLHS
.getValueType();
10185 SDLoc DL
= getCurSDLoc();
10187 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, CondLHS
,
10188 DAG
.getConstant(CommonBit
, DL
, VT
));
10189 SDValue Cond
= DAG
.getSetCC(
10190 DL
, MVT::i1
, Or
, DAG
.getConstant(BigValue
| SmallValue
, DL
, VT
),
10193 // Update successor info.
10194 // Both Small and Big will jump to Small.BB, so we sum up the
10196 addSuccessorWithProb(SwitchMBB
, Small
.MBB
, Small
.Prob
+ Big
.Prob
);
10198 addSuccessorWithProb(
10199 SwitchMBB
, DefaultMBB
,
10200 // The default destination is the first successor in IR.
10201 BPI
->getEdgeProbability(SwitchMBB
->getBasicBlock(), (unsigned)0));
10203 addSuccessorWithProb(SwitchMBB
, DefaultMBB
);
10205 // Insert the true branch.
10207 DAG
.getNode(ISD::BRCOND
, DL
, MVT::Other
, getControlRoot(), Cond
,
10208 DAG
.getBasicBlock(Small
.MBB
));
10209 // Insert the false branch.
10210 BrCond
= DAG
.getNode(ISD::BR
, DL
, MVT::Other
, BrCond
,
10211 DAG
.getBasicBlock(DefaultMBB
));
10213 DAG
.setRoot(BrCond
);
10219 if (TM
.getOptLevel() != CodeGenOpt::None
) {
10220 // Here, we order cases by probability so the most likely case will be
10221 // checked first. However, two clusters can have the same probability in
10222 // which case their relative ordering is non-deterministic. So we use Low
10223 // as a tie-breaker as clusters are guaranteed to never overlap.
10224 llvm::sort(W
.FirstCluster
, W
.LastCluster
+ 1,
10225 [](const CaseCluster
&a
, const CaseCluster
&b
) {
10226 return a
.Prob
!= b
.Prob
?
10228 a
.Low
->getValue().slt(b
.Low
->getValue());
10231 // Rearrange the case blocks so that the last one falls through if possible
10232 // without changing the order of probabilities.
10233 for (CaseClusterIt I
= W
.LastCluster
; I
> W
.FirstCluster
; ) {
10235 if (I
->Prob
> W
.LastCluster
->Prob
)
10237 if (I
->Kind
== CC_Range
&& I
->MBB
== NextMBB
) {
10238 std::swap(*I
, *W
.LastCluster
);
10244 // Compute total probability.
10245 BranchProbability DefaultProb
= W
.DefaultProb
;
10246 BranchProbability UnhandledProbs
= DefaultProb
;
10247 for (CaseClusterIt I
= W
.FirstCluster
; I
<= W
.LastCluster
; ++I
)
10248 UnhandledProbs
+= I
->Prob
;
10250 MachineBasicBlock
*CurMBB
= W
.MBB
;
10251 for (CaseClusterIt I
= W
.FirstCluster
, E
= W
.LastCluster
; I
<= E
; ++I
) {
10252 bool FallthroughUnreachable
= false;
10253 MachineBasicBlock
*Fallthrough
;
10254 if (I
== W
.LastCluster
) {
10255 // For the last cluster, fall through to the default destination.
10256 Fallthrough
= DefaultMBB
;
10257 FallthroughUnreachable
= isa
<UnreachableInst
>(
10258 DefaultMBB
->getBasicBlock()->getFirstNonPHIOrDbg());
10260 Fallthrough
= CurMF
->CreateMachineBasicBlock(CurMBB
->getBasicBlock());
10261 CurMF
->insert(BBI
, Fallthrough
);
10262 // Put Cond in a virtual register to make it available from the new blocks.
10263 ExportFromCurrentBlock(Cond
);
10265 UnhandledProbs
-= I
->Prob
;
10268 case CC_JumpTable
: {
10269 // FIXME: Optimize away range check based on pivot comparisons.
10270 JumpTableHeader
*JTH
= &SL
->JTCases
[I
->JTCasesIndex
].first
;
10271 SwitchCG::JumpTable
*JT
= &SL
->JTCases
[I
->JTCasesIndex
].second
;
10273 // The jump block hasn't been inserted yet; insert it here.
10274 MachineBasicBlock
*JumpMBB
= JT
->MBB
;
10275 CurMF
->insert(BBI
, JumpMBB
);
10277 auto JumpProb
= I
->Prob
;
10278 auto FallthroughProb
= UnhandledProbs
;
10280 // If the default statement is a target of the jump table, we evenly
10281 // distribute the default probability to successors of CurMBB. Also
10282 // update the probability on the edge from JumpMBB to Fallthrough.
10283 for (MachineBasicBlock::succ_iterator SI
= JumpMBB
->succ_begin(),
10284 SE
= JumpMBB
->succ_end();
10286 if (*SI
== DefaultMBB
) {
10287 JumpProb
+= DefaultProb
/ 2;
10288 FallthroughProb
-= DefaultProb
/ 2;
10289 JumpMBB
->setSuccProbability(SI
, DefaultProb
/ 2);
10290 JumpMBB
->normalizeSuccProbs();
10295 if (FallthroughUnreachable
) {
10296 // Skip the range check if the fallthrough block is unreachable.
10297 JTH
->OmitRangeCheck
= true;
10300 if (!JTH
->OmitRangeCheck
)
10301 addSuccessorWithProb(CurMBB
, Fallthrough
, FallthroughProb
);
10302 addSuccessorWithProb(CurMBB
, JumpMBB
, JumpProb
);
10303 CurMBB
->normalizeSuccProbs();
10305 // The jump table header will be inserted in our current block, do the
10306 // range check, and fall through to our fallthrough block.
10307 JTH
->HeaderBB
= CurMBB
;
10308 JT
->Default
= Fallthrough
; // FIXME: Move Default to JumpTableHeader.
10310 // If we're in the right place, emit the jump table header right now.
10311 if (CurMBB
== SwitchMBB
) {
10312 visitJumpTableHeader(*JT
, *JTH
, SwitchMBB
);
10313 JTH
->Emitted
= true;
10317 case CC_BitTests
: {
10318 // FIXME: Optimize away range check based on pivot comparisons.
10319 BitTestBlock
*BTB
= &SL
->BitTestCases
[I
->BTCasesIndex
];
10321 // The bit test blocks haven't been inserted yet; insert them here.
10322 for (BitTestCase
&BTC
: BTB
->Cases
)
10323 CurMF
->insert(BBI
, BTC
.ThisBB
);
10325 // Fill in fields of the BitTestBlock.
10326 BTB
->Parent
= CurMBB
;
10327 BTB
->Default
= Fallthrough
;
10329 BTB
->DefaultProb
= UnhandledProbs
;
10330 // If the cases in bit test don't form a contiguous range, we evenly
10331 // distribute the probability on the edge to Fallthrough to two
10332 // successors of CurMBB.
10333 if (!BTB
->ContiguousRange
) {
10334 BTB
->Prob
+= DefaultProb
/ 2;
10335 BTB
->DefaultProb
-= DefaultProb
/ 2;
10338 if (FallthroughUnreachable
) {
10339 // Skip the range check if the fallthrough block is unreachable.
10340 BTB
->OmitRangeCheck
= true;
10343 // If we're in the right place, emit the bit test header right now.
10344 if (CurMBB
== SwitchMBB
) {
10345 visitBitTestHeader(*BTB
, SwitchMBB
);
10346 BTB
->Emitted
= true;
10351 const Value
*RHS
, *LHS
, *MHS
;
10353 if (I
->Low
== I
->High
) {
10354 // Check Cond == I->Low.
10360 // Check I->Low <= Cond <= I->High.
10367 // If Fallthrough is unreachable, fold away the comparison.
10368 if (FallthroughUnreachable
)
10371 // The false probability is the sum of all unhandled cases.
10372 CaseBlock
CB(CC
, LHS
, RHS
, MHS
, I
->MBB
, Fallthrough
, CurMBB
,
10373 getCurSDLoc(), I
->Prob
, UnhandledProbs
);
10375 if (CurMBB
== SwitchMBB
)
10376 visitSwitchCase(CB
, SwitchMBB
);
10378 SL
->SwitchCases
.push_back(CB
);
10383 CurMBB
= Fallthrough
;
10387 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster
&CC
,
10388 CaseClusterIt First
,
10389 CaseClusterIt Last
) {
10390 return std::count_if(First
, Last
+ 1, [&](const CaseCluster
&X
) {
10391 if (X
.Prob
!= CC
.Prob
)
10392 return X
.Prob
> CC
.Prob
;
10394 // Ties are broken by comparing the case value.
10395 return X
.Low
->getValue().slt(CC
.Low
->getValue());
10399 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList
&WorkList
,
10400 const SwitchWorkListItem
&W
,
10402 MachineBasicBlock
*SwitchMBB
) {
10403 assert(W
.FirstCluster
->Low
->getValue().slt(W
.LastCluster
->Low
->getValue()) &&
10404 "Clusters not sorted?");
10406 assert(W
.LastCluster
- W
.FirstCluster
+ 1 >= 2 && "Too small to split!");
10408 // Balance the tree based on branch probabilities to create a near-optimal (in
10409 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10410 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10411 CaseClusterIt LastLeft
= W
.FirstCluster
;
10412 CaseClusterIt FirstRight
= W
.LastCluster
;
10413 auto LeftProb
= LastLeft
->Prob
+ W
.DefaultProb
/ 2;
10414 auto RightProb
= FirstRight
->Prob
+ W
.DefaultProb
/ 2;
10416 // Move LastLeft and FirstRight towards each other from opposite directions to
10417 // find a partitioning of the clusters which balances the probability on both
10418 // sides. If LeftProb and RightProb are equal, alternate which side is
10419 // taken to ensure 0-probability nodes are distributed evenly.
10421 while (LastLeft
+ 1 < FirstRight
) {
10422 if (LeftProb
< RightProb
|| (LeftProb
== RightProb
&& (I
& 1)))
10423 LeftProb
+= (++LastLeft
)->Prob
;
10425 RightProb
+= (--FirstRight
)->Prob
;
10430 // Our binary search tree differs from a typical BST in that ours can have up
10431 // to three values in each leaf. The pivot selection above doesn't take that
10432 // into account, which means the tree might require more nodes and be less
10433 // efficient. We compensate for this here.
10435 unsigned NumLeft
= LastLeft
- W
.FirstCluster
+ 1;
10436 unsigned NumRight
= W
.LastCluster
- FirstRight
+ 1;
10438 if (std::min(NumLeft
, NumRight
) < 3 && std::max(NumLeft
, NumRight
) > 3) {
10439 // If one side has less than 3 clusters, and the other has more than 3,
10440 // consider taking a cluster from the other side.
10442 if (NumLeft
< NumRight
) {
10443 // Consider moving the first cluster on the right to the left side.
10444 CaseCluster
&CC
= *FirstRight
;
10445 unsigned RightSideRank
= caseClusterRank(CC
, FirstRight
, W
.LastCluster
);
10446 unsigned LeftSideRank
= caseClusterRank(CC
, W
.FirstCluster
, LastLeft
);
10447 if (LeftSideRank
<= RightSideRank
) {
10448 // Moving the cluster to the left does not demote it.
10454 assert(NumRight
< NumLeft
);
10455 // Consider moving the last element on the left to the right side.
10456 CaseCluster
&CC
= *LastLeft
;
10457 unsigned LeftSideRank
= caseClusterRank(CC
, W
.FirstCluster
, LastLeft
);
10458 unsigned RightSideRank
= caseClusterRank(CC
, FirstRight
, W
.LastCluster
);
10459 if (RightSideRank
<= LeftSideRank
) {
10460 // Moving the cluster to the right does not demot it.
10470 assert(LastLeft
+ 1 == FirstRight
);
10471 assert(LastLeft
>= W
.FirstCluster
);
10472 assert(FirstRight
<= W
.LastCluster
);
10474 // Use the first element on the right as pivot since we will make less-than
10475 // comparisons against it.
10476 CaseClusterIt PivotCluster
= FirstRight
;
10477 assert(PivotCluster
> W
.FirstCluster
);
10478 assert(PivotCluster
<= W
.LastCluster
);
10480 CaseClusterIt FirstLeft
= W
.FirstCluster
;
10481 CaseClusterIt LastRight
= W
.LastCluster
;
10483 const ConstantInt
*Pivot
= PivotCluster
->Low
;
10485 // New blocks will be inserted immediately after the current one.
10486 MachineFunction::iterator
BBI(W
.MBB
);
10489 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10490 // we can branch to its destination directly if it's squeezed exactly in
10491 // between the known lower bound and Pivot - 1.
10492 MachineBasicBlock
*LeftMBB
;
10493 if (FirstLeft
== LastLeft
&& FirstLeft
->Kind
== CC_Range
&&
10494 FirstLeft
->Low
== W
.GE
&&
10495 (FirstLeft
->High
->getValue() + 1LL) == Pivot
->getValue()) {
10496 LeftMBB
= FirstLeft
->MBB
;
10498 LeftMBB
= FuncInfo
.MF
->CreateMachineBasicBlock(W
.MBB
->getBasicBlock());
10499 FuncInfo
.MF
->insert(BBI
, LeftMBB
);
10500 WorkList
.push_back(
10501 {LeftMBB
, FirstLeft
, LastLeft
, W
.GE
, Pivot
, W
.DefaultProb
/ 2});
10502 // Put Cond in a virtual register to make it available from the new blocks.
10503 ExportFromCurrentBlock(Cond
);
10506 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10507 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10508 // directly if RHS.High equals the current upper bound.
10509 MachineBasicBlock
*RightMBB
;
10510 if (FirstRight
== LastRight
&& FirstRight
->Kind
== CC_Range
&&
10511 W
.LT
&& (FirstRight
->High
->getValue() + 1ULL) == W
.LT
->getValue()) {
10512 RightMBB
= FirstRight
->MBB
;
10514 RightMBB
= FuncInfo
.MF
->CreateMachineBasicBlock(W
.MBB
->getBasicBlock());
10515 FuncInfo
.MF
->insert(BBI
, RightMBB
);
10516 WorkList
.push_back(
10517 {RightMBB
, FirstRight
, LastRight
, Pivot
, W
.LT
, W
.DefaultProb
/ 2});
10518 // Put Cond in a virtual register to make it available from the new blocks.
10519 ExportFromCurrentBlock(Cond
);
10522 // Create the CaseBlock record that will be used to lower the branch.
10523 CaseBlock
CB(ISD::SETLT
, Cond
, Pivot
, nullptr, LeftMBB
, RightMBB
, W
.MBB
,
10524 getCurSDLoc(), LeftProb
, RightProb
);
10526 if (W
.MBB
== SwitchMBB
)
10527 visitSwitchCase(CB
, SwitchMBB
);
10529 SL
->SwitchCases
.push_back(CB
);
10532 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10533 // from the swith statement.
10534 static BranchProbability
scaleCaseProbality(BranchProbability CaseProb
,
10535 BranchProbability PeeledCaseProb
) {
10536 if (PeeledCaseProb
== BranchProbability::getOne())
10537 return BranchProbability::getZero();
10538 BranchProbability SwitchProb
= PeeledCaseProb
.getCompl();
10540 uint32_t Numerator
= CaseProb
.getNumerator();
10541 uint32_t Denominator
= SwitchProb
.scale(CaseProb
.getDenominator());
10542 return BranchProbability(Numerator
, std::max(Numerator
, Denominator
));
10545 // Try to peel the top probability case if it exceeds the threshold.
10546 // Return current MachineBasicBlock for the switch statement if the peeling
10548 // If the peeling is performed, return the newly created MachineBasicBlock
10549 // for the peeled switch statement. Also update Clusters to remove the peeled
10550 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10551 MachineBasicBlock
*SelectionDAGBuilder::peelDominantCaseCluster(
10552 const SwitchInst
&SI
, CaseClusterVector
&Clusters
,
10553 BranchProbability
&PeeledCaseProb
) {
10554 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
10555 // Don't perform if there is only one cluster or optimizing for size.
10556 if (SwitchPeelThreshold
> 100 || !FuncInfo
.BPI
|| Clusters
.size() < 2 ||
10557 TM
.getOptLevel() == CodeGenOpt::None
||
10558 SwitchMBB
->getParent()->getFunction().hasMinSize())
10561 BranchProbability TopCaseProb
= BranchProbability(SwitchPeelThreshold
, 100);
10562 unsigned PeeledCaseIndex
= 0;
10563 bool SwitchPeeled
= false;
10564 for (unsigned Index
= 0; Index
< Clusters
.size(); ++Index
) {
10565 CaseCluster
&CC
= Clusters
[Index
];
10566 if (CC
.Prob
< TopCaseProb
)
10568 TopCaseProb
= CC
.Prob
;
10569 PeeledCaseIndex
= Index
;
10570 SwitchPeeled
= true;
10575 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10576 << TopCaseProb
<< "\n");
10578 // Record the MBB for the peeled switch statement.
10579 MachineFunction::iterator
BBI(SwitchMBB
);
10581 MachineBasicBlock
*PeeledSwitchMBB
=
10582 FuncInfo
.MF
->CreateMachineBasicBlock(SwitchMBB
->getBasicBlock());
10583 FuncInfo
.MF
->insert(BBI
, PeeledSwitchMBB
);
10585 ExportFromCurrentBlock(SI
.getCondition());
10586 auto PeeledCaseIt
= Clusters
.begin() + PeeledCaseIndex
;
10587 SwitchWorkListItem W
= {SwitchMBB
, PeeledCaseIt
, PeeledCaseIt
,
10588 nullptr, nullptr, TopCaseProb
.getCompl()};
10589 lowerWorkItem(W
, SI
.getCondition(), SwitchMBB
, PeeledSwitchMBB
);
10591 Clusters
.erase(PeeledCaseIt
);
10592 for (CaseCluster
&CC
: Clusters
) {
10594 dbgs() << "Scale the probablity for one cluster, before scaling: "
10595 << CC
.Prob
<< "\n");
10596 CC
.Prob
= scaleCaseProbality(CC
.Prob
, TopCaseProb
);
10597 LLVM_DEBUG(dbgs() << "After scaling: " << CC
.Prob
<< "\n");
10599 PeeledCaseProb
= TopCaseProb
;
10600 return PeeledSwitchMBB
;
10603 void SelectionDAGBuilder::visitSwitch(const SwitchInst
&SI
) {
10604 // Extract cases from the switch.
10605 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
10606 CaseClusterVector Clusters
;
10607 Clusters
.reserve(SI
.getNumCases());
10608 for (auto I
: SI
.cases()) {
10609 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[I
.getCaseSuccessor()];
10610 const ConstantInt
*CaseVal
= I
.getCaseValue();
10611 BranchProbability Prob
=
10612 BPI
? BPI
->getEdgeProbability(SI
.getParent(), I
.getSuccessorIndex())
10613 : BranchProbability(1, SI
.getNumCases() + 1);
10614 Clusters
.push_back(CaseCluster::range(CaseVal
, CaseVal
, Succ
, Prob
));
10617 MachineBasicBlock
*DefaultMBB
= FuncInfo
.MBBMap
[SI
.getDefaultDest()];
10619 // Cluster adjacent cases with the same destination. We do this at all
10620 // optimization levels because it's cheap to do and will make codegen faster
10621 // if there are many clusters.
10622 sortAndRangeify(Clusters
);
10624 // The branch probablity of the peeled case.
10625 BranchProbability PeeledCaseProb
= BranchProbability::getZero();
10626 MachineBasicBlock
*PeeledSwitchMBB
=
10627 peelDominantCaseCluster(SI
, Clusters
, PeeledCaseProb
);
10629 // If there is only the default destination, jump there directly.
10630 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
10631 if (Clusters
.empty()) {
10632 assert(PeeledSwitchMBB
== SwitchMBB
);
10633 SwitchMBB
->addSuccessor(DefaultMBB
);
10634 if (DefaultMBB
!= NextBlock(SwitchMBB
)) {
10635 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
,
10636 getControlRoot(), DAG
.getBasicBlock(DefaultMBB
)));
10641 SL
->findJumpTables(Clusters
, &SI
, DefaultMBB
, DAG
.getPSI(), DAG
.getBFI());
10642 SL
->findBitTestClusters(Clusters
, &SI
);
10645 dbgs() << "Case clusters: ";
10646 for (const CaseCluster
&C
: Clusters
) {
10647 if (C
.Kind
== CC_JumpTable
)
10649 if (C
.Kind
== CC_BitTests
)
10652 C
.Low
->getValue().print(dbgs(), true);
10653 if (C
.Low
!= C
.High
) {
10655 C
.High
->getValue().print(dbgs(), true);
10662 assert(!Clusters
.empty());
10663 SwitchWorkList WorkList
;
10664 CaseClusterIt First
= Clusters
.begin();
10665 CaseClusterIt Last
= Clusters
.end() - 1;
10666 auto DefaultProb
= getEdgeProbability(PeeledSwitchMBB
, DefaultMBB
);
10667 // Scale the branchprobability for DefaultMBB if the peel occurs and
10668 // DefaultMBB is not replaced.
10669 if (PeeledCaseProb
!= BranchProbability::getZero() &&
10670 DefaultMBB
== FuncInfo
.MBBMap
[SI
.getDefaultDest()])
10671 DefaultProb
= scaleCaseProbality(DefaultProb
, PeeledCaseProb
);
10672 WorkList
.push_back(
10673 {PeeledSwitchMBB
, First
, Last
, nullptr, nullptr, DefaultProb
});
10675 while (!WorkList
.empty()) {
10676 SwitchWorkListItem W
= WorkList
.back();
10677 WorkList
.pop_back();
10678 unsigned NumClusters
= W
.LastCluster
- W
.FirstCluster
+ 1;
10680 if (NumClusters
> 3 && TM
.getOptLevel() != CodeGenOpt::None
&&
10681 !DefaultMBB
->getParent()->getFunction().hasMinSize()) {
10682 // For optimized builds, lower large range as a balanced binary tree.
10683 splitWorkItem(WorkList
, W
, SI
.getCondition(), SwitchMBB
);
10687 lowerWorkItem(W
, SI
.getCondition(), SwitchMBB
, DefaultMBB
);
10691 void SelectionDAGBuilder::visitFreeze(const FreezeInst
&I
) {
10692 SmallVector
<EVT
, 4> ValueVTs
;
10693 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), I
.getType(),
10695 unsigned NumValues
= ValueVTs
.size();
10696 if (NumValues
== 0) return;
10698 SmallVector
<SDValue
, 4> Values(NumValues
);
10699 SDValue Op
= getValue(I
.getOperand(0));
10701 for (unsigned i
= 0; i
!= NumValues
; ++i
)
10702 Values
[i
] = DAG
.getNode(ISD::FREEZE
, getCurSDLoc(), ValueVTs
[i
],
10703 SDValue(Op
.getNode(), Op
.getResNo() + i
));
10705 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
10706 DAG
.getVTList(ValueVTs
), Values
));