[flang][mlir][openacc] Switch device_type representation to an enum (#70250)
[llvm-project.git] / openmp / runtime / src / z_Linux_util.cpp
blob5495f60d2029d49b57a07d07f1d6a939a67f654e
1 /*
2 * z_Linux_util.cpp -- platform specific routines.
3 */
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #if KMP_OS_LINUX
29 #include <semaphore.h>
30 #endif // KMP_OS_LINUX
31 #include <sys/resource.h>
32 #include <sys/syscall.h>
33 #include <sys/time.h>
34 #include <sys/times.h>
35 #include <unistd.h>
37 #if KMP_OS_LINUX
38 #include <sys/sysinfo.h>
39 #if KMP_USE_FUTEX
40 // We should really include <futex.h>, but that causes compatibility problems on
41 // different Linux* OS distributions that either require that you include (or
42 // break when you try to include) <pci/types.h>. Since all we need is the two
43 // macros below (which are part of the kernel ABI, so can't change) we just
44 // define the constants here and don't include <futex.h>
45 #ifndef FUTEX_WAIT
46 #define FUTEX_WAIT 0
47 #endif
48 #ifndef FUTEX_WAKE
49 #define FUTEX_WAKE 1
50 #endif
51 #endif
52 #elif KMP_OS_DARWIN
53 #include <mach/mach.h>
54 #include <sys/sysctl.h>
55 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
56 #include <sys/types.h>
57 #include <sys/sysctl.h>
58 #include <sys/user.h>
59 #include <pthread_np.h>
60 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #endif
65 #include <ctype.h>
66 #include <dirent.h>
67 #include <fcntl.h>
69 struct kmp_sys_timer {
70 struct timespec start;
73 // Convert timespec to nanoseconds.
74 #define TS2NS(timespec) \
75 (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
77 static struct kmp_sys_timer __kmp_sys_timer_data;
79 #if KMP_HANDLE_SIGNALS
80 typedef void (*sig_func_t)(int);
81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
82 static sigset_t __kmp_sigset;
83 #endif
85 static int __kmp_init_runtime = FALSE;
87 static int __kmp_fork_count = 0;
89 static pthread_condattr_t __kmp_suspend_cond_attr;
90 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
92 static kmp_cond_align_t __kmp_wait_cv;
93 static kmp_mutex_align_t __kmp_wait_mx;
95 kmp_uint64 __kmp_ticks_per_msec = 1000000;
96 kmp_uint64 __kmp_ticks_per_usec = 1000;
98 #ifdef DEBUG_SUSPEND
99 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
100 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
101 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
102 cond->c_cond.__c_waiting);
104 #endif
106 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
108 /* Affinity support */
110 void __kmp_affinity_bind_thread(int which) {
111 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
112 "Illegal set affinity operation when not capable");
114 kmp_affin_mask_t *mask;
115 KMP_CPU_ALLOC_ON_STACK(mask);
116 KMP_CPU_ZERO(mask);
117 KMP_CPU_SET(which, mask);
118 __kmp_set_system_affinity(mask, TRUE);
119 KMP_CPU_FREE_FROM_STACK(mask);
122 /* Determine if we can access affinity functionality on this version of
123 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
124 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
125 void __kmp_affinity_determine_capable(const char *env_var) {
126 // Check and see if the OS supports thread affinity.
128 #if KMP_OS_LINUX
129 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
130 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE
131 #elif KMP_OS_FREEBSD
132 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
133 #endif
135 int verbose = __kmp_affinity.flags.verbose;
136 int warnings = __kmp_affinity.flags.warnings;
137 enum affinity_type type = __kmp_affinity.type;
139 #if KMP_OS_LINUX
140 long gCode;
141 unsigned char *buf;
142 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
144 // If the syscall returns a suggestion for the size,
145 // then we don't have to search for an appropriate size.
146 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
147 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
148 "initial getaffinity call returned %ld errno = %d\n",
149 gCode, errno));
151 if (gCode < 0 && errno != EINVAL) {
152 // System call not supported
153 if (verbose ||
154 (warnings && (type != affinity_none) && (type != affinity_default) &&
155 (type != affinity_disabled))) {
156 int error = errno;
157 kmp_msg_t err_code = KMP_ERR(error);
158 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
159 err_code, __kmp_msg_null);
160 if (__kmp_generate_warnings == kmp_warnings_off) {
161 __kmp_str_free(&err_code.str);
164 KMP_AFFINITY_DISABLE();
165 KMP_INTERNAL_FREE(buf);
166 return;
167 } else if (gCode > 0) {
168 // The optimal situation: the OS returns the size of the buffer it expects.
169 KMP_AFFINITY_ENABLE(gCode);
170 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
171 "affinity supported (mask size %d)\n",
172 (int)__kmp_affin_mask_size));
173 KMP_INTERNAL_FREE(buf);
174 return;
177 // Call the getaffinity system call repeatedly with increasing set sizes
178 // until we succeed, or reach an upper bound on the search.
179 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
180 "searching for proper set size\n"));
181 int size;
182 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
183 gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
184 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
185 "getaffinity for mask size %ld returned %ld errno = %d\n",
186 size, gCode, errno));
188 if (gCode < 0) {
189 if (errno == ENOSYS) {
190 // We shouldn't get here
191 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
192 "inconsistent OS call behavior: errno == ENOSYS for mask "
193 "size %d\n",
194 size));
195 if (verbose ||
196 (warnings && (type != affinity_none) &&
197 (type != affinity_default) && (type != affinity_disabled))) {
198 int error = errno;
199 kmp_msg_t err_code = KMP_ERR(error);
200 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
201 err_code, __kmp_msg_null);
202 if (__kmp_generate_warnings == kmp_warnings_off) {
203 __kmp_str_free(&err_code.str);
206 KMP_AFFINITY_DISABLE();
207 KMP_INTERNAL_FREE(buf);
208 return;
210 continue;
213 KMP_AFFINITY_ENABLE(gCode);
214 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
215 "affinity supported (mask size %d)\n",
216 (int)__kmp_affin_mask_size));
217 KMP_INTERNAL_FREE(buf);
218 return;
220 #elif KMP_OS_FREEBSD
221 long gCode;
222 unsigned char *buf;
223 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
224 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
225 reinterpret_cast<cpuset_t *>(buf));
226 KA_TRACE(30, ("__kmp_affinity_determine_capable: "
227 "initial getaffinity call returned %d errno = %d\n",
228 gCode, errno));
229 if (gCode == 0) {
230 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
231 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
232 "affinity supported (mask size %d)\n",
233 (int)__kmp_affin_mask_size));
234 KMP_INTERNAL_FREE(buf);
235 return;
237 #endif
238 KMP_INTERNAL_FREE(buf);
240 // Affinity is not supported
241 KMP_AFFINITY_DISABLE();
242 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
243 "cannot determine mask size - affinity not supported\n"));
244 if (verbose || (warnings && (type != affinity_none) &&
245 (type != affinity_default) && (type != affinity_disabled))) {
246 KMP_WARNING(AffCantGetMaskSize, env_var);
250 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
252 #if KMP_USE_FUTEX
254 int __kmp_futex_determine_capable() {
255 int loc = 0;
256 long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
257 int retval = (rc == 0) || (errno != ENOSYS);
259 KA_TRACE(10,
260 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
261 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
262 retval ? "" : " not"));
264 return retval;
267 #endif // KMP_USE_FUTEX
269 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
270 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
271 use compare_and_store for these routines */
273 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
274 kmp_int8 old_value, new_value;
276 old_value = TCR_1(*p);
277 new_value = old_value | d;
279 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
280 KMP_CPU_PAUSE();
281 old_value = TCR_1(*p);
282 new_value = old_value | d;
284 return old_value;
287 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
288 kmp_int8 old_value, new_value;
290 old_value = TCR_1(*p);
291 new_value = old_value & d;
293 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
294 KMP_CPU_PAUSE();
295 old_value = TCR_1(*p);
296 new_value = old_value & d;
298 return old_value;
301 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
302 kmp_uint32 old_value, new_value;
304 old_value = TCR_4(*p);
305 new_value = old_value | d;
307 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
308 KMP_CPU_PAUSE();
309 old_value = TCR_4(*p);
310 new_value = old_value | d;
312 return old_value;
315 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
316 kmp_uint32 old_value, new_value;
318 old_value = TCR_4(*p);
319 new_value = old_value & d;
321 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
322 KMP_CPU_PAUSE();
323 old_value = TCR_4(*p);
324 new_value = old_value & d;
326 return old_value;
329 #if KMP_ARCH_X86
330 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
331 kmp_int8 old_value, new_value;
333 old_value = TCR_1(*p);
334 new_value = old_value + d;
336 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
337 KMP_CPU_PAUSE();
338 old_value = TCR_1(*p);
339 new_value = old_value + d;
341 return old_value;
344 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
345 kmp_int64 old_value, new_value;
347 old_value = TCR_8(*p);
348 new_value = old_value + d;
350 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
351 KMP_CPU_PAUSE();
352 old_value = TCR_8(*p);
353 new_value = old_value + d;
355 return old_value;
357 #endif /* KMP_ARCH_X86 */
359 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
360 kmp_uint64 old_value, new_value;
362 old_value = TCR_8(*p);
363 new_value = old_value | d;
364 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
365 KMP_CPU_PAUSE();
366 old_value = TCR_8(*p);
367 new_value = old_value | d;
369 return old_value;
372 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
373 kmp_uint64 old_value, new_value;
375 old_value = TCR_8(*p);
376 new_value = old_value & d;
377 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
378 KMP_CPU_PAUSE();
379 old_value = TCR_8(*p);
380 new_value = old_value & d;
382 return old_value;
385 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
387 void __kmp_terminate_thread(int gtid) {
388 int status;
389 kmp_info_t *th = __kmp_threads[gtid];
391 if (!th)
392 return;
394 #ifdef KMP_CANCEL_THREADS
395 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
396 status = pthread_cancel(th->th.th_info.ds.ds_thread);
397 if (status != 0 && status != ESRCH) {
398 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
399 __kmp_msg_null);
401 #endif
402 KMP_YIELD(TRUE);
403 } //
405 /* Set thread stack info according to values returned by pthread_getattr_np().
406 If values are unreasonable, assume call failed and use incremental stack
407 refinement method instead. Returns TRUE if the stack parameters could be
408 determined exactly, FALSE if incremental refinement is necessary. */
409 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
410 int stack_data;
411 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
412 KMP_OS_HURD
413 pthread_attr_t attr;
414 int status;
415 size_t size = 0;
416 void *addr = 0;
418 /* Always do incremental stack refinement for ubermaster threads since the
419 initial thread stack range can be reduced by sibling thread creation so
420 pthread_attr_getstack may cause thread gtid aliasing */
421 if (!KMP_UBER_GTID(gtid)) {
423 /* Fetch the real thread attributes */
424 status = pthread_attr_init(&attr);
425 KMP_CHECK_SYSFAIL("pthread_attr_init", status);
426 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
427 status = pthread_attr_get_np(pthread_self(), &attr);
428 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
429 #else
430 status = pthread_getattr_np(pthread_self(), &attr);
431 KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
432 #endif
433 status = pthread_attr_getstack(&attr, &addr, &size);
434 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
435 KA_TRACE(60,
436 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
437 " %lu, low addr: %p\n",
438 gtid, size, addr));
439 status = pthread_attr_destroy(&attr);
440 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
443 if (size != 0 && addr != 0) { // was stack parameter determination successful?
444 /* Store the correct base and size */
445 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
446 TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
447 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
448 return TRUE;
450 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \
451 || KMP_OS_HURD */
452 /* Use incremental refinement starting from initial conservative estimate */
453 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
454 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
455 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
456 return FALSE;
459 static void *__kmp_launch_worker(void *thr) {
460 int status, old_type, old_state;
461 #ifdef KMP_BLOCK_SIGNALS
462 sigset_t new_set, old_set;
463 #endif /* KMP_BLOCK_SIGNALS */
464 void *exit_val;
465 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
466 KMP_OS_OPENBSD || KMP_OS_HURD
467 void *volatile padding = 0;
468 #endif
469 int gtid;
471 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
472 __kmp_gtid_set_specific(gtid);
473 #ifdef KMP_TDATA_GTID
474 __kmp_gtid = gtid;
475 #endif
476 #if KMP_STATS_ENABLED
477 // set thread local index to point to thread-specific stats
478 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
479 __kmp_stats_thread_ptr->startLife();
480 KMP_SET_THREAD_STATE(IDLE);
481 KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
482 #endif
484 #if USE_ITT_BUILD
485 __kmp_itt_thread_name(gtid);
486 #endif /* USE_ITT_BUILD */
488 #if KMP_AFFINITY_SUPPORTED
489 __kmp_affinity_bind_init_mask(gtid);
490 #endif
492 #ifdef KMP_CANCEL_THREADS
493 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
494 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
495 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
496 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
497 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
498 #endif
500 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
501 // Set FP control regs to be a copy of the parallel initialization thread's.
502 __kmp_clear_x87_fpu_status_word();
503 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
504 __kmp_load_mxcsr(&__kmp_init_mxcsr);
505 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
507 #ifdef KMP_BLOCK_SIGNALS
508 status = sigfillset(&new_set);
509 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
510 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
511 KMP_CHECK_SYSFAIL("pthread_sigmask", status);
512 #endif /* KMP_BLOCK_SIGNALS */
514 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
515 KMP_OS_OPENBSD || KMP_OS_HURD
516 if (__kmp_stkoffset > 0 && gtid > 0) {
517 padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
518 (void)padding;
520 #endif
522 KMP_MB();
523 __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
525 __kmp_check_stack_overlap((kmp_info_t *)thr);
527 exit_val = __kmp_launch_thread((kmp_info_t *)thr);
529 #ifdef KMP_BLOCK_SIGNALS
530 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
531 KMP_CHECK_SYSFAIL("pthread_sigmask", status);
532 #endif /* KMP_BLOCK_SIGNALS */
534 return exit_val;
537 #if KMP_USE_MONITOR
538 /* The monitor thread controls all of the threads in the complex */
540 static void *__kmp_launch_monitor(void *thr) {
541 int status, old_type, old_state;
542 #ifdef KMP_BLOCK_SIGNALS
543 sigset_t new_set;
544 #endif /* KMP_BLOCK_SIGNALS */
545 struct timespec interval;
547 KMP_MB(); /* Flush all pending memory write invalidates. */
549 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
551 /* register us as the monitor thread */
552 __kmp_gtid_set_specific(KMP_GTID_MONITOR);
553 #ifdef KMP_TDATA_GTID
554 __kmp_gtid = KMP_GTID_MONITOR;
555 #endif
557 KMP_MB();
559 #if USE_ITT_BUILD
560 // Instruct Intel(R) Threading Tools to ignore monitor thread.
561 __kmp_itt_thread_ignore();
562 #endif /* USE_ITT_BUILD */
564 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
565 (kmp_info_t *)thr);
567 __kmp_check_stack_overlap((kmp_info_t *)thr);
569 #ifdef KMP_CANCEL_THREADS
570 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
571 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
572 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
573 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
574 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
575 #endif
577 #if KMP_REAL_TIME_FIX
578 // This is a potential fix which allows application with real-time scheduling
579 // policy work. However, decision about the fix is not made yet, so it is
580 // disabled by default.
581 { // Are program started with real-time scheduling policy?
582 int sched = sched_getscheduler(0);
583 if (sched == SCHED_FIFO || sched == SCHED_RR) {
584 // Yes, we are a part of real-time application. Try to increase the
585 // priority of the monitor.
586 struct sched_param param;
587 int max_priority = sched_get_priority_max(sched);
588 int rc;
589 KMP_WARNING(RealTimeSchedNotSupported);
590 sched_getparam(0, &param);
591 if (param.sched_priority < max_priority) {
592 param.sched_priority += 1;
593 rc = sched_setscheduler(0, sched, &param);
594 if (rc != 0) {
595 int error = errno;
596 kmp_msg_t err_code = KMP_ERR(error);
597 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
598 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
599 if (__kmp_generate_warnings == kmp_warnings_off) {
600 __kmp_str_free(&err_code.str);
603 } else {
604 // We cannot abort here, because number of CPUs may be enough for all
605 // the threads, including the monitor thread, so application could
606 // potentially work...
607 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
608 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
609 __kmp_msg_null);
612 // AC: free thread that waits for monitor started
613 TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
615 #endif // KMP_REAL_TIME_FIX
617 KMP_MB(); /* Flush all pending memory write invalidates. */
619 if (__kmp_monitor_wakeups == 1) {
620 interval.tv_sec = 1;
621 interval.tv_nsec = 0;
622 } else {
623 interval.tv_sec = 0;
624 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
627 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
629 while (!TCR_4(__kmp_global.g.g_done)) {
630 struct timespec now;
631 struct timeval tval;
633 /* This thread monitors the state of the system */
635 KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
637 status = gettimeofday(&tval, NULL);
638 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
639 TIMEVAL_TO_TIMESPEC(&tval, &now);
641 now.tv_sec += interval.tv_sec;
642 now.tv_nsec += interval.tv_nsec;
644 if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
645 now.tv_sec += 1;
646 now.tv_nsec -= KMP_NSEC_PER_SEC;
649 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
650 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
651 // AC: the monitor should not fall asleep if g_done has been set
652 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
653 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
654 &__kmp_wait_mx.m_mutex, &now);
655 if (status != 0) {
656 if (status != ETIMEDOUT && status != EINTR) {
657 KMP_SYSFAIL("pthread_cond_timedwait", status);
661 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
662 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
664 TCW_4(__kmp_global.g.g_time.dt.t_value,
665 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
667 KMP_MB(); /* Flush all pending memory write invalidates. */
670 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
672 #ifdef KMP_BLOCK_SIGNALS
673 status = sigfillset(&new_set);
674 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
675 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
676 KMP_CHECK_SYSFAIL("pthread_sigmask", status);
677 #endif /* KMP_BLOCK_SIGNALS */
679 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
681 if (__kmp_global.g.g_abort != 0) {
682 /* now we need to terminate the worker threads */
683 /* the value of t_abort is the signal we caught */
685 int gtid;
687 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
688 __kmp_global.g.g_abort));
690 /* terminate the OpenMP worker threads */
691 /* TODO this is not valid for sibling threads!!
692 * the uber master might not be 0 anymore.. */
693 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
694 __kmp_terminate_thread(gtid);
696 __kmp_cleanup();
698 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
699 __kmp_global.g.g_abort));
701 if (__kmp_global.g.g_abort > 0)
702 raise(__kmp_global.g.g_abort);
705 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
707 return thr;
709 #endif // KMP_USE_MONITOR
711 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
712 pthread_t handle;
713 pthread_attr_t thread_attr;
714 int status;
716 th->th.th_info.ds.ds_gtid = gtid;
718 #if KMP_STATS_ENABLED
719 // sets up worker thread stats
720 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
722 // th->th.th_stats is used to transfer thread-specific stats-pointer to
723 // __kmp_launch_worker. So when thread is created (goes into
724 // __kmp_launch_worker) it will set its thread local pointer to
725 // th->th.th_stats
726 if (!KMP_UBER_GTID(gtid)) {
727 th->th.th_stats = __kmp_stats_list->push_back(gtid);
728 } else {
729 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
730 // so set the th->th.th_stats field to it.
731 th->th.th_stats = __kmp_stats_thread_ptr;
733 __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
735 #endif // KMP_STATS_ENABLED
737 if (KMP_UBER_GTID(gtid)) {
738 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
739 th->th.th_info.ds.ds_thread = pthread_self();
740 __kmp_set_stack_info(gtid, th);
741 __kmp_check_stack_overlap(th);
742 return;
745 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
747 KMP_MB(); /* Flush all pending memory write invalidates. */
749 #ifdef KMP_THREAD_ATTR
750 status = pthread_attr_init(&thread_attr);
751 if (status != 0) {
752 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
754 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
755 if (status != 0) {
756 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
759 /* Set stack size for this thread now.
760 The multiple of 2 is there because on some machines, requesting an unusual
761 stacksize causes the thread to have an offset before the dummy alloca()
762 takes place to create the offset. Since we want the user to have a
763 sufficient stacksize AND support a stack offset, we alloca() twice the
764 offset so that the upcoming alloca() does not eliminate any premade offset,
765 and also gives the user the stack space they requested for all threads */
766 stack_size += gtid * __kmp_stkoffset * 2;
768 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
769 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
770 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
772 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
773 status = pthread_attr_setstacksize(&thread_attr, stack_size);
774 #ifdef KMP_BACKUP_STKSIZE
775 if (status != 0) {
776 if (!__kmp_env_stksize) {
777 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
778 __kmp_stksize = KMP_BACKUP_STKSIZE;
779 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
780 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
781 "bytes\n",
782 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
783 status = pthread_attr_setstacksize(&thread_attr, stack_size);
786 #endif /* KMP_BACKUP_STKSIZE */
787 if (status != 0) {
788 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
789 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
791 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
793 #endif /* KMP_THREAD_ATTR */
795 status =
796 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
797 if (status != 0 || !handle) { // ??? Why do we check handle??
798 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
799 if (status == EINVAL) {
800 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
801 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
803 if (status == ENOMEM) {
804 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
805 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
807 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
808 if (status == EAGAIN) {
809 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
810 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
812 KMP_SYSFAIL("pthread_create", status);
815 th->th.th_info.ds.ds_thread = handle;
817 #ifdef KMP_THREAD_ATTR
818 status = pthread_attr_destroy(&thread_attr);
819 if (status) {
820 kmp_msg_t err_code = KMP_ERR(status);
821 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
822 __kmp_msg_null);
823 if (__kmp_generate_warnings == kmp_warnings_off) {
824 __kmp_str_free(&err_code.str);
827 #endif /* KMP_THREAD_ATTR */
829 KMP_MB(); /* Flush all pending memory write invalidates. */
831 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
833 } // __kmp_create_worker
835 #if KMP_USE_MONITOR
836 void __kmp_create_monitor(kmp_info_t *th) {
837 pthread_t handle;
838 pthread_attr_t thread_attr;
839 size_t size;
840 int status;
841 int auto_adj_size = FALSE;
843 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
844 // We don't need monitor thread in case of MAX_BLOCKTIME
845 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
846 "MAX blocktime\n"));
847 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
848 th->th.th_info.ds.ds_gtid = 0;
849 return;
851 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
853 KMP_MB(); /* Flush all pending memory write invalidates. */
855 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
856 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
857 #if KMP_REAL_TIME_FIX
858 TCW_4(__kmp_global.g.g_time.dt.t_value,
859 -1); // Will use it for synchronization a bit later.
860 #else
861 TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
862 #endif // KMP_REAL_TIME_FIX
864 #ifdef KMP_THREAD_ATTR
865 if (__kmp_monitor_stksize == 0) {
866 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
867 auto_adj_size = TRUE;
869 status = pthread_attr_init(&thread_attr);
870 if (status != 0) {
871 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
873 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
874 if (status != 0) {
875 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
878 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
879 status = pthread_attr_getstacksize(&thread_attr, &size);
880 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
881 #else
882 size = __kmp_sys_min_stksize;
883 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
884 #endif /* KMP_THREAD_ATTR */
886 if (__kmp_monitor_stksize == 0) {
887 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
889 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
890 __kmp_monitor_stksize = __kmp_sys_min_stksize;
893 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
894 "requested stacksize = %lu bytes\n",
895 size, __kmp_monitor_stksize));
897 retry:
899 /* Set stack size for this thread now. */
900 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
901 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
902 __kmp_monitor_stksize));
903 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
904 if (status != 0) {
905 if (auto_adj_size) {
906 __kmp_monitor_stksize *= 2;
907 goto retry;
909 kmp_msg_t err_code = KMP_ERR(status);
910 __kmp_msg(kmp_ms_warning, // should this be fatal? BB
911 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
912 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
913 if (__kmp_generate_warnings == kmp_warnings_off) {
914 __kmp_str_free(&err_code.str);
917 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
919 status =
920 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
922 if (status != 0) {
923 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
924 if (status == EINVAL) {
925 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
926 __kmp_monitor_stksize *= 2;
927 goto retry;
929 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
930 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
931 __kmp_msg_null);
933 if (status == ENOMEM) {
934 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
935 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
936 __kmp_msg_null);
938 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
939 if (status == EAGAIN) {
940 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
941 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
943 KMP_SYSFAIL("pthread_create", status);
946 th->th.th_info.ds.ds_thread = handle;
948 #if KMP_REAL_TIME_FIX
949 // Wait for the monitor thread is really started and set its *priority*.
950 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
951 sizeof(__kmp_global.g.g_time.dt.t_value));
952 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
953 &__kmp_neq_4, NULL);
954 #endif // KMP_REAL_TIME_FIX
956 #ifdef KMP_THREAD_ATTR
957 status = pthread_attr_destroy(&thread_attr);
958 if (status != 0) {
959 kmp_msg_t err_code = KMP_ERR(status);
960 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
961 __kmp_msg_null);
962 if (__kmp_generate_warnings == kmp_warnings_off) {
963 __kmp_str_free(&err_code.str);
966 #endif
968 KMP_MB(); /* Flush all pending memory write invalidates. */
970 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
971 th->th.th_info.ds.ds_thread));
973 } // __kmp_create_monitor
974 #endif // KMP_USE_MONITOR
976 void __kmp_exit_thread(int exit_status) {
977 pthread_exit((void *)(intptr_t)exit_status);
978 } // __kmp_exit_thread
980 #if KMP_USE_MONITOR
981 void __kmp_resume_monitor();
983 extern "C" void __kmp_reap_monitor(kmp_info_t *th) {
984 int status;
985 void *exit_val;
987 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
988 " %#.8lx\n",
989 th->th.th_info.ds.ds_thread));
991 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
992 // If both tid and gtid are 0, it means the monitor did not ever start.
993 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
994 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
995 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
996 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
997 return;
1000 KMP_MB(); /* Flush all pending memory write invalidates. */
1002 /* First, check to see whether the monitor thread exists to wake it up. This
1003 is to avoid performance problem when the monitor sleeps during
1004 blocktime-size interval */
1006 status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1007 if (status != ESRCH) {
1008 __kmp_resume_monitor(); // Wake up the monitor thread
1010 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1011 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1012 if (exit_val != th) {
1013 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1016 th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1017 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1019 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1020 " %#.8lx\n",
1021 th->th.th_info.ds.ds_thread));
1023 KMP_MB(); /* Flush all pending memory write invalidates. */
1025 #else
1026 // Empty symbol to export (see exports_so.txt) when
1027 // monitor thread feature is disabled
1028 extern "C" void __kmp_reap_monitor(kmp_info_t *th) {
1029 (void)th;
1031 #endif // KMP_USE_MONITOR
1033 void __kmp_reap_worker(kmp_info_t *th) {
1034 int status;
1035 void *exit_val;
1037 KMP_MB(); /* Flush all pending memory write invalidates. */
1039 KA_TRACE(
1040 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1042 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1043 #ifdef KMP_DEBUG
1044 /* Don't expose these to the user until we understand when they trigger */
1045 if (status != 0) {
1046 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1048 if (exit_val != th) {
1049 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1050 "exit_val = %p\n",
1051 th->th.th_info.ds.ds_gtid, exit_val));
1053 #else
1054 (void)status; // unused variable
1055 #endif /* KMP_DEBUG */
1057 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1058 th->th.th_info.ds.ds_gtid));
1060 KMP_MB(); /* Flush all pending memory write invalidates. */
1063 #if KMP_HANDLE_SIGNALS
1065 static void __kmp_null_handler(int signo) {
1066 // Do nothing, for doing SIG_IGN-type actions.
1067 } // __kmp_null_handler
1069 static void __kmp_team_handler(int signo) {
1070 if (__kmp_global.g.g_abort == 0) {
1071 /* Stage 1 signal handler, let's shut down all of the threads */
1072 #ifdef KMP_DEBUG
1073 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1074 #endif
1075 switch (signo) {
1076 case SIGHUP:
1077 case SIGINT:
1078 case SIGQUIT:
1079 case SIGILL:
1080 case SIGABRT:
1081 case SIGFPE:
1082 case SIGBUS:
1083 case SIGSEGV:
1084 #ifdef SIGSYS
1085 case SIGSYS:
1086 #endif
1087 case SIGTERM:
1088 if (__kmp_debug_buf) {
1089 __kmp_dump_debug_buffer();
1091 __kmp_unregister_library(); // cleanup shared memory
1092 KMP_MB(); // Flush all pending memory write invalidates.
1093 TCW_4(__kmp_global.g.g_abort, signo);
1094 KMP_MB(); // Flush all pending memory write invalidates.
1095 TCW_4(__kmp_global.g.g_done, TRUE);
1096 KMP_MB(); // Flush all pending memory write invalidates.
1097 break;
1098 default:
1099 #ifdef KMP_DEBUG
1100 __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1101 #endif
1102 break;
1105 } // __kmp_team_handler
1107 static void __kmp_sigaction(int signum, const struct sigaction *act,
1108 struct sigaction *oldact) {
1109 int rc = sigaction(signum, act, oldact);
1110 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1113 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1114 int parallel_init) {
1115 KMP_MB(); // Flush all pending memory write invalidates.
1116 KB_TRACE(60,
1117 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1118 if (parallel_init) {
1119 struct sigaction new_action;
1120 struct sigaction old_action;
1121 new_action.sa_handler = handler_func;
1122 new_action.sa_flags = 0;
1123 sigfillset(&new_action.sa_mask);
1124 __kmp_sigaction(sig, &new_action, &old_action);
1125 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1126 sigaddset(&__kmp_sigset, sig);
1127 } else {
1128 // Restore/keep user's handler if one previously installed.
1129 __kmp_sigaction(sig, &old_action, NULL);
1131 } else {
1132 // Save initial/system signal handlers to see if user handlers installed.
1133 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1135 KMP_MB(); // Flush all pending memory write invalidates.
1136 } // __kmp_install_one_handler
1138 static void __kmp_remove_one_handler(int sig) {
1139 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1140 if (sigismember(&__kmp_sigset, sig)) {
1141 struct sigaction old;
1142 KMP_MB(); // Flush all pending memory write invalidates.
1143 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1144 if ((old.sa_handler != __kmp_team_handler) &&
1145 (old.sa_handler != __kmp_null_handler)) {
1146 // Restore the users signal handler.
1147 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1148 "restoring: sig=%d\n",
1149 sig));
1150 __kmp_sigaction(sig, &old, NULL);
1152 sigdelset(&__kmp_sigset, sig);
1153 KMP_MB(); // Flush all pending memory write invalidates.
1155 } // __kmp_remove_one_handler
1157 void __kmp_install_signals(int parallel_init) {
1158 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1159 if (__kmp_handle_signals || !parallel_init) {
1160 // If ! parallel_init, we do not install handlers, just save original
1161 // handlers. Let us do it even __handle_signals is 0.
1162 sigemptyset(&__kmp_sigset);
1163 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1164 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1165 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1166 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1167 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1168 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1169 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1170 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1171 #ifdef SIGSYS
1172 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1173 #endif // SIGSYS
1174 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1175 #ifdef SIGPIPE
1176 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1177 #endif // SIGPIPE
1179 } // __kmp_install_signals
1181 void __kmp_remove_signals(void) {
1182 int sig;
1183 KB_TRACE(10, ("__kmp_remove_signals()\n"));
1184 for (sig = 1; sig < NSIG; ++sig) {
1185 __kmp_remove_one_handler(sig);
1187 } // __kmp_remove_signals
1189 #endif // KMP_HANDLE_SIGNALS
1191 void __kmp_enable(int new_state) {
1192 #ifdef KMP_CANCEL_THREADS
1193 int status, old_state;
1194 status = pthread_setcancelstate(new_state, &old_state);
1195 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1196 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1197 #endif
1200 void __kmp_disable(int *old_state) {
1201 #ifdef KMP_CANCEL_THREADS
1202 int status;
1203 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1204 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1205 #endif
1208 static void __kmp_atfork_prepare(void) {
1209 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1210 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1213 static void __kmp_atfork_parent(void) {
1214 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1215 __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1218 /* Reset the library so execution in the child starts "all over again" with
1219 clean data structures in initial states. Don't worry about freeing memory
1220 allocated by parent, just abandon it to be safe. */
1221 static void __kmp_atfork_child(void) {
1222 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1223 __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1224 /* TODO make sure this is done right for nested/sibling */
1225 // ATT: Memory leaks are here? TODO: Check it and fix.
1226 /* KMP_ASSERT( 0 ); */
1228 ++__kmp_fork_count;
1230 #if KMP_AFFINITY_SUPPORTED
1231 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1232 // reset the affinity in the child to the initial thread
1233 // affinity in the parent
1234 kmp_set_thread_affinity_mask_initial();
1235 #endif
1236 // Set default not to bind threads tightly in the child (we're expecting
1237 // over-subscription after the fork and this can improve things for
1238 // scripting languages that use OpenMP inside process-parallel code).
1239 if (__kmp_nested_proc_bind.bind_types != NULL) {
1240 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1242 for (kmp_affinity_t *affinity : __kmp_affinities)
1243 *affinity = KMP_AFFINITY_INIT(affinity->env_var);
1244 __kmp_affin_fullMask = nullptr;
1245 __kmp_affin_origMask = nullptr;
1246 __kmp_topology = nullptr;
1247 #endif // KMP_AFFINITY_SUPPORTED
1249 #if KMP_USE_MONITOR
1250 __kmp_init_monitor = 0;
1251 #endif
1252 __kmp_init_parallel = FALSE;
1253 __kmp_init_middle = FALSE;
1254 __kmp_init_serial = FALSE;
1255 TCW_4(__kmp_init_gtid, FALSE);
1256 __kmp_init_common = FALSE;
1258 TCW_4(__kmp_init_user_locks, FALSE);
1259 #if !KMP_USE_DYNAMIC_LOCK
1260 __kmp_user_lock_table.used = 1;
1261 __kmp_user_lock_table.allocated = 0;
1262 __kmp_user_lock_table.table = NULL;
1263 __kmp_lock_blocks = NULL;
1264 #endif
1266 __kmp_all_nth = 0;
1267 TCW_4(__kmp_nth, 0);
1269 __kmp_thread_pool = NULL;
1270 __kmp_thread_pool_insert_pt = NULL;
1271 __kmp_team_pool = NULL;
1273 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1274 here so threadprivate doesn't use stale data */
1275 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1276 __kmp_threadpriv_cache_list));
1278 while (__kmp_threadpriv_cache_list != NULL) {
1280 if (*__kmp_threadpriv_cache_list->addr != NULL) {
1281 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1282 &(*__kmp_threadpriv_cache_list->addr)));
1284 *__kmp_threadpriv_cache_list->addr = NULL;
1286 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1289 __kmp_init_runtime = FALSE;
1291 /* reset statically initialized locks */
1292 __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1293 __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1294 __kmp_init_bootstrap_lock(&__kmp_console_lock);
1295 __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1297 #if USE_ITT_BUILD
1298 __kmp_itt_reset(); // reset ITT's global state
1299 #endif /* USE_ITT_BUILD */
1302 // Child process often get terminated without any use of OpenMP. That might
1303 // cause mapped shared memory file to be left unattended. Thus we postpone
1304 // library registration till middle initialization in the child process.
1305 __kmp_need_register_serial = FALSE;
1306 __kmp_serial_initialize();
1309 /* This is necessary to make sure no stale data is left around */
1310 /* AC: customers complain that we use unsafe routines in the atfork
1311 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1312 in dynamic_link when check the presence of shared tbbmalloc library.
1313 Suggestion is to make the library initialization lazier, similar
1314 to what done for __kmpc_begin(). */
1315 // TODO: synchronize all static initializations with regular library
1316 // startup; look at kmp_global.cpp and etc.
1317 //__kmp_internal_begin ();
1320 void __kmp_register_atfork(void) {
1321 if (__kmp_need_register_atfork) {
1322 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1323 __kmp_atfork_child);
1324 KMP_CHECK_SYSFAIL("pthread_atfork", status);
1325 __kmp_need_register_atfork = FALSE;
1329 void __kmp_suspend_initialize(void) {
1330 int status;
1331 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1332 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1333 status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1334 KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1337 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1338 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1339 int new_value = __kmp_fork_count + 1;
1340 // Return if already initialized
1341 if (old_value == new_value)
1342 return;
1343 // Wait, then return if being initialized
1344 if (old_value == -1 || !__kmp_atomic_compare_store(
1345 &th->th.th_suspend_init_count, old_value, -1)) {
1346 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1347 KMP_CPU_PAUSE();
1349 } else {
1350 // Claim to be the initializer and do initializations
1351 int status;
1352 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1353 &__kmp_suspend_cond_attr);
1354 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1355 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1356 &__kmp_suspend_mutex_attr);
1357 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1358 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1362 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1363 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1364 /* this means we have initialize the suspension pthread objects for this
1365 thread in this instance of the process */
1366 int status;
1368 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1369 if (status != 0 && status != EBUSY) {
1370 KMP_SYSFAIL("pthread_cond_destroy", status);
1372 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1373 if (status != 0 && status != EBUSY) {
1374 KMP_SYSFAIL("pthread_mutex_destroy", status);
1376 --th->th.th_suspend_init_count;
1377 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1378 __kmp_fork_count);
1382 // return true if lock obtained, false otherwise
1383 int __kmp_try_suspend_mx(kmp_info_t *th) {
1384 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1387 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1388 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1389 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1392 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1393 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1394 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1397 /* This routine puts the calling thread to sleep after setting the
1398 sleep bit for the indicated flag variable to true. */
1399 template <class C>
1400 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1401 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1402 kmp_info_t *th = __kmp_threads[th_gtid];
1403 int status;
1404 typename C::flag_t old_spin;
1406 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1407 flag->get()));
1409 __kmp_suspend_initialize_thread(th);
1411 __kmp_lock_suspend_mx(th);
1413 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1414 th_gtid, flag->get()));
1416 /* TODO: shouldn't this use release semantics to ensure that
1417 __kmp_suspend_initialize_thread gets called first? */
1418 old_spin = flag->set_sleeping();
1419 TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1420 th->th.th_sleep_loc_type = flag->get_type();
1421 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1422 __kmp_pause_status != kmp_soft_paused) {
1423 flag->unset_sleeping();
1424 TCW_PTR(th->th.th_sleep_loc, NULL);
1425 th->th.th_sleep_loc_type = flag_unset;
1426 __kmp_unlock_suspend_mx(th);
1427 return;
1429 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1430 " was %x\n",
1431 th_gtid, flag->get(), flag->load(), old_spin));
1433 if (flag->done_check_val(old_spin) || flag->done_check()) {
1434 flag->unset_sleeping();
1435 TCW_PTR(th->th.th_sleep_loc, NULL);
1436 th->th.th_sleep_loc_type = flag_unset;
1437 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1438 "for spin(%p)\n",
1439 th_gtid, flag->get()));
1440 } else {
1441 /* Encapsulate in a loop as the documentation states that this may
1442 "with low probability" return when the condition variable has
1443 not been signaled or broadcast */
1444 int deactivated = FALSE;
1446 while (flag->is_sleeping()) {
1447 #ifdef DEBUG_SUSPEND
1448 char buffer[128];
1449 __kmp_suspend_count++;
1450 __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1451 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1452 buffer);
1453 #endif
1454 // Mark the thread as no longer active (only in the first iteration of the
1455 // loop).
1456 if (!deactivated) {
1457 th->th.th_active = FALSE;
1458 if (th->th.th_active_in_pool) {
1459 th->th.th_active_in_pool = FALSE;
1460 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1461 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1463 deactivated = TRUE;
1466 KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
1467 KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type);
1469 #if USE_SUSPEND_TIMEOUT
1470 struct timespec now;
1471 struct timeval tval;
1472 int msecs;
1474 status = gettimeofday(&tval, NULL);
1475 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1476 TIMEVAL_TO_TIMESPEC(&tval, &now);
1478 msecs = (4 * __kmp_dflt_blocktime) + 200;
1479 now.tv_sec += msecs / 1000;
1480 now.tv_nsec += (msecs % 1000) * 1000;
1482 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1483 "pthread_cond_timedwait\n",
1484 th_gtid));
1485 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1486 &th->th.th_suspend_mx.m_mutex, &now);
1487 #else
1488 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1489 " pthread_cond_wait\n",
1490 th_gtid));
1491 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1492 &th->th.th_suspend_mx.m_mutex);
1493 #endif // USE_SUSPEND_TIMEOUT
1495 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1496 KMP_SYSFAIL("pthread_cond_wait", status);
1499 KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type());
1501 if (!flag->is_sleeping() &&
1502 ((status == EINTR) || (status == ETIMEDOUT))) {
1503 // if interrupt or timeout, and thread is no longer sleeping, we need to
1504 // make sure sleep_loc gets reset; however, this shouldn't be needed if
1505 // we woke up with resume
1506 flag->unset_sleeping();
1507 TCW_PTR(th->th.th_sleep_loc, NULL);
1508 th->th.th_sleep_loc_type = flag_unset;
1510 #ifdef KMP_DEBUG
1511 if (status == ETIMEDOUT) {
1512 if (flag->is_sleeping()) {
1513 KF_TRACE(100,
1514 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1515 } else {
1516 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1517 "not set!\n",
1518 th_gtid));
1519 TCW_PTR(th->th.th_sleep_loc, NULL);
1520 th->th.th_sleep_loc_type = flag_unset;
1522 } else if (flag->is_sleeping()) {
1523 KF_TRACE(100,
1524 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1526 #endif
1527 } // while
1529 // Mark the thread as active again (if it was previous marked as inactive)
1530 if (deactivated) {
1531 th->th.th_active = TRUE;
1532 if (TCR_4(th->th.th_in_pool)) {
1533 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1534 th->th.th_active_in_pool = TRUE;
1538 // We may have had the loop variable set before entering the loop body;
1539 // so we need to reset sleep_loc.
1540 TCW_PTR(th->th.th_sleep_loc, NULL);
1541 th->th.th_sleep_loc_type = flag_unset;
1543 KMP_DEBUG_ASSERT(!flag->is_sleeping());
1544 KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
1545 #ifdef DEBUG_SUSPEND
1547 char buffer[128];
1548 __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1549 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1550 buffer);
1552 #endif
1554 __kmp_unlock_suspend_mx(th);
1555 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1558 template <bool C, bool S>
1559 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1560 __kmp_suspend_template(th_gtid, flag);
1562 template <bool C, bool S>
1563 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1564 __kmp_suspend_template(th_gtid, flag);
1566 template <bool C, bool S>
1567 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
1568 __kmp_suspend_template(th_gtid, flag);
1570 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1571 __kmp_suspend_template(th_gtid, flag);
1574 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1575 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1576 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1577 template void
1578 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1579 template void
1580 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
1582 /* This routine signals the thread specified by target_gtid to wake up
1583 after setting the sleep bit indicated by the flag argument to FALSE.
1584 The target thread must already have called __kmp_suspend_template() */
1585 template <class C>
1586 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1587 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1588 kmp_info_t *th = __kmp_threads[target_gtid];
1589 int status;
1591 #ifdef KMP_DEBUG
1592 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1593 #endif
1595 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1596 gtid, target_gtid));
1597 KMP_DEBUG_ASSERT(gtid != target_gtid);
1599 __kmp_suspend_initialize_thread(th);
1601 __kmp_lock_suspend_mx(th);
1603 if (!flag || flag != th->th.th_sleep_loc) {
1604 // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
1605 // different location; wake up at new location
1606 flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1609 // First, check if the flag is null or its type has changed. If so, someone
1610 // else woke it up.
1611 if (!flag) { // Thread doesn't appear to be sleeping on anything
1612 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1613 "awake: flag(%p)\n",
1614 gtid, target_gtid, (void *)NULL));
1615 __kmp_unlock_suspend_mx(th);
1616 return;
1617 } else if (flag->get_type() != th->th.th_sleep_loc_type) {
1618 // Flag type does not appear to match this function template; possibly the
1619 // thread is sleeping on something else. Try null resume again.
1620 KF_TRACE(
1622 ("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), "
1623 "spin(%p) type=%d ptr_type=%d\n",
1624 gtid, target_gtid, flag, flag->get(), flag->get_type(),
1625 th->th.th_sleep_loc_type));
1626 __kmp_unlock_suspend_mx(th);
1627 __kmp_null_resume_wrapper(th);
1628 return;
1629 } else { // if multiple threads are sleeping, flag should be internally
1630 // referring to a specific thread here
1631 if (!flag->is_sleeping()) {
1632 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1633 "awake: flag(%p): %u\n",
1634 gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1635 __kmp_unlock_suspend_mx(th);
1636 return;
1639 KMP_DEBUG_ASSERT(flag);
1640 flag->unset_sleeping();
1641 TCW_PTR(th->th.th_sleep_loc, NULL);
1642 th->th.th_sleep_loc_type = flag_unset;
1644 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1645 "sleep bit for flag's loc(%p): %u\n",
1646 gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1648 #ifdef DEBUG_SUSPEND
1650 char buffer[128];
1651 __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1652 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1653 target_gtid, buffer);
1655 #endif
1656 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1657 KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1658 __kmp_unlock_suspend_mx(th);
1659 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1660 " for T#%d\n",
1661 gtid, target_gtid));
1664 template <bool C, bool S>
1665 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1666 __kmp_resume_template(target_gtid, flag);
1668 template <bool C, bool S>
1669 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1670 __kmp_resume_template(target_gtid, flag);
1672 template <bool C, bool S>
1673 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
1674 __kmp_resume_template(target_gtid, flag);
1676 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1677 __kmp_resume_template(target_gtid, flag);
1680 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1681 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
1682 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1683 template void
1684 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1686 #if KMP_USE_MONITOR
1687 void __kmp_resume_monitor() {
1688 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1689 int status;
1690 #ifdef KMP_DEBUG
1691 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1692 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1693 KMP_GTID_MONITOR));
1694 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1695 #endif
1696 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1697 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1698 #ifdef DEBUG_SUSPEND
1700 char buffer[128];
1701 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1702 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1703 KMP_GTID_MONITOR, buffer);
1705 #endif
1706 status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1707 KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1708 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1709 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1710 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1711 " for T#%d\n",
1712 gtid, KMP_GTID_MONITOR));
1714 #endif // KMP_USE_MONITOR
1716 void __kmp_yield() { sched_yield(); }
1718 void __kmp_gtid_set_specific(int gtid) {
1719 if (__kmp_init_gtid) {
1720 int status;
1721 status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1722 (void *)(intptr_t)(gtid + 1));
1723 KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1724 } else {
1725 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1729 int __kmp_gtid_get_specific() {
1730 int gtid;
1731 if (!__kmp_init_gtid) {
1732 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1733 "KMP_GTID_SHUTDOWN\n"));
1734 return KMP_GTID_SHUTDOWN;
1736 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1737 if (gtid == 0) {
1738 gtid = KMP_GTID_DNE;
1739 } else {
1740 gtid--;
1742 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1743 __kmp_gtid_threadprivate_key, gtid));
1744 return gtid;
1747 double __kmp_read_cpu_time(void) {
1748 /*clock_t t;*/
1749 struct tms buffer;
1751 /*t =*/times(&buffer);
1753 return (double)(buffer.tms_utime + buffer.tms_cutime) /
1754 (double)CLOCKS_PER_SEC;
1757 int __kmp_read_system_info(struct kmp_sys_info *info) {
1758 int status;
1759 struct rusage r_usage;
1761 memset(info, 0, sizeof(*info));
1763 status = getrusage(RUSAGE_SELF, &r_usage);
1764 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1766 // The maximum resident set size utilized (in kilobytes)
1767 info->maxrss = r_usage.ru_maxrss;
1768 // The number of page faults serviced without any I/O
1769 info->minflt = r_usage.ru_minflt;
1770 // The number of page faults serviced that required I/O
1771 info->majflt = r_usage.ru_majflt;
1772 // The number of times a process was "swapped" out of memory
1773 info->nswap = r_usage.ru_nswap;
1774 // The number of times the file system had to perform input
1775 info->inblock = r_usage.ru_inblock;
1776 // The number of times the file system had to perform output
1777 info->oublock = r_usage.ru_oublock;
1778 // The number of times a context switch was voluntarily
1779 info->nvcsw = r_usage.ru_nvcsw;
1780 // The number of times a context switch was forced
1781 info->nivcsw = r_usage.ru_nivcsw;
1783 return (status != 0);
1786 void __kmp_read_system_time(double *delta) {
1787 double t_ns;
1788 struct timeval tval;
1789 struct timespec stop;
1790 int status;
1792 status = gettimeofday(&tval, NULL);
1793 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1794 TIMEVAL_TO_TIMESPEC(&tval, &stop);
1795 t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1796 *delta = (t_ns * 1e-9);
1799 void __kmp_clear_system_time(void) {
1800 struct timeval tval;
1801 int status;
1802 status = gettimeofday(&tval, NULL);
1803 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1804 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1807 static int __kmp_get_xproc(void) {
1809 int r = 0;
1811 #if KMP_OS_LINUX
1813 __kmp_type_convert(sysconf(_SC_NPROCESSORS_CONF), &(r));
1815 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_OPENBSD || \
1816 KMP_OS_HURD
1818 __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1820 #elif KMP_OS_DARWIN
1822 // Bug C77011 High "OpenMP Threads and number of active cores".
1824 // Find the number of available CPUs.
1825 kern_return_t rc;
1826 host_basic_info_data_t info;
1827 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1828 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1829 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1830 // Cannot use KA_TRACE() here because this code works before trace support
1831 // is initialized.
1832 r = info.avail_cpus;
1833 } else {
1834 KMP_WARNING(CantGetNumAvailCPU);
1835 KMP_INFORM(AssumedNumCPU);
1838 #else
1840 #error "Unknown or unsupported OS."
1842 #endif
1844 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1846 } // __kmp_get_xproc
1848 int __kmp_read_from_file(char const *path, char const *format, ...) {
1849 int result;
1850 va_list args;
1852 va_start(args, format);
1853 FILE *f = fopen(path, "rb");
1854 if (f == NULL) {
1855 va_end(args);
1856 return 0;
1858 result = vfscanf(f, format, args);
1859 fclose(f);
1860 va_end(args);
1862 return result;
1865 void __kmp_runtime_initialize(void) {
1866 int status;
1867 pthread_mutexattr_t mutex_attr;
1868 pthread_condattr_t cond_attr;
1870 if (__kmp_init_runtime) {
1871 return;
1874 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1875 if (!__kmp_cpuinfo.initialized) {
1876 __kmp_query_cpuid(&__kmp_cpuinfo);
1878 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1880 __kmp_xproc = __kmp_get_xproc();
1882 #if !KMP_32_BIT_ARCH
1883 struct rlimit rlim;
1884 // read stack size of calling thread, save it as default for worker threads;
1885 // this should be done before reading environment variables
1886 status = getrlimit(RLIMIT_STACK, &rlim);
1887 if (status == 0) { // success?
1888 __kmp_stksize = rlim.rlim_cur;
1889 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1891 #endif /* KMP_32_BIT_ARCH */
1893 if (sysconf(_SC_THREADS)) {
1895 /* Query the maximum number of threads */
1896 __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1897 #ifdef __ve__
1898 if (__kmp_sys_max_nth == -1) {
1899 // VE's pthread supports only up to 64 threads per a VE process.
1900 // So we use that KMP_MAX_NTH (predefined as 64) here.
1901 __kmp_sys_max_nth = KMP_MAX_NTH;
1903 #else
1904 if (__kmp_sys_max_nth == -1) {
1905 /* Unlimited threads for NPTL */
1906 __kmp_sys_max_nth = INT_MAX;
1907 } else if (__kmp_sys_max_nth <= 1) {
1908 /* Can't tell, just use PTHREAD_THREADS_MAX */
1909 __kmp_sys_max_nth = KMP_MAX_NTH;
1911 #endif
1913 /* Query the minimum stack size */
1914 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1915 if (__kmp_sys_min_stksize <= 1) {
1916 __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1920 /* Set up minimum number of threads to switch to TLS gtid */
1921 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1923 status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1924 __kmp_internal_end_dest);
1925 KMP_CHECK_SYSFAIL("pthread_key_create", status);
1926 status = pthread_mutexattr_init(&mutex_attr);
1927 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1928 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1929 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1930 status = pthread_mutexattr_destroy(&mutex_attr);
1931 KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1932 status = pthread_condattr_init(&cond_attr);
1933 KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1934 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1935 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1936 status = pthread_condattr_destroy(&cond_attr);
1937 KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1938 #if USE_ITT_BUILD
1939 __kmp_itt_initialize();
1940 #endif /* USE_ITT_BUILD */
1942 __kmp_init_runtime = TRUE;
1945 void __kmp_runtime_destroy(void) {
1946 int status;
1948 if (!__kmp_init_runtime) {
1949 return; // Nothing to do.
1952 #if USE_ITT_BUILD
1953 __kmp_itt_destroy();
1954 #endif /* USE_ITT_BUILD */
1956 status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1957 KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1959 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1960 if (status != 0 && status != EBUSY) {
1961 KMP_SYSFAIL("pthread_mutex_destroy", status);
1963 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1964 if (status != 0 && status != EBUSY) {
1965 KMP_SYSFAIL("pthread_cond_destroy", status);
1967 #if KMP_AFFINITY_SUPPORTED
1968 __kmp_affinity_uninitialize();
1969 #endif
1971 __kmp_init_runtime = FALSE;
1974 /* Put the thread to sleep for a time period */
1975 /* NOTE: not currently used anywhere */
1976 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1978 /* Calculate the elapsed wall clock time for the user */
1979 void __kmp_elapsed(double *t) {
1980 int status;
1981 #ifdef FIX_SGI_CLOCK
1982 struct timespec ts;
1984 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1985 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1986 *t =
1987 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1988 #else
1989 struct timeval tv;
1991 status = gettimeofday(&tv, NULL);
1992 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1993 *t =
1994 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1995 #endif
1998 /* Calculate the elapsed wall clock tick for the user */
1999 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
2001 /* Return the current time stamp in nsec */
2002 kmp_uint64 __kmp_now_nsec() {
2003 struct timeval t;
2004 gettimeofday(&t, NULL);
2005 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
2006 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
2007 return nsec;
2010 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2011 /* Measure clock ticks per millisecond */
2012 void __kmp_initialize_system_tick() {
2013 kmp_uint64 now, nsec2, diff;
2014 kmp_uint64 delay = 1000000; // ~450 usec on most machines.
2015 kmp_uint64 nsec = __kmp_now_nsec();
2016 kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
2017 while ((now = __kmp_hardware_timestamp()) < goal)
2019 nsec2 = __kmp_now_nsec();
2020 diff = nsec2 - nsec;
2021 if (diff > 0) {
2022 double tpus = 1000.0 * (double)(delay + (now - goal)) / (double)diff;
2023 if (tpus > 0.0) {
2024 __kmp_ticks_per_msec = (kmp_uint64)(tpus * 1000.0);
2025 __kmp_ticks_per_usec = (kmp_uint64)tpus;
2029 #endif
2031 /* Determine whether the given address is mapped into the current address
2032 space. */
2034 int __kmp_is_address_mapped(void *addr) {
2036 int found = 0;
2037 int rc;
2039 #if KMP_OS_LINUX || KMP_OS_HURD
2041 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
2042 address ranges mapped into the address space. */
2044 char *name = __kmp_str_format("/proc/%d/maps", getpid());
2045 FILE *file = NULL;
2047 file = fopen(name, "r");
2048 KMP_ASSERT(file != NULL);
2050 for (;;) {
2052 void *beginning = NULL;
2053 void *ending = NULL;
2054 char perms[5];
2056 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2057 if (rc == EOF) {
2058 break;
2060 KMP_ASSERT(rc == 3 &&
2061 KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2063 // Ending address is not included in the region, but beginning is.
2064 if ((addr >= beginning) && (addr < ending)) {
2065 perms[2] = 0; // 3th and 4th character does not matter.
2066 if (strcmp(perms, "rw") == 0) {
2067 // Memory we are looking for should be readable and writable.
2068 found = 1;
2070 break;
2074 // Free resources.
2075 fclose(file);
2076 KMP_INTERNAL_FREE(name);
2077 #elif KMP_OS_FREEBSD
2078 char *buf;
2079 size_t lstsz;
2080 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2081 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2082 if (rc < 0)
2083 return 0;
2084 // We pass from number of vm entry's semantic
2085 // to size of whole entry map list.
2086 lstsz = lstsz * 4 / 3;
2087 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2088 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2089 if (rc < 0) {
2090 kmpc_free(buf);
2091 return 0;
2094 char *lw = buf;
2095 char *up = buf + lstsz;
2097 while (lw < up) {
2098 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2099 size_t cursz = cur->kve_structsize;
2100 if (cursz == 0)
2101 break;
2102 void *start = reinterpret_cast<void *>(cur->kve_start);
2103 void *end = reinterpret_cast<void *>(cur->kve_end);
2104 // Readable/Writable addresses within current map entry
2105 if ((addr >= start) && (addr < end)) {
2106 if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2107 (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2108 found = 1;
2109 break;
2112 lw += cursz;
2114 kmpc_free(buf);
2116 #elif KMP_OS_DARWIN
2118 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2119 using vm interface. */
2121 int buffer;
2122 vm_size_t count;
2123 rc = vm_read_overwrite(
2124 mach_task_self(), // Task to read memory of.
2125 (vm_address_t)(addr), // Address to read from.
2126 1, // Number of bytes to be read.
2127 (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2128 &count // Address of var to save number of read bytes in.
2130 if (rc == 0) {
2131 // Memory successfully read.
2132 found = 1;
2135 #elif KMP_OS_NETBSD
2137 int mib[5];
2138 mib[0] = CTL_VM;
2139 mib[1] = VM_PROC;
2140 mib[2] = VM_PROC_MAP;
2141 mib[3] = getpid();
2142 mib[4] = sizeof(struct kinfo_vmentry);
2144 size_t size;
2145 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2146 KMP_ASSERT(!rc);
2147 KMP_ASSERT(size);
2149 size = size * 4 / 3;
2150 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2151 KMP_ASSERT(kiv);
2153 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2154 KMP_ASSERT(!rc);
2155 KMP_ASSERT(size);
2157 for (size_t i = 0; i < size; i++) {
2158 if (kiv[i].kve_start >= (uint64_t)addr &&
2159 kiv[i].kve_end <= (uint64_t)addr) {
2160 found = 1;
2161 break;
2164 KMP_INTERNAL_FREE(kiv);
2165 #elif KMP_OS_OPENBSD
2167 int mib[3];
2168 mib[0] = CTL_KERN;
2169 mib[1] = KERN_PROC_VMMAP;
2170 mib[2] = getpid();
2172 size_t size;
2173 uint64_t end;
2174 rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2175 KMP_ASSERT(!rc);
2176 KMP_ASSERT(size);
2177 end = size;
2179 struct kinfo_vmentry kiv = {.kve_start = 0};
2181 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2182 KMP_ASSERT(size);
2183 if (kiv.kve_end == end)
2184 break;
2186 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2187 found = 1;
2188 break;
2190 kiv.kve_start += 1;
2192 #elif KMP_OS_DRAGONFLY
2194 // FIXME(DragonFly): Implement this
2195 found = 1;
2197 #else
2199 #error "Unknown or unsupported OS"
2201 #endif
2203 return found;
2205 } // __kmp_is_address_mapped
2207 #ifdef USE_LOAD_BALANCE
2209 #if KMP_OS_DARWIN || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
2210 KMP_OS_OPENBSD
2212 // The function returns the rounded value of the system load average
2213 // during given time interval which depends on the value of
2214 // __kmp_load_balance_interval variable (default is 60 sec, other values
2215 // may be 300 sec or 900 sec).
2216 // It returns -1 in case of error.
2217 int __kmp_get_load_balance(int max) {
2218 double averages[3];
2219 int ret_avg = 0;
2221 int res = getloadavg(averages, 3);
2223 // Check __kmp_load_balance_interval to determine which of averages to use.
2224 // getloadavg() may return the number of samples less than requested that is
2225 // less than 3.
2226 if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2227 ret_avg = (int)averages[0]; // 1 min
2228 } else if ((__kmp_load_balance_interval >= 180 &&
2229 __kmp_load_balance_interval < 600) &&
2230 (res >= 2)) {
2231 ret_avg = (int)averages[1]; // 5 min
2232 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2233 ret_avg = (int)averages[2]; // 15 min
2234 } else { // Error occurred
2235 return -1;
2238 return ret_avg;
2241 #else // Linux* OS
2243 // The function returns number of running (not sleeping) threads, or -1 in case
2244 // of error. Error could be reported if Linux* OS kernel too old (without
2245 // "/proc" support). Counting running threads stops if max running threads
2246 // encountered.
2247 int __kmp_get_load_balance(int max) {
2248 static int permanent_error = 0;
2249 static int glb_running_threads = 0; // Saved count of the running threads for
2250 // the thread balance algorithm
2251 static double glb_call_time = 0; /* Thread balance algorithm call time */
2253 int running_threads = 0; // Number of running threads in the system.
2255 DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2256 struct dirent *proc_entry = NULL;
2258 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2259 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2260 struct dirent *task_entry = NULL;
2261 int task_path_fixed_len;
2263 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2264 int stat_file = -1;
2265 int stat_path_fixed_len;
2267 #ifdef KMP_DEBUG
2268 int total_processes = 0; // Total number of processes in system.
2269 #endif
2271 double call_time = 0.0;
2273 __kmp_str_buf_init(&task_path);
2274 __kmp_str_buf_init(&stat_path);
2276 __kmp_elapsed(&call_time);
2278 if (glb_call_time &&
2279 (call_time - glb_call_time < __kmp_load_balance_interval)) {
2280 running_threads = glb_running_threads;
2281 goto finish;
2284 glb_call_time = call_time;
2286 // Do not spend time on scanning "/proc/" if we have a permanent error.
2287 if (permanent_error) {
2288 running_threads = -1;
2289 goto finish;
2292 if (max <= 0) {
2293 max = INT_MAX;
2296 // Open "/proc/" directory.
2297 proc_dir = opendir("/proc");
2298 if (proc_dir == NULL) {
2299 // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2300 // error now and in subsequent calls.
2301 running_threads = -1;
2302 permanent_error = 1;
2303 goto finish;
2306 // Initialize fixed part of task_path. This part will not change.
2307 __kmp_str_buf_cat(&task_path, "/proc/", 6);
2308 task_path_fixed_len = task_path.used; // Remember number of used characters.
2310 proc_entry = readdir(proc_dir);
2311 while (proc_entry != NULL) {
2312 // Proc entry is a directory and name starts with a digit. Assume it is a
2313 // process' directory.
2314 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2316 #ifdef KMP_DEBUG
2317 ++total_processes;
2318 #endif
2319 // Make sure init process is the very first in "/proc", so we can replace
2320 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2321 // 1. We are going to check that total_processes == 1 => d_name == "1" is
2322 // true (where "=>" is implication). Since C++ does not have => operator,
2323 // let us replace it with its equivalent: a => b == ! a || b.
2324 KMP_DEBUG_ASSERT(total_processes != 1 ||
2325 strcmp(proc_entry->d_name, "1") == 0);
2327 // Construct task_path.
2328 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2329 __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2330 KMP_STRLEN(proc_entry->d_name));
2331 __kmp_str_buf_cat(&task_path, "/task", 5);
2333 task_dir = opendir(task_path.str);
2334 if (task_dir == NULL) {
2335 // Process can finish between reading "/proc/" directory entry and
2336 // opening process' "task/" directory. So, in general case we should not
2337 // complain, but have to skip this process and read the next one. But on
2338 // systems with no "task/" support we will spend lot of time to scan
2339 // "/proc/" tree again and again without any benefit. "init" process
2340 // (its pid is 1) should exist always, so, if we cannot open
2341 // "/proc/1/task/" directory, it means "task/" is not supported by
2342 // kernel. Report an error now and in the future.
2343 if (strcmp(proc_entry->d_name, "1") == 0) {
2344 running_threads = -1;
2345 permanent_error = 1;
2346 goto finish;
2348 } else {
2349 // Construct fixed part of stat file path.
2350 __kmp_str_buf_clear(&stat_path);
2351 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2352 __kmp_str_buf_cat(&stat_path, "/", 1);
2353 stat_path_fixed_len = stat_path.used;
2355 task_entry = readdir(task_dir);
2356 while (task_entry != NULL) {
2357 // It is a directory and name starts with a digit.
2358 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2360 // Construct complete stat file path. Easiest way would be:
2361 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2362 // task_entry->d_name );
2363 // but seriae of __kmp_str_buf_cat works a bit faster.
2364 stat_path.used =
2365 stat_path_fixed_len; // Reset stat path to its fixed part.
2366 __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2367 KMP_STRLEN(task_entry->d_name));
2368 __kmp_str_buf_cat(&stat_path, "/stat", 5);
2370 // Note: Low-level API (open/read/close) is used. High-level API
2371 // (fopen/fclose) works ~ 30 % slower.
2372 stat_file = open(stat_path.str, O_RDONLY);
2373 if (stat_file == -1) {
2374 // We cannot report an error because task (thread) can terminate
2375 // just before reading this file.
2376 } else {
2377 /* Content of "stat" file looks like:
2378 24285 (program) S ...
2380 It is a single line (if program name does not include funny
2381 symbols). First number is a thread id, then name of executable
2382 file name in paretheses, then state of the thread. We need just
2383 thread state.
2385 Good news: Length of program name is 15 characters max. Longer
2386 names are truncated.
2388 Thus, we need rather short buffer: 15 chars for program name +
2389 2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2391 Bad news: Program name may contain special symbols like space,
2392 closing parenthesis, or even new line. This makes parsing
2393 "stat" file not 100 % reliable. In case of fanny program names
2394 parsing may fail (report incorrect thread state).
2396 Parsing "status" file looks more promissing (due to different
2397 file structure and escaping special symbols) but reading and
2398 parsing of "status" file works slower.
2399 -- ln
2401 char buffer[65];
2402 ssize_t len;
2403 len = read(stat_file, buffer, sizeof(buffer) - 1);
2404 if (len >= 0) {
2405 buffer[len] = 0;
2406 // Using scanf:
2407 // sscanf( buffer, "%*d (%*s) %c ", & state );
2408 // looks very nice, but searching for a closing parenthesis
2409 // works a bit faster.
2410 char *close_parent = strstr(buffer, ") ");
2411 if (close_parent != NULL) {
2412 char state = *(close_parent + 2);
2413 if (state == 'R') {
2414 ++running_threads;
2415 if (running_threads >= max) {
2416 goto finish;
2421 close(stat_file);
2422 stat_file = -1;
2425 task_entry = readdir(task_dir);
2427 closedir(task_dir);
2428 task_dir = NULL;
2431 proc_entry = readdir(proc_dir);
2434 // There _might_ be a timing hole where the thread executing this
2435 // code get skipped in the load balance, and running_threads is 0.
2436 // Assert in the debug builds only!!!
2437 KMP_DEBUG_ASSERT(running_threads > 0);
2438 if (running_threads <= 0) {
2439 running_threads = 1;
2442 finish: // Clean up and exit.
2443 if (proc_dir != NULL) {
2444 closedir(proc_dir);
2446 __kmp_str_buf_free(&task_path);
2447 if (task_dir != NULL) {
2448 closedir(task_dir);
2450 __kmp_str_buf_free(&stat_path);
2451 if (stat_file != -1) {
2452 close(stat_file);
2455 glb_running_threads = running_threads;
2457 return running_threads;
2459 } // __kmp_get_load_balance
2461 #endif // KMP_OS_DARWIN
2463 #endif // USE_LOAD_BALANCE
2465 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2466 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \
2467 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 || \
2468 KMP_ARCH_ARM || KMP_ARCH_VE)
2470 // we really only need the case with 1 argument, because CLANG always build
2471 // a struct of pointers to shared variables referenced in the outlined function
2472 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2473 void *p_argv[]
2474 #if OMPT_SUPPORT
2476 void **exit_frame_ptr
2477 #endif
2479 #if OMPT_SUPPORT
2480 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2481 #endif
2483 switch (argc) {
2484 default:
2485 fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2486 fflush(stderr);
2487 exit(-1);
2488 case 0:
2489 (*pkfn)(&gtid, &tid);
2490 break;
2491 case 1:
2492 (*pkfn)(&gtid, &tid, p_argv[0]);
2493 break;
2494 case 2:
2495 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2496 break;
2497 case 3:
2498 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2499 break;
2500 case 4:
2501 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2502 break;
2503 case 5:
2504 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2505 break;
2506 case 6:
2507 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2508 p_argv[5]);
2509 break;
2510 case 7:
2511 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2512 p_argv[5], p_argv[6]);
2513 break;
2514 case 8:
2515 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2516 p_argv[5], p_argv[6], p_argv[7]);
2517 break;
2518 case 9:
2519 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2520 p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2521 break;
2522 case 10:
2523 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2524 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2525 break;
2526 case 11:
2527 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2528 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2529 break;
2530 case 12:
2531 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2532 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2533 p_argv[11]);
2534 break;
2535 case 13:
2536 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2537 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2538 p_argv[11], p_argv[12]);
2539 break;
2540 case 14:
2541 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2542 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2543 p_argv[11], p_argv[12], p_argv[13]);
2544 break;
2545 case 15:
2546 (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2547 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2548 p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2549 break;
2552 return 1;
2555 #endif
2557 #if KMP_OS_LINUX
2558 // Functions for hidden helper task
2559 namespace {
2560 // Condition variable for initializing hidden helper team
2561 pthread_cond_t hidden_helper_threads_initz_cond_var;
2562 pthread_mutex_t hidden_helper_threads_initz_lock;
2563 volatile int hidden_helper_initz_signaled = FALSE;
2565 // Condition variable for deinitializing hidden helper team
2566 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2567 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2568 volatile int hidden_helper_deinitz_signaled = FALSE;
2570 // Condition variable for the wrapper function of main thread
2571 pthread_cond_t hidden_helper_main_thread_cond_var;
2572 pthread_mutex_t hidden_helper_main_thread_lock;
2573 volatile int hidden_helper_main_thread_signaled = FALSE;
2575 // Semaphore for worker threads. We don't use condition variable here in case
2576 // that when multiple signals are sent at the same time, only one thread might
2577 // be waken.
2578 sem_t hidden_helper_task_sem;
2579 } // namespace
2581 void __kmp_hidden_helper_worker_thread_wait() {
2582 int status = sem_wait(&hidden_helper_task_sem);
2583 KMP_CHECK_SYSFAIL("sem_wait", status);
2586 void __kmp_do_initialize_hidden_helper_threads() {
2587 // Initialize condition variable
2588 int status =
2589 pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2590 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2592 status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2593 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2595 status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2596 KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2598 status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2599 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2601 status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2602 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2604 status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2605 KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2607 // Initialize the semaphore
2608 status = sem_init(&hidden_helper_task_sem, 0, 0);
2609 KMP_CHECK_SYSFAIL("sem_init", status);
2611 // Create a new thread to finish initialization
2612 pthread_t handle;
2613 status = pthread_create(
2614 &handle, nullptr,
2615 [](void *) -> void * {
2616 __kmp_hidden_helper_threads_initz_routine();
2617 return nullptr;
2619 nullptr);
2620 KMP_CHECK_SYSFAIL("pthread_create", status);
2623 void __kmp_hidden_helper_threads_initz_wait() {
2624 // Initial thread waits here for the completion of the initialization. The
2625 // condition variable will be notified by main thread of hidden helper teams.
2626 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2627 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2629 if (!TCR_4(hidden_helper_initz_signaled)) {
2630 status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2631 &hidden_helper_threads_initz_lock);
2632 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2635 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2636 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2639 void __kmp_hidden_helper_initz_release() {
2640 // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2641 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2642 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2644 status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2645 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2647 TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2649 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2650 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2653 void __kmp_hidden_helper_main_thread_wait() {
2654 // The main thread of hidden helper team will be blocked here. The
2655 // condition variable can only be signal in the destructor of RTL.
2656 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2657 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2659 if (!TCR_4(hidden_helper_main_thread_signaled)) {
2660 status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2661 &hidden_helper_main_thread_lock);
2662 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2665 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2666 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2669 void __kmp_hidden_helper_main_thread_release() {
2670 // The initial thread of OpenMP RTL should call this function to wake up the
2671 // main thread of hidden helper team.
2672 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2673 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2675 status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2676 KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2678 // The hidden helper team is done here
2679 TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2681 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2682 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2685 void __kmp_hidden_helper_worker_thread_signal() {
2686 int status = sem_post(&hidden_helper_task_sem);
2687 KMP_CHECK_SYSFAIL("sem_post", status);
2690 void __kmp_hidden_helper_threads_deinitz_wait() {
2691 // Initial thread waits here for the completion of the deinitialization. The
2692 // condition variable will be notified by main thread of hidden helper teams.
2693 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2694 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2696 if (!TCR_4(hidden_helper_deinitz_signaled)) {
2697 status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2698 &hidden_helper_threads_deinitz_lock);
2699 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2702 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2703 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2706 void __kmp_hidden_helper_threads_deinitz_release() {
2707 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2708 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2710 status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2711 KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2713 TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2715 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2716 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2718 #else // KMP_OS_LINUX
2719 void __kmp_hidden_helper_worker_thread_wait() {
2720 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2723 void __kmp_do_initialize_hidden_helper_threads() {
2724 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2727 void __kmp_hidden_helper_threads_initz_wait() {
2728 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2731 void __kmp_hidden_helper_initz_release() {
2732 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2735 void __kmp_hidden_helper_main_thread_wait() {
2736 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2739 void __kmp_hidden_helper_main_thread_release() {
2740 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2743 void __kmp_hidden_helper_worker_thread_signal() {
2744 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2747 void __kmp_hidden_helper_threads_deinitz_wait() {
2748 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2751 void __kmp_hidden_helper_threads_deinitz_release() {
2752 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2754 #endif // KMP_OS_LINUX
2756 bool __kmp_detect_shm() {
2757 DIR *dir = opendir("/dev/shm");
2758 if (dir) { // /dev/shm exists
2759 closedir(dir);
2760 return true;
2761 } else if (ENOENT == errno) { // /dev/shm does not exist
2762 return false;
2763 } else { // opendir() failed
2764 return false;
2768 bool __kmp_detect_tmp() {
2769 DIR *dir = opendir("/tmp");
2770 if (dir) { // /tmp exists
2771 closedir(dir);
2772 return true;
2773 } else if (ENOENT == errno) { // /tmp does not exist
2774 return false;
2775 } else { // opendir() failed
2776 return false;
2780 // end of file //