Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Transforms / Utils / Local.cpp
blob18ce81d143760f9e665ae8ef3c335fcd8052a126
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/GlobalAlias.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/LLVMContext.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/DebugInfo.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/Support/GetElementPtrTypeIterator.h"
29 #include "llvm/Support/MathExtras.h"
30 using namespace llvm;
32 //===----------------------------------------------------------------------===//
33 // Local analysis.
36 /// isSafeToLoadUnconditionally - Return true if we know that executing a load
37 /// from this value cannot trap. If it is not obviously safe to load from the
38 /// specified pointer, we do a quick local scan of the basic block containing
39 /// ScanFrom, to determine if the address is already accessed.
40 bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
41 // If it is an alloca it is always safe to load from.
42 if (isa<AllocaInst>(V)) return true;
44 // If it is a global variable it is mostly safe to load from.
45 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
46 // Don't try to evaluate aliases. External weak GV can be null.
47 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
49 // Otherwise, be a little bit agressive by scanning the local block where we
50 // want to check to see if the pointer is already being loaded or stored
51 // from/to. If so, the previous load or store would have already trapped,
52 // so there is no harm doing an extra load (also, CSE will later eliminate
53 // the load entirely).
54 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
56 while (BBI != E) {
57 --BBI;
59 // If we see a free or a call which may write to memory (i.e. which might do
60 // a free) the pointer could be marked invalid.
61 if (isa<FreeInst>(BBI) ||
62 (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
63 !isa<DbgInfoIntrinsic>(BBI)))
64 return false;
66 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
67 if (LI->getOperand(0) == V) return true;
68 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
69 if (SI->getOperand(1) == V) return true;
72 return false;
76 //===----------------------------------------------------------------------===//
77 // Local constant propagation.
80 // ConstantFoldTerminator - If a terminator instruction is predicated on a
81 // constant value, convert it into an unconditional branch to the constant
82 // destination.
84 bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
85 TerminatorInst *T = BB->getTerminator();
87 // Branch - See if we are conditional jumping on constant
88 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
89 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
90 BasicBlock *Dest1 = BI->getSuccessor(0);
91 BasicBlock *Dest2 = BI->getSuccessor(1);
93 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
94 // Are we branching on constant?
95 // YES. Change to unconditional branch...
96 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
97 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
99 //cerr << "Function: " << T->getParent()->getParent()
100 // << "\nRemoving branch from " << T->getParent()
101 // << "\n\nTo: " << OldDest << endl;
103 // Let the basic block know that we are letting go of it. Based on this,
104 // it will adjust it's PHI nodes.
105 assert(BI->getParent() && "Terminator not inserted in block!");
106 OldDest->removePredecessor(BI->getParent());
108 // Set the unconditional destination, and change the insn to be an
109 // unconditional branch.
110 BI->setUnconditionalDest(Destination);
111 return true;
112 } else if (Dest2 == Dest1) { // Conditional branch to same location?
113 // This branch matches something like this:
114 // br bool %cond, label %Dest, label %Dest
115 // and changes it into: br label %Dest
117 // Let the basic block know that we are letting go of one copy of it.
118 assert(BI->getParent() && "Terminator not inserted in block!");
119 Dest1->removePredecessor(BI->getParent());
121 // Change a conditional branch to unconditional.
122 BI->setUnconditionalDest(Dest1);
123 return true;
125 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
126 // If we are switching on a constant, we can convert the switch into a
127 // single branch instruction!
128 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
129 BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest
130 BasicBlock *DefaultDest = TheOnlyDest;
131 assert(TheOnlyDest == SI->getDefaultDest() &&
132 "Default destination is not successor #0?");
134 // Figure out which case it goes to...
135 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
136 // Found case matching a constant operand?
137 if (SI->getSuccessorValue(i) == CI) {
138 TheOnlyDest = SI->getSuccessor(i);
139 break;
142 // Check to see if this branch is going to the same place as the default
143 // dest. If so, eliminate it as an explicit compare.
144 if (SI->getSuccessor(i) == DefaultDest) {
145 // Remove this entry...
146 DefaultDest->removePredecessor(SI->getParent());
147 SI->removeCase(i);
148 --i; --e; // Don't skip an entry...
149 continue;
152 // Otherwise, check to see if the switch only branches to one destination.
153 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
154 // destinations.
155 if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
158 if (CI && !TheOnlyDest) {
159 // Branching on a constant, but not any of the cases, go to the default
160 // successor.
161 TheOnlyDest = SI->getDefaultDest();
164 // If we found a single destination that we can fold the switch into, do so
165 // now.
166 if (TheOnlyDest) {
167 // Insert the new branch..
168 BranchInst::Create(TheOnlyDest, SI);
169 BasicBlock *BB = SI->getParent();
171 // Remove entries from PHI nodes which we no longer branch to...
172 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
173 // Found case matching a constant operand?
174 BasicBlock *Succ = SI->getSuccessor(i);
175 if (Succ == TheOnlyDest)
176 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
177 else
178 Succ->removePredecessor(BB);
181 // Delete the old switch...
182 BB->getInstList().erase(SI);
183 return true;
184 } else if (SI->getNumSuccessors() == 2) {
185 // Otherwise, we can fold this switch into a conditional branch
186 // instruction if it has only one non-default destination.
187 Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
188 SI->getSuccessorValue(1), "cond");
189 // Insert the new branch...
190 BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
192 // Delete the old switch...
193 SI->eraseFromParent();
194 return true;
197 return false;
201 //===----------------------------------------------------------------------===//
202 // Local dead code elimination...
205 /// isInstructionTriviallyDead - Return true if the result produced by the
206 /// instruction is not used, and the instruction has no side effects.
208 bool llvm::isInstructionTriviallyDead(Instruction *I) {
209 if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
211 // We don't want debug info removed by anything this general.
212 if (isa<DbgInfoIntrinsic>(I)) return false;
214 if (!I->mayHaveSideEffects()) return true;
216 // Special case intrinsics that "may have side effects" but can be deleted
217 // when dead.
218 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
219 // Safe to delete llvm.stacksave if dead.
220 if (II->getIntrinsicID() == Intrinsic::stacksave)
221 return true;
222 return false;
225 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
226 /// trivially dead instruction, delete it. If that makes any of its operands
227 /// trivially dead, delete them too, recursively.
228 void llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
229 Instruction *I = dyn_cast<Instruction>(V);
230 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
231 return;
233 SmallVector<Instruction*, 16> DeadInsts;
234 DeadInsts.push_back(I);
236 while (!DeadInsts.empty()) {
237 I = DeadInsts.pop_back_val();
239 // Null out all of the instruction's operands to see if any operand becomes
240 // dead as we go.
241 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
242 Value *OpV = I->getOperand(i);
243 I->setOperand(i, 0);
245 if (!OpV->use_empty()) continue;
247 // If the operand is an instruction that became dead as we nulled out the
248 // operand, and if it is 'trivially' dead, delete it in a future loop
249 // iteration.
250 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
251 if (isInstructionTriviallyDead(OpI))
252 DeadInsts.push_back(OpI);
255 I->eraseFromParent();
259 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
260 /// dead PHI node, due to being a def-use chain of single-use nodes that
261 /// either forms a cycle or is terminated by a trivially dead instruction,
262 /// delete it. If that makes any of its operands trivially dead, delete them
263 /// too, recursively.
264 void
265 llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
266 // We can remove a PHI if it is on a cycle in the def-use graph
267 // where each node in the cycle has degree one, i.e. only one use,
268 // and is an instruction with no side effects.
269 if (!PN->hasOneUse())
270 return;
272 SmallPtrSet<PHINode *, 4> PHIs;
273 PHIs.insert(PN);
274 for (Instruction *J = cast<Instruction>(*PN->use_begin());
275 J->hasOneUse() && !J->mayHaveSideEffects();
276 J = cast<Instruction>(*J->use_begin()))
277 // If we find a PHI more than once, we're on a cycle that
278 // won't prove fruitful.
279 if (PHINode *JP = dyn_cast<PHINode>(J))
280 if (!PHIs.insert(cast<PHINode>(JP))) {
281 // Break the cycle and delete the PHI and its operands.
282 JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
283 RecursivelyDeleteTriviallyDeadInstructions(JP);
284 break;
288 //===----------------------------------------------------------------------===//
289 // Control Flow Graph Restructuring...
292 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
293 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
294 /// between them, moving the instructions in the predecessor into DestBB and
295 /// deleting the predecessor block.
297 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) {
298 // If BB has single-entry PHI nodes, fold them.
299 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
300 Value *NewVal = PN->getIncomingValue(0);
301 // Replace self referencing PHI with undef, it must be dead.
302 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
303 PN->replaceAllUsesWith(NewVal);
304 PN->eraseFromParent();
307 BasicBlock *PredBB = DestBB->getSinglePredecessor();
308 assert(PredBB && "Block doesn't have a single predecessor!");
310 // Splice all the instructions from PredBB to DestBB.
311 PredBB->getTerminator()->eraseFromParent();
312 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
314 // Anything that branched to PredBB now branches to DestBB.
315 PredBB->replaceAllUsesWith(DestBB);
317 // Nuke BB.
318 PredBB->eraseFromParent();
321 /// OnlyUsedByDbgIntrinsics - Return true if the instruction I is only used
322 /// by DbgIntrinsics. If DbgInUses is specified then the vector is filled
323 /// with the DbgInfoIntrinsic that use the instruction I.
324 bool llvm::OnlyUsedByDbgInfoIntrinsics(Instruction *I,
325 SmallVectorImpl<DbgInfoIntrinsic *> *DbgInUses) {
326 if (DbgInUses)
327 DbgInUses->clear();
329 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
330 ++UI) {
331 if (DbgInfoIntrinsic *DI = dyn_cast<DbgInfoIntrinsic>(*UI)) {
332 if (DbgInUses)
333 DbgInUses->push_back(DI);
334 } else {
335 if (DbgInUses)
336 DbgInUses->clear();
337 return false;
340 return true;