MemoryObject - Abstract base class for contiguous addressable memory.
[llvm/avr.git] / lib / Analysis / ScalarEvolution.cpp
blob6b64648f17f5c2d9be015fbfa7a497fa07727442
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. These classes are reference counted, managed by the const SCEV *
18 // class. We only create one SCEV of a particular shape, so pointer-comparisons
19 // for equality are legal.
21 // One important aspect of the SCEV objects is that they are never cyclic, even
22 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
24 // recurrence) then we represent it directly as a recurrence node, otherwise we
25 // represent it as a SCEVUnknown node.
27 // In addition to being able to represent expressions of various types, we also
28 // have folders that are used to build the *canonical* representation for a
29 // particular expression. These folders are capable of using a variety of
30 // rewrite rules to simplify the expressions.
32 // Once the folders are defined, we can implement the more interesting
33 // higher-level code, such as the code that recognizes PHI nodes of various
34 // types, computes the execution count of a loop, etc.
36 // TODO: We should use these routines and value representations to implement
37 // dependence analysis!
39 //===----------------------------------------------------------------------===//
41 // There are several good references for the techniques used in this analysis.
43 // Chains of recurrences -- a method to expedite the evaluation
44 // of closed-form functions
45 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
47 // On computational properties of chains of recurrences
48 // Eugene V. Zima
50 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51 // Robert A. van Engelen
53 // Efficient Symbolic Analysis for Optimizing Compilers
54 // Robert A. van Engelen
56 // Using the chains of recurrences algebra for data dependence testing and
57 // induction variable substitution
58 // MS Thesis, Johnie Birch
60 //===----------------------------------------------------------------------===//
62 #define DEBUG_TYPE "scalar-evolution"
63 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
64 #include "llvm/Constants.h"
65 #include "llvm/DerivedTypes.h"
66 #include "llvm/GlobalVariable.h"
67 #include "llvm/Instructions.h"
68 #include "llvm/LLVMContext.h"
69 #include "llvm/Operator.h"
70 #include "llvm/Analysis/ConstantFolding.h"
71 #include "llvm/Analysis/Dominators.h"
72 #include "llvm/Analysis/LoopInfo.h"
73 #include "llvm/Analysis/ValueTracking.h"
74 #include "llvm/Assembly/Writer.h"
75 #include "llvm/Target/TargetData.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/ConstantRange.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/GetElementPtrTypeIterator.h"
81 #include "llvm/Support/InstIterator.h"
82 #include "llvm/Support/MathExtras.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/ADT/Statistic.h"
85 #include "llvm/ADT/STLExtras.h"
86 #include "llvm/ADT/SmallPtrSet.h"
87 #include <algorithm>
88 using namespace llvm;
90 STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92 STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94 STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96 STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
99 static cl::opt<unsigned>
100 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
102 "symbolically execute a constant "
103 "derived loop"),
104 cl::init(100));
106 static RegisterPass<ScalarEvolution>
107 R("scalar-evolution", "Scalar Evolution Analysis", false, true);
108 char ScalarEvolution::ID = 0;
110 //===----------------------------------------------------------------------===//
111 // SCEV class definitions
112 //===----------------------------------------------------------------------===//
114 //===----------------------------------------------------------------------===//
115 // Implementation of the SCEV class.
118 SCEV::~SCEV() {}
120 void SCEV::dump() const {
121 print(errs());
122 errs() << '\n';
125 void SCEV::print(std::ostream &o) const {
126 raw_os_ostream OS(o);
127 print(OS);
130 bool SCEV::isZero() const {
131 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
132 return SC->getValue()->isZero();
133 return false;
136 bool SCEV::isOne() const {
137 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
138 return SC->getValue()->isOne();
139 return false;
142 bool SCEV::isAllOnesValue() const {
143 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
144 return SC->getValue()->isAllOnesValue();
145 return false;
148 SCEVCouldNotCompute::SCEVCouldNotCompute() :
149 SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
151 bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
153 return false;
156 const Type *SCEVCouldNotCompute::getType() const {
157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
158 return 0;
161 bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
166 const SCEV *
167 SCEVCouldNotCompute::replaceSymbolicValuesWithConcrete(
168 const SCEV *Sym,
169 const SCEV *Conc,
170 ScalarEvolution &SE) const {
171 return this;
174 void SCEVCouldNotCompute::print(raw_ostream &OS) const {
175 OS << "***COULDNOTCOMPUTE***";
178 bool SCEVCouldNotCompute::classof(const SCEV *S) {
179 return S->getSCEVType() == scCouldNotCompute;
182 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
183 FoldingSetNodeID ID;
184 ID.AddInteger(scConstant);
185 ID.AddPointer(V);
186 void *IP = 0;
187 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
188 SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
189 new (S) SCEVConstant(ID, V);
190 UniqueSCEVs.InsertNode(S, IP);
191 return S;
194 const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
195 return getConstant(ConstantInt::get(getContext(), Val));
198 const SCEV *
199 ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
200 return getConstant(
201 ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
204 const Type *SCEVConstant::getType() const { return V->getType(); }
206 void SCEVConstant::print(raw_ostream &OS) const {
207 WriteAsOperand(OS, V, false);
210 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
211 unsigned SCEVTy, const SCEV *op, const Type *ty)
212 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
214 bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
215 return Op->dominates(BB, DT);
218 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
219 const SCEV *op, const Type *ty)
220 : SCEVCastExpr(ID, scTruncate, op, ty) {
221 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
222 (Ty->isInteger() || isa<PointerType>(Ty)) &&
223 "Cannot truncate non-integer value!");
226 void SCEVTruncateExpr::print(raw_ostream &OS) const {
227 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
230 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
231 const SCEV *op, const Type *ty)
232 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
233 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
234 (Ty->isInteger() || isa<PointerType>(Ty)) &&
235 "Cannot zero extend non-integer value!");
238 void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
239 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
242 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
243 const SCEV *op, const Type *ty)
244 : SCEVCastExpr(ID, scSignExtend, op, ty) {
245 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
246 (Ty->isInteger() || isa<PointerType>(Ty)) &&
247 "Cannot sign extend non-integer value!");
250 void SCEVSignExtendExpr::print(raw_ostream &OS) const {
251 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
254 void SCEVCommutativeExpr::print(raw_ostream &OS) const {
255 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
256 const char *OpStr = getOperationStr();
257 OS << "(" << *Operands[0];
258 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
259 OS << OpStr << *Operands[i];
260 OS << ")";
263 const SCEV *
264 SCEVCommutativeExpr::replaceSymbolicValuesWithConcrete(
265 const SCEV *Sym,
266 const SCEV *Conc,
267 ScalarEvolution &SE) const {
268 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
269 const SCEV *H =
270 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
271 if (H != getOperand(i)) {
272 SmallVector<const SCEV *, 8> NewOps;
273 NewOps.reserve(getNumOperands());
274 for (unsigned j = 0; j != i; ++j)
275 NewOps.push_back(getOperand(j));
276 NewOps.push_back(H);
277 for (++i; i != e; ++i)
278 NewOps.push_back(getOperand(i)->
279 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
281 if (isa<SCEVAddExpr>(this))
282 return SE.getAddExpr(NewOps);
283 else if (isa<SCEVMulExpr>(this))
284 return SE.getMulExpr(NewOps);
285 else if (isa<SCEVSMaxExpr>(this))
286 return SE.getSMaxExpr(NewOps);
287 else if (isa<SCEVUMaxExpr>(this))
288 return SE.getUMaxExpr(NewOps);
289 else
290 llvm_unreachable("Unknown commutative expr!");
293 return this;
296 bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
297 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
298 if (!getOperand(i)->dominates(BB, DT))
299 return false;
301 return true;
304 bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
305 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
308 void SCEVUDivExpr::print(raw_ostream &OS) const {
309 OS << "(" << *LHS << " /u " << *RHS << ")";
312 const Type *SCEVUDivExpr::getType() const {
313 // In most cases the types of LHS and RHS will be the same, but in some
314 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
315 // depend on the type for correctness, but handling types carefully can
316 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
317 // a pointer type than the RHS, so use the RHS' type here.
318 return RHS->getType();
321 const SCEV *
322 SCEVAddRecExpr::replaceSymbolicValuesWithConcrete(const SCEV *Sym,
323 const SCEV *Conc,
324 ScalarEvolution &SE) const {
325 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
326 const SCEV *H =
327 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
328 if (H != getOperand(i)) {
329 SmallVector<const SCEV *, 8> NewOps;
330 NewOps.reserve(getNumOperands());
331 for (unsigned j = 0; j != i; ++j)
332 NewOps.push_back(getOperand(j));
333 NewOps.push_back(H);
334 for (++i; i != e; ++i)
335 NewOps.push_back(getOperand(i)->
336 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
338 return SE.getAddRecExpr(NewOps, L);
341 return this;
345 bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
346 // Add recurrences are never invariant in the function-body (null loop).
347 if (!QueryLoop)
348 return false;
350 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
351 if (QueryLoop->contains(L->getHeader()))
352 return false;
354 // This recurrence is variant w.r.t. QueryLoop if any of its operands
355 // are variant.
356 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
357 if (!getOperand(i)->isLoopInvariant(QueryLoop))
358 return false;
360 // Otherwise it's loop-invariant.
361 return true;
364 void SCEVAddRecExpr::print(raw_ostream &OS) const {
365 OS << "{" << *Operands[0];
366 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
367 OS << ",+," << *Operands[i];
368 OS << "}<" << L->getHeader()->getName() + ">";
371 bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
372 // All non-instruction values are loop invariant. All instructions are loop
373 // invariant if they are not contained in the specified loop.
374 // Instructions are never considered invariant in the function body
375 // (null loop) because they are defined within the "loop".
376 if (Instruction *I = dyn_cast<Instruction>(V))
377 return L && !L->contains(I->getParent());
378 return true;
381 bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
382 if (Instruction *I = dyn_cast<Instruction>(getValue()))
383 return DT->dominates(I->getParent(), BB);
384 return true;
387 const Type *SCEVUnknown::getType() const {
388 return V->getType();
391 void SCEVUnknown::print(raw_ostream &OS) const {
392 WriteAsOperand(OS, V, false);
395 //===----------------------------------------------------------------------===//
396 // SCEV Utilities
397 //===----------------------------------------------------------------------===//
399 namespace {
400 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
401 /// than the complexity of the RHS. This comparator is used to canonicalize
402 /// expressions.
403 class VISIBILITY_HIDDEN SCEVComplexityCompare {
404 LoopInfo *LI;
405 public:
406 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
408 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
409 // Primarily, sort the SCEVs by their getSCEVType().
410 if (LHS->getSCEVType() != RHS->getSCEVType())
411 return LHS->getSCEVType() < RHS->getSCEVType();
413 // Aside from the getSCEVType() ordering, the particular ordering
414 // isn't very important except that it's beneficial to be consistent,
415 // so that (a + b) and (b + a) don't end up as different expressions.
417 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
418 // not as complete as it could be.
419 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
420 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
422 // Order pointer values after integer values. This helps SCEVExpander
423 // form GEPs.
424 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
425 return false;
426 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
427 return true;
429 // Compare getValueID values.
430 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
431 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
433 // Sort arguments by their position.
434 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
435 const Argument *RA = cast<Argument>(RU->getValue());
436 return LA->getArgNo() < RA->getArgNo();
439 // For instructions, compare their loop depth, and their opcode.
440 // This is pretty loose.
441 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
442 Instruction *RV = cast<Instruction>(RU->getValue());
444 // Compare loop depths.
445 if (LI->getLoopDepth(LV->getParent()) !=
446 LI->getLoopDepth(RV->getParent()))
447 return LI->getLoopDepth(LV->getParent()) <
448 LI->getLoopDepth(RV->getParent());
450 // Compare opcodes.
451 if (LV->getOpcode() != RV->getOpcode())
452 return LV->getOpcode() < RV->getOpcode();
454 // Compare the number of operands.
455 if (LV->getNumOperands() != RV->getNumOperands())
456 return LV->getNumOperands() < RV->getNumOperands();
459 return false;
462 // Compare constant values.
463 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
464 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
465 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
466 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
467 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
470 // Compare addrec loop depths.
471 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
472 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
473 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
474 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
477 // Lexicographically compare n-ary expressions.
478 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
479 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
480 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
481 if (i >= RC->getNumOperands())
482 return false;
483 if (operator()(LC->getOperand(i), RC->getOperand(i)))
484 return true;
485 if (operator()(RC->getOperand(i), LC->getOperand(i)))
486 return false;
488 return LC->getNumOperands() < RC->getNumOperands();
491 // Lexicographically compare udiv expressions.
492 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
493 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
494 if (operator()(LC->getLHS(), RC->getLHS()))
495 return true;
496 if (operator()(RC->getLHS(), LC->getLHS()))
497 return false;
498 if (operator()(LC->getRHS(), RC->getRHS()))
499 return true;
500 if (operator()(RC->getRHS(), LC->getRHS()))
501 return false;
502 return false;
505 // Compare cast expressions by operand.
506 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
507 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
508 return operator()(LC->getOperand(), RC->getOperand());
511 llvm_unreachable("Unknown SCEV kind!");
512 return false;
517 /// GroupByComplexity - Given a list of SCEV objects, order them by their
518 /// complexity, and group objects of the same complexity together by value.
519 /// When this routine is finished, we know that any duplicates in the vector are
520 /// consecutive and that complexity is monotonically increasing.
522 /// Note that we go take special precautions to ensure that we get determinstic
523 /// results from this routine. In other words, we don't want the results of
524 /// this to depend on where the addresses of various SCEV objects happened to
525 /// land in memory.
527 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
528 LoopInfo *LI) {
529 if (Ops.size() < 2) return; // Noop
530 if (Ops.size() == 2) {
531 // This is the common case, which also happens to be trivially simple.
532 // Special case it.
533 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
534 std::swap(Ops[0], Ops[1]);
535 return;
538 // Do the rough sort by complexity.
539 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
541 // Now that we are sorted by complexity, group elements of the same
542 // complexity. Note that this is, at worst, N^2, but the vector is likely to
543 // be extremely short in practice. Note that we take this approach because we
544 // do not want to depend on the addresses of the objects we are grouping.
545 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
546 const SCEV *S = Ops[i];
547 unsigned Complexity = S->getSCEVType();
549 // If there are any objects of the same complexity and same value as this
550 // one, group them.
551 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
552 if (Ops[j] == S) { // Found a duplicate.
553 // Move it to immediately after i'th element.
554 std::swap(Ops[i+1], Ops[j]);
555 ++i; // no need to rescan it.
556 if (i == e-2) return; // Done!
564 //===----------------------------------------------------------------------===//
565 // Simple SCEV method implementations
566 //===----------------------------------------------------------------------===//
568 /// BinomialCoefficient - Compute BC(It, K). The result has width W.
569 /// Assume, K > 0.
570 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
571 ScalarEvolution &SE,
572 const Type* ResultTy) {
573 // Handle the simplest case efficiently.
574 if (K == 1)
575 return SE.getTruncateOrZeroExtend(It, ResultTy);
577 // We are using the following formula for BC(It, K):
579 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
581 // Suppose, W is the bitwidth of the return value. We must be prepared for
582 // overflow. Hence, we must assure that the result of our computation is
583 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
584 // safe in modular arithmetic.
586 // However, this code doesn't use exactly that formula; the formula it uses
587 // is something like the following, where T is the number of factors of 2 in
588 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
589 // exponentiation:
591 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
593 // This formula is trivially equivalent to the previous formula. However,
594 // this formula can be implemented much more efficiently. The trick is that
595 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
596 // arithmetic. To do exact division in modular arithmetic, all we have
597 // to do is multiply by the inverse. Therefore, this step can be done at
598 // width W.
600 // The next issue is how to safely do the division by 2^T. The way this
601 // is done is by doing the multiplication step at a width of at least W + T
602 // bits. This way, the bottom W+T bits of the product are accurate. Then,
603 // when we perform the division by 2^T (which is equivalent to a right shift
604 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
605 // truncated out after the division by 2^T.
607 // In comparison to just directly using the first formula, this technique
608 // is much more efficient; using the first formula requires W * K bits,
609 // but this formula less than W + K bits. Also, the first formula requires
610 // a division step, whereas this formula only requires multiplies and shifts.
612 // It doesn't matter whether the subtraction step is done in the calculation
613 // width or the input iteration count's width; if the subtraction overflows,
614 // the result must be zero anyway. We prefer here to do it in the width of
615 // the induction variable because it helps a lot for certain cases; CodeGen
616 // isn't smart enough to ignore the overflow, which leads to much less
617 // efficient code if the width of the subtraction is wider than the native
618 // register width.
620 // (It's possible to not widen at all by pulling out factors of 2 before
621 // the multiplication; for example, K=2 can be calculated as
622 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
623 // extra arithmetic, so it's not an obvious win, and it gets
624 // much more complicated for K > 3.)
626 // Protection from insane SCEVs; this bound is conservative,
627 // but it probably doesn't matter.
628 if (K > 1000)
629 return SE.getCouldNotCompute();
631 unsigned W = SE.getTypeSizeInBits(ResultTy);
633 // Calculate K! / 2^T and T; we divide out the factors of two before
634 // multiplying for calculating K! / 2^T to avoid overflow.
635 // Other overflow doesn't matter because we only care about the bottom
636 // W bits of the result.
637 APInt OddFactorial(W, 1);
638 unsigned T = 1;
639 for (unsigned i = 3; i <= K; ++i) {
640 APInt Mult(W, i);
641 unsigned TwoFactors = Mult.countTrailingZeros();
642 T += TwoFactors;
643 Mult = Mult.lshr(TwoFactors);
644 OddFactorial *= Mult;
647 // We need at least W + T bits for the multiplication step
648 unsigned CalculationBits = W + T;
650 // Calcuate 2^T, at width T+W.
651 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
653 // Calculate the multiplicative inverse of K! / 2^T;
654 // this multiplication factor will perform the exact division by
655 // K! / 2^T.
656 APInt Mod = APInt::getSignedMinValue(W+1);
657 APInt MultiplyFactor = OddFactorial.zext(W+1);
658 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
659 MultiplyFactor = MultiplyFactor.trunc(W);
661 // Calculate the product, at width T+W
662 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
663 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
664 for (unsigned i = 1; i != K; ++i) {
665 const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
666 Dividend = SE.getMulExpr(Dividend,
667 SE.getTruncateOrZeroExtend(S, CalculationTy));
670 // Divide by 2^T
671 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
673 // Truncate the result, and divide by K! / 2^T.
675 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
676 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
679 /// evaluateAtIteration - Return the value of this chain of recurrences at
680 /// the specified iteration number. We can evaluate this recurrence by
681 /// multiplying each element in the chain by the binomial coefficient
682 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
684 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
686 /// where BC(It, k) stands for binomial coefficient.
688 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
689 ScalarEvolution &SE) const {
690 const SCEV *Result = getStart();
691 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
692 // The computation is correct in the face of overflow provided that the
693 // multiplication is performed _after_ the evaluation of the binomial
694 // coefficient.
695 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
696 if (isa<SCEVCouldNotCompute>(Coeff))
697 return Coeff;
699 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
701 return Result;
704 //===----------------------------------------------------------------------===//
705 // SCEV Expression folder implementations
706 //===----------------------------------------------------------------------===//
708 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
709 const Type *Ty) {
710 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
711 "This is not a truncating conversion!");
712 assert(isSCEVable(Ty) &&
713 "This is not a conversion to a SCEVable type!");
714 Ty = getEffectiveSCEVType(Ty);
716 FoldingSetNodeID ID;
717 ID.AddInteger(scTruncate);
718 ID.AddPointer(Op);
719 ID.AddPointer(Ty);
720 void *IP = 0;
721 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
723 // Fold if the operand is constant.
724 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
725 return getConstant(
726 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
728 // trunc(trunc(x)) --> trunc(x)
729 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
730 return getTruncateExpr(ST->getOperand(), Ty);
732 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
733 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
734 return getTruncateOrSignExtend(SS->getOperand(), Ty);
736 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
737 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
738 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
740 // If the input value is a chrec scev, truncate the chrec's operands.
741 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
742 SmallVector<const SCEV *, 4> Operands;
743 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
744 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
745 return getAddRecExpr(Operands, AddRec->getLoop());
748 // The cast wasn't folded; create an explicit cast node.
749 // Recompute the insert position, as it may have been invalidated.
750 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
751 SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
752 new (S) SCEVTruncateExpr(ID, Op, Ty);
753 UniqueSCEVs.InsertNode(S, IP);
754 return S;
757 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
758 const Type *Ty) {
759 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
760 "This is not an extending conversion!");
761 assert(isSCEVable(Ty) &&
762 "This is not a conversion to a SCEVable type!");
763 Ty = getEffectiveSCEVType(Ty);
765 // Fold if the operand is constant.
766 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
767 const Type *IntTy = getEffectiveSCEVType(Ty);
768 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
769 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
770 return getConstant(cast<ConstantInt>(C));
773 // zext(zext(x)) --> zext(x)
774 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
775 return getZeroExtendExpr(SZ->getOperand(), Ty);
777 // Before doing any expensive analysis, check to see if we've already
778 // computed a SCEV for this Op and Ty.
779 FoldingSetNodeID ID;
780 ID.AddInteger(scZeroExtend);
781 ID.AddPointer(Op);
782 ID.AddPointer(Ty);
783 void *IP = 0;
784 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
786 // If the input value is a chrec scev, and we can prove that the value
787 // did not overflow the old, smaller, value, we can zero extend all of the
788 // operands (often constants). This allows analysis of something like
789 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
790 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
791 if (AR->isAffine()) {
792 const SCEV *Start = AR->getStart();
793 const SCEV *Step = AR->getStepRecurrence(*this);
794 unsigned BitWidth = getTypeSizeInBits(AR->getType());
795 const Loop *L = AR->getLoop();
797 // Check whether the backedge-taken count is SCEVCouldNotCompute.
798 // Note that this serves two purposes: It filters out loops that are
799 // simply not analyzable, and it covers the case where this code is
800 // being called from within backedge-taken count analysis, such that
801 // attempting to ask for the backedge-taken count would likely result
802 // in infinite recursion. In the later case, the analysis code will
803 // cope with a conservative value, and it will take care to purge
804 // that value once it has finished.
805 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
806 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
807 // Manually compute the final value for AR, checking for
808 // overflow.
810 // Check whether the backedge-taken count can be losslessly casted to
811 // the addrec's type. The count is always unsigned.
812 const SCEV *CastedMaxBECount =
813 getTruncateOrZeroExtend(MaxBECount, Start->getType());
814 const SCEV *RecastedMaxBECount =
815 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
816 if (MaxBECount == RecastedMaxBECount) {
817 const Type *WideTy = IntegerType::get(BitWidth * 2);
818 // Check whether Start+Step*MaxBECount has no unsigned overflow.
819 const SCEV *ZMul =
820 getMulExpr(CastedMaxBECount,
821 getTruncateOrZeroExtend(Step, Start->getType()));
822 const SCEV *Add = getAddExpr(Start, ZMul);
823 const SCEV *OperandExtendedAdd =
824 getAddExpr(getZeroExtendExpr(Start, WideTy),
825 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
826 getZeroExtendExpr(Step, WideTy)));
827 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
828 // Return the expression with the addrec on the outside.
829 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
830 getZeroExtendExpr(Step, Ty),
833 // Similar to above, only this time treat the step value as signed.
834 // This covers loops that count down.
835 const SCEV *SMul =
836 getMulExpr(CastedMaxBECount,
837 getTruncateOrSignExtend(Step, Start->getType()));
838 Add = getAddExpr(Start, SMul);
839 OperandExtendedAdd =
840 getAddExpr(getZeroExtendExpr(Start, WideTy),
841 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
842 getSignExtendExpr(Step, WideTy)));
843 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
844 // Return the expression with the addrec on the outside.
845 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
846 getSignExtendExpr(Step, Ty),
850 // If the backedge is guarded by a comparison with the pre-inc value
851 // the addrec is safe. Also, if the entry is guarded by a comparison
852 // with the start value and the backedge is guarded by a comparison
853 // with the post-inc value, the addrec is safe.
854 if (isKnownPositive(Step)) {
855 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
856 getUnsignedRange(Step).getUnsignedMax());
857 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
858 (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
859 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
860 AR->getPostIncExpr(*this), N)))
861 // Return the expression with the addrec on the outside.
862 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
863 getZeroExtendExpr(Step, Ty),
865 } else if (isKnownNegative(Step)) {
866 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
867 getSignedRange(Step).getSignedMin());
868 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
869 (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
870 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
871 AR->getPostIncExpr(*this), N)))
872 // Return the expression with the addrec on the outside.
873 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
874 getSignExtendExpr(Step, Ty),
880 // The cast wasn't folded; create an explicit cast node.
881 // Recompute the insert position, as it may have been invalidated.
882 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
883 SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
884 new (S) SCEVZeroExtendExpr(ID, Op, Ty);
885 UniqueSCEVs.InsertNode(S, IP);
886 return S;
889 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
890 const Type *Ty) {
891 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
892 "This is not an extending conversion!");
893 assert(isSCEVable(Ty) &&
894 "This is not a conversion to a SCEVable type!");
895 Ty = getEffectiveSCEVType(Ty);
897 // Fold if the operand is constant.
898 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
899 const Type *IntTy = getEffectiveSCEVType(Ty);
900 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
901 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
902 return getConstant(cast<ConstantInt>(C));
905 // sext(sext(x)) --> sext(x)
906 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
907 return getSignExtendExpr(SS->getOperand(), Ty);
909 // Before doing any expensive analysis, check to see if we've already
910 // computed a SCEV for this Op and Ty.
911 FoldingSetNodeID ID;
912 ID.AddInteger(scSignExtend);
913 ID.AddPointer(Op);
914 ID.AddPointer(Ty);
915 void *IP = 0;
916 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
918 // If the input value is a chrec scev, and we can prove that the value
919 // did not overflow the old, smaller, value, we can sign extend all of the
920 // operands (often constants). This allows analysis of something like
921 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
922 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
923 if (AR->isAffine()) {
924 const SCEV *Start = AR->getStart();
925 const SCEV *Step = AR->getStepRecurrence(*this);
926 unsigned BitWidth = getTypeSizeInBits(AR->getType());
927 const Loop *L = AR->getLoop();
929 // Check whether the backedge-taken count is SCEVCouldNotCompute.
930 // Note that this serves two purposes: It filters out loops that are
931 // simply not analyzable, and it covers the case where this code is
932 // being called from within backedge-taken count analysis, such that
933 // attempting to ask for the backedge-taken count would likely result
934 // in infinite recursion. In the later case, the analysis code will
935 // cope with a conservative value, and it will take care to purge
936 // that value once it has finished.
937 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
938 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
939 // Manually compute the final value for AR, checking for
940 // overflow.
942 // Check whether the backedge-taken count can be losslessly casted to
943 // the addrec's type. The count is always unsigned.
944 const SCEV *CastedMaxBECount =
945 getTruncateOrZeroExtend(MaxBECount, Start->getType());
946 const SCEV *RecastedMaxBECount =
947 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
948 if (MaxBECount == RecastedMaxBECount) {
949 const Type *WideTy = IntegerType::get(BitWidth * 2);
950 // Check whether Start+Step*MaxBECount has no signed overflow.
951 const SCEV *SMul =
952 getMulExpr(CastedMaxBECount,
953 getTruncateOrSignExtend(Step, Start->getType()));
954 const SCEV *Add = getAddExpr(Start, SMul);
955 const SCEV *OperandExtendedAdd =
956 getAddExpr(getSignExtendExpr(Start, WideTy),
957 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
958 getSignExtendExpr(Step, WideTy)));
959 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
960 // Return the expression with the addrec on the outside.
961 return getAddRecExpr(getSignExtendExpr(Start, Ty),
962 getSignExtendExpr(Step, Ty),
965 // Similar to above, only this time treat the step value as unsigned.
966 // This covers loops that count up with an unsigned step.
967 const SCEV *UMul =
968 getMulExpr(CastedMaxBECount,
969 getTruncateOrZeroExtend(Step, Start->getType()));
970 Add = getAddExpr(Start, UMul);
971 OperandExtendedAdd =
972 getAddExpr(getZeroExtendExpr(Start, WideTy),
973 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
974 getZeroExtendExpr(Step, WideTy)));
975 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
976 // Return the expression with the addrec on the outside.
977 return getAddRecExpr(getSignExtendExpr(Start, Ty),
978 getZeroExtendExpr(Step, Ty),
982 // If the backedge is guarded by a comparison with the pre-inc value
983 // the addrec is safe. Also, if the entry is guarded by a comparison
984 // with the start value and the backedge is guarded by a comparison
985 // with the post-inc value, the addrec is safe.
986 if (isKnownPositive(Step)) {
987 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
988 getSignedRange(Step).getSignedMax());
989 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
990 (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
991 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
992 AR->getPostIncExpr(*this), N)))
993 // Return the expression with the addrec on the outside.
994 return getAddRecExpr(getSignExtendExpr(Start, Ty),
995 getSignExtendExpr(Step, Ty),
997 } else if (isKnownNegative(Step)) {
998 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
999 getSignedRange(Step).getSignedMin());
1000 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
1001 (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
1002 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1003 AR->getPostIncExpr(*this), N)))
1004 // Return the expression with the addrec on the outside.
1005 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1006 getSignExtendExpr(Step, Ty),
1012 // The cast wasn't folded; create an explicit cast node.
1013 // Recompute the insert position, as it may have been invalidated.
1014 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1015 SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
1016 new (S) SCEVSignExtendExpr(ID, Op, Ty);
1017 UniqueSCEVs.InsertNode(S, IP);
1018 return S;
1021 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1022 /// unspecified bits out to the given type.
1024 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1025 const Type *Ty) {
1026 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1027 "This is not an extending conversion!");
1028 assert(isSCEVable(Ty) &&
1029 "This is not a conversion to a SCEVable type!");
1030 Ty = getEffectiveSCEVType(Ty);
1032 // Sign-extend negative constants.
1033 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1034 if (SC->getValue()->getValue().isNegative())
1035 return getSignExtendExpr(Op, Ty);
1037 // Peel off a truncate cast.
1038 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1039 const SCEV *NewOp = T->getOperand();
1040 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1041 return getAnyExtendExpr(NewOp, Ty);
1042 return getTruncateOrNoop(NewOp, Ty);
1045 // Next try a zext cast. If the cast is folded, use it.
1046 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1047 if (!isa<SCEVZeroExtendExpr>(ZExt))
1048 return ZExt;
1050 // Next try a sext cast. If the cast is folded, use it.
1051 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1052 if (!isa<SCEVSignExtendExpr>(SExt))
1053 return SExt;
1055 // If the expression is obviously signed, use the sext cast value.
1056 if (isa<SCEVSMaxExpr>(Op))
1057 return SExt;
1059 // Absent any other information, use the zext cast value.
1060 return ZExt;
1063 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1064 /// a list of operands to be added under the given scale, update the given
1065 /// map. This is a helper function for getAddRecExpr. As an example of
1066 /// what it does, given a sequence of operands that would form an add
1067 /// expression like this:
1069 /// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1071 /// where A and B are constants, update the map with these values:
1073 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1075 /// and add 13 + A*B*29 to AccumulatedConstant.
1076 /// This will allow getAddRecExpr to produce this:
1078 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1080 /// This form often exposes folding opportunities that are hidden in
1081 /// the original operand list.
1083 /// Return true iff it appears that any interesting folding opportunities
1084 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1085 /// the common case where no interesting opportunities are present, and
1086 /// is also used as a check to avoid infinite recursion.
1088 static bool
1089 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1090 SmallVector<const SCEV *, 8> &NewOps,
1091 APInt &AccumulatedConstant,
1092 const SmallVectorImpl<const SCEV *> &Ops,
1093 const APInt &Scale,
1094 ScalarEvolution &SE) {
1095 bool Interesting = false;
1097 // Iterate over the add operands.
1098 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1099 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1100 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1101 APInt NewScale =
1102 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1103 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1104 // A multiplication of a constant with another add; recurse.
1105 Interesting |=
1106 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1107 cast<SCEVAddExpr>(Mul->getOperand(1))
1108 ->getOperands(),
1109 NewScale, SE);
1110 } else {
1111 // A multiplication of a constant with some other value. Update
1112 // the map.
1113 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1114 const SCEV *Key = SE.getMulExpr(MulOps);
1115 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1116 M.insert(std::make_pair(Key, NewScale));
1117 if (Pair.second) {
1118 NewOps.push_back(Pair.first->first);
1119 } else {
1120 Pair.first->second += NewScale;
1121 // The map already had an entry for this value, which may indicate
1122 // a folding opportunity.
1123 Interesting = true;
1126 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1127 // Pull a buried constant out to the outside.
1128 if (Scale != 1 || AccumulatedConstant != 0 || C->isZero())
1129 Interesting = true;
1130 AccumulatedConstant += Scale * C->getValue()->getValue();
1131 } else {
1132 // An ordinary operand. Update the map.
1133 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1134 M.insert(std::make_pair(Ops[i], Scale));
1135 if (Pair.second) {
1136 NewOps.push_back(Pair.first->first);
1137 } else {
1138 Pair.first->second += Scale;
1139 // The map already had an entry for this value, which may indicate
1140 // a folding opportunity.
1141 Interesting = true;
1146 return Interesting;
1149 namespace {
1150 struct APIntCompare {
1151 bool operator()(const APInt &LHS, const APInt &RHS) const {
1152 return LHS.ult(RHS);
1157 /// getAddExpr - Get a canonical add expression, or something simpler if
1158 /// possible.
1159 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) {
1160 assert(!Ops.empty() && "Cannot get empty add!");
1161 if (Ops.size() == 1) return Ops[0];
1162 #ifndef NDEBUG
1163 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1164 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1165 getEffectiveSCEVType(Ops[0]->getType()) &&
1166 "SCEVAddExpr operand types don't match!");
1167 #endif
1169 // Sort by complexity, this groups all similar expression types together.
1170 GroupByComplexity(Ops, LI);
1172 // If there are any constants, fold them together.
1173 unsigned Idx = 0;
1174 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1175 ++Idx;
1176 assert(Idx < Ops.size());
1177 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1178 // We found two constants, fold them together!
1179 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1180 RHSC->getValue()->getValue());
1181 if (Ops.size() == 2) return Ops[0];
1182 Ops.erase(Ops.begin()+1); // Erase the folded element
1183 LHSC = cast<SCEVConstant>(Ops[0]);
1186 // If we are left with a constant zero being added, strip it off.
1187 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1188 Ops.erase(Ops.begin());
1189 --Idx;
1193 if (Ops.size() == 1) return Ops[0];
1195 // Okay, check to see if the same value occurs in the operand list twice. If
1196 // so, merge them together into an multiply expression. Since we sorted the
1197 // list, these values are required to be adjacent.
1198 const Type *Ty = Ops[0]->getType();
1199 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1200 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1201 // Found a match, merge the two values into a multiply, and add any
1202 // remaining values to the result.
1203 const SCEV *Two = getIntegerSCEV(2, Ty);
1204 const SCEV *Mul = getMulExpr(Ops[i], Two);
1205 if (Ops.size() == 2)
1206 return Mul;
1207 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1208 Ops.push_back(Mul);
1209 return getAddExpr(Ops);
1212 // Check for truncates. If all the operands are truncated from the same
1213 // type, see if factoring out the truncate would permit the result to be
1214 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1215 // if the contents of the resulting outer trunc fold to something simple.
1216 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1217 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1218 const Type *DstType = Trunc->getType();
1219 const Type *SrcType = Trunc->getOperand()->getType();
1220 SmallVector<const SCEV *, 8> LargeOps;
1221 bool Ok = true;
1222 // Check all the operands to see if they can be represented in the
1223 // source type of the truncate.
1224 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1225 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1226 if (T->getOperand()->getType() != SrcType) {
1227 Ok = false;
1228 break;
1230 LargeOps.push_back(T->getOperand());
1231 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1232 // This could be either sign or zero extension, but sign extension
1233 // is much more likely to be foldable here.
1234 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1235 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1236 SmallVector<const SCEV *, 8> LargeMulOps;
1237 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1238 if (const SCEVTruncateExpr *T =
1239 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1240 if (T->getOperand()->getType() != SrcType) {
1241 Ok = false;
1242 break;
1244 LargeMulOps.push_back(T->getOperand());
1245 } else if (const SCEVConstant *C =
1246 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1247 // This could be either sign or zero extension, but sign extension
1248 // is much more likely to be foldable here.
1249 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1250 } else {
1251 Ok = false;
1252 break;
1255 if (Ok)
1256 LargeOps.push_back(getMulExpr(LargeMulOps));
1257 } else {
1258 Ok = false;
1259 break;
1262 if (Ok) {
1263 // Evaluate the expression in the larger type.
1264 const SCEV *Fold = getAddExpr(LargeOps);
1265 // If it folds to something simple, use it. Otherwise, don't.
1266 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1267 return getTruncateExpr(Fold, DstType);
1271 // Skip past any other cast SCEVs.
1272 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1273 ++Idx;
1275 // If there are add operands they would be next.
1276 if (Idx < Ops.size()) {
1277 bool DeletedAdd = false;
1278 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1279 // If we have an add, expand the add operands onto the end of the operands
1280 // list.
1281 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1282 Ops.erase(Ops.begin()+Idx);
1283 DeletedAdd = true;
1286 // If we deleted at least one add, we added operands to the end of the list,
1287 // and they are not necessarily sorted. Recurse to resort and resimplify
1288 // any operands we just aquired.
1289 if (DeletedAdd)
1290 return getAddExpr(Ops);
1293 // Skip over the add expression until we get to a multiply.
1294 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1295 ++Idx;
1297 // Check to see if there are any folding opportunities present with
1298 // operands multiplied by constant values.
1299 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1300 uint64_t BitWidth = getTypeSizeInBits(Ty);
1301 DenseMap<const SCEV *, APInt> M;
1302 SmallVector<const SCEV *, 8> NewOps;
1303 APInt AccumulatedConstant(BitWidth, 0);
1304 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1305 Ops, APInt(BitWidth, 1), *this)) {
1306 // Some interesting folding opportunity is present, so its worthwhile to
1307 // re-generate the operands list. Group the operands by constant scale,
1308 // to avoid multiplying by the same constant scale multiple times.
1309 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1310 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
1311 E = NewOps.end(); I != E; ++I)
1312 MulOpLists[M.find(*I)->second].push_back(*I);
1313 // Re-generate the operands list.
1314 Ops.clear();
1315 if (AccumulatedConstant != 0)
1316 Ops.push_back(getConstant(AccumulatedConstant));
1317 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1318 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1319 if (I->first != 0)
1320 Ops.push_back(getMulExpr(getConstant(I->first),
1321 getAddExpr(I->second)));
1322 if (Ops.empty())
1323 return getIntegerSCEV(0, Ty);
1324 if (Ops.size() == 1)
1325 return Ops[0];
1326 return getAddExpr(Ops);
1330 // If we are adding something to a multiply expression, make sure the
1331 // something is not already an operand of the multiply. If so, merge it into
1332 // the multiply.
1333 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1334 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1335 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1336 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1337 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1338 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
1339 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1340 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1341 if (Mul->getNumOperands() != 2) {
1342 // If the multiply has more than two operands, we must get the
1343 // Y*Z term.
1344 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
1345 MulOps.erase(MulOps.begin()+MulOp);
1346 InnerMul = getMulExpr(MulOps);
1348 const SCEV *One = getIntegerSCEV(1, Ty);
1349 const SCEV *AddOne = getAddExpr(InnerMul, One);
1350 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
1351 if (Ops.size() == 2) return OuterMul;
1352 if (AddOp < Idx) {
1353 Ops.erase(Ops.begin()+AddOp);
1354 Ops.erase(Ops.begin()+Idx-1);
1355 } else {
1356 Ops.erase(Ops.begin()+Idx);
1357 Ops.erase(Ops.begin()+AddOp-1);
1359 Ops.push_back(OuterMul);
1360 return getAddExpr(Ops);
1363 // Check this multiply against other multiplies being added together.
1364 for (unsigned OtherMulIdx = Idx+1;
1365 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1366 ++OtherMulIdx) {
1367 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1368 // If MulOp occurs in OtherMul, we can fold the two multiplies
1369 // together.
1370 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1371 OMulOp != e; ++OMulOp)
1372 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1373 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1374 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1375 if (Mul->getNumOperands() != 2) {
1376 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1377 Mul->op_end());
1378 MulOps.erase(MulOps.begin()+MulOp);
1379 InnerMul1 = getMulExpr(MulOps);
1381 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1382 if (OtherMul->getNumOperands() != 2) {
1383 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1384 OtherMul->op_end());
1385 MulOps.erase(MulOps.begin()+OMulOp);
1386 InnerMul2 = getMulExpr(MulOps);
1388 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1389 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1390 if (Ops.size() == 2) return OuterMul;
1391 Ops.erase(Ops.begin()+Idx);
1392 Ops.erase(Ops.begin()+OtherMulIdx-1);
1393 Ops.push_back(OuterMul);
1394 return getAddExpr(Ops);
1400 // If there are any add recurrences in the operands list, see if any other
1401 // added values are loop invariant. If so, we can fold them into the
1402 // recurrence.
1403 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1404 ++Idx;
1406 // Scan over all recurrences, trying to fold loop invariants into them.
1407 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1408 // Scan all of the other operands to this add and add them to the vector if
1409 // they are loop invariant w.r.t. the recurrence.
1410 SmallVector<const SCEV *, 8> LIOps;
1411 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1412 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1413 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1414 LIOps.push_back(Ops[i]);
1415 Ops.erase(Ops.begin()+i);
1416 --i; --e;
1419 // If we found some loop invariants, fold them into the recurrence.
1420 if (!LIOps.empty()) {
1421 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
1422 LIOps.push_back(AddRec->getStart());
1424 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1425 AddRec->op_end());
1426 AddRecOps[0] = getAddExpr(LIOps);
1428 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
1429 // If all of the other operands were loop invariant, we are done.
1430 if (Ops.size() == 1) return NewRec;
1432 // Otherwise, add the folded AddRec by the non-liv parts.
1433 for (unsigned i = 0;; ++i)
1434 if (Ops[i] == AddRec) {
1435 Ops[i] = NewRec;
1436 break;
1438 return getAddExpr(Ops);
1441 // Okay, if there weren't any loop invariants to be folded, check to see if
1442 // there are multiple AddRec's with the same loop induction variable being
1443 // added together. If so, we can fold them.
1444 for (unsigned OtherIdx = Idx+1;
1445 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1446 if (OtherIdx != Idx) {
1447 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1448 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1449 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1450 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1451 AddRec->op_end());
1452 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1453 if (i >= NewOps.size()) {
1454 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1455 OtherAddRec->op_end());
1456 break;
1458 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
1460 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
1462 if (Ops.size() == 2) return NewAddRec;
1464 Ops.erase(Ops.begin()+Idx);
1465 Ops.erase(Ops.begin()+OtherIdx-1);
1466 Ops.push_back(NewAddRec);
1467 return getAddExpr(Ops);
1471 // Otherwise couldn't fold anything into this recurrence. Move onto the
1472 // next one.
1475 // Okay, it looks like we really DO need an add expr. Check to see if we
1476 // already have one, otherwise create a new one.
1477 FoldingSetNodeID ID;
1478 ID.AddInteger(scAddExpr);
1479 ID.AddInteger(Ops.size());
1480 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1481 ID.AddPointer(Ops[i]);
1482 void *IP = 0;
1483 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1484 SCEV *S = SCEVAllocator.Allocate<SCEVAddExpr>();
1485 new (S) SCEVAddExpr(ID, Ops);
1486 UniqueSCEVs.InsertNode(S, IP);
1487 return S;
1491 /// getMulExpr - Get a canonical multiply expression, or something simpler if
1492 /// possible.
1493 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) {
1494 assert(!Ops.empty() && "Cannot get empty mul!");
1495 #ifndef NDEBUG
1496 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1497 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1498 getEffectiveSCEVType(Ops[0]->getType()) &&
1499 "SCEVMulExpr operand types don't match!");
1500 #endif
1502 // Sort by complexity, this groups all similar expression types together.
1503 GroupByComplexity(Ops, LI);
1505 // If there are any constants, fold them together.
1506 unsigned Idx = 0;
1507 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1509 // C1*(C2+V) -> C1*C2 + C1*V
1510 if (Ops.size() == 2)
1511 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1512 if (Add->getNumOperands() == 2 &&
1513 isa<SCEVConstant>(Add->getOperand(0)))
1514 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1515 getMulExpr(LHSC, Add->getOperand(1)));
1518 ++Idx;
1519 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1520 // We found two constants, fold them together!
1521 ConstantInt *Fold = ConstantInt::get(getContext(),
1522 LHSC->getValue()->getValue() *
1523 RHSC->getValue()->getValue());
1524 Ops[0] = getConstant(Fold);
1525 Ops.erase(Ops.begin()+1); // Erase the folded element
1526 if (Ops.size() == 1) return Ops[0];
1527 LHSC = cast<SCEVConstant>(Ops[0]);
1530 // If we are left with a constant one being multiplied, strip it off.
1531 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1532 Ops.erase(Ops.begin());
1533 --Idx;
1534 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1535 // If we have a multiply of zero, it will always be zero.
1536 return Ops[0];
1540 // Skip over the add expression until we get to a multiply.
1541 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1542 ++Idx;
1544 if (Ops.size() == 1)
1545 return Ops[0];
1547 // If there are mul operands inline them all into this expression.
1548 if (Idx < Ops.size()) {
1549 bool DeletedMul = false;
1550 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1551 // If we have an mul, expand the mul operands onto the end of the operands
1552 // list.
1553 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1554 Ops.erase(Ops.begin()+Idx);
1555 DeletedMul = true;
1558 // If we deleted at least one mul, we added operands to the end of the list,
1559 // and they are not necessarily sorted. Recurse to resort and resimplify
1560 // any operands we just aquired.
1561 if (DeletedMul)
1562 return getMulExpr(Ops);
1565 // If there are any add recurrences in the operands list, see if any other
1566 // added values are loop invariant. If so, we can fold them into the
1567 // recurrence.
1568 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1569 ++Idx;
1571 // Scan over all recurrences, trying to fold loop invariants into them.
1572 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1573 // Scan all of the other operands to this mul and add them to the vector if
1574 // they are loop invariant w.r.t. the recurrence.
1575 SmallVector<const SCEV *, 8> LIOps;
1576 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1577 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1578 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1579 LIOps.push_back(Ops[i]);
1580 Ops.erase(Ops.begin()+i);
1581 --i; --e;
1584 // If we found some loop invariants, fold them into the recurrence.
1585 if (!LIOps.empty()) {
1586 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
1587 SmallVector<const SCEV *, 4> NewOps;
1588 NewOps.reserve(AddRec->getNumOperands());
1589 if (LIOps.size() == 1) {
1590 const SCEV *Scale = LIOps[0];
1591 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1592 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
1593 } else {
1594 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1595 SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
1596 MulOps.push_back(AddRec->getOperand(i));
1597 NewOps.push_back(getMulExpr(MulOps));
1601 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
1603 // If all of the other operands were loop invariant, we are done.
1604 if (Ops.size() == 1) return NewRec;
1606 // Otherwise, multiply the folded AddRec by the non-liv parts.
1607 for (unsigned i = 0;; ++i)
1608 if (Ops[i] == AddRec) {
1609 Ops[i] = NewRec;
1610 break;
1612 return getMulExpr(Ops);
1615 // Okay, if there weren't any loop invariants to be folded, check to see if
1616 // there are multiple AddRec's with the same loop induction variable being
1617 // multiplied together. If so, we can fold them.
1618 for (unsigned OtherIdx = Idx+1;
1619 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1620 if (OtherIdx != Idx) {
1621 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1622 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1623 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1624 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
1625 const SCEV *NewStart = getMulExpr(F->getStart(),
1626 G->getStart());
1627 const SCEV *B = F->getStepRecurrence(*this);
1628 const SCEV *D = G->getStepRecurrence(*this);
1629 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
1630 getMulExpr(G, B),
1631 getMulExpr(B, D));
1632 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
1633 F->getLoop());
1634 if (Ops.size() == 2) return NewAddRec;
1636 Ops.erase(Ops.begin()+Idx);
1637 Ops.erase(Ops.begin()+OtherIdx-1);
1638 Ops.push_back(NewAddRec);
1639 return getMulExpr(Ops);
1643 // Otherwise couldn't fold anything into this recurrence. Move onto the
1644 // next one.
1647 // Okay, it looks like we really DO need an mul expr. Check to see if we
1648 // already have one, otherwise create a new one.
1649 FoldingSetNodeID ID;
1650 ID.AddInteger(scMulExpr);
1651 ID.AddInteger(Ops.size());
1652 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1653 ID.AddPointer(Ops[i]);
1654 void *IP = 0;
1655 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1656 SCEV *S = SCEVAllocator.Allocate<SCEVMulExpr>();
1657 new (S) SCEVMulExpr(ID, Ops);
1658 UniqueSCEVs.InsertNode(S, IP);
1659 return S;
1662 /// getUDivExpr - Get a canonical multiply expression, or something simpler if
1663 /// possible.
1664 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1665 const SCEV *RHS) {
1666 assert(getEffectiveSCEVType(LHS->getType()) ==
1667 getEffectiveSCEVType(RHS->getType()) &&
1668 "SCEVUDivExpr operand types don't match!");
1670 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1671 if (RHSC->getValue()->equalsInt(1))
1672 return LHS; // X udiv 1 --> x
1673 if (RHSC->isZero())
1674 return getIntegerSCEV(0, LHS->getType()); // value is undefined
1676 // Determine if the division can be folded into the operands of
1677 // its operands.
1678 // TODO: Generalize this to non-constants by using known-bits information.
1679 const Type *Ty = LHS->getType();
1680 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1681 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1682 // For non-power-of-two values, effectively round the value up to the
1683 // nearest power of two.
1684 if (!RHSC->getValue()->getValue().isPowerOf2())
1685 ++MaxShiftAmt;
1686 const IntegerType *ExtTy =
1687 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1688 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1689 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1690 if (const SCEVConstant *Step =
1691 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1692 if (!Step->getValue()->getValue()
1693 .urem(RHSC->getValue()->getValue()) &&
1694 getZeroExtendExpr(AR, ExtTy) ==
1695 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1696 getZeroExtendExpr(Step, ExtTy),
1697 AR->getLoop())) {
1698 SmallVector<const SCEV *, 4> Operands;
1699 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1700 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1701 return getAddRecExpr(Operands, AR->getLoop());
1703 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1704 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1705 SmallVector<const SCEV *, 4> Operands;
1706 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1707 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1708 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1709 // Find an operand that's safely divisible.
1710 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1711 const SCEV *Op = M->getOperand(i);
1712 const SCEV *Div = getUDivExpr(Op, RHSC);
1713 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1714 const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
1715 Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
1716 MOperands.end());
1717 Operands[i] = Div;
1718 return getMulExpr(Operands);
1722 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1723 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1724 SmallVector<const SCEV *, 4> Operands;
1725 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1726 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1727 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1728 Operands.clear();
1729 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1730 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1731 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1732 break;
1733 Operands.push_back(Op);
1735 if (Operands.size() == A->getNumOperands())
1736 return getAddExpr(Operands);
1740 // Fold if both operands are constant.
1741 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1742 Constant *LHSCV = LHSC->getValue();
1743 Constant *RHSCV = RHSC->getValue();
1744 return getConstant(cast<ConstantInt>(getContext().getConstantExprUDiv(LHSCV,
1745 RHSCV)));
1749 FoldingSetNodeID ID;
1750 ID.AddInteger(scUDivExpr);
1751 ID.AddPointer(LHS);
1752 ID.AddPointer(RHS);
1753 void *IP = 0;
1754 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1755 SCEV *S = SCEVAllocator.Allocate<SCEVUDivExpr>();
1756 new (S) SCEVUDivExpr(ID, LHS, RHS);
1757 UniqueSCEVs.InsertNode(S, IP);
1758 return S;
1762 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1763 /// Simplify the expression as much as possible.
1764 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
1765 const SCEV *Step, const Loop *L) {
1766 SmallVector<const SCEV *, 4> Operands;
1767 Operands.push_back(Start);
1768 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1769 if (StepChrec->getLoop() == L) {
1770 Operands.insert(Operands.end(), StepChrec->op_begin(),
1771 StepChrec->op_end());
1772 return getAddRecExpr(Operands, L);
1775 Operands.push_back(Step);
1776 return getAddRecExpr(Operands, L);
1779 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
1780 /// Simplify the expression as much as possible.
1781 const SCEV *
1782 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
1783 const Loop *L) {
1784 if (Operands.size() == 1) return Operands[0];
1785 #ifndef NDEBUG
1786 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1787 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1788 getEffectiveSCEVType(Operands[0]->getType()) &&
1789 "SCEVAddRecExpr operand types don't match!");
1790 #endif
1792 if (Operands.back()->isZero()) {
1793 Operands.pop_back();
1794 return getAddRecExpr(Operands, L); // {X,+,0} --> X
1797 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1798 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1799 const Loop* NestedLoop = NestedAR->getLoop();
1800 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1801 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
1802 NestedAR->op_end());
1803 Operands[0] = NestedAR->getStart();
1804 // AddRecs require their operands be loop-invariant with respect to their
1805 // loops. Don't perform this transformation if it would break this
1806 // requirement.
1807 bool AllInvariant = true;
1808 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1809 if (!Operands[i]->isLoopInvariant(L)) {
1810 AllInvariant = false;
1811 break;
1813 if (AllInvariant) {
1814 NestedOperands[0] = getAddRecExpr(Operands, L);
1815 AllInvariant = true;
1816 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
1817 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
1818 AllInvariant = false;
1819 break;
1821 if (AllInvariant)
1822 // Ok, both add recurrences are valid after the transformation.
1823 return getAddRecExpr(NestedOperands, NestedLoop);
1825 // Reset Operands to its original state.
1826 Operands[0] = NestedAR;
1830 FoldingSetNodeID ID;
1831 ID.AddInteger(scAddRecExpr);
1832 ID.AddInteger(Operands.size());
1833 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1834 ID.AddPointer(Operands[i]);
1835 ID.AddPointer(L);
1836 void *IP = 0;
1837 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1838 SCEV *S = SCEVAllocator.Allocate<SCEVAddRecExpr>();
1839 new (S) SCEVAddRecExpr(ID, Operands, L);
1840 UniqueSCEVs.InsertNode(S, IP);
1841 return S;
1844 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
1845 const SCEV *RHS) {
1846 SmallVector<const SCEV *, 2> Ops;
1847 Ops.push_back(LHS);
1848 Ops.push_back(RHS);
1849 return getSMaxExpr(Ops);
1852 const SCEV *
1853 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1854 assert(!Ops.empty() && "Cannot get empty smax!");
1855 if (Ops.size() == 1) return Ops[0];
1856 #ifndef NDEBUG
1857 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1858 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1859 getEffectiveSCEVType(Ops[0]->getType()) &&
1860 "SCEVSMaxExpr operand types don't match!");
1861 #endif
1863 // Sort by complexity, this groups all similar expression types together.
1864 GroupByComplexity(Ops, LI);
1866 // If there are any constants, fold them together.
1867 unsigned Idx = 0;
1868 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1869 ++Idx;
1870 assert(Idx < Ops.size());
1871 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1872 // We found two constants, fold them together!
1873 ConstantInt *Fold = ConstantInt::get(getContext(),
1874 APIntOps::smax(LHSC->getValue()->getValue(),
1875 RHSC->getValue()->getValue()));
1876 Ops[0] = getConstant(Fold);
1877 Ops.erase(Ops.begin()+1); // Erase the folded element
1878 if (Ops.size() == 1) return Ops[0];
1879 LHSC = cast<SCEVConstant>(Ops[0]);
1882 // If we are left with a constant minimum-int, strip it off.
1883 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1884 Ops.erase(Ops.begin());
1885 --Idx;
1886 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
1887 // If we have an smax with a constant maximum-int, it will always be
1888 // maximum-int.
1889 return Ops[0];
1893 if (Ops.size() == 1) return Ops[0];
1895 // Find the first SMax
1896 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1897 ++Idx;
1899 // Check to see if one of the operands is an SMax. If so, expand its operands
1900 // onto our operand list, and recurse to simplify.
1901 if (Idx < Ops.size()) {
1902 bool DeletedSMax = false;
1903 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1904 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1905 Ops.erase(Ops.begin()+Idx);
1906 DeletedSMax = true;
1909 if (DeletedSMax)
1910 return getSMaxExpr(Ops);
1913 // Okay, check to see if the same value occurs in the operand list twice. If
1914 // so, delete one. Since we sorted the list, these values are required to
1915 // be adjacent.
1916 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1917 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1918 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1919 --i; --e;
1922 if (Ops.size() == 1) return Ops[0];
1924 assert(!Ops.empty() && "Reduced smax down to nothing!");
1926 // Okay, it looks like we really DO need an smax expr. Check to see if we
1927 // already have one, otherwise create a new one.
1928 FoldingSetNodeID ID;
1929 ID.AddInteger(scSMaxExpr);
1930 ID.AddInteger(Ops.size());
1931 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1932 ID.AddPointer(Ops[i]);
1933 void *IP = 0;
1934 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1935 SCEV *S = SCEVAllocator.Allocate<SCEVSMaxExpr>();
1936 new (S) SCEVSMaxExpr(ID, Ops);
1937 UniqueSCEVs.InsertNode(S, IP);
1938 return S;
1941 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
1942 const SCEV *RHS) {
1943 SmallVector<const SCEV *, 2> Ops;
1944 Ops.push_back(LHS);
1945 Ops.push_back(RHS);
1946 return getUMaxExpr(Ops);
1949 const SCEV *
1950 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
1951 assert(!Ops.empty() && "Cannot get empty umax!");
1952 if (Ops.size() == 1) return Ops[0];
1953 #ifndef NDEBUG
1954 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1955 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1956 getEffectiveSCEVType(Ops[0]->getType()) &&
1957 "SCEVUMaxExpr operand types don't match!");
1958 #endif
1960 // Sort by complexity, this groups all similar expression types together.
1961 GroupByComplexity(Ops, LI);
1963 // If there are any constants, fold them together.
1964 unsigned Idx = 0;
1965 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1966 ++Idx;
1967 assert(Idx < Ops.size());
1968 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1969 // We found two constants, fold them together!
1970 ConstantInt *Fold = ConstantInt::get(getContext(),
1971 APIntOps::umax(LHSC->getValue()->getValue(),
1972 RHSC->getValue()->getValue()));
1973 Ops[0] = getConstant(Fold);
1974 Ops.erase(Ops.begin()+1); // Erase the folded element
1975 if (Ops.size() == 1) return Ops[0];
1976 LHSC = cast<SCEVConstant>(Ops[0]);
1979 // If we are left with a constant minimum-int, strip it off.
1980 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1981 Ops.erase(Ops.begin());
1982 --Idx;
1983 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
1984 // If we have an umax with a constant maximum-int, it will always be
1985 // maximum-int.
1986 return Ops[0];
1990 if (Ops.size() == 1) return Ops[0];
1992 // Find the first UMax
1993 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1994 ++Idx;
1996 // Check to see if one of the operands is a UMax. If so, expand its operands
1997 // onto our operand list, and recurse to simplify.
1998 if (Idx < Ops.size()) {
1999 bool DeletedUMax = false;
2000 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2001 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
2002 Ops.erase(Ops.begin()+Idx);
2003 DeletedUMax = true;
2006 if (DeletedUMax)
2007 return getUMaxExpr(Ops);
2010 // Okay, check to see if the same value occurs in the operand list twice. If
2011 // so, delete one. Since we sorted the list, these values are required to
2012 // be adjacent.
2013 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2014 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
2015 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2016 --i; --e;
2019 if (Ops.size() == 1) return Ops[0];
2021 assert(!Ops.empty() && "Reduced umax down to nothing!");
2023 // Okay, it looks like we really DO need a umax expr. Check to see if we
2024 // already have one, otherwise create a new one.
2025 FoldingSetNodeID ID;
2026 ID.AddInteger(scUMaxExpr);
2027 ID.AddInteger(Ops.size());
2028 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2029 ID.AddPointer(Ops[i]);
2030 void *IP = 0;
2031 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2032 SCEV *S = SCEVAllocator.Allocate<SCEVUMaxExpr>();
2033 new (S) SCEVUMaxExpr(ID, Ops);
2034 UniqueSCEVs.InsertNode(S, IP);
2035 return S;
2038 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2039 const SCEV *RHS) {
2040 // ~smax(~x, ~y) == smin(x, y).
2041 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2044 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2045 const SCEV *RHS) {
2046 // ~umax(~x, ~y) == umin(x, y)
2047 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2050 const SCEV *ScalarEvolution::getUnknown(Value *V) {
2051 // Don't attempt to do anything other than create a SCEVUnknown object
2052 // here. createSCEV only calls getUnknown after checking for all other
2053 // interesting possibilities, and any other code that calls getUnknown
2054 // is doing so in order to hide a value from SCEV canonicalization.
2056 FoldingSetNodeID ID;
2057 ID.AddInteger(scUnknown);
2058 ID.AddPointer(V);
2059 void *IP = 0;
2060 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2061 SCEV *S = SCEVAllocator.Allocate<SCEVUnknown>();
2062 new (S) SCEVUnknown(ID, V);
2063 UniqueSCEVs.InsertNode(S, IP);
2064 return S;
2067 //===----------------------------------------------------------------------===//
2068 // Basic SCEV Analysis and PHI Idiom Recognition Code
2071 /// isSCEVable - Test if values of the given type are analyzable within
2072 /// the SCEV framework. This primarily includes integer types, and it
2073 /// can optionally include pointer types if the ScalarEvolution class
2074 /// has access to target-specific information.
2075 bool ScalarEvolution::isSCEVable(const Type *Ty) const {
2076 // Integers are always SCEVable.
2077 if (Ty->isInteger())
2078 return true;
2080 // Pointers are SCEVable if TargetData information is available
2081 // to provide pointer size information.
2082 if (isa<PointerType>(Ty))
2083 return TD != NULL;
2085 // Otherwise it's not SCEVable.
2086 return false;
2089 /// getTypeSizeInBits - Return the size in bits of the specified type,
2090 /// for which isSCEVable must return true.
2091 uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
2092 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2094 // If we have a TargetData, use it!
2095 if (TD)
2096 return TD->getTypeSizeInBits(Ty);
2098 // Otherwise, we support only integer types.
2099 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
2100 return Ty->getPrimitiveSizeInBits();
2103 /// getEffectiveSCEVType - Return a type with the same bitwidth as
2104 /// the given type and which represents how SCEV will treat the given
2105 /// type, for which isSCEVable must return true. For pointer types,
2106 /// this is the pointer-sized integer type.
2107 const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
2108 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2110 if (Ty->isInteger())
2111 return Ty;
2113 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
2114 return TD->getIntPtrType();
2117 const SCEV *ScalarEvolution::getCouldNotCompute() {
2118 return &CouldNotCompute;
2121 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2122 /// expression and create a new one.
2123 const SCEV *ScalarEvolution::getSCEV(Value *V) {
2124 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2126 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
2127 if (I != Scalars.end()) return I->second;
2128 const SCEV *S = createSCEV(V);
2129 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2130 return S;
2133 /// getIntegerSCEV - Given a SCEVable type, create a constant for the
2134 /// specified signed integer value and return a SCEV for the constant.
2135 const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
2136 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
2137 return getConstant(ConstantInt::get(ITy, Val));
2140 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2142 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2143 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2144 return getConstant(
2145 cast<ConstantInt>(getContext().getConstantExprNeg(VC->getValue())));
2147 const Type *Ty = V->getType();
2148 Ty = getEffectiveSCEVType(Ty);
2149 return getMulExpr(V,
2150 getConstant(cast<ConstantInt>(getContext().getAllOnesValue(Ty))));
2153 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2154 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2155 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2156 return getConstant(
2157 cast<ConstantInt>(getContext().getConstantExprNot(VC->getValue())));
2159 const Type *Ty = V->getType();
2160 Ty = getEffectiveSCEVType(Ty);
2161 const SCEV *AllOnes =
2162 getConstant(cast<ConstantInt>(getContext().getAllOnesValue(Ty)));
2163 return getMinusSCEV(AllOnes, V);
2166 /// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2168 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2169 const SCEV *RHS) {
2170 // X - Y --> X + -Y
2171 return getAddExpr(LHS, getNegativeSCEV(RHS));
2174 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2175 /// input value to the specified type. If the type must be extended, it is zero
2176 /// extended.
2177 const SCEV *
2178 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
2179 const Type *Ty) {
2180 const Type *SrcTy = V->getType();
2181 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2182 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2183 "Cannot truncate or zero extend with non-integer arguments!");
2184 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2185 return V; // No conversion
2186 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2187 return getTruncateExpr(V, Ty);
2188 return getZeroExtendExpr(V, Ty);
2191 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2192 /// input value to the specified type. If the type must be extended, it is sign
2193 /// extended.
2194 const SCEV *
2195 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2196 const Type *Ty) {
2197 const Type *SrcTy = V->getType();
2198 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2199 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2200 "Cannot truncate or zero extend with non-integer arguments!");
2201 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2202 return V; // No conversion
2203 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2204 return getTruncateExpr(V, Ty);
2205 return getSignExtendExpr(V, Ty);
2208 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2209 /// input value to the specified type. If the type must be extended, it is zero
2210 /// extended. The conversion must not be narrowing.
2211 const SCEV *
2212 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
2213 const Type *SrcTy = V->getType();
2214 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2215 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2216 "Cannot noop or zero extend with non-integer arguments!");
2217 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2218 "getNoopOrZeroExtend cannot truncate!");
2219 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2220 return V; // No conversion
2221 return getZeroExtendExpr(V, Ty);
2224 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2225 /// input value to the specified type. If the type must be extended, it is sign
2226 /// extended. The conversion must not be narrowing.
2227 const SCEV *
2228 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
2229 const Type *SrcTy = V->getType();
2230 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2231 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2232 "Cannot noop or sign extend with non-integer arguments!");
2233 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2234 "getNoopOrSignExtend cannot truncate!");
2235 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2236 return V; // No conversion
2237 return getSignExtendExpr(V, Ty);
2240 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2241 /// the input value to the specified type. If the type must be extended,
2242 /// it is extended with unspecified bits. The conversion must not be
2243 /// narrowing.
2244 const SCEV *
2245 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
2246 const Type *SrcTy = V->getType();
2247 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2248 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2249 "Cannot noop or any extend with non-integer arguments!");
2250 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2251 "getNoopOrAnyExtend cannot truncate!");
2252 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2253 return V; // No conversion
2254 return getAnyExtendExpr(V, Ty);
2257 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2258 /// input value to the specified type. The conversion must not be widening.
2259 const SCEV *
2260 ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
2261 const Type *SrcTy = V->getType();
2262 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
2263 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
2264 "Cannot truncate or noop with non-integer arguments!");
2265 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2266 "getTruncateOrNoop cannot extend!");
2267 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2268 return V; // No conversion
2269 return getTruncateExpr(V, Ty);
2272 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2273 /// the types using zero-extension, and then perform a umax operation
2274 /// with them.
2275 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2276 const SCEV *RHS) {
2277 const SCEV *PromotedLHS = LHS;
2278 const SCEV *PromotedRHS = RHS;
2280 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2281 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2282 else
2283 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2285 return getUMaxExpr(PromotedLHS, PromotedRHS);
2288 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
2289 /// the types using zero-extension, and then perform a umin operation
2290 /// with them.
2291 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2292 const SCEV *RHS) {
2293 const SCEV *PromotedLHS = LHS;
2294 const SCEV *PromotedRHS = RHS;
2296 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2297 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2298 else
2299 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2301 return getUMinExpr(PromotedLHS, PromotedRHS);
2304 /// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
2305 /// the specified instruction and replaces any references to the symbolic value
2306 /// SymName with the specified value. This is used during PHI resolution.
2307 void
2308 ScalarEvolution::ReplaceSymbolicValueWithConcrete(Instruction *I,
2309 const SCEV *SymName,
2310 const SCEV *NewVal) {
2311 std::map<SCEVCallbackVH, const SCEV *>::iterator SI =
2312 Scalars.find(SCEVCallbackVH(I, this));
2313 if (SI == Scalars.end()) return;
2315 const SCEV *NV =
2316 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
2317 if (NV == SI->second) return; // No change.
2319 SI->second = NV; // Update the scalars map!
2321 // Any instruction values that use this instruction might also need to be
2322 // updated!
2323 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2324 UI != E; ++UI)
2325 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2328 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2329 /// a loop header, making it a potential recurrence, or it doesn't.
2331 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2332 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
2333 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2334 if (L->getHeader() == PN->getParent()) {
2335 // If it lives in the loop header, it has two incoming values, one
2336 // from outside the loop, and one from inside.
2337 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2338 unsigned BackEdge = IncomingEdge^1;
2340 // While we are analyzing this PHI node, handle its value symbolically.
2341 const SCEV *SymbolicName = getUnknown(PN);
2342 assert(Scalars.find(PN) == Scalars.end() &&
2343 "PHI node already processed?");
2344 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
2346 // Using this symbolic name for the PHI, analyze the value coming around
2347 // the back-edge.
2348 const SCEV *BEValue = getSCEV(PN->getIncomingValue(BackEdge));
2350 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2351 // has a special value for the first iteration of the loop.
2353 // If the value coming around the backedge is an add with the symbolic
2354 // value we just inserted, then we found a simple induction variable!
2355 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
2356 // If there is a single occurrence of the symbolic value, replace it
2357 // with a recurrence.
2358 unsigned FoundIndex = Add->getNumOperands();
2359 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2360 if (Add->getOperand(i) == SymbolicName)
2361 if (FoundIndex == e) {
2362 FoundIndex = i;
2363 break;
2366 if (FoundIndex != Add->getNumOperands()) {
2367 // Create an add with everything but the specified operand.
2368 SmallVector<const SCEV *, 8> Ops;
2369 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2370 if (i != FoundIndex)
2371 Ops.push_back(Add->getOperand(i));
2372 const SCEV *Accum = getAddExpr(Ops);
2374 // This is not a valid addrec if the step amount is varying each
2375 // loop iteration, but is not itself an addrec in this loop.
2376 if (Accum->isLoopInvariant(L) ||
2377 (isa<SCEVAddRecExpr>(Accum) &&
2378 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2379 const SCEV *StartVal =
2380 getSCEV(PN->getIncomingValue(IncomingEdge));
2381 const SCEV *PHISCEV =
2382 getAddRecExpr(StartVal, Accum, L);
2384 // Okay, for the entire analysis of this edge we assumed the PHI
2385 // to be symbolic. We now need to go back and update all of the
2386 // entries for the scalars that use the PHI (except for the PHI
2387 // itself) to use the new analyzed value instead of the "symbolic"
2388 // value.
2389 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2390 return PHISCEV;
2393 } else if (const SCEVAddRecExpr *AddRec =
2394 dyn_cast<SCEVAddRecExpr>(BEValue)) {
2395 // Otherwise, this could be a loop like this:
2396 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2397 // In this case, j = {1,+,1} and BEValue is j.
2398 // Because the other in-value of i (0) fits the evolution of BEValue
2399 // i really is an addrec evolution.
2400 if (AddRec->getLoop() == L && AddRec->isAffine()) {
2401 const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2403 // If StartVal = j.start - j.stride, we can use StartVal as the
2404 // initial step of the addrec evolution.
2405 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
2406 AddRec->getOperand(1))) {
2407 const SCEV *PHISCEV =
2408 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
2410 // Okay, for the entire analysis of this edge we assumed the PHI
2411 // to be symbolic. We now need to go back and update all of the
2412 // entries for the scalars that use the PHI (except for the PHI
2413 // itself) to use the new analyzed value instead of the "symbolic"
2414 // value.
2415 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2416 return PHISCEV;
2421 return SymbolicName;
2424 // It's tempting to recognize PHIs with a unique incoming value, however
2425 // this leads passes like indvars to break LCSSA form. Fortunately, such
2426 // PHIs are rare, as instcombine zaps them.
2428 // If it's not a loop phi, we can't handle it yet.
2429 return getUnknown(PN);
2432 /// createNodeForGEP - Expand GEP instructions into add and multiply
2433 /// operations. This allows them to be analyzed by regular SCEV code.
2435 const SCEV *ScalarEvolution::createNodeForGEP(Operator *GEP) {
2437 const Type *IntPtrTy = TD->getIntPtrType();
2438 Value *Base = GEP->getOperand(0);
2439 // Don't attempt to analyze GEPs over unsized objects.
2440 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2441 return getUnknown(GEP);
2442 const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
2443 gep_type_iterator GTI = gep_type_begin(GEP);
2444 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2445 E = GEP->op_end();
2446 I != E; ++I) {
2447 Value *Index = *I;
2448 // Compute the (potentially symbolic) offset in bytes for this index.
2449 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2450 // For a struct, add the member offset.
2451 const StructLayout &SL = *TD->getStructLayout(STy);
2452 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2453 uint64_t Offset = SL.getElementOffset(FieldNo);
2454 TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy));
2455 } else {
2456 // For an array, add the element offset, explicitly scaled.
2457 const SCEV *LocalOffset = getSCEV(Index);
2458 if (!isa<PointerType>(LocalOffset->getType()))
2459 // Getelementptr indicies are signed.
2460 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
2461 LocalOffset =
2462 getMulExpr(LocalOffset,
2463 getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy));
2464 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2467 return getAddExpr(getSCEV(Base), TotalOffset);
2470 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2471 /// guaranteed to end in (at every loop iteration). It is, at the same time,
2472 /// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2473 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
2474 uint32_t
2475 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
2476 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2477 return C->getValue()->getValue().countTrailingZeros();
2479 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
2480 return std::min(GetMinTrailingZeros(T->getOperand()),
2481 (uint32_t)getTypeSizeInBits(T->getType()));
2483 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
2484 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2485 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2486 getTypeSizeInBits(E->getType()) : OpRes;
2489 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
2490 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2491 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2492 getTypeSizeInBits(E->getType()) : OpRes;
2495 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
2496 // The result is the min of all operands results.
2497 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2498 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2499 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2500 return MinOpRes;
2503 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
2504 // The result is the sum of all operands results.
2505 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2506 uint32_t BitWidth = getTypeSizeInBits(M->getType());
2507 for (unsigned i = 1, e = M->getNumOperands();
2508 SumOpRes != BitWidth && i != e; ++i)
2509 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
2510 BitWidth);
2511 return SumOpRes;
2514 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
2515 // The result is the min of all operands results.
2516 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
2517 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
2518 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
2519 return MinOpRes;
2522 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
2523 // The result is the min of all operands results.
2524 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2525 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2526 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2527 return MinOpRes;
2530 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
2531 // The result is the min of all operands results.
2532 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
2533 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
2534 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
2535 return MinOpRes;
2538 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2539 // For a SCEVUnknown, ask ValueTracking.
2540 unsigned BitWidth = getTypeSizeInBits(U->getType());
2541 APInt Mask = APInt::getAllOnesValue(BitWidth);
2542 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2543 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2544 return Zeros.countTrailingOnes();
2547 // SCEVUDivExpr
2548 return 0;
2551 /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2553 ConstantRange
2554 ScalarEvolution::getUnsignedRange(const SCEV *S) {
2556 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2557 return ConstantRange(C->getValue()->getValue());
2559 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2560 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2561 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2562 X = X.add(getUnsignedRange(Add->getOperand(i)));
2563 return X;
2566 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2567 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2568 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2569 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
2570 return X;
2573 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2574 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2575 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2576 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
2577 return X;
2580 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2581 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2582 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2583 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
2584 return X;
2587 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2588 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2589 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
2590 return X.udiv(Y);
2593 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2594 ConstantRange X = getUnsignedRange(ZExt->getOperand());
2595 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2598 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2599 ConstantRange X = getUnsignedRange(SExt->getOperand());
2600 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2603 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2604 ConstantRange X = getUnsignedRange(Trunc->getOperand());
2605 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2608 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2610 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2611 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2612 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2613 if (!Trip) return FullSet;
2615 // TODO: non-affine addrec
2616 if (AddRec->isAffine()) {
2617 const Type *Ty = AddRec->getType();
2618 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2619 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2620 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2622 const SCEV *Start = AddRec->getStart();
2623 const SCEV *Step = AddRec->getStepRecurrence(*this);
2624 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2626 // Check for overflow.
2627 // TODO: This is very conservative.
2628 if (!(Step->isOne() &&
2629 isKnownPredicate(ICmpInst::ICMP_ULT, Start, End)) &&
2630 !(Step->isAllOnesValue() &&
2631 isKnownPredicate(ICmpInst::ICMP_UGT, Start, End)))
2632 return FullSet;
2634 ConstantRange StartRange = getUnsignedRange(Start);
2635 ConstantRange EndRange = getUnsignedRange(End);
2636 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2637 EndRange.getUnsignedMin());
2638 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2639 EndRange.getUnsignedMax());
2640 if (Min.isMinValue() && Max.isMaxValue())
2641 return FullSet;
2642 return ConstantRange(Min, Max+1);
2647 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2648 // For a SCEVUnknown, ask ValueTracking.
2649 unsigned BitWidth = getTypeSizeInBits(U->getType());
2650 APInt Mask = APInt::getAllOnesValue(BitWidth);
2651 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2652 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
2653 if (Ones == ~Zeros + 1)
2654 return FullSet;
2655 return ConstantRange(Ones, ~Zeros + 1);
2658 return FullSet;
2661 /// getSignedRange - Determine the signed range for a particular SCEV.
2663 ConstantRange
2664 ScalarEvolution::getSignedRange(const SCEV *S) {
2666 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
2667 return ConstantRange(C->getValue()->getValue());
2669 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2670 ConstantRange X = getSignedRange(Add->getOperand(0));
2671 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2672 X = X.add(getSignedRange(Add->getOperand(i)));
2673 return X;
2676 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2677 ConstantRange X = getSignedRange(Mul->getOperand(0));
2678 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2679 X = X.multiply(getSignedRange(Mul->getOperand(i)));
2680 return X;
2683 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2684 ConstantRange X = getSignedRange(SMax->getOperand(0));
2685 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2686 X = X.smax(getSignedRange(SMax->getOperand(i)));
2687 return X;
2690 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2691 ConstantRange X = getSignedRange(UMax->getOperand(0));
2692 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2693 X = X.umax(getSignedRange(UMax->getOperand(i)));
2694 return X;
2697 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2698 ConstantRange X = getSignedRange(UDiv->getLHS());
2699 ConstantRange Y = getSignedRange(UDiv->getRHS());
2700 return X.udiv(Y);
2703 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2704 ConstantRange X = getSignedRange(ZExt->getOperand());
2705 return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
2708 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2709 ConstantRange X = getSignedRange(SExt->getOperand());
2710 return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
2713 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2714 ConstantRange X = getSignedRange(Trunc->getOperand());
2715 return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
2718 ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
2720 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
2721 const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
2722 const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
2723 if (!Trip) return FullSet;
2725 // TODO: non-affine addrec
2726 if (AddRec->isAffine()) {
2727 const Type *Ty = AddRec->getType();
2728 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
2729 if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
2730 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2732 const SCEV *Start = AddRec->getStart();
2733 const SCEV *Step = AddRec->getStepRecurrence(*this);
2734 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
2736 // Check for overflow.
2737 // TODO: This is very conservative.
2738 if (!(Step->isOne() &&
2739 isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
2740 !(Step->isAllOnesValue() &&
2741 isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
2742 return FullSet;
2744 ConstantRange StartRange = getSignedRange(Start);
2745 ConstantRange EndRange = getSignedRange(End);
2746 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
2747 EndRange.getSignedMin());
2748 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
2749 EndRange.getSignedMax());
2750 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
2751 return FullSet;
2752 return ConstantRange(Min, Max+1);
2757 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2758 // For a SCEVUnknown, ask ValueTracking.
2759 unsigned BitWidth = getTypeSizeInBits(U->getType());
2760 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
2761 if (NS == 1)
2762 return FullSet;
2763 return
2764 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
2765 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
2768 return FullSet;
2771 /// createSCEV - We know that there is no SCEV for the specified value.
2772 /// Analyze the expression.
2774 const SCEV *ScalarEvolution::createSCEV(Value *V) {
2775 if (!isSCEVable(V->getType()))
2776 return getUnknown(V);
2778 unsigned Opcode = Instruction::UserOp1;
2779 if (Instruction *I = dyn_cast<Instruction>(V))
2780 Opcode = I->getOpcode();
2781 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2782 Opcode = CE->getOpcode();
2783 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2784 return getConstant(CI);
2785 else if (isa<ConstantPointerNull>(V))
2786 return getIntegerSCEV(0, V->getType());
2787 else if (isa<UndefValue>(V))
2788 return getIntegerSCEV(0, V->getType());
2789 else
2790 return getUnknown(V);
2792 Operator *U = cast<Operator>(V);
2793 switch (Opcode) {
2794 case Instruction::Add:
2795 return getAddExpr(getSCEV(U->getOperand(0)),
2796 getSCEV(U->getOperand(1)));
2797 case Instruction::Mul:
2798 return getMulExpr(getSCEV(U->getOperand(0)),
2799 getSCEV(U->getOperand(1)));
2800 case Instruction::UDiv:
2801 return getUDivExpr(getSCEV(U->getOperand(0)),
2802 getSCEV(U->getOperand(1)));
2803 case Instruction::Sub:
2804 return getMinusSCEV(getSCEV(U->getOperand(0)),
2805 getSCEV(U->getOperand(1)));
2806 case Instruction::And:
2807 // For an expression like x&255 that merely masks off the high bits,
2808 // use zext(trunc(x)) as the SCEV expression.
2809 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2810 if (CI->isNullValue())
2811 return getSCEV(U->getOperand(1));
2812 if (CI->isAllOnesValue())
2813 return getSCEV(U->getOperand(0));
2814 const APInt &A = CI->getValue();
2816 // Instcombine's ShrinkDemandedConstant may strip bits out of
2817 // constants, obscuring what would otherwise be a low-bits mask.
2818 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
2819 // knew about to reconstruct a low-bits mask value.
2820 unsigned LZ = A.countLeadingZeros();
2821 unsigned BitWidth = A.getBitWidth();
2822 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2823 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2824 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
2826 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
2828 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
2829 return
2830 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2831 IntegerType::get(BitWidth - LZ)),
2832 U->getType());
2834 break;
2836 case Instruction::Or:
2837 // If the RHS of the Or is a constant, we may have something like:
2838 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2839 // optimizations will transparently handle this case.
2841 // In order for this transformation to be safe, the LHS must be of the
2842 // form X*(2^n) and the Or constant must be less than 2^n.
2843 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2844 const SCEV *LHS = getSCEV(U->getOperand(0));
2845 const APInt &CIVal = CI->getValue();
2846 if (GetMinTrailingZeros(LHS) >=
2847 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
2848 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
2850 break;
2851 case Instruction::Xor:
2852 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2853 // If the RHS of the xor is a signbit, then this is just an add.
2854 // Instcombine turns add of signbit into xor as a strength reduction step.
2855 if (CI->getValue().isSignBit())
2856 return getAddExpr(getSCEV(U->getOperand(0)),
2857 getSCEV(U->getOperand(1)));
2859 // If the RHS of xor is -1, then this is a not operation.
2860 if (CI->isAllOnesValue())
2861 return getNotSCEV(getSCEV(U->getOperand(0)));
2863 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2864 // This is a variant of the check for xor with -1, and it handles
2865 // the case where instcombine has trimmed non-demanded bits out
2866 // of an xor with -1.
2867 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2868 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2869 if (BO->getOpcode() == Instruction::And &&
2870 LCI->getValue() == CI->getValue())
2871 if (const SCEVZeroExtendExpr *Z =
2872 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
2873 const Type *UTy = U->getType();
2874 const SCEV *Z0 = Z->getOperand();
2875 const Type *Z0Ty = Z0->getType();
2876 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
2878 // If C is a low-bits mask, the zero extend is zerving to
2879 // mask off the high bits. Complement the operand and
2880 // re-apply the zext.
2881 if (APIntOps::isMask(Z0TySize, CI->getValue()))
2882 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
2884 // If C is a single bit, it may be in the sign-bit position
2885 // before the zero-extend. In this case, represent the xor
2886 // using an add, which is equivalent, and re-apply the zext.
2887 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
2888 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
2889 Trunc.isSignBit())
2890 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
2891 UTy);
2894 break;
2896 case Instruction::Shl:
2897 // Turn shift left of a constant amount into a multiply.
2898 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2899 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2900 Constant *X = ConstantInt::get(getContext(),
2901 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2902 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2904 break;
2906 case Instruction::LShr:
2907 // Turn logical shift right of a constant into a unsigned divide.
2908 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2909 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2910 Constant *X = ConstantInt::get(getContext(),
2911 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
2912 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
2914 break;
2916 case Instruction::AShr:
2917 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2918 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2919 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2920 if (L->getOpcode() == Instruction::Shl &&
2921 L->getOperand(1) == U->getOperand(1)) {
2922 unsigned BitWidth = getTypeSizeInBits(U->getType());
2923 uint64_t Amt = BitWidth - CI->getZExtValue();
2924 if (Amt == BitWidth)
2925 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2926 if (Amt > BitWidth)
2927 return getIntegerSCEV(0, U->getType()); // value is undefined
2928 return
2929 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
2930 IntegerType::get(Amt)),
2931 U->getType());
2933 break;
2935 case Instruction::Trunc:
2936 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
2938 case Instruction::ZExt:
2939 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2941 case Instruction::SExt:
2942 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
2944 case Instruction::BitCast:
2945 // BitCasts are no-op casts so we just eliminate the cast.
2946 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
2947 return getSCEV(U->getOperand(0));
2948 break;
2950 // It's tempting to handle inttoptr and ptrtoint, however this can
2951 // lead to pointer expressions which cannot be expanded to GEPs
2952 // (because they may overflow). For now, the only pointer-typed
2953 // expressions we handle are GEPs and address literals.
2955 case Instruction::GetElementPtr:
2956 if (!TD) break; // Without TD we can't analyze pointers.
2957 return createNodeForGEP(U);
2959 case Instruction::PHI:
2960 return createNodeForPHI(cast<PHINode>(U));
2962 case Instruction::Select:
2963 // This could be a smax or umax that was lowered earlier.
2964 // Try to recover it.
2965 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2966 Value *LHS = ICI->getOperand(0);
2967 Value *RHS = ICI->getOperand(1);
2968 switch (ICI->getPredicate()) {
2969 case ICmpInst::ICMP_SLT:
2970 case ICmpInst::ICMP_SLE:
2971 std::swap(LHS, RHS);
2972 // fall through
2973 case ICmpInst::ICMP_SGT:
2974 case ICmpInst::ICMP_SGE:
2975 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2976 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
2977 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2978 return getSMinExpr(getSCEV(LHS), getSCEV(RHS));
2979 break;
2980 case ICmpInst::ICMP_ULT:
2981 case ICmpInst::ICMP_ULE:
2982 std::swap(LHS, RHS);
2983 // fall through
2984 case ICmpInst::ICMP_UGT:
2985 case ICmpInst::ICMP_UGE:
2986 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
2987 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
2988 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2989 return getUMinExpr(getSCEV(LHS), getSCEV(RHS));
2990 break;
2991 case ICmpInst::ICMP_NE:
2992 // n != 0 ? n : 1 -> umax(n, 1)
2993 if (LHS == U->getOperand(1) &&
2994 isa<ConstantInt>(U->getOperand(2)) &&
2995 cast<ConstantInt>(U->getOperand(2))->isOne() &&
2996 isa<ConstantInt>(RHS) &&
2997 cast<ConstantInt>(RHS)->isZero())
2998 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(2)));
2999 break;
3000 case ICmpInst::ICMP_EQ:
3001 // n == 0 ? 1 : n -> umax(n, 1)
3002 if (LHS == U->getOperand(2) &&
3003 isa<ConstantInt>(U->getOperand(1)) &&
3004 cast<ConstantInt>(U->getOperand(1))->isOne() &&
3005 isa<ConstantInt>(RHS) &&
3006 cast<ConstantInt>(RHS)->isZero())
3007 return getUMaxExpr(getSCEV(LHS), getSCEV(U->getOperand(1)));
3008 break;
3009 default:
3010 break;
3014 default: // We cannot analyze this expression.
3015 break;
3018 return getUnknown(V);
3023 //===----------------------------------------------------------------------===//
3024 // Iteration Count Computation Code
3027 /// getBackedgeTakenCount - If the specified loop has a predictable
3028 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3029 /// object. The backedge-taken count is the number of times the loop header
3030 /// will be branched to from within the loop. This is one less than the
3031 /// trip count of the loop, since it doesn't count the first iteration,
3032 /// when the header is branched to from outside the loop.
3034 /// Note that it is not valid to call this method on a loop without a
3035 /// loop-invariant backedge-taken count (see
3036 /// hasLoopInvariantBackedgeTakenCount).
3038 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
3039 return getBackedgeTakenInfo(L).Exact;
3042 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3043 /// return the least SCEV value that is known never to be less than the
3044 /// actual backedge taken count.
3045 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
3046 return getBackedgeTakenInfo(L).Max;
3049 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
3050 /// onto the given Worklist.
3051 static void
3052 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3053 BasicBlock *Header = L->getHeader();
3055 // Push all Loop-header PHIs onto the Worklist stack.
3056 for (BasicBlock::iterator I = Header->begin();
3057 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3058 Worklist.push_back(PN);
3061 /// PushDefUseChildren - Push users of the given Instruction
3062 /// onto the given Worklist.
3063 static void
3064 PushDefUseChildren(Instruction *I,
3065 SmallVectorImpl<Instruction *> &Worklist) {
3066 // Push the def-use children onto the Worklist stack.
3067 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
3068 UI != UE; ++UI)
3069 Worklist.push_back(cast<Instruction>(UI));
3072 const ScalarEvolution::BackedgeTakenInfo &
3073 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
3074 // Initially insert a CouldNotCompute for this loop. If the insertion
3075 // succeeds, procede to actually compute a backedge-taken count and
3076 // update the value. The temporary CouldNotCompute value tells SCEV
3077 // code elsewhere that it shouldn't attempt to request a new
3078 // backedge-taken count, which could result in infinite recursion.
3079 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
3080 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3081 if (Pair.second) {
3082 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
3083 if (ItCount.Exact != getCouldNotCompute()) {
3084 assert(ItCount.Exact->isLoopInvariant(L) &&
3085 ItCount.Max->isLoopInvariant(L) &&
3086 "Computed trip count isn't loop invariant for loop!");
3087 ++NumTripCountsComputed;
3089 // Update the value in the map.
3090 Pair.first->second = ItCount;
3091 } else {
3092 if (ItCount.Max != getCouldNotCompute())
3093 // Update the value in the map.
3094 Pair.first->second = ItCount;
3095 if (isa<PHINode>(L->getHeader()->begin()))
3096 // Only count loops that have phi nodes as not being computable.
3097 ++NumTripCountsNotComputed;
3100 // Now that we know more about the trip count for this loop, forget any
3101 // existing SCEV values for PHI nodes in this loop since they are only
3102 // conservative estimates made without the benefit of trip count
3103 // information. This is similar to the code in
3104 // forgetLoopBackedgeTakenCount, except that it handles SCEVUnknown PHI
3105 // nodes specially.
3106 if (ItCount.hasAnyInfo()) {
3107 SmallVector<Instruction *, 16> Worklist;
3108 PushLoopPHIs(L, Worklist);
3110 SmallPtrSet<Instruction *, 8> Visited;
3111 while (!Worklist.empty()) {
3112 Instruction *I = Worklist.pop_back_val();
3113 if (!Visited.insert(I)) continue;
3115 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3116 Scalars.find(static_cast<Value *>(I));
3117 if (It != Scalars.end()) {
3118 // SCEVUnknown for a PHI either means that it has an unrecognized
3119 // structure, or it's a PHI that's in the progress of being computed
3120 // by createNodeForPHI. In the former case, additional loop trip
3121 // count information isn't going to change anything. In the later
3122 // case, createNodeForPHI will perform the necessary updates on its
3123 // own when it gets to that point.
3124 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second))
3125 Scalars.erase(It);
3126 ValuesAtScopes.erase(I);
3127 if (PHINode *PN = dyn_cast<PHINode>(I))
3128 ConstantEvolutionLoopExitValue.erase(PN);
3131 PushDefUseChildren(I, Worklist);
3135 return Pair.first->second;
3138 /// forgetLoopBackedgeTakenCount - This method should be called by the
3139 /// client when it has changed a loop in a way that may effect
3140 /// ScalarEvolution's ability to compute a trip count, or if the loop
3141 /// is deleted.
3142 void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
3143 BackedgeTakenCounts.erase(L);
3145 SmallVector<Instruction *, 16> Worklist;
3146 PushLoopPHIs(L, Worklist);
3148 SmallPtrSet<Instruction *, 8> Visited;
3149 while (!Worklist.empty()) {
3150 Instruction *I = Worklist.pop_back_val();
3151 if (!Visited.insert(I)) continue;
3153 std::map<SCEVCallbackVH, const SCEV*>::iterator It =
3154 Scalars.find(static_cast<Value *>(I));
3155 if (It != Scalars.end()) {
3156 Scalars.erase(It);
3157 ValuesAtScopes.erase(I);
3158 if (PHINode *PN = dyn_cast<PHINode>(I))
3159 ConstantEvolutionLoopExitValue.erase(PN);
3162 PushDefUseChildren(I, Worklist);
3166 /// ComputeBackedgeTakenCount - Compute the number of times the backedge
3167 /// of the specified loop will execute.
3168 ScalarEvolution::BackedgeTakenInfo
3169 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
3170 SmallVector<BasicBlock*, 8> ExitingBlocks;
3171 L->getExitingBlocks(ExitingBlocks);
3173 // Examine all exits and pick the most conservative values.
3174 const SCEV *BECount = getCouldNotCompute();
3175 const SCEV *MaxBECount = getCouldNotCompute();
3176 bool CouldNotComputeBECount = false;
3177 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3178 BackedgeTakenInfo NewBTI =
3179 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
3181 if (NewBTI.Exact == getCouldNotCompute()) {
3182 // We couldn't compute an exact value for this exit, so
3183 // we won't be able to compute an exact value for the loop.
3184 CouldNotComputeBECount = true;
3185 BECount = getCouldNotCompute();
3186 } else if (!CouldNotComputeBECount) {
3187 if (BECount == getCouldNotCompute())
3188 BECount = NewBTI.Exact;
3189 else
3190 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
3192 if (MaxBECount == getCouldNotCompute())
3193 MaxBECount = NewBTI.Max;
3194 else if (NewBTI.Max != getCouldNotCompute())
3195 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
3198 return BackedgeTakenInfo(BECount, MaxBECount);
3201 /// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3202 /// of the specified loop will execute if it exits via the specified block.
3203 ScalarEvolution::BackedgeTakenInfo
3204 ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3205 BasicBlock *ExitingBlock) {
3207 // Okay, we've chosen an exiting block. See what condition causes us to
3208 // exit at this block.
3210 // FIXME: we should be able to handle switch instructions (with a single exit)
3211 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
3212 if (ExitBr == 0) return getCouldNotCompute();
3213 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
3215 // At this point, we know we have a conditional branch that determines whether
3216 // the loop is exited. However, we don't know if the branch is executed each
3217 // time through the loop. If not, then the execution count of the branch will
3218 // not be equal to the trip count of the loop.
3220 // Currently we check for this by checking to see if the Exit branch goes to
3221 // the loop header. If so, we know it will always execute the same number of
3222 // times as the loop. We also handle the case where the exit block *is* the
3223 // loop header. This is common for un-rotated loops.
3225 // If both of those tests fail, walk up the unique predecessor chain to the
3226 // header, stopping if there is an edge that doesn't exit the loop. If the
3227 // header is reached, the execution count of the branch will be equal to the
3228 // trip count of the loop.
3230 // More extensive analysis could be done to handle more cases here.
3232 if (ExitBr->getSuccessor(0) != L->getHeader() &&
3233 ExitBr->getSuccessor(1) != L->getHeader() &&
3234 ExitBr->getParent() != L->getHeader()) {
3235 // The simple checks failed, try climbing the unique predecessor chain
3236 // up to the header.
3237 bool Ok = false;
3238 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3239 BasicBlock *Pred = BB->getUniquePredecessor();
3240 if (!Pred)
3241 return getCouldNotCompute();
3242 TerminatorInst *PredTerm = Pred->getTerminator();
3243 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3244 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3245 if (PredSucc == BB)
3246 continue;
3247 // If the predecessor has a successor that isn't BB and isn't
3248 // outside the loop, assume the worst.
3249 if (L->contains(PredSucc))
3250 return getCouldNotCompute();
3252 if (Pred == L->getHeader()) {
3253 Ok = true;
3254 break;
3256 BB = Pred;
3258 if (!Ok)
3259 return getCouldNotCompute();
3262 // Procede to the next level to examine the exit condition expression.
3263 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3264 ExitBr->getSuccessor(0),
3265 ExitBr->getSuccessor(1));
3268 /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3269 /// backedge of the specified loop will execute if its exit condition
3270 /// were a conditional branch of ExitCond, TBB, and FBB.
3271 ScalarEvolution::BackedgeTakenInfo
3272 ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3273 Value *ExitCond,
3274 BasicBlock *TBB,
3275 BasicBlock *FBB) {
3276 // Check if the controlling expression for this loop is an And or Or.
3277 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3278 if (BO->getOpcode() == Instruction::And) {
3279 // Recurse on the operands of the and.
3280 BackedgeTakenInfo BTI0 =
3281 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3282 BackedgeTakenInfo BTI1 =
3283 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3284 const SCEV *BECount = getCouldNotCompute();
3285 const SCEV *MaxBECount = getCouldNotCompute();
3286 if (L->contains(TBB)) {
3287 // Both conditions must be true for the loop to continue executing.
3288 // Choose the less conservative count.
3289 if (BTI0.Exact == getCouldNotCompute() ||
3290 BTI1.Exact == getCouldNotCompute())
3291 BECount = getCouldNotCompute();
3292 else
3293 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3294 if (BTI0.Max == getCouldNotCompute())
3295 MaxBECount = BTI1.Max;
3296 else if (BTI1.Max == getCouldNotCompute())
3297 MaxBECount = BTI0.Max;
3298 else
3299 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3300 } else {
3301 // Both conditions must be true for the loop to exit.
3302 assert(L->contains(FBB) && "Loop block has no successor in loop!");
3303 if (BTI0.Exact != getCouldNotCompute() &&
3304 BTI1.Exact != getCouldNotCompute())
3305 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3306 if (BTI0.Max != getCouldNotCompute() &&
3307 BTI1.Max != getCouldNotCompute())
3308 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3311 return BackedgeTakenInfo(BECount, MaxBECount);
3313 if (BO->getOpcode() == Instruction::Or) {
3314 // Recurse on the operands of the or.
3315 BackedgeTakenInfo BTI0 =
3316 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3317 BackedgeTakenInfo BTI1 =
3318 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
3319 const SCEV *BECount = getCouldNotCompute();
3320 const SCEV *MaxBECount = getCouldNotCompute();
3321 if (L->contains(FBB)) {
3322 // Both conditions must be false for the loop to continue executing.
3323 // Choose the less conservative count.
3324 if (BTI0.Exact == getCouldNotCompute() ||
3325 BTI1.Exact == getCouldNotCompute())
3326 BECount = getCouldNotCompute();
3327 else
3328 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3329 if (BTI0.Max == getCouldNotCompute())
3330 MaxBECount = BTI1.Max;
3331 else if (BTI1.Max == getCouldNotCompute())
3332 MaxBECount = BTI0.Max;
3333 else
3334 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
3335 } else {
3336 // Both conditions must be false for the loop to exit.
3337 assert(L->contains(TBB) && "Loop block has no successor in loop!");
3338 if (BTI0.Exact != getCouldNotCompute() &&
3339 BTI1.Exact != getCouldNotCompute())
3340 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
3341 if (BTI0.Max != getCouldNotCompute() &&
3342 BTI1.Max != getCouldNotCompute())
3343 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3346 return BackedgeTakenInfo(BECount, MaxBECount);
3350 // With an icmp, it may be feasible to compute an exact backedge-taken count.
3351 // Procede to the next level to examine the icmp.
3352 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3353 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
3355 // If it's not an integer or pointer comparison then compute it the hard way.
3356 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3359 /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3360 /// backedge of the specified loop will execute if its exit condition
3361 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3362 ScalarEvolution::BackedgeTakenInfo
3363 ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3364 ICmpInst *ExitCond,
3365 BasicBlock *TBB,
3366 BasicBlock *FBB) {
3368 // If the condition was exit on true, convert the condition to exit on false
3369 ICmpInst::Predicate Cond;
3370 if (!L->contains(FBB))
3371 Cond = ExitCond->getPredicate();
3372 else
3373 Cond = ExitCond->getInversePredicate();
3375 // Handle common loops like: for (X = "string"; *X; ++X)
3376 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3377 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
3378 const SCEV *ItCnt =
3379 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
3380 if (!isa<SCEVCouldNotCompute>(ItCnt)) {
3381 unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
3382 return BackedgeTakenInfo(ItCnt,
3383 isa<SCEVConstant>(ItCnt) ? ItCnt :
3384 getConstant(APInt::getMaxValue(BitWidth)-1));
3388 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3389 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
3391 // Try to evaluate any dependencies out of the loop.
3392 LHS = getSCEVAtScope(LHS, L);
3393 RHS = getSCEVAtScope(RHS, L);
3395 // At this point, we would like to compute how many iterations of the
3396 // loop the predicate will return true for these inputs.
3397 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3398 // If there is a loop-invariant, force it into the RHS.
3399 std::swap(LHS, RHS);
3400 Cond = ICmpInst::getSwappedPredicate(Cond);
3403 // If we have a comparison of a chrec against a constant, try to use value
3404 // ranges to answer this query.
3405 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3406 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
3407 if (AddRec->getLoop() == L) {
3408 // Form the constant range.
3409 ConstantRange CompRange(
3410 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
3412 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
3413 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
3416 switch (Cond) {
3417 case ICmpInst::ICMP_NE: { // while (X != Y)
3418 // Convert to: while (X-Y != 0)
3419 const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3420 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3421 break;
3423 case ICmpInst::ICMP_EQ: {
3424 // Convert to: while (X-Y == 0) // while (X == Y)
3425 const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3426 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
3427 break;
3429 case ICmpInst::ICMP_SLT: {
3430 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3431 if (BTI.hasAnyInfo()) return BTI;
3432 break;
3434 case ICmpInst::ICMP_SGT: {
3435 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3436 getNotSCEV(RHS), L, true);
3437 if (BTI.hasAnyInfo()) return BTI;
3438 break;
3440 case ICmpInst::ICMP_ULT: {
3441 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3442 if (BTI.hasAnyInfo()) return BTI;
3443 break;
3445 case ICmpInst::ICMP_UGT: {
3446 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3447 getNotSCEV(RHS), L, false);
3448 if (BTI.hasAnyInfo()) return BTI;
3449 break;
3451 default:
3452 #if 0
3453 errs() << "ComputeBackedgeTakenCount ";
3454 if (ExitCond->getOperand(0)->getType()->isUnsigned())
3455 errs() << "[unsigned] ";
3456 errs() << *LHS << " "
3457 << Instruction::getOpcodeName(Instruction::ICmp)
3458 << " " << *RHS << "\n";
3459 #endif
3460 break;
3462 return
3463 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3466 static ConstantInt *
3467 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3468 ScalarEvolution &SE) {
3469 const SCEV *InVal = SE.getConstant(C);
3470 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
3471 assert(isa<SCEVConstant>(Val) &&
3472 "Evaluation of SCEV at constant didn't fold correctly?");
3473 return cast<SCEVConstant>(Val)->getValue();
3476 /// GetAddressedElementFromGlobal - Given a global variable with an initializer
3477 /// and a GEP expression (missing the pointer index) indexing into it, return
3478 /// the addressed element of the initializer or null if the index expression is
3479 /// invalid.
3480 static Constant *
3481 GetAddressedElementFromGlobal(LLVMContext &Context, GlobalVariable *GV,
3482 const std::vector<ConstantInt*> &Indices) {
3483 Constant *Init = GV->getInitializer();
3484 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
3485 uint64_t Idx = Indices[i]->getZExtValue();
3486 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3487 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3488 Init = cast<Constant>(CS->getOperand(Idx));
3489 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3490 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3491 Init = cast<Constant>(CA->getOperand(Idx));
3492 } else if (isa<ConstantAggregateZero>(Init)) {
3493 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3494 assert(Idx < STy->getNumElements() && "Bad struct index!");
3495 Init = Context.getNullValue(STy->getElementType(Idx));
3496 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3497 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
3498 Init = Context.getNullValue(ATy->getElementType());
3499 } else {
3500 llvm_unreachable("Unknown constant aggregate type!");
3502 return 0;
3503 } else {
3504 return 0; // Unknown initializer type
3507 return Init;
3510 /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
3511 /// 'icmp op load X, cst', try to see if we can compute the backedge
3512 /// execution count.
3513 const SCEV *
3514 ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
3515 LoadInst *LI,
3516 Constant *RHS,
3517 const Loop *L,
3518 ICmpInst::Predicate predicate) {
3519 if (LI->isVolatile()) return getCouldNotCompute();
3521 // Check to see if the loaded pointer is a getelementptr of a global.
3522 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
3523 if (!GEP) return getCouldNotCompute();
3525 // Make sure that it is really a constant global we are gepping, with an
3526 // initializer, and make sure the first IDX is really 0.
3527 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
3528 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
3529 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
3530 !cast<Constant>(GEP->getOperand(1))->isNullValue())
3531 return getCouldNotCompute();
3533 // Okay, we allow one non-constant index into the GEP instruction.
3534 Value *VarIdx = 0;
3535 std::vector<ConstantInt*> Indexes;
3536 unsigned VarIdxNum = 0;
3537 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
3538 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
3539 Indexes.push_back(CI);
3540 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
3541 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
3542 VarIdx = GEP->getOperand(i);
3543 VarIdxNum = i-2;
3544 Indexes.push_back(0);
3547 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
3548 // Check to see if X is a loop variant variable value now.
3549 const SCEV *Idx = getSCEV(VarIdx);
3550 Idx = getSCEVAtScope(Idx, L);
3552 // We can only recognize very limited forms of loop index expressions, in
3553 // particular, only affine AddRec's like {C1,+,C2}.
3554 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
3555 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
3556 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
3557 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
3558 return getCouldNotCompute();
3560 unsigned MaxSteps = MaxBruteForceIterations;
3561 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
3562 ConstantInt *ItCst = ConstantInt::get(
3563 cast<IntegerType>(IdxExpr->getType()), IterationNum);
3564 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
3566 // Form the GEP offset.
3567 Indexes[VarIdxNum] = Val;
3569 Constant *Result = GetAddressedElementFromGlobal(getContext(), GV, Indexes);
3570 if (Result == 0) break; // Cannot compute!
3572 // Evaluate the condition for this iteration.
3573 Result = ConstantExpr::getICmp(predicate, Result, RHS);
3574 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
3575 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
3576 #if 0
3577 errs() << "\n***\n*** Computed loop count " << *ItCst
3578 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
3579 << "***\n";
3580 #endif
3581 ++NumArrayLenItCounts;
3582 return getConstant(ItCst); // Found terminating iteration!
3585 return getCouldNotCompute();
3589 /// CanConstantFold - Return true if we can constant fold an instruction of the
3590 /// specified type, assuming that all operands were constants.
3591 static bool CanConstantFold(const Instruction *I) {
3592 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
3593 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
3594 return true;
3596 if (const CallInst *CI = dyn_cast<CallInst>(I))
3597 if (const Function *F = CI->getCalledFunction())
3598 return canConstantFoldCallTo(F);
3599 return false;
3602 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
3603 /// in the loop that V is derived from. We allow arbitrary operations along the
3604 /// way, but the operands of an operation must either be constants or a value
3605 /// derived from a constant PHI. If this expression does not fit with these
3606 /// constraints, return null.
3607 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
3608 // If this is not an instruction, or if this is an instruction outside of the
3609 // loop, it can't be derived from a loop PHI.
3610 Instruction *I = dyn_cast<Instruction>(V);
3611 if (I == 0 || !L->contains(I->getParent())) return 0;
3613 if (PHINode *PN = dyn_cast<PHINode>(I)) {
3614 if (L->getHeader() == I->getParent())
3615 return PN;
3616 else
3617 // We don't currently keep track of the control flow needed to evaluate
3618 // PHIs, so we cannot handle PHIs inside of loops.
3619 return 0;
3622 // If we won't be able to constant fold this expression even if the operands
3623 // are constants, return early.
3624 if (!CanConstantFold(I)) return 0;
3626 // Otherwise, we can evaluate this instruction if all of its operands are
3627 // constant or derived from a PHI node themselves.
3628 PHINode *PHI = 0;
3629 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
3630 if (!(isa<Constant>(I->getOperand(Op)) ||
3631 isa<GlobalValue>(I->getOperand(Op)))) {
3632 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
3633 if (P == 0) return 0; // Not evolving from PHI
3634 if (PHI == 0)
3635 PHI = P;
3636 else if (PHI != P)
3637 return 0; // Evolving from multiple different PHIs.
3640 // This is a expression evolving from a constant PHI!
3641 return PHI;
3644 /// EvaluateExpression - Given an expression that passes the
3645 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
3646 /// in the loop has the value PHIVal. If we can't fold this expression for some
3647 /// reason, return null.
3648 static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
3649 if (isa<PHINode>(V)) return PHIVal;
3650 if (Constant *C = dyn_cast<Constant>(V)) return C;
3651 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
3652 Instruction *I = cast<Instruction>(V);
3653 LLVMContext &Context = I->getParent()->getContext();
3655 std::vector<Constant*> Operands;
3656 Operands.resize(I->getNumOperands());
3658 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3659 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
3660 if (Operands[i] == 0) return 0;
3663 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3664 return ConstantFoldCompareInstOperands(CI->getPredicate(),
3665 &Operands[0], Operands.size(),
3666 Context);
3667 else
3668 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3669 &Operands[0], Operands.size(),
3670 Context);
3673 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
3674 /// in the header of its containing loop, we know the loop executes a
3675 /// constant number of times, and the PHI node is just a recurrence
3676 /// involving constants, fold it.
3677 Constant *
3678 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
3679 const APInt& BEs,
3680 const Loop *L) {
3681 std::map<PHINode*, Constant*>::iterator I =
3682 ConstantEvolutionLoopExitValue.find(PN);
3683 if (I != ConstantEvolutionLoopExitValue.end())
3684 return I->second;
3686 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
3687 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
3689 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
3691 // Since the loop is canonicalized, the PHI node must have two entries. One
3692 // entry must be a constant (coming in from outside of the loop), and the
3693 // second must be derived from the same PHI.
3694 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3695 Constant *StartCST =
3696 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3697 if (StartCST == 0)
3698 return RetVal = 0; // Must be a constant.
3700 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3701 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3702 if (PN2 != PN)
3703 return RetVal = 0; // Not derived from same PHI.
3705 // Execute the loop symbolically to determine the exit value.
3706 if (BEs.getActiveBits() >= 32)
3707 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
3709 unsigned NumIterations = BEs.getZExtValue(); // must be in range
3710 unsigned IterationNum = 0;
3711 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
3712 if (IterationNum == NumIterations)
3713 return RetVal = PHIVal; // Got exit value!
3715 // Compute the value of the PHI node for the next iteration.
3716 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3717 if (NextPHI == PHIVal)
3718 return RetVal = NextPHI; // Stopped evolving!
3719 if (NextPHI == 0)
3720 return 0; // Couldn't evaluate!
3721 PHIVal = NextPHI;
3725 /// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
3726 /// constant number of times (the condition evolves only from constants),
3727 /// try to evaluate a few iterations of the loop until we get the exit
3728 /// condition gets a value of ExitWhen (true or false). If we cannot
3729 /// evaluate the trip count of the loop, return getCouldNotCompute().
3730 const SCEV *
3731 ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
3732 Value *Cond,
3733 bool ExitWhen) {
3734 PHINode *PN = getConstantEvolvingPHI(Cond, L);
3735 if (PN == 0) return getCouldNotCompute();
3737 // Since the loop is canonicalized, the PHI node must have two entries. One
3738 // entry must be a constant (coming in from outside of the loop), and the
3739 // second must be derived from the same PHI.
3740 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
3741 Constant *StartCST =
3742 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
3743 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
3745 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
3746 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
3747 if (PN2 != PN) return getCouldNotCompute(); // Not derived from same PHI.
3749 // Okay, we find a PHI node that defines the trip count of this loop. Execute
3750 // the loop symbolically to determine when the condition gets a value of
3751 // "ExitWhen".
3752 unsigned IterationNum = 0;
3753 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
3754 for (Constant *PHIVal = StartCST;
3755 IterationNum != MaxIterations; ++IterationNum) {
3756 ConstantInt *CondVal =
3757 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
3759 // Couldn't symbolically evaluate.
3760 if (!CondVal) return getCouldNotCompute();
3762 if (CondVal->getValue() == uint64_t(ExitWhen)) {
3763 ++NumBruteForceTripCountsComputed;
3764 return getConstant(Type::Int32Ty, IterationNum);
3767 // Compute the value of the PHI node for the next iteration.
3768 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
3769 if (NextPHI == 0 || NextPHI == PHIVal)
3770 return getCouldNotCompute();// Couldn't evaluate or not making progress...
3771 PHIVal = NextPHI;
3774 // Too many iterations were needed to evaluate.
3775 return getCouldNotCompute();
3778 /// getSCEVAtScope - Return a SCEV expression handle for the specified value
3779 /// at the specified scope in the program. The L value specifies a loop
3780 /// nest to evaluate the expression at, where null is the top-level or a
3781 /// specified loop is immediately inside of the loop.
3783 /// This method can be used to compute the exit value for a variable defined
3784 /// in a loop by querying what the value will hold in the parent loop.
3786 /// In the case that a relevant loop exit value cannot be computed, the
3787 /// original value V is returned.
3788 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
3789 // FIXME: this should be turned into a virtual method on SCEV!
3791 if (isa<SCEVConstant>(V)) return V;
3793 // If this instruction is evolved from a constant-evolving PHI, compute the
3794 // exit value from the loop without using SCEVs.
3795 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
3796 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
3797 const Loop *LI = (*this->LI)[I->getParent()];
3798 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
3799 if (PHINode *PN = dyn_cast<PHINode>(I))
3800 if (PN->getParent() == LI->getHeader()) {
3801 // Okay, there is no closed form solution for the PHI node. Check
3802 // to see if the loop that contains it has a known backedge-taken
3803 // count. If so, we may be able to force computation of the exit
3804 // value.
3805 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
3806 if (const SCEVConstant *BTCC =
3807 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
3808 // Okay, we know how many times the containing loop executes. If
3809 // this is a constant evolving PHI node, get the final value at
3810 // the specified iteration number.
3811 Constant *RV = getConstantEvolutionLoopExitValue(PN,
3812 BTCC->getValue()->getValue(),
3813 LI);
3814 if (RV) return getSCEV(RV);
3818 // Okay, this is an expression that we cannot symbolically evaluate
3819 // into a SCEV. Check to see if it's possible to symbolically evaluate
3820 // the arguments into constants, and if so, try to constant propagate the
3821 // result. This is particularly useful for computing loop exit values.
3822 if (CanConstantFold(I)) {
3823 // Check to see if we've folded this instruction at this loop before.
3824 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3825 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3826 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3827 if (!Pair.second)
3828 return Pair.first->second ? &*getSCEV(Pair.first->second) : V;
3830 std::vector<Constant*> Operands;
3831 Operands.reserve(I->getNumOperands());
3832 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3833 Value *Op = I->getOperand(i);
3834 if (Constant *C = dyn_cast<Constant>(Op)) {
3835 Operands.push_back(C);
3836 } else {
3837 // If any of the operands is non-constant and if they are
3838 // non-integer and non-pointer, don't even try to analyze them
3839 // with scev techniques.
3840 if (!isSCEVable(Op->getType()))
3841 return V;
3843 const SCEV* OpV = getSCEVAtScope(Op, L);
3844 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
3845 Constant *C = SC->getValue();
3846 if (C->getType() != Op->getType())
3847 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3848 Op->getType(),
3849 false),
3850 C, Op->getType());
3851 Operands.push_back(C);
3852 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
3853 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3854 if (C->getType() != Op->getType())
3856 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3857 Op->getType(),
3858 false),
3859 C, Op->getType());
3860 Operands.push_back(C);
3861 } else
3862 return V;
3863 } else {
3864 return V;
3869 Constant *C;
3870 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3871 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3872 &Operands[0], Operands.size(),
3873 getContext());
3874 else
3875 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3876 &Operands[0], Operands.size(),
3877 getContext());
3878 Pair.first->second = C;
3879 return getSCEV(C);
3883 // This is some other type of SCEVUnknown, just return it.
3884 return V;
3887 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
3888 // Avoid performing the look-up in the common case where the specified
3889 // expression has no loop-variant portions.
3890 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3891 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3892 if (OpAtScope != Comm->getOperand(i)) {
3893 // Okay, at least one of these operands is loop variant but might be
3894 // foldable. Build a new instance of the folded commutative expression.
3895 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
3896 Comm->op_begin()+i);
3897 NewOps.push_back(OpAtScope);
3899 for (++i; i != e; ++i) {
3900 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3901 NewOps.push_back(OpAtScope);
3903 if (isa<SCEVAddExpr>(Comm))
3904 return getAddExpr(NewOps);
3905 if (isa<SCEVMulExpr>(Comm))
3906 return getMulExpr(NewOps);
3907 if (isa<SCEVSMaxExpr>(Comm))
3908 return getSMaxExpr(NewOps);
3909 if (isa<SCEVUMaxExpr>(Comm))
3910 return getUMaxExpr(NewOps);
3911 llvm_unreachable("Unknown commutative SCEV type!");
3914 // If we got here, all operands are loop invariant.
3915 return Comm;
3918 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
3919 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
3920 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
3921 if (LHS == Div->getLHS() && RHS == Div->getRHS())
3922 return Div; // must be loop invariant
3923 return getUDivExpr(LHS, RHS);
3926 // If this is a loop recurrence for a loop that does not contain L, then we
3927 // are dealing with the final value computed by the loop.
3928 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
3929 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3930 // To evaluate this recurrence, we need to know how many times the AddRec
3931 // loop iterates. Compute this now.
3932 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
3933 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
3935 // Then, evaluate the AddRec.
3936 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
3938 return AddRec;
3941 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
3942 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3943 if (Op == Cast->getOperand())
3944 return Cast; // must be loop invariant
3945 return getZeroExtendExpr(Op, Cast->getType());
3948 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
3949 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3950 if (Op == Cast->getOperand())
3951 return Cast; // must be loop invariant
3952 return getSignExtendExpr(Op, Cast->getType());
3955 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
3956 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
3957 if (Op == Cast->getOperand())
3958 return Cast; // must be loop invariant
3959 return getTruncateExpr(Op, Cast->getType());
3962 llvm_unreachable("Unknown SCEV type!");
3963 return 0;
3966 /// getSCEVAtScope - This is a convenience function which does
3967 /// getSCEVAtScope(getSCEV(V), L).
3968 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3969 return getSCEVAtScope(getSCEV(V), L);
3972 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3973 /// following equation:
3975 /// A * X = B (mod N)
3977 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3978 /// A and B isn't important.
3980 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3981 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3982 ScalarEvolution &SE) {
3983 uint32_t BW = A.getBitWidth();
3984 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3985 assert(A != 0 && "A must be non-zero.");
3987 // 1. D = gcd(A, N)
3989 // The gcd of A and N may have only one prime factor: 2. The number of
3990 // trailing zeros in A is its multiplicity
3991 uint32_t Mult2 = A.countTrailingZeros();
3992 // D = 2^Mult2
3994 // 2. Check if B is divisible by D.
3996 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3997 // is not less than multiplicity of this prime factor for D.
3998 if (B.countTrailingZeros() < Mult2)
3999 return SE.getCouldNotCompute();
4001 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4002 // modulo (N / D).
4004 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4005 // bit width during computations.
4006 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4007 APInt Mod(BW + 1, 0);
4008 Mod.set(BW - Mult2); // Mod = N / D
4009 APInt I = AD.multiplicativeInverse(Mod);
4011 // 4. Compute the minimum unsigned root of the equation:
4012 // I * (B / D) mod (N / D)
4013 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4015 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4016 // bits.
4017 return SE.getConstant(Result.trunc(BW));
4020 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4021 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4022 /// might be the same) or two SCEVCouldNotCompute objects.
4024 static std::pair<const SCEV *,const SCEV *>
4025 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
4026 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
4027 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4028 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4029 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
4031 // We currently can only solve this if the coefficients are constants.
4032 if (!LC || !MC || !NC) {
4033 const SCEV *CNC = SE.getCouldNotCompute();
4034 return std::make_pair(CNC, CNC);
4037 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
4038 const APInt &L = LC->getValue()->getValue();
4039 const APInt &M = MC->getValue()->getValue();
4040 const APInt &N = NC->getValue()->getValue();
4041 APInt Two(BitWidth, 2);
4042 APInt Four(BitWidth, 4);
4045 using namespace APIntOps;
4046 const APInt& C = L;
4047 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4048 // The B coefficient is M-N/2
4049 APInt B(M);
4050 B -= sdiv(N,Two);
4052 // The A coefficient is N/2
4053 APInt A(N.sdiv(Two));
4055 // Compute the B^2-4ac term.
4056 APInt SqrtTerm(B);
4057 SqrtTerm *= B;
4058 SqrtTerm -= Four * (A * C);
4060 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4061 // integer value or else APInt::sqrt() will assert.
4062 APInt SqrtVal(SqrtTerm.sqrt());
4064 // Compute the two solutions for the quadratic formula.
4065 // The divisions must be performed as signed divisions.
4066 APInt NegB(-B);
4067 APInt TwoA( A << 1 );
4068 if (TwoA.isMinValue()) {
4069 const SCEV *CNC = SE.getCouldNotCompute();
4070 return std::make_pair(CNC, CNC);
4073 LLVMContext &Context = SE.getContext();
4075 ConstantInt *Solution1 =
4076 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
4077 ConstantInt *Solution2 =
4078 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
4080 return std::make_pair(SE.getConstant(Solution1),
4081 SE.getConstant(Solution2));
4082 } // end APIntOps namespace
4085 /// HowFarToZero - Return the number of times a backedge comparing the specified
4086 /// value to zero will execute. If not computable, return CouldNotCompute.
4087 const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
4088 // If the value is a constant
4089 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4090 // If the value is already zero, the branch will execute zero times.
4091 if (C->getValue()->isZero()) return C;
4092 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4095 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
4096 if (!AddRec || AddRec->getLoop() != L)
4097 return getCouldNotCompute();
4099 if (AddRec->isAffine()) {
4100 // If this is an affine expression, the execution count of this branch is
4101 // the minimum unsigned root of the following equation:
4103 // Start + Step*N = 0 (mod 2^BW)
4105 // equivalent to:
4107 // Step*N = -Start (mod 2^BW)
4109 // where BW is the common bit width of Start and Step.
4111 // Get the initial value for the loop.
4112 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4113 L->getParentLoop());
4114 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4115 L->getParentLoop());
4117 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
4118 // For now we handle only constant steps.
4120 // First, handle unitary steps.
4121 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
4122 return getNegativeSCEV(Start); // N = -Start (as unsigned)
4123 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4124 return Start; // N = Start (as unsigned)
4126 // Then, try to solve the above equation provided that Start is constant.
4127 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
4128 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
4129 -StartC->getValue()->getValue(),
4130 *this);
4132 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
4133 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4134 // the quadratic equation to solve it.
4135 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
4136 *this);
4137 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4138 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4139 if (R1) {
4140 #if 0
4141 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
4142 << " sol#2: " << *R2 << "\n";
4143 #endif
4144 // Pick the smallest positive root value.
4145 if (ConstantInt *CB =
4146 dyn_cast<ConstantInt>(getContext().getConstantExprICmp(ICmpInst::ICMP_ULT,
4147 R1->getValue(), R2->getValue()))) {
4148 if (CB->getZExtValue() == false)
4149 std::swap(R1, R2); // R1 is the minimum root now.
4151 // We can only use this value if the chrec ends up with an exact zero
4152 // value at this index. When solving for "X*X != 5", for example, we
4153 // should not accept a root of 2.
4154 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
4155 if (Val->isZero())
4156 return R1; // We found a quadratic root!
4161 return getCouldNotCompute();
4164 /// HowFarToNonZero - Return the number of times a backedge checking the
4165 /// specified value for nonzero will execute. If not computable, return
4166 /// CouldNotCompute
4167 const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
4168 // Loops that look like: while (X == 0) are very strange indeed. We don't
4169 // handle them yet except for the trivial case. This could be expanded in the
4170 // future as needed.
4172 // If the value is a constant, check to see if it is known to be non-zero
4173 // already. If so, the backedge will execute zero times.
4174 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
4175 if (!C->getValue()->isNullValue())
4176 return getIntegerSCEV(0, C->getType());
4177 return getCouldNotCompute(); // Otherwise it will loop infinitely.
4180 // We could implement others, but I really doubt anyone writes loops like
4181 // this, and if they did, they would already be constant folded.
4182 return getCouldNotCompute();
4185 /// getLoopPredecessor - If the given loop's header has exactly one unique
4186 /// predecessor outside the loop, return it. Otherwise return null.
4188 BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
4189 BasicBlock *Header = L->getHeader();
4190 BasicBlock *Pred = 0;
4191 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
4192 PI != E; ++PI)
4193 if (!L->contains(*PI)) {
4194 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
4195 Pred = *PI;
4197 return Pred;
4200 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4201 /// (which may not be an immediate predecessor) which has exactly one
4202 /// successor from which BB is reachable, or null if no such block is
4203 /// found.
4205 BasicBlock *
4206 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
4207 // If the block has a unique predecessor, then there is no path from the
4208 // predecessor to the block that does not go through the direct edge
4209 // from the predecessor to the block.
4210 if (BasicBlock *Pred = BB->getSinglePredecessor())
4211 return Pred;
4213 // A loop's header is defined to be a block that dominates the loop.
4214 // If the header has a unique predecessor outside the loop, it must be
4215 // a block that has exactly one successor that can reach the loop.
4216 if (Loop *L = LI->getLoopFor(BB))
4217 return getLoopPredecessor(L);
4219 return 0;
4222 /// HasSameValue - SCEV structural equivalence is usually sufficient for
4223 /// testing whether two expressions are equal, however for the purposes of
4224 /// looking for a condition guarding a loop, it can be useful to be a little
4225 /// more general, since a front-end may have replicated the controlling
4226 /// expression.
4228 static bool HasSameValue(const SCEV *A, const SCEV *B) {
4229 // Quick check to see if they are the same SCEV.
4230 if (A == B) return true;
4232 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4233 // two different instructions with the same value. Check for this case.
4234 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4235 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4236 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4237 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
4238 if (AI->isIdenticalTo(BI))
4239 return true;
4241 // Otherwise assume they may have a different value.
4242 return false;
4245 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4246 return getSignedRange(S).getSignedMax().isNegative();
4249 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
4250 return getSignedRange(S).getSignedMin().isStrictlyPositive();
4253 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
4254 return !getSignedRange(S).getSignedMin().isNegative();
4257 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
4258 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
4261 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
4262 return isKnownNegative(S) || isKnownPositive(S);
4265 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
4266 const SCEV *LHS, const SCEV *RHS) {
4268 if (HasSameValue(LHS, RHS))
4269 return ICmpInst::isTrueWhenEqual(Pred);
4271 switch (Pred) {
4272 default:
4273 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4274 break;
4275 case ICmpInst::ICMP_SGT:
4276 Pred = ICmpInst::ICMP_SLT;
4277 std::swap(LHS, RHS);
4278 case ICmpInst::ICMP_SLT: {
4279 ConstantRange LHSRange = getSignedRange(LHS);
4280 ConstantRange RHSRange = getSignedRange(RHS);
4281 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
4282 return true;
4283 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
4284 return false;
4285 break;
4287 case ICmpInst::ICMP_SGE:
4288 Pred = ICmpInst::ICMP_SLE;
4289 std::swap(LHS, RHS);
4290 case ICmpInst::ICMP_SLE: {
4291 ConstantRange LHSRange = getSignedRange(LHS);
4292 ConstantRange RHSRange = getSignedRange(RHS);
4293 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
4294 return true;
4295 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
4296 return false;
4297 break;
4299 case ICmpInst::ICMP_UGT:
4300 Pred = ICmpInst::ICMP_ULT;
4301 std::swap(LHS, RHS);
4302 case ICmpInst::ICMP_ULT: {
4303 ConstantRange LHSRange = getUnsignedRange(LHS);
4304 ConstantRange RHSRange = getUnsignedRange(RHS);
4305 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
4306 return true;
4307 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
4308 return false;
4309 break;
4311 case ICmpInst::ICMP_UGE:
4312 Pred = ICmpInst::ICMP_ULE;
4313 std::swap(LHS, RHS);
4314 case ICmpInst::ICMP_ULE: {
4315 ConstantRange LHSRange = getUnsignedRange(LHS);
4316 ConstantRange RHSRange = getUnsignedRange(RHS);
4317 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
4318 return true;
4319 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
4320 return false;
4321 break;
4323 case ICmpInst::ICMP_NE: {
4324 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
4325 return true;
4326 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
4327 return true;
4329 const SCEV *Diff = getMinusSCEV(LHS, RHS);
4330 if (isKnownNonZero(Diff))
4331 return true;
4332 break;
4334 case ICmpInst::ICMP_EQ:
4335 // The check at the top of the function catches the case where
4336 // the values are known to be equal.
4337 break;
4339 return false;
4342 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
4343 /// protected by a conditional between LHS and RHS. This is used to
4344 /// to eliminate casts.
4345 bool
4346 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
4347 ICmpInst::Predicate Pred,
4348 const SCEV *LHS, const SCEV *RHS) {
4349 // Interpret a null as meaning no loop, where there is obviously no guard
4350 // (interprocedural conditions notwithstanding).
4351 if (!L) return true;
4353 BasicBlock *Latch = L->getLoopLatch();
4354 if (!Latch)
4355 return false;
4357 BranchInst *LoopContinuePredicate =
4358 dyn_cast<BranchInst>(Latch->getTerminator());
4359 if (!LoopContinuePredicate ||
4360 LoopContinuePredicate->isUnconditional())
4361 return false;
4363 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
4364 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
4367 /// isLoopGuardedByCond - Test whether entry to the loop is protected
4368 /// by a conditional between LHS and RHS. This is used to help avoid max
4369 /// expressions in loop trip counts, and to eliminate casts.
4370 bool
4371 ScalarEvolution::isLoopGuardedByCond(const Loop *L,
4372 ICmpInst::Predicate Pred,
4373 const SCEV *LHS, const SCEV *RHS) {
4374 // Interpret a null as meaning no loop, where there is obviously no guard
4375 // (interprocedural conditions notwithstanding).
4376 if (!L) return false;
4378 BasicBlock *Predecessor = getLoopPredecessor(L);
4379 BasicBlock *PredecessorDest = L->getHeader();
4381 // Starting at the loop predecessor, climb up the predecessor chain, as long
4382 // as there are predecessors that can be found that have unique successors
4383 // leading to the original header.
4384 for (; Predecessor;
4385 PredecessorDest = Predecessor,
4386 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
4388 BranchInst *LoopEntryPredicate =
4389 dyn_cast<BranchInst>(Predecessor->getTerminator());
4390 if (!LoopEntryPredicate ||
4391 LoopEntryPredicate->isUnconditional())
4392 continue;
4394 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
4395 LoopEntryPredicate->getSuccessor(0) != PredecessorDest))
4396 return true;
4399 return false;
4402 /// isImpliedCond - Test whether the condition described by Pred, LHS,
4403 /// and RHS is true whenever the given Cond value evaluates to true.
4404 bool ScalarEvolution::isImpliedCond(Value *CondValue,
4405 ICmpInst::Predicate Pred,
4406 const SCEV *LHS, const SCEV *RHS,
4407 bool Inverse) {
4408 // Recursivly handle And and Or conditions.
4409 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
4410 if (BO->getOpcode() == Instruction::And) {
4411 if (!Inverse)
4412 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4413 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4414 } else if (BO->getOpcode() == Instruction::Or) {
4415 if (Inverse)
4416 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
4417 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
4421 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
4422 if (!ICI) return false;
4424 // Bail if the ICmp's operands' types are wider than the needed type
4425 // before attempting to call getSCEV on them. This avoids infinite
4426 // recursion, since the analysis of widening casts can require loop
4427 // exit condition information for overflow checking, which would
4428 // lead back here.
4429 if (getTypeSizeInBits(LHS->getType()) <
4430 getTypeSizeInBits(ICI->getOperand(0)->getType()))
4431 return false;
4433 // Now that we found a conditional branch that dominates the loop, check to
4434 // see if it is the comparison we are looking for.
4435 ICmpInst::Predicate FoundPred;
4436 if (Inverse)
4437 FoundPred = ICI->getInversePredicate();
4438 else
4439 FoundPred = ICI->getPredicate();
4441 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
4442 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
4444 // Balance the types. The case where FoundLHS' type is wider than
4445 // LHS' type is checked for above.
4446 if (getTypeSizeInBits(LHS->getType()) >
4447 getTypeSizeInBits(FoundLHS->getType())) {
4448 if (CmpInst::isSigned(Pred)) {
4449 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
4450 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
4451 } else {
4452 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
4453 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
4457 // Canonicalize the query to match the way instcombine will have
4458 // canonicalized the comparison.
4459 // First, put a constant operand on the right.
4460 if (isa<SCEVConstant>(LHS)) {
4461 std::swap(LHS, RHS);
4462 Pred = ICmpInst::getSwappedPredicate(Pred);
4464 // Then, canonicalize comparisons with boundary cases.
4465 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4466 const APInt &RA = RC->getValue()->getValue();
4467 switch (Pred) {
4468 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4469 case ICmpInst::ICMP_EQ:
4470 case ICmpInst::ICMP_NE:
4471 break;
4472 case ICmpInst::ICMP_UGE:
4473 if ((RA - 1).isMinValue()) {
4474 Pred = ICmpInst::ICMP_NE;
4475 RHS = getConstant(RA - 1);
4476 break;
4478 if (RA.isMaxValue()) {
4479 Pred = ICmpInst::ICMP_EQ;
4480 break;
4482 if (RA.isMinValue()) return true;
4483 break;
4484 case ICmpInst::ICMP_ULE:
4485 if ((RA + 1).isMaxValue()) {
4486 Pred = ICmpInst::ICMP_NE;
4487 RHS = getConstant(RA + 1);
4488 break;
4490 if (RA.isMinValue()) {
4491 Pred = ICmpInst::ICMP_EQ;
4492 break;
4494 if (RA.isMaxValue()) return true;
4495 break;
4496 case ICmpInst::ICMP_SGE:
4497 if ((RA - 1).isMinSignedValue()) {
4498 Pred = ICmpInst::ICMP_NE;
4499 RHS = getConstant(RA - 1);
4500 break;
4502 if (RA.isMaxSignedValue()) {
4503 Pred = ICmpInst::ICMP_EQ;
4504 break;
4506 if (RA.isMinSignedValue()) return true;
4507 break;
4508 case ICmpInst::ICMP_SLE:
4509 if ((RA + 1).isMaxSignedValue()) {
4510 Pred = ICmpInst::ICMP_NE;
4511 RHS = getConstant(RA + 1);
4512 break;
4514 if (RA.isMinSignedValue()) {
4515 Pred = ICmpInst::ICMP_EQ;
4516 break;
4518 if (RA.isMaxSignedValue()) return true;
4519 break;
4520 case ICmpInst::ICMP_UGT:
4521 if (RA.isMinValue()) {
4522 Pred = ICmpInst::ICMP_NE;
4523 break;
4525 if ((RA + 1).isMaxValue()) {
4526 Pred = ICmpInst::ICMP_EQ;
4527 RHS = getConstant(RA + 1);
4528 break;
4530 if (RA.isMaxValue()) return false;
4531 break;
4532 case ICmpInst::ICMP_ULT:
4533 if (RA.isMaxValue()) {
4534 Pred = ICmpInst::ICMP_NE;
4535 break;
4537 if ((RA - 1).isMinValue()) {
4538 Pred = ICmpInst::ICMP_EQ;
4539 RHS = getConstant(RA - 1);
4540 break;
4542 if (RA.isMinValue()) return false;
4543 break;
4544 case ICmpInst::ICMP_SGT:
4545 if (RA.isMinSignedValue()) {
4546 Pred = ICmpInst::ICMP_NE;
4547 break;
4549 if ((RA + 1).isMaxSignedValue()) {
4550 Pred = ICmpInst::ICMP_EQ;
4551 RHS = getConstant(RA + 1);
4552 break;
4554 if (RA.isMaxSignedValue()) return false;
4555 break;
4556 case ICmpInst::ICMP_SLT:
4557 if (RA.isMaxSignedValue()) {
4558 Pred = ICmpInst::ICMP_NE;
4559 break;
4561 if ((RA - 1).isMinSignedValue()) {
4562 Pred = ICmpInst::ICMP_EQ;
4563 RHS = getConstant(RA - 1);
4564 break;
4566 if (RA.isMinSignedValue()) return false;
4567 break;
4571 // Check to see if we can make the LHS or RHS match.
4572 if (LHS == FoundRHS || RHS == FoundLHS) {
4573 if (isa<SCEVConstant>(RHS)) {
4574 std::swap(FoundLHS, FoundRHS);
4575 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
4576 } else {
4577 std::swap(LHS, RHS);
4578 Pred = ICmpInst::getSwappedPredicate(Pred);
4582 // Check whether the found predicate is the same as the desired predicate.
4583 if (FoundPred == Pred)
4584 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
4586 // Check whether swapping the found predicate makes it the same as the
4587 // desired predicate.
4588 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
4589 if (isa<SCEVConstant>(RHS))
4590 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
4591 else
4592 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
4593 RHS, LHS, FoundLHS, FoundRHS);
4596 // Check whether the actual condition is beyond sufficient.
4597 if (FoundPred == ICmpInst::ICMP_EQ)
4598 if (ICmpInst::isTrueWhenEqual(Pred))
4599 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
4600 return true;
4601 if (Pred == ICmpInst::ICMP_NE)
4602 if (!ICmpInst::isTrueWhenEqual(FoundPred))
4603 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
4604 return true;
4606 // Otherwise assume the worst.
4607 return false;
4610 /// isImpliedCondOperands - Test whether the condition described by Pred,
4611 /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
4612 /// and FoundRHS is true.
4613 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
4614 const SCEV *LHS, const SCEV *RHS,
4615 const SCEV *FoundLHS,
4616 const SCEV *FoundRHS) {
4617 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
4618 FoundLHS, FoundRHS) ||
4619 // ~x < ~y --> x > y
4620 isImpliedCondOperandsHelper(Pred, LHS, RHS,
4621 getNotSCEV(FoundRHS),
4622 getNotSCEV(FoundLHS));
4625 /// isImpliedCondOperandsHelper - Test whether the condition described by
4626 /// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
4627 /// FoundLHS, and FoundRHS is true.
4628 bool
4629 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
4630 const SCEV *LHS, const SCEV *RHS,
4631 const SCEV *FoundLHS,
4632 const SCEV *FoundRHS) {
4633 switch (Pred) {
4634 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4635 case ICmpInst::ICMP_EQ:
4636 case ICmpInst::ICMP_NE:
4637 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
4638 return true;
4639 break;
4640 case ICmpInst::ICMP_SLT:
4641 case ICmpInst::ICMP_SLE:
4642 if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
4643 isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
4644 return true;
4645 break;
4646 case ICmpInst::ICMP_SGT:
4647 case ICmpInst::ICMP_SGE:
4648 if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
4649 isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
4650 return true;
4651 break;
4652 case ICmpInst::ICMP_ULT:
4653 case ICmpInst::ICMP_ULE:
4654 if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
4655 isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
4656 return true;
4657 break;
4658 case ICmpInst::ICMP_UGT:
4659 case ICmpInst::ICMP_UGE:
4660 if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
4661 isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
4662 return true;
4663 break;
4666 return false;
4669 /// getBECount - Subtract the end and start values and divide by the step,
4670 /// rounding up, to get the number of times the backedge is executed. Return
4671 /// CouldNotCompute if an intermediate computation overflows.
4672 const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
4673 const SCEV *End,
4674 const SCEV *Step) {
4675 const Type *Ty = Start->getType();
4676 const SCEV *NegOne = getIntegerSCEV(-1, Ty);
4677 const SCEV *Diff = getMinusSCEV(End, Start);
4678 const SCEV *RoundUp = getAddExpr(Step, NegOne);
4680 // Add an adjustment to the difference between End and Start so that
4681 // the division will effectively round up.
4682 const SCEV *Add = getAddExpr(Diff, RoundUp);
4684 // Check Add for unsigned overflow.
4685 // TODO: More sophisticated things could be done here.
4686 const Type *WideTy = getContext().getIntegerType(getTypeSizeInBits(Ty) + 1);
4687 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
4688 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
4689 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
4690 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
4691 return getCouldNotCompute();
4693 return getUDivExpr(Add, Step);
4696 /// HowManyLessThans - Return the number of times a backedge containing the
4697 /// specified less-than comparison will execute. If not computable, return
4698 /// CouldNotCompute.
4699 ScalarEvolution::BackedgeTakenInfo
4700 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
4701 const Loop *L, bool isSigned) {
4702 // Only handle: "ADDREC < LoopInvariant".
4703 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
4705 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
4706 if (!AddRec || AddRec->getLoop() != L)
4707 return getCouldNotCompute();
4709 if (AddRec->isAffine()) {
4710 // FORNOW: We only support unit strides.
4711 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
4712 const SCEV *Step = AddRec->getStepRecurrence(*this);
4714 // TODO: handle non-constant strides.
4715 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
4716 if (!CStep || CStep->isZero())
4717 return getCouldNotCompute();
4718 if (CStep->isOne()) {
4719 // With unit stride, the iteration never steps past the limit value.
4720 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
4721 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
4722 // Test whether a positive iteration iteration can step past the limit
4723 // value and past the maximum value for its type in a single step.
4724 if (isSigned) {
4725 APInt Max = APInt::getSignedMaxValue(BitWidth);
4726 if ((Max - CStep->getValue()->getValue())
4727 .slt(CLimit->getValue()->getValue()))
4728 return getCouldNotCompute();
4729 } else {
4730 APInt Max = APInt::getMaxValue(BitWidth);
4731 if ((Max - CStep->getValue()->getValue())
4732 .ult(CLimit->getValue()->getValue()))
4733 return getCouldNotCompute();
4735 } else
4736 // TODO: handle non-constant limit values below.
4737 return getCouldNotCompute();
4738 } else
4739 // TODO: handle negative strides below.
4740 return getCouldNotCompute();
4742 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
4743 // m. So, we count the number of iterations in which {n,+,s} < m is true.
4744 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
4745 // treat m-n as signed nor unsigned due to overflow possibility.
4747 // First, we get the value of the LHS in the first iteration: n
4748 const SCEV *Start = AddRec->getOperand(0);
4750 // Determine the minimum constant start value.
4751 const SCEV *MinStart = getConstant(isSigned ?
4752 getSignedRange(Start).getSignedMin() :
4753 getUnsignedRange(Start).getUnsignedMin());
4755 // If we know that the condition is true in order to enter the loop,
4756 // then we know that it will run exactly (m-n)/s times. Otherwise, we
4757 // only know that it will execute (max(m,n)-n)/s times. In both cases,
4758 // the division must round up.
4759 const SCEV *End = RHS;
4760 if (!isLoopGuardedByCond(L,
4761 isSigned ? ICmpInst::ICMP_SLT :
4762 ICmpInst::ICMP_ULT,
4763 getMinusSCEV(Start, Step), RHS))
4764 End = isSigned ? getSMaxExpr(RHS, Start)
4765 : getUMaxExpr(RHS, Start);
4767 // Determine the maximum constant end value.
4768 const SCEV *MaxEnd = getConstant(isSigned ?
4769 getSignedRange(End).getSignedMax() :
4770 getUnsignedRange(End).getUnsignedMax());
4772 // Finally, we subtract these two values and divide, rounding up, to get
4773 // the number of times the backedge is executed.
4774 const SCEV *BECount = getBECount(Start, End, Step);
4776 // The maximum backedge count is similar, except using the minimum start
4777 // value and the maximum end value.
4778 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step);
4780 return BackedgeTakenInfo(BECount, MaxBECount);
4783 return getCouldNotCompute();
4786 /// getNumIterationsInRange - Return the number of iterations of this loop that
4787 /// produce values in the specified constant range. Another way of looking at
4788 /// this is that it returns the first iteration number where the value is not in
4789 /// the condition, thus computing the exit count. If the iteration count can't
4790 /// be computed, an instance of SCEVCouldNotCompute is returned.
4791 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
4792 ScalarEvolution &SE) const {
4793 if (Range.isFullSet()) // Infinite loop.
4794 return SE.getCouldNotCompute();
4796 // If the start is a non-zero constant, shift the range to simplify things.
4797 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
4798 if (!SC->getValue()->isZero()) {
4799 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
4800 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
4801 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
4802 if (const SCEVAddRecExpr *ShiftedAddRec =
4803 dyn_cast<SCEVAddRecExpr>(Shifted))
4804 return ShiftedAddRec->getNumIterationsInRange(
4805 Range.subtract(SC->getValue()->getValue()), SE);
4806 // This is strange and shouldn't happen.
4807 return SE.getCouldNotCompute();
4810 // The only time we can solve this is when we have all constant indices.
4811 // Otherwise, we cannot determine the overflow conditions.
4812 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4813 if (!isa<SCEVConstant>(getOperand(i)))
4814 return SE.getCouldNotCompute();
4817 // Okay at this point we know that all elements of the chrec are constants and
4818 // that the start element is zero.
4820 // First check to see if the range contains zero. If not, the first
4821 // iteration exits.
4822 unsigned BitWidth = SE.getTypeSizeInBits(getType());
4823 if (!Range.contains(APInt(BitWidth, 0)))
4824 return SE.getIntegerSCEV(0, getType());
4826 if (isAffine()) {
4827 // If this is an affine expression then we have this situation:
4828 // Solve {0,+,A} in Range === Ax in Range
4830 // We know that zero is in the range. If A is positive then we know that
4831 // the upper value of the range must be the first possible exit value.
4832 // If A is negative then the lower of the range is the last possible loop
4833 // value. Also note that we already checked for a full range.
4834 APInt One(BitWidth,1);
4835 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
4836 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
4838 // The exit value should be (End+A)/A.
4839 APInt ExitVal = (End + A).udiv(A);
4840 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
4842 // Evaluate at the exit value. If we really did fall out of the valid
4843 // range, then we computed our trip count, otherwise wrap around or other
4844 // things must have happened.
4845 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
4846 if (Range.contains(Val->getValue()))
4847 return SE.getCouldNotCompute(); // Something strange happened
4849 // Ensure that the previous value is in the range. This is a sanity check.
4850 assert(Range.contains(
4851 EvaluateConstantChrecAtConstant(this,
4852 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
4853 "Linear scev computation is off in a bad way!");
4854 return SE.getConstant(ExitValue);
4855 } else if (isQuadratic()) {
4856 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
4857 // quadratic equation to solve it. To do this, we must frame our problem in
4858 // terms of figuring out when zero is crossed, instead of when
4859 // Range.getUpper() is crossed.
4860 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
4861 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
4862 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
4864 // Next, solve the constructed addrec
4865 std::pair<const SCEV *,const SCEV *> Roots =
4866 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
4867 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4868 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
4869 if (R1) {
4870 // Pick the smallest positive root value.
4871 if (ConstantInt *CB =
4872 dyn_cast<ConstantInt>(
4873 SE.getContext().getConstantExprICmp(ICmpInst::ICMP_ULT,
4874 R1->getValue(), R2->getValue()))) {
4875 if (CB->getZExtValue() == false)
4876 std::swap(R1, R2); // R1 is the minimum root now.
4878 // Make sure the root is not off by one. The returned iteration should
4879 // not be in the range, but the previous one should be. When solving
4880 // for "X*X < 5", for example, we should not return a root of 2.
4881 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
4882 R1->getValue(),
4883 SE);
4884 if (Range.contains(R1Val->getValue())) {
4885 // The next iteration must be out of the range...
4886 ConstantInt *NextVal =
4887 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
4889 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4890 if (!Range.contains(R1Val->getValue()))
4891 return SE.getConstant(NextVal);
4892 return SE.getCouldNotCompute(); // Something strange happened
4895 // If R1 was not in the range, then it is a good return value. Make
4896 // sure that R1-1 WAS in the range though, just in case.
4897 ConstantInt *NextVal =
4898 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
4899 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
4900 if (Range.contains(R1Val->getValue()))
4901 return R1;
4902 return SE.getCouldNotCompute(); // Something strange happened
4907 return SE.getCouldNotCompute();
4912 //===----------------------------------------------------------------------===//
4913 // SCEVCallbackVH Class Implementation
4914 //===----------------------------------------------------------------------===//
4916 void ScalarEvolution::SCEVCallbackVH::deleted() {
4917 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
4918 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
4919 SE->ConstantEvolutionLoopExitValue.erase(PN);
4920 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
4921 SE->ValuesAtScopes.erase(I);
4922 SE->Scalars.erase(getValPtr());
4923 // this now dangles!
4926 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
4927 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
4929 // Forget all the expressions associated with users of the old value,
4930 // so that future queries will recompute the expressions using the new
4931 // value.
4932 SmallVector<User *, 16> Worklist;
4933 SmallPtrSet<User *, 8> Visited;
4934 Value *Old = getValPtr();
4935 bool DeleteOld = false;
4936 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
4937 UI != UE; ++UI)
4938 Worklist.push_back(*UI);
4939 while (!Worklist.empty()) {
4940 User *U = Worklist.pop_back_val();
4941 // Deleting the Old value will cause this to dangle. Postpone
4942 // that until everything else is done.
4943 if (U == Old) {
4944 DeleteOld = true;
4945 continue;
4947 if (!Visited.insert(U))
4948 continue;
4949 if (PHINode *PN = dyn_cast<PHINode>(U))
4950 SE->ConstantEvolutionLoopExitValue.erase(PN);
4951 if (Instruction *I = dyn_cast<Instruction>(U))
4952 SE->ValuesAtScopes.erase(I);
4953 SE->Scalars.erase(U);
4954 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
4955 UI != UE; ++UI)
4956 Worklist.push_back(*UI);
4958 // Delete the Old value if it (indirectly) references itself.
4959 if (DeleteOld) {
4960 if (PHINode *PN = dyn_cast<PHINode>(Old))
4961 SE->ConstantEvolutionLoopExitValue.erase(PN);
4962 if (Instruction *I = dyn_cast<Instruction>(Old))
4963 SE->ValuesAtScopes.erase(I);
4964 SE->Scalars.erase(Old);
4965 // this now dangles!
4967 // this may dangle!
4970 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
4971 : CallbackVH(V), SE(se) {}
4973 //===----------------------------------------------------------------------===//
4974 // ScalarEvolution Class Implementation
4975 //===----------------------------------------------------------------------===//
4977 ScalarEvolution::ScalarEvolution()
4978 : FunctionPass(&ID) {
4981 bool ScalarEvolution::runOnFunction(Function &F) {
4982 this->F = &F;
4983 LI = &getAnalysis<LoopInfo>();
4984 TD = getAnalysisIfAvailable<TargetData>();
4985 return false;
4988 void ScalarEvolution::releaseMemory() {
4989 Scalars.clear();
4990 BackedgeTakenCounts.clear();
4991 ConstantEvolutionLoopExitValue.clear();
4992 ValuesAtScopes.clear();
4993 UniqueSCEVs.clear();
4994 SCEVAllocator.Reset();
4997 void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
4998 AU.setPreservesAll();
4999 AU.addRequiredTransitive<LoopInfo>();
5002 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
5003 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
5006 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
5007 const Loop *L) {
5008 // Print all inner loops first
5009 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5010 PrintLoopInfo(OS, SE, *I);
5012 OS << "Loop " << L->getHeader()->getName() << ": ";
5014 SmallVector<BasicBlock*, 8> ExitBlocks;
5015 L->getExitBlocks(ExitBlocks);
5016 if (ExitBlocks.size() != 1)
5017 OS << "<multiple exits> ";
5019 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5020 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
5021 } else {
5022 OS << "Unpredictable backedge-taken count. ";
5025 OS << "\n";
5026 OS << "Loop " << L->getHeader()->getName() << ": ";
5028 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5029 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5030 } else {
5031 OS << "Unpredictable max backedge-taken count. ";
5034 OS << "\n";
5037 void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
5038 // ScalarEvolution's implementaiton of the print method is to print
5039 // out SCEV values of all instructions that are interesting. Doing
5040 // this potentially causes it to create new SCEV objects though,
5041 // which technically conflicts with the const qualifier. This isn't
5042 // observable from outside the class though, so casting away the
5043 // const isn't dangerous.
5044 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
5046 OS << "Classifying expressions for: " << F->getName() << "\n";
5047 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
5048 if (isSCEVable(I->getType())) {
5049 OS << *I << '\n';
5050 OS << " --> ";
5051 const SCEV *SV = SE.getSCEV(&*I);
5052 SV->print(OS);
5054 const Loop *L = LI->getLoopFor((*I).getParent());
5056 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
5057 if (AtUse != SV) {
5058 OS << " --> ";
5059 AtUse->print(OS);
5062 if (L) {
5063 OS << "\t\t" "Exits: ";
5064 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
5065 if (!ExitValue->isLoopInvariant(L)) {
5066 OS << "<<Unknown>>";
5067 } else {
5068 OS << *ExitValue;
5072 OS << "\n";
5075 OS << "Determining loop execution counts for: " << F->getName() << "\n";
5076 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5077 PrintLoopInfo(OS, &SE, *I);
5080 void ScalarEvolution::print(std::ostream &o, const Module *M) const {
5081 raw_os_ostream OS(o);
5082 print(OS, M);