1 //===-- Local.cpp - Functions to perform local transformations ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions perform various local transformations to the
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/GlobalAlias.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/LLVMContext.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/DebugInfo.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Support/GetElementPtrTypeIterator.h"
29 #include "llvm/Support/MathExtras.h"
32 //===----------------------------------------------------------------------===//
36 /// isSafeToLoadUnconditionally - Return true if we know that executing a load
37 /// from this value cannot trap. If it is not obviously safe to load from the
38 /// specified pointer, we do a quick local scan of the basic block containing
39 /// ScanFrom, to determine if the address is already accessed.
40 bool llvm::isSafeToLoadUnconditionally(Value
*V
, Instruction
*ScanFrom
) {
41 // If it is an alloca it is always safe to load from.
42 if (isa
<AllocaInst
>(V
)) return true;
44 // If it is a global variable it is mostly safe to load from.
45 if (const GlobalValue
*GV
= dyn_cast
<GlobalVariable
>(V
))
46 // Don't try to evaluate aliases. External weak GV can be null.
47 return !isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage();
49 // Otherwise, be a little bit agressive by scanning the local block where we
50 // want to check to see if the pointer is already being loaded or stored
51 // from/to. If so, the previous load or store would have already trapped,
52 // so there is no harm doing an extra load (also, CSE will later eliminate
53 // the load entirely).
54 BasicBlock::iterator BBI
= ScanFrom
, E
= ScanFrom
->getParent()->begin();
59 // If we see a free or a call which may write to memory (i.e. which might do
60 // a free) the pointer could be marked invalid.
61 if (isa
<FreeInst
>(BBI
) ||
62 (isa
<CallInst
>(BBI
) && BBI
->mayWriteToMemory() &&
63 !isa
<DbgInfoIntrinsic
>(BBI
)))
66 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
)) {
67 if (LI
->getOperand(0) == V
) return true;
68 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
)) {
69 if (SI
->getOperand(1) == V
) return true;
76 //===----------------------------------------------------------------------===//
77 // Local constant propagation.
80 // ConstantFoldTerminator - If a terminator instruction is predicated on a
81 // constant value, convert it into an unconditional branch to the constant
84 bool llvm::ConstantFoldTerminator(BasicBlock
*BB
) {
85 TerminatorInst
*T
= BB
->getTerminator();
87 // Branch - See if we are conditional jumping on constant
88 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(T
)) {
89 if (BI
->isUnconditional()) return false; // Can't optimize uncond branch
90 BasicBlock
*Dest1
= BI
->getSuccessor(0);
91 BasicBlock
*Dest2
= BI
->getSuccessor(1);
93 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
94 // Are we branching on constant?
95 // YES. Change to unconditional branch...
96 BasicBlock
*Destination
= Cond
->getZExtValue() ? Dest1
: Dest2
;
97 BasicBlock
*OldDest
= Cond
->getZExtValue() ? Dest2
: Dest1
;
99 //cerr << "Function: " << T->getParent()->getParent()
100 // << "\nRemoving branch from " << T->getParent()
101 // << "\n\nTo: " << OldDest << endl;
103 // Let the basic block know that we are letting go of it. Based on this,
104 // it will adjust it's PHI nodes.
105 assert(BI
->getParent() && "Terminator not inserted in block!");
106 OldDest
->removePredecessor(BI
->getParent());
108 // Set the unconditional destination, and change the insn to be an
109 // unconditional branch.
110 BI
->setUnconditionalDest(Destination
);
112 } else if (Dest2
== Dest1
) { // Conditional branch to same location?
113 // This branch matches something like this:
114 // br bool %cond, label %Dest, label %Dest
115 // and changes it into: br label %Dest
117 // Let the basic block know that we are letting go of one copy of it.
118 assert(BI
->getParent() && "Terminator not inserted in block!");
119 Dest1
->removePredecessor(BI
->getParent());
121 // Change a conditional branch to unconditional.
122 BI
->setUnconditionalDest(Dest1
);
125 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(T
)) {
126 // If we are switching on a constant, we can convert the switch into a
127 // single branch instruction!
128 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(SI
->getCondition());
129 BasicBlock
*TheOnlyDest
= SI
->getSuccessor(0); // The default dest
130 BasicBlock
*DefaultDest
= TheOnlyDest
;
131 assert(TheOnlyDest
== SI
->getDefaultDest() &&
132 "Default destination is not successor #0?");
134 // Figure out which case it goes to...
135 for (unsigned i
= 1, e
= SI
->getNumSuccessors(); i
!= e
; ++i
) {
136 // Found case matching a constant operand?
137 if (SI
->getSuccessorValue(i
) == CI
) {
138 TheOnlyDest
= SI
->getSuccessor(i
);
142 // Check to see if this branch is going to the same place as the default
143 // dest. If so, eliminate it as an explicit compare.
144 if (SI
->getSuccessor(i
) == DefaultDest
) {
145 // Remove this entry...
146 DefaultDest
->removePredecessor(SI
->getParent());
148 --i
; --e
; // Don't skip an entry...
152 // Otherwise, check to see if the switch only branches to one destination.
153 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
155 if (SI
->getSuccessor(i
) != TheOnlyDest
) TheOnlyDest
= 0;
158 if (CI
&& !TheOnlyDest
) {
159 // Branching on a constant, but not any of the cases, go to the default
161 TheOnlyDest
= SI
->getDefaultDest();
164 // If we found a single destination that we can fold the switch into, do so
167 // Insert the new branch..
168 BranchInst::Create(TheOnlyDest
, SI
);
169 BasicBlock
*BB
= SI
->getParent();
171 // Remove entries from PHI nodes which we no longer branch to...
172 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
!= e
; ++i
) {
173 // Found case matching a constant operand?
174 BasicBlock
*Succ
= SI
->getSuccessor(i
);
175 if (Succ
== TheOnlyDest
)
176 TheOnlyDest
= 0; // Don't modify the first branch to TheOnlyDest
178 Succ
->removePredecessor(BB
);
181 // Delete the old switch...
182 BB
->getInstList().erase(SI
);
184 } else if (SI
->getNumSuccessors() == 2) {
185 // Otherwise, we can fold this switch into a conditional branch
186 // instruction if it has only one non-default destination.
187 Value
*Cond
= new ICmpInst(SI
, ICmpInst::ICMP_EQ
, SI
->getCondition(),
188 SI
->getSuccessorValue(1), "cond");
189 // Insert the new branch...
190 BranchInst::Create(SI
->getSuccessor(1), SI
->getSuccessor(0), Cond
, SI
);
192 // Delete the old switch...
193 SI
->eraseFromParent();
201 //===----------------------------------------------------------------------===//
202 // Local dead code elimination...
205 /// isInstructionTriviallyDead - Return true if the result produced by the
206 /// instruction is not used, and the instruction has no side effects.
208 bool llvm::isInstructionTriviallyDead(Instruction
*I
) {
209 if (!I
->use_empty() || isa
<TerminatorInst
>(I
)) return false;
211 // We don't want debug info removed by anything this general.
212 if (isa
<DbgInfoIntrinsic
>(I
)) return false;
214 if (!I
->mayHaveSideEffects()) return true;
216 // Special case intrinsics that "may have side effects" but can be deleted
218 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
219 // Safe to delete llvm.stacksave if dead.
220 if (II
->getIntrinsicID() == Intrinsic::stacksave
)
225 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
226 /// trivially dead instruction, delete it. If that makes any of its operands
227 /// trivially dead, delete them too, recursively.
228 void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value
*V
) {
229 Instruction
*I
= dyn_cast
<Instruction
>(V
);
230 if (!I
|| !I
->use_empty() || !isInstructionTriviallyDead(I
))
233 SmallVector
<Instruction
*, 16> DeadInsts
;
234 DeadInsts
.push_back(I
);
236 while (!DeadInsts
.empty()) {
237 I
= DeadInsts
.pop_back_val();
239 // Null out all of the instruction's operands to see if any operand becomes
241 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
242 Value
*OpV
= I
->getOperand(i
);
245 if (!OpV
->use_empty()) continue;
247 // If the operand is an instruction that became dead as we nulled out the
248 // operand, and if it is 'trivially' dead, delete it in a future loop
250 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
251 if (isInstructionTriviallyDead(OpI
))
252 DeadInsts
.push_back(OpI
);
255 I
->eraseFromParent();
259 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
260 /// dead PHI node, due to being a def-use chain of single-use nodes that
261 /// either forms a cycle or is terminated by a trivially dead instruction,
262 /// delete it. If that makes any of its operands trivially dead, delete them
263 /// too, recursively.
265 llvm::RecursivelyDeleteDeadPHINode(PHINode
*PN
) {
266 // We can remove a PHI if it is on a cycle in the def-use graph
267 // where each node in the cycle has degree one, i.e. only one use,
268 // and is an instruction with no side effects.
269 if (!PN
->hasOneUse())
272 SmallPtrSet
<PHINode
*, 4> PHIs
;
274 for (Instruction
*J
= cast
<Instruction
>(*PN
->use_begin());
275 J
->hasOneUse() && !J
->mayHaveSideEffects();
276 J
= cast
<Instruction
>(*J
->use_begin()))
277 // If we find a PHI more than once, we're on a cycle that
278 // won't prove fruitful.
279 if (PHINode
*JP
= dyn_cast
<PHINode
>(J
))
280 if (!PHIs
.insert(cast
<PHINode
>(JP
))) {
281 // Break the cycle and delete the PHI and its operands.
282 JP
->replaceAllUsesWith(UndefValue::get(JP
->getType()));
283 RecursivelyDeleteTriviallyDeadInstructions(JP
);
288 //===----------------------------------------------------------------------===//
289 // Control Flow Graph Restructuring...
292 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
293 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
294 /// between them, moving the instructions in the predecessor into DestBB and
295 /// deleting the predecessor block.
297 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock
*DestBB
) {
298 // If BB has single-entry PHI nodes, fold them.
299 while (PHINode
*PN
= dyn_cast
<PHINode
>(DestBB
->begin())) {
300 Value
*NewVal
= PN
->getIncomingValue(0);
301 // Replace self referencing PHI with undef, it must be dead.
302 if (NewVal
== PN
) NewVal
= UndefValue::get(PN
->getType());
303 PN
->replaceAllUsesWith(NewVal
);
304 PN
->eraseFromParent();
307 BasicBlock
*PredBB
= DestBB
->getSinglePredecessor();
308 assert(PredBB
&& "Block doesn't have a single predecessor!");
310 // Splice all the instructions from PredBB to DestBB.
311 PredBB
->getTerminator()->eraseFromParent();
312 DestBB
->getInstList().splice(DestBB
->begin(), PredBB
->getInstList());
314 // Anything that branched to PredBB now branches to DestBB.
315 PredBB
->replaceAllUsesWith(DestBB
);
318 PredBB
->eraseFromParent();
321 /// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
322 /// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
323 /// with the DbgInfoIntrinsic that use the instruction I.
324 bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction
*I
,
325 SmallVectorImpl
<DbgInfoIntrinsic
*> *DbgInUses
) {
329 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end(); UI
!= UE
;
331 if (DbgInfoIntrinsic
*DI
= dyn_cast
<DbgInfoIntrinsic
>(*UI
)) {
333 DbgInUses
->push_back(DI
);