[Infra] Fix version-check workflow (#100090)
[llvm-project.git] / mlir / docs / Tutorials / transform / Ch1.md
blobb0fdf085854c7f4fd7075f644d9937b6c6ddfc44
1 # Chapter 1: Combining Existing Transformations
3 ## Introduction
5 The Transform dialect allows one to precisely target transformations at specific operations in the IR and to chain them, that is to apply a transformation to operations produced by the previous transformation. To achieve this, transformations are expressed as other operations in the IR. We call these the IR containing these operations transform IR. And we call the IR that is being transformed payload IR.
7 Transform IR operations operate on values that may be associated with payload IR operations, values or attributes. We call the first two kinds of values operation and value handles, respectively. We call the last kind of values parameters.
9 The application of transform IR always starts from one top-level operation. In the C++ API, this operation is passed to the `applyTransforms` function. This top-level operation specifies if other transformations should be performed and how. The most common top-level operation, `transform.named_sequence` merely applies other transform operations listed in its body one after the other, similarly to a function or a macro.
11 Let us illustrate this with a simple sequence of transformations on the common “fully connected + bias + ReLU” ML layer, which boils down to performing a matrix multiplication, followed by an (elementwise) matrix addition and taking an elementwise maximum with 0. This can be expressed using the following IR:
13 ```mlir
14 func.func @fc_relu(%lhs: tensor<512x512xf32>, %rhs: tensor<512x512xf32>,
15                    %bias: tensor<512x512xf32>, %output: tensor<512x512xf32>)
16                    -> tensor<512x512xf32> {
17   // Matrix-matrix multiplication.
18   %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
19                           outs(%output: tensor<512x512xf32>) -> tensor<512x512xf32>
21   // Elementwise addition.
22   %biased = linalg.elemwise_binary { fun = #linalg.binary_fn<add> }
23     ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>)
24     outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32>
26   // Elementwise max with 0 (ReLU).
27   %c0f = arith.constant 0.0 : f32
28   %relued = linalg.elemwise_binary { fun = #linalg.binary_fn<max_signed> }
29     ins(%biased, %c0f : tensor<512x512xf32>, f32)
30     outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32>
31   func.return %relued : tensor<512x512xf32>
33 ```
35 ## Top-Level Sequence Operation
37 For performance reasons, we would like to tile and fuse these operations to exploit cache locality. This is a sequence of transformations that need to be performed one after another, so we naturally start with the corresponding top-level transform operation.
39 ```mlir
40 module attributes {transform.with_named_sequence} {
41   transform.named_sequence @__transform_main(
42       %arg0: !transform.any_op,
43       %arg1: !transform.op<"linalg.matmul">,
44       %arg2: !transform.op<"linalg.elemwise_binary">):
45     transform.yield
46   }
48 ```
50 There are several aspects worth noticing in this operation.
52 Its special name, `@__transform_main` and the first argument are mandated by the interpreter pass, similarly to how the entry point of C programs needs to be called `main` and may have the `int (int argc, char** argv)` signature. This argument will be associated with the top-level payload operation, most often the operation that the pass is applied to. Note that none of this is required when applying the transformation _programmatically_ via `applyTransforms` or `applyNamedSequence`.
54 The remaining entry block arguments are optional and can be associated with payload attributes, operations or values that are useful in the sequence. These are also specified when calling `applyTransforms`. In our case, we are interested in the matrix multiplication and elementwise operations that we are going to tile and fuse.
56 All value handles have Transform dialect types. These types specify certain properties of the payload IR entities associated with them. In this example, `transform.any_op` indicates that the handle is associated with arbitrary payload operations. On the contrary, `transform.op<"X">` indicates that the handle is associated _only_ with payload operations of kind `X`. These constraints are verified when the handle/payload association is created. For entry block arguments of top-level transform operations, this happens early in the `applyTransforms` function. If the constraints are not satisfied, the transform application fails and produces diagnostics for the user.
58 Finally, the operation is wrapped in a module with the `transform.with_named_sequence` attribute that triggers all necessary verifications if multiple named sequences exist.
60 ## Failure Propagation
62 The Transform dialect infrastructure has a particular mechanism for handling diagnostics that supports recoverable errors. It is best understood by considering the (unnamed) sequence operation that has a mandatory attribute specifying the failure propagation mode. There are two options:
64 *   “propagate” makes the sequence transformation fail if any of the nested transformation fails;
65 *   “suppress” makes the sequence succeed even if one of the nested transformations fails, but without attempting to perform the transformations following the failed one in the sequence.
67 This latter allows the transformation script surrounding the sequence to continue despite errors within the sequence, assuming they are recoverable. As we are only building the transformation script, it is preferable to propagate failures so we know when something did not apply.
69 To check or debug a transform sequence, it is possible to print various entities associated with the transform IR values. For example, we can print the operations associated with the handles:
71 ```mlir
72 transform.sequence failures(propagate) {
73 ^bb0(%arg0: !transform.any_op,
74      %arg1: !transform.op<"linalg.matmul">,
75      %arg2: !transform.op<"linalg.elemwise_binary">):
76   transform.debug.emit_remark_at %arg1, "matmul"
77       : !transform.op<"linalg.matmul">
78   transform.debug.emit_remark_at %arg2, "elemwise_binaries"
79       : !transform.op<"linalg.elemwise_binary">
80   transform.yield
82 ```
84 ## Transform Dialect Interpreter
86 Since we don’t want to recompile the compiler every time we change a transformation, we can use a Transform dialect interpreter pass to apply this transformation sequence to the payload IR. As we will see in the next chapter, it is possible to define custom passes or even integrate the transform interpreter into a larger pass. For now, we can use the existing test pass:
89 ```sh
90 $ mlir-opt sequence.mlir --pass-pipeline="
91     builtin.module(transform-interpreter{
92         debug-bind-trailing-args=linalg.matmul,linalg.elemwise_binary})"
93 ```
95 The `sequence.mlir` file contains _both_ the payload IR function _and_ the transform IR sequence nested in the same module. The transform interpreter pass will apply the `@__transform_main` named sequence to the anchor operation of the pass. In our case, we also asked the interpreter pass to associate the two extra arguments of the top-level sequence with all `linalg.matmul` and `linalg.elemwise_binary` payload operations through the respective pass options. Running this pass results in the expected remarks:
97 ```sh
98 sequence.mlir:7:13: remark: matmul
99   %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
100             ^
101 sequence.mlir:7:13: note: see current operation: %0 = linalg.matmul ins(%arg0, %arg1 : tensor<512x512xf32>, tensor<512x512xf32>) outs(%arg3 : tensor<512x512xf32>) -> tensor<512x512xf32>
102 sequence.mlir:10:13: remark: elemwise_binaries
103   %biased = linalg.elemwise_binary { fun = #linalg.binary_fn<add> }
104             ^
105 sequence.mlir:10:13: note: see current operation: %1 = linalg.elemwise_binary {fun = #linalg.binary_fn<add>} ins(%0, %arg2 : tensor<512x512xf32>, tensor<512x512xf32>) outs(%arg3 : tensor<512x512xf32>) -> tensor<512x512xf32>
106 sequence.mlir:14:13: remark: elemwise_binaries
107   %relued = linalg.elemwise_binary { fun = #linalg.binary_fn<max_signed> }
108             ^
109 sequence.mlir:14:13: note: see current operation: %2 = linalg.elemwise_binary {fun = #linalg.binary_fn<max_signed>} ins(%1, %cst : tensor<512x512xf32>, f32) outs(%arg3 : tensor<512x512xf32>) -> tensor<512x512xf32>
112 Note that `%arg2` is associated with both elementwise payload operations. Any handle is associated with a list of entities. Individual transformations may or may not care about the order of elements in that list.
115 ## Specifying Transformations
117 Now that we have handles to the operations we want to transform, we are ready to apply the transformations. Let us first try tiling the matmul operation itself.
119 ```mlir
120 module attributes {transform.with_named_sequence} {
121   transform.named_sequence @__transform_main(
122        %arg0: !transform.any_op,
123        %arg1: !transform.op<"linalg.matmul">,
124        %arg2: !transform.op<"linalg.elemwise_binary">) {
125     // The actual tiling transformation takes tile sizes as attributes.
126     %loop, %tiled = transform.structured.tile_using_forall %arg1
127                     tile_sizes [4, 32]
128       : (!transform.op<"linalg.matmul">)
129      -> (!transform.any_op, !transform.any_op)
130     transform.yield
131   }
135 The transformation returns two handles, as indicated in its [documentation](https://mlir.llvm.org/docs/Dialects/Transform/#transformstructuredtile_using_forall-transformtileusingforallop):
137 *   A handle to `linalg.generic` operating on the subset of the original data.
138 *   A handle to the `scf.forall` “multi-for” loop around tensors.
140 Running this transformation with the same command as above expectedly produces the tiled code.
142 ```mlir
143 func.func @fc_relu(%arg0: tensor<512x512xf32>,
144                    %arg1: tensor<512x512xf32>,
145                    %arg2: tensor<512x512xf32>,
146                    %arg3: tensor<512x512xf32>) -> tensor<512x512xf32> {
147   %cst = arith.constant 0.000000e+00 : f32
148   %0 = scf.forall (%arg4, %arg5) in (128, 16) shared_outs(%arg6 = %arg3) -> (tensor<512x512xf32>) {
149     %3 = affine.apply affine_map<(d0) -> (d0 * 4)>(%arg4)
150     %4 = affine.apply affine_map<(d0) -> (d0 * 32)>(%arg5)
151     %extracted_slice = tensor.extract_slice %arg0[%3, 0] [4, 512] [1, 1]
152                      : tensor<512x512xf32> to tensor<4x512xf32>
153     %extracted_slice_0 = tensor.extract_slice %arg1[0, %4] [512, 32] [1, 1]
154                        : tensor<512x512xf32> to tensor<512x32xf32>
155     %extracted_slice_1 = tensor.extract_slice %arg6[%3, %4] [4, 32] [1, 1]
156                       : tensor<512x512xf32> to tensor<4x32xf32>
157     %5 = linalg.matmul
158          ins(%extracted_slice, %extracted_slice_0
159              : tensor<4x512xf32>, tensor<512x32xf32>)
160          outs(%extracted_slice_1 : tensor<4x32xf32>) -> tensor<4x32xf32>
161     scf.forall.in_parallel {
162       tensor.parallel_insert_slice %5 into %arg6[%3, %4] [4, 32] [1, 1]
163           : tensor<4x32xf32> into tensor<512x512xf32>
164     }
165   }
166   %1 = linalg.elemwise_binary {fun = #linalg.binary_fn<add>}
167     ins(%0, %arg2 : tensor<512x512xf32>, tensor<512x512xf32>)
168     outs(%arg3 : tensor<512x512xf32>) -> tensor<512x512xf32>
169   %2 = linalg.elemwise_binary {fun = #linalg.binary_fn<max_signed>}
170     ins(%1, %cst : tensor<512x512xf32>, f32)
171     outs(%arg3 : tensor<512x512xf32>) -> tensor<512x512xf32>
172   return %2 : tensor<512x512xf32>
176 Besides producing new handles, the tiling transform operation _consumes_ the operand handle. This means that the handle is _invalidated_ after this operation, and is no longer supposed to be used. Transform operations are required to mark all their operands as either consumed or readonly. Transform operations usually consume the operand if the associated payload operations are erased or recreated (which means erased and created anew with similar structure). As handles are essentially references to payload operations, they would become dangling if the payload no longer exists.
179 ## Handle Invalidation and Expensive Checks Mode
181 Undefined behavior is difficult to grapple with when it does happen, so the Transform dialect interpreter defaults to performing a set of additional, potentially expensive, checks that detect most undefined behavior in the transform IR. For example, if we wanted to  use the `%arg1` handle after it is consumed, it would cause undefined behavior that manifests as an assertion in the debug build, and likely as a segmentation fault in the release mode.
183 ```mlir
184 module attributes {transform.with_named_sequence} {
185   transform.named_sequence @__transform_main(
186        %arg0: !transform.any_op,
187        %arg1: !transform.op<"linalg.matmul">,
188        %arg2: !transform.op<"linalg.elemwise_binary">) {
189     // The actual tiling transformation takes tile sizes as attributes.
190     %loop, %tiled = transform.structured.tile_using_forall %arg1 tile_sizes [4, 32]
191         : (!transform.op<"linalg.matmul">) -> (!transform.any_op, !transform.any_op)
193     // This is trying to use an invalidated handle leading to undefined behavior.
194     transform.debug.emit_remark_at %arg1, "remark" : !transform.op<"linalg.matmul">
195     transform.yield
196   }
200 However, with the expensive checks enabled in the interpreter, a nice diagnostic is produced:
202 ```sh
203 sequence.mlir:28:3: error: op uses a handle invalidated by a previously executed transform op
204   transform.debug.emit_remark_at %mm, "elemwise_binaries" : !transform.any_op
205   ^
206 sequence.mlir:26:9: note: handle to invalidated ops
207   %mm = transform.cast %matmul : !transform.op<"linalg.matmul"> to !transform.any_op
208         ^
209 sequence.mlir:27:19: note: invalidated by this transform op that consumes its operand #0 and invalidates all handles to payload IR entities associated with this operand and entities nested in them
210   %loop, %tiled = transform.structured.tile_using_forall %mm tile_sizes [4, 32]
213 When compile-time performance is a concern, and the transformation sequence is sufficiently stable, it is possible to disable expensive checks in the interpreter for improved performance by providing the `disable-expensive-checks` option to the pass or by setting the corresponding flag in the `TransformOptions` passed into `applyTransforms`.
215 One may observe that some operations such as `transform.cast` do not consume the operand (because they don’t erase the corresponding operation). So what would happen if we tried to use that operand instead?
217 ```mlir
218 module attributes {transform.with_named_sequence} {
219   transform.named_sequence @__transform_main
220        %arg0: !transform.any_op,
221        %arg1: !transform.op<"linalg.matmul">,
222        %arg2: !transform.op<"linalg.elemwise_binary">) {
223     // We can cast one type to another as long as operations are compatible
224     // with both types. This creates "aliasing" handles.
225     %casted = transform.cast %arg1 : !transform.op<"linalg.matmul">
226         to !transform.any_op
228     // The actual tiling transformation takes tile sizes as attributes.
229     %loop, %tiled = transform.structured.tile_using_forall %arg1
230                     tile_sizes [4, 32]
231       : (!transform.op<"linalg.matmul">)
232      -> (!transform.any_op, !transform.any_op)
234     // Consuming an operand invalidates the consumed handle and any other handle
235     // that is associated with the same payload operations, or payload
236     // operations nested in them.
237     transform.debug.emit_remark_at %casted, "remark"
238       : !transform.any_op
239     transform.yield
240   }
244 Both `%arg1` and `%casted` reference the same payload operation. Extending the reference analogy, these references alias. Naturally, when the payload operation is erased, all references to it become dangling. This is also the case for handles. In fact, consuming an operand invalidates the operand handle as well as any other handle that is associated with any of the same payload operations. The payload IR consideration is recursive: a handle associated with a payload operation _nested_ in the erased one is also invalidated (because erasing the operation also erases its regions and all contained operations). The expensive-checks mode can also handle this case.
246 ```sh
247 sequence.mlir:28:3: error: op uses a handle invalidated by a previously executed transform op
248   transform.debug.emit_remark_at %matmul, "elemwise_binaries" : !transform.op<"linalg.matmul">
249   ^
250 sequence.mlir:21:29: note: handle to invalidated ops
251 ^bb0(%root: !transform.any_op, %matmul: !transform.op<"linalg.matmul">, %elemwise: !transform.op<"linalg.elemwise_binary">):
252                             ^
253 sequence.mlir:27:19: note: invalidated by this transform op that consumes its operand #0 and invalidates all handles to payload IR entities associated with this operand and entities nested in them
254   %loop, %tiled = transform.structured.tile_using_forall %mm tile_sizes [4, 32]
257 ## Chaining Transformations with Handles
259 Going back to the transformation sequence, we have tiled the matrix multiplication, but we also want to tile and fuse the elementwise operations. The typical way of doing in the structured operations paradigm is to tile the last operation in some acyclic dataflow graph, and then progressively fuse the operations that produce its operands. This removes the need to explicitly tile all operations as fusion can adapt their sizes and inject recomputation if desired. So instead of tiling the matmul operation, we are going to tile the last operation in the chain, and then fuse the preceding operations into the loops produced by tiling.
261 ```mlir
262 module attributes {transform.with_named_sequence} {
263   transform.named_sequence @__transform_main(
264        %arg0: !transform.any_op,
265        %arg1: !transform.op<"linalg.matmul">,
266        %arg2: !transform.op<"linalg.elemwise_binary">) {
267     // Since the %arg2 handle is associated with both elementwise operations,
268     // we need to split it into two handles so we can target only the second
269     // elementwise operation.
270     %add, %max = transform.split_handle %arg2
271         : (!transform.op<"linalg.elemwise_binary">)
272         -> (!transform.any_op, !transform.any_op)
274     // The actual tiling transformation takes tile sizes as attributes. It
275     // produces a handle to the loop generated during tiling.
276     %tiled_max, %loop =
277         transform.structured.tile_using_forall %max tile_sizes [8, 32]
278           : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
280     // We can now fuse the other operations into the loop. Here, we fuse
281     // operations one by one. This requires the operation that is being fused to
282     // define the value used within the loop, so the order of such fusions is
283     // important. We could also use "transform.merge_handles" to obtain a single
284     // handle to all operations and give it to `fuse_into_containing_op` that
285     // would take care of the ordering in this case.
286     %add_fused, %loop_0 =
287         transform.structured.fuse_into_containing_op %add into %loop
288           : (!transform.any_op, !transform.any_op)
289             -> (!transform.any_op, !transform.any_op)
290     %matmul_fused, %loop_1 =
291         transform.structured.fuse_into_containing_op %arg1 into %loop_0
292           : (!transform.op<"linalg.matmul">, !transform.any_op)
293             -> (!transform.any_op, !transform.any_op)
295     transform.yield
296   }
300 This achieves the desired tiling and fusion.
302 ## More Handle Invalidation
304 Finally, let us assume there exists an efficient microkernel, or a hardware instruction expressed as an intrinsic function, for a 4x4 matrix multiplication. For this purpose, we need to tile the fused operation to the desired size, and then outline it. The resulting function call can then be replaced with a call to the microkernel.
306 ```mlir
307 module attributes {transform.with_named_sequence} {
308   transform.named_sequence @__transform_main(
309        %arg0: !transform.any_op,
310        %arg1: !transform.op<"linalg.matmul">,
311        %arg2: !transform.op<"linalg.elemwise_binary">) {
312     // Since the %arg2 handle is associated with both elementwise operations,
313     // we need to split it into two handles so we can target only the second
314     // elementwise operation.
315     %add, %max = transform.split_handle %arg2
316         : (!transform.op<"linalg.elemwise_binary">)
317           -> (!transform.any_op, !transform.any_op)
319     // The actual tiling transformation takes tile sizes as attributes. It
320     // produces a handle to the loop generated during tiling.
321     %tiled, %loop = transform.structured.tile_using_forall %max
322                     tile_sizes [8, 32]
323         : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
325     // We can now fuse the other operations into the loop. Here, we fuse
326     // operations one by one. This requires the operation that is being fused to
327     // define the value used within the loop, so the order of such fusions is
328     // important. We could also use "transform.merge_handles" to obtain a single
329     // handle to all operations and give it to `fuse_into_containing_op` that
330     // would take care of the ordering in this case.
331     %add_fused, %loop_0 =
332         transform.structured.fuse_into_containing_op %add into %loop
333           : (!transform.any_op, !transform.any_op)
334             -> (!transform.any_op, !transform.any_op)
335     %matmul_fused, %loop_1 =
336         transform.structured.fuse_into_containing_op %arg1 into %loop_0
337           : (!transform.op<"linalg.matmul">, !transform.any_op)
338             -> (!transform.any_op, !transform.any_op)
340     // Tile again to get the desired size. Note that this time this tiles the
341     // "add" operation and fuses matmul into the loop, but doesn't affect the
342     // "max" operation. This illustrates the precise targeting with the
343     // transform dialect. Otherwise, it is difficult to differentiate "add" and
344     // "max", both of which having the same kind.
345     %tiled_2, %loop_2 =
346         transform.structured.tile_using_forall %add_fused tile_sizes [4, 4]
347           : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
348     %matmul_fused_2, %loop_3 =
349         transform.structured.fuse_into_containing_op %matmul_fused into %loop_2
350           : (!transform.any_op, !transform.any_op)
351             -> (!transform.any_op, !transform.any_op)
353     // Since outlining is currently only implemented for region-holding
354     // operations such as loops, use tiling to size 1 to materialize the outer
355     // loop that is going to be outlined.
356     %_, %outline_target =
357         transform.structured.tile_using_forall %tiled_2 tile_sizes [1]
358           : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
359     transform.structured.fuse_into_containing_op %matmul_fused_2
360         into %outline_target
361           : (!transform.any_op, !transform.any_op)
362             -> (!transform.any_op, !transform.any_op)
363     %func, %call = transform.loop.outline %outline_target
364                    {func_name = "outlined"}
365         : (!transform.any_op) -> (!transform.any_op, !transform.op<"func.call">)
367     transform.yield
368   }
372 This additional transformation also illustrates handle invalidation for nested operations. The `transform.loop.outline` operation consumes the handle to the loop, which invalidates it and all handles to any operations nested in it, such as `%2`. Attempting to use this handle will cause undefined behavior. (Note that it isn’t strictly necessary for this specific form of the outlining to consume the operand as the implementation only _moves_ the region without recreating the operations, but the author of the transformation chose to invalidate the handle anyway.)
374 Attempting to access the fusion result after outlining produces the following error
376 ```sh
377 test/Examples/transform/Ch1/invalidation-2.mlir:109:3: error: op uses a handle invalidated by a previously executed transform op
378   transform.debug.emit_remark_at %outline_target, "outlined loop" : !transform.any_op
379   ^
380 test/Examples/transform/Ch1/invalidation-2.mlir:102:25: note: handle to invalidated ops
381   %outline_target, %_ = transform.structured.tile_using_forall %tiled_2 tile_sizes [1]
382                         ^
383 test/Examples/transform/Ch1/invalidation-2.mlir:106:18: note: invalidated by this transform op that consumes its operand #0 and invalidates all handles to payload IR entities associated with this operand and entities nested in them
384   %func, %call = transform.loop.outline %outline_target {func_name = "outlined"}
385                  ^
386 test/Examples/transform/Ch1/invalidation-2.mlir:24:13: note: ancestor payload op
387   %biased = linalg.elemwise_binary { fun = #linalg.binary_fn<add> }
388             ^
389 test/Examples/transform/Ch1/invalidation-2.mlir:24:13: note: nested payload op
390   %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>)
393 Note that the “add” elementwise operation is indicated as payload ancestor because it was used to produce the tile loop, and the loop therefore has its location.
395 Finally, we would like to replace the call to the outlined function with a call to the microkernel. Unfortunately, the Transform dialect doesn’t have support for this transformation (and cannot have if the call is rewritten to a custom, out-of-tree operation). Therefore, we need to define new transform operations. The next chapters will describe how this can be done.
397 ## Tracking IR Modifications
399 The Transform dialect automatically tracks all IR changes that are made as part
400 of transform ops. (Implementations must use the provided rewriter to modify IR.)
401 If a payload op is erased, it is automatically removed from all handles that it
402 is currently associated with. If a payload op is replaced, the transform dialect
403 tries to find the replacement op and updates all handles accordingly. If a
404 multi-result op is replaced with values that are defined by multiple ops, or if
405 an op is replaced with an op of a different type, an error is produced. This is
406 because it is unclear whether the direct replacements actually represent the
407 computation of the original op. There are ways to customize this behavior. More
408 details can be found at the documentation of `transform::TrackingListener`.