1 //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This tool implements a just-in-time compiler for LLVM, allowing direct
11 // execution of LLVM bitcode in an efficient manner.
13 //===----------------------------------------------------------------------===//
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/ModuleProvider.h"
22 #include "llvm/CodeGen/MachineCodeEmitter.h"
23 #include "llvm/ExecutionEngine/GenericValue.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetJITInfo.h"
27 #include "llvm/Support/Dwarf.h"
28 #include "llvm/Support/MutexGuard.h"
29 #include "llvm/System/DynamicLibrary.h"
30 #include "llvm/Config/config.h"
35 // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
36 // of atexit). It passes the address of linker generated symbol __dso_handle
38 // This configuration change happened at version 5330.
39 # include <AvailabilityMacros.h>
40 # if defined(MAC_OS_X_VERSION_10_4) && \
41 ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
42 (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
43 __APPLE_CC__ >= 5330))
44 # ifndef HAVE___DSO_HANDLE
45 # define HAVE___DSO_HANDLE 1
51 extern void *__dso_handle
__attribute__ ((__visibility__ ("hidden")));
56 static struct RegisterJIT
{
57 RegisterJIT() { JIT::Register(); }
68 #if defined(__GNUC__) && !defined(__ARM__EABI__)
70 // libgcc defines the __register_frame function to dynamically register new
71 // dwarf frames for exception handling. This functionality is not portable
72 // across compilers and is only provided by GCC. We use the __register_frame
73 // function here so that code generated by the JIT cooperates with the unwinding
74 // runtime of libgcc. When JITting with exception handling enable, LLVM
75 // generates dwarf frames and registers it to libgcc with __register_frame.
77 // The __register_frame function works with Linux.
79 // Unfortunately, this functionality seems to be in libgcc after the unwinding
80 // library of libgcc for darwin was written. The code for darwin overwrites the
81 // value updated by __register_frame with a value fetched with "keymgr".
82 // "keymgr" is an obsolete functionality, which should be rewritten some day.
83 // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
84 // need a workaround in LLVM which uses the "keymgr" to dynamically modify the
85 // values of an opaque key, used by libgcc to find dwarf tables.
87 extern "C" void __register_frame(void*);
89 #if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
99 // LibgccObject - This is the structure defined in libgcc. There is no #include
100 // provided for this structure, so we also define it here. libgcc calls it
101 // "struct object". The structure is undocumented in libgcc.
102 struct LibgccObject
{
107 /// frame - Pointer to the exception table.
110 /// encoding - The encoding of the object?
113 unsigned long sorted
: 1;
114 unsigned long from_array
: 1;
115 unsigned long mixed_encoding
: 1;
116 unsigned long encoding
: 8;
117 unsigned long count
: 21;
122 /// fde_end - libgcc defines this field only if some macro is defined. We
123 /// include this field even if it may not there, to make libgcc happy.
126 /// next - At least we know it's a chained list!
127 struct LibgccObject
*next
;
130 // "kemgr" stuff. Apparently, all frame tables are stored there.
131 extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
132 extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
133 #define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */
135 /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
136 /// probably contains all dwarf tables that are loaded.
137 struct LibgccObjectInfo
{
139 /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
141 struct LibgccObject
* seenObjects
;
143 /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
145 struct LibgccObject
* unseenObjects
;
150 /// darwin_register_frame - Since __register_frame does not work with darwin's
151 /// libgcc,we provide our own function, which "tricks" libgcc by modifying the
152 /// "Dwarf2 object list" key.
153 void DarwinRegisterFrame(void* FrameBegin
) {
155 LibgccObjectInfo
* LOI
= (struct LibgccObjectInfo
*)
156 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST
);
157 assert(LOI
&& "This should be preallocated by the runtime");
159 // Allocate a new LibgccObject to represent this frame. Deallocation of this
160 // object may be impossible: since darwin code in libgcc was written after
161 // the ability to dynamically register frames, things may crash if we
163 struct LibgccObject
* ob
= (struct LibgccObject
*)
164 malloc(sizeof(struct LibgccObject
));
166 // Do like libgcc for the values of the field.
167 ob
->unused1
= (void *)-1;
170 ob
->frame
= FrameBegin
;
172 ob
->encoding
.b
.encoding
= llvm::dwarf::DW_EH_PE_omit
;
174 // Put the info on both places, as libgcc uses the first or the the second
175 // field. Note that we rely on having two pointers here. If fde_end was a
176 // char, things would get complicated.
177 ob
->fde_end
= (char*)LOI
->unseenObjects
;
178 ob
->next
= LOI
->unseenObjects
;
180 // Update the key's unseenObjects list.
181 LOI
->unseenObjects
= ob
;
183 // Finally update the "key". Apparently, libgcc requires it.
184 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST
,
193 /// createJIT - This is the factory method for creating a JIT for the current
194 /// machine, it does not fall back to the interpreter. This takes ownership
195 /// of the module provider.
196 ExecutionEngine
*ExecutionEngine::createJIT(ModuleProvider
*MP
,
197 std::string
*ErrorStr
,
198 JITMemoryManager
*JMM
,
199 CodeGenOpt::Level OptLevel
) {
200 ExecutionEngine
*EE
= JIT::createJIT(MP
, ErrorStr
, JMM
, OptLevel
);
203 // Make sure we can resolve symbols in the program as well. The zero arg
204 // to the function tells DynamicLibrary to load the program, not a library.
205 sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr
);
209 JIT::JIT(ModuleProvider
*MP
, TargetMachine
&tm
, TargetJITInfo
&tji
,
210 JITMemoryManager
*JMM
, CodeGenOpt::Level OptLevel
)
211 : ExecutionEngine(MP
), TM(tm
), TJI(tji
) {
212 setTargetData(TM
.getTargetData());
214 jitstate
= new JITState(MP
);
217 MCE
= createEmitter(*this, JMM
);
220 MutexGuard
locked(lock
);
221 FunctionPassManager
&PM
= jitstate
->getPM(locked
);
222 PM
.add(new TargetData(*TM
.getTargetData()));
224 // Turn the machine code intermediate representation into bytes in memory that
226 if (TM
.addPassesToEmitMachineCode(PM
, *MCE
, OptLevel
)) {
227 cerr
<< "Target does not support machine code emission!\n";
231 // Register routine for informing unwinding runtime about new EH frames
232 #if defined(__GNUC__) && !defined(__ARM_EABI__)
234 struct LibgccObjectInfo
* LOI
= (struct LibgccObjectInfo
*)
235 _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST
);
237 // The key is created on demand, and libgcc creates it the first time an
238 // exception occurs. Since we need the key to register frames, we create
241 LOI
= (LibgccObjectInfo
*)calloc(sizeof(struct LibgccObjectInfo
), 1);
242 _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST
, LOI
);
243 InstallExceptionTableRegister(DarwinRegisterFrame
);
245 InstallExceptionTableRegister(__register_frame
);
249 // Initialize passes.
250 PM
.doInitialization();
259 /// addModuleProvider - Add a new ModuleProvider to the JIT. If we previously
260 /// removed the last ModuleProvider, we need re-initialize jitstate with a valid
262 void JIT::addModuleProvider(ModuleProvider
*MP
) {
263 MutexGuard
locked(lock
);
265 if (Modules
.empty()) {
266 assert(!jitstate
&& "jitstate should be NULL if Modules vector is empty!");
268 jitstate
= new JITState(MP
);
270 FunctionPassManager
&PM
= jitstate
->getPM(locked
);
271 PM
.add(new TargetData(*TM
.getTargetData()));
273 // Turn the machine code intermediate representation into bytes in memory
274 // that may be executed.
275 if (TM
.addPassesToEmitMachineCode(PM
, *MCE
, CodeGenOpt::Default
)) {
276 cerr
<< "Target does not support machine code emission!\n";
280 // Initialize passes.
281 PM
.doInitialization();
284 ExecutionEngine::addModuleProvider(MP
);
287 /// removeModuleProvider - If we are removing the last ModuleProvider,
288 /// invalidate the jitstate since the PassManager it contains references a
289 /// released ModuleProvider.
290 Module
*JIT::removeModuleProvider(ModuleProvider
*MP
, std::string
*E
) {
291 Module
*result
= ExecutionEngine::removeModuleProvider(MP
, E
);
293 MutexGuard
locked(lock
);
295 if (jitstate
->getMP() == MP
) {
300 if (!jitstate
&& !Modules
.empty()) {
301 jitstate
= new JITState(Modules
[0]);
303 FunctionPassManager
&PM
= jitstate
->getPM(locked
);
304 PM
.add(new TargetData(*TM
.getTargetData()));
306 // Turn the machine code intermediate representation into bytes in memory
307 // that may be executed.
308 if (TM
.addPassesToEmitMachineCode(PM
, *MCE
, CodeGenOpt::Default
)) {
309 cerr
<< "Target does not support machine code emission!\n";
313 // Initialize passes.
314 PM
.doInitialization();
319 /// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
320 /// and deletes the ModuleProvider and owned Module. Avoids materializing
321 /// the underlying module.
322 void JIT::deleteModuleProvider(ModuleProvider
*MP
, std::string
*E
) {
323 ExecutionEngine::deleteModuleProvider(MP
, E
);
325 MutexGuard
locked(lock
);
327 if (jitstate
->getMP() == MP
) {
332 if (!jitstate
&& !Modules
.empty()) {
333 jitstate
= new JITState(Modules
[0]);
335 FunctionPassManager
&PM
= jitstate
->getPM(locked
);
336 PM
.add(new TargetData(*TM
.getTargetData()));
338 // Turn the machine code intermediate representation into bytes in memory
339 // that may be executed.
340 if (TM
.addPassesToEmitMachineCode(PM
, *MCE
, CodeGenOpt::Default
)) {
341 cerr
<< "Target does not support machine code emission!\n";
345 // Initialize passes.
346 PM
.doInitialization();
350 /// run - Start execution with the specified function and arguments.
352 GenericValue
JIT::runFunction(Function
*F
,
353 const std::vector
<GenericValue
> &ArgValues
) {
354 assert(F
&& "Function *F was null at entry to run()");
356 void *FPtr
= getPointerToFunction(F
);
357 assert(FPtr
&& "Pointer to fn's code was null after getPointerToFunction");
358 const FunctionType
*FTy
= F
->getFunctionType();
359 const Type
*RetTy
= FTy
->getReturnType();
361 assert((FTy
->getNumParams() == ArgValues
.size() ||
362 (FTy
->isVarArg() && FTy
->getNumParams() <= ArgValues
.size())) &&
363 "Wrong number of arguments passed into function!");
364 assert(FTy
->getNumParams() == ArgValues
.size() &&
365 "This doesn't support passing arguments through varargs (yet)!");
367 // Handle some common cases first. These cases correspond to common `main'
369 if (RetTy
== Type::Int32Ty
|| RetTy
== Type::VoidTy
) {
370 switch (ArgValues
.size()) {
372 if (FTy
->getParamType(0) == Type::Int32Ty
&&
373 isa
<PointerType
>(FTy
->getParamType(1)) &&
374 isa
<PointerType
>(FTy
->getParamType(2))) {
375 int (*PF
)(int, char **, const char **) =
376 (int(*)(int, char **, const char **))(intptr_t)FPtr
;
378 // Call the function.
380 rv
.IntVal
= APInt(32, PF(ArgValues
[0].IntVal
.getZExtValue(),
381 (char **)GVTOP(ArgValues
[1]),
382 (const char **)GVTOP(ArgValues
[2])));
387 if (FTy
->getParamType(0) == Type::Int32Ty
&&
388 isa
<PointerType
>(FTy
->getParamType(1))) {
389 int (*PF
)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr
;
391 // Call the function.
393 rv
.IntVal
= APInt(32, PF(ArgValues
[0].IntVal
.getZExtValue(),
394 (char **)GVTOP(ArgValues
[1])));
399 if (FTy
->getNumParams() == 1 &&
400 FTy
->getParamType(0) == Type::Int32Ty
) {
402 int (*PF
)(int) = (int(*)(int))(intptr_t)FPtr
;
403 rv
.IntVal
= APInt(32, PF(ArgValues
[0].IntVal
.getZExtValue()));
410 // Handle cases where no arguments are passed first.
411 if (ArgValues
.empty()) {
413 switch (RetTy
->getTypeID()) {
414 default: assert(0 && "Unknown return type for function call!");
415 case Type::IntegerTyID
: {
416 unsigned BitWidth
= cast
<IntegerType
>(RetTy
)->getBitWidth();
418 rv
.IntVal
= APInt(BitWidth
, ((bool(*)())(intptr_t)FPtr
)());
419 else if (BitWidth
<= 8)
420 rv
.IntVal
= APInt(BitWidth
, ((char(*)())(intptr_t)FPtr
)());
421 else if (BitWidth
<= 16)
422 rv
.IntVal
= APInt(BitWidth
, ((short(*)())(intptr_t)FPtr
)());
423 else if (BitWidth
<= 32)
424 rv
.IntVal
= APInt(BitWidth
, ((int(*)())(intptr_t)FPtr
)());
425 else if (BitWidth
<= 64)
426 rv
.IntVal
= APInt(BitWidth
, ((int64_t(*)())(intptr_t)FPtr
)());
428 assert(0 && "Integer types > 64 bits not supported");
432 rv
.IntVal
= APInt(32, ((int(*)())(intptr_t)FPtr
)());
434 case Type::FloatTyID
:
435 rv
.FloatVal
= ((float(*)())(intptr_t)FPtr
)();
437 case Type::DoubleTyID
:
438 rv
.DoubleVal
= ((double(*)())(intptr_t)FPtr
)();
440 case Type::X86_FP80TyID
:
441 case Type::FP128TyID
:
442 case Type::PPC_FP128TyID
:
443 assert(0 && "long double not supported yet");
445 case Type::PointerTyID
:
446 return PTOGV(((void*(*)())(intptr_t)FPtr
)());
450 // Okay, this is not one of our quick and easy cases. Because we don't have a
451 // full FFI, we have to codegen a nullary stub function that just calls the
452 // function we are interested in, passing in constants for all of the
453 // arguments. Make this function and return.
455 // First, create the function.
456 FunctionType
*STy
=FunctionType::get(RetTy
, std::vector
<const Type
*>(), false);
457 Function
*Stub
= Function::Create(STy
, Function::InternalLinkage
, "",
460 // Insert a basic block.
461 BasicBlock
*StubBB
= BasicBlock::Create("", Stub
);
463 // Convert all of the GenericValue arguments over to constants. Note that we
464 // currently don't support varargs.
465 SmallVector
<Value
*, 8> Args
;
466 for (unsigned i
= 0, e
= ArgValues
.size(); i
!= e
; ++i
) {
468 const Type
*ArgTy
= FTy
->getParamType(i
);
469 const GenericValue
&AV
= ArgValues
[i
];
470 switch (ArgTy
->getTypeID()) {
471 default: assert(0 && "Unknown argument type for function call!");
472 case Type::IntegerTyID
:
473 C
= ConstantInt::get(AV
.IntVal
);
475 case Type::FloatTyID
:
476 C
= ConstantFP::get(APFloat(AV
.FloatVal
));
478 case Type::DoubleTyID
:
479 C
= ConstantFP::get(APFloat(AV
.DoubleVal
));
481 case Type::PPC_FP128TyID
:
482 case Type::X86_FP80TyID
:
483 case Type::FP128TyID
:
484 C
= ConstantFP::get(APFloat(AV
.IntVal
));
486 case Type::PointerTyID
:
487 void *ArgPtr
= GVTOP(AV
);
488 if (sizeof(void*) == 4)
489 C
= ConstantInt::get(Type::Int32Ty
, (int)(intptr_t)ArgPtr
);
491 C
= ConstantInt::get(Type::Int64Ty
, (intptr_t)ArgPtr
);
492 C
= ConstantExpr::getIntToPtr(C
, ArgTy
); // Cast the integer to pointer
498 CallInst
*TheCall
= CallInst::Create(F
, Args
.begin(), Args
.end(),
500 TheCall
->setCallingConv(F
->getCallingConv());
501 TheCall
->setTailCall();
502 if (TheCall
->getType() != Type::VoidTy
)
503 ReturnInst::Create(TheCall
, StubBB
); // Return result of the call.
505 ReturnInst::Create(StubBB
); // Just return void.
507 // Finally, return the value returned by our nullary stub function.
508 return runFunction(Stub
, std::vector
<GenericValue
>());
511 /// runJITOnFunction - Run the FunctionPassManager full of
512 /// just-in-time compilation passes on F, hopefully filling in
513 /// GlobalAddress[F] with the address of F's machine code.
515 void JIT::runJITOnFunction(Function
*F
) {
516 MutexGuard
locked(lock
);
517 runJITOnFunctionUnlocked(F
, locked
);
520 void JIT::runJITOnFunctionUnlocked(Function
*F
, const MutexGuard
&locked
) {
521 static bool isAlreadyCodeGenerating
= false;
522 assert(!isAlreadyCodeGenerating
&& "Error: Recursive compilation detected!");
525 isAlreadyCodeGenerating
= true;
526 jitstate
->getPM(locked
).run(*F
);
527 isAlreadyCodeGenerating
= false;
529 // If the function referred to another function that had not yet been
530 // read from bitcode, but we are jitting non-lazily, emit it now.
531 while (!jitstate
->getPendingFunctions(locked
).empty()) {
532 Function
*PF
= jitstate
->getPendingFunctions(locked
).back();
533 jitstate
->getPendingFunctions(locked
).pop_back();
536 isAlreadyCodeGenerating
= true;
537 jitstate
->getPM(locked
).run(*PF
);
538 isAlreadyCodeGenerating
= false;
540 // Now that the function has been jitted, ask the JITEmitter to rewrite
541 // the stub with real address of the function.
542 updateFunctionStub(PF
);
545 // If the JIT is configured to emit info so that dlsym can be used to
546 // rewrite stubs to external globals, do so now.
547 if (areDlsymStubsEnabled() && isLazyCompilationDisabled())
548 updateDlsymStubTable();
551 /// getPointerToFunction - This method is used to get the address of the
552 /// specified function, compiling it if neccesary.
554 void *JIT::getPointerToFunction(Function
*F
) {
556 if (void *Addr
= getPointerToGlobalIfAvailable(F
))
557 return Addr
; // Check if function already code gen'd
559 MutexGuard
locked(lock
);
561 // Make sure we read in the function if it exists in this Module.
562 if (F
->hasNotBeenReadFromBitcode()) {
563 // Determine the module provider this function is provided by.
564 Module
*M
= F
->getParent();
565 ModuleProvider
*MP
= 0;
566 for (unsigned i
= 0, e
= Modules
.size(); i
!= e
; ++i
) {
567 if (Modules
[i
]->getModule() == M
) {
572 assert(MP
&& "Function isn't in a module we know about!");
574 std::string ErrorMsg
;
575 if (MP
->materializeFunction(F
, &ErrorMsg
)) {
576 cerr
<< "Error reading function '" << F
->getName()
577 << "' from bitcode file: " << ErrorMsg
<< "\n";
581 // Now retry to get the address.
582 if (void *Addr
= getPointerToGlobalIfAvailable(F
))
586 if (F
->isDeclaration()) {
587 bool AbortOnFailure
=
588 !areDlsymStubsEnabled() && !F
->hasExternalWeakLinkage();
589 void *Addr
= getPointerToNamedFunction(F
->getName(), AbortOnFailure
);
590 addGlobalMapping(F
, Addr
);
594 runJITOnFunctionUnlocked(F
, locked
);
596 void *Addr
= getPointerToGlobalIfAvailable(F
);
597 assert(Addr
&& "Code generation didn't add function to GlobalAddress table!");
601 /// getOrEmitGlobalVariable - Return the address of the specified global
602 /// variable, possibly emitting it to memory if needed. This is used by the
604 void *JIT::getOrEmitGlobalVariable(const GlobalVariable
*GV
) {
605 MutexGuard
locked(lock
);
607 void *Ptr
= getPointerToGlobalIfAvailable(GV
);
610 // If the global is external, just remember the address.
611 if (GV
->isDeclaration()) {
612 #if HAVE___DSO_HANDLE
613 if (GV
->getName() == "__dso_handle")
614 return (void*)&__dso_handle
;
616 Ptr
= sys::DynamicLibrary::SearchForAddressOfSymbol(GV
->getName().c_str());
617 if (Ptr
== 0 && !areDlsymStubsEnabled()) {
618 cerr
<< "Could not resolve external global address: "
619 << GV
->getName() << "\n";
622 addGlobalMapping(GV
, Ptr
);
624 // GlobalVariable's which are not "constant" will cause trouble in a server
625 // situation. It's returned in the same block of memory as code which may
627 if (isGVCompilationDisabled() && !GV
->isConstant()) {
628 cerr
<< "Compilation of non-internal GlobalValue is disabled!\n";
631 // If the global hasn't been emitted to memory yet, allocate space and
632 // emit it into memory. It goes in the same array as the generated
633 // code, jump tables, etc.
634 const Type
*GlobalType
= GV
->getType()->getElementType();
635 size_t S
= getTargetData()->getTypePaddedSize(GlobalType
);
636 size_t A
= getTargetData()->getPreferredAlignment(GV
);
637 if (GV
->isThreadLocal()) {
638 MutexGuard
locked(lock
);
639 Ptr
= TJI
.allocateThreadLocalMemory(S
);
640 } else if (TJI
.allocateSeparateGVMemory()) {
644 // Allocate S+A bytes of memory, then use an aligned pointer within that
647 unsigned MisAligned
= ((intptr_t)Ptr
& (A
-1));
648 Ptr
= (char*)Ptr
+ (MisAligned
? (A
-MisAligned
) : 0);
651 Ptr
= MCE
->allocateSpace(S
, A
);
653 addGlobalMapping(GV
, Ptr
);
654 EmitGlobalVariable(GV
);
659 /// recompileAndRelinkFunction - This method is used to force a function
660 /// which has already been compiled, to be compiled again, possibly
661 /// after it has been modified. Then the entry to the old copy is overwritten
662 /// with a branch to the new copy. If there was no old copy, this acts
663 /// just like JIT::getPointerToFunction().
665 void *JIT::recompileAndRelinkFunction(Function
*F
) {
666 void *OldAddr
= getPointerToGlobalIfAvailable(F
);
668 // If it's not already compiled there is no reason to patch it up.
669 if (OldAddr
== 0) { return getPointerToFunction(F
); }
671 // Delete the old function mapping.
672 addGlobalMapping(F
, 0);
674 // Recodegen the function
677 // Update state, forward the old function to the new function.
678 void *Addr
= getPointerToGlobalIfAvailable(F
);
679 assert(Addr
&& "Code generation didn't add function to GlobalAddress table!");
680 TJI
.replaceMachineCodeForFunction(OldAddr
, Addr
);
684 /// getMemoryForGV - This method abstracts memory allocation of global
685 /// variable so that the JIT can allocate thread local variables depending
688 char* JIT::getMemoryForGV(const GlobalVariable
* GV
) {
689 const Type
*ElTy
= GV
->getType()->getElementType();
690 size_t GVSize
= (size_t)getTargetData()->getTypePaddedSize(ElTy
);
691 if (GV
->isThreadLocal()) {
692 MutexGuard
locked(lock
);
693 return TJI
.allocateThreadLocalMemory(GVSize
);
695 return new char[GVSize
];
699 void JIT::addPendingFunction(Function
*F
) {
700 MutexGuard
locked(lock
);
701 jitstate
->getPendingFunctions(locked
).push_back(F
);