1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. These classes are reference counted, managed by the const SCEV *
18 // class. We only create one SCEV of a particular shape, so pointer-comparisons
19 // for equality are legal.
21 // One important aspect of the SCEV objects is that they are never cyclic, even
22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
24 // recurrence) then we represent it directly as a recurrence node, otherwise we
25 // represent it as a SCEVUnknown node.
27 // In addition to being able to represent expressions of various types, we also
28 // have folders that are used to build the *canonical* representation for a
29 // particular expression. These folders are capable of using a variety of
30 // rewrite rules to simplify the expressions.
32 // Once the folders are defined, we can implement the more interesting
33 // higher-level code, such as the code that recognizes PHI nodes of various
34 // types, computes the execution count of a loop, etc.
36 // TODO: We should use these routines and value representations to implement
37 // dependence analysis!
39 //===----------------------------------------------------------------------===//
41 // There are several good references for the techniques used in this analysis.
43 // Chains of recurrences -- a method to expedite the evaluation
44 // of closed-form functions
45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
47 // On computational properties of chains of recurrences
50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51 // Robert A. van Engelen
53 // Efficient Symbolic Analysis for Optimizing Compilers
54 // Robert A. van Engelen
56 // Using the chains of recurrences algebra for data dependence testing and
57 // induction variable substitution
58 // MS Thesis, Johnie Birch
60 //===----------------------------------------------------------------------===//
62 #define DEBUG_TYPE "scalar-evolution"
63 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
64 #include "llvm/Constants.h"
65 #include "llvm/DerivedTypes.h"
66 #include "llvm/GlobalVariable.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/LLVMContext.h"
69 #include "llvm/Operator.h"
70 #include "llvm/Analysis/ConstantFolding.h"
71 #include "llvm/Analysis/Dominators.h"
72 #include "llvm/Analysis/LoopInfo.h"
73 #include "llvm/Analysis/ValueTracking.h"
74 #include "llvm/Assembly/Writer.h"
75 #include "llvm/Target/TargetData.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/ConstantRange.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/GetElementPtrTypeIterator.h"
81 #include "llvm/Support/InstIterator.h"
82 #include "llvm/Support/MathExtras.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/ADT/Statistic.h"
85 #include "llvm/ADT/STLExtras.h"
86 #include "llvm/ADT/SmallPtrSet.h"
90 STATISTIC(NumArrayLenItCounts
,
91 "Number of trip counts computed with array length");
92 STATISTIC(NumTripCountsComputed
,
93 "Number of loops with predictable loop counts");
94 STATISTIC(NumTripCountsNotComputed
,
95 "Number of loops without predictable loop counts");
96 STATISTIC(NumBruteForceTripCountsComputed
,
97 "Number of loops with trip counts computed by force");
99 static cl::opt
<unsigned>
100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden
,
101 cl::desc("Maximum number of iterations SCEV will "
102 "symbolically execute a constant "
106 static RegisterPass
<ScalarEvolution
>
107 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
108 char ScalarEvolution::ID
= 0;
110 //===----------------------------------------------------------------------===//
111 // SCEV class definitions
112 //===----------------------------------------------------------------------===//
114 //===----------------------------------------------------------------------===//
115 // Implementation of the SCEV class.
120 void SCEV::dump() const {
125 void SCEV::print(std::ostream
&o
) const {
126 raw_os_ostream
OS(o
);
130 bool SCEV::isZero() const {
131 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
132 return SC
->getValue()->isZero();
136 bool SCEV::isOne() const {
137 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
138 return SC
->getValue()->isOne();
142 bool SCEV::isAllOnesValue() const {
143 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
144 return SC
->getValue()->isAllOnesValue();
148 SCEVCouldNotCompute::SCEVCouldNotCompute() :
149 SCEV(FoldingSetNodeID(), scCouldNotCompute
) {}
151 bool SCEVCouldNotCompute::isLoopInvariant(const Loop
*L
) const {
152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
156 const Type
*SCEVCouldNotCompute::getType() const {
157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
161 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop
*L
) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
167 SCEVCouldNotCompute::replaceSymbolicValuesWithConcrete(
170 ScalarEvolution
&SE
) const {
174 void SCEVCouldNotCompute::print(raw_ostream
&OS
) const {
175 OS
<< "***COULDNOTCOMPUTE***";
178 bool SCEVCouldNotCompute::classof(const SCEV
*S
) {
179 return S
->getSCEVType() == scCouldNotCompute
;
182 const SCEV
*ScalarEvolution::getConstant(ConstantInt
*V
) {
184 ID
.AddInteger(scConstant
);
187 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
188 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVConstant
>();
189 new (S
) SCEVConstant(ID
, V
);
190 UniqueSCEVs
.InsertNode(S
, IP
);
194 const SCEV
*ScalarEvolution::getConstant(const APInt
& Val
) {
195 return getConstant(ConstantInt::get(getContext(), Val
));
199 ScalarEvolution::getConstant(const Type
*Ty
, uint64_t V
, bool isSigned
) {
201 ConstantInt::get(cast
<IntegerType
>(Ty
), V
, isSigned
));
204 const Type
*SCEVConstant::getType() const { return V
->getType(); }
206 void SCEVConstant::print(raw_ostream
&OS
) const {
207 WriteAsOperand(OS
, V
, false);
210 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID
&ID
,
211 unsigned SCEVTy
, const SCEV
*op
, const Type
*ty
)
212 : SCEV(ID
, SCEVTy
), Op(op
), Ty(ty
) {}
214 bool SCEVCastExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
215 return Op
->dominates(BB
, DT
);
218 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID
&ID
,
219 const SCEV
*op
, const Type
*ty
)
220 : SCEVCastExpr(ID
, scTruncate
, op
, ty
) {
221 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
222 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
223 "Cannot truncate non-integer value!");
226 void SCEVTruncateExpr::print(raw_ostream
&OS
) const {
227 OS
<< "(trunc " << *Op
->getType() << " " << *Op
<< " to " << *Ty
<< ")";
230 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID
&ID
,
231 const SCEV
*op
, const Type
*ty
)
232 : SCEVCastExpr(ID
, scZeroExtend
, op
, ty
) {
233 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
234 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
235 "Cannot zero extend non-integer value!");
238 void SCEVZeroExtendExpr::print(raw_ostream
&OS
) const {
239 OS
<< "(zext " << *Op
->getType() << " " << *Op
<< " to " << *Ty
<< ")";
242 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID
&ID
,
243 const SCEV
*op
, const Type
*ty
)
244 : SCEVCastExpr(ID
, scSignExtend
, op
, ty
) {
245 assert((Op
->getType()->isInteger() || isa
<PointerType
>(Op
->getType())) &&
246 (Ty
->isInteger() || isa
<PointerType
>(Ty
)) &&
247 "Cannot sign extend non-integer value!");
250 void SCEVSignExtendExpr::print(raw_ostream
&OS
) const {
251 OS
<< "(sext " << *Op
->getType() << " " << *Op
<< " to " << *Ty
<< ")";
254 void SCEVCommutativeExpr::print(raw_ostream
&OS
) const {
255 assert(Operands
.size() > 1 && "This plus expr shouldn't exist!");
256 const char *OpStr
= getOperationStr();
257 OS
<< "(" << *Operands
[0];
258 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
259 OS
<< OpStr
<< *Operands
[i
];
264 SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete(
267 ScalarEvolution
&SE
) const {
268 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
270 getOperand(i
)->replaceSymbolicValuesWithConcrete(Sym
, Conc
, SE
);
271 if (H
!= getOperand(i
)) {
272 SmallVector
<const SCEV
*, 8> NewOps
;
273 NewOps
.reserve(getNumOperands());
274 for (unsigned j
= 0; j
!= i
; ++j
)
275 NewOps
.push_back(getOperand(j
));
277 for (++i
; i
!= e
; ++i
)
278 NewOps
.push_back(getOperand(i
)->
279 replaceSymbolicValuesWithConcrete(Sym
, Conc
, SE
));
281 if (isa
<SCEVAddExpr
>(this))
282 return SE
.getAddExpr(NewOps
);
283 else if (isa
<SCEVMulExpr
>(this))
284 return SE
.getMulExpr(NewOps
);
285 else if (isa
<SCEVSMaxExpr
>(this))
286 return SE
.getSMaxExpr(NewOps
);
287 else if (isa
<SCEVUMaxExpr
>(this))
288 return SE
.getUMaxExpr(NewOps
);
290 llvm_unreachable("Unknown commutative expr!");
296 bool SCEVNAryExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
297 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
298 if (!getOperand(i
)->dominates(BB
, DT
))
304 bool SCEVUDivExpr::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
305 return LHS
->dominates(BB
, DT
) && RHS
->dominates(BB
, DT
);
308 void SCEVUDivExpr::print(raw_ostream
&OS
) const {
309 OS
<< "(" << *LHS
<< " /u " << *RHS
<< ")";
312 const Type
*SCEVUDivExpr::getType() const {
313 // In most cases the types of LHS and RHS will be the same, but in some
314 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
315 // depend on the type for correctness, but handling types carefully can
316 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
317 // a pointer type than the RHS, so use the RHS' type here.
318 return RHS
->getType();
322 SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV
*Sym
,
324 ScalarEvolution
&SE
) const {
325 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
327 getOperand(i
)->replaceSymbolicValuesWithConcrete(Sym
, Conc
, SE
);
328 if (H
!= getOperand(i
)) {
329 SmallVector
<const SCEV
*, 8> NewOps
;
330 NewOps
.reserve(getNumOperands());
331 for (unsigned j
= 0; j
!= i
; ++j
)
332 NewOps
.push_back(getOperand(j
));
334 for (++i
; i
!= e
; ++i
)
335 NewOps
.push_back(getOperand(i
)->
336 replaceSymbolicValuesWithConcrete(Sym
, Conc
, SE
));
338 return SE
.getAddRecExpr(NewOps
, L
);
345 bool SCEVAddRecExpr::isLoopInvariant(const Loop
*QueryLoop
) const {
346 // Add recurrences are never invariant in the function-body (null loop).
350 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
351 if (QueryLoop
->contains(L
->getHeader()))
354 // This recurrence is variant w.r.t. QueryLoop if any of its operands
356 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
357 if (!getOperand(i
)->isLoopInvariant(QueryLoop
))
360 // Otherwise it's loop-invariant.
364 void SCEVAddRecExpr::print(raw_ostream
&OS
) const {
365 OS
<< "{" << *Operands
[0];
366 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
367 OS
<< ",+," << *Operands
[i
];
368 OS
<< "}<" << L
->getHeader()->getName() + ">";
371 bool SCEVUnknown::isLoopInvariant(const Loop
*L
) const {
372 // All non-instruction values are loop invariant. All instructions are loop
373 // invariant if they are not contained in the specified loop.
374 // Instructions are never considered invariant in the function body
375 // (null loop) because they are defined within the "loop".
376 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
377 return L
&& !L
->contains(I
->getParent());
381 bool SCEVUnknown::dominates(BasicBlock
*BB
, DominatorTree
*DT
) const {
382 if (Instruction
*I
= dyn_cast
<Instruction
>(getValue()))
383 return DT
->dominates(I
->getParent(), BB
);
387 const Type
*SCEVUnknown::getType() const {
391 void SCEVUnknown::print(raw_ostream
&OS
) const {
392 WriteAsOperand(OS
, V
, false);
395 //===----------------------------------------------------------------------===//
397 //===----------------------------------------------------------------------===//
400 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
401 /// than the complexity of the RHS. This comparator is used to canonicalize
403 class VISIBILITY_HIDDEN SCEVComplexityCompare
{
406 explicit SCEVComplexityCompare(LoopInfo
*li
) : LI(li
) {}
408 bool operator()(const SCEV
*LHS
, const SCEV
*RHS
) const {
409 // Primarily, sort the SCEVs by their getSCEVType().
410 if (LHS
->getSCEVType() != RHS
->getSCEVType())
411 return LHS
->getSCEVType() < RHS
->getSCEVType();
413 // Aside from the getSCEVType() ordering, the particular ordering
414 // isn't very important except that it's beneficial to be consistent,
415 // so that (a + b) and (b + a) don't end up as different expressions.
417 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
418 // not as complete as it could be.
419 if (const SCEVUnknown
*LU
= dyn_cast
<SCEVUnknown
>(LHS
)) {
420 const SCEVUnknown
*RU
= cast
<SCEVUnknown
>(RHS
);
422 // Order pointer values after integer values. This helps SCEVExpander
424 if (isa
<PointerType
>(LU
->getType()) && !isa
<PointerType
>(RU
->getType()))
426 if (isa
<PointerType
>(RU
->getType()) && !isa
<PointerType
>(LU
->getType()))
429 // Compare getValueID values.
430 if (LU
->getValue()->getValueID() != RU
->getValue()->getValueID())
431 return LU
->getValue()->getValueID() < RU
->getValue()->getValueID();
433 // Sort arguments by their position.
434 if (const Argument
*LA
= dyn_cast
<Argument
>(LU
->getValue())) {
435 const Argument
*RA
= cast
<Argument
>(RU
->getValue());
436 return LA
->getArgNo() < RA
->getArgNo();
439 // For instructions, compare their loop depth, and their opcode.
440 // This is pretty loose.
441 if (Instruction
*LV
= dyn_cast
<Instruction
>(LU
->getValue())) {
442 Instruction
*RV
= cast
<Instruction
>(RU
->getValue());
444 // Compare loop depths.
445 if (LI
->getLoopDepth(LV
->getParent()) !=
446 LI
->getLoopDepth(RV
->getParent()))
447 return LI
->getLoopDepth(LV
->getParent()) <
448 LI
->getLoopDepth(RV
->getParent());
451 if (LV
->getOpcode() != RV
->getOpcode())
452 return LV
->getOpcode() < RV
->getOpcode();
454 // Compare the number of operands.
455 if (LV
->getNumOperands() != RV
->getNumOperands())
456 return LV
->getNumOperands() < RV
->getNumOperands();
462 // Compare constant values.
463 if (const SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(LHS
)) {
464 const SCEVConstant
*RC
= cast
<SCEVConstant
>(RHS
);
465 if (LC
->getValue()->getBitWidth() != RC
->getValue()->getBitWidth())
466 return LC
->getValue()->getBitWidth() < RC
->getValue()->getBitWidth();
467 return LC
->getValue()->getValue().ult(RC
->getValue()->getValue());
470 // Compare addrec loop depths.
471 if (const SCEVAddRecExpr
*LA
= dyn_cast
<SCEVAddRecExpr
>(LHS
)) {
472 const SCEVAddRecExpr
*RA
= cast
<SCEVAddRecExpr
>(RHS
);
473 if (LA
->getLoop()->getLoopDepth() != RA
->getLoop()->getLoopDepth())
474 return LA
->getLoop()->getLoopDepth() < RA
->getLoop()->getLoopDepth();
477 // Lexicographically compare n-ary expressions.
478 if (const SCEVNAryExpr
*LC
= dyn_cast
<SCEVNAryExpr
>(LHS
)) {
479 const SCEVNAryExpr
*RC
= cast
<SCEVNAryExpr
>(RHS
);
480 for (unsigned i
= 0, e
= LC
->getNumOperands(); i
!= e
; ++i
) {
481 if (i
>= RC
->getNumOperands())
483 if (operator()(LC
->getOperand(i
), RC
->getOperand(i
)))
485 if (operator()(RC
->getOperand(i
), LC
->getOperand(i
)))
488 return LC
->getNumOperands() < RC
->getNumOperands();
491 // Lexicographically compare udiv expressions.
492 if (const SCEVUDivExpr
*LC
= dyn_cast
<SCEVUDivExpr
>(LHS
)) {
493 const SCEVUDivExpr
*RC
= cast
<SCEVUDivExpr
>(RHS
);
494 if (operator()(LC
->getLHS(), RC
->getLHS()))
496 if (operator()(RC
->getLHS(), LC
->getLHS()))
498 if (operator()(LC
->getRHS(), RC
->getRHS()))
500 if (operator()(RC
->getRHS(), LC
->getRHS()))
505 // Compare cast expressions by operand.
506 if (const SCEVCastExpr
*LC
= dyn_cast
<SCEVCastExpr
>(LHS
)) {
507 const SCEVCastExpr
*RC
= cast
<SCEVCastExpr
>(RHS
);
508 return operator()(LC
->getOperand(), RC
->getOperand());
511 llvm_unreachable("Unknown SCEV kind!");
517 /// GroupByComplexity - Given a list of SCEV objects, order them by their
518 /// complexity, and group objects of the same complexity together by value.
519 /// When this routine is finished, we know that any duplicates in the vector are
520 /// consecutive and that complexity is monotonically increasing.
522 /// Note that we go take special precautions to ensure that we get determinstic
523 /// results from this routine. In other words, we don't want the results of
524 /// this to depend on where the addresses of various SCEV objects happened to
527 static void GroupByComplexity(SmallVectorImpl
<const SCEV
*> &Ops
,
529 if (Ops
.size() < 2) return; // Noop
530 if (Ops
.size() == 2) {
531 // This is the common case, which also happens to be trivially simple.
533 if (SCEVComplexityCompare(LI
)(Ops
[1], Ops
[0]))
534 std::swap(Ops
[0], Ops
[1]);
538 // Do the rough sort by complexity.
539 std::stable_sort(Ops
.begin(), Ops
.end(), SCEVComplexityCompare(LI
));
541 // Now that we are sorted by complexity, group elements of the same
542 // complexity. Note that this is, at worst, N^2, but the vector is likely to
543 // be extremely short in practice. Note that we take this approach because we
544 // do not want to depend on the addresses of the objects we are grouping.
545 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-2; ++i
) {
546 const SCEV
*S
= Ops
[i
];
547 unsigned Complexity
= S
->getSCEVType();
549 // If there are any objects of the same complexity and same value as this
551 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
]->getSCEVType() == Complexity
; ++j
) {
552 if (Ops
[j
] == S
) { // Found a duplicate.
553 // Move it to immediately after i'th element.
554 std::swap(Ops
[i
+1], Ops
[j
]);
555 ++i
; // no need to rescan it.
556 if (i
== e
-2) return; // Done!
564 //===----------------------------------------------------------------------===//
565 // Simple SCEV method implementations
566 //===----------------------------------------------------------------------===//
568 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
570 static const SCEV
*BinomialCoefficient(const SCEV
*It
, unsigned K
,
572 const Type
* ResultTy
) {
573 // Handle the simplest case efficiently.
575 return SE
.getTruncateOrZeroExtend(It
, ResultTy
);
577 // We are using the following formula for BC(It, K):
579 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
581 // Suppose, W is the bitwidth of the return value. We must be prepared for
582 // overflow. Hence, we must assure that the result of our computation is
583 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
584 // safe in modular arithmetic.
586 // However, this code doesn't use exactly that formula; the formula it uses
587 // is something like the following, where T is the number of factors of 2 in
588 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
591 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
593 // This formula is trivially equivalent to the previous formula. However,
594 // this formula can be implemented much more efficiently. The trick is that
595 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
596 // arithmetic. To do exact division in modular arithmetic, all we have
597 // to do is multiply by the inverse. Therefore, this step can be done at
600 // The next issue is how to safely do the division by 2^T. The way this
601 // is done is by doing the multiplication step at a width of at least W + T
602 // bits. This way, the bottom W+T bits of the product are accurate. Then,
603 // when we perform the division by 2^T (which is equivalent to a right shift
604 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
605 // truncated out after the division by 2^T.
607 // In comparison to just directly using the first formula, this technique
608 // is much more efficient; using the first formula requires W * K bits,
609 // but this formula less than W + K bits. Also, the first formula requires
610 // a division step, whereas this formula only requires multiplies and shifts.
612 // It doesn't matter whether the subtraction step is done in the calculation
613 // width or the input iteration count's width; if the subtraction overflows,
614 // the result must be zero anyway. We prefer here to do it in the width of
615 // the induction variable because it helps a lot for certain cases; CodeGen
616 // isn't smart enough to ignore the overflow, which leads to much less
617 // efficient code if the width of the subtraction is wider than the native
620 // (It's possible to not widen at all by pulling out factors of 2 before
621 // the multiplication; for example, K=2 can be calculated as
622 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
623 // extra arithmetic, so it's not an obvious win, and it gets
624 // much more complicated for K > 3.)
626 // Protection from insane SCEVs; this bound is conservative,
627 // but it probably doesn't matter.
629 return SE
.getCouldNotCompute();
631 unsigned W
= SE
.getTypeSizeInBits(ResultTy
);
633 // Calculate K! / 2^T and T; we divide out the factors of two before
634 // multiplying for calculating K! / 2^T to avoid overflow.
635 // Other overflow doesn't matter because we only care about the bottom
636 // W bits of the result.
637 APInt
OddFactorial(W
, 1);
639 for (unsigned i
= 3; i
<= K
; ++i
) {
641 unsigned TwoFactors
= Mult
.countTrailingZeros();
643 Mult
= Mult
.lshr(TwoFactors
);
644 OddFactorial
*= Mult
;
647 // We need at least W + T bits for the multiplication step
648 unsigned CalculationBits
= W
+ T
;
650 // Calcuate 2^T, at width T+W.
651 APInt DivFactor
= APInt(CalculationBits
, 1).shl(T
);
653 // Calculate the multiplicative inverse of K! / 2^T;
654 // this multiplication factor will perform the exact division by
656 APInt Mod
= APInt::getSignedMinValue(W
+1);
657 APInt MultiplyFactor
= OddFactorial
.zext(W
+1);
658 MultiplyFactor
= MultiplyFactor
.multiplicativeInverse(Mod
);
659 MultiplyFactor
= MultiplyFactor
.trunc(W
);
661 // Calculate the product, at width T+W
662 const IntegerType
*CalculationTy
= IntegerType::get(CalculationBits
);
663 const SCEV
*Dividend
= SE
.getTruncateOrZeroExtend(It
, CalculationTy
);
664 for (unsigned i
= 1; i
!= K
; ++i
) {
665 const SCEV
*S
= SE
.getMinusSCEV(It
, SE
.getIntegerSCEV(i
, It
->getType()));
666 Dividend
= SE
.getMulExpr(Dividend
,
667 SE
.getTruncateOrZeroExtend(S
, CalculationTy
));
671 const SCEV
*DivResult
= SE
.getUDivExpr(Dividend
, SE
.getConstant(DivFactor
));
673 // Truncate the result, and divide by K! / 2^T.
675 return SE
.getMulExpr(SE
.getConstant(MultiplyFactor
),
676 SE
.getTruncateOrZeroExtend(DivResult
, ResultTy
));
679 /// evaluateAtIteration - Return the value of this chain of recurrences at
680 /// the specified iteration number. We can evaluate this recurrence by
681 /// multiplying each element in the chain by the binomial coefficient
682 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
684 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
686 /// where BC(It, k) stands for binomial coefficient.
688 const SCEV
*SCEVAddRecExpr::evaluateAtIteration(const SCEV
*It
,
689 ScalarEvolution
&SE
) const {
690 const SCEV
*Result
= getStart();
691 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
692 // The computation is correct in the face of overflow provided that the
693 // multiplication is performed _after_ the evaluation of the binomial
695 const SCEV
*Coeff
= BinomialCoefficient(It
, i
, SE
, getType());
696 if (isa
<SCEVCouldNotCompute
>(Coeff
))
699 Result
= SE
.getAddExpr(Result
, SE
.getMulExpr(getOperand(i
), Coeff
));
704 //===----------------------------------------------------------------------===//
705 // SCEV Expression folder implementations
706 //===----------------------------------------------------------------------===//
708 const SCEV
*ScalarEvolution::getTruncateExpr(const SCEV
*Op
,
710 assert(getTypeSizeInBits(Op
->getType()) > getTypeSizeInBits(Ty
) &&
711 "This is not a truncating conversion!");
712 assert(isSCEVable(Ty
) &&
713 "This is not a conversion to a SCEVable type!");
714 Ty
= getEffectiveSCEVType(Ty
);
717 ID
.AddInteger(scTruncate
);
721 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
723 // Fold if the operand is constant.
724 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
726 cast
<ConstantInt
>(ConstantExpr::getTrunc(SC
->getValue(), Ty
)));
728 // trunc(trunc(x)) --> trunc(x)
729 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
))
730 return getTruncateExpr(ST
->getOperand(), Ty
);
732 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
733 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
734 return getTruncateOrSignExtend(SS
->getOperand(), Ty
);
736 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
737 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
738 return getTruncateOrZeroExtend(SZ
->getOperand(), Ty
);
740 // If the input value is a chrec scev, truncate the chrec's operands.
741 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
742 SmallVector
<const SCEV
*, 4> Operands
;
743 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
744 Operands
.push_back(getTruncateExpr(AddRec
->getOperand(i
), Ty
));
745 return getAddRecExpr(Operands
, AddRec
->getLoop());
748 // The cast wasn't folded; create an explicit cast node.
749 // Recompute the insert position, as it may have been invalidated.
750 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
751 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVTruncateExpr
>();
752 new (S
) SCEVTruncateExpr(ID
, Op
, Ty
);
753 UniqueSCEVs
.InsertNode(S
, IP
);
757 const SCEV
*ScalarEvolution::getZeroExtendExpr(const SCEV
*Op
,
759 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
760 "This is not an extending conversion!");
761 assert(isSCEVable(Ty
) &&
762 "This is not a conversion to a SCEVable type!");
763 Ty
= getEffectiveSCEVType(Ty
);
765 // Fold if the operand is constant.
766 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
)) {
767 const Type
*IntTy
= getEffectiveSCEVType(Ty
);
768 Constant
*C
= ConstantExpr::getZExt(SC
->getValue(), IntTy
);
769 if (IntTy
!= Ty
) C
= ConstantExpr::getIntToPtr(C
, Ty
);
770 return getConstant(cast
<ConstantInt
>(C
));
773 // zext(zext(x)) --> zext(x)
774 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
775 return getZeroExtendExpr(SZ
->getOperand(), Ty
);
777 // Before doing any expensive analysis, check to see if we've already
778 // computed a SCEV for this Op and Ty.
780 ID
.AddInteger(scZeroExtend
);
784 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
786 // If the input value is a chrec scev, and we can prove that the value
787 // did not overflow the old, smaller, value, we can zero extend all of the
788 // operands (often constants). This allows analysis of something like
789 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
790 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
791 if (AR
->isAffine()) {
792 const SCEV
*Start
= AR
->getStart();
793 const SCEV
*Step
= AR
->getStepRecurrence(*this);
794 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
795 const Loop
*L
= AR
->getLoop();
797 // Check whether the backedge-taken count is SCEVCouldNotCompute.
798 // Note that this serves two purposes: It filters out loops that are
799 // simply not analyzable, and it covers the case where this code is
800 // being called from within backedge-taken count analysis, such that
801 // attempting to ask for the backedge-taken count would likely result
802 // in infinite recursion. In the later case, the analysis code will
803 // cope with a conservative value, and it will take care to purge
804 // that value once it has finished.
805 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(L
);
806 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
807 // Manually compute the final value for AR, checking for
810 // Check whether the backedge-taken count can be losslessly casted to
811 // the addrec's type. The count is always unsigned.
812 const SCEV
*CastedMaxBECount
=
813 getTruncateOrZeroExtend(MaxBECount
, Start
->getType());
814 const SCEV
*RecastedMaxBECount
=
815 getTruncateOrZeroExtend(CastedMaxBECount
, MaxBECount
->getType());
816 if (MaxBECount
== RecastedMaxBECount
) {
817 const Type
*WideTy
= IntegerType::get(BitWidth
* 2);
818 // Check whether Start+Step*MaxBECount has no unsigned overflow.
820 getMulExpr(CastedMaxBECount
,
821 getTruncateOrZeroExtend(Step
, Start
->getType()));
822 const SCEV
*Add
= getAddExpr(Start
, ZMul
);
823 const SCEV
*OperandExtendedAdd
=
824 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
825 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
826 getZeroExtendExpr(Step
, WideTy
)));
827 if (getZeroExtendExpr(Add
, WideTy
) == OperandExtendedAdd
)
828 // Return the expression with the addrec on the outside.
829 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
830 getZeroExtendExpr(Step
, Ty
),
833 // Similar to above, only this time treat the step value as signed.
834 // This covers loops that count down.
836 getMulExpr(CastedMaxBECount
,
837 getTruncateOrSignExtend(Step
, Start
->getType()));
838 Add
= getAddExpr(Start
, SMul
);
840 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
841 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
842 getSignExtendExpr(Step
, WideTy
)));
843 if (getZeroExtendExpr(Add
, WideTy
) == OperandExtendedAdd
)
844 // Return the expression with the addrec on the outside.
845 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
846 getSignExtendExpr(Step
, Ty
),
850 // If the backedge is guarded by a comparison with the pre-inc value
851 // the addrec is safe. Also, if the entry is guarded by a comparison
852 // with the start value and the backedge is guarded by a comparison
853 // with the post-inc value, the addrec is safe.
854 if (isKnownPositive(Step
)) {
855 const SCEV
*N
= getConstant(APInt::getMinValue(BitWidth
) -
856 getUnsignedRange(Step
).getUnsignedMax());
857 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_ULT
, AR
, N
) ||
858 (isLoopGuardedByCond(L
, ICmpInst::ICMP_ULT
, Start
, N
) &&
859 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_ULT
,
860 AR
->getPostIncExpr(*this), N
)))
861 // Return the expression with the addrec on the outside.
862 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
863 getZeroExtendExpr(Step
, Ty
),
865 } else if (isKnownNegative(Step
)) {
866 const SCEV
*N
= getConstant(APInt::getMaxValue(BitWidth
) -
867 getSignedRange(Step
).getSignedMin());
868 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_UGT
, AR
, N
) &&
869 (isLoopGuardedByCond(L
, ICmpInst::ICMP_UGT
, Start
, N
) ||
870 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_UGT
,
871 AR
->getPostIncExpr(*this), N
)))
872 // Return the expression with the addrec on the outside.
873 return getAddRecExpr(getZeroExtendExpr(Start
, Ty
),
874 getSignExtendExpr(Step
, Ty
),
880 // The cast wasn't folded; create an explicit cast node.
881 // Recompute the insert position, as it may have been invalidated.
882 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
883 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVZeroExtendExpr
>();
884 new (S
) SCEVZeroExtendExpr(ID
, Op
, Ty
);
885 UniqueSCEVs
.InsertNode(S
, IP
);
889 const SCEV
*ScalarEvolution::getSignExtendExpr(const SCEV
*Op
,
891 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
892 "This is not an extending conversion!");
893 assert(isSCEVable(Ty
) &&
894 "This is not a conversion to a SCEVable type!");
895 Ty
= getEffectiveSCEVType(Ty
);
897 // Fold if the operand is constant.
898 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
)) {
899 const Type
*IntTy
= getEffectiveSCEVType(Ty
);
900 Constant
*C
= ConstantExpr::getSExt(SC
->getValue(), IntTy
);
901 if (IntTy
!= Ty
) C
= ConstantExpr::getIntToPtr(C
, Ty
);
902 return getConstant(cast
<ConstantInt
>(C
));
905 // sext(sext(x)) --> sext(x)
906 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
907 return getSignExtendExpr(SS
->getOperand(), Ty
);
909 // Before doing any expensive analysis, check to see if we've already
910 // computed a SCEV for this Op and Ty.
912 ID
.AddInteger(scSignExtend
);
916 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
918 // If the input value is a chrec scev, and we can prove that the value
919 // did not overflow the old, smaller, value, we can sign extend all of the
920 // operands (often constants). This allows analysis of something like
921 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
922 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
923 if (AR
->isAffine()) {
924 const SCEV
*Start
= AR
->getStart();
925 const SCEV
*Step
= AR
->getStepRecurrence(*this);
926 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
927 const Loop
*L
= AR
->getLoop();
929 // Check whether the backedge-taken count is SCEVCouldNotCompute.
930 // Note that this serves two purposes: It filters out loops that are
931 // simply not analyzable, and it covers the case where this code is
932 // being called from within backedge-taken count analysis, such that
933 // attempting to ask for the backedge-taken count would likely result
934 // in infinite recursion. In the later case, the analysis code will
935 // cope with a conservative value, and it will take care to purge
936 // that value once it has finished.
937 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(L
);
938 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
939 // Manually compute the final value for AR, checking for
942 // Check whether the backedge-taken count can be losslessly casted to
943 // the addrec's type. The count is always unsigned.
944 const SCEV
*CastedMaxBECount
=
945 getTruncateOrZeroExtend(MaxBECount
, Start
->getType());
946 const SCEV
*RecastedMaxBECount
=
947 getTruncateOrZeroExtend(CastedMaxBECount
, MaxBECount
->getType());
948 if (MaxBECount
== RecastedMaxBECount
) {
949 const Type
*WideTy
= IntegerType::get(BitWidth
* 2);
950 // Check whether Start+Step*MaxBECount has no signed overflow.
952 getMulExpr(CastedMaxBECount
,
953 getTruncateOrSignExtend(Step
, Start
->getType()));
954 const SCEV
*Add
= getAddExpr(Start
, SMul
);
955 const SCEV
*OperandExtendedAdd
=
956 getAddExpr(getSignExtendExpr(Start
, WideTy
),
957 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
958 getSignExtendExpr(Step
, WideTy
)));
959 if (getSignExtendExpr(Add
, WideTy
) == OperandExtendedAdd
)
960 // Return the expression with the addrec on the outside.
961 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
962 getSignExtendExpr(Step
, Ty
),
965 // Similar to above, only this time treat the step value as unsigned.
966 // This covers loops that count up with an unsigned step.
968 getMulExpr(CastedMaxBECount
,
969 getTruncateOrZeroExtend(Step
, Start
->getType()));
970 Add
= getAddExpr(Start
, UMul
);
972 getAddExpr(getZeroExtendExpr(Start
, WideTy
),
973 getMulExpr(getZeroExtendExpr(CastedMaxBECount
, WideTy
),
974 getZeroExtendExpr(Step
, WideTy
)));
975 if (getZeroExtendExpr(Add
, WideTy
) == OperandExtendedAdd
)
976 // Return the expression with the addrec on the outside.
977 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
978 getZeroExtendExpr(Step
, Ty
),
982 // If the backedge is guarded by a comparison with the pre-inc value
983 // the addrec is safe. Also, if the entry is guarded by a comparison
984 // with the start value and the backedge is guarded by a comparison
985 // with the post-inc value, the addrec is safe.
986 if (isKnownPositive(Step
)) {
987 const SCEV
*N
= getConstant(APInt::getSignedMinValue(BitWidth
) -
988 getSignedRange(Step
).getSignedMax());
989 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_SLT
, AR
, N
) ||
990 (isLoopGuardedByCond(L
, ICmpInst::ICMP_SLT
, Start
, N
) &&
991 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_SLT
,
992 AR
->getPostIncExpr(*this), N
)))
993 // Return the expression with the addrec on the outside.
994 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
995 getSignExtendExpr(Step
, Ty
),
997 } else if (isKnownNegative(Step
)) {
998 const SCEV
*N
= getConstant(APInt::getSignedMaxValue(BitWidth
) -
999 getSignedRange(Step
).getSignedMin());
1000 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_SGT
, AR
, N
) ||
1001 (isLoopGuardedByCond(L
, ICmpInst::ICMP_SGT
, Start
, N
) &&
1002 isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_SGT
,
1003 AR
->getPostIncExpr(*this), N
)))
1004 // Return the expression with the addrec on the outside.
1005 return getAddRecExpr(getSignExtendExpr(Start
, Ty
),
1006 getSignExtendExpr(Step
, Ty
),
1012 // The cast wasn't folded; create an explicit cast node.
1013 // Recompute the insert position, as it may have been invalidated.
1014 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1015 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVSignExtendExpr
>();
1016 new (S
) SCEVSignExtendExpr(ID
, Op
, Ty
);
1017 UniqueSCEVs
.InsertNode(S
, IP
);
1021 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1022 /// unspecified bits out to the given type.
1024 const SCEV
*ScalarEvolution::getAnyExtendExpr(const SCEV
*Op
,
1026 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1027 "This is not an extending conversion!");
1028 assert(isSCEVable(Ty
) &&
1029 "This is not a conversion to a SCEVable type!");
1030 Ty
= getEffectiveSCEVType(Ty
);
1032 // Sign-extend negative constants.
1033 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1034 if (SC
->getValue()->getValue().isNegative())
1035 return getSignExtendExpr(Op
, Ty
);
1037 // Peel off a truncate cast.
1038 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
1039 const SCEV
*NewOp
= T
->getOperand();
1040 if (getTypeSizeInBits(NewOp
->getType()) < getTypeSizeInBits(Ty
))
1041 return getAnyExtendExpr(NewOp
, Ty
);
1042 return getTruncateOrNoop(NewOp
, Ty
);
1045 // Next try a zext cast. If the cast is folded, use it.
1046 const SCEV
*ZExt
= getZeroExtendExpr(Op
, Ty
);
1047 if (!isa
<SCEVZeroExtendExpr
>(ZExt
))
1050 // Next try a sext cast. If the cast is folded, use it.
1051 const SCEV
*SExt
= getSignExtendExpr(Op
, Ty
);
1052 if (!isa
<SCEVSignExtendExpr
>(SExt
))
1055 // If the expression is obviously signed, use the sext cast value.
1056 if (isa
<SCEVSMaxExpr
>(Op
))
1059 // Absent any other information, use the zext cast value.
1063 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1064 /// a list of operands to be added under the given scale, update the given
1065 /// map. This is a helper function for getAddRecExpr. As an example of
1066 /// what it does, given a sequence of operands that would form an add
1067 /// expression like this:
1069 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1071 /// where A and B are constants, update the map with these values:
1073 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1075 /// and add 13 + A*B*29 to AccumulatedConstant.
1076 /// This will allow getAddRecExpr to produce this:
1078 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1080 /// This form often exposes folding opportunities that are hidden in
1081 /// the original operand list.
1083 /// Return true iff it appears that any interesting folding opportunities
1084 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1085 /// the common case where no interesting opportunities are present, and
1086 /// is also used as a check to avoid infinite recursion.
1089 CollectAddOperandsWithScales(DenseMap
<const SCEV
*, APInt
> &M
,
1090 SmallVector
<const SCEV
*, 8> &NewOps
,
1091 APInt
&AccumulatedConstant
,
1092 const SmallVectorImpl
<const SCEV
*> &Ops
,
1094 ScalarEvolution
&SE
) {
1095 bool Interesting
= false;
1097 // Iterate over the add operands.
1098 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1099 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[i
]);
1100 if (Mul
&& isa
<SCEVConstant
>(Mul
->getOperand(0))) {
1102 Scale
* cast
<SCEVConstant
>(Mul
->getOperand(0))->getValue()->getValue();
1103 if (Mul
->getNumOperands() == 2 && isa
<SCEVAddExpr
>(Mul
->getOperand(1))) {
1104 // A multiplication of a constant with another add; recurse.
1106 CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
1107 cast
<SCEVAddExpr
>(Mul
->getOperand(1))
1111 // A multiplication of a constant with some other value. Update
1113 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin()+1, Mul
->op_end());
1114 const SCEV
*Key
= SE
.getMulExpr(MulOps
);
1115 std::pair
<DenseMap
<const SCEV
*, APInt
>::iterator
, bool> Pair
=
1116 M
.insert(std::make_pair(Key
, NewScale
));
1118 NewOps
.push_back(Pair
.first
->first
);
1120 Pair
.first
->second
+= NewScale
;
1121 // The map already had an entry for this value, which may indicate
1122 // a folding opportunity.
1126 } else if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
1127 // Pull a buried constant out to the outside.
1128 if (Scale
!= 1 || AccumulatedConstant
!= 0 || C
->isZero())
1130 AccumulatedConstant
+= Scale
* C
->getValue()->getValue();
1132 // An ordinary operand. Update the map.
1133 std::pair
<DenseMap
<const SCEV
*, APInt
>::iterator
, bool> Pair
=
1134 M
.insert(std::make_pair(Ops
[i
], Scale
));
1136 NewOps
.push_back(Pair
.first
->first
);
1138 Pair
.first
->second
+= Scale
;
1139 // The map already had an entry for this value, which may indicate
1140 // a folding opportunity.
1150 struct APIntCompare
{
1151 bool operator()(const APInt
&LHS
, const APInt
&RHS
) const {
1152 return LHS
.ult(RHS
);
1157 /// getAddExpr - Get a canonical add expression, or something simpler if
1159 const SCEV
*ScalarEvolution::getAddExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
1160 assert(!Ops
.empty() && "Cannot get empty add!");
1161 if (Ops
.size() == 1) return Ops
[0];
1163 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1164 assert(getEffectiveSCEVType(Ops
[i
]->getType()) ==
1165 getEffectiveSCEVType(Ops
[0]->getType()) &&
1166 "SCEVAddExpr operand types don't match!");
1169 // Sort by complexity, this groups all similar expression types together.
1170 GroupByComplexity(Ops
, LI
);
1172 // If there are any constants, fold them together.
1174 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1176 assert(Idx
< Ops
.size());
1177 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1178 // We found two constants, fold them together!
1179 Ops
[0] = getConstant(LHSC
->getValue()->getValue() +
1180 RHSC
->getValue()->getValue());
1181 if (Ops
.size() == 2) return Ops
[0];
1182 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1183 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1186 // If we are left with a constant zero being added, strip it off.
1187 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isZero()) {
1188 Ops
.erase(Ops
.begin());
1193 if (Ops
.size() == 1) return Ops
[0];
1195 // Okay, check to see if the same value occurs in the operand list twice. If
1196 // so, merge them together into an multiply expression. Since we sorted the
1197 // list, these values are required to be adjacent.
1198 const Type
*Ty
= Ops
[0]->getType();
1199 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
1200 if (Ops
[i
] == Ops
[i
+1]) { // X + Y + Y --> X + Y*2
1201 // Found a match, merge the two values into a multiply, and add any
1202 // remaining values to the result.
1203 const SCEV
*Two
= getIntegerSCEV(2, Ty
);
1204 const SCEV
*Mul
= getMulExpr(Ops
[i
], Two
);
1205 if (Ops
.size() == 2)
1207 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+2);
1209 return getAddExpr(Ops
);
1212 // Check for truncates. If all the operands are truncated from the same
1213 // type, see if factoring out the truncate would permit the result to be
1214 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1215 // if the contents of the resulting outer trunc fold to something simple.
1216 for (; Idx
< Ops
.size() && isa
<SCEVTruncateExpr
>(Ops
[Idx
]); ++Idx
) {
1217 const SCEVTruncateExpr
*Trunc
= cast
<SCEVTruncateExpr
>(Ops
[Idx
]);
1218 const Type
*DstType
= Trunc
->getType();
1219 const Type
*SrcType
= Trunc
->getOperand()->getType();
1220 SmallVector
<const SCEV
*, 8> LargeOps
;
1222 // Check all the operands to see if they can be represented in the
1223 // source type of the truncate.
1224 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1225 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Ops
[i
])) {
1226 if (T
->getOperand()->getType() != SrcType
) {
1230 LargeOps
.push_back(T
->getOperand());
1231 } else if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
1232 // This could be either sign or zero extension, but sign extension
1233 // is much more likely to be foldable here.
1234 LargeOps
.push_back(getSignExtendExpr(C
, SrcType
));
1235 } else if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(Ops
[i
])) {
1236 SmallVector
<const SCEV
*, 8> LargeMulOps
;
1237 for (unsigned j
= 0, f
= M
->getNumOperands(); j
!= f
&& Ok
; ++j
) {
1238 if (const SCEVTruncateExpr
*T
=
1239 dyn_cast
<SCEVTruncateExpr
>(M
->getOperand(j
))) {
1240 if (T
->getOperand()->getType() != SrcType
) {
1244 LargeMulOps
.push_back(T
->getOperand());
1245 } else if (const SCEVConstant
*C
=
1246 dyn_cast
<SCEVConstant
>(M
->getOperand(j
))) {
1247 // This could be either sign or zero extension, but sign extension
1248 // is much more likely to be foldable here.
1249 LargeMulOps
.push_back(getSignExtendExpr(C
, SrcType
));
1256 LargeOps
.push_back(getMulExpr(LargeMulOps
));
1263 // Evaluate the expression in the larger type.
1264 const SCEV
*Fold
= getAddExpr(LargeOps
);
1265 // If it folds to something simple, use it. Otherwise, don't.
1266 if (isa
<SCEVConstant
>(Fold
) || isa
<SCEVUnknown
>(Fold
))
1267 return getTruncateExpr(Fold
, DstType
);
1271 // Skip past any other cast SCEVs.
1272 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddExpr
)
1275 // If there are add operands they would be next.
1276 if (Idx
< Ops
.size()) {
1277 bool DeletedAdd
= false;
1278 while (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[Idx
])) {
1279 // If we have an add, expand the add operands onto the end of the operands
1281 Ops
.insert(Ops
.end(), Add
->op_begin(), Add
->op_end());
1282 Ops
.erase(Ops
.begin()+Idx
);
1286 // If we deleted at least one add, we added operands to the end of the list,
1287 // and they are not necessarily sorted. Recurse to resort and resimplify
1288 // any operands we just aquired.
1290 return getAddExpr(Ops
);
1293 // Skip over the add expression until we get to a multiply.
1294 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
1297 // Check to see if there are any folding opportunities present with
1298 // operands multiplied by constant values.
1299 if (Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
])) {
1300 uint64_t BitWidth
= getTypeSizeInBits(Ty
);
1301 DenseMap
<const SCEV
*, APInt
> M
;
1302 SmallVector
<const SCEV
*, 8> NewOps
;
1303 APInt
AccumulatedConstant(BitWidth
, 0);
1304 if (CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
1305 Ops
, APInt(BitWidth
, 1), *this)) {
1306 // Some interesting folding opportunity is present, so its worthwhile to
1307 // re-generate the operands list. Group the operands by constant scale,
1308 // to avoid multiplying by the same constant scale multiple times.
1309 std::map
<APInt
, SmallVector
<const SCEV
*, 4>, APIntCompare
> MulOpLists
;
1310 for (SmallVector
<const SCEV
*, 8>::iterator I
= NewOps
.begin(),
1311 E
= NewOps
.end(); I
!= E
; ++I
)
1312 MulOpLists
[M
.find(*I
)->second
].push_back(*I
);
1313 // Re-generate the operands list.
1315 if (AccumulatedConstant
!= 0)
1316 Ops
.push_back(getConstant(AccumulatedConstant
));
1317 for (std::map
<APInt
, SmallVector
<const SCEV
*, 4>, APIntCompare
>::iterator
1318 I
= MulOpLists
.begin(), E
= MulOpLists
.end(); I
!= E
; ++I
)
1320 Ops
.push_back(getMulExpr(getConstant(I
->first
),
1321 getAddExpr(I
->second
)));
1323 return getIntegerSCEV(0, Ty
);
1324 if (Ops
.size() == 1)
1326 return getAddExpr(Ops
);
1330 // If we are adding something to a multiply expression, make sure the
1331 // something is not already an operand of the multiply. If so, merge it into
1333 for (; Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
]); ++Idx
) {
1334 const SCEVMulExpr
*Mul
= cast
<SCEVMulExpr
>(Ops
[Idx
]);
1335 for (unsigned MulOp
= 0, e
= Mul
->getNumOperands(); MulOp
!= e
; ++MulOp
) {
1336 const SCEV
*MulOpSCEV
= Mul
->getOperand(MulOp
);
1337 for (unsigned AddOp
= 0, e
= Ops
.size(); AddOp
!= e
; ++AddOp
)
1338 if (MulOpSCEV
== Ops
[AddOp
] && !isa
<SCEVConstant
>(Ops
[AddOp
])) {
1339 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1340 const SCEV
*InnerMul
= Mul
->getOperand(MulOp
== 0);
1341 if (Mul
->getNumOperands() != 2) {
1342 // If the multiply has more than two operands, we must get the
1344 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin(), Mul
->op_end());
1345 MulOps
.erase(MulOps
.begin()+MulOp
);
1346 InnerMul
= getMulExpr(MulOps
);
1348 const SCEV
*One
= getIntegerSCEV(1, Ty
);
1349 const SCEV
*AddOne
= getAddExpr(InnerMul
, One
);
1350 const SCEV
*OuterMul
= getMulExpr(AddOne
, Ops
[AddOp
]);
1351 if (Ops
.size() == 2) return OuterMul
;
1353 Ops
.erase(Ops
.begin()+AddOp
);
1354 Ops
.erase(Ops
.begin()+Idx
-1);
1356 Ops
.erase(Ops
.begin()+Idx
);
1357 Ops
.erase(Ops
.begin()+AddOp
-1);
1359 Ops
.push_back(OuterMul
);
1360 return getAddExpr(Ops
);
1363 // Check this multiply against other multiplies being added together.
1364 for (unsigned OtherMulIdx
= Idx
+1;
1365 OtherMulIdx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
1367 const SCEVMulExpr
*OtherMul
= cast
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
1368 // If MulOp occurs in OtherMul, we can fold the two multiplies
1370 for (unsigned OMulOp
= 0, e
= OtherMul
->getNumOperands();
1371 OMulOp
!= e
; ++OMulOp
)
1372 if (OtherMul
->getOperand(OMulOp
) == MulOpSCEV
) {
1373 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1374 const SCEV
*InnerMul1
= Mul
->getOperand(MulOp
== 0);
1375 if (Mul
->getNumOperands() != 2) {
1376 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin(),
1378 MulOps
.erase(MulOps
.begin()+MulOp
);
1379 InnerMul1
= getMulExpr(MulOps
);
1381 const SCEV
*InnerMul2
= OtherMul
->getOperand(OMulOp
== 0);
1382 if (OtherMul
->getNumOperands() != 2) {
1383 SmallVector
<const SCEV
*, 4> MulOps(OtherMul
->op_begin(),
1384 OtherMul
->op_end());
1385 MulOps
.erase(MulOps
.begin()+OMulOp
);
1386 InnerMul2
= getMulExpr(MulOps
);
1388 const SCEV
*InnerMulSum
= getAddExpr(InnerMul1
,InnerMul2
);
1389 const SCEV
*OuterMul
= getMulExpr(MulOpSCEV
, InnerMulSum
);
1390 if (Ops
.size() == 2) return OuterMul
;
1391 Ops
.erase(Ops
.begin()+Idx
);
1392 Ops
.erase(Ops
.begin()+OtherMulIdx
-1);
1393 Ops
.push_back(OuterMul
);
1394 return getAddExpr(Ops
);
1400 // If there are any add recurrences in the operands list, see if any other
1401 // added values are loop invariant. If so, we can fold them into the
1403 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
1406 // Scan over all recurrences, trying to fold loop invariants into them.
1407 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
1408 // Scan all of the other operands to this add and add them to the vector if
1409 // they are loop invariant w.r.t. the recurrence.
1410 SmallVector
<const SCEV
*, 8> LIOps
;
1411 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
1412 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1413 if (Ops
[i
]->isLoopInvariant(AddRec
->getLoop())) {
1414 LIOps
.push_back(Ops
[i
]);
1415 Ops
.erase(Ops
.begin()+i
);
1419 // If we found some loop invariants, fold them into the recurrence.
1420 if (!LIOps
.empty()) {
1421 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1422 LIOps
.push_back(AddRec
->getStart());
1424 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->op_begin(),
1426 AddRecOps
[0] = getAddExpr(LIOps
);
1428 const SCEV
*NewRec
= getAddRecExpr(AddRecOps
, AddRec
->getLoop());
1429 // If all of the other operands were loop invariant, we are done.
1430 if (Ops
.size() == 1) return NewRec
;
1432 // Otherwise, add the folded AddRec by the non-liv parts.
1433 for (unsigned i
= 0;; ++i
)
1434 if (Ops
[i
] == AddRec
) {
1438 return getAddExpr(Ops
);
1441 // Okay, if there weren't any loop invariants to be folded, check to see if
1442 // there are multiple AddRec's with the same loop induction variable being
1443 // added together. If so, we can fold them.
1444 for (unsigned OtherIdx
= Idx
+1;
1445 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);++OtherIdx
)
1446 if (OtherIdx
!= Idx
) {
1447 const SCEVAddRecExpr
*OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1448 if (AddRec
->getLoop() == OtherAddRec
->getLoop()) {
1449 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1450 SmallVector
<const SCEV
*, 4> NewOps(AddRec
->op_begin(),
1452 for (unsigned i
= 0, e
= OtherAddRec
->getNumOperands(); i
!= e
; ++i
) {
1453 if (i
>= NewOps
.size()) {
1454 NewOps
.insert(NewOps
.end(), OtherAddRec
->op_begin()+i
,
1455 OtherAddRec
->op_end());
1458 NewOps
[i
] = getAddExpr(NewOps
[i
], OtherAddRec
->getOperand(i
));
1460 const SCEV
*NewAddRec
= getAddRecExpr(NewOps
, AddRec
->getLoop());
1462 if (Ops
.size() == 2) return NewAddRec
;
1464 Ops
.erase(Ops
.begin()+Idx
);
1465 Ops
.erase(Ops
.begin()+OtherIdx
-1);
1466 Ops
.push_back(NewAddRec
);
1467 return getAddExpr(Ops
);
1471 // Otherwise couldn't fold anything into this recurrence. Move onto the
1475 // Okay, it looks like we really DO need an add expr. Check to see if we
1476 // already have one, otherwise create a new one.
1477 FoldingSetNodeID ID
;
1478 ID
.AddInteger(scAddExpr
);
1479 ID
.AddInteger(Ops
.size());
1480 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1481 ID
.AddPointer(Ops
[i
]);
1483 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1484 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVAddExpr
>();
1485 new (S
) SCEVAddExpr(ID
, Ops
);
1486 UniqueSCEVs
.InsertNode(S
, IP
);
1491 /// getMulExpr - Get a canonical multiply expression, or something simpler if
1493 const SCEV
*ScalarEvolution::getMulExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
1494 assert(!Ops
.empty() && "Cannot get empty mul!");
1496 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1497 assert(getEffectiveSCEVType(Ops
[i
]->getType()) ==
1498 getEffectiveSCEVType(Ops
[0]->getType()) &&
1499 "SCEVMulExpr operand types don't match!");
1502 // Sort by complexity, this groups all similar expression types together.
1503 GroupByComplexity(Ops
, LI
);
1505 // If there are any constants, fold them together.
1507 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1509 // C1*(C2+V) -> C1*C2 + C1*V
1510 if (Ops
.size() == 2)
1511 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1]))
1512 if (Add
->getNumOperands() == 2 &&
1513 isa
<SCEVConstant
>(Add
->getOperand(0)))
1514 return getAddExpr(getMulExpr(LHSC
, Add
->getOperand(0)),
1515 getMulExpr(LHSC
, Add
->getOperand(1)));
1519 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1520 // We found two constants, fold them together!
1521 ConstantInt
*Fold
= ConstantInt::get(getContext(),
1522 LHSC
->getValue()->getValue() *
1523 RHSC
->getValue()->getValue());
1524 Ops
[0] = getConstant(Fold
);
1525 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1526 if (Ops
.size() == 1) return Ops
[0];
1527 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1530 // If we are left with a constant one being multiplied, strip it off.
1531 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->equalsInt(1)) {
1532 Ops
.erase(Ops
.begin());
1534 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isZero()) {
1535 // If we have a multiply of zero, it will always be zero.
1540 // Skip over the add expression until we get to a multiply.
1541 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
1544 if (Ops
.size() == 1)
1547 // If there are mul operands inline them all into this expression.
1548 if (Idx
< Ops
.size()) {
1549 bool DeletedMul
= false;
1550 while (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
1551 // If we have an mul, expand the mul operands onto the end of the operands
1553 Ops
.insert(Ops
.end(), Mul
->op_begin(), Mul
->op_end());
1554 Ops
.erase(Ops
.begin()+Idx
);
1558 // If we deleted at least one mul, we added operands to the end of the list,
1559 // and they are not necessarily sorted. Recurse to resort and resimplify
1560 // any operands we just aquired.
1562 return getMulExpr(Ops
);
1565 // If there are any add recurrences in the operands list, see if any other
1566 // added values are loop invariant. If so, we can fold them into the
1568 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
1571 // Scan over all recurrences, trying to fold loop invariants into them.
1572 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
1573 // Scan all of the other operands to this mul and add them to the vector if
1574 // they are loop invariant w.r.t. the recurrence.
1575 SmallVector
<const SCEV
*, 8> LIOps
;
1576 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
1577 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1578 if (Ops
[i
]->isLoopInvariant(AddRec
->getLoop())) {
1579 LIOps
.push_back(Ops
[i
]);
1580 Ops
.erase(Ops
.begin()+i
);
1584 // If we found some loop invariants, fold them into the recurrence.
1585 if (!LIOps
.empty()) {
1586 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
1587 SmallVector
<const SCEV
*, 4> NewOps
;
1588 NewOps
.reserve(AddRec
->getNumOperands());
1589 if (LIOps
.size() == 1) {
1590 const SCEV
*Scale
= LIOps
[0];
1591 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
1592 NewOps
.push_back(getMulExpr(Scale
, AddRec
->getOperand(i
)));
1594 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
1595 SmallVector
<const SCEV
*, 4> MulOps(LIOps
.begin(), LIOps
.end());
1596 MulOps
.push_back(AddRec
->getOperand(i
));
1597 NewOps
.push_back(getMulExpr(MulOps
));
1601 const SCEV
*NewRec
= getAddRecExpr(NewOps
, AddRec
->getLoop());
1603 // If all of the other operands were loop invariant, we are done.
1604 if (Ops
.size() == 1) return NewRec
;
1606 // Otherwise, multiply the folded AddRec by the non-liv parts.
1607 for (unsigned i
= 0;; ++i
)
1608 if (Ops
[i
] == AddRec
) {
1612 return getMulExpr(Ops
);
1615 // Okay, if there weren't any loop invariants to be folded, check to see if
1616 // there are multiple AddRec's with the same loop induction variable being
1617 // multiplied together. If so, we can fold them.
1618 for (unsigned OtherIdx
= Idx
+1;
1619 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);++OtherIdx
)
1620 if (OtherIdx
!= Idx
) {
1621 const SCEVAddRecExpr
*OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
1622 if (AddRec
->getLoop() == OtherAddRec
->getLoop()) {
1623 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1624 const SCEVAddRecExpr
*F
= AddRec
, *G
= OtherAddRec
;
1625 const SCEV
*NewStart
= getMulExpr(F
->getStart(),
1627 const SCEV
*B
= F
->getStepRecurrence(*this);
1628 const SCEV
*D
= G
->getStepRecurrence(*this);
1629 const SCEV
*NewStep
= getAddExpr(getMulExpr(F
, D
),
1632 const SCEV
*NewAddRec
= getAddRecExpr(NewStart
, NewStep
,
1634 if (Ops
.size() == 2) return NewAddRec
;
1636 Ops
.erase(Ops
.begin()+Idx
);
1637 Ops
.erase(Ops
.begin()+OtherIdx
-1);
1638 Ops
.push_back(NewAddRec
);
1639 return getMulExpr(Ops
);
1643 // Otherwise couldn't fold anything into this recurrence. Move onto the
1647 // Okay, it looks like we really DO need an mul expr. Check to see if we
1648 // already have one, otherwise create a new one.
1649 FoldingSetNodeID ID
;
1650 ID
.AddInteger(scMulExpr
);
1651 ID
.AddInteger(Ops
.size());
1652 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1653 ID
.AddPointer(Ops
[i
]);
1655 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1656 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVMulExpr
>();
1657 new (S
) SCEVMulExpr(ID
, Ops
);
1658 UniqueSCEVs
.InsertNode(S
, IP
);
1662 /// getUDivExpr - Get a canonical multiply expression, or something simpler if
1664 const SCEV
*ScalarEvolution::getUDivExpr(const SCEV
*LHS
,
1666 assert(getEffectiveSCEVType(LHS
->getType()) ==
1667 getEffectiveSCEVType(RHS
->getType()) &&
1668 "SCEVUDivExpr operand types don't match!");
1670 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
1671 if (RHSC
->getValue()->equalsInt(1))
1672 return LHS
; // X udiv 1 --> x
1674 return getIntegerSCEV(0, LHS
->getType()); // value is undefined
1676 // Determine if the division can be folded into the operands of
1678 // TODO: Generalize this to non-constants by using known-bits information.
1679 const Type
*Ty
= LHS
->getType();
1680 unsigned LZ
= RHSC
->getValue()->getValue().countLeadingZeros();
1681 unsigned MaxShiftAmt
= getTypeSizeInBits(Ty
) - LZ
;
1682 // For non-power-of-two values, effectively round the value up to the
1683 // nearest power of two.
1684 if (!RHSC
->getValue()->getValue().isPowerOf2())
1686 const IntegerType
*ExtTy
=
1687 IntegerType::get(getTypeSizeInBits(Ty
) + MaxShiftAmt
);
1688 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1689 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
1690 if (const SCEVConstant
*Step
=
1691 dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*this)))
1692 if (!Step
->getValue()->getValue()
1693 .urem(RHSC
->getValue()->getValue()) &&
1694 getZeroExtendExpr(AR
, ExtTy
) ==
1695 getAddRecExpr(getZeroExtendExpr(AR
->getStart(), ExtTy
),
1696 getZeroExtendExpr(Step
, ExtTy
),
1698 SmallVector
<const SCEV
*, 4> Operands
;
1699 for (unsigned i
= 0, e
= AR
->getNumOperands(); i
!= e
; ++i
)
1700 Operands
.push_back(getUDivExpr(AR
->getOperand(i
), RHS
));
1701 return getAddRecExpr(Operands
, AR
->getLoop());
1703 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1704 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
1705 SmallVector
<const SCEV
*, 4> Operands
;
1706 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
)
1707 Operands
.push_back(getZeroExtendExpr(M
->getOperand(i
), ExtTy
));
1708 if (getZeroExtendExpr(M
, ExtTy
) == getMulExpr(Operands
))
1709 // Find an operand that's safely divisible.
1710 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
) {
1711 const SCEV
*Op
= M
->getOperand(i
);
1712 const SCEV
*Div
= getUDivExpr(Op
, RHSC
);
1713 if (!isa
<SCEVUDivExpr
>(Div
) && getMulExpr(Div
, RHSC
) == Op
) {
1714 const SmallVectorImpl
<const SCEV
*> &MOperands
= M
->getOperands();
1715 Operands
= SmallVector
<const SCEV
*, 4>(MOperands
.begin(),
1718 return getMulExpr(Operands
);
1722 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1723 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(LHS
)) {
1724 SmallVector
<const SCEV
*, 4> Operands
;
1725 for (unsigned i
= 0, e
= A
->getNumOperands(); i
!= e
; ++i
)
1726 Operands
.push_back(getZeroExtendExpr(A
->getOperand(i
), ExtTy
));
1727 if (getZeroExtendExpr(A
, ExtTy
) == getAddExpr(Operands
)) {
1729 for (unsigned i
= 0, e
= A
->getNumOperands(); i
!= e
; ++i
) {
1730 const SCEV
*Op
= getUDivExpr(A
->getOperand(i
), RHS
);
1731 if (isa
<SCEVUDivExpr
>(Op
) || getMulExpr(Op
, RHS
) != A
->getOperand(i
))
1733 Operands
.push_back(Op
);
1735 if (Operands
.size() == A
->getNumOperands())
1736 return getAddExpr(Operands
);
1740 // Fold if both operands are constant.
1741 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
1742 Constant
*LHSCV
= LHSC
->getValue();
1743 Constant
*RHSCV
= RHSC
->getValue();
1744 return getConstant(cast
<ConstantInt
>(getContext().getConstantExprUDiv(LHSCV
,
1749 FoldingSetNodeID ID
;
1750 ID
.AddInteger(scUDivExpr
);
1754 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1755 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVUDivExpr
>();
1756 new (S
) SCEVUDivExpr(ID
, LHS
, RHS
);
1757 UniqueSCEVs
.InsertNode(S
, IP
);
1762 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1763 /// Simplify the expression as much as possible.
1764 const SCEV
*ScalarEvolution::getAddRecExpr(const SCEV
*Start
,
1765 const SCEV
*Step
, const Loop
*L
) {
1766 SmallVector
<const SCEV
*, 4> Operands
;
1767 Operands
.push_back(Start
);
1768 if (const SCEVAddRecExpr
*StepChrec
= dyn_cast
<SCEVAddRecExpr
>(Step
))
1769 if (StepChrec
->getLoop() == L
) {
1770 Operands
.insert(Operands
.end(), StepChrec
->op_begin(),
1771 StepChrec
->op_end());
1772 return getAddRecExpr(Operands
, L
);
1775 Operands
.push_back(Step
);
1776 return getAddRecExpr(Operands
, L
);
1779 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1780 /// Simplify the expression as much as possible.
1782 ScalarEvolution::getAddRecExpr(SmallVectorImpl
<const SCEV
*> &Operands
,
1784 if (Operands
.size() == 1) return Operands
[0];
1786 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
1787 assert(getEffectiveSCEVType(Operands
[i
]->getType()) ==
1788 getEffectiveSCEVType(Operands
[0]->getType()) &&
1789 "SCEVAddRecExpr operand types don't match!");
1792 if (Operands
.back()->isZero()) {
1793 Operands
.pop_back();
1794 return getAddRecExpr(Operands
, L
); // {X,+,0} --> X
1797 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1798 if (const SCEVAddRecExpr
*NestedAR
= dyn_cast
<SCEVAddRecExpr
>(Operands
[0])) {
1799 const Loop
* NestedLoop
= NestedAR
->getLoop();
1800 if (L
->getLoopDepth() < NestedLoop
->getLoopDepth()) {
1801 SmallVector
<const SCEV
*, 4> NestedOperands(NestedAR
->op_begin(),
1802 NestedAR
->op_end());
1803 Operands
[0] = NestedAR
->getStart();
1804 // AddRecs require their operands be loop-invariant with respect to their
1805 // loops. Don't perform this transformation if it would break this
1807 bool AllInvariant
= true;
1808 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
1809 if (!Operands
[i
]->isLoopInvariant(L
)) {
1810 AllInvariant
= false;
1814 NestedOperands
[0] = getAddRecExpr(Operands
, L
);
1815 AllInvariant
= true;
1816 for (unsigned i
= 0, e
= NestedOperands
.size(); i
!= e
; ++i
)
1817 if (!NestedOperands
[i
]->isLoopInvariant(NestedLoop
)) {
1818 AllInvariant
= false;
1822 // Ok, both add recurrences are valid after the transformation.
1823 return getAddRecExpr(NestedOperands
, NestedLoop
);
1825 // Reset Operands to its original state.
1826 Operands
[0] = NestedAR
;
1830 FoldingSetNodeID ID
;
1831 ID
.AddInteger(scAddRecExpr
);
1832 ID
.AddInteger(Operands
.size());
1833 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
1834 ID
.AddPointer(Operands
[i
]);
1837 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1838 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVAddRecExpr
>();
1839 new (S
) SCEVAddRecExpr(ID
, Operands
, L
);
1840 UniqueSCEVs
.InsertNode(S
, IP
);
1844 const SCEV
*ScalarEvolution::getSMaxExpr(const SCEV
*LHS
,
1846 SmallVector
<const SCEV
*, 2> Ops
;
1849 return getSMaxExpr(Ops
);
1853 ScalarEvolution::getSMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
1854 assert(!Ops
.empty() && "Cannot get empty smax!");
1855 if (Ops
.size() == 1) return Ops
[0];
1857 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1858 assert(getEffectiveSCEVType(Ops
[i
]->getType()) ==
1859 getEffectiveSCEVType(Ops
[0]->getType()) &&
1860 "SCEVSMaxExpr operand types don't match!");
1863 // Sort by complexity, this groups all similar expression types together.
1864 GroupByComplexity(Ops
, LI
);
1866 // If there are any constants, fold them together.
1868 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1870 assert(Idx
< Ops
.size());
1871 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1872 // We found two constants, fold them together!
1873 ConstantInt
*Fold
= ConstantInt::get(getContext(),
1874 APIntOps::smax(LHSC
->getValue()->getValue(),
1875 RHSC
->getValue()->getValue()));
1876 Ops
[0] = getConstant(Fold
);
1877 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1878 if (Ops
.size() == 1) return Ops
[0];
1879 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1882 // If we are left with a constant minimum-int, strip it off.
1883 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMinValue(true)) {
1884 Ops
.erase(Ops
.begin());
1886 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMaxValue(true)) {
1887 // If we have an smax with a constant maximum-int, it will always be
1893 if (Ops
.size() == 1) return Ops
[0];
1895 // Find the first SMax
1896 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scSMaxExpr
)
1899 // Check to see if one of the operands is an SMax. If so, expand its operands
1900 // onto our operand list, and recurse to simplify.
1901 if (Idx
< Ops
.size()) {
1902 bool DeletedSMax
= false;
1903 while (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(Ops
[Idx
])) {
1904 Ops
.insert(Ops
.end(), SMax
->op_begin(), SMax
->op_end());
1905 Ops
.erase(Ops
.begin()+Idx
);
1910 return getSMaxExpr(Ops
);
1913 // Okay, check to see if the same value occurs in the operand list twice. If
1914 // so, delete one. Since we sorted the list, these values are required to
1916 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
1917 if (Ops
[i
] == Ops
[i
+1]) { // X smax Y smax Y --> X smax Y
1918 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+1);
1922 if (Ops
.size() == 1) return Ops
[0];
1924 assert(!Ops
.empty() && "Reduced smax down to nothing!");
1926 // Okay, it looks like we really DO need an smax expr. Check to see if we
1927 // already have one, otherwise create a new one.
1928 FoldingSetNodeID ID
;
1929 ID
.AddInteger(scSMaxExpr
);
1930 ID
.AddInteger(Ops
.size());
1931 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
1932 ID
.AddPointer(Ops
[i
]);
1934 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1935 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVSMaxExpr
>();
1936 new (S
) SCEVSMaxExpr(ID
, Ops
);
1937 UniqueSCEVs
.InsertNode(S
, IP
);
1941 const SCEV
*ScalarEvolution::getUMaxExpr(const SCEV
*LHS
,
1943 SmallVector
<const SCEV
*, 2> Ops
;
1946 return getUMaxExpr(Ops
);
1950 ScalarEvolution::getUMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
1951 assert(!Ops
.empty() && "Cannot get empty umax!");
1952 if (Ops
.size() == 1) return Ops
[0];
1954 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
1955 assert(getEffectiveSCEVType(Ops
[i
]->getType()) ==
1956 getEffectiveSCEVType(Ops
[0]->getType()) &&
1957 "SCEVUMaxExpr operand types don't match!");
1960 // Sort by complexity, this groups all similar expression types together.
1961 GroupByComplexity(Ops
, LI
);
1963 // If there are any constants, fold them together.
1965 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
1967 assert(Idx
< Ops
.size());
1968 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
1969 // We found two constants, fold them together!
1970 ConstantInt
*Fold
= ConstantInt::get(getContext(),
1971 APIntOps::umax(LHSC
->getValue()->getValue(),
1972 RHSC
->getValue()->getValue()));
1973 Ops
[0] = getConstant(Fold
);
1974 Ops
.erase(Ops
.begin()+1); // Erase the folded element
1975 if (Ops
.size() == 1) return Ops
[0];
1976 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
1979 // If we are left with a constant minimum-int, strip it off.
1980 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMinValue(false)) {
1981 Ops
.erase(Ops
.begin());
1983 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isMaxValue(false)) {
1984 // If we have an umax with a constant maximum-int, it will always be
1990 if (Ops
.size() == 1) return Ops
[0];
1992 // Find the first UMax
1993 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scUMaxExpr
)
1996 // Check to see if one of the operands is a UMax. If so, expand its operands
1997 // onto our operand list, and recurse to simplify.
1998 if (Idx
< Ops
.size()) {
1999 bool DeletedUMax
= false;
2000 while (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(Ops
[Idx
])) {
2001 Ops
.insert(Ops
.end(), UMax
->op_begin(), UMax
->op_end());
2002 Ops
.erase(Ops
.begin()+Idx
);
2007 return getUMaxExpr(Ops
);
2010 // Okay, check to see if the same value occurs in the operand list twice. If
2011 // so, delete one. Since we sorted the list, these values are required to
2013 for (unsigned i
= 0, e
= Ops
.size()-1; i
!= e
; ++i
)
2014 if (Ops
[i
] == Ops
[i
+1]) { // X umax Y umax Y --> X umax Y
2015 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+1);
2019 if (Ops
.size() == 1) return Ops
[0];
2021 assert(!Ops
.empty() && "Reduced umax down to nothing!");
2023 // Okay, it looks like we really DO need a umax expr. Check to see if we
2024 // already have one, otherwise create a new one.
2025 FoldingSetNodeID ID
;
2026 ID
.AddInteger(scUMaxExpr
);
2027 ID
.AddInteger(Ops
.size());
2028 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2029 ID
.AddPointer(Ops
[i
]);
2031 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2032 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVUMaxExpr
>();
2033 new (S
) SCEVUMaxExpr(ID
, Ops
);
2034 UniqueSCEVs
.InsertNode(S
, IP
);
2038 const SCEV
*ScalarEvolution::getSMinExpr(const SCEV
*LHS
,
2040 // ~smax(~x, ~y) == smin(x, y).
2041 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS
), getNotSCEV(RHS
)));
2044 const SCEV
*ScalarEvolution::getUMinExpr(const SCEV
*LHS
,
2046 // ~umax(~x, ~y) == umin(x, y)
2047 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS
), getNotSCEV(RHS
)));
2050 const SCEV
*ScalarEvolution::getUnknown(Value
*V
) {
2051 // Don't attempt to do anything other than create a SCEVUnknown object
2052 // here. createSCEV only calls getUnknown after checking for all other
2053 // interesting possibilities, and any other code that calls getUnknown
2054 // is doing so in order to hide a value from SCEV canonicalization.
2056 FoldingSetNodeID ID
;
2057 ID
.AddInteger(scUnknown
);
2060 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2061 SCEV
*S
= SCEVAllocator
.Allocate
<SCEVUnknown
>();
2062 new (S
) SCEVUnknown(ID
, V
);
2063 UniqueSCEVs
.InsertNode(S
, IP
);
2067 //===----------------------------------------------------------------------===//
2068 // Basic SCEV Analysis and PHI Idiom Recognition Code
2071 /// isSCEVable - Test if values of the given type are analyzable within
2072 /// the SCEV framework. This primarily includes integer types, and it
2073 /// can optionally include pointer types if the ScalarEvolution class
2074 /// has access to target-specific information.
2075 bool ScalarEvolution::isSCEVable(const Type
*Ty
) const {
2076 // Integers are always SCEVable.
2077 if (Ty
->isInteger())
2080 // Pointers are SCEVable if TargetData information is available
2081 // to provide pointer size information.
2082 if (isa
<PointerType
>(Ty
))
2085 // Otherwise it's not SCEVable.
2089 /// getTypeSizeInBits - Return the size in bits of the specified type,
2090 /// for which isSCEVable must return true.
2091 uint64_t ScalarEvolution::getTypeSizeInBits(const Type
*Ty
) const {
2092 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
2094 // If we have a TargetData, use it!
2096 return TD
->getTypeSizeInBits(Ty
);
2098 // Otherwise, we support only integer types.
2099 assert(Ty
->isInteger() && "isSCEVable permitted a non-SCEVable type!");
2100 return Ty
->getPrimitiveSizeInBits();
2103 /// getEffectiveSCEVType - Return a type with the same bitwidth as
2104 /// the given type and which represents how SCEV will treat the given
2105 /// type, for which isSCEVable must return true. For pointer types,
2106 /// this is the pointer-sized integer type.
2107 const Type
*ScalarEvolution::getEffectiveSCEVType(const Type
*Ty
) const {
2108 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
2110 if (Ty
->isInteger())
2113 assert(isa
<PointerType
>(Ty
) && "Unexpected non-pointer non-integer type!");
2114 return TD
->getIntPtrType();
2117 const SCEV
*ScalarEvolution::getCouldNotCompute() {
2118 return &CouldNotCompute
;
2121 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2122 /// expression and create a new one.
2123 const SCEV
*ScalarEvolution::getSCEV(Value
*V
) {
2124 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
2126 std::map
<SCEVCallbackVH
, const SCEV
*>::iterator I
= Scalars
.find(V
);
2127 if (I
!= Scalars
.end()) return I
->second
;
2128 const SCEV
*S
= createSCEV(V
);
2129 Scalars
.insert(std::make_pair(SCEVCallbackVH(V
, this), S
));
2133 /// getIntegerSCEV - Given a SCEVable type, create a constant for the
2134 /// specified signed integer value and return a SCEV for the constant.
2135 const SCEV
*ScalarEvolution::getIntegerSCEV(int Val
, const Type
*Ty
) {
2136 const IntegerType
*ITy
= cast
<IntegerType
>(getEffectiveSCEVType(Ty
));
2137 return getConstant(ConstantInt::get(ITy
, Val
));
2140 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2142 const SCEV
*ScalarEvolution::getNegativeSCEV(const SCEV
*V
) {
2143 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
2145 cast
<ConstantInt
>(getContext().getConstantExprNeg(VC
->getValue())));
2147 const Type
*Ty
= V
->getType();
2148 Ty
= getEffectiveSCEVType(Ty
);
2149 return getMulExpr(V
,
2150 getConstant(cast
<ConstantInt
>(getContext().getAllOnesValue(Ty
))));
2153 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2154 const SCEV
*ScalarEvolution::getNotSCEV(const SCEV
*V
) {
2155 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
2157 cast
<ConstantInt
>(getContext().getConstantExprNot(VC
->getValue())));
2159 const Type
*Ty
= V
->getType();
2160 Ty
= getEffectiveSCEVType(Ty
);
2161 const SCEV
*AllOnes
=
2162 getConstant(cast
<ConstantInt
>(getContext().getAllOnesValue(Ty
)));
2163 return getMinusSCEV(AllOnes
, V
);
2166 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2168 const SCEV
*ScalarEvolution::getMinusSCEV(const SCEV
*LHS
,
2171 return getAddExpr(LHS
, getNegativeSCEV(RHS
));
2174 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2175 /// input value to the specified type. If the type must be extended, it is zero
2178 ScalarEvolution::getTruncateOrZeroExtend(const SCEV
*V
,
2180 const Type
*SrcTy
= V
->getType();
2181 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
2182 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
2183 "Cannot truncate or zero extend with non-integer arguments!");
2184 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2185 return V
; // No conversion
2186 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
2187 return getTruncateExpr(V
, Ty
);
2188 return getZeroExtendExpr(V
, Ty
);
2191 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2192 /// input value to the specified type. If the type must be extended, it is sign
2195 ScalarEvolution::getTruncateOrSignExtend(const SCEV
*V
,
2197 const Type
*SrcTy
= V
->getType();
2198 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
2199 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
2200 "Cannot truncate or zero extend with non-integer arguments!");
2201 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2202 return V
; // No conversion
2203 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
2204 return getTruncateExpr(V
, Ty
);
2205 return getSignExtendExpr(V
, Ty
);
2208 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2209 /// input value to the specified type. If the type must be extended, it is zero
2210 /// extended. The conversion must not be narrowing.
2212 ScalarEvolution::getNoopOrZeroExtend(const SCEV
*V
, const Type
*Ty
) {
2213 const Type
*SrcTy
= V
->getType();
2214 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
2215 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
2216 "Cannot noop or zero extend with non-integer arguments!");
2217 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
2218 "getNoopOrZeroExtend cannot truncate!");
2219 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2220 return V
; // No conversion
2221 return getZeroExtendExpr(V
, Ty
);
2224 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2225 /// input value to the specified type. If the type must be extended, it is sign
2226 /// extended. The conversion must not be narrowing.
2228 ScalarEvolution::getNoopOrSignExtend(const SCEV
*V
, const Type
*Ty
) {
2229 const Type
*SrcTy
= V
->getType();
2230 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
2231 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
2232 "Cannot noop or sign extend with non-integer arguments!");
2233 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
2234 "getNoopOrSignExtend cannot truncate!");
2235 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2236 return V
; // No conversion
2237 return getSignExtendExpr(V
, Ty
);
2240 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2241 /// the input value to the specified type. If the type must be extended,
2242 /// it is extended with unspecified bits. The conversion must not be
2245 ScalarEvolution::getNoopOrAnyExtend(const SCEV
*V
, const Type
*Ty
) {
2246 const Type
*SrcTy
= V
->getType();
2247 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
2248 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
2249 "Cannot noop or any extend with non-integer arguments!");
2250 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
2251 "getNoopOrAnyExtend cannot truncate!");
2252 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2253 return V
; // No conversion
2254 return getAnyExtendExpr(V
, Ty
);
2257 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2258 /// input value to the specified type. The conversion must not be widening.
2260 ScalarEvolution::getTruncateOrNoop(const SCEV
*V
, const Type
*Ty
) {
2261 const Type
*SrcTy
= V
->getType();
2262 assert((SrcTy
->isInteger() || (TD
&& isa
<PointerType
>(SrcTy
))) &&
2263 (Ty
->isInteger() || (TD
&& isa
<PointerType
>(Ty
))) &&
2264 "Cannot truncate or noop with non-integer arguments!");
2265 assert(getTypeSizeInBits(SrcTy
) >= getTypeSizeInBits(Ty
) &&
2266 "getTruncateOrNoop cannot extend!");
2267 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
2268 return V
; // No conversion
2269 return getTruncateExpr(V
, Ty
);
2272 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2273 /// the types using zero-extension, and then perform a umax operation
2275 const SCEV
*ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV
*LHS
,
2277 const SCEV
*PromotedLHS
= LHS
;
2278 const SCEV
*PromotedRHS
= RHS
;
2280 if (getTypeSizeInBits(LHS
->getType()) > getTypeSizeInBits(RHS
->getType()))
2281 PromotedRHS
= getZeroExtendExpr(RHS
, LHS
->getType());
2283 PromotedLHS
= getNoopOrZeroExtend(LHS
, RHS
->getType());
2285 return getUMaxExpr(PromotedLHS
, PromotedRHS
);
2288 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
2289 /// the types using zero-extension, and then perform a umin operation
2291 const SCEV
*ScalarEvolution::getUMinFromMismatchedTypes(const SCEV
*LHS
,
2293 const SCEV
*PromotedLHS
= LHS
;
2294 const SCEV
*PromotedRHS
= RHS
;
2296 if (getTypeSizeInBits(LHS
->getType()) > getTypeSizeInBits(RHS
->getType()))
2297 PromotedRHS
= getZeroExtendExpr(RHS
, LHS
->getType());
2299 PromotedLHS
= getNoopOrZeroExtend(LHS
, RHS
->getType());
2301 return getUMinExpr(PromotedLHS
, PromotedRHS
);
2304 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2305 /// the specified instruction and replaces any references to the symbolic value
2306 /// SymName with the specified value. This is used during PHI resolution.
2308 ScalarEvolution::ReplaceSymbolicValueWithConcrete(Instruction
*I
,
2309 const SCEV
*SymName
,
2310 const SCEV
*NewVal
) {
2311 std::map
<SCEVCallbackVH
, const SCEV
*>::iterator SI
=
2312 Scalars
.find(SCEVCallbackVH(I
, this));
2313 if (SI
== Scalars
.end()) return;
2316 SI
->second
->replaceSymbolicValuesWithConcrete(SymName
, NewVal
, *this);
2317 if (NV
== SI
->second
) return; // No change.
2319 SI
->second
= NV
; // Update the scalars map!
2321 // Any instruction values that use this instruction might also need to be
2323 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
2325 ReplaceSymbolicValueWithConcrete(cast
<Instruction
>(*UI
), SymName
, NewVal
);
2328 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2329 /// a loop header, making it a potential recurrence, or it doesn't.
2331 const SCEV
*ScalarEvolution::createNodeForPHI(PHINode
*PN
) {
2332 if (PN
->getNumIncomingValues() == 2) // The loops have been canonicalized.
2333 if (const Loop
*L
= LI
->getLoopFor(PN
->getParent()))
2334 if (L
->getHeader() == PN
->getParent()) {
2335 // If it lives in the loop header, it has two incoming values, one
2336 // from outside the loop, and one from inside.
2337 unsigned IncomingEdge
= L
->contains(PN
->getIncomingBlock(0));
2338 unsigned BackEdge
= IncomingEdge
^1;
2340 // While we are analyzing this PHI node, handle its value symbolically.
2341 const SCEV
*SymbolicName
= getUnknown(PN
);
2342 assert(Scalars
.find(PN
) == Scalars
.end() &&
2343 "PHI node already processed?");
2344 Scalars
.insert(std::make_pair(SCEVCallbackVH(PN
, this), SymbolicName
));
2346 // Using this symbolic name for the PHI, analyze the value coming around
2348 const SCEV
*BEValue
= getSCEV(PN
->getIncomingValue(BackEdge
));
2350 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2351 // has a special value for the first iteration of the loop.
2353 // If the value coming around the backedge is an add with the symbolic
2354 // value we just inserted, then we found a simple induction variable!
2355 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(BEValue
)) {
2356 // If there is a single occurrence of the symbolic value, replace it
2357 // with a recurrence.
2358 unsigned FoundIndex
= Add
->getNumOperands();
2359 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2360 if (Add
->getOperand(i
) == SymbolicName
)
2361 if (FoundIndex
== e
) {
2366 if (FoundIndex
!= Add
->getNumOperands()) {
2367 // Create an add with everything but the specified operand.
2368 SmallVector
<const SCEV
*, 8> Ops
;
2369 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2370 if (i
!= FoundIndex
)
2371 Ops
.push_back(Add
->getOperand(i
));
2372 const SCEV
*Accum
= getAddExpr(Ops
);
2374 // This is not a valid addrec if the step amount is varying each
2375 // loop iteration, but is not itself an addrec in this loop.
2376 if (Accum
->isLoopInvariant(L
) ||
2377 (isa
<SCEVAddRecExpr
>(Accum
) &&
2378 cast
<SCEVAddRecExpr
>(Accum
)->getLoop() == L
)) {
2379 const SCEV
*StartVal
=
2380 getSCEV(PN
->getIncomingValue(IncomingEdge
));
2381 const SCEV
*PHISCEV
=
2382 getAddRecExpr(StartVal
, Accum
, L
);
2384 // Okay, for the entire analysis of this edge we assumed the PHI
2385 // to be symbolic. We now need to go back and update all of the
2386 // entries for the scalars that use the PHI (except for the PHI
2387 // itself) to use the new analyzed value instead of the "symbolic"
2389 ReplaceSymbolicValueWithConcrete(PN
, SymbolicName
, PHISCEV
);
2393 } else if (const SCEVAddRecExpr
*AddRec
=
2394 dyn_cast
<SCEVAddRecExpr
>(BEValue
)) {
2395 // Otherwise, this could be a loop like this:
2396 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2397 // In this case, j = {1,+,1} and BEValue is j.
2398 // Because the other in-value of i (0) fits the evolution of BEValue
2399 // i really is an addrec evolution.
2400 if (AddRec
->getLoop() == L
&& AddRec
->isAffine()) {
2401 const SCEV
*StartVal
= getSCEV(PN
->getIncomingValue(IncomingEdge
));
2403 // If StartVal = j.start - j.stride, we can use StartVal as the
2404 // initial step of the addrec evolution.
2405 if (StartVal
== getMinusSCEV(AddRec
->getOperand(0),
2406 AddRec
->getOperand(1))) {
2407 const SCEV
*PHISCEV
=
2408 getAddRecExpr(StartVal
, AddRec
->getOperand(1), L
);
2410 // Okay, for the entire analysis of this edge we assumed the PHI
2411 // to be symbolic. We now need to go back and update all of the
2412 // entries for the scalars that use the PHI (except for the PHI
2413 // itself) to use the new analyzed value instead of the "symbolic"
2415 ReplaceSymbolicValueWithConcrete(PN
, SymbolicName
, PHISCEV
);
2421 return SymbolicName
;
2424 // It's tempting to recognize PHIs with a unique incoming value, however
2425 // this leads passes like indvars to break LCSSA form. Fortunately, such
2426 // PHIs are rare, as instcombine zaps them.
2428 // If it's not a loop phi, we can't handle it yet.
2429 return getUnknown(PN
);
2432 /// createNodeForGEP - Expand GEP instructions into add and multiply
2433 /// operations. This allows them to be analyzed by regular SCEV code.
2435 const SCEV
*ScalarEvolution::createNodeForGEP(Operator
*GEP
) {
2437 const Type
*IntPtrTy
= TD
->getIntPtrType();
2438 Value
*Base
= GEP
->getOperand(0);
2439 // Don't attempt to analyze GEPs over unsized objects.
2440 if (!cast
<PointerType
>(Base
->getType())->getElementType()->isSized())
2441 return getUnknown(GEP
);
2442 const SCEV
*TotalOffset
= getIntegerSCEV(0, IntPtrTy
);
2443 gep_type_iterator GTI
= gep_type_begin(GEP
);
2444 for (GetElementPtrInst::op_iterator I
= next(GEP
->op_begin()),
2448 // Compute the (potentially symbolic) offset in bytes for this index.
2449 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
++)) {
2450 // For a struct, add the member offset.
2451 const StructLayout
&SL
= *TD
->getStructLayout(STy
);
2452 unsigned FieldNo
= cast
<ConstantInt
>(Index
)->getZExtValue();
2453 uint64_t Offset
= SL
.getElementOffset(FieldNo
);
2454 TotalOffset
= getAddExpr(TotalOffset
, getIntegerSCEV(Offset
, IntPtrTy
));
2456 // For an array, add the element offset, explicitly scaled.
2457 const SCEV
*LocalOffset
= getSCEV(Index
);
2458 if (!isa
<PointerType
>(LocalOffset
->getType()))
2459 // Getelementptr indicies are signed.
2460 LocalOffset
= getTruncateOrSignExtend(LocalOffset
, IntPtrTy
);
2462 getMulExpr(LocalOffset
,
2463 getIntegerSCEV(TD
->getTypeAllocSize(*GTI
), IntPtrTy
));
2464 TotalOffset
= getAddExpr(TotalOffset
, LocalOffset
);
2467 return getAddExpr(getSCEV(Base
), TotalOffset
);
2470 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2471 /// guaranteed to end in (at every loop iteration). It is, at the same time,
2472 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2473 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
2475 ScalarEvolution::GetMinTrailingZeros(const SCEV
*S
) {
2476 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
2477 return C
->getValue()->getValue().countTrailingZeros();
2479 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(S
))
2480 return std::min(GetMinTrailingZeros(T
->getOperand()),
2481 (uint32_t)getTypeSizeInBits(T
->getType()));
2483 if (const SCEVZeroExtendExpr
*E
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
2484 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand());
2485 return OpRes
== getTypeSizeInBits(E
->getOperand()->getType()) ?
2486 getTypeSizeInBits(E
->getType()) : OpRes
;
2489 if (const SCEVSignExtendExpr
*E
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
2490 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand());
2491 return OpRes
== getTypeSizeInBits(E
->getOperand()->getType()) ?
2492 getTypeSizeInBits(E
->getType()) : OpRes
;
2495 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(S
)) {
2496 // The result is the min of all operands results.
2497 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0));
2498 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
2499 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
)));
2503 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(S
)) {
2504 // The result is the sum of all operands results.
2505 uint32_t SumOpRes
= GetMinTrailingZeros(M
->getOperand(0));
2506 uint32_t BitWidth
= getTypeSizeInBits(M
->getType());
2507 for (unsigned i
= 1, e
= M
->getNumOperands();
2508 SumOpRes
!= BitWidth
&& i
!= e
; ++i
)
2509 SumOpRes
= std::min(SumOpRes
+ GetMinTrailingZeros(M
->getOperand(i
)),
2514 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2515 // The result is the min of all operands results.
2516 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0));
2517 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
2518 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
)));
2522 if (const SCEVSMaxExpr
*M
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
2523 // The result is the min of all operands results.
2524 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0));
2525 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
2526 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
)));
2530 if (const SCEVUMaxExpr
*M
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
2531 // The result is the min of all operands results.
2532 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0));
2533 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
2534 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
)));
2538 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
2539 // For a SCEVUnknown, ask ValueTracking.
2540 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
2541 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
2542 APInt
Zeros(BitWidth
, 0), Ones(BitWidth
, 0);
2543 ComputeMaskedBits(U
->getValue(), Mask
, Zeros
, Ones
);
2544 return Zeros
.countTrailingOnes();
2551 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2554 ScalarEvolution::getUnsignedRange(const SCEV
*S
) {
2556 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
2557 return ConstantRange(C
->getValue()->getValue());
2559 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
2560 ConstantRange X
= getUnsignedRange(Add
->getOperand(0));
2561 for (unsigned i
= 1, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2562 X
= X
.add(getUnsignedRange(Add
->getOperand(i
)));
2566 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
2567 ConstantRange X
= getUnsignedRange(Mul
->getOperand(0));
2568 for (unsigned i
= 1, e
= Mul
->getNumOperands(); i
!= e
; ++i
)
2569 X
= X
.multiply(getUnsignedRange(Mul
->getOperand(i
)));
2573 if (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
2574 ConstantRange X
= getUnsignedRange(SMax
->getOperand(0));
2575 for (unsigned i
= 1, e
= SMax
->getNumOperands(); i
!= e
; ++i
)
2576 X
= X
.smax(getUnsignedRange(SMax
->getOperand(i
)));
2580 if (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
2581 ConstantRange X
= getUnsignedRange(UMax
->getOperand(0));
2582 for (unsigned i
= 1, e
= UMax
->getNumOperands(); i
!= e
; ++i
)
2583 X
= X
.umax(getUnsignedRange(UMax
->getOperand(i
)));
2587 if (const SCEVUDivExpr
*UDiv
= dyn_cast
<SCEVUDivExpr
>(S
)) {
2588 ConstantRange X
= getUnsignedRange(UDiv
->getLHS());
2589 ConstantRange Y
= getUnsignedRange(UDiv
->getRHS());
2593 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
2594 ConstantRange X
= getUnsignedRange(ZExt
->getOperand());
2595 return X
.zeroExtend(cast
<IntegerType
>(ZExt
->getType())->getBitWidth());
2598 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
2599 ConstantRange X
= getUnsignedRange(SExt
->getOperand());
2600 return X
.signExtend(cast
<IntegerType
>(SExt
->getType())->getBitWidth());
2603 if (const SCEVTruncateExpr
*Trunc
= dyn_cast
<SCEVTruncateExpr
>(S
)) {
2604 ConstantRange X
= getUnsignedRange(Trunc
->getOperand());
2605 return X
.truncate(cast
<IntegerType
>(Trunc
->getType())->getBitWidth());
2608 ConstantRange
FullSet(getTypeSizeInBits(S
->getType()), true);
2610 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2611 const SCEV
*T
= getBackedgeTakenCount(AddRec
->getLoop());
2612 const SCEVConstant
*Trip
= dyn_cast
<SCEVConstant
>(T
);
2613 if (!Trip
) return FullSet
;
2615 // TODO: non-affine addrec
2616 if (AddRec
->isAffine()) {
2617 const Type
*Ty
= AddRec
->getType();
2618 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(AddRec
->getLoop());
2619 if (getTypeSizeInBits(MaxBECount
->getType()) <= getTypeSizeInBits(Ty
)) {
2620 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, Ty
);
2622 const SCEV
*Start
= AddRec
->getStart();
2623 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
2624 const SCEV
*End
= AddRec
->evaluateAtIteration(MaxBECount
, *this);
2626 // Check for overflow.
2627 // TODO: This is very conservative.
2628 if (!(Step
->isOne() &&
2629 isKnownPredicate(ICmpInst::ICMP_ULT
, Start
, End
)) &&
2630 !(Step
->isAllOnesValue() &&
2631 isKnownPredicate(ICmpInst::ICMP_UGT
, Start
, End
)))
2634 ConstantRange StartRange
= getUnsignedRange(Start
);
2635 ConstantRange EndRange
= getUnsignedRange(End
);
2636 APInt Min
= APIntOps::umin(StartRange
.getUnsignedMin(),
2637 EndRange
.getUnsignedMin());
2638 APInt Max
= APIntOps::umax(StartRange
.getUnsignedMax(),
2639 EndRange
.getUnsignedMax());
2640 if (Min
.isMinValue() && Max
.isMaxValue())
2642 return ConstantRange(Min
, Max
+1);
2647 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
2648 // For a SCEVUnknown, ask ValueTracking.
2649 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
2650 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
2651 APInt
Zeros(BitWidth
, 0), Ones(BitWidth
, 0);
2652 ComputeMaskedBits(U
->getValue(), Mask
, Zeros
, Ones
, TD
);
2653 if (Ones
== ~Zeros
+ 1)
2655 return ConstantRange(Ones
, ~Zeros
+ 1);
2661 /// getSignedRange - Determine the signed range for a particular SCEV.
2664 ScalarEvolution::getSignedRange(const SCEV
*S
) {
2666 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
2667 return ConstantRange(C
->getValue()->getValue());
2669 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
2670 ConstantRange X
= getSignedRange(Add
->getOperand(0));
2671 for (unsigned i
= 1, e
= Add
->getNumOperands(); i
!= e
; ++i
)
2672 X
= X
.add(getSignedRange(Add
->getOperand(i
)));
2676 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
2677 ConstantRange X
= getSignedRange(Mul
->getOperand(0));
2678 for (unsigned i
= 1, e
= Mul
->getNumOperands(); i
!= e
; ++i
)
2679 X
= X
.multiply(getSignedRange(Mul
->getOperand(i
)));
2683 if (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
2684 ConstantRange X
= getSignedRange(SMax
->getOperand(0));
2685 for (unsigned i
= 1, e
= SMax
->getNumOperands(); i
!= e
; ++i
)
2686 X
= X
.smax(getSignedRange(SMax
->getOperand(i
)));
2690 if (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
2691 ConstantRange X
= getSignedRange(UMax
->getOperand(0));
2692 for (unsigned i
= 1, e
= UMax
->getNumOperands(); i
!= e
; ++i
)
2693 X
= X
.umax(getSignedRange(UMax
->getOperand(i
)));
2697 if (const SCEVUDivExpr
*UDiv
= dyn_cast
<SCEVUDivExpr
>(S
)) {
2698 ConstantRange X
= getSignedRange(UDiv
->getLHS());
2699 ConstantRange Y
= getSignedRange(UDiv
->getRHS());
2703 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
2704 ConstantRange X
= getSignedRange(ZExt
->getOperand());
2705 return X
.zeroExtend(cast
<IntegerType
>(ZExt
->getType())->getBitWidth());
2708 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
2709 ConstantRange X
= getSignedRange(SExt
->getOperand());
2710 return X
.signExtend(cast
<IntegerType
>(SExt
->getType())->getBitWidth());
2713 if (const SCEVTruncateExpr
*Trunc
= dyn_cast
<SCEVTruncateExpr
>(S
)) {
2714 ConstantRange X
= getSignedRange(Trunc
->getOperand());
2715 return X
.truncate(cast
<IntegerType
>(Trunc
->getType())->getBitWidth());
2718 ConstantRange
FullSet(getTypeSizeInBits(S
->getType()), true);
2720 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2721 const SCEV
*T
= getBackedgeTakenCount(AddRec
->getLoop());
2722 const SCEVConstant
*Trip
= dyn_cast
<SCEVConstant
>(T
);
2723 if (!Trip
) return FullSet
;
2725 // TODO: non-affine addrec
2726 if (AddRec
->isAffine()) {
2727 const Type
*Ty
= AddRec
->getType();
2728 const SCEV
*MaxBECount
= getMaxBackedgeTakenCount(AddRec
->getLoop());
2729 if (getTypeSizeInBits(MaxBECount
->getType()) <= getTypeSizeInBits(Ty
)) {
2730 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, Ty
);
2732 const SCEV
*Start
= AddRec
->getStart();
2733 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
2734 const SCEV
*End
= AddRec
->evaluateAtIteration(MaxBECount
, *this);
2736 // Check for overflow.
2737 // TODO: This is very conservative.
2738 if (!(Step
->isOne() &&
2739 isKnownPredicate(ICmpInst::ICMP_SLT
, Start
, End
)) &&
2740 !(Step
->isAllOnesValue() &&
2741 isKnownPredicate(ICmpInst::ICMP_SGT
, Start
, End
)))
2744 ConstantRange StartRange
= getSignedRange(Start
);
2745 ConstantRange EndRange
= getSignedRange(End
);
2746 APInt Min
= APIntOps::smin(StartRange
.getSignedMin(),
2747 EndRange
.getSignedMin());
2748 APInt Max
= APIntOps::smax(StartRange
.getSignedMax(),
2749 EndRange
.getSignedMax());
2750 if (Min
.isMinSignedValue() && Max
.isMaxSignedValue())
2752 return ConstantRange(Min
, Max
+1);
2757 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
2758 // For a SCEVUnknown, ask ValueTracking.
2759 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
2760 unsigned NS
= ComputeNumSignBits(U
->getValue(), TD
);
2764 ConstantRange(APInt::getSignedMinValue(BitWidth
).ashr(NS
- 1),
2765 APInt::getSignedMaxValue(BitWidth
).ashr(NS
- 1)+1);
2771 /// createSCEV - We know that there is no SCEV for the specified value.
2772 /// Analyze the expression.
2774 const SCEV
*ScalarEvolution::createSCEV(Value
*V
) {
2775 if (!isSCEVable(V
->getType()))
2776 return getUnknown(V
);
2778 unsigned Opcode
= Instruction::UserOp1
;
2779 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
2780 Opcode
= I
->getOpcode();
2781 else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
2782 Opcode
= CE
->getOpcode();
2783 else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
2784 return getConstant(CI
);
2785 else if (isa
<ConstantPointerNull
>(V
))
2786 return getIntegerSCEV(0, V
->getType());
2787 else if (isa
<UndefValue
>(V
))
2788 return getIntegerSCEV(0, V
->getType());
2790 return getUnknown(V
);
2792 Operator
*U
= cast
<Operator
>(V
);
2794 case Instruction::Add
:
2795 return getAddExpr(getSCEV(U
->getOperand(0)),
2796 getSCEV(U
->getOperand(1)));
2797 case Instruction::Mul
:
2798 return getMulExpr(getSCEV(U
->getOperand(0)),
2799 getSCEV(U
->getOperand(1)));
2800 case Instruction::UDiv
:
2801 return getUDivExpr(getSCEV(U
->getOperand(0)),
2802 getSCEV(U
->getOperand(1)));
2803 case Instruction::Sub
:
2804 return getMinusSCEV(getSCEV(U
->getOperand(0)),
2805 getSCEV(U
->getOperand(1)));
2806 case Instruction::And
:
2807 // For an expression like x&255 that merely masks off the high bits,
2808 // use zext(trunc(x)) as the SCEV expression.
2809 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2810 if (CI
->isNullValue())
2811 return getSCEV(U
->getOperand(1));
2812 if (CI
->isAllOnesValue())
2813 return getSCEV(U
->getOperand(0));
2814 const APInt
&A
= CI
->getValue();
2816 // Instcombine's ShrinkDemandedConstant may strip bits out of
2817 // constants, obscuring what would otherwise be a low-bits mask.
2818 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2819 // knew about to reconstruct a low-bits mask value.
2820 unsigned LZ
= A
.countLeadingZeros();
2821 unsigned BitWidth
= A
.getBitWidth();
2822 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
2823 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
2824 ComputeMaskedBits(U
->getOperand(0), AllOnes
, KnownZero
, KnownOne
, TD
);
2826 APInt EffectiveMask
= APInt::getLowBitsSet(BitWidth
, BitWidth
- LZ
);
2828 if (LZ
!= 0 && !((~A
& ~KnownZero
) & EffectiveMask
))
2830 getZeroExtendExpr(getTruncateExpr(getSCEV(U
->getOperand(0)),
2831 IntegerType::get(BitWidth
- LZ
)),
2836 case Instruction::Or
:
2837 // If the RHS of the Or is a constant, we may have something like:
2838 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2839 // optimizations will transparently handle this case.
2841 // In order for this transformation to be safe, the LHS must be of the
2842 // form X*(2^n) and the Or constant must be less than 2^n.
2843 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2844 const SCEV
*LHS
= getSCEV(U
->getOperand(0));
2845 const APInt
&CIVal
= CI
->getValue();
2846 if (GetMinTrailingZeros(LHS
) >=
2847 (CIVal
.getBitWidth() - CIVal
.countLeadingZeros()))
2848 return getAddExpr(LHS
, getSCEV(U
->getOperand(1)));
2851 case Instruction::Xor
:
2852 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2853 // If the RHS of the xor is a signbit, then this is just an add.
2854 // Instcombine turns add of signbit into xor as a strength reduction step.
2855 if (CI
->getValue().isSignBit())
2856 return getAddExpr(getSCEV(U
->getOperand(0)),
2857 getSCEV(U
->getOperand(1)));
2859 // If the RHS of xor is -1, then this is a not operation.
2860 if (CI
->isAllOnesValue())
2861 return getNotSCEV(getSCEV(U
->getOperand(0)));
2863 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2864 // This is a variant of the check for xor with -1, and it handles
2865 // the case where instcombine has trimmed non-demanded bits out
2866 // of an xor with -1.
2867 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
->getOperand(0)))
2868 if (ConstantInt
*LCI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1)))
2869 if (BO
->getOpcode() == Instruction::And
&&
2870 LCI
->getValue() == CI
->getValue())
2871 if (const SCEVZeroExtendExpr
*Z
=
2872 dyn_cast
<SCEVZeroExtendExpr
>(getSCEV(U
->getOperand(0)))) {
2873 const Type
*UTy
= U
->getType();
2874 const SCEV
*Z0
= Z
->getOperand();
2875 const Type
*Z0Ty
= Z0
->getType();
2876 unsigned Z0TySize
= getTypeSizeInBits(Z0Ty
);
2878 // If C is a low-bits mask, the zero extend is zerving to
2879 // mask off the high bits. Complement the operand and
2880 // re-apply the zext.
2881 if (APIntOps::isMask(Z0TySize
, CI
->getValue()))
2882 return getZeroExtendExpr(getNotSCEV(Z0
), UTy
);
2884 // If C is a single bit, it may be in the sign-bit position
2885 // before the zero-extend. In this case, represent the xor
2886 // using an add, which is equivalent, and re-apply the zext.
2887 APInt Trunc
= APInt(CI
->getValue()).trunc(Z0TySize
);
2888 if (APInt(Trunc
).zext(getTypeSizeInBits(UTy
)) == CI
->getValue() &&
2890 return getZeroExtendExpr(getAddExpr(Z0
, getConstant(Trunc
)),
2896 case Instruction::Shl
:
2897 // Turn shift left of a constant amount into a multiply.
2898 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2899 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
2900 Constant
*X
= ConstantInt::get(getContext(),
2901 APInt(BitWidth
, 1).shl(SA
->getLimitedValue(BitWidth
)));
2902 return getMulExpr(getSCEV(U
->getOperand(0)), getSCEV(X
));
2906 case Instruction::LShr
:
2907 // Turn logical shift right of a constant into a unsigned divide.
2908 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(U
->getOperand(1))) {
2909 uint32_t BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
2910 Constant
*X
= ConstantInt::get(getContext(),
2911 APInt(BitWidth
, 1).shl(SA
->getLimitedValue(BitWidth
)));
2912 return getUDivExpr(getSCEV(U
->getOperand(0)), getSCEV(X
));
2916 case Instruction::AShr
:
2917 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2918 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(U
->getOperand(1)))
2919 if (Instruction
*L
= dyn_cast
<Instruction
>(U
->getOperand(0)))
2920 if (L
->getOpcode() == Instruction::Shl
&&
2921 L
->getOperand(1) == U
->getOperand(1)) {
2922 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
2923 uint64_t Amt
= BitWidth
- CI
->getZExtValue();
2924 if (Amt
== BitWidth
)
2925 return getSCEV(L
->getOperand(0)); // shift by zero --> noop
2927 return getIntegerSCEV(0, U
->getType()); // value is undefined
2929 getSignExtendExpr(getTruncateExpr(getSCEV(L
->getOperand(0)),
2930 IntegerType::get(Amt
)),
2935 case Instruction::Trunc
:
2936 return getTruncateExpr(getSCEV(U
->getOperand(0)), U
->getType());
2938 case Instruction::ZExt
:
2939 return getZeroExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
2941 case Instruction::SExt
:
2942 return getSignExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
2944 case Instruction::BitCast
:
2945 // BitCasts are no-op casts so we just eliminate the cast.
2946 if (isSCEVable(U
->getType()) && isSCEVable(U
->getOperand(0)->getType()))
2947 return getSCEV(U
->getOperand(0));
2950 // It's tempting to handle inttoptr and ptrtoint, however this can
2951 // lead to pointer expressions which cannot be expanded to GEPs
2952 // (because they may overflow). For now, the only pointer-typed
2953 // expressions we handle are GEPs and address literals.
2955 case Instruction::GetElementPtr
:
2956 if (!TD
) break; // Without TD we can't analyze pointers.
2957 return createNodeForGEP(U
);
2959 case Instruction::PHI
:
2960 return createNodeForPHI(cast
<PHINode
>(U
));
2962 case Instruction::Select
:
2963 // This could be a smax or umax that was lowered earlier.
2964 // Try to recover it.
2965 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(U
->getOperand(0))) {
2966 Value
*LHS
= ICI
->getOperand(0);
2967 Value
*RHS
= ICI
->getOperand(1);
2968 switch (ICI
->getPredicate()) {
2969 case ICmpInst::ICMP_SLT
:
2970 case ICmpInst::ICMP_SLE
:
2971 std::swap(LHS
, RHS
);
2973 case ICmpInst::ICMP_SGT
:
2974 case ICmpInst::ICMP_SGE
:
2975 if (LHS
== U
->getOperand(1) && RHS
== U
->getOperand(2))
2976 return getSMaxExpr(getSCEV(LHS
), getSCEV(RHS
));
2977 else if (LHS
== U
->getOperand(2) && RHS
== U
->getOperand(1))
2978 return getSMinExpr(getSCEV(LHS
), getSCEV(RHS
));
2980 case ICmpInst::ICMP_ULT
:
2981 case ICmpInst::ICMP_ULE
:
2982 std::swap(LHS
, RHS
);
2984 case ICmpInst::ICMP_UGT
:
2985 case ICmpInst::ICMP_UGE
:
2986 if (LHS
== U
->getOperand(1) && RHS
== U
->getOperand(2))
2987 return getUMaxExpr(getSCEV(LHS
), getSCEV(RHS
));
2988 else if (LHS
== U
->getOperand(2) && RHS
== U
->getOperand(1))
2989 return getUMinExpr(getSCEV(LHS
), getSCEV(RHS
));
2991 case ICmpInst::ICMP_NE
:
2992 // n != 0 ? n : 1 -> umax(n, 1)
2993 if (LHS
== U
->getOperand(1) &&
2994 isa
<ConstantInt
>(U
->getOperand(2)) &&
2995 cast
<ConstantInt
>(U
->getOperand(2))->isOne() &&
2996 isa
<ConstantInt
>(RHS
) &&
2997 cast
<ConstantInt
>(RHS
)->isZero())
2998 return getUMaxExpr(getSCEV(LHS
), getSCEV(U
->getOperand(2)));
3000 case ICmpInst::ICMP_EQ
:
3001 // n == 0 ? 1 : n -> umax(n, 1)
3002 if (LHS
== U
->getOperand(2) &&
3003 isa
<ConstantInt
>(U
->getOperand(1)) &&
3004 cast
<ConstantInt
>(U
->getOperand(1))->isOne() &&
3005 isa
<ConstantInt
>(RHS
) &&
3006 cast
<ConstantInt
>(RHS
)->isZero())
3007 return getUMaxExpr(getSCEV(LHS
), getSCEV(U
->getOperand(1)));
3014 default: // We cannot analyze this expression.
3018 return getUnknown(V
);
3023 //===----------------------------------------------------------------------===//
3024 // Iteration Count Computation Code
3027 /// getBackedgeTakenCount - If the specified loop has a predictable
3028 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3029 /// object. The backedge-taken count is the number of times the loop header
3030 /// will be branched to from within the loop. This is one less than the
3031 /// trip count of the loop, since it doesn't count the first iteration,
3032 /// when the header is branched to from outside the loop.
3034 /// Note that it is not valid to call this method on a loop without a
3035 /// loop-invariant backedge-taken count (see
3036 /// hasLoopInvariantBackedgeTakenCount).
3038 const SCEV
*ScalarEvolution::getBackedgeTakenCount(const Loop
*L
) {
3039 return getBackedgeTakenInfo(L
).Exact
;
3042 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3043 /// return the least SCEV value that is known never to be less than the
3044 /// actual backedge taken count.
3045 const SCEV
*ScalarEvolution::getMaxBackedgeTakenCount(const Loop
*L
) {
3046 return getBackedgeTakenInfo(L
).Max
;
3049 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
3050 /// onto the given Worklist.
3052 PushLoopPHIs(const Loop
*L
, SmallVectorImpl
<Instruction
*> &Worklist
) {
3053 BasicBlock
*Header
= L
->getHeader();
3055 // Push all Loop-header PHIs onto the Worklist stack.
3056 for (BasicBlock::iterator I
= Header
->begin();
3057 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
3058 Worklist
.push_back(PN
);
3061 /// PushDefUseChildren - Push users of the given Instruction
3062 /// onto the given Worklist.
3064 PushDefUseChildren(Instruction
*I
,
3065 SmallVectorImpl
<Instruction
*> &Worklist
) {
3066 // Push the def-use children onto the Worklist stack.
3067 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
3069 Worklist
.push_back(cast
<Instruction
>(UI
));
3072 const ScalarEvolution::BackedgeTakenInfo
&
3073 ScalarEvolution::getBackedgeTakenInfo(const Loop
*L
) {
3074 // Initially insert a CouldNotCompute for this loop. If the insertion
3075 // succeeds, procede to actually compute a backedge-taken count and
3076 // update the value. The temporary CouldNotCompute value tells SCEV
3077 // code elsewhere that it shouldn't attempt to request a new
3078 // backedge-taken count, which could result in infinite recursion.
3079 std::pair
<std::map
<const Loop
*, BackedgeTakenInfo
>::iterator
, bool> Pair
=
3080 BackedgeTakenCounts
.insert(std::make_pair(L
, getCouldNotCompute()));
3082 BackedgeTakenInfo ItCount
= ComputeBackedgeTakenCount(L
);
3083 if (ItCount
.Exact
!= getCouldNotCompute()) {
3084 assert(ItCount
.Exact
->isLoopInvariant(L
) &&
3085 ItCount
.Max
->isLoopInvariant(L
) &&
3086 "Computed trip count isn't loop invariant for loop!");
3087 ++NumTripCountsComputed
;
3089 // Update the value in the map.
3090 Pair
.first
->second
= ItCount
;
3092 if (ItCount
.Max
!= getCouldNotCompute())
3093 // Update the value in the map.
3094 Pair
.first
->second
= ItCount
;
3095 if (isa
<PHINode
>(L
->getHeader()->begin()))
3096 // Only count loops that have phi nodes as not being computable.
3097 ++NumTripCountsNotComputed
;
3100 // Now that we know more about the trip count for this loop, forget any
3101 // existing SCEV values for PHI nodes in this loop since they are only
3102 // conservative estimates made without the benefit of trip count
3103 // information. This is similar to the code in
3104 // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
3106 if (ItCount
.hasAnyInfo()) {
3107 SmallVector
<Instruction
*, 16> Worklist
;
3108 PushLoopPHIs(L
, Worklist
);
3110 SmallPtrSet
<Instruction
*, 8> Visited
;
3111 while (!Worklist
.empty()) {
3112 Instruction
*I
= Worklist
.pop_back_val();
3113 if (!Visited
.insert(I
)) continue;
3115 std::map
<SCEVCallbackVH
, const SCEV
*>::iterator It
=
3116 Scalars
.find(static_cast<Value
*>(I
));
3117 if (It
!= Scalars
.end()) {
3118 // SCEVUnknown for a PHI either means that it has an unrecognized
3119 // structure, or it's a PHI that's in the progress of being computed
3120 // by createNodeForPHI. In the former case, additional loop trip
3121 // count information isn't going to change anything. In the later
3122 // case, createNodeForPHI will perform the necessary updates on its
3123 // own when it gets to that point.
3124 if (!isa
<PHINode
>(I
) || !isa
<SCEVUnknown
>(It
->second
))
3126 ValuesAtScopes
.erase(I
);
3127 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
3128 ConstantEvolutionLoopExitValue
.erase(PN
);
3131 PushDefUseChildren(I
, Worklist
);
3135 return Pair
.first
->second
;
3138 /// forgetLoopBackedgeTakenCount - This method should be called by the
3139 /// client when it has changed a loop in a way that may effect
3140 /// ScalarEvolution's ability to compute a trip count, or if the loop
3142 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop
*L
) {
3143 BackedgeTakenCounts
.erase(L
);
3145 SmallVector
<Instruction
*, 16> Worklist
;
3146 PushLoopPHIs(L
, Worklist
);
3148 SmallPtrSet
<Instruction
*, 8> Visited
;
3149 while (!Worklist
.empty()) {
3150 Instruction
*I
= Worklist
.pop_back_val();
3151 if (!Visited
.insert(I
)) continue;
3153 std::map
<SCEVCallbackVH
, const SCEV
*>::iterator It
=
3154 Scalars
.find(static_cast<Value
*>(I
));
3155 if (It
!= Scalars
.end()) {
3157 ValuesAtScopes
.erase(I
);
3158 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
3159 ConstantEvolutionLoopExitValue
.erase(PN
);
3162 PushDefUseChildren(I
, Worklist
);
3166 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
3167 /// of the specified loop will execute.
3168 ScalarEvolution::BackedgeTakenInfo
3169 ScalarEvolution::ComputeBackedgeTakenCount(const Loop
*L
) {
3170 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
3171 L
->getExitingBlocks(ExitingBlocks
);
3173 // Examine all exits and pick the most conservative values.
3174 const SCEV
*BECount
= getCouldNotCompute();
3175 const SCEV
*MaxBECount
= getCouldNotCompute();
3176 bool CouldNotComputeBECount
= false;
3177 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
3178 BackedgeTakenInfo NewBTI
=
3179 ComputeBackedgeTakenCountFromExit(L
, ExitingBlocks
[i
]);
3181 if (NewBTI
.Exact
== getCouldNotCompute()) {
3182 // We couldn't compute an exact value for this exit, so
3183 // we won't be able to compute an exact value for the loop.
3184 CouldNotComputeBECount
= true;
3185 BECount
= getCouldNotCompute();
3186 } else if (!CouldNotComputeBECount
) {
3187 if (BECount
== getCouldNotCompute())
3188 BECount
= NewBTI
.Exact
;
3190 BECount
= getUMinFromMismatchedTypes(BECount
, NewBTI
.Exact
);
3192 if (MaxBECount
== getCouldNotCompute())
3193 MaxBECount
= NewBTI
.Max
;
3194 else if (NewBTI
.Max
!= getCouldNotCompute())
3195 MaxBECount
= getUMinFromMismatchedTypes(MaxBECount
, NewBTI
.Max
);
3198 return BackedgeTakenInfo(BECount
, MaxBECount
);
3201 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3202 /// of the specified loop will execute if it exits via the specified block.
3203 ScalarEvolution::BackedgeTakenInfo
3204 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop
*L
,
3205 BasicBlock
*ExitingBlock
) {
3207 // Okay, we've chosen an exiting block. See what condition causes us to
3208 // exit at this block.
3210 // FIXME: we should be able to handle switch instructions (with a single exit)
3211 BranchInst
*ExitBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
3212 if (ExitBr
== 0) return getCouldNotCompute();
3213 assert(ExitBr
->isConditional() && "If unconditional, it can't be in loop!");
3215 // At this point, we know we have a conditional branch that determines whether
3216 // the loop is exited. However, we don't know if the branch is executed each
3217 // time through the loop. If not, then the execution count of the branch will
3218 // not be equal to the trip count of the loop.
3220 // Currently we check for this by checking to see if the Exit branch goes to
3221 // the loop header. If so, we know it will always execute the same number of
3222 // times as the loop. We also handle the case where the exit block *is* the
3223 // loop header. This is common for un-rotated loops.
3225 // If both of those tests fail, walk up the unique predecessor chain to the
3226 // header, stopping if there is an edge that doesn't exit the loop. If the
3227 // header is reached, the execution count of the branch will be equal to the
3228 // trip count of the loop.
3230 // More extensive analysis could be done to handle more cases here.
3232 if (ExitBr
->getSuccessor(0) != L
->getHeader() &&
3233 ExitBr
->getSuccessor(1) != L
->getHeader() &&
3234 ExitBr
->getParent() != L
->getHeader()) {
3235 // The simple checks failed, try climbing the unique predecessor chain
3236 // up to the header.
3238 for (BasicBlock
*BB
= ExitBr
->getParent(); BB
; ) {
3239 BasicBlock
*Pred
= BB
->getUniquePredecessor();
3241 return getCouldNotCompute();
3242 TerminatorInst
*PredTerm
= Pred
->getTerminator();
3243 for (unsigned i
= 0, e
= PredTerm
->getNumSuccessors(); i
!= e
; ++i
) {
3244 BasicBlock
*PredSucc
= PredTerm
->getSuccessor(i
);
3247 // If the predecessor has a successor that isn't BB and isn't
3248 // outside the loop, assume the worst.
3249 if (L
->contains(PredSucc
))
3250 return getCouldNotCompute();
3252 if (Pred
== L
->getHeader()) {
3259 return getCouldNotCompute();
3262 // Procede to the next level to examine the exit condition expression.
3263 return ComputeBackedgeTakenCountFromExitCond(L
, ExitBr
->getCondition(),
3264 ExitBr
->getSuccessor(0),
3265 ExitBr
->getSuccessor(1));
3268 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3269 /// backedge of the specified loop will execute if its exit condition
3270 /// were a conditional branch of ExitCond, TBB, and FBB.
3271 ScalarEvolution::BackedgeTakenInfo
3272 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop
*L
,
3276 // Check if the controlling expression for this loop is an And or Or.
3277 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(ExitCond
)) {
3278 if (BO
->getOpcode() == Instruction::And
) {
3279 // Recurse on the operands of the and.
3280 BackedgeTakenInfo BTI0
=
3281 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(0), TBB
, FBB
);
3282 BackedgeTakenInfo BTI1
=
3283 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(1), TBB
, FBB
);
3284 const SCEV
*BECount
= getCouldNotCompute();
3285 const SCEV
*MaxBECount
= getCouldNotCompute();
3286 if (L
->contains(TBB
)) {
3287 // Both conditions must be true for the loop to continue executing.
3288 // Choose the less conservative count.
3289 if (BTI0
.Exact
== getCouldNotCompute() ||
3290 BTI1
.Exact
== getCouldNotCompute())
3291 BECount
= getCouldNotCompute();
3293 BECount
= getUMinFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
3294 if (BTI0
.Max
== getCouldNotCompute())
3295 MaxBECount
= BTI1
.Max
;
3296 else if (BTI1
.Max
== getCouldNotCompute())
3297 MaxBECount
= BTI0
.Max
;
3299 MaxBECount
= getUMinFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
3301 // Both conditions must be true for the loop to exit.
3302 assert(L
->contains(FBB
) && "Loop block has no successor in loop!");
3303 if (BTI0
.Exact
!= getCouldNotCompute() &&
3304 BTI1
.Exact
!= getCouldNotCompute())
3305 BECount
= getUMaxFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
3306 if (BTI0
.Max
!= getCouldNotCompute() &&
3307 BTI1
.Max
!= getCouldNotCompute())
3308 MaxBECount
= getUMaxFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
3311 return BackedgeTakenInfo(BECount
, MaxBECount
);
3313 if (BO
->getOpcode() == Instruction::Or
) {
3314 // Recurse on the operands of the or.
3315 BackedgeTakenInfo BTI0
=
3316 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(0), TBB
, FBB
);
3317 BackedgeTakenInfo BTI1
=
3318 ComputeBackedgeTakenCountFromExitCond(L
, BO
->getOperand(1), TBB
, FBB
);
3319 const SCEV
*BECount
= getCouldNotCompute();
3320 const SCEV
*MaxBECount
= getCouldNotCompute();
3321 if (L
->contains(FBB
)) {
3322 // Both conditions must be false for the loop to continue executing.
3323 // Choose the less conservative count.
3324 if (BTI0
.Exact
== getCouldNotCompute() ||
3325 BTI1
.Exact
== getCouldNotCompute())
3326 BECount
= getCouldNotCompute();
3328 BECount
= getUMinFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
3329 if (BTI0
.Max
== getCouldNotCompute())
3330 MaxBECount
= BTI1
.Max
;
3331 else if (BTI1
.Max
== getCouldNotCompute())
3332 MaxBECount
= BTI0
.Max
;
3334 MaxBECount
= getUMinFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
3336 // Both conditions must be false for the loop to exit.
3337 assert(L
->contains(TBB
) && "Loop block has no successor in loop!");
3338 if (BTI0
.Exact
!= getCouldNotCompute() &&
3339 BTI1
.Exact
!= getCouldNotCompute())
3340 BECount
= getUMaxFromMismatchedTypes(BTI0
.Exact
, BTI1
.Exact
);
3341 if (BTI0
.Max
!= getCouldNotCompute() &&
3342 BTI1
.Max
!= getCouldNotCompute())
3343 MaxBECount
= getUMaxFromMismatchedTypes(BTI0
.Max
, BTI1
.Max
);
3346 return BackedgeTakenInfo(BECount
, MaxBECount
);
3350 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3351 // Procede to the next level to examine the icmp.
3352 if (ICmpInst
*ExitCondICmp
= dyn_cast
<ICmpInst
>(ExitCond
))
3353 return ComputeBackedgeTakenCountFromExitCondICmp(L
, ExitCondICmp
, TBB
, FBB
);
3355 // If it's not an integer or pointer comparison then compute it the hard way.
3356 return ComputeBackedgeTakenCountExhaustively(L
, ExitCond
, !L
->contains(TBB
));
3359 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3360 /// backedge of the specified loop will execute if its exit condition
3361 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3362 ScalarEvolution::BackedgeTakenInfo
3363 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop
*L
,
3368 // If the condition was exit on true, convert the condition to exit on false
3369 ICmpInst::Predicate Cond
;
3370 if (!L
->contains(FBB
))
3371 Cond
= ExitCond
->getPredicate();
3373 Cond
= ExitCond
->getInversePredicate();
3375 // Handle common loops like: for (X = "string"; *X; ++X)
3376 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(ExitCond
->getOperand(0)))
3377 if (Constant
*RHS
= dyn_cast
<Constant
>(ExitCond
->getOperand(1))) {
3379 ComputeLoadConstantCompareBackedgeTakenCount(LI
, RHS
, L
, Cond
);
3380 if (!isa
<SCEVCouldNotCompute
>(ItCnt
)) {
3381 unsigned BitWidth
= getTypeSizeInBits(ItCnt
->getType());
3382 return BackedgeTakenInfo(ItCnt
,
3383 isa
<SCEVConstant
>(ItCnt
) ? ItCnt
:
3384 getConstant(APInt::getMaxValue(BitWidth
)-1));
3388 const SCEV
*LHS
= getSCEV(ExitCond
->getOperand(0));
3389 const SCEV
*RHS
= getSCEV(ExitCond
->getOperand(1));
3391 // Try to evaluate any dependencies out of the loop.
3392 LHS
= getSCEVAtScope(LHS
, L
);
3393 RHS
= getSCEVAtScope(RHS
, L
);
3395 // At this point, we would like to compute how many iterations of the
3396 // loop the predicate will return true for these inputs.
3397 if (LHS
->isLoopInvariant(L
) && !RHS
->isLoopInvariant(L
)) {
3398 // If there is a loop-invariant, force it into the RHS.
3399 std::swap(LHS
, RHS
);
3400 Cond
= ICmpInst::getSwappedPredicate(Cond
);
3403 // If we have a comparison of a chrec against a constant, try to use value
3404 // ranges to answer this query.
3405 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
))
3406 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
3407 if (AddRec
->getLoop() == L
) {
3408 // Form the constant range.
3409 ConstantRange
CompRange(
3410 ICmpInst::makeConstantRange(Cond
, RHSC
->getValue()->getValue()));
3412 const SCEV
*Ret
= AddRec
->getNumIterationsInRange(CompRange
, *this);
3413 if (!isa
<SCEVCouldNotCompute
>(Ret
)) return Ret
;
3417 case ICmpInst::ICMP_NE
: { // while (X != Y)
3418 // Convert to: while (X-Y != 0)
3419 const SCEV
*TC
= HowFarToZero(getMinusSCEV(LHS
, RHS
), L
);
3420 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
3423 case ICmpInst::ICMP_EQ
: {
3424 // Convert to: while (X-Y == 0) // while (X == Y)
3425 const SCEV
*TC
= HowFarToNonZero(getMinusSCEV(LHS
, RHS
), L
);
3426 if (!isa
<SCEVCouldNotCompute
>(TC
)) return TC
;
3429 case ICmpInst::ICMP_SLT
: {
3430 BackedgeTakenInfo BTI
= HowManyLessThans(LHS
, RHS
, L
, true);
3431 if (BTI
.hasAnyInfo()) return BTI
;
3434 case ICmpInst::ICMP_SGT
: {
3435 BackedgeTakenInfo BTI
= HowManyLessThans(getNotSCEV(LHS
),
3436 getNotSCEV(RHS
), L
, true);
3437 if (BTI
.hasAnyInfo()) return BTI
;
3440 case ICmpInst::ICMP_ULT
: {
3441 BackedgeTakenInfo BTI
= HowManyLessThans(LHS
, RHS
, L
, false);
3442 if (BTI
.hasAnyInfo()) return BTI
;
3445 case ICmpInst::ICMP_UGT
: {
3446 BackedgeTakenInfo BTI
= HowManyLessThans(getNotSCEV(LHS
),
3447 getNotSCEV(RHS
), L
, false);
3448 if (BTI
.hasAnyInfo()) return BTI
;
3453 errs() << "ComputeBackedgeTakenCount ";
3454 if (ExitCond
->getOperand(0)->getType()->isUnsigned())
3455 errs() << "[unsigned] ";
3456 errs() << *LHS
<< " "
3457 << Instruction::getOpcodeName(Instruction::ICmp
)
3458 << " " << *RHS
<< "\n";
3463 ComputeBackedgeTakenCountExhaustively(L
, ExitCond
, !L
->contains(TBB
));
3466 static ConstantInt
*
3467 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr
*AddRec
, ConstantInt
*C
,
3468 ScalarEvolution
&SE
) {
3469 const SCEV
*InVal
= SE
.getConstant(C
);
3470 const SCEV
*Val
= AddRec
->evaluateAtIteration(InVal
, SE
);
3471 assert(isa
<SCEVConstant
>(Val
) &&
3472 "Evaluation of SCEV at constant didn't fold correctly?");
3473 return cast
<SCEVConstant
>(Val
)->getValue();
3476 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
3477 /// and a GEP expression (missing the pointer index) indexing into it, return
3478 /// the addressed element of the initializer or null if the index expression is
3481 GetAddressedElementFromGlobal(LLVMContext
&Context
, GlobalVariable
*GV
,
3482 const std::vector
<ConstantInt
*> &Indices
) {
3483 Constant
*Init
= GV
->getInitializer();
3484 for (unsigned i
= 0, e
= Indices
.size(); i
!= e
; ++i
) {
3485 uint64_t Idx
= Indices
[i
]->getZExtValue();
3486 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(Init
)) {
3487 assert(Idx
< CS
->getNumOperands() && "Bad struct index!");
3488 Init
= cast
<Constant
>(CS
->getOperand(Idx
));
3489 } else if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(Init
)) {
3490 if (Idx
>= CA
->getNumOperands()) return 0; // Bogus program
3491 Init
= cast
<Constant
>(CA
->getOperand(Idx
));
3492 } else if (isa
<ConstantAggregateZero
>(Init
)) {
3493 if (const StructType
*STy
= dyn_cast
<StructType
>(Init
->getType())) {
3494 assert(Idx
< STy
->getNumElements() && "Bad struct index!");
3495 Init
= Context
.getNullValue(STy
->getElementType(Idx
));
3496 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Init
->getType())) {
3497 if (Idx
>= ATy
->getNumElements()) return 0; // Bogus program
3498 Init
= Context
.getNullValue(ATy
->getElementType());
3500 llvm_unreachable("Unknown constant aggregate type!");
3504 return 0; // Unknown initializer type
3510 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3511 /// 'icmp op load X, cst', try to see if we can compute the backedge
3512 /// execution count.
3514 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3518 ICmpInst::Predicate predicate
) {
3519 if (LI
->isVolatile()) return getCouldNotCompute();
3521 // Check to see if the loaded pointer is a getelementptr of a global.
3522 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0));
3523 if (!GEP
) return getCouldNotCompute();
3525 // Make sure that it is really a constant global we are gepping, with an
3526 // initializer, and make sure the first IDX is really 0.
3527 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0));
3528 if (!GV
|| !GV
->isConstant() || !GV
->hasInitializer() ||
3529 GEP
->getNumOperands() < 3 || !isa
<Constant
>(GEP
->getOperand(1)) ||
3530 !cast
<Constant
>(GEP
->getOperand(1))->isNullValue())
3531 return getCouldNotCompute();
3533 // Okay, we allow one non-constant index into the GEP instruction.
3535 std::vector
<ConstantInt
*> Indexes
;
3536 unsigned VarIdxNum
= 0;
3537 for (unsigned i
= 2, e
= GEP
->getNumOperands(); i
!= e
; ++i
)
3538 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
3539 Indexes
.push_back(CI
);
3540 } else if (!isa
<ConstantInt
>(GEP
->getOperand(i
))) {
3541 if (VarIdx
) return getCouldNotCompute(); // Multiple non-constant idx's.
3542 VarIdx
= GEP
->getOperand(i
);
3544 Indexes
.push_back(0);
3547 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3548 // Check to see if X is a loop variant variable value now.
3549 const SCEV
*Idx
= getSCEV(VarIdx
);
3550 Idx
= getSCEVAtScope(Idx
, L
);
3552 // We can only recognize very limited forms of loop index expressions, in
3553 // particular, only affine AddRec's like {C1,+,C2}.
3554 const SCEVAddRecExpr
*IdxExpr
= dyn_cast
<SCEVAddRecExpr
>(Idx
);
3555 if (!IdxExpr
|| !IdxExpr
->isAffine() || IdxExpr
->isLoopInvariant(L
) ||
3556 !isa
<SCEVConstant
>(IdxExpr
->getOperand(0)) ||
3557 !isa
<SCEVConstant
>(IdxExpr
->getOperand(1)))
3558 return getCouldNotCompute();
3560 unsigned MaxSteps
= MaxBruteForceIterations
;
3561 for (unsigned IterationNum
= 0; IterationNum
!= MaxSteps
; ++IterationNum
) {
3562 ConstantInt
*ItCst
= ConstantInt::get(
3563 cast
<IntegerType
>(IdxExpr
->getType()), IterationNum
);
3564 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(IdxExpr
, ItCst
, *this);
3566 // Form the GEP offset.
3567 Indexes
[VarIdxNum
] = Val
;
3569 Constant
*Result
= GetAddressedElementFromGlobal(getContext(), GV
, Indexes
);
3570 if (Result
== 0) break; // Cannot compute!
3572 // Evaluate the condition for this iteration.
3573 Result
= ConstantExpr::getICmp(predicate
, Result
, RHS
);
3574 if (!isa
<ConstantInt
>(Result
)) break; // Couldn't decide for sure
3575 if (cast
<ConstantInt
>(Result
)->getValue().isMinValue()) {
3577 errs() << "\n***\n*** Computed loop count " << *ItCst
3578 << "\n*** From global " << *GV
<< "*** BB: " << *L
->getHeader()
3581 ++NumArrayLenItCounts
;
3582 return getConstant(ItCst
); // Found terminating iteration!
3585 return getCouldNotCompute();
3589 /// CanConstantFold - Return true if we can constant fold an instruction of the
3590 /// specified type, assuming that all operands were constants.
3591 static bool CanConstantFold(const Instruction
*I
) {
3592 if (isa
<BinaryOperator
>(I
) || isa
<CmpInst
>(I
) ||
3593 isa
<SelectInst
>(I
) || isa
<CastInst
>(I
) || isa
<GetElementPtrInst
>(I
))
3596 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
3597 if (const Function
*F
= CI
->getCalledFunction())
3598 return canConstantFoldCallTo(F
);
3602 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3603 /// in the loop that V is derived from. We allow arbitrary operations along the
3604 /// way, but the operands of an operation must either be constants or a value
3605 /// derived from a constant PHI. If this expression does not fit with these
3606 /// constraints, return null.
3607 static PHINode
*getConstantEvolvingPHI(Value
*V
, const Loop
*L
) {
3608 // If this is not an instruction, or if this is an instruction outside of the
3609 // loop, it can't be derived from a loop PHI.
3610 Instruction
*I
= dyn_cast
<Instruction
>(V
);
3611 if (I
== 0 || !L
->contains(I
->getParent())) return 0;
3613 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
3614 if (L
->getHeader() == I
->getParent())
3617 // We don't currently keep track of the control flow needed to evaluate
3618 // PHIs, so we cannot handle PHIs inside of loops.
3622 // If we won't be able to constant fold this expression even if the operands
3623 // are constants, return early.
3624 if (!CanConstantFold(I
)) return 0;
3626 // Otherwise, we can evaluate this instruction if all of its operands are
3627 // constant or derived from a PHI node themselves.
3629 for (unsigned Op
= 0, e
= I
->getNumOperands(); Op
!= e
; ++Op
)
3630 if (!(isa
<Constant
>(I
->getOperand(Op
)) ||
3631 isa
<GlobalValue
>(I
->getOperand(Op
)))) {
3632 PHINode
*P
= getConstantEvolvingPHI(I
->getOperand(Op
), L
);
3633 if (P
== 0) return 0; // Not evolving from PHI
3637 return 0; // Evolving from multiple different PHIs.
3640 // This is a expression evolving from a constant PHI!
3644 /// EvaluateExpression - Given an expression that passes the
3645 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3646 /// in the loop has the value PHIVal. If we can't fold this expression for some
3647 /// reason, return null.
3648 static Constant
*EvaluateExpression(Value
*V
, Constant
*PHIVal
) {
3649 if (isa
<PHINode
>(V
)) return PHIVal
;
3650 if (Constant
*C
= dyn_cast
<Constant
>(V
)) return C
;
3651 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) return GV
;
3652 Instruction
*I
= cast
<Instruction
>(V
);
3653 LLVMContext
&Context
= I
->getParent()->getContext();
3655 std::vector
<Constant
*> Operands
;
3656 Operands
.resize(I
->getNumOperands());
3658 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
3659 Operands
[i
] = EvaluateExpression(I
->getOperand(i
), PHIVal
);
3660 if (Operands
[i
] == 0) return 0;
3663 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
3664 return ConstantFoldCompareInstOperands(CI
->getPredicate(),
3665 &Operands
[0], Operands
.size(),
3668 return ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
3669 &Operands
[0], Operands
.size(),
3673 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3674 /// in the header of its containing loop, we know the loop executes a
3675 /// constant number of times, and the PHI node is just a recurrence
3676 /// involving constants, fold it.
3678 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode
*PN
,
3681 std::map
<PHINode
*, Constant
*>::iterator I
=
3682 ConstantEvolutionLoopExitValue
.find(PN
);
3683 if (I
!= ConstantEvolutionLoopExitValue
.end())
3686 if (BEs
.ugt(APInt(BEs
.getBitWidth(),MaxBruteForceIterations
)))
3687 return ConstantEvolutionLoopExitValue
[PN
] = 0; // Not going to evaluate it.
3689 Constant
*&RetVal
= ConstantEvolutionLoopExitValue
[PN
];
3691 // Since the loop is canonicalized, the PHI node must have two entries. One
3692 // entry must be a constant (coming in from outside of the loop), and the
3693 // second must be derived from the same PHI.
3694 bool SecondIsBackedge
= L
->contains(PN
->getIncomingBlock(1));
3695 Constant
*StartCST
=
3696 dyn_cast
<Constant
>(PN
->getIncomingValue(!SecondIsBackedge
));
3698 return RetVal
= 0; // Must be a constant.
3700 Value
*BEValue
= PN
->getIncomingValue(SecondIsBackedge
);
3701 PHINode
*PN2
= getConstantEvolvingPHI(BEValue
, L
);
3703 return RetVal
= 0; // Not derived from same PHI.
3705 // Execute the loop symbolically to determine the exit value.
3706 if (BEs
.getActiveBits() >= 32)
3707 return RetVal
= 0; // More than 2^32-1 iterations?? Not doing it!
3709 unsigned NumIterations
= BEs
.getZExtValue(); // must be in range
3710 unsigned IterationNum
= 0;
3711 for (Constant
*PHIVal
= StartCST
; ; ++IterationNum
) {
3712 if (IterationNum
== NumIterations
)
3713 return RetVal
= PHIVal
; // Got exit value!
3715 // Compute the value of the PHI node for the next iteration.
3716 Constant
*NextPHI
= EvaluateExpression(BEValue
, PHIVal
);
3717 if (NextPHI
== PHIVal
)
3718 return RetVal
= NextPHI
; // Stopped evolving!
3720 return 0; // Couldn't evaluate!
3725 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
3726 /// constant number of times (the condition evolves only from constants),
3727 /// try to evaluate a few iterations of the loop until we get the exit
3728 /// condition gets a value of ExitWhen (true or false). If we cannot
3729 /// evaluate the trip count of the loop, return getCouldNotCompute().
3731 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop
*L
,
3734 PHINode
*PN
= getConstantEvolvingPHI(Cond
, L
);
3735 if (PN
== 0) return getCouldNotCompute();
3737 // Since the loop is canonicalized, the PHI node must have two entries. One
3738 // entry must be a constant (coming in from outside of the loop), and the
3739 // second must be derived from the same PHI.
3740 bool SecondIsBackedge
= L
->contains(PN
->getIncomingBlock(1));
3741 Constant
*StartCST
=
3742 dyn_cast
<Constant
>(PN
->getIncomingValue(!SecondIsBackedge
));
3743 if (StartCST
== 0) return getCouldNotCompute(); // Must be a constant.
3745 Value
*BEValue
= PN
->getIncomingValue(SecondIsBackedge
);
3746 PHINode
*PN2
= getConstantEvolvingPHI(BEValue
, L
);
3747 if (PN2
!= PN
) return getCouldNotCompute(); // Not derived from same PHI.
3749 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3750 // the loop symbolically to determine when the condition gets a value of
3752 unsigned IterationNum
= 0;
3753 unsigned MaxIterations
= MaxBruteForceIterations
; // Limit analysis.
3754 for (Constant
*PHIVal
= StartCST
;
3755 IterationNum
!= MaxIterations
; ++IterationNum
) {
3756 ConstantInt
*CondVal
=
3757 dyn_cast_or_null
<ConstantInt
>(EvaluateExpression(Cond
, PHIVal
));
3759 // Couldn't symbolically evaluate.
3760 if (!CondVal
) return getCouldNotCompute();
3762 if (CondVal
->getValue() == uint64_t(ExitWhen
)) {
3763 ++NumBruteForceTripCountsComputed
;
3764 return getConstant(Type::Int32Ty
, IterationNum
);
3767 // Compute the value of the PHI node for the next iteration.
3768 Constant
*NextPHI
= EvaluateExpression(BEValue
, PHIVal
);
3769 if (NextPHI
== 0 || NextPHI
== PHIVal
)
3770 return getCouldNotCompute();// Couldn't evaluate or not making progress...
3774 // Too many iterations were needed to evaluate.
3775 return getCouldNotCompute();
3778 /// getSCEVAtScope - Return a SCEV expression handle for the specified value
3779 /// at the specified scope in the program. The L value specifies a loop
3780 /// nest to evaluate the expression at, where null is the top-level or a
3781 /// specified loop is immediately inside of the loop.
3783 /// This method can be used to compute the exit value for a variable defined
3784 /// in a loop by querying what the value will hold in the parent loop.
3786 /// In the case that a relevant loop exit value cannot be computed, the
3787 /// original value V is returned.
3788 const SCEV
*ScalarEvolution::getSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
3789 // FIXME: this should be turned into a virtual method on SCEV!
3791 if (isa
<SCEVConstant
>(V
)) return V
;
3793 // If this instruction is evolved from a constant-evolving PHI, compute the
3794 // exit value from the loop without using SCEVs.
3795 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(V
)) {
3796 if (Instruction
*I
= dyn_cast
<Instruction
>(SU
->getValue())) {
3797 const Loop
*LI
= (*this->LI
)[I
->getParent()];
3798 if (LI
&& LI
->getParentLoop() == L
) // Looking for loop exit value.
3799 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
3800 if (PN
->getParent() == LI
->getHeader()) {
3801 // Okay, there is no closed form solution for the PHI node. Check
3802 // to see if the loop that contains it has a known backedge-taken
3803 // count. If so, we may be able to force computation of the exit
3805 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(LI
);
3806 if (const SCEVConstant
*BTCC
=
3807 dyn_cast
<SCEVConstant
>(BackedgeTakenCount
)) {
3808 // Okay, we know how many times the containing loop executes. If
3809 // this is a constant evolving PHI node, get the final value at
3810 // the specified iteration number.
3811 Constant
*RV
= getConstantEvolutionLoopExitValue(PN
,
3812 BTCC
->getValue()->getValue(),
3814 if (RV
) return getSCEV(RV
);
3818 // Okay, this is an expression that we cannot symbolically evaluate
3819 // into a SCEV. Check to see if it's possible to symbolically evaluate
3820 // the arguments into constants, and if so, try to constant propagate the
3821 // result. This is particularly useful for computing loop exit values.
3822 if (CanConstantFold(I
)) {
3823 // Check to see if we've folded this instruction at this loop before.
3824 std::map
<const Loop
*, Constant
*> &Values
= ValuesAtScopes
[I
];
3825 std::pair
<std::map
<const Loop
*, Constant
*>::iterator
, bool> Pair
=
3826 Values
.insert(std::make_pair(L
, static_cast<Constant
*>(0)));
3828 return Pair
.first
->second
? &*getSCEV(Pair
.first
->second
) : V
;
3830 std::vector
<Constant
*> Operands
;
3831 Operands
.reserve(I
->getNumOperands());
3832 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
3833 Value
*Op
= I
->getOperand(i
);
3834 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
3835 Operands
.push_back(C
);
3837 // If any of the operands is non-constant and if they are
3838 // non-integer and non-pointer, don't even try to analyze them
3839 // with scev techniques.
3840 if (!isSCEVable(Op
->getType()))
3843 const SCEV
* OpV
= getSCEVAtScope(Op
, L
);
3844 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(OpV
)) {
3845 Constant
*C
= SC
->getValue();
3846 if (C
->getType() != Op
->getType())
3847 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
3851 Operands
.push_back(C
);
3852 } else if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(OpV
)) {
3853 if (Constant
*C
= dyn_cast
<Constant
>(SU
->getValue())) {
3854 if (C
->getType() != Op
->getType())
3856 ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
3860 Operands
.push_back(C
);
3870 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
3871 C
= ConstantFoldCompareInstOperands(CI
->getPredicate(),
3872 &Operands
[0], Operands
.size(),
3875 C
= ConstantFoldInstOperands(I
->getOpcode(), I
->getType(),
3876 &Operands
[0], Operands
.size(),
3878 Pair
.first
->second
= C
;
3883 // This is some other type of SCEVUnknown, just return it.
3887 if (const SCEVCommutativeExpr
*Comm
= dyn_cast
<SCEVCommutativeExpr
>(V
)) {
3888 // Avoid performing the look-up in the common case where the specified
3889 // expression has no loop-variant portions.
3890 for (unsigned i
= 0, e
= Comm
->getNumOperands(); i
!= e
; ++i
) {
3891 const SCEV
*OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
3892 if (OpAtScope
!= Comm
->getOperand(i
)) {
3893 // Okay, at least one of these operands is loop variant but might be
3894 // foldable. Build a new instance of the folded commutative expression.
3895 SmallVector
<const SCEV
*, 8> NewOps(Comm
->op_begin(),
3896 Comm
->op_begin()+i
);
3897 NewOps
.push_back(OpAtScope
);
3899 for (++i
; i
!= e
; ++i
) {
3900 OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
3901 NewOps
.push_back(OpAtScope
);
3903 if (isa
<SCEVAddExpr
>(Comm
))
3904 return getAddExpr(NewOps
);
3905 if (isa
<SCEVMulExpr
>(Comm
))
3906 return getMulExpr(NewOps
);
3907 if (isa
<SCEVSMaxExpr
>(Comm
))
3908 return getSMaxExpr(NewOps
);
3909 if (isa
<SCEVUMaxExpr
>(Comm
))
3910 return getUMaxExpr(NewOps
);
3911 llvm_unreachable("Unknown commutative SCEV type!");
3914 // If we got here, all operands are loop invariant.
3918 if (const SCEVUDivExpr
*Div
= dyn_cast
<SCEVUDivExpr
>(V
)) {
3919 const SCEV
*LHS
= getSCEVAtScope(Div
->getLHS(), L
);
3920 const SCEV
*RHS
= getSCEVAtScope(Div
->getRHS(), L
);
3921 if (LHS
== Div
->getLHS() && RHS
== Div
->getRHS())
3922 return Div
; // must be loop invariant
3923 return getUDivExpr(LHS
, RHS
);
3926 // If this is a loop recurrence for a loop that does not contain L, then we
3927 // are dealing with the final value computed by the loop.
3928 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
)) {
3929 if (!L
|| !AddRec
->getLoop()->contains(L
->getHeader())) {
3930 // To evaluate this recurrence, we need to know how many times the AddRec
3931 // loop iterates. Compute this now.
3932 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(AddRec
->getLoop());
3933 if (BackedgeTakenCount
== getCouldNotCompute()) return AddRec
;
3935 // Then, evaluate the AddRec.
3936 return AddRec
->evaluateAtIteration(BackedgeTakenCount
, *this);
3941 if (const SCEVZeroExtendExpr
*Cast
= dyn_cast
<SCEVZeroExtendExpr
>(V
)) {
3942 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
3943 if (Op
== Cast
->getOperand())
3944 return Cast
; // must be loop invariant
3945 return getZeroExtendExpr(Op
, Cast
->getType());
3948 if (const SCEVSignExtendExpr
*Cast
= dyn_cast
<SCEVSignExtendExpr
>(V
)) {
3949 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
3950 if (Op
== Cast
->getOperand())
3951 return Cast
; // must be loop invariant
3952 return getSignExtendExpr(Op
, Cast
->getType());
3955 if (const SCEVTruncateExpr
*Cast
= dyn_cast
<SCEVTruncateExpr
>(V
)) {
3956 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
3957 if (Op
== Cast
->getOperand())
3958 return Cast
; // must be loop invariant
3959 return getTruncateExpr(Op
, Cast
->getType());
3962 llvm_unreachable("Unknown SCEV type!");
3966 /// getSCEVAtScope - This is a convenience function which does
3967 /// getSCEVAtScope(getSCEV(V), L).
3968 const SCEV
*ScalarEvolution::getSCEVAtScope(Value
*V
, const Loop
*L
) {
3969 return getSCEVAtScope(getSCEV(V
), L
);
3972 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3973 /// following equation:
3975 /// A * X = B (mod N)
3977 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3978 /// A and B isn't important.
3980 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3981 static const SCEV
*SolveLinEquationWithOverflow(const APInt
&A
, const APInt
&B
,
3982 ScalarEvolution
&SE
) {
3983 uint32_t BW
= A
.getBitWidth();
3984 assert(BW
== B
.getBitWidth() && "Bit widths must be the same.");
3985 assert(A
!= 0 && "A must be non-zero.");
3989 // The gcd of A and N may have only one prime factor: 2. The number of
3990 // trailing zeros in A is its multiplicity
3991 uint32_t Mult2
= A
.countTrailingZeros();
3994 // 2. Check if B is divisible by D.
3996 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3997 // is not less than multiplicity of this prime factor for D.
3998 if (B
.countTrailingZeros() < Mult2
)
3999 return SE
.getCouldNotCompute();
4001 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4004 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4005 // bit width during computations.
4006 APInt AD
= A
.lshr(Mult2
).zext(BW
+ 1); // AD = A / D
4007 APInt
Mod(BW
+ 1, 0);
4008 Mod
.set(BW
- Mult2
); // Mod = N / D
4009 APInt I
= AD
.multiplicativeInverse(Mod
);
4011 // 4. Compute the minimum unsigned root of the equation:
4012 // I * (B / D) mod (N / D)
4013 APInt Result
= (I
* B
.lshr(Mult2
).zext(BW
+ 1)).urem(Mod
);
4015 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4017 return SE
.getConstant(Result
.trunc(BW
));
4020 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4021 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4022 /// might be the same) or two SCEVCouldNotCompute objects.
4024 static std::pair
<const SCEV
*,const SCEV
*>
4025 SolveQuadraticEquation(const SCEVAddRecExpr
*AddRec
, ScalarEvolution
&SE
) {
4026 assert(AddRec
->getNumOperands() == 3 && "This is not a quadratic chrec!");
4027 const SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(0));
4028 const SCEVConstant
*MC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(1));
4029 const SCEVConstant
*NC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(2));
4031 // We currently can only solve this if the coefficients are constants.
4032 if (!LC
|| !MC
|| !NC
) {
4033 const SCEV
*CNC
= SE
.getCouldNotCompute();
4034 return std::make_pair(CNC
, CNC
);
4037 uint32_t BitWidth
= LC
->getValue()->getValue().getBitWidth();
4038 const APInt
&L
= LC
->getValue()->getValue();
4039 const APInt
&M
= MC
->getValue()->getValue();
4040 const APInt
&N
= NC
->getValue()->getValue();
4041 APInt
Two(BitWidth
, 2);
4042 APInt
Four(BitWidth
, 4);
4045 using namespace APIntOps
;
4047 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4048 // The B coefficient is M-N/2
4052 // The A coefficient is N/2
4053 APInt
A(N
.sdiv(Two
));
4055 // Compute the B^2-4ac term.
4058 SqrtTerm
-= Four
* (A
* C
);
4060 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4061 // integer value or else APInt::sqrt() will assert.
4062 APInt
SqrtVal(SqrtTerm
.sqrt());
4064 // Compute the two solutions for the quadratic formula.
4065 // The divisions must be performed as signed divisions.
4067 APInt
TwoA( A
<< 1 );
4068 if (TwoA
.isMinValue()) {
4069 const SCEV
*CNC
= SE
.getCouldNotCompute();
4070 return std::make_pair(CNC
, CNC
);
4073 LLVMContext
&Context
= SE
.getContext();
4075 ConstantInt
*Solution1
=
4076 ConstantInt::get(Context
, (NegB
+ SqrtVal
).sdiv(TwoA
));
4077 ConstantInt
*Solution2
=
4078 ConstantInt::get(Context
, (NegB
- SqrtVal
).sdiv(TwoA
));
4080 return std::make_pair(SE
.getConstant(Solution1
),
4081 SE
.getConstant(Solution2
));
4082 } // end APIntOps namespace
4085 /// HowFarToZero - Return the number of times a backedge comparing the specified
4086 /// value to zero will execute. If not computable, return CouldNotCompute.
4087 const SCEV
*ScalarEvolution::HowFarToZero(const SCEV
*V
, const Loop
*L
) {
4088 // If the value is a constant
4089 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
4090 // If the value is already zero, the branch will execute zero times.
4091 if (C
->getValue()->isZero()) return C
;
4092 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4095 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
);
4096 if (!AddRec
|| AddRec
->getLoop() != L
)
4097 return getCouldNotCompute();
4099 if (AddRec
->isAffine()) {
4100 // If this is an affine expression, the execution count of this branch is
4101 // the minimum unsigned root of the following equation:
4103 // Start + Step*N = 0 (mod 2^BW)
4107 // Step*N = -Start (mod 2^BW)
4109 // where BW is the common bit width of Start and Step.
4111 // Get the initial value for the loop.
4112 const SCEV
*Start
= getSCEVAtScope(AddRec
->getStart(),
4113 L
->getParentLoop());
4114 const SCEV
*Step
= getSCEVAtScope(AddRec
->getOperand(1),
4115 L
->getParentLoop());
4117 if (const SCEVConstant
*StepC
= dyn_cast
<SCEVConstant
>(Step
)) {
4118 // For now we handle only constant steps.
4120 // First, handle unitary steps.
4121 if (StepC
->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4122 return getNegativeSCEV(Start
); // N = -Start (as unsigned)
4123 if (StepC
->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4124 return Start
; // N = Start (as unsigned)
4126 // Then, try to solve the above equation provided that Start is constant.
4127 if (const SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(Start
))
4128 return SolveLinEquationWithOverflow(StepC
->getValue()->getValue(),
4129 -StartC
->getValue()->getValue(),
4132 } else if (AddRec
->isQuadratic() && AddRec
->getType()->isInteger()) {
4133 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4134 // the quadratic equation to solve it.
4135 std::pair
<const SCEV
*,const SCEV
*> Roots
= SolveQuadraticEquation(AddRec
,
4137 const SCEVConstant
*R1
= dyn_cast
<SCEVConstant
>(Roots
.first
);
4138 const SCEVConstant
*R2
= dyn_cast
<SCEVConstant
>(Roots
.second
);
4141 errs() << "HFTZ: " << *V
<< " - sol#1: " << *R1
4142 << " sol#2: " << *R2
<< "\n";
4144 // Pick the smallest positive root value.
4145 if (ConstantInt
*CB
=
4146 dyn_cast
<ConstantInt
>(getContext().getConstantExprICmp(ICmpInst::ICMP_ULT
,
4147 R1
->getValue(), R2
->getValue()))) {
4148 if (CB
->getZExtValue() == false)
4149 std::swap(R1
, R2
); // R1 is the minimum root now.
4151 // We can only use this value if the chrec ends up with an exact zero
4152 // value at this index. When solving for "X*X != 5", for example, we
4153 // should not accept a root of 2.
4154 const SCEV
*Val
= AddRec
->evaluateAtIteration(R1
, *this);
4156 return R1
; // We found a quadratic root!
4161 return getCouldNotCompute();
4164 /// HowFarToNonZero - Return the number of times a backedge checking the
4165 /// specified value for nonzero will execute. If not computable, return
4167 const SCEV
*ScalarEvolution::HowFarToNonZero(const SCEV
*V
, const Loop
*L
) {
4168 // Loops that look like: while (X == 0) are very strange indeed. We don't
4169 // handle them yet except for the trivial case. This could be expanded in the
4170 // future as needed.
4172 // If the value is a constant, check to see if it is known to be non-zero
4173 // already. If so, the backedge will execute zero times.
4174 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
4175 if (!C
->getValue()->isNullValue())
4176 return getIntegerSCEV(0, C
->getType());
4177 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4180 // We could implement others, but I really doubt anyone writes loops like
4181 // this, and if they did, they would already be constant folded.
4182 return getCouldNotCompute();
4185 /// getLoopPredecessor - If the given loop's header has exactly one unique
4186 /// predecessor outside the loop, return it. Otherwise return null.
4188 BasicBlock
*ScalarEvolution::getLoopPredecessor(const Loop
*L
) {
4189 BasicBlock
*Header
= L
->getHeader();
4190 BasicBlock
*Pred
= 0;
4191 for (pred_iterator PI
= pred_begin(Header
), E
= pred_end(Header
);
4193 if (!L
->contains(*PI
)) {
4194 if (Pred
&& Pred
!= *PI
) return 0; // Multiple predecessors.
4200 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4201 /// (which may not be an immediate predecessor) which has exactly one
4202 /// successor from which BB is reachable, or null if no such block is
4206 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock
*BB
) {
4207 // If the block has a unique predecessor, then there is no path from the
4208 // predecessor to the block that does not go through the direct edge
4209 // from the predecessor to the block.
4210 if (BasicBlock
*Pred
= BB
->getSinglePredecessor())
4213 // A loop's header is defined to be a block that dominates the loop.
4214 // If the header has a unique predecessor outside the loop, it must be
4215 // a block that has exactly one successor that can reach the loop.
4216 if (Loop
*L
= LI
->getLoopFor(BB
))
4217 return getLoopPredecessor(L
);
4222 /// HasSameValue - SCEV structural equivalence is usually sufficient for
4223 /// testing whether two expressions are equal, however for the purposes of
4224 /// looking for a condition guarding a loop, it can be useful to be a little
4225 /// more general, since a front-end may have replicated the controlling
4228 static bool HasSameValue(const SCEV
*A
, const SCEV
*B
) {
4229 // Quick check to see if they are the same SCEV.
4230 if (A
== B
) return true;
4232 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4233 // two different instructions with the same value. Check for this case.
4234 if (const SCEVUnknown
*AU
= dyn_cast
<SCEVUnknown
>(A
))
4235 if (const SCEVUnknown
*BU
= dyn_cast
<SCEVUnknown
>(B
))
4236 if (const Instruction
*AI
= dyn_cast
<Instruction
>(AU
->getValue()))
4237 if (const Instruction
*BI
= dyn_cast
<Instruction
>(BU
->getValue()))
4238 if (AI
->isIdenticalTo(BI
))
4241 // Otherwise assume they may have a different value.
4245 bool ScalarEvolution::isKnownNegative(const SCEV
*S
) {
4246 return getSignedRange(S
).getSignedMax().isNegative();
4249 bool ScalarEvolution::isKnownPositive(const SCEV
*S
) {
4250 return getSignedRange(S
).getSignedMin().isStrictlyPositive();
4253 bool ScalarEvolution::isKnownNonNegative(const SCEV
*S
) {
4254 return !getSignedRange(S
).getSignedMin().isNegative();
4257 bool ScalarEvolution::isKnownNonPositive(const SCEV
*S
) {
4258 return !getSignedRange(S
).getSignedMax().isStrictlyPositive();
4261 bool ScalarEvolution::isKnownNonZero(const SCEV
*S
) {
4262 return isKnownNegative(S
) || isKnownPositive(S
);
4265 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred
,
4266 const SCEV
*LHS
, const SCEV
*RHS
) {
4268 if (HasSameValue(LHS
, RHS
))
4269 return ICmpInst::isTrueWhenEqual(Pred
);
4273 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4275 case ICmpInst::ICMP_SGT
:
4276 Pred
= ICmpInst::ICMP_SLT
;
4277 std::swap(LHS
, RHS
);
4278 case ICmpInst::ICMP_SLT
: {
4279 ConstantRange LHSRange
= getSignedRange(LHS
);
4280 ConstantRange RHSRange
= getSignedRange(RHS
);
4281 if (LHSRange
.getSignedMax().slt(RHSRange
.getSignedMin()))
4283 if (LHSRange
.getSignedMin().sge(RHSRange
.getSignedMax()))
4287 case ICmpInst::ICMP_SGE
:
4288 Pred
= ICmpInst::ICMP_SLE
;
4289 std::swap(LHS
, RHS
);
4290 case ICmpInst::ICMP_SLE
: {
4291 ConstantRange LHSRange
= getSignedRange(LHS
);
4292 ConstantRange RHSRange
= getSignedRange(RHS
);
4293 if (LHSRange
.getSignedMax().sle(RHSRange
.getSignedMin()))
4295 if (LHSRange
.getSignedMin().sgt(RHSRange
.getSignedMax()))
4299 case ICmpInst::ICMP_UGT
:
4300 Pred
= ICmpInst::ICMP_ULT
;
4301 std::swap(LHS
, RHS
);
4302 case ICmpInst::ICMP_ULT
: {
4303 ConstantRange LHSRange
= getUnsignedRange(LHS
);
4304 ConstantRange RHSRange
= getUnsignedRange(RHS
);
4305 if (LHSRange
.getUnsignedMax().ult(RHSRange
.getUnsignedMin()))
4307 if (LHSRange
.getUnsignedMin().uge(RHSRange
.getUnsignedMax()))
4311 case ICmpInst::ICMP_UGE
:
4312 Pred
= ICmpInst::ICMP_ULE
;
4313 std::swap(LHS
, RHS
);
4314 case ICmpInst::ICMP_ULE
: {
4315 ConstantRange LHSRange
= getUnsignedRange(LHS
);
4316 ConstantRange RHSRange
= getUnsignedRange(RHS
);
4317 if (LHSRange
.getUnsignedMax().ule(RHSRange
.getUnsignedMin()))
4319 if (LHSRange
.getUnsignedMin().ugt(RHSRange
.getUnsignedMax()))
4323 case ICmpInst::ICMP_NE
: {
4324 if (getUnsignedRange(LHS
).intersectWith(getUnsignedRange(RHS
)).isEmptySet())
4326 if (getSignedRange(LHS
).intersectWith(getSignedRange(RHS
)).isEmptySet())
4329 const SCEV
*Diff
= getMinusSCEV(LHS
, RHS
);
4330 if (isKnownNonZero(Diff
))
4334 case ICmpInst::ICMP_EQ
:
4335 // The check at the top of the function catches the case where
4336 // the values are known to be equal.
4342 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4343 /// protected by a conditional between LHS and RHS. This is used to
4344 /// to eliminate casts.
4346 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop
*L
,
4347 ICmpInst::Predicate Pred
,
4348 const SCEV
*LHS
, const SCEV
*RHS
) {
4349 // Interpret a null as meaning no loop, where there is obviously no guard
4350 // (interprocedural conditions notwithstanding).
4351 if (!L
) return true;
4353 BasicBlock
*Latch
= L
->getLoopLatch();
4357 BranchInst
*LoopContinuePredicate
=
4358 dyn_cast
<BranchInst
>(Latch
->getTerminator());
4359 if (!LoopContinuePredicate
||
4360 LoopContinuePredicate
->isUnconditional())
4363 return isImpliedCond(LoopContinuePredicate
->getCondition(), Pred
, LHS
, RHS
,
4364 LoopContinuePredicate
->getSuccessor(0) != L
->getHeader());
4367 /// isLoopGuardedByCond - Test whether entry to the loop is protected
4368 /// by a conditional between LHS and RHS. This is used to help avoid max
4369 /// expressions in loop trip counts, and to eliminate casts.
4371 ScalarEvolution::isLoopGuardedByCond(const Loop
*L
,
4372 ICmpInst::Predicate Pred
,
4373 const SCEV
*LHS
, const SCEV
*RHS
) {
4374 // Interpret a null as meaning no loop, where there is obviously no guard
4375 // (interprocedural conditions notwithstanding).
4376 if (!L
) return false;
4378 BasicBlock
*Predecessor
= getLoopPredecessor(L
);
4379 BasicBlock
*PredecessorDest
= L
->getHeader();
4381 // Starting at the loop predecessor, climb up the predecessor chain, as long
4382 // as there are predecessors that can be found that have unique successors
4383 // leading to the original header.
4385 PredecessorDest
= Predecessor
,
4386 Predecessor
= getPredecessorWithUniqueSuccessorForBB(Predecessor
)) {
4388 BranchInst
*LoopEntryPredicate
=
4389 dyn_cast
<BranchInst
>(Predecessor
->getTerminator());
4390 if (!LoopEntryPredicate
||
4391 LoopEntryPredicate
->isUnconditional())
4394 if (isImpliedCond(LoopEntryPredicate
->getCondition(), Pred
, LHS
, RHS
,
4395 LoopEntryPredicate
->getSuccessor(0) != PredecessorDest
))
4402 /// isImpliedCond - Test whether the condition described by Pred, LHS,
4403 /// and RHS is true whenever the given Cond value evaluates to true.
4404 bool ScalarEvolution::isImpliedCond(Value
*CondValue
,
4405 ICmpInst::Predicate Pred
,
4406 const SCEV
*LHS
, const SCEV
*RHS
,
4408 // Recursivly handle And and Or conditions.
4409 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(CondValue
)) {
4410 if (BO
->getOpcode() == Instruction::And
) {
4412 return isImpliedCond(BO
->getOperand(0), Pred
, LHS
, RHS
, Inverse
) ||
4413 isImpliedCond(BO
->getOperand(1), Pred
, LHS
, RHS
, Inverse
);
4414 } else if (BO
->getOpcode() == Instruction::Or
) {
4416 return isImpliedCond(BO
->getOperand(0), Pred
, LHS
, RHS
, Inverse
) ||
4417 isImpliedCond(BO
->getOperand(1), Pred
, LHS
, RHS
, Inverse
);
4421 ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(CondValue
);
4422 if (!ICI
) return false;
4424 // Bail if the ICmp's operands' types are wider than the needed type
4425 // before attempting to call getSCEV on them. This avoids infinite
4426 // recursion, since the analysis of widening casts can require loop
4427 // exit condition information for overflow checking, which would
4429 if (getTypeSizeInBits(LHS
->getType()) <
4430 getTypeSizeInBits(ICI
->getOperand(0)->getType()))
4433 // Now that we found a conditional branch that dominates the loop, check to
4434 // see if it is the comparison we are looking for.
4435 ICmpInst::Predicate FoundPred
;
4437 FoundPred
= ICI
->getInversePredicate();
4439 FoundPred
= ICI
->getPredicate();
4441 const SCEV
*FoundLHS
= getSCEV(ICI
->getOperand(0));
4442 const SCEV
*FoundRHS
= getSCEV(ICI
->getOperand(1));
4444 // Balance the types. The case where FoundLHS' type is wider than
4445 // LHS' type is checked for above.
4446 if (getTypeSizeInBits(LHS
->getType()) >
4447 getTypeSizeInBits(FoundLHS
->getType())) {
4448 if (CmpInst::isSigned(Pred
)) {
4449 FoundLHS
= getSignExtendExpr(FoundLHS
, LHS
->getType());
4450 FoundRHS
= getSignExtendExpr(FoundRHS
, LHS
->getType());
4452 FoundLHS
= getZeroExtendExpr(FoundLHS
, LHS
->getType());
4453 FoundRHS
= getZeroExtendExpr(FoundRHS
, LHS
->getType());
4457 // Canonicalize the query to match the way instcombine will have
4458 // canonicalized the comparison.
4459 // First, put a constant operand on the right.
4460 if (isa
<SCEVConstant
>(LHS
)) {
4461 std::swap(LHS
, RHS
);
4462 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4464 // Then, canonicalize comparisons with boundary cases.
4465 if (const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
)) {
4466 const APInt
&RA
= RC
->getValue()->getValue();
4468 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4469 case ICmpInst::ICMP_EQ
:
4470 case ICmpInst::ICMP_NE
:
4472 case ICmpInst::ICMP_UGE
:
4473 if ((RA
- 1).isMinValue()) {
4474 Pred
= ICmpInst::ICMP_NE
;
4475 RHS
= getConstant(RA
- 1);
4478 if (RA
.isMaxValue()) {
4479 Pred
= ICmpInst::ICMP_EQ
;
4482 if (RA
.isMinValue()) return true;
4484 case ICmpInst::ICMP_ULE
:
4485 if ((RA
+ 1).isMaxValue()) {
4486 Pred
= ICmpInst::ICMP_NE
;
4487 RHS
= getConstant(RA
+ 1);
4490 if (RA
.isMinValue()) {
4491 Pred
= ICmpInst::ICMP_EQ
;
4494 if (RA
.isMaxValue()) return true;
4496 case ICmpInst::ICMP_SGE
:
4497 if ((RA
- 1).isMinSignedValue()) {
4498 Pred
= ICmpInst::ICMP_NE
;
4499 RHS
= getConstant(RA
- 1);
4502 if (RA
.isMaxSignedValue()) {
4503 Pred
= ICmpInst::ICMP_EQ
;
4506 if (RA
.isMinSignedValue()) return true;
4508 case ICmpInst::ICMP_SLE
:
4509 if ((RA
+ 1).isMaxSignedValue()) {
4510 Pred
= ICmpInst::ICMP_NE
;
4511 RHS
= getConstant(RA
+ 1);
4514 if (RA
.isMinSignedValue()) {
4515 Pred
= ICmpInst::ICMP_EQ
;
4518 if (RA
.isMaxSignedValue()) return true;
4520 case ICmpInst::ICMP_UGT
:
4521 if (RA
.isMinValue()) {
4522 Pred
= ICmpInst::ICMP_NE
;
4525 if ((RA
+ 1).isMaxValue()) {
4526 Pred
= ICmpInst::ICMP_EQ
;
4527 RHS
= getConstant(RA
+ 1);
4530 if (RA
.isMaxValue()) return false;
4532 case ICmpInst::ICMP_ULT
:
4533 if (RA
.isMaxValue()) {
4534 Pred
= ICmpInst::ICMP_NE
;
4537 if ((RA
- 1).isMinValue()) {
4538 Pred
= ICmpInst::ICMP_EQ
;
4539 RHS
= getConstant(RA
- 1);
4542 if (RA
.isMinValue()) return false;
4544 case ICmpInst::ICMP_SGT
:
4545 if (RA
.isMinSignedValue()) {
4546 Pred
= ICmpInst::ICMP_NE
;
4549 if ((RA
+ 1).isMaxSignedValue()) {
4550 Pred
= ICmpInst::ICMP_EQ
;
4551 RHS
= getConstant(RA
+ 1);
4554 if (RA
.isMaxSignedValue()) return false;
4556 case ICmpInst::ICMP_SLT
:
4557 if (RA
.isMaxSignedValue()) {
4558 Pred
= ICmpInst::ICMP_NE
;
4561 if ((RA
- 1).isMinSignedValue()) {
4562 Pred
= ICmpInst::ICMP_EQ
;
4563 RHS
= getConstant(RA
- 1);
4566 if (RA
.isMinSignedValue()) return false;
4571 // Check to see if we can make the LHS or RHS match.
4572 if (LHS
== FoundRHS
|| RHS
== FoundLHS
) {
4573 if (isa
<SCEVConstant
>(RHS
)) {
4574 std::swap(FoundLHS
, FoundRHS
);
4575 FoundPred
= ICmpInst::getSwappedPredicate(FoundPred
);
4577 std::swap(LHS
, RHS
);
4578 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4582 // Check whether the found predicate is the same as the desired predicate.
4583 if (FoundPred
== Pred
)
4584 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
);
4586 // Check whether swapping the found predicate makes it the same as the
4587 // desired predicate.
4588 if (ICmpInst::getSwappedPredicate(FoundPred
) == Pred
) {
4589 if (isa
<SCEVConstant
>(RHS
))
4590 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundRHS
, FoundLHS
);
4592 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred
),
4593 RHS
, LHS
, FoundLHS
, FoundRHS
);
4596 // Check whether the actual condition is beyond sufficient.
4597 if (FoundPred
== ICmpInst::ICMP_EQ
)
4598 if (ICmpInst::isTrueWhenEqual(Pred
))
4599 if (isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
4601 if (Pred
== ICmpInst::ICMP_NE
)
4602 if (!ICmpInst::isTrueWhenEqual(FoundPred
))
4603 if (isImpliedCondOperands(FoundPred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
4606 // Otherwise assume the worst.
4610 /// isImpliedCondOperands - Test whether the condition described by Pred,
4611 /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4612 /// and FoundRHS is true.
4613 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred
,
4614 const SCEV
*LHS
, const SCEV
*RHS
,
4615 const SCEV
*FoundLHS
,
4616 const SCEV
*FoundRHS
) {
4617 return isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
4618 FoundLHS
, FoundRHS
) ||
4619 // ~x < ~y --> x > y
4620 isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
4621 getNotSCEV(FoundRHS
),
4622 getNotSCEV(FoundLHS
));
4625 /// isImpliedCondOperandsHelper - Test whether the condition described by
4626 /// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4627 /// FoundLHS, and FoundRHS is true.
4629 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred
,
4630 const SCEV
*LHS
, const SCEV
*RHS
,
4631 const SCEV
*FoundLHS
,
4632 const SCEV
*FoundRHS
) {
4634 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4635 case ICmpInst::ICMP_EQ
:
4636 case ICmpInst::ICMP_NE
:
4637 if (HasSameValue(LHS
, FoundLHS
) && HasSameValue(RHS
, FoundRHS
))
4640 case ICmpInst::ICMP_SLT
:
4641 case ICmpInst::ICMP_SLE
:
4642 if (isKnownPredicate(ICmpInst::ICMP_SLE
, LHS
, FoundLHS
) &&
4643 isKnownPredicate(ICmpInst::ICMP_SGE
, RHS
, FoundRHS
))
4646 case ICmpInst::ICMP_SGT
:
4647 case ICmpInst::ICMP_SGE
:
4648 if (isKnownPredicate(ICmpInst::ICMP_SGE
, LHS
, FoundLHS
) &&
4649 isKnownPredicate(ICmpInst::ICMP_SLE
, RHS
, FoundRHS
))
4652 case ICmpInst::ICMP_ULT
:
4653 case ICmpInst::ICMP_ULE
:
4654 if (isKnownPredicate(ICmpInst::ICMP_ULE
, LHS
, FoundLHS
) &&
4655 isKnownPredicate(ICmpInst::ICMP_UGE
, RHS
, FoundRHS
))
4658 case ICmpInst::ICMP_UGT
:
4659 case ICmpInst::ICMP_UGE
:
4660 if (isKnownPredicate(ICmpInst::ICMP_UGE
, LHS
, FoundLHS
) &&
4661 isKnownPredicate(ICmpInst::ICMP_ULE
, RHS
, FoundRHS
))
4669 /// getBECount - Subtract the end and start values and divide by the step,
4670 /// rounding up, to get the number of times the backedge is executed. Return
4671 /// CouldNotCompute if an intermediate computation overflows.
4672 const SCEV
*ScalarEvolution::getBECount(const SCEV
*Start
,
4675 const Type
*Ty
= Start
->getType();
4676 const SCEV
*NegOne
= getIntegerSCEV(-1, Ty
);
4677 const SCEV
*Diff
= getMinusSCEV(End
, Start
);
4678 const SCEV
*RoundUp
= getAddExpr(Step
, NegOne
);
4680 // Add an adjustment to the difference between End and Start so that
4681 // the division will effectively round up.
4682 const SCEV
*Add
= getAddExpr(Diff
, RoundUp
);
4684 // Check Add for unsigned overflow.
4685 // TODO: More sophisticated things could be done here.
4686 const Type
*WideTy
= getContext().getIntegerType(getTypeSizeInBits(Ty
) + 1);
4687 const SCEV
*EDiff
= getZeroExtendExpr(Diff
, WideTy
);
4688 const SCEV
*ERoundUp
= getZeroExtendExpr(RoundUp
, WideTy
);
4689 const SCEV
*OperandExtendedAdd
= getAddExpr(EDiff
, ERoundUp
);
4690 if (getZeroExtendExpr(Add
, WideTy
) != OperandExtendedAdd
)
4691 return getCouldNotCompute();
4693 return getUDivExpr(Add
, Step
);
4696 /// HowManyLessThans - Return the number of times a backedge containing the
4697 /// specified less-than comparison will execute. If not computable, return
4698 /// CouldNotCompute.
4699 ScalarEvolution::BackedgeTakenInfo
4700 ScalarEvolution::HowManyLessThans(const SCEV
*LHS
, const SCEV
*RHS
,
4701 const Loop
*L
, bool isSigned
) {
4702 // Only handle: "ADDREC < LoopInvariant".
4703 if (!RHS
->isLoopInvariant(L
)) return getCouldNotCompute();
4705 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
4706 if (!AddRec
|| AddRec
->getLoop() != L
)
4707 return getCouldNotCompute();
4709 if (AddRec
->isAffine()) {
4710 // FORNOW: We only support unit strides.
4711 unsigned BitWidth
= getTypeSizeInBits(AddRec
->getType());
4712 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
4714 // TODO: handle non-constant strides.
4715 const SCEVConstant
*CStep
= dyn_cast
<SCEVConstant
>(Step
);
4716 if (!CStep
|| CStep
->isZero())
4717 return getCouldNotCompute();
4718 if (CStep
->isOne()) {
4719 // With unit stride, the iteration never steps past the limit value.
4720 } else if (CStep
->getValue()->getValue().isStrictlyPositive()) {
4721 if (const SCEVConstant
*CLimit
= dyn_cast
<SCEVConstant
>(RHS
)) {
4722 // Test whether a positive iteration iteration can step past the limit
4723 // value and past the maximum value for its type in a single step.
4725 APInt Max
= APInt::getSignedMaxValue(BitWidth
);
4726 if ((Max
- CStep
->getValue()->getValue())
4727 .slt(CLimit
->getValue()->getValue()))
4728 return getCouldNotCompute();
4730 APInt Max
= APInt::getMaxValue(BitWidth
);
4731 if ((Max
- CStep
->getValue()->getValue())
4732 .ult(CLimit
->getValue()->getValue()))
4733 return getCouldNotCompute();
4736 // TODO: handle non-constant limit values below.
4737 return getCouldNotCompute();
4739 // TODO: handle negative strides below.
4740 return getCouldNotCompute();
4742 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4743 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4744 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4745 // treat m-n as signed nor unsigned due to overflow possibility.
4747 // First, we get the value of the LHS in the first iteration: n
4748 const SCEV
*Start
= AddRec
->getOperand(0);
4750 // Determine the minimum constant start value.
4751 const SCEV
*MinStart
= getConstant(isSigned
?
4752 getSignedRange(Start
).getSignedMin() :
4753 getUnsignedRange(Start
).getUnsignedMin());
4755 // If we know that the condition is true in order to enter the loop,
4756 // then we know that it will run exactly (m-n)/s times. Otherwise, we
4757 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4758 // the division must round up.
4759 const SCEV
*End
= RHS
;
4760 if (!isLoopGuardedByCond(L
,
4761 isSigned
? ICmpInst::ICMP_SLT
:
4763 getMinusSCEV(Start
, Step
), RHS
))
4764 End
= isSigned
? getSMaxExpr(RHS
, Start
)
4765 : getUMaxExpr(RHS
, Start
);
4767 // Determine the maximum constant end value.
4768 const SCEV
*MaxEnd
= getConstant(isSigned
?
4769 getSignedRange(End
).getSignedMax() :
4770 getUnsignedRange(End
).getUnsignedMax());
4772 // Finally, we subtract these two values and divide, rounding up, to get
4773 // the number of times the backedge is executed.
4774 const SCEV
*BECount
= getBECount(Start
, End
, Step
);
4776 // The maximum backedge count is similar, except using the minimum start
4777 // value and the maximum end value.
4778 const SCEV
*MaxBECount
= getBECount(MinStart
, MaxEnd
, Step
);
4780 return BackedgeTakenInfo(BECount
, MaxBECount
);
4783 return getCouldNotCompute();
4786 /// getNumIterationsInRange - Return the number of iterations of this loop that
4787 /// produce values in the specified constant range. Another way of looking at
4788 /// this is that it returns the first iteration number where the value is not in
4789 /// the condition, thus computing the exit count. If the iteration count can't
4790 /// be computed, an instance of SCEVCouldNotCompute is returned.
4791 const SCEV
*SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range
,
4792 ScalarEvolution
&SE
) const {
4793 if (Range
.isFullSet()) // Infinite loop.
4794 return SE
.getCouldNotCompute();
4796 // If the start is a non-zero constant, shift the range to simplify things.
4797 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(getStart()))
4798 if (!SC
->getValue()->isZero()) {
4799 SmallVector
<const SCEV
*, 4> Operands(op_begin(), op_end());
4800 Operands
[0] = SE
.getIntegerSCEV(0, SC
->getType());
4801 const SCEV
*Shifted
= SE
.getAddRecExpr(Operands
, getLoop());
4802 if (const SCEVAddRecExpr
*ShiftedAddRec
=
4803 dyn_cast
<SCEVAddRecExpr
>(Shifted
))
4804 return ShiftedAddRec
->getNumIterationsInRange(
4805 Range
.subtract(SC
->getValue()->getValue()), SE
);
4806 // This is strange and shouldn't happen.
4807 return SE
.getCouldNotCompute();
4810 // The only time we can solve this is when we have all constant indices.
4811 // Otherwise, we cannot determine the overflow conditions.
4812 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
4813 if (!isa
<SCEVConstant
>(getOperand(i
)))
4814 return SE
.getCouldNotCompute();
4817 // Okay at this point we know that all elements of the chrec are constants and
4818 // that the start element is zero.
4820 // First check to see if the range contains zero. If not, the first
4822 unsigned BitWidth
= SE
.getTypeSizeInBits(getType());
4823 if (!Range
.contains(APInt(BitWidth
, 0)))
4824 return SE
.getIntegerSCEV(0, getType());
4827 // If this is an affine expression then we have this situation:
4828 // Solve {0,+,A} in Range === Ax in Range
4830 // We know that zero is in the range. If A is positive then we know that
4831 // the upper value of the range must be the first possible exit value.
4832 // If A is negative then the lower of the range is the last possible loop
4833 // value. Also note that we already checked for a full range.
4834 APInt
One(BitWidth
,1);
4835 APInt A
= cast
<SCEVConstant
>(getOperand(1))->getValue()->getValue();
4836 APInt End
= A
.sge(One
) ? (Range
.getUpper() - One
) : Range
.getLower();
4838 // The exit value should be (End+A)/A.
4839 APInt ExitVal
= (End
+ A
).udiv(A
);
4840 ConstantInt
*ExitValue
= ConstantInt::get(SE
.getContext(), ExitVal
);
4842 // Evaluate at the exit value. If we really did fall out of the valid
4843 // range, then we computed our trip count, otherwise wrap around or other
4844 // things must have happened.
4845 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(this, ExitValue
, SE
);
4846 if (Range
.contains(Val
->getValue()))
4847 return SE
.getCouldNotCompute(); // Something strange happened
4849 // Ensure that the previous value is in the range. This is a sanity check.
4850 assert(Range
.contains(
4851 EvaluateConstantChrecAtConstant(this,
4852 ConstantInt::get(SE
.getContext(), ExitVal
- One
), SE
)->getValue()) &&
4853 "Linear scev computation is off in a bad way!");
4854 return SE
.getConstant(ExitValue
);
4855 } else if (isQuadratic()) {
4856 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4857 // quadratic equation to solve it. To do this, we must frame our problem in
4858 // terms of figuring out when zero is crossed, instead of when
4859 // Range.getUpper() is crossed.
4860 SmallVector
<const SCEV
*, 4> NewOps(op_begin(), op_end());
4861 NewOps
[0] = SE
.getNegativeSCEV(SE
.getConstant(Range
.getUpper()));
4862 const SCEV
*NewAddRec
= SE
.getAddRecExpr(NewOps
, getLoop());
4864 // Next, solve the constructed addrec
4865 std::pair
<const SCEV
*,const SCEV
*> Roots
=
4866 SolveQuadraticEquation(cast
<SCEVAddRecExpr
>(NewAddRec
), SE
);
4867 const SCEVConstant
*R1
= dyn_cast
<SCEVConstant
>(Roots
.first
);
4868 const SCEVConstant
*R2
= dyn_cast
<SCEVConstant
>(Roots
.second
);
4870 // Pick the smallest positive root value.
4871 if (ConstantInt
*CB
=
4872 dyn_cast
<ConstantInt
>(
4873 SE
.getContext().getConstantExprICmp(ICmpInst::ICMP_ULT
,
4874 R1
->getValue(), R2
->getValue()))) {
4875 if (CB
->getZExtValue() == false)
4876 std::swap(R1
, R2
); // R1 is the minimum root now.
4878 // Make sure the root is not off by one. The returned iteration should
4879 // not be in the range, but the previous one should be. When solving
4880 // for "X*X < 5", for example, we should not return a root of 2.
4881 ConstantInt
*R1Val
= EvaluateConstantChrecAtConstant(this,
4884 if (Range
.contains(R1Val
->getValue())) {
4885 // The next iteration must be out of the range...
4886 ConstantInt
*NextVal
=
4887 ConstantInt::get(SE
.getContext(), R1
->getValue()->getValue()+1);
4889 R1Val
= EvaluateConstantChrecAtConstant(this, NextVal
, SE
);
4890 if (!Range
.contains(R1Val
->getValue()))
4891 return SE
.getConstant(NextVal
);
4892 return SE
.getCouldNotCompute(); // Something strange happened
4895 // If R1 was not in the range, then it is a good return value. Make
4896 // sure that R1-1 WAS in the range though, just in case.
4897 ConstantInt
*NextVal
=
4898 ConstantInt::get(SE
.getContext(), R1
->getValue()->getValue()-1);
4899 R1Val
= EvaluateConstantChrecAtConstant(this, NextVal
, SE
);
4900 if (Range
.contains(R1Val
->getValue()))
4902 return SE
.getCouldNotCompute(); // Something strange happened
4907 return SE
.getCouldNotCompute();
4912 //===----------------------------------------------------------------------===//
4913 // SCEVCallbackVH Class Implementation
4914 //===----------------------------------------------------------------------===//
4916 void ScalarEvolution::SCEVCallbackVH::deleted() {
4917 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
4918 if (PHINode
*PN
= dyn_cast
<PHINode
>(getValPtr()))
4919 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
4920 if (Instruction
*I
= dyn_cast
<Instruction
>(getValPtr()))
4921 SE
->ValuesAtScopes
.erase(I
);
4922 SE
->Scalars
.erase(getValPtr());
4923 // this now dangles!
4926 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value
*) {
4927 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
4929 // Forget all the expressions associated with users of the old value,
4930 // so that future queries will recompute the expressions using the new
4932 SmallVector
<User
*, 16> Worklist
;
4933 SmallPtrSet
<User
*, 8> Visited
;
4934 Value
*Old
= getValPtr();
4935 bool DeleteOld
= false;
4936 for (Value::use_iterator UI
= Old
->use_begin(), UE
= Old
->use_end();
4938 Worklist
.push_back(*UI
);
4939 while (!Worklist
.empty()) {
4940 User
*U
= Worklist
.pop_back_val();
4941 // Deleting the Old value will cause this to dangle. Postpone
4942 // that until everything else is done.
4947 if (!Visited
.insert(U
))
4949 if (PHINode
*PN
= dyn_cast
<PHINode
>(U
))
4950 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
4951 if (Instruction
*I
= dyn_cast
<Instruction
>(U
))
4952 SE
->ValuesAtScopes
.erase(I
);
4953 SE
->Scalars
.erase(U
);
4954 for (Value::use_iterator UI
= U
->use_begin(), UE
= U
->use_end();
4956 Worklist
.push_back(*UI
);
4958 // Delete the Old value if it (indirectly) references itself.
4960 if (PHINode
*PN
= dyn_cast
<PHINode
>(Old
))
4961 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
4962 if (Instruction
*I
= dyn_cast
<Instruction
>(Old
))
4963 SE
->ValuesAtScopes
.erase(I
);
4964 SE
->Scalars
.erase(Old
);
4965 // this now dangles!
4970 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value
*V
, ScalarEvolution
*se
)
4971 : CallbackVH(V
), SE(se
) {}
4973 //===----------------------------------------------------------------------===//
4974 // ScalarEvolution Class Implementation
4975 //===----------------------------------------------------------------------===//
4977 ScalarEvolution::ScalarEvolution()
4978 : FunctionPass(&ID
) {
4981 bool ScalarEvolution::runOnFunction(Function
&F
) {
4983 LI
= &getAnalysis
<LoopInfo
>();
4984 TD
= getAnalysisIfAvailable
<TargetData
>();
4988 void ScalarEvolution::releaseMemory() {
4990 BackedgeTakenCounts
.clear();
4991 ConstantEvolutionLoopExitValue
.clear();
4992 ValuesAtScopes
.clear();
4993 UniqueSCEVs
.clear();
4994 SCEVAllocator
.Reset();
4997 void ScalarEvolution::getAnalysisUsage(AnalysisUsage
&AU
) const {
4998 AU
.setPreservesAll();
4999 AU
.addRequiredTransitive
<LoopInfo
>();
5002 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop
*L
) {
5003 return !isa
<SCEVCouldNotCompute
>(getBackedgeTakenCount(L
));
5006 static void PrintLoopInfo(raw_ostream
&OS
, ScalarEvolution
*SE
,
5008 // Print all inner loops first
5009 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
5010 PrintLoopInfo(OS
, SE
, *I
);
5012 OS
<< "Loop " << L
->getHeader()->getName() << ": ";
5014 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
5015 L
->getExitBlocks(ExitBlocks
);
5016 if (ExitBlocks
.size() != 1)
5017 OS
<< "<multiple exits> ";
5019 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
5020 OS
<< "backedge-taken count is " << *SE
->getBackedgeTakenCount(L
);
5022 OS
<< "Unpredictable backedge-taken count. ";
5026 OS
<< "Loop " << L
->getHeader()->getName() << ": ";
5028 if (!isa
<SCEVCouldNotCompute
>(SE
->getMaxBackedgeTakenCount(L
))) {
5029 OS
<< "max backedge-taken count is " << *SE
->getMaxBackedgeTakenCount(L
);
5031 OS
<< "Unpredictable max backedge-taken count. ";
5037 void ScalarEvolution::print(raw_ostream
&OS
, const Module
* ) const {
5038 // ScalarEvolution's implementaiton of the print method is to print
5039 // out SCEV values of all instructions that are interesting. Doing
5040 // this potentially causes it to create new SCEV objects though,
5041 // which technically conflicts with the const qualifier. This isn't
5042 // observable from outside the class though, so casting away the
5043 // const isn't dangerous.
5044 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
5046 OS
<< "Classifying expressions for: " << F
->getName() << "\n";
5047 for (inst_iterator I
= inst_begin(F
), E
= inst_end(F
); I
!= E
; ++I
)
5048 if (isSCEVable(I
->getType())) {
5051 const SCEV
*SV
= SE
.getSCEV(&*I
);
5054 const Loop
*L
= LI
->getLoopFor((*I
).getParent());
5056 const SCEV
*AtUse
= SE
.getSCEVAtScope(SV
, L
);
5063 OS
<< "\t\t" "Exits: ";
5064 const SCEV
*ExitValue
= SE
.getSCEVAtScope(SV
, L
->getParentLoop());
5065 if (!ExitValue
->isLoopInvariant(L
)) {
5066 OS
<< "<<Unknown>>";
5075 OS
<< "Determining loop execution counts for: " << F
->getName() << "\n";
5076 for (LoopInfo::iterator I
= LI
->begin(), E
= LI
->end(); I
!= E
; ++I
)
5077 PrintLoopInfo(OS
, &SE
, *I
);
5080 void ScalarEvolution::print(std::ostream
&o
, const Module
*M
) const {
5081 raw_os_ostream
OS(o
);